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Thesis: when a specific problem of optimization is
“canonical”, i.e. works with “just the right concepts”
and reflects “just the right questions”, then intrinsic
tools are the way forward to insight.



MaxEnt

Consider a preparation consisting of all probability dis-
tributions over a discrete alphabet A with given mean
“energy”:

X0 = {x|
∑
i∈A

xiEi = E} .

Problem: Maximize entropy H(x) over X0.

Solution 1: Introduce Lagrange multipliers!

Solution 2: First introduce more structure
(next 3-4 slides):



Define the set Y of codes ( code length functions) by

Y = {y|
∑
i∈A

e−yi = 1}

or, equivalently, Y = {y|
∑

i∈A ξi = 1} with ξ the
matching distribution, also thought of as the belief
corresponding to y, i.e. ξi = e−yi for i ∈ A.

Consider the complexity function:

Φ(x, y) =
∑
i∈A

xiyi =
∑
i∈A

xi ln
1

ξi
.

Then Φ(x, y) = H(x) + D(x, y) ( linking identity).

Here, D(x, y) = D(x‖ξ) =
∑

i∈A xi ln xi
ξi

, standard
Kullback-Leibler divergence.



Recall the fundamental inequality:

D(x, y) ≥ 0 with D = 0 ⇔ y = x̂

Here, y is adapted to x , y = x̂, if yi = ln 1
xi

for i ∈ A.
Thus entropy is minimal complexity:

H(x) = min
y∈Y

Φ(x, y) = minΦx .

We call y robust (member of the associated exponen-
tial family E ) if ∃h < ∞∀x ∈ X0 : Φ(x, y) = h .

Robustness lemma: If (x∗, y∗) has y∗ = x̂∗,
x∗ ∈ X0 and y∗ robust, then x∗ is the MaxEnt
distribution.



Proof:
1: H(x∗) = Φ(x∗, x̂∗) = Φ(x∗, y∗) = h,
hence, as x∗ ∈ X0, Hmax ≥ h,
2: For x ∈ X0 \ {x∗},
H(x) < H(x) + D(x, y∗) = Φ(x, y∗) = h. qed

Having introduced more structure, and armed with the
robustness lemma, the second solution is:

• seek codes of the form y∗ = α + βE,
• note that, trivially, these codes are all robust,
• apply the robustness lemma.



Axiomatize !

Consider information triples (Φ,H,D), in more detail
(X, Y, x y x̂,Φ,H,D), satisfying:

Axiom 1: Linking+fundamental inequality,
Axiom 2: X is convex and, for all y, Φy is affine
(Φy is the marginal function x y Φ(x, y)).

Then robustness lemma holds for any preparation X0.
But: most natural to consider, given y, the associated
natural preparation family which consists of all prepa-
rations which are level sets of Φy, i.e. sets of the form
X0 = {Φy = h}.

These are preparations of genus 1 as only one constraint is in-

volved. Generalization to finite genus is straight forward.



Applications

MaxEnt: As before but more general triples than “Shan-
non triple” are possible using Bregman construction.

Capacity-redundancy: Consider DMC and
randomize to obtain an appropriate set X of distribu-
tions over the input alphabet, take as Y output dis-
tributions, as Φ expected divergence ... (if time, see
details further on).

MinDiv, updating: Consider a prior and measure per-
formance relative to this. Leads to minimum discrim-
ination principle and to information projections . The
important process is one of relativization.



Updating in Hilbert space: Consider:

Φ(x, y) = ‖x− y‖2 − ‖x− y0‖2 ,

H(x) = −‖x− y0‖2 ,

D(x, y) = ‖x− y‖2 .

The natural preparation family gives families of hyper-
planes and the robustness lemma gives the natural
projections of the prior onto these hyperplanes.

Sylvester’s problem: “It is required to find the least
circle which shall contain a given system of points in
the plane” . Treated as the capacity-redundancy prob-
lem ... (if time, see next pages)

... further details on my homepage or in forthcoming
publications.



common treatment of capacity-redundancy (CR)
and Sylvester (S) problems

Given (Pi)i∈A. Let X be the set of distributions α =

(αi)i∈A.

S: The Pi are the given points (in the plane or ...). Let
Y be the set of all points in the plane (or...). D(P, Q)

denotes ‖P −Q‖2.

CR: A is the input alphabet of the DMC, the Pi’s, distri-
butions over an output alphabet , B, the output distrib-
utions of the DMC. Let Y be the set of all distributions
over B. D(P, Q) denotes K-B divergence.



For both cases, b(α) with α ∈ X, denotes the
barycenter

∑
i∈A αiPi.

In both cases, the compensation identity holds:∑
i∈A

αi D(Pi, Q) =
∑
i∈A

αi D(Pi, b(α)+D(b(α), Q) .

holds for any Q ∈ Y . Therefore,

Φ(α, Q) =
∑
i∈A

αi D(Pi, Q) ,

H(α) =
∑
i∈A

αi D(Pi, b(α)) ,

D(α, Q) = D(b(α), Q)

satisfies Axioms 1 and 2. Instead of robustness you
here use a more general result, Nash’s saddle-value
inequalities. They leed directly to the usual Kuhn-
Tucker criterion which provides the intrinsic method
sought for.



Insights, view points, a question

1 intrinsic solutions to natural problems is possible,
depends on adequate structure and leeds to insight
2 Game theory appears appropriate as it stresses the
interplay between you and the part of “nature” you
are studying
3 key results (robustness, Kuhn-Tucker) follow from
general game theory, especially results due to Nash
4 Never consider entropy alone
5 always consider exponential families alongside with
the related natural preparation families
6 Axiomatic approach devoid, in principle, of informa-
tion theory: Is it a gift from information theory to
optimization theory – or should parts of information
theory be much broadened and subsumed under a
more general mathematical theory ?


