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These are the revised lecture notes for my four lectures at the Park City
Math Institute, Utah 2011. The lectures form a continuation of Nathalie Wahl’s
lectures, and I refer to her lectures for context and motivation.

My goal for the lectures were to give a precise statement of the Madsen–
Weiss theorem and give (most of) a proof. The theorem was first proved by
Madsen and Weiss in [5]. The lectures will concern the proof given in [1] (first
outlined in [2]), and the reader is referred there for more details. The exposition
is influenced by Hatcher’s survey [3].

1 Spaces of submanifolds and the Madsen–Weiss
theorem

The main goal of this lecture is to give a precise statement of the Madsen–
Weiss theorem ([5]). In the process, we will introduce several objects which will
be useful in the proof.

1.1 Spaces of manifolds

We begin with a definition of a certain topological space which will be used
throughout the lectures, first defining the underlying set, and then describing a
topology. The relation to Madsen–Weiss’ theorem will become clear during this
lecture. Before defining the underlying set, let us point out a potential cause of
confusion about words: For a submanifold W ⊆ Rn, being “closed” could have
two very different meanings. It could mean either that W is a closed manifold,
i.e. it is compact and has no boundary (this property does not depend on how
W sits in Rn), or it could mean that W is a closed subset of Rn. To avoid this
confusion, we shall say that W ⊆ Rn is topologically closed to mean that W is
merely a closed subset.

Definition 1.1. Let Ψ(Rn) be the set of pairs (W,ω), where W ⊆ Rn is a
smooth 2-manifold without boundary which is topologically closed in Rn, and
ω is an orientation of W .

We emphasize that there are no further conditions required, and in particular
W is not required to be path connected. In general Hi(W ) could have infinite
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rank for all or some i ≤ 2. This set has something akin to a smooth structure
(although it is not in any good sense an infinite dimensional manifold).

Definition 1.2. Let X be a smooth manifold. A map f : X → Ψ(Rn) is smooth
if the graph

Γf = {(x, v) ∈ X × Rn|v ∈ f(x)}

is a smooth topologically closed submanifold of X×Rn such that the projection
pf : Γf → X is a submersion and the orientations of f(x) vary continuously
(i.e. assemble to an orientation on the kernel of Dpf : TΓf → TX).

In [2] and [1], a natural topology on Ψ(Rn) was defined, and the following
property was proved.

Lemma 1.3. Any smooth map X → Ψ(Rn) is continuous. Any continuous
map f : X → Ψ(Rn) can be perturbed to a smooth map; the perturbation can be
assumed constant near any closed set on which f is already smooth.

“Perturbation” means a continuous extension of f to X × [0, 1) which is
smooth on X × (0, 1). In these lectures we shall not prove in detail that a
topology with this property exists, but we shall say some words about what
the open sets are (and refer to [1] for more details). A neighborhood basis at
∅ ∈ Ψ(Rn) is given by the sets

U(K) = {W ∈ Ψ(Rn)|W ∩K = ∅},

where K runs through compact subsets of Rn. In particular, a sequence of
points Wi ∈ Ψ(Rn) converges to ∅ if and only if the following condition holds:
For each compact K, there exists an N = NK such that Wi ∩ K = ∅ for
i > N . A neighborhood basis at an arbitrary W ∈ Ψ(Rn) is defined similarly:
It consists of manifolds which near a large compact subset of Rn looks like a
small perturbation of W (where “small” is in a C∞ sense.)

For example, the function f : R → Ψ(R3) given by f(t) = {t−1} × R2

and f(0) = ∅ is continuous (in fact smooth). As another illustration of the
compact-open flavor of the topology, let us prove that Ψ(Rn) is path connected
for n ≥ 3. In that case, given any W ∈ Ψ(Rn), we can pick a point p ∈ Rn−W .
For t ∈ [0, 1] we let W − tp denote the manifold W parallel translated by the
vector −tp and let (1−t)−1(W−tp) denote the result of scaling that manifold by
the number (1− t)−1, interpreted as ∅ when t = 0. Then t 7→ (1− t)−1(W − tp)
defines a continuous path which starts at W and ends at ∅, proving that there
is a path from any element to the base point ∅ ∈ Ψ(Rn).

The space Ψ(Rn) is related to surface bundles through the subspace

Bn = {W ∈ Ψ(Rn)|W ⊆ (0, 1)n}.

The exact relation to surface bundles is given by the following consequence of
lemma 1.3.
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Proposition 1.4. Let X be a smooth k-dimensional manifold. For n > 2k+4,
there is a bijection between [X,Bn] and the set of isomorphism classes of surface
bundles E → X.

Proof. By lemma 1.3, any map f : X → Bn is homotopic to a smooth map,
which is given by a smooth, topologically closed Γf ⊆ X × Rn, which is also
contained in X × (0, 1)n. An exercise in point-set topology shows that this
implies that the projection Γf → X is a surface bundle. If two maps f0, f1 :
X → Bn are smoothly homotopic, there is an induced surface bundle over X×I,
proving that the two surface bundles are isomorphic. This gives the map in one
direction.

Conversely, if E → X is a surface bundle and n > 2k + 4, we can pick an
embedding j : E → X × (0, 1)n (by Whitney’s embedding theorem), and we
can define a smooth map f : X → Bn by the formula j(Ex) = {x} × f(x). If
j′ is another embedding of the same surface bundle, then j and j′ are isotopic
(smoothly homotopic through embeddings), so the resulting maps X → Bn

become homotopic. This gives the map in the other direction, and it is easy to
see that they are each other’s inverse.

Using this proposition, a cohomology class c ∈ H∗(B∞) gives rise to a char-
acteristic class of surface bundles. Explicitly, given a surface bundle E → X,
we may pick an embedding j : E → X × (0, 1)n and let f : X → Bn ⊆ B∞
be the resulting map, as in the above proof. The resulting cohomology class
f∗(c) ∈ H∗(X) depends only on the isomorphism class of the bundle E → X
and is the characteristic class associated to c, evaluated on the bundle E → X.
In fact, we can say a little more.

Corollary 1.5. For any smooth X, there is a natural bijection between [X,B∞]
and the set of isomorphism classes of surface bundles E → X.

Corollary 1.6. H∗(B∞) is the ring of characteristic classes of surface bundles.

Proof sketch. If we extend the definition of surface bundle a little, to allow the
identity map to classify a surface bundle over B∞, this follows from Yoneda’s
lemma in the usual way. In our setup, where the base space of a surface bundle
is required to be a (finite dimensional) manifold, a rigorous proof uses that B∞
is weakly equivalent to a directed limit of spaces which are homotopy equivalent
to manifolds (e.g. the system of finite subcomplexes of a CW approximation to
B∞).

A slightly different point of view on corollary 1.5 is seen by noting a bijection

Bn =
∐
W

Emb(W, (0, 1)n)/Diff(W ),

where the disjoint union is over oriented closed surfaces W , one of each diffeo-
morphism class. Giving the right hand side the quotient topology, this becomes
a homeomorphism, and it is known that the quotient map Emb(W, (0, 1)n) →
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Emb(W, (0, 1)n)/Diff(W ) is a principal Diff(W )-bundle for all n ≤ ∞. It is easy
to prove that Emb(W, (0, 1)∞) is contractible, and hence a model for EDiff(W ).
It follows that we have models for BDiff(W ), namely the path component of
B∞ consisting of manifolds diffeomorphic to W . Using these models we have

B∞ =
∐
W

BDiff(W ). (1)

We have explained how the subspace Bn ⊆ Ψ(Rn) is related to surface
bundles and their characteristic classes, but we have not yet seen why the full
space Ψ(Rn) is useful. Its relevance comes through the important construction
in definition 1.7 below. We shall consider ∅ ∈ Ψ(Rn) the basepoint, and as usual
we let ΩnΨ(Rn) be the n-fold loop space, i.e. the space of continuous based maps
Sn → Ψ(Rn). We shall consider Sn as the one-point compactification of Rn.

Definition 1.7. Let α : Bn → ΩnΨ(Rn) be the map given by

α(W )(v) =

{
W + v if v ∈ Rn

∅ if v = ∞.
(2)

Since W + v leaves any compact set as |v| → ∞, α(W ) is continuous at the
basepoint of Sn, and in fact it can be seen that α is a continuous map. We
can then let n → ∞ (using the map Ψ(Rn) → ΩΨ(Rn+1) given by W 7→ (t 7→
W × {t})) and get a map

α : B∞ → Ω∞Ψ = colim
n→∞

ΩnΨ(Rn).

Neither the source nor the target of α are path connected. By (1), the path
components of B∞ are precisely the BDiff(W ), and there is one path component
for each diffeomorphism type of oriented 2-manifold W . The map α sends
BDiff(W ) to a path component of Ω∞Ψ; we shall (temporarily) write Ω∞[W ]Ψ
for that path component. We can now formulate Madsen–Weiss’ theorem in a
slightly unconventional form.

Theorem 1.8 (Madsen-Weiss). If W is a surface of genus g, the restricted map

BDiff(W ) → Ω∞[W ]Ψ

induces an isomorphism in integral cohomology through degree 2g/3.

In the remaining part of this lecture, we will say more about the homotopy
type of Ψ(Rn) and explain why theorem 1.8 is equivalent to the theorem stated in
Wahl’s lectures. To understand the homotopy type of Ψ(Rn), let us consider the
Grassmannian Gr+2 (Rn) of oriented 2-planes in Rn. There are two interesting
vector bundles over that space, the canonical bundle γn and its orthogonal
complement γ⊥n . A point in the total space of γ⊥n is a pair (V, v) where V ⊆ Rn

is an oriented 2-plane, and v ∈ V ⊥. We can think of V as an oriented 2-manifold
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and since it’s topologically closed, it defines a point V ∈ Ψ(Rn). Translating it
by the vector v, we get a map

γ⊥n → Ψ(Rn)
(V, v) 7→ V + v.

The manifold V + v leaves all compact sets as |v| → ∞, so the map extends to
a continuous map

Th(γ⊥n )
q−→ Ψ(Rn)

(V, v) 7→ V + v

∞ 7→ ∅,

where Th(γ⊥n ) denotes the Thom space of γ⊥n , i.e. the one-point compactification
of its total space.

We have the following result. Recall that a map f : X → Y is a weak
equivalence if the induced map πk(X) → πk(Y ) is an isomorphism for all k and
all basepoints, and that homotopy equivalence implies weak equivalence which
implies that f∗ : H∗(X) → H∗(Y ) is an isomorphism. For CW complexes, weak
equivalence also implies homotopy equivalence.

Theorem 1.9. The map q is a weak equivalence.

Proof. This will be sketched in the exercises, using Lemma 1.3.

The theorem above relates our definition of Ω∞Ψ to the definition usually
appearing in Madsen–Weiss’ theorem, namely the space

Ω∞MTSO(2) = colim
n→∞

ΩnTh(γ⊥n ).

Theorem 1.9 above implies the following.

Corollary 1.10. There is a weak equivalence

Ω∞MTSO(2) → Ω∞Ψ.

Proof. The theorem implies that ΩnTh(γ⊥n ) → ΩnΨ(Rn) induces an isomor-
phism in all homotopy groups. The direct systems on both sides consists of
injective maps, and in this case homotopy groups commute with direct limit.

The Madsen–Weiss theorem is usually stated in terms of the Thom spectrum
MTSO(2), instead of the weakly equivalent Ψ. (The notation Ω∞MTSO(2)
might seem a little heavy for just one space, but it has the advantage of gen-
eralizing easily to manifolds of other dimensions and with other structures, e.g.
there’s a space called Ω∞MTSpin(3).)
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1.2 Exercises for lecture 1

1. Recall that for a space X with base point x ∈ X and k ≥ 0, the homotopy
group (set, if k = 0) πk(X,x) is defined as the set of basepoint preserving
maps Sk → X modulo basepoint preserving homotopies. (Fine print: for
k = 0 this does not depend on x and we also define π0(∅) = ∅.) Recall
also that a map f : X → Y is called a weak equivalence if the induced
map πk(X,x) → πk(Y, f(x)) is a bijection for all k ≥ 0 and all x ∈ X
Prove that f is a weak equivalence if and only if it satisfies the following
condition: For any pair of maps g0 : ∂Dk → X and h0 : Dk → Y making
the following diagram commute

∂Dk
g0 //

� _

��

X

f

��
Dk

h0

// Y,

there exist homotopies hs : Dk → Y and gs : ∂Dk → X, s ∈ [0, 1] with
f ◦ gs = hs|∂Dk, such that g1 : ∂Dk → X extends to a map G : Dk → X
with f ◦G = h1. (In words: any such commutative diagram is homotopic,
through commutative diagrams, to a diagram admitting a diagonal Dk →
X.)

2. Prove that if X is a k-dimensional manifold, with k < n− 2, and f : X →
Ψ(Rn) is smooth, then there exists a point p ∈ Rn, not contained in f(x)
for any x ∈ X. Use this to deduce that πk(Ψ(Rn)) = 0 for k < n− 2.

3. Use theorem 1.9 to prove that πn−2(Ψ(Rn)) = Hn−2(Ψ(Rn)) = Hn−2(Th(γ⊥n )).
Then use Thom isomorphism to deduce πn−2(Ψ(Rn)) = Z.

4. The next exercises work through some examples with n = 3: First, prove
that Gr+2 (R3) is homeomorphic to S2.

5. Use theorem 1.9 to prove that Ψ(R3) is weakly equivalent to S3 ∨ S1,
deduce that π1Ψ(R3) = Z and find an explicit generator. Then deduce
that π2(Ψ(R3)) = 0 and that π3Ψ(R3) is a free abelian group of infinite
rank. Describe an explicit map S1 ∨ S3 → Ψ(R3).

6. Reversing orientation gives map Ψ(Rn) → Ψ(Rn). Describe the induced
maps on π1Ψ(R3) and π3Ψ(R3).

7. Prove that if T ⊆ (0, 1)3 is a torus, then α(T ) ∈ Ω3Ψ(R3) is in the
same path component as the basepoint. (Hint: Use that the Gauss map
T → Gr+2 (R3) is null homotopic.)

8. Let f1 : E1 → X and f2 : E2 → X be two surface bundles. Then
f3 : E3 = E1 q E2 → X is again a surface bundle. By proposition 1.4,
they are represented by maps gi : X → Bn for some n. Prove that the
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maps α◦gi ∈ [X,ΩnΨ(Rn)] satisfy α◦g3 = α◦g1+α◦g2, where + denotes
the group structure induced from concatenation of loops.

9. Let X be a compact manifold and f : X → Ψ(Rn) a smooth map. Prove
that if B(0, ε) ⊆ Rn denotes the open ε ball, then {x ∈ X|f(x)∩B(0, ε) =
∅} is a closed subset of X. Let Uε ⊆ X denote its complement and prove
that for small enough ε, there exists a smooth function p : Uε → B(0, ε)
such that p(x) ∈ f(x) and that |y| > |p(x)| for all y ∈ f(x) − {p(x)}.
(I.e. p(x) is the point in f(x) which is closest to 0. Hint: use the tubular
neighborhood theorem.) Use this to prove theorem 1.9.
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2 Rational cohomology and outline of proof

The goals of this lecture are the following.

1. Define κi ∈ H2i(Ω∞Ψ;Z).

2. Explain why the induced ring homomorphismQ[κ1, κ2, . . . ] → H∗(Ω∞• Ψ;Q)
is an isomorphism, where Ω∞• Ψ ⊆ Ω∞Ψ denotes a path component.

3. Outline the steps in the proof of Madsen–Weiss’ theorem: BDiff(W ) →
Ω∞• Ψ induces an isomorphism in Hk for k < 2(g− 1)/3. (These steps will
be carried out in lectures 3 and 4.)

2.1 Cohomology of Ω∞Ψ

The starting point in calculating the cohomology of Ω∞Ψ is that we under-
stand the cohomology of Ψ(Rn) ' Th(γ⊥n ). Firstly, the inclusion Gr+2 (Rn) →
Gr+2 (R∞) ' CP∞ induces a map

Z[e] = H∗(Gr+2 (R∞)) → H∗(Gr+2 (Rn)), (3)

which is an isomorphism in degrees < (n−2). Secondly, the Thom isomorphism
theorem gives an isomorphism

Hk(Gr+2 (Rn)) → Hk+(n−2)(Th(γ⊥n ), ∗)
x 7→ x.u,

(4)

so at least we have a full understanding of H∗(Th(γ⊥n )) in degrees < 2n− 4.
To understand the effect of the functor Ωn, we need the suspension homo-

morphism, a natural homomorphism

σ : Hk+1(X, ∗) → Hk(ΩX, ∗)

defined for any pointed space (X, ∗). To define it, we use the evaluation map

ΣΩX ev−→ X

(t, γ) 7→ γ(t),

where Σ denotes (unreduced) suspension. Then the suspension homomorphism
is defined as the composition

Hk+1(X, ∗) ev∗−−→ Hk+1(ΣΩX, ∗) ∼= Hk(ΩX, ∗).

Letting σn : Hk+n(X, ∗) → Hk(ΩnX, ∗) denote the n-fold iteration, we can now
give a definition of the κ-classes using (3) and (4).

Definition 2.1. Let κi ∈ H2i(ΩnΨ(Rn)) be the class defined as

κi = σn(ei+1.u) ∈ H2i(ΩnTh(γ⊥n )) = H2i(ΩnΨ(Rn)). (5)
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Lemma 2.2. There is a unique class κi ∈ H2i(Ω∞Ψ) which restricts to the
classes in definition 2.1 for all n.

Proof. This follows from the following two facts, which we leave to the reader
as an exercise.

(i) The map ΩnTh(γ⊥n ) → Ωn+1Th(γ⊥n+1) is (n−4)-connected. HenceH2i(Ω∞Ψ) →
H2i(ΩnΨ(Rn)) is an isomorphism for n > 2i+ 4.

(ii) The classes κi ∈ H2i(ΩnΨ(Rn)) in definition 2.1 are compatible with the
map ΩnΨ(Rn) → Ωn+1Ψ(Rn+1).

We have defined classes κi in Ω∞Ψ, which can be pulled back to classes in
B∞. By corollary 1.6, these give rise to characteristic classe of surface bundles,
which we shall also denote κi. The following lemma, whose proof we leave as
an exercise, shows that our definition agrees with the “usual” definition of the
κ classes (at least up to signs, which I shall be rather careless about in these
lectures).

Lemma 2.3. Let π : E → X be a surface bundle with X a compact ori-
ented n-manifold. Let π! : Hk+2(E) → Hk(X) be the map Poincare dual
to π∗ : Hn−k(E, ∂E) → Hn−k(X, ∂X), and let TπE be the fiberwise tangent
bundle, i.e. the oriented 2-dimensional bundle Ker(Dπ : TE → TX). Then
κi = π!(ei+1(Tπ(E)).

To calculate the entire ring H∗(Ω∞• Ψ;Q), it is helpful to again work more
generally. For a graded vector space V = ⊕n≥1Vn, we shall write Q[V ] for
the free graded-commutative Q-algebra generated by V . If (X, ∗) is a based
space, and φ : V → H∗(X, ∗;Q) is a homomorphism (Q-linear and grading
preserving), the cup product gives a unique extension to a Q-algebra map

Q[V ] → H∗(X;Q). (6)

We can also compose φ with the suspension to get a map σ ◦ φ : Vn+1 →
Hn+1(X, ∗) → H∗(ΩX, ∗), and then the cup product in ΩX induces aQ-algebra
homomorphism

Q[s−1V ] → H∗(ΩX;Q), (7)

where (s−1V )n = Vn+1 for n ≥ 1 (and s−1(V )0 = 0). We will use the following
general result about this situation. Again, we shall write Ω•X ⊆ ΩX for the
path component of the basepoint.

Theorem 2.4. Assume π1(X) is abelian and acts trivially on the rational co-
homology of the universal cover. Let V =

⊕
n≥1 Vn be a graded vector space and

V → H∗(X, ∗) a homomorphism such that (6) is an isomorphism in degrees
≤ n. Then (7) restricts to an isomorphism Q[s−1V ] → H∗(Ω•X;Q) in degrees
≤ (n− 1).
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Proof. This can be proved using the Serre spectral sequence for the path-loop
fibration over the universal cover X̃. Alternatively, one can use the Eilenberg-
Moore spectral sequence.

Lemma 2.5. If X = ΩY , then π1(X) is abelian and acts trivially on the coho-
mology of the universal cover.

Proof. We leave it as an exercise to check that any deck transformation X̃ → X̃
is homotopic to the identity.

We can now apply the general theory to calculate the ring H∗(ΩnTh(γn);Q)
in the following way. Set X = Th(γn) and let V be the graded vector space
with basis ei+1.u for all i ≥ −1. Then the induced map

Q[V ] → H∗(Th(γ⊥n );Q)

is an isomorphism in degrees < 2(n − 4). (This is the range in which we pre-
viously calculated the relative cohomology H∗(Th(γ⊥n ), ∗). The extra class in
absolute H0 corresponds to the unit 1 ∈ Q[V ] and there are no non-trivial prod-
ucts on the left hand side in the range considered.) If we apply theorem 2.4 n
times, we see that we get a ring homomorphism

Q[s−nV ] 7→ H∗(ΩnTh(γ⊥n );Q)

ei+1.u 7→ σn(ei+1.u)

which is an isomorphism in degrees < (n − 4). By definition of the κ classes,
the map can be rewritten as

Q[κ1, κ2, . . . ] → H∗(ΩnTh(γ⊥n );Q).

2.2 Outline of proof

Finally, we will outline the steps in the proof of the Madsen–Weiss theorem.
At the heart of the theorem is the map α : Bn → ΩnΨ(Rn), obtained by moving
compact manifolds around in all directions in Rn. An essential step of the proof
is to do this process in multiple steps, each of which moves manifolds around
in only one coordinate direction in Rn. To make this idea precise, we first need
some definitions.

Definition 2.6. (i) Let ψ(n, k) ⊆ Ψ(Rn) be the subspace consisting of those
W ∈ Ψ(Rn) which satisfy W ⊆ Rk × (0, 1)n−k.

(ii) Let αk : ψ(n, k) → Ωψ(n, k + 1) be the map given by

αk(W )(t) =

{
W + tek+1 for t ∈ R
∅ for t = ∞.
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Each map αk is continuous, and it is clear that the map (2) from lecture 1
can be decomposed as

Bn = ψ(n, 0) α0−→ ψ(n, 1) Ωα1−−−→ . . .
Ωn−1αn−1−−−−−−−→ ψ(n, n) = Ψ(Rn).

We shall prove the Madsen–Weiss theorem in the following steps.

• For 1 ≤ k ≤ n − 1, the map αk : ψ(n, k) → Ωψ(n, k + 1) is a weak
equivalence.

• The map α0 : Bn → Ωψ(n, 1) is compatible with letting n→∞. Restrict-
ing to a path component of the resulting map B∞ → Ωψ(∞, 1), we get a
map BDiff(W ) → Ωψ(∞, 1).

• For W = Σg a surface of genus g, the resulting map

BDiff(Σg) → Ωψ(∞, 1)

induces an isomorphism in homology through degree 2g/3.

The last step actually has several sub-steps. An important one is to introduce
surfaces with boundary, in order to take a limit as g →∞, cf. Nathalie’s lectures.

2.3 Exercises for lecture 2

1. Let c : B∞ → B∞ be the map which reverses orientation. Prove that
c∗κi = (−1)iκi.

2. Prove the assertion in lemma 2.5.

3. Let X be a based space and let µ : ΩX × ΩX → ΩX be the map which
concatenates loops. For x ∈ Hk+1(X, ∗) with k ≥ 1, prove that the class
y = σ(x) ∈ Hk(ΩX, ∗) has the property that µ∗(y) = y ⊗ 1 + 1⊗ y.

4. Deduce that the classes κi ∈ H2i(ΩnΨ(Rn)) satisfy µ∗(κi) = κi⊗1+1⊗κi.
What does this imply about the characteristic classes κi ∈ H2i(B∞)?
(Hint: the question is about the behavior with respect to fiberwise disjoint
union of surface bundles, cf. exercise 8 in lecture 1.)

5. Use lemma 2.3 to prove that the value of κ0 ∈ H0(ΩnΨ(Rn)) at the point
α(W ) ∈ ΩnΨ(Rn) is the Euler characteristic χ(W ).

6. Prove the following property of the suspension homomorphism. Let f :
X → ΩY have adjoint g : ΣX → Y (i.e. g(t, x) = f(x)(t)) and let c ∈
Hk+1(Y ). Then f∗(σc) ∈ Hk(X) and g∗(c) ∈ Hk+1(ΣX) agree under the
isomorphism Hk(X) = Hk+1(ΣX).

7. Let u : Th(γ⊥n ) → K(Z/2, n− 2) be a map representing the mod 2 Thom
class. Prove that in mod 2 cohomology, u∗(Sq2ι) = e.u. Deduce that the
image of the Hurewicz map πn(Th(γ⊥n )) → Hn(Th(γn)) vanishes in mod
2 homology. Then deduce that κ0 ∈ H0(ΩnΨ(Rn)) is divisible by 2.
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8. With notation as the previous exercise, prove that u∗(Sq2(i+1)) = ei+1.u
and deduce that κi vanishes in mod 2 cohomology for all i ≥ 1.

9. Prove the assertions in lemma 2.2.

10. Prove the assertion in lemma 2.3.
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3 Topological monoids and the first part of the
proof

The goal of this lecture is to prove that the map αk : φ(n, k) → Ωφ(n, k+1)
is a weak equivalence for 1 ≤ k ≤ n− 1. As a corollary, we get that the iterated
map ψ(n, 1) → Ωn−1ψ(n, n) is a weak equivalence, and hence

Ωψ(∞, 1) ' Ω∞Ψ.

This will reduce the Madsen–Weiss theorem to a property of the map α0 :
B∞ → Ωψ(∞, 1), which we shall study in the fourth lecture. For both lectures,
a very important tool is topological monoids and their classifying spaces. We
will discuss these now, omitting many proofs.

3.1 Topological monoids

A topological monoid is a space M with a multiplication M × M → M
which is associative but not necessarily commutative. We will not assume that
M has a unit (although all our monoids will at least have homotopy units).
Associated to such M is a space BM , called the classifying space of M . This
is usually defined as the “geometric realization of the nerve of M”; we shall use
the following more explicit (but equivalent) definition, which fits well with our
setup.

Definition 3.1. Let BM be the set of pairs (A, f), where A ⊆ R is a finite
subset, and f : A→M is a function. For the purpose of defining a topology on
this set, we shall think of its points as “configurations of points in R, labeled
by M”: Points in BM can be depicted as finitely many points on the real line,
each labeled by an element of M .

Topologize this set by allowing the labels to move continuously in M and
the points to move continuously in R. Points are allowed to collide, in which
case we multiply the labels (in the order they appear on the line), and to tend
to ∞ or −∞, in which case we forget the labels.

The point where A = ∅ gives the basepoint ∅ ∈ BM .

To define the topology more rigorously, let K ⊆ R be a compact set, V ⊆M
an open set, and a < b ∈ R. Let U(K) ⊆ BM be the set of points satisfying
A ∩ K = ∅, and let U(a, b, V ) ⊆ BM consist of those (A, f) such that if A ∩
(a, b) = (a1 < · · · < ak), then k ≥ 1 and f(a1)f(a2) . . . f(ak) ∈ V . Declare the
collection of sets U(K) and U(a, b, V ) a subbasis for the topology.

There is a natural map β : M → ΩBM , given by

β(m)(t) =

{
({t}, (t 7→ m)) for t ∈ R
∅ for t = ∞,

where we regard ΩBM as the space of pointed maps from the one-point com-
pactification of R. The following well known theorem shall be used without
proof.
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Theorem 3.2. β : M → ΩBM is a weak equivalence if and only if M is group-
like (i.e. that M has a homotopy unit and the monoid π0M is a group).

This theorem suggests a very useful strategy for proving weak equivalences
of the form X ' ΩY : If X admits a monoid structure, prove BX ' Y instead;
if not, find a monoid M ' X and prove BM ' Y . It is often easier to follow this
strategy than working directly with the loop space of Y . We shall apply this
strategy to prove that αk : ψ(n, k) → Ωψ(n, k+ 1) is a weak equivalence. More
precisely, we shall define a topological monoid M and construct a commutative
diagram like the following

M
β // ΩBM

'
��

ψ(n, k)
αk

//

'

OO

Ωψ(n, k + 1).

(8)

The monoid M will of course depend on k and n, but we shall omit this from
the notation. Let us define it.

Definition 3.3. For 0 ≤ k < n, let M denote the space

M = {(t,W ) ∈ (0,∞)× ψ(n, k + 1)|W ⊆ Rk × (0, t)× (0, 1)n−k−1},

equipped with the multiplication

(t,W )(t′,W ′) = (t+ t′,W ∪ (W ′ + tek+1)).

In words, the product puts W and W ′ next to each other after making them
disjoint by translating in the (k+1)st direction. The following lemma is obvious.

Lemma 3.4. The inclusion ψ(n, k) →M given by W 7→ (W, 1) is a homotopy
equivalence. (In fact a homeomorphism onto its image, which is a deformation
retract of M .)

Lemma 3.5. The monoid M is grouplike.

Proof. Let m = (t,W ) ∈ M with W ⊆ Rk × (0, t) × (0, 1)n−k−1 with k ≥ 1.
We define W ′ ⊆ Rk × (0, t)× (0, 1)n−k−1 by rotating W in the (ek, ek+1) plane
around the point (0, t

2 ) and let m′ = (t,W ′). To see that mm′ and m′m are
both in the path component of the empty set, we draw the cartoon in figure 3.1.
The horizontal axis in the picture is ek and the vertical is ek+1. The first frame
depictsmm′, the disjoint union ofW andW ′. In the third frame we have instead
“bent” the manifold W in the (ek, ek+1)-plane. The bent manifold agrees with
mm′ whenever the kth coordinate is sufficiently negative. These two frames
are connected by “stretching” the kth coordinate (moving the piece where they
disagree away to +∞ in the kth coordinate direction), resulting in the manifold
depicted in the second frame. This describes a path from mm′ to a manifold
for which the kth coordinate is bounded above, but then we can push it to −∞
in that direction and get a path to ∅. (If unconvinced by this description, you
should look in [1] or better yet, make it rigorous yourself!).
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Figure 1: Path used in the proof of lemma 3.5

Next, we define the map BM → ψ(n, k + 1), giving the right hand vertical
map in the diagram (8). To this end, let us start with a point (A,m) ∈ BM
with A = (a1 < · · · < ap) ⊆ R and labels m1 = (t1,W1), . . . , mp = (tp,Wp).
Let bi ≥ ai be the smallest possible numbers such that the intervals (bi, bi + ti)
are disjoint (i.e. set b1 = a1 and inductively bi+1 = max(ai+1, bi + ti)). Define
a subset W ⊆ Rn as the union

W = (W1 + b1ek+1) ∪ · · · ∪ (Wp + bpek+1).

Since Wi ⊆ Rk × (0, ti)× (0, 1)n−k−1 and the intervals (bi, bi + ti) are disjoint,
W is the union of disjoint elements of ψ(n, k+1), and hence W ∈ ψ(n, k+1). It
is easy to see that the resulting map BM → ψ(n, k+ 1) makes the diagram (8)
commutative. Let us sketch a proof of its continuity.

Lemma 3.6. W depends continuously on (A,m) ∈ BM .

Proof sketch. There are three interesting events to check. The first is what
happens when ai ∈ R collides with ai+1. It follows from the definition that W
is independent of ai+1 as long as ai+1 ≤ ai + ti, an that in this case, the value
agrees with that of (a0 < · · · < âi+1 < . . . ap) and (m1, . . . ,mimi+1, . . . ,mp).

The second is what happens when a1 → −∞. In this case, W is eventually
constant near any compact subset of Rn, and converges to the value at (a2 <
· · · < ap) and (m2, . . . ,mp). The third interesting event is what happens when
ap →∞, but this is similar.

We have defined all maps in the diagram (8), and it is easy to see that the di-
agram is commutative. We have proved that two of them are weak equivalences.
The main result of this lecture is the following.

Theorem 3.7. The resulting map BM → ψ(n, k+ 1) is a weak equivalence for
k ≥ 2. For k = 1, it is a weak equivalence onto the path component of ψ(n, 2)
containing the empty manifold.

Before embarking on the proof, let us point out the main consequence.

15



Corollary 3.8. The map αk : ψ(n, k) → Ωψ(n, k+1) is a weak equivalence for
k ≥ 1. Consequently we get a weak equivalence Ωψ(n, 1) ' Ωnψ(n, n) and hence
a weak equivalence

Ωψ(∞, 1) ' Ω∞Ψ.

Proof. By theorem 3.7 and the commutative diagram (8), αk is the composition
of three weak equivalences.

To motivate the proof of theorem 3.7, let us contemplate what we wish to
achieve. To prove surjectivity in πl, for example, we need to prove that any map
f : Sl → ψ(n, k + 1) is homotopic to a map which lifts to BM . In particular,
for each x ∈ Sl, we need a path from W = f(x) ∈ ψ(n, k + 1) to a point in the
image of BM → ψ(n, k + 1). This is easy, provided W satisfies the following
condition.

There exists an a ∈ R such that (Rk × {a} × Rn−k−1) ∩W = ∅. (9)

Namely, in that case we can pick a finite set (a1 < · · · < ap+1) of real numbers
with this property, let ti = ai+1 − ai, and let Wi be the part of W which is
contained in Rk × (ai, ai+1)×Rn−k−1 (translated by −aiek+1). Then the finite
subset A = (a1 < · · · < ap), labeled by the elements mi = (ti,Wi) ∈ M , gives
a point (A,m) ∈ BM , and there is an obvious path from W ∈ ψ(n, k + 1) to
the image of (A,m) (the path translates W ∩ Rk × (ap+1,∞) × Rn−k−1 by a
bigger and bigger multiple of ek+1 and W ∩Rk×(−∞, a1)×Rn−k−1 by a bigger
and bigger multiple of −ek+1). As we shall explain in more detail below, this
process can, with slightly more care, be performed for the manifolds f(x) for all
x ∈ Sl at once, giving a continuous lift up to homotopy. Injectivity is similar:
we wish to lift a map f : [0, 1] × Sl → ψ(n, k + 1), with a prescribed lift over
{0, 1} × Sl.

This discussion focuses attention on the condition (9), and it is convenient
to have a name for it. For a map f : X → ψ(n, k + 1), let us write Xa ⊆ X
for the set of elements x ∈ X such that W = f(x) satisfies (9). Let us say that
a smooth map f : X → ψ(n, k + 1) is good if X = ∪aint(Xa). The following
result is the main technical result underlying theorem 3.7.

Lemma 3.9. For 1 ≤ k < n and X a compact manifold (possibly with bound-
ary), any map f : X → ψ(n, k + 1) with image in the basepoint component is
homotopic to a good map. The homotopy can be taken constant near any closed
set on which f is already good.

Let us postpone the proof of this lemma until the end of the section. In order
to formalize the above discussion of how this implies that BM → ψ(n, k+ 1) is
a weak equivalence (to the basepoint component if k = 1), we define yet another
space BP .

Definition 3.10. LetBP be the space whose points are triples (A,C,W ), where
A = (a1 < a2 < · · · < ap) ⊆ R, C = (c0 < · · · < cp) ⊆ R, and W ∈ ψ(n, k + 1)
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satisfies

W ∩ (Rk × C × Rn−k−1) = ∅.

We write a0 = −∞ and ap+1 = ∞, and think of ci as a label on the interval
(ai, ai+1) ⊆ R − A, and topologize BP so that the ai’s are allowed to collide
and go to ±∞. (Both processes decrease the number of intervals in R−A, and
we forget the corresponding ci.)

It is easy to factor the map BM → ψ(n, k + 1) through BP , viz. we set
ci = bi+1 and cp = bp + tp.

Lemma 3.11. The forgetful map BP → ψ(n, k + 1) is a weak equivalence.

Proof sketch. To prove that the induced map in πl is surjective, we use Lemma 3.9
to represent an element of πl(n, k+1) by a good map Sl → ψ(n, k+1). By com-
pactness of Sl and by definition of goodness, we can find finitely many numbers
c ∈ R such that the open sets

Uc = int{x ∈ Sl|f(x) ∩ Rk × {c} × Rn−k−1}

cover Sl. Then we use a partition of unity to define a map Sl → BP in the
following way. Let λc : Sl → [0, 1], c ∈ R be a (smooth, locally finite) partition of
unity subordinate to the open sets Uc. For x ∈ Sl, we let C = {c ∈ R|λc(x) >
0} and A = {ρ

( ∑
c≤t λc(x)

)
|t ∈ R}, where ρ : (0, 1) → R is an increasing

homeomorphism. If we then define Sl → BP by mapping x to (A,C,W ) ∈ BP ,
we have lifted our original good map Sl → ψ(n, k + 1).

Injectivity is similar, using that if two good maps Sl → ψ(n, k + 1) are
homotopic, then there exists a homotopy [0, 1] × Sl → ψ(n, k + 1) which is a
good map.

Lemma 3.12. The map BM → BP is a homotopy equivalence.

Proof. We first note that BM deformation retracts onto the subspace B′M ⊆
BM , defined by the inequalities ai + ti ≥ ai+1. The deformation increases ti
linearly until the inequality holds.

Secondly, we note that BP deformation retracts onto the subspace B′P ⊆
BP , defined by the requirements a1 = c0, ai ≤ ci−1, and W ⊆ Rk × (c0, cp) ×
Rn−k−1. To see the deformation retraction, we write ti = ci − ci−1, and let
c′i−1 ≥ ai be the smallest numbers such that c′i − c′i−1 ≥ ti. The deformation
retraction of BP onto B′P deforms ci to c′i in a linear fashion. At the same
time, it moves the part of W which lies in Rk × (ci−1, ci) × Rn−k−1 to Rk ×
(c′i−1, c

′
i−1 + ti)× Rn−k−1 in a linear fashion. The part of W which is in Rk ×

(−∞, c0) × Rn−k−1 is pushed away in the direction of −ek+1, and the part of
W which is in Rk × (cp,∞)× Rn−k−1 is pushed away in the direction of ek+1.

Finally, we note that the map BM → BP restricts to a homeomorphism
B′M → B′P . The inverse is given by setting ti = ci − ci−1 and letting Wi be
the part of W which lies in Rk × (ci−1, ci)× Rn−k−1.
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Proof of lemma 3.9. We first give the proof in the case f : X → ψ(n, k+1) is a
smooth map satisfying the following assumption: for all x ∈ X, the restriction
of the projection Rn → Rk+1 onto the first coordinates to the submanifold
f(x) ⊆ Rn is not surjective. (This hypothesis is of course automatic in the case
k ≥ 2 since f(x) ⊆ Rn is a 2-dimensional manifold.) In that case, we pick for
all x a point qx ∈ Rk+1 not in the image of the projection f(x) → Rk+1. We
can also pick an εx > 0 so that the (closed) εx-disk around qx is disjoint from
the image of that projection. The same choices will work in a neighborhood
Ux of x, so by compactness of X we can find ε > 0 and finitely many open
sets Ui ⊆ X with corresponding qi ∈ Rk+1 such that the ε-ball around qi
consists of points not in the image of f(x) → Rk+1 for all x ∈ Ui. Writing
qi = (pi, ti) ∈ Rk × R, we can assume that the ti are distinct and that the
intervals [ti − ε, ti + ε] are disjoint (after possibly shrinking ε). Then, we can
find an isotopy of diffeomorphisms of Rk×R supported in ∪iRk× (ti− ε, ti + ε)
which starts at the identity and ends at a map that sends (pi, ti) 7→ (0, ti).
Using this isotopy to deform each f(x) ⊆ Rn, we may assume that all pi = 0,
and hence that all f(x) ⊆ Rn is disjoint from some B(0, ε) × {ti} × Rn−k−1.
Finally, we may pick an isotopy of embeddings es : Rk → Rk that starts at
the identity and ends in a map with e1(Rk) contained in the ε-ball. Then
the isotopy of embeddings φs = es × id : Rk × Rn−k → Rk × Rn−k gives a
path fs(x) = φ−1

s (f(x)) ∈ ψ(n, k + 1) from f0(x) to an element satisfying that
f1(x) ⊆ Rn is disjoint from Rk ×{ti}×Rn−k−1 for all t ∈ Ui. Thus, f1 is good,
and we have finished the proof in the case k ≥ 2.

This finishes the proof in the case k ≥ 2. In the remaining case k = 1, we will
prove that f can be homotoped to a map satisfying the extra non-surjectivity
assumption in the first part of the proof. For clarity, let us first discuss the case
where X is a point. (That case is of course trivial, but the point is to explain
what the general proof does for each x ∈ X.) In that case we are given an
element W ∈ ψ(n, 2) in the path component of the basepoint. Thus W ⊆ Rn is
a topologically closed 2-manifold contained in R2×Rn−2, and there is a smooth
path R → ψ(n, 2), constant near (−∞, 0] and [1,∞) given by a 3-manifold
E ⊆ R× Rn with E ∩ {0} × Rn = {0} ×W and E ∩ {1} × Rn = ∅. Projection
onto the second and third coordinates gives a proper smooth map W → R2,
and we may pick a regular value (p, t). Then (0, p, t) ∈ R3 is a regular value
for the projection E → R3, and after an isotopy of self-diffeomorphisms of R2

we may assume p = 0. By properness, we may also pick an ε > 0 so that no
critical value of E → R3 contained in the cube (0, 0, t) + [−ε, ε]3. We then pick
a smooth function λ : R → [0, 1] which is 1 near 0 and has support in (−ε, ε),
and consider the maps φr : Rn → R× Rn, r ∈ [0, 1], given by

Rn → R× Rn

x 7→ (x1 sin( rπ
2 λ(x2 − t)), x1 cos( rπ

2 λ(x2 − t)), x2, . . . , xn)

When r = 0, this is just the inclusion as {0}×Rn, but as r ∈ [0, 1], it rotates in
the first two coordinates, dampened by the bump function, so that the rotation
happens only near x−1

2 (t) and that φr is indepent of r unless x2 ∈ (t− ε, t+ ε).
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We then consider the subsets W (r) = φ−1
t (E) ⊆ Rn for t ∈ [0, 1]. We have

W (0) = W , and all W (r) are closed subsets of Rn contained in R2 × (0, 1)n−2,
but they are not necessarily smooth manifolds because φt need not be transverse
to E. However, our assumptions imply that it is transverse near the subset(

{0} × R ∪ R× {t}
)
× Rn−2

and hence W (t) is smooth near that subset for all t ∈ [0, 1]. After (carefully)
pushing singularities to infinity in the x1 direction, we get a family of manifolds
W̃ (t) ∈ ψ(n, 2) starting at W̃ (0) = W and ending at W̃ (1) which satisfies
W̃ (1) ∩ R × {0} × Rn−2 = ∅ as desired. Precisely, “pushing singularities to
infinity in the x1 direction” means that we set W̃ (t) = (e× id)−1(W (t)), where
e : R2 → R2 is an embedding which is isotopic to the identity and restricts to
the identity near {0} × R ∪ R× {t}.

The case of a general X is similar. First we use the hypothesis that f maps
to the basepoint component of ψ(n, 2) to pick, for each x ∈ X, a contractible
open neighborhood Ux ⊆ X and a null homotopy of f |Ux, given by a smooth
map hx : Ux × R → ψ(n, 2). For y ∈ Ux, we shall identify the smooth map
hx(y,−) : R → ψ(n, 2) with its graph, which is a three-dimensional smooth
submanifold Ex(y) ⊆ R × Rn. The coordinates in R × Rn shall be written
(s, x1, . . . , xn), and we consider the restriction (s, x1, x2) : Ex(y) → R3. We can
pick a regular value of the form (0, px, tx) and an εx > 0 so that, after possibly
shrinking Ux, no critical point of (s, x1, x2) : Ex(y) → R3 is contained in the set

((0, px, tx) + [−εx, εx]3)× Rn−2.

We can then refine the Ux’s to a cover of X by finitely many Ui with corre-
sponding regular values (0, pi, ti) and εi = ε > 0. As before, we can arrange
that the ti’s are distinct, the intervals [ti − ε, ti + ε] are disjoint, and that all
pi = 0. We then pick a smooth function λ : R → [0, 1] which is 1 near 0 and
has support in (−ε, ε), and smooth functions ρi : X → [0, 1] with support in Ui

and such that X is covered by the open sets U ′i = int(ρ−1
i (1)). Then consider

the maps φy,i,r : Rn → R× Rn, given by

Rn → R× Rn

x 7→ (x1 sin( rπ
2 ρi(y)λ(x2 − ti)), x1 cos( rπ

2 ρi(y)λ(x2 − ti)), x2, . . . , xn)

and define subsets

Wi(y, r) = φ−1
y,i,r(Ei(y)) ⊆ Rn.

Again, these are closed subsets contained in R2×(0, 1)n−2 which agree with f(y)
outside x−1

2 (ti− ε, ti + ε). We can therefore define a subset W (y, r) ⊆ Rn which
agrees with Wi(y, r) inside x2(ti − ε, ti + ε) and with f(y) outside these sets.
The subsets W (y, r) ⊆ Rn are closed and contained in R2 × (0, 1)n−2, but are
not necessarily smooth manifolds, although they are smooth near {0} × Rn−1

and R×{ti}×Rn−2 if y ∈ U ′i . After carefully pushing all singularities to infinity

19



in the x1 direction (by an analogue of what we did in the case X is a point), we
obtain smooth manifolds W̃ (y, r) ∈ ψ(n, 2), giving a homotopy X×R → ψ(n, 2)
from f to a map which satisfies the hypothesis in the first part of the proof.

This finishes our proof of the weak equivalence ψ(n, 1) → Ωn−1Ψ(Rn).

3.2 Exercises for lecture 3

1. Use theorem 3.2 to prove that if f : M →M ′ is a map of group-like topo-
logical monoids, and f is a weak equivalence (of the underlying topological
spaces), then Bf : BM → BM ′ is a weak equivalence.

2. Prove that if M is commutative, then BM is a commutative monoid (de-
fine a product on BM which takes union of finite subsets of R, possibly
multiplying labels). Explain why B(BM) is the “space of configurations
of points in R2, labeled by elements of M”.

3. Let N = {1, 2, 3, . . . } have monoid structure given by addition and pick
any homeomorphism λ : S1 = R ∪ {∞} → U(1) with λ(∞) = 1. (For
example λ(t) = (t + i)(t − i).) Prove that there is a unique monoid map
BN → U(1) which takes the point ({t}, 1) to λ(t) ∈ U(1). (The results of
the following two exercises imply that this map is a homotopy equivalence.)

4. With N as in the previous exercise, let B′N ⊆ BN consist of labeled
configurations where the sum of the labels of points in (0, 1) is at most 1.
Prove that B′N ' S1. (Hint: “push to infinity”.)

5. With B′N as in the previous exercise, prove that the inclusion B′N → BN
is a homotopy equivalence. (Hint: There are several ways to construct a
homotopy inverse, one is as follows: If the number ai ∈ R have label ni,
we let bi ≥ ai be the smallest numbers such that the intervals (bi, bi + ni)
are disjoint. If we give each point bi, bi + 1, . . . , bi + ni − 1 the label 1, we
have a point in B′N .)

6. Prove that the inclusion N → Z induces a weak equivalence BN → BZ.

7. Prove that diagram (8) is commutative.

8. The “Moore loop space” of a based space X is the space of pairs (t, γ),
where t ≥ 0 and γ : [0, t] → X is a loop. This space is naturally a
topological monoid (add the t’s, concatenate the loops), and we denote it
Ω′X. Prove that the inclusion ΩX → Ω′X is a homotopy equivalence and
that Ω′X is a grouplike topological monoid and hence (by theorem 3.2)
that β : Ω′X → ΩB(Ω′X) is a weak equivalence. Then construct a map
BΩ′X → X which is a weak equivalence onto the basepoint component of
X.
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9. Let λ : (0, 1) → R be a homeomorphism and M a topological monoid.
For t = (t0, . . . , tp) ∈ ∆p we have points an = λ(

∑n−1
i=0 ti) ∈ [−∞,∞] for

1 ≤ n ≤ p. If we are also given (m1, . . . ,mp) ∈ Mp and label an by mn,
we have defined a map φp : ∆p ×Mp → BM (if some ai’s coincide, we
multiply the labels; if some ai are infinite, we forget their labels). Prove
that φp is continuous. (Remark: BM is often defined as the “geometric
realization of the nerve” of M . The maps defined in this exercise glue
to a map from the thick realization of N•M to the space BM defined
in the text; the resulting map is a continuous bijection and a homotopy
equivalence.)
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4 Final step of the proof

It remains to study the map α0 : ψ(n, 0) → Ωψ(n, 1). Let us contemplate
applying the same methods as we did for k ≥ 1 and see where it goes wrong.
The exact same proof as for k > 0 shows that ψ(n, 0) is homotopy equivalent
to a monoid M . However, the monoid π0M is the set of diffeomorphism classes
of closed oriented 2-manifolds (at least for n ≥ 5), where the monoid operation
is disjoint union. Firstly, this monoid is not a group, so we won’t have M '
ΩBM . Secondly, the natural map BM → ψ(n, 1) has no chance of being a weak
equivalence, because BM is much too large: We will show in the exercises that
π1ψ(n, 1) = Z while π1(BM) contains an abelian group of infinite rank.

In retrospect, it is also clear that ψ(n, 0) is not quite the right object: The
Madsen–Weiss theorem concerns surfaces that are connected and have high
genus, whereas ψ(n, 0) contain all surfaces. If we restrict to the subspace consist-
ing of connected surfaces, we no longer have that ψ(n, 0) is homotopy equivalent
to a monoid (the monoid operation is essentially disjoint union). The solution to
these problems is to modify ψ(n, 0) in a way that we only have path connected
surfaces, but still have a monoid operation. To achieve this, we will consider
surfaces with boundary, and construct a monoid operation which glues surfaces
along their boundary. More precisely, we make the following definition.

Definition 4.1. Write Lt = [0, t] × [0, 1] ⊆ R2 and let M be the set of pairs
(t,W ) where t > 0 and W ⊆ Lt × (−1, 1)n−2 is a compact, connected, oriented
2-dimensional submanifold which agrees with Lt×{0} near (∂Lt)×Rn−2. Define
a product operation on M as

(t,W )(t′,W ′) = (t+ t′,W ∪ (W ′ + te1)).

In order to describe the topology, we note that M is in bijection with the set
of (t,W ), where W ∈ Ψ(Rn) agrees with R2 × {0} outside Lt × Rn−2 and has
W ⊆ R2 × (−1, 1)n−2. Then we topologize as a subspace of Ψ(Rn).

Lemma 4.2. M is a homotopy commutative topological monoid. If n ≥ 5,
π0M = N.

Proof. Homotopy commutativity is proved using the same picture as one uses
to prove that π2 of a space is abelian.

The mapM → N which maps a connected surface to its genus gives a monoid
map π0M → N which is surjective for n ≥ 3 (because a genus 1 surface can be
embedded in Lt ×R) and injective for n ≥ 5 (because any two embeddings of a
genus g surface are isotopic in that case).

In fact, we can say a bit more when n is large. Indeed, Lemma 1.3 can
again be used to interpret M as a classifying space for smooth surface bundles
(at least in the limit where n→∞), but now it classifies bundles of connected
surfaces with one parametrized boundary component. Thus, for n = ∞ we have

M =
∐
g≥0

BDiff∂(Σg,1),
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where BDiff∂(Σg,1) classifies smooth surface bundles E → X whose fibers are
connected genus g surfaces and has ∂E = X × S1.

In this last lecture we shall prove the following result, which is the proper
replacement of theorem 3.7 for k = 0.

Theorem 4.3. There is a map BM → ψ(n, 1) making the diagram

M

��

β // ΩBM

��
ψ(n, 0)

α0
// Ωψ(n, 1)

homotopy commutative. For n ≥ 5, the map BM → ψ(n, 1) is a weak equiva-
lence.

Using this, we are almost ready to copy the steps involved in the case k > 0.
The only caveat is that the monoid M still is not group-like, so β : M → ΩBM
is not a weak equivalence. A striking result, known as the “group completion”
theorem (see [4]), describes the induced map H∗(M) → H∗(ΩBM) as an alge-
braic localization. More precisely, let m0 ∈ M be a surface of genus 1, and let
M∞ be the mapping telescope of the direct system

M
·m0−−→M

·m0−−→ . . . .

The mapping telescope is defined as the quotient space

(M ×N× [0, 1])/((m,n, 1) ∼ (mm0, n+ 1, 0)).

and in our case, it can be rewritten as Z×BDiff∞, where BDiff∞ is the mapping
telescope of the direct system

· · · → BDiff(Σg,1) → BDiff(Σg+1,1) → . . . .

We regard M ⊂ M∞ as the subspace M × {0} × {0}. In this case, the group
completion theorem implies that the canonical map β : M → ΩBM extends to
a map

β∞ : M∞ → ΩBM

which induces an isomorphism in integral homology. In the limit n → ∞, we
have

H∗(M) =
⊕

H∗(BDiff∂(Σg,1))

and

H∗(M∞) = H∗(M)[m−1
0 ] = H∗(Z×BDiff∞).

Combining with what we proved previously, we have a map

BDiff∞ → Ω∞0 Ψ,

inducing an isomorphism in integral homology. Together with homological sta-
bility, this proves the Madsen–Weiss theorem.
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4.1 Proof of theorem 4.3

We now want to prove the weak equivalence BM ' ψ(n, 1). The natural
map ends up in a modified space ψ′(n, 1), defined as follows.

Definition 4.4. Let ψ′(n, 1) be the space of topologically closed submanifolds
W ⊆ R× [0, 1]×Rn−2 which are contained in R× [0, 1]× (−1, 1)n−2 and agree
with R× [0, 1]× {0} near R× ∂[0, 1]× Rn−2.

Lemma 4.5. The map ψ(n, 1) → ψ′(n, 1) which maps W to W ∪R× [0, 1]×{0}
is a homotopy equivalence for n ≥ 3.

Proof. There is a homotopy inverse constructed in the following way. First pick
a compact 1-manifold S ⊆ R2 − (0, 1) × (−1, 1) with ∂S = (∂[0, 1]) × {0}. For
future use, we also assume that S is contained in [−2, 2] × [−2, 2], contains
[−1, 1] × {−2}, and is collared near its boundary. For W ∈ ψ′(n, 1), the union
W ∪R×S×{0} ⊆ Rn will be a smooth manifold, and we can arrange (by choice
of S) that it is contained in R× (−3, 3)n−1. Letting λ : (−3, 3) → (0, 1) be the
increasing affine diffeomorphism, we then define a map ψ′(n, 1) → ψ(n, 1) as

W 7→ (id× λn−1)(W ∪ R× S × {0}).

The composition ψ′(n, 1) → ψ(n, 1) → ψ′(n, 1) sends W to a manifold depicted
in the first frame of the cartoon in figure 4.1. The cartoon also shows how to

W W W

Figure 2: Path used in the proof of lemma 4.5

find a canonical path back to W : The image of W contains a piece which up to
scaling of coordinates is the disjoint union of R× S × {0} and a plane (namely
the complement of the original W ). Then slide down a “saddle point” to get
a manifold which can be canonically deformed to the original W . The other
composition is similar but easier.

With M the monoid of connected surfaces defined above, we define BM →
ψ′(n, 1) analogously to what we did for k > 0. In that case, an important notion
was that of a “good map” X → ψ(n, k + 1). It is key to the case k = 0 to have
the right notion of good map X → ψ′(n, 1) in this case.
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Definition 4.6. Let X be a smooth manifold and f : X → ψ′(n, 1) a smooth
map. For a ∈ R, let Xa ⊆ X be the set of points x satisfying

f(x) ∩ ({a} × Rn−1) = {a} × [0, 1]× {0}.

Furthermore, let Xnc ⊆ X be the set of points x satisfying that no path compo-
nent of f(x) ⊆ R× [0, 1]×Rn−2 is compact. Let us say that f is good provided
X = Xnc = ∪aint(Xa).

Proposition 4.7. Any smooth map f : X → ψ′(n, 1) is smoothly homotopic to
a good map if n ≥ 5. The homotopy can be taken constant near a closed set on
which f is already good.

Proof sketch. We first deform f to achieve that no path component of any
f(x) ⊆ R × (−1, 1)n−1 is contained in {0} × (−1, 1)n−1. Then we pick an
isotopy of embeddings es : R → R which has e0 = id and e1(R) ⊆ (−ε, ε).
Then we deform f(x) through the path fs(x) = (es × id)−1(f(x)). After this
deformation, f(x) has no compact path components.

Next, we want to change f in order to have that for each x there exists t such
that f(x)∩x−1

1 (t) is diffeomorphic to an interval. We will explain how to do this
for a single x at a time. If we pick a generic t ∈ R, the 1-manifold f(x)∩x−1

1 (t)
will be a disjoint union of an interval and a finite number of circles (since it is a
compact 1-manifold with boundary ∂[0, 1]). If there are no circle components,
we are done, otherwise we pick a point in each circle component and join it
with a tube to a point near the standard boundary, as in figure 3. The left

Figure 3: Construction in the proof of proposition 4.7

picture shows the original manifold W = f(x). The 1-manifold W ∩x−1
1 (t) is in

this case the disjoint union of an interval and a circle. We then pick a point in
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the circle component and one in the interval component (labeled by dots in the
picture) and join them with a tube in the surrounding euclidean space (possible
when n ≥ 4). If we let W ′ denote the result of this procedure, then W ′ now
satisfies that W ′ ∩x−1

1 (t) is an interval (namely the connected sum of the circle
and the interval in W ∩x−1

1 (t)). Finally we need a path from W to W ′, but this
can be achieved by sliding the tube away to ∞ (this is possible since W has no
compact components which could trap the tube).

Once we have achieved that W ′ ∩ x−1
1 (t) is diffeomorphic to an interval,

we can move it to the standard interval {t} × [0, 1] × {0} using an isotopy of
embeddings W ′ → Rn. (For n ≥ 5 the space of embeddings is path connected.)

In general we need a homotopy from f to a good map f ′. This is a little
harder, but uses the same idea. Roughly speaking, we apply the above procedure
“for each f(x)”, but some care is required for the result to be a continuous
homotopy. The details can be found in [1] or [3].

Using proposition 4.7 we finish the proof in the same way as for k > 0.

4.2 Exercises for lecture 4

1. Let N = {1, 2, . . . } with addition as monoid structure. Describe the map
β : N → ΩBN up to homotopy, both explicitly (using the homotopy
equivalence BN ' S1 from yesterday) and using the “group completion
theorem”.

2. Let M be the monoid which is homotopy equivalent to ψ(n, 0) (i.e. pairs
(t,W ) with W ⊆ (0, t) × (0, 1)n−1). For each g ≥ 0 construct a map
BM → BN which “counts the number of genus g components” (i.e. the
composition M → ΩBM → ΩBN sends [W ] ∈ π0M to the element of
π0ΩBN = π1BN = Z which is the number of path components of W
which have genus g. Use these maps to prove that π1BM surjects to a
free abelian group of countable rank.

3. We proved earlier that κ0 ∈ H0(ΩnΨ(Rn)) = H0(Ωψ(n, 1)) is divisible by
2. Prove that for large n, κ0/2 gives rise to an isomorphism π1ψ(n, 1) → Z.
(Hint: One method is to use the Serre spectral sequence to calculate
Hn−1 and Hn of the homotopy fiber of a map u : Th(γ⊥n ) → K(Z, n− 2)
representing the Thom class.)
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