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Abstract. We give a variant of Naef’s formula for the failure of invariance of the string topology coprod-
uct under homotopy equivalences, using an obstruction class build from the higher homotopy data one

can associate to a homotopy equivalence as well as the “fake diagonal”. The vanishing of our obstruction

class can be seen as a way to measure a form of smallness for homotopy equivalences. We show that the
same obstruction rules the failure of invariance for a generalisation of the coproduct to higher dimensional

loops.

Introduction

For a closed oriented manifold M , the Chas-Sullivan product [4] is a product on the homology of its
free loop space ΛM = Maps(S1,M) of the form

∧ : Hp(ΛM)⊗Hq(ΛM) −→ Hp+q−n(ΛM),

where H∗(−) = H∗(−;Z) denotes singular homology with integral coefficients and n = dimM . Goresky
and Hingston defined in [11] a “dual” product in cohomology relative to the constant loops

~ : Hp(ΛM,M)⊗Hq(ΛM,M)→ Hp+q+n−1(ΛM,M).

The associated homology coproduct

∨ : Hp(ΛM,M) −→ Hp−n+1(ΛM × ΛM,M × ΛM ∪ ΛM ×M).1

was defined by Sullivan [27]. The idea of the Chas-Sullivan product is to intersect the chains of basepoints
of two chains of loops and concatenate the loops at the common basepoints. The homology coproduct looks
instead for self-intersections at the basepoint within a single chain of loops and cuts. Both structures are
represented geometrically by the same figure, either thought of as two loops intersecting at their basepoint,

or as a single loop having a self-intersection at its basepoint. For the coproduct, it is essential to look
for self-intersections with the basepoint at all times t along the loop, including t = 0 and t = 1 (where
all loops tautologically have a self-intersection!)—Tamanoi showed that the coproduct that only looks for
self-intersections at t = 1

2 is trivial [28]. In contrast, H∗(ΛSn, Sn) for an odd sphere Sn is generated
by just 4 classes as an algebra with the cohomology product ~ [11, 15.3]. The domain [0, 1] of the time
variable t is the reason why the coproduct naturally is an operation in relative homology: it has non-
trivial boundary terms coming from the boundary of the interval. This operation can be associated to a
1-parameter family of surfaces in the harmonic compactification of the moduli space of Riemann surfaces,
making it a so-called compactified operation.

Date: August 20, 2024.
1As we work with homology with integral coefficients, we do not in general have a Künneth isomorphism, which is why

the coproduct in integral homology has target H∗(ΛM ×ΛM,M ×ΛM ∪ΛM ×M) rather than H∗(ΛM,M)⊗H∗(ΛM,M).
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This coproduct detects intersection multiplicity of homology classes in the loop space, the largest number
k such that any representing chain of a given homology class in H∗(ΛM) necessarily has a loop with a
k-fold self-intersection at its basepoint. (See [14, Thm 3.10].)

It has been shown by several authors that the Chas-Sullivan product is homotopy invariant, in the
sense that a homotopy equivalence f : M1 → M2 induces an isomorphism Λf : H∗(ΛM1)→ H∗(ΛM2) of
algebras with respect to the Chas-Sullivan product (see [7, Thm 1],[12, Prop 23],[8, Thm 3.7]). In contrast,
a coproduct of the same flavour was used in [5, Sec 2.1] to define the differential in string homology, a knot
invariant that detects the unknot. Also the paper [23] found indications of non-homotopy invariance in the
S1–equivariant version of the coproduct. And indeed, more recently Naef showed through a computation
with lens spaces that the coproduct is not homotopy invariant [20]! (See also [21, Sec 2.3-4] for an
overview and generalization of Naef’s example.) Note though that, over the rational and for simply-
connected manifolds, Rivera-Wang showed that the Goresky-Hingston coproduct is homotopy invariant
using a Hochschild homology model [26].

Naef suggested in [20] the following transformation formula: given a homotopy equivalence f : M1 →M2

and writing ∨1 and ∨2 for the string coproducts of M1 and M2 respectively, for A ∈ H∗(ΛM1),

∨2(Λf∗(A))− (Λf × Λf)∗(∨1A) = diag(τTHH(f)) ∧2 Λf∗(A)− Λf∗(A) ∧2 diag(τTHH(f))

for τTHH(f) ∈ H1(Λ2,M2) the Dennis trace of the Whitehead torsion of f , mapped via the antidiagonal

diag : ΛM2 → ΛM2 × ΛM2

taking a loop γ to the pair (γ, γ−1), and where ∧2 denotes the Chas-Sullivan product in M2. The formula
was recently proved by Naef-Safronov [22], with an alternative proof given by Kenigsberg-Porcelli in [16]
when π2(M) = 0. We prove here a version of this formula, with potentially different obstruction class:

Theorem A. Let f : M1 → M2 be a degree 1 homotopy equivalence between closed oriented manifolds
and denote by ∨1 and ∨2 the string coproducts of the manifolds M1 and M2. The map induced by Λf :
ΛM1 → ΛM2 in homology respects the coproduct, up to an error term given by the following formula:
for A ∈ H∗(ΛM1),

∨2(Λf∗(A))− (Λf × Λf)∗(∨1A) = diag(Tf ) ∧2 Λf∗(A)− Λf∗(A) ∧2 diag(Tf )

where diag(Tf ) ∈ H1(ΛM2×ΛM2,M2×M2) is the anti-diagonal of a class Tf ∈ H1(ΛM2,M2) defined in
Section 4.5.

The class Tf has two main ingredients:

(1) a “transverse representative” of the fake diagonal ∆f
1 = {(m,m′) ∈ M1 ×M1 | f(m) = f(′m)} (see

Section 4.6),
(2) a family of paths in M2 build from a choice of higher homotopy data (f, g, h1, h2,K) for f , where g :

M2 →M1 is a homotopy inverse for f , with g◦f 'h1
idM1

and f ◦g 'h2
idM2

and K : M1×I×I →M2

is a homotopy between h2 ◦ (f × I) and f ◦ h1 (see Section 3.5, and in particular Lemma 3.15).

The fake diagonal and the non-triviality of the higher homotopy K can be seen as measurements of how
far away a homotopy equivalence is from being a homeomorphism. It follows directly from this description
of the obstruction class Tf that is vanishes under a boundedness assumption for the homotopy f (see
Definition 4.11 and Corollary 4.12) and also when the fake diagonal is “diagonal” (see Corollary 4.7).

Kenigsberg and Porcelli actually also have a version of this formula in [16], with instead an obstruction
class coming from the work of Geoghegan-Nicas [10]. This latter obstruction class is known to agree with
τTHH(f) at least when π2(M) = 0. It is natural to conjecture that the three obstruction classes appearing
in the papers [22, 16] and here all agree, at least when π2(M) = 0, but this does not follow directly from
the above statement and its analogue in [22, 16]. Such a comparison would result in a new description of
the trace of torsion.

We use in this paper the Cohen-Jones approach to string topology [6], with the products and coproducts
described above being defined as lifts to the loop space ΛM of the intersection product on H∗(M), using
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a Thom-Pontryagin construction for the intersection product. In the spirit of e.g.; [12] and [21], we will
consider more general intersection products: to R → E →M ×M , as [21], we associate a map

intM : C∗(E ,R)
intUM−−−−→ C∗−n(E|UM ,R|UM )

r−−−→ C∗−n(E|M ,R|M )

where the first map comes from capping with the pull-back of the Thom class of the diagonal embedding
M ↪→ M ×M , and the second is induced by the retraction UM → M of a tubular neighborhood of this
embedding onto its 0-section, and is well-defined e.g.; when E|UM → UM and R|UM → E|UM → UM are
fibrations. See Section 2 for more details. This chosen level of generality for intersection products is forced
upon us by the proof of Theorem A, where several “exotic” intersection products appear.

We consider in this paper the question of whether a map F = (F, F0) : (E1,R1) −→ (E2,R2) preserves
the intersection product in two types of situations, as depicted in the following diagram:

R1

��

((

F0 R2

((

��

R1

((

��

F0 R2

((

��

E1
F //

p1

��

E2
p2

��

E1
F //

p1

��

E2
p2

��

UM1

((

UM2

((

(A) M1 ×M2
f×f

// M2 ×M2 (B) M1 ×M2
f×f

// M2 ×M2

In situation (A), we assume that both Ei and Ri are fibrations over Mi ×Mi, while in situation (B),
Ri is only assumed to be a fibration over a neighborhood UMi

of the diagonal. While the intersection
product relevant to Theorem A will be as in situation (B), where we will see that there is an obstruction to
invariance, the proof will use that there is no obstruction to homotopy invariance for intersection products
in situation (A):

Theorem B. (Theorem 3.9) Let f : M1 → M2 be a degree 1 homotopy equivalence and F : (E1,R1) →
(E2,R2) a map of pairs of fibrations over the map f × f : M1 ×M1 →M2 ×M2 (as situation (A) in the
above diagram). Then there is a chain homotopy

F ◦ intM1
'H intM2

◦ F : C∗(E1,R1) −→ C∗−n(E2|M2
,R2|M2

).

The above result is essentially stated as Theorem 4.11 in [21], where a sketch proof is given. We give
here a full proof as it is an important ingredient for the proof of Theorem A.

The idea of the proof of Theorem A is to use the description of the string coproduct as a relative
version of the trivial coproduct mentioned above, the coproduct looking only for self-intersections at time
1
2 , see Section 4.1. The trivial coproduct satisfies the assumptions of Theorem B, and thus the failure
of invariance of the string coproduct can be described in terms of the failure of the homotopy for the
invariance of the trivial coproduct to preserve the relative part. (See Lemma 3.13.) Here the trivial
coproduct will be considered relative to (almost) half-constant loops, a situation of type (B) since the
restriction of the evaluation map ev0, 12

: ΛM → M ×M to almost half-constant loops is a fibration over

UM .
For a map of pairs F : (E1,R1) → (E2,R2) over f × f as in situation (B), Theorem B gives that

F∗ : C∗(E1) → C∗(E2) respects the intersection products up to homotopy, but not necessarily relatively
to R1 and R2. A first step in the proof of Theorem A is general computation of the failure of F∗ :
H∗(E1,R1) → H∗(E2,R2) to preserve the intersection products in situtation (B): for A ∈ H∗(E1,R1),
Theorem 3.14 gives that

(0.1)
(
F ◦ intM1

− intM2
◦ F
)
(A) = intU1

(LN2
(α(∂A)× I)),

where ∂ : H∗(E1,R1) → H∗−1(R1) is the boundary map in the long exact sequence in homology, α is a

map with the property that it takes the diagonal of M1 to the fake diagonal ∆f
1 (see Proposition 4.6),

and LN2
is a homotopy equivalence, whose existence is given by Proposition 3.3, and for which we give

an explicit construction in Section 3.5 in the case of mapping spaces using the higher homotopy data
(f, g, h1, h2,K) described above.

The formula given in Theorem A is obtained from (0.1) by first noting that, in the case of the string
coproduct, for a class A ∈ H∗(ΛM1), the relevant boundary that needs to be considered has the form
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∂(A × I) = A × ∂I, and can be described in half-constant loops as [M1] ∧1 A − A ∧1 [M1], for ∧1 the
string product of M1, and [M1] the fundamental class of M1 considered as a class of constant loops. One
then shows that the operations [M1]∧1 − and −∧1 [M1] can be “pulled outside” in the right hand side of
(0.1), at the price of replacing the class of constant loops [M1] with the class diag(Tf ). This latter class is
essentially the result of applying the sequence of maps on the right hand side of (0.1) to [M1]. The final
form of the formula also uses Theorem B a certain relative Chas-Sullivan product, to replace the string
product ∧1 computed in M1 by the product ∧2 of M2.

Higher dimensional loops. One generalization of the string coproduct to higher dimensional loops that
fits the set-up of the present paper is as follows: Denoting ΛrM := Maps(Sr,M) = Maps((Ir/∂Ir),M),
there is an evaluation map

ev0,t : ΛrM × Ir →M ×M
evaluating the loops at the basepoint 0 and at time t = (t1, . . . , tr) ∈ Ir. Consider the operation

∨r : H∗(Λ
rM)

×Ir−−→ H∗+r(Λ
rM × Ir,ΛrM × ∂Ir) intM−−−→ H∗+r−n(ev−1

0,t(∆M),ΛrM × ∂Ir)
reread−−−−→ H∗+r−n(Maps(S1 × Sr−1,M),Rr)

where the last map is a “reread” map, taking a pair (γ, t) to the composition

S1 × Sr−1 ∼= S1 × ∂Ir −→ (Ir/∂Ir)/0∼c=( 1
2 ,...,

1
2 )

θt−−→ (Ir/∂Ir)/0∼t
γ−−→M

where the first map uses that the line between t ∈ ∂Ir and c is mapped to a circle in the target, and
where θt is a reparametrization map defined by piecewise linear scaling in each of the r directions. The
reread map takes Λr × ∂Ir to the subspace R of half-constant maps. (See Section 4.2 for more details.)

The above map specializes to the string coproduct ∨ when r = 1 after appropriately identifying
Maps(S1 × S0,M) with ΛM × ΛM .

The obstruction class Tf ∈ H1(ΛM2,M2) defines a class sr−1Tf ∈ H1(Maps(S1 × Sr−1,M2),M2) by
precomposing with the projection S1 × Sr−1 → S1 on the first factor. In the case r = 1, the class s0Tf
recovers the anti-diagonal diag(Tf ) appearing in Theorem A.

Theorem A generalizes to the following:

Theorem C. Let f : M1 → M2 be a degree 1 homotopy equivalence between closed oriented manifolds
and denote by ∨r1 and ∨r2 the higher string coproducts of the manifolds M1 and M2 defined as above. The
map induced by Λrf : ΛrM1 → ΛrM2 in homology respects these coproducts, up to an error term given by
the following formula: for A ∈ H∗(ΛrM1),

∨r2
(
Λrf∗(A)

)
− Maps(S1 × Sr−1, f)∗

(
∨r1 A

)
= sr−1Tf ∧2

∂Ir Λrf∗(A)

in H∗+1−n(Maps(S1 × Sr−1,M),R), where

∧2
∂Ir : H∗

(
Maps(S1 × Sr−1,M2)× ΛrM2

) intM2−−−−→ H∗−n
(

Maps(S1 × Sr−1,M2)×M2
ΛrM2

)
[−,−]−−−→ H∗+r−1−n

(
Maps(S1 × Sr−1,M2)

)
is an intersection product composed with a form of Browder bracket, that takes value in half-constant maps
Rr2 when the left input is in constant maps (see Section 4.2).

In particular the failure of invariance for such operations is still ruled by the same obstruction class Tf
as in the case of single loop spaces ΛM in Theorem A. Both results will be proved together, Theorem A
being the case r = 1 in Theorem C.

Organization of the paper. In Section 1, we give a proof of the homotopy invariance of the homology
intersection product (Proposition 1.7) using only its definition in terms of capping with a Thom class.
This proof is not at all efficient, but the intermediate results proved in that section will be used later
in the paper. In Section 2, we define lifted intersection products, in the generality needed in the paper.
We treat there the invariance property of intersection products lifted from a fixed manifold. Section 3
considers the question of invariance of intersection products over a homotopy equivalence. Theorems 3.9
(Theorem B) treates the case where Ei → Mi ×Mi and R → Mi ×Mi are fibrations (situation (A)),
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and Theorem 3.14 the case where the fibration Ei →Mi ×Mi restricts on the relative part to a fibration
Ri → UMi

instead (situation (B)). Section 4.5 then builds on Theorem 3.14 and the explicit homotopy given
in Proposition 3.17 to prove Theorems A and C. Finally Appendix A details the relationship between the
tubular neighborhoods of two composable embedding and the tubular neighborhood of their composition.
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1. Homotopy invariance of the intersection product

The easiest way to prove the homotopy invariance of the intersection product on the homology of closed
manifolds is to use its definition as Poincaré dual of the cup product, and use the homotopy invariance
of the cup product. In fact, the compatibility is easily checked with any degree d map, up to appropriate
scaling, see e.g., [1, VI, Prop 14.2]. We will present here a proof of the homotopy invariance using instead
the definition of the intersection product via capping with a Thom class, as a warm-up, and partial
preparation, for the invariance of the string topology coproduct.

Let M be a closed oriented Riemannian manifold of injectivity radius ρ, and let TM denote its ε–
tangent bundle, where ε is small compared to ρ. (To be precise, the paper [14] whose constructions we
use assumes ε < ρ

14 .) We will also assume that ε < 1
2 .

The normal bundle of the diagonal embedding M ↪→M ×M is isomorphic to TM , and we can choose
as tubular embedding the map νM : TM →M×M given by νM (m,V ) = (m, expm V ). (By an embedding,
we will in this paper always mean a C1–map that is an immersion and a homeomorphism onto its image.)
Note that νM has image the ε–neighborhood of the diagonal

U = {(m,m′) ∈M ×M | |m−m′| < ε} ⊂M ×M.

Let τM ∈ Cn(M ×M, (∆M)c) be a chosen Thom class for this tubular neighborhood, in cochains relative
to the complement of the diagonal ∆ : M → M ×M , and r : U → M the associated retraction. After
going through “small simplices” to get a chain inverse ρ to excision, capping with the Thom class defines
a map

[τM∩] : Cp+q(M ×M, (∆M)c)
ρ−−→ C∗(U, (∆M)c)

τM∩−−−→ C∗−n(U).

(See eg., [14, A.2] for a detailed description.)
Up to sign, the intersection product on a closed manifold M can be defined as the composition

Cp(M)⊗ Cq(M)
×−→ Cp+q(M ×M) −→ Cp+q(M ×M, (∆M)c)

[τM∩]−−−−→ Cp+q−n(U)
r−−→ Cp+q−n(M)

(See eg., [14, App B].)

Let f : M1 → M2 be a homotopy equivalence between two closed oriented Riemannian manifolds M1

and M2. In particular f has degree ±1, that is f [M1] = ±[M2]. Let Ui be the εi–tubular neighborhoods
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of the diagonal in Mi ×Mi as above, with Thom class τMi
and ri : Ui → Mi the associated retraction.

After changing f in its homotopy class, we may assume that

• f is smooth;
• ε1 is small enough so that f(U1) ⊂ U2,

where the last property uses that M1 is assumed closed and hence is compact. Leaving out the cross-
product, which is well-known to be natural, we want to show that the diagram

Hp+q(M1 ×M1) //

f×f
��

Hp+q(M1 ×M1, (∆M1)c)
[τM1

∩]
// Hp+q−n(U1)

f×f
��

r1 // Hp+q−n(M1)

f

��

Hp+q(M2 ×M2) // Hp+q(M2 ×M2, (∆M2)c)
[τM2

∩]
// Hp+q−n(U2)

r2 // Hp+q−n(M2)

commutes. One difficulty is that we cannot assume that f × f takes the complement of the diagonal in
M1 ×M1 to the corresponding complement in M2 ×M2, so that we do not have a vertical map in the
second column in the diagram. For the same reason, we cannot use f directly to compare the Thom classes
τM1

and τM2
. To make up for this, we will replace f by an embedding and use instead the larger diagram

(1.4) below.

Pick an embedding e : M1 ↪→ Dk, for some k large. Then the map (f, e) : M1 → M2 × Dk is an
embedding too and we can consider the composition of embeddings

(1.1) M1
� � ∆1 //
v�

(id,f,e) ))

M1 ×M1� _

id×(f,e)

��

M1 ×M2 ×Dk.

To this situation, we can associate a diagram

TM1

��

� w

ν1=νM1

**

N2 = M1 ×N(f, e)

pN2

��

� x

ν2=id×νe

++

M1
� � ∆1 // M1 ×M1

� � id×(f,e)
// M1 ×M2 ×Dk,

where ν1 := νM1
: TM1 → M1 ×M1 is the tubular neighborhood of ∆M1 defined above, and N(f, e) is

the normal bundle of (f, e) with νe : N(f, e)→M2 ×Dk a chosen tubular embedding; we choose here, as
in [2, Thm 12.11], to define νe using the restriction of the exponential map of M2 ×Dk to the subbundle
N(f, e) ≤ TM2 ⊕ Rk of vectors normal to d(f, e)TM1. Pick a Thom class τe ∈ Ck(M2 ×Dk, ((f, e)M1)c)
for νe. Then

(1.2) τe := 1× τe ∈ Ck(M1 ×M2 ×Dk,M1 × ((f, e)M1)c)

is a Thom class of ν2. Applying Proposition A.1, we now have the following:

Proposition 1.1. Consider the sequence of embeddings M1
∆1
↪→ M1 ×M1

id×(f,e)
↪→ M1 ×M2 ×Dk and let

ν1, ν2 and τ1 = τM1 , τ2 = τe be the embeddings and Thom classes chosen above. Then the following hold:

(1) The bundle N3 := TM1 ⊕N(f, e) is isomorphic to the normal bundle of the composed embedding
(id, f, e) : M1 →M1 ×M2 ×Dk.

(2) There is an isomorphism ν̂1 : N3 = TM1⊕N(f, e)
∼=−→ N2|U1

= (M1×N(f, e))|U1
, as bundles over

TM1
∼= U1, with the property that

ν3 := ν2 ◦ ν̂1 : N3 −→M1 ×M2 ×Dk

is a tubular embedding for (id, f, e). Explicitly,

ν3(m,V,W ) = ν2(ν1(m,V ),W ′) = (m, νe(expm V,W
′))

for W ′ ∈ (N(f, e))ν1(m,V ) the parallel transport of W along the path ν1(m, tV ).
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(3) The class

τ3 := p∗N2
τM1
∪ τe ∈ Cn+k(M1 ×M2 ×Dk,M c

1 )

is a Thom class for the tubular embedding ν3, and M1 is identified with its image under the map
(id, f, e), and the diagram

H∗+k(M1 ×M2 ×Dk)
Jτe∩K

//

Jτ3∩K
**

H∗(M1 ×M1)

JτM1
∩K

��

H∗−n(M1)

commutes, where we use the notation Jτ∩K : C∗(X) → C∗(Y ) for maps that are compositions of
the form

Jτ∩K : C∗(X)→ C∗(X,Y
c)

[τ∩]−−→ C∗(U)
r−→ C∗(Y )

for U a tubular neighborhood of X inside Y with associated Thom class τ and r the associated
retraction.

The embedding (id, f, e) : M1 →M1 ×M2 ×Dk is also equal to the composition of embeddings

(1.3) M1
� � (id,f)

//
v�

(id,f,e) ))

M1 ×M2� _

(id,e◦π)

��

M1 ×M2 ×Dk.

for (id, e ◦ π) : M1 ×M2 → M1 ×M2 ×Dk taking (m,n) to (m,n, e(m)). This gives another associated
diagram of tubular embeddings, namely

f∗TM2

��

� w

ν̄1

**

N̄2 = M1 ×M2 × Rk

pN̄2

��

� x

ν̄2

**

M1
� � (id,f)

// M1 ×M2
� � (id,e◦π)

// M1 ×M2 ×Dk,

where we choose the explicit tubular embedding

ν̄1(m,V ) = (m, expf(m) V ) and ν̄2(m,n, x) = (m,n, e(m) + `(x))

with ` a scaling map so that ν̄2 is well-defined, recalling also that TM2 denotes the ε2–tangent bundle of
M2 so that ν̄1 is well-defined. Note that ν̄1 has image

U1,2 := {(m,n) ∈M1 ×M2 | |f(m)− n| < ε2} = (f × 1)−1(U2)

for U2 ⊂M2 ×M2 the ε2–neighborhood of the diagonal as above.

Lemma 1.2. The map f × 1 induces a map of pairs f × 1 : (M1 ×M2,M
c
1 )→ (M2 ×M2, (∆M2)c) and,

if f is a homotopy equivalence, the class (f × 1)∗τM2 ∈ Cn(M1×M2,M
c
1 ) is a Thom class for the tubular

neighborhood (f∗TM2, ν̄1). (Here M1
∼= (id, f)M1 ∈M1 ×M2.)

Proof. The Thom class τ ∈ Cn(M1×M2,M
c
1 ) is characterised by the property τ∩[M1×M2] = [(1×f)M1].

We are interested in the class τ = (f × 1)∗τM2 . By the naturality of the cap product,

(f × 1)∗((f × 1)∗τM2
∩ [M1 ×M2]) = τM2

∩ (f × 1)∗[M1 ×M2]

= deg(f)τM2
∩ [M2 ×M2] = deg(f)[∆M2].

Now (f × 1)∗[(1× f)M1] = ∆f [∆M1] = deg(f)[∆M2] and the result follows from the fact that (f × 1)∗ is
invertible. �
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For the tubular neighborhood (M1 ×M2 × Rk, ν̄2), the inclusion M1 ×M2 × ∂Dk ↪→ (M1 ×M2)c ⊂
M1 ×M2 ×Dk, where the second inclusion takes (m,n) to (m,n, e(m)), induces a quasi-isomorphism

ī∗ : C∗(M1 ×M2 ×Dk,M1 ×M2 × ∂Dk)
'−→ C∗(M1 ×M2 ×Dk, (M1 ×M2)c)

Let

η := ī∗(1× η)

for η ∈ Ck(Dk, ∂Dk) a chosen representative of the dual of the fundamental class. Then η is a Thom class
for N̄2 as ī∗(η ∩ [M1 ×M2 ×Dk]) = (1× η) ∩ ī∗[M1 ×M2 ×Dk] = [M1 ×M2 × {0}] is homologous to the
image of the zero-section of N̄2 under ī∗. Indeed, the embedding (id, e ◦ π) is isotopic to the embedding
(id, 0), replacing e by the constant map at 0 ∈ Dk, through an isotopy only affecting the disc.

Applying Proposition A.1 and Lemma 1.2 to this new factorisation of the embedding (id, f, e), we get

Proposition 1.3. Consider the sequence of embeddings M1

(id,f)
↪→ M1 ×M2

(id,e◦π)
↪→ M1 ×M2 ×Dk and let

ν̄1, ν̄2 and τ̄1 = (f × 1)∗τM2
, τ̄2 = η be the embeddings and associated Thom classes chosen above. Assume

that f is a homotopy equivalence. Then the following hold:

(1) The bundle N̄3 := f∗TM2 ⊕ Rk is isomorphic to the normal bundle of the composed embedding
(id, f, e) : M1 −→M1 ×M2 ×Dk.

(2) There is an isomorphism ν̃1 : N̄3 = f∗TM2⊕Rk
∼=−→ N̄2|U1,2

= M1×M2×Rk|U1,2
as bundles over

f∗TM2
∼= U1,2, with the property that

ν̄3 := ν̄2 ◦ ν̃1 : N̄3 −→M1 ×M2 ×Dk

is a tubular embedding for (id, f, e). Explicitly,

ν̄3(m,V,W ) = ν̄2(ν̄1(m,V ),W ) = (m, expf(m) V, e(m) +W )

for W ∈ Rk(m,f(m)) ≡ Rk(m,expf(m) V ).

(3) The class

τ̄3 := p∗N̄2
(f × 1)∗τM2

∪ η ∈ Cn+k(M1 ×M2 ×Dk,M c
1 )

is a Thom class for the tubular embedding ν̄3 and the diagram

H∗+k(M1 ×M2 ×Dk)
Jη ∩K

//

Jτ̄3 ∩K
**

H∗(M1 ×M2)

J(f×1)∗τM2
∩K

��

H∗−n(M1)

commutes, where the notation Jτ∩K is as in Proposition 1.1.

We have given two explicit tubular neighborhoods (N3, ν3) and (N̄3, ν̄3) of the embedding (id, f, e),
coming from two different ways of considering it as a composition of embeddings. The bundles N3 and N̄3

are isomorphic, as they are both isomorphic to the normal bundle of the embedding. More than that, the
uniqueness theorem for tubular neighborhoods implies that the embeddings are necessarily isotopic, and
the following result holds:

Proposition 1.4. Let (N3, ν3), τ3 and (N̄3, ν̄3), τ̄3 be the tubular neighborhoods and Thom classes for the
embedding (id, f, e) obtained in Propositions 1.1 and 1.3. There exists a bundle isomorphism φ : N3 → N̄3

and a diffeomorphism h = (id× h̃) : M1×M2×Dk −→M1×M2×Dk, fibered over the projection to M1,
such that

(1) h restricts to the identity on M1

(id,f,e)
↪→ M1 ×M2 ×Dk and outside U1,2 × D̊k;

(2) h is isotopic over M1 to the identity relative to the same subspaces;
(3) h ◦ ν3 = ν̄3 ◦ φ : δN3 −→ M1 ×M2 ×Dk, for δN3 (resp. δN̄3 = φ(δN3)) an appropriately chosen

isomorphic subbundle.
(4) [τ̄3] = [h∗τ̄3] = [τ3] ∈ Hn+k(M1 ×M2 ×Dk,M c

1 ).

Note that (1) implies that h(M c
1 ) = M c

1 and (3) that h(ν3δN3) = ν̄3δN̄3.
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Proof. Uniqueness of tubular neighborhoods (see e.g. [15, Chap 4, Thm 5.3]) gives that the tubular
neighborhoods (N3, ν3) and (N̄3, ν̄3) are isotopic, and this is what we will use to produce the diffeomorphism
h. To obtain detailed properties of the resulting h in our particular case, we follow the actual construction of
the isotopy in the proof of this theorem in [15]. The first step in the proof is to replace N3 by an isomorphic
subbundle δN3 such that ν3(δN3) ⊂ ν̄3(N̄3). Then one considers the map g = ν̄−1

3 ◦ ν3 : δN3 → N̄3. In
our case, because ν3 and ν̄3 both restrict to the identity on M1 in the first factor, having the form
ν3(m,V,W ) = (m, νe(expm V,W

′)) and ν̄3(m,X, Y ) = (m, expf(m)X, e(m) + Y ), we have that g has the

form g(m,V,W ) = (m,X, Y ) sends fibers to fibers. Now the map g is fiberwise homotopic to its fiber
derivative TM1

g : δN3 → N̄3 through the homotopy

H(m,V,W, t) =

{
t−1g(m, tV, tW ) t ∈ (0, 1]
TM1

g(m,V,W ) t = 0

We set φ = TM1g and obtained the desired isotopy F : δN3 × I → M1 ×M2 × Dk from ν3 = ν̄3 ◦ g to
ν̄3 ◦ φ by setting

F (m,V,W, 1− t) = ν̄3(H(m,V,W, t)).

By the isotopy extension theorem (see eg. [15, Chap 8, Thm 1.3]), there exists an isotopy of diffeomor-
phisms

F : (U1,2 ×Dk)× I −→ U1,2 ×Dk

such that F(−, 0) is the identity on U1,2 × Dk and such that F restricts to F on ν3(δN3) × I. As
F is only non-trivial in a neighborhood of the image of F , can also be chosen to be fiberwise, and F
has support inside N̄3

∼= TM2 ⊕ Rk, F can be constructed so that it has support within the slices
exp(m,f(m),e(m)) TM2 ⊕ Rk ⊂ {m} ×M2 × Dk. It also fixes (id, f, e)M1 because F fixes it. Hence by

construction, h := F(−, 1) is a diffeomorphism of U1,2 × Dk of the form h = id× h̃, that extends to
M1 ×M2 ×Dk via the identity, and satisfies (1)–(3) in the statement.

Because h is a diffeomorphism compatible with the tubular embeddings, it pulls back the Thom class
to a Thom class. Unicity of the Thom class in cohomology gives the last part of the statement. �

Convention 1. Recall that N3
∼= N2|U1

and N̄3
∼= N̄2|U1,2

. We replace N3 by the smaller subbundle δN3,

and N̄3 by δN̄3 = φ(δN3), as defined in the above proof, scaling U1, N2, U1,2, U2 and N̄2 accordingly.

Consider now the diagram

(1.4) H∗(M1 ×M1)

1×f∗

��

JτM1
∩K

//

∼=
++

H∗−n(M1)

(1) H∗+k(M1 ×M2 ×Dk,M1 ×M2 × ∂Dk)

Jτe ∩K
kk

Jτ3 ∩K
33

Jη ∩K=[(1×η)∩]

ss

Jτ̄3 ∩K

++

(2)

H∗(M1 ×M2)

f∗×1

��

J(f×1)∗τM2
∩K

//

∼=

33

H∗−n(M1)

f∗

��

H∗(M2 ×M2)
JτM2

∩K
// H∗−n(M2)

Invariance of the intersection product will follow from the commutativity of this diagram once we have
also shown that the maps Jτe ∩K and Jη ∩K are isomorphisms. This last fact is a consequence of the
homology suspension theorem for Jη ∩K as it identifies with the map [(1× η)∩], and, for Jτe ∩K, will follow
from the commutativity of (1) in the diagram and the fact that f is a homology isomorphism. 2

We analyse the diagram step by step. The top triangle commutes by Proposition 1.1(3), and the middle
triangle by Proposition 1.3(3). The bottom square commutes by the naturality of the cap product. So
what we need to show is that the triangles labeled (1) and (2) commute. To prove commutativity of (1),
we use the following lemma:

2Note that the map Jτe ∩K in the diagram is not directly a case of a Thom isomorphism because the source of the map is
not correct, and thus we cannot deduce that it is an isomorphism from the Thom isomorphism theorem.
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Lemma 1.5. Let i : (M2 ×Dk,M2 × ∂Dk) −→ (M2 ×Dk, ((f, e)M1)c) be the inclusion of pairs. If f is
a degree d map, then

i∗[τe] = d[1× η] ∈ Hk(M2 ×Dk,M2 × ∂Dk)

for τe the Thom class of (N(f, e), νe) and η ∈ Ck(Dk, ∂Dk) a representative of the dual of [Dn] as above.

Proof. Identifying M1 with its image under (f, e) in M2 ×Dk, consider the diagram

H∗(N(f, e),M c
1 )

∩ [N(f,e)]

��

H∗(M2 ×Dk,M c
1 )

i∗ //
ν∗e
∼=
oo

∩ [M2×Dk]

��

H∗(M2 ×Dk,M2 × ∂Dk)

∩ [M2×Dk]

��

Hn+k−∗(N(f, e))
νe∗ // Hn+k−∗(M2 ×Dk) Hn+k−∗(M2 ×Dk)

i∗=idoo

where the vertical maps cap with the fundamental class in each case and ν∗e is an isomorphism by excision.
The two squares commute by naturality of the cap product, given that [M2 × Dk] = i∗[M2 × Dk] =
νe∗[N(f, e)] ∈ H∗(M2 ×Dk,M c

1 ). Hence in homology we have a commuting diagram

[τe] ∈ Hk(M2 ×Dk,M c
1 )

i∗ //

(∩ [N(e,f)])◦ν∗e
��

Hk(M2 ×Dk,M2 × ∂Dk)

∩[M2×Dk]

��

3 deg(f)[1× η]

Hn(N(f, e))
νe∗ // Hn(M2 ×Dk)

∼=
��

[M1] ∈ Hn(M1)

∼=

OO

f
// Hn(M2) 3 deg(f)[M2]

where the first square commutes by the commutativity of the previous diagram, and the bottom square
commutes as it comes from a commuting square in the category of spaces. Now by definition of the Thom
classes, [τe] is taken to [M1] along the left vertical maps, and [1× η] to [M2] along the right vertical maps
as [1 × η] is a Thom class for the trivial Dk–bundle on M2. On the other hand f takes [M1] to d[M2]
along the bottom horizontal map, from which the result follows. �

Proposition 1.6. Assume that f is a degree 1 map. The subdiagram labeled (1) in Diagram (1.4) com-
mutes. Moreover, the maps Jτe ∩K and Jη ∩K are both isomorphisms.

Proof. Recall that N2 = M1 ×N(f, e). Spelling out the maps, the diagram becomes the following:

H∗(M1 ×M1)

1×f∗
��

H∗(N2)

(a)

∼=oo

ν2∗

��

H∗+k(N2, (M1 ×M1)c)
∼=−→ H∗+k(M1 ×M2 ×Dk, (M1 ×M1)c)

τe ∩
∼=

oo

τe ∩

rr

H∗(M1 ×M2) H∗(M1 ×M2 ×Dk)
∼=oo H∗+k(M1 ×M2 ×Dk,M1 ×M2 × ∂Dk)

1×i∗

OO

ī∗∼=
��

(1×η)∩
∼=

oo

H∗(N̄2)

(b)
∼=

ii

ν̄2∗ ∼=

OO

H∗+k(N̄2, (M1 ×M2)c)
∼=−→ H∗+k(M1 ×M2 ×Dk, (M1 ×M2)c)

η ∩
∼=

oo

η ∩

ll

The subdiagram labeled (a) commutes by naturality of the cap product since i∗[τe] = [1×η] by Lemma 1.5
as f has degree 1. Likewise subdiagram (b) commutes as η = ī∗(1× η) by definition. The rest commutes
on the chain or space level by definition of the maps.

We have marked in the diagrams the maps that are isomorphisms because of the Thom isomorphism,
excision, or homotopy equivalences coming either from contracting a disc or a bundle, or from the equiva-

lence N̄2
'−→M1 ×M2 ×Dk and likewise for the complements. From this we see that the map Jη ∩K is a

composition of isomorphisms, and hence is itself an isomorphism. And because 1× f∗ is an isomorphism,
the commutativity of the diagram gives that also Jτe ∩K is an isomorphism. �
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Note that the top part of the diagram in the proof shows that the left-hand map 1× f∗ is invertible if
and only if the right-hand map 1× i∗ is, and these two maps are, up the a twisted suspension, inverses of
each other.

Proposition 1.7. Let f : M1 →M2 be a homotopy equivalence between closed manifolds. Then f induces
a ring map H∗(M1) → H∗(M2), with ring structure given by the intersection product, up to the sign
deg(f), that is the diagram

H∗(M1 ×M1)

f∗×f∗
��

JτM1
∩K

// H∗−n(M1)

f∗

��

H∗(M2 ×M2)
JτM2

∩K
// H∗−n(M2)

commutes up to the sign deg(f) = ±1.

We repeat here that this is not the optimal result for invariance of the intersection product, and
absolutely not the optimal proof! See eg., [1, VI, Prop 14.2] for the stronger statement for any degree d
map as a direct consequence of Poincaré duality. The proof given here has though the advantage of being
liftable to the loop space.

Proof. Given that f is a homotopy equivalence, it has degree ±1. If deg(f) = −1, changing the orientation
of M2, so that the degree of f becomes 1, changes the intersection product of M2 by a sign (−1). Hence
it is enough to consider the case where deg(f) = 1.

We need to show that Diagram (1.4) commutes, and that the two maps Jτe ∩K and Jη ∩K are iso-
morphisms. We have already seen that the top and middle triangles commute by Propositions 1.1(3)
and 1.3(3), and the bottom square by the naturality of the cap product. The commutativity of the trian-
gle labeled (1) and the two required isomorphisms are given by Proposition 1.6. For the triangle labeled
(2), commutativity follows from Proposition 1.4. Indeed, the map h in the proposition gives a commutative
diagram

H∗+k(M1 ×M2 ×Dk,M1 ×M2 × ∂Dk) //

++

H∗+k(M1 ×M2 ×Dk,Mc
1 )

[τ3 ∩]
//

h

��

H∗−n(N3) //

h

��

H∗−n(M1)

H∗+k(M1 ×M2 ×Dk,Mc
1 )

[τ̄3 ∩]
// H∗−n(N̄3) // H∗−n(M1)

because h is isotopic to the identity relative to M1 ×M2 × ∂Dk (for the first triangle), pulls back τ̄3 to τ3
(for the middle square), and fixes M1 (for the last square). Hence Diagram (1.4) commutes, which finishes
the proof. �

2. Lifted intersection products

In this section, following [21, Sec 4.1] we lift the intersection product along maps p : E →M ×M , give
examples that will be relevant to us, and study its first basic invariance property.

Recall the Thom class τM ∈ Cn(UM ,M
c) ' Cn(M ×M,M c) from the previous section. Pulling back

along a map p : E →M ×M defines a class p∗τM ∈ Cn(E|UM , (E|M )c) that can be used to define a lift of
the intersection product of M using essentially the same definition:

Definition 2.1. Given a map p : E →M×M , we define the short intersection product as the composition

(2.1) intUM : C∗(E) −→ C∗(E , E|Mc)
ρ−→ C∗(E|UM , E|Mc)

p∗τM∩−−−−→ C∗(E|UM ).

where ρ is a choice of homotopy inverse for excision. When p is a fibration, we get moreover an associated
intersection product intM defined as the composition

(2.2) intM : C∗(E)
intUM−−−−→ C∗(E|UM )

∼−→ C∗−n(E|M )

where the second is induced by the equivalence M
'−→ UM using that p|UM is a fibration.

Let ΛM = Maps(S1,M) denote the free loop space. Evaluation at any point t ∈ S1 defines a fibration
evt : ΛM →M . This will be our main source of examples of fibrations.
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Example 2.2. Though not originally introduced this way, a widely studied example of such a lifted
intersection product is the Chas-Sullivan product on H∗(ΛM). This product can be obtained by applying
the above construction to the fibration ev0× ev0 : ΛM ×ΛM →M ×M , followed by loop concatenation:

C∗(ΛM × ΛM)
intM−−−→ C∗−n(ΛM ×M ΛM)

concat−−−−→ C∗−n(ΛM).

Here we have identified (ΛM × ΛM)|M with the figure eight space ΛM ×M ΛM . (See [14, Sec 2] for an
account of how this definition relates to earlier definitions of [4, 6].)

Another example is the so-called trivial coproduct, obtained in a similar fashion using the fibration
ev0, 12

: ΛM →M ×M , evaluating a loop at both t = 0 and t = 1
2 , followed by the cut map:

C∗(ΛM)
intM−−−→ C∗−n(ΛM ×M ΛM)

cut−−→ C∗−n(ΛM × ΛM).

Here again ΛM |M identifies with the figure eight space ΛM ×M ΛM . This coproduct was shown to be
essentially trivial by Tamanoi, see [28, Thm B], hence its name.

We give now two “exotic” examples of such intersection products that will be used in the proof of the
invariance Theorem 3.9.

Example 2.3. Recall from Section 1 the tubular neighborhoods N2 (resp. N3) of M1 ×M1 (resp. M1) in
M1 ×M2 ×Dk:

N3
� � //

��

N2 = M1 ×N(f, e) �
� ν2 //

pN2

��

M1 ×M2 ×Dk

M1
� � // U1

� � // M1 ×M1

( �

55

where N3
∼= N2|U1

, see Proposition 1.1. Given a map p : E2 →M2 ×M2, consider the pull-backs

EN3

p

��

// EN2

p

��

// E1,2 ×Dk

p

��

// E1,2

p

��

// E2

p

��

N3
� � // N2

� � // M1 ×M2 ×Dk // // M1 ×M2
f×id

// M2 ×M2

Now the above construction associates to the composition

EN2

p−−→ N2

pN2−−→M1 ×M1

a short intersection product of the form

intU1
: C∗(EN2

) −→ C∗−n(EN2
|U1

) ∼= C∗−n(EN3
).

Example 2.4. Considering now the tubular neighborhoods N̄2 (resp. N̄3) of M1 × M2 (resp. M1) in
M1 ×M2 ×Dk,

N̄3
� � //

��

N̄2 = M1 ×M2 × Rk �
� ν̄2 //

pN̄2

��

M1 ×M2 ×Dk

M1

f

��

� � // U1,2
� � //

��

M1 ×M2

( �

55

f×id

��

M2
� � // U2

� � // M2 ×M2

where N̄3
∼= N̄2|U1,2

∼= N̄2|U2 , see Proposition 1.3. The composition

EN̄2
−→ N̄2

pN̄2−−→M1 ×M2
f×id−−−→M2 ×M2

is not necessarily a fibration even if p was one, but we still have a short intersection product as in the
previous example:

intU2
: C∗(EN̄2

) −→ C∗−n(EN̄2
|U2

) ∼= C∗−n(EN̄3
).
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2.1. Relative intersection products. Given a map E → M × M as above, and in addition a map
R → E , we get a relative short intersection product

(2.3) intUM : C∗(E ,R) −→ C∗(E , E|Mc ∪R)
ρ−−→ C∗(E|UM , E|Mc ∪ R|UM )

p∗τM∩−−−−→ C∗(E|UM ,R|UM ).

This can further be composed with a retraction map

C∗(E|UM ,R|UM )
r−→ C∗−n(E|M ,R|M )

for example when both E|UM → UM and the composition R|UM → E|UM → UM are fibrations, giving a
relative intersection product

(2.4) intM : C∗(E ,R)
intUM−−−−→ C∗(E|UM ,R)

r−→ C∗−n(E|M ,R).

Example 2.5 (The relative coproduct). Let E = ΛM and consider again the fibration ev0, 12
: ΛM →

M ×M of Example 2.2. Let

R =
{
γ ∈ ΛM | γ(t) = γ(0) ∀t ∈ [0,

1

2
] or ∀t ∈ [

1

2
, 1]
}

be the subspace of ΛM of half-constant loops. The map ev0, 12
restricts to a map ev0, 12

: R →M ⊂M×M
with value on the diagonal. Then R|UM = R|M and we get a relative intersection product

intM : C∗(ΛM,R) −→ C∗−n(ΛM |M ,R).

Now ΛM |M ∼= ΛM ×M ΛM identifies with the figure eight space and this intersection product can further
be composed with a cut map to define a coproduct:

C∗(ΛM,R)
intM−−−→ C∗−n(ΛM |M ,R)

cut−−→ C∗−n(ΛM × ΛM,M × ΛM ∪ ΛM ×M).

As already mentioned in Example 2.2, the non-relative version of this coproduct is almost completely
trivial in homology, but it follows from the computations of Goresky-Hingston [11, Thm 15.3] for spheres
and Naef [20] for lens spaces, that this relative version of the coproduct is highly non-trivial.

2.2. Invariance of intersection products over a fixed manifold. Suppose that we are given a map,
or relative map over M ×M (taking Ri empty in the non-relative case):

R

++

��

F0 R′

%%

��

E F //

p1

%%

E ′

p2

��

M ×M

(2.5)

We give here an enhanced version of [21, Prop 4.6], showing that such maps respects the (short) intersection
products over M .

Proposition 2.6. Let (F, F0) : (E ,R) → (E ′,R′) be a map of spaces over M ×M as in Diagram (2.5)
(with R,R′ possibly empty). Then there is a chain homotopy

intUM ◦ (F, F0)∗ ' (F, F0)∗ ◦ intUM : C∗(E ,R) −→ C∗−n(E ′|UM ,R′|UM ).

If the restrictions p|UM : E|UM → UM and p′|UM : E ′|UM → UM are fibrations (and also for R, R′ in the
relative case), then the same holds for the intersection product intM .

Proof. We consider first the short intersection product. So suppose that we are given a diagram of maps
over M ×M . We need to check that the following diagram commutes (where in the non-relative case, R
and R′ should just be ignored):

C∗(E ,R) //

F

��

C∗(E , E|Mc ∪R)

F

��

C∗(E|UM , E|Mc ∪R|UM )
'oo

F

��

p∗τM∩ // C∗(E|UM ,R|UM )

F

��

C∗(E ′,R′) // C∗(E ′, E ′|Mc ∪R′) C∗(E ′|UM , E ′|Mc ∪R′|UM )
'oo (p′)∗τM∩

// C∗(E ′|UM ,R′|UM )
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The first square commutes already on the space level, the second by naturality of the excision isomorphism
and the last by naturality of the cap product as F ∗(p′)∗τM = p∗τM since we assumed that p′ ◦F = p. The
first part of the result follows after picking a homotopy inverse to excision via small simplices.

When the maps are moreover fibrations over UM , we use the equivalence UM
∼←− M to get a further

diagram

C∗(E|UM ,R|UM )

F

��

C∗−n(E|M ,R|M )
'oo

F

��

C∗(E ′|UM ,R′|UM ) C∗−n(E ′|M ,R′|M )
'oo

that commutes as it commutes already on the space level. The fact that F (resp. (F, F0) respects the full
intersection product intM up to homotopy follows. �

3. Invariance of intersection products along a homotopy equivalence

Let f : M1 → M2 be a smooth map and suppose now that we have fibrations p1 : E1 → M1 ×M1 and
p2 : E2 → M2 ×M2 together with a map F : E1 → E2 over f × f . Such a map always factorizes through
the pull-back E11,2 := (f × f)∗E2:

E1 //

p1

��

(f × f)∗E2 //

xx

E2
p2

��

M1 ×M1
f×f

// M2 ×M2.

(3.1)

If we consider the pull-back (f × f)∗E2 as a space over M1 ×M1, Proposition 2.6 already tells us that
the map E1 → (f × f)∗E2 respects the intersection product intM1

. If we instead consider it as a space
over M2 ×M2, the same result tells us that the map (f × f)∗E2 → E2 respects the intersection product
intM2

. But we have so far no way of comparing the intersection products intM1
and intM2

on (f × f)∗E2.
To compare them, we will follow the pattern of argument given in the case of the homology intersection
product in Section 1, working also with the intermediate spaces obtained from pulling back E2 to M1×M2

and M1 ×M2 ×Dk and various normal bundles considered in that section.
We will in what follows assume that we have fibrations Ei →Mi ×Mi, and we will treat the following

two types of relative situations:

R1

��

&&

F0 R2

&&

��

R1

&&

��

F0 R2

&&

��

E1
F //

p1

��

E2

p2

��

E1
F //

p1

��

E2

p2

��

U1

&&

U2

%%

(A) M1 ×M2
f×f

// M2 ×M2 (B) M1 ×M2
f×f

// M2 ×M2

(3.2)

Assumption (A). We have a commuting diagram as in (3.2)(A) with the maps pi : Ei → Mi ×Mi and
Ri → Ei →Mi ×Mi for i = 1, 2 being fibrations. (The case Ri = ∅ gives the non-relative case.)

Assumption (B). We have a commuting diagram as in (3.2)(B) with the maps Ei → Mi × Mi and
Ri → Ui being fibrations.

In Section 3.2 below, we will construct a diagram of the following shape under either assumption:

C∗(E1,R1)
intU1 //

OO

��

(F,F0)

++

C∗−n(E1|U1
,R1|U1

)

[ĥ]

��

C∗−nC∗(E1|M1
,R1|M1

)
∼oo

(F,F0)

��

C∗(E2,R2)
intU2

// C∗−n(E2|U2 ,R2|U2) C∗−nC∗(E2|M2 ,R2|M2)
∼oo
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where the dashed vertical arrow is a zig-zag, and the arrow labeled [ĥ] is induced by a lift ĥ of the
diffeomorphism h : N3 → N̄3 of Proposition 1.4. We will use the above diagram to prove invariance of the
intersection product under Assumption (A) in Section 3.3, and describe in Section 3.4 an obstruction to
invariance when only Assumption (B) holds.

Remark 3.1. Strictly speaking, in both cases we only need to assume that E1,R1 are fibration over U1,
since we only need to apply Proposition 2.6 to those spaces by the remarks at the beginning of this section.
Also, using the equivalence UM ' M , one can required in Assumption (B) that Ri → Mi is a fibration,
instead of Ri → Ui, as would be the case in the standard definition of the string coproduct coming from
a coproduct relative to half-constant loops.

3.1. Intermediate spaces. To construct the above diagrams, we will use the pull-backs EN2
, E1,2 and

EN̄2
of E2 as in the following diagram:

E1 //

''

��

E1,2 ×Dk

��

// E1,2 //

�� ""

E2

��

EN2

ww

��

( �

55

EN̄2

��

77

6 V

ii

,,
M1 ×M1

// M1 ×M2 ×Dk // M1 ×M2
// M2 ×M2

N2

gg

( �

55

N̄2

77

6 V

ii

with a compatible diagram with spaces R1,2,RN2
,RN3

and RN̄3
similarly as the pull-backs of R2 along

the same maps.
Note that under Assumption (B), the spaces R1,2,RN2 ,RN3 and RN̄3

will live over the following
subspaces, pulled-back from U2:

U1� _

��

// U1,2×Dk
� _

��

// U1,2� _

��

// U2� _

��

N2 ∩ U1,2×Dk
� _

��

ii

) 	

66

U1,2×Rk� _

��

99

4 T

gg

M1×M1
// M1×M2×Dk // M1×M2

// M2×M2

N2

ii

) 	

66

N̄2

88

4 T

gg

where U1,2 = {(m,n) ∈M1 ×M2 | |f(m)− n| < ε}.
The crucial difference between assumptions (A) and (B) is actually visible in this diagram already: if

f : M1 → M2 is a homotopy equivalence, then the spaces M1 × M1, M1 × M2 and M2 × M2 are all
homotopic. Likewise their subspaces U1, U1,2 and U2 are homotopic, being all homotopic to M1 ' M2,
but the subspace N2∩U1,2×Dk can have a different homotopy type. This last space can be interpreted as
a neighborhood of the fake diagonal discussed in Section 4.6. What always holds is instead the following:

Lemma 3.2. When f is a homotopy equivalence, the map of pairs

(ν2, id) : (N2,M1) ↪→ (M1 ×M2 ×Dk,M1)

is a relative homotopy equivalence.

Proof. The map ν2 is homotopic to the composition of homotopy equivalences

N2 = M1 ×N(f, e)
p2−→M1 ×M1

id×f−−−→M1 ×M2
'−→M1 ×M2 ×Dk.

Hence ν2 is a homotopy equivalence. Moreover ν2 restricts to the identity on the diagonal M1. Hence it
induces a homotopy equivalence of pairs since the pairs are good pairs. (See e.g. [19, Chap 6, Sec 5].) �
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Let j : (EN2
,RN2

)→ (E1,2×Dk,R1,2×Dk) denote the map identifying the source as a pull-back of the
target along the map N2 →M1 ×M2 ×Dk. The above discussion has the following consequence:

Proposition 3.3. Suppose f : M1 →M2 is a homotopy equivalence. Then the following holds.

(i) If Assumption (A) holds, the map j : (EN2
,RN2

) → (E1,2 × Dk,R1,2 × Dk) is a relative homotopy
equivalence.

(ii) If only Assumption (B) holds, j : (EN2 ,RN2 |M1)→ (E1,2×Dk,R1,2×Dk|M1) is a relative homotopy
equivalence.

(iii) If Assumption (B) holds and N2 ∩ (U1,2 × Dk) ' U1,2 × Dk, then map j : (EN2
,RN2

) → (E1,2 ×
Dk,R1,2 ×Dk) is a relative homotopy equivalence.

Proof. The map j fits in a pull-back diagram

EN2

j
//

��

E1,2 ×Dk //

p

��

E2

p2

��

N2
ν2 // M1 ×M2 ×Dk // M2 ×M2

and similarly for the relative terms. The result then follows from the fact that ν2 : (N2,M1) → (M1 ×
M2 ×Dk,M1) is a relative homotopy equivalence when f is a homotopy equivalence, by Lemma 3.2.

�

3.2. Comparing the intersection products of M1 and M2. Recall from Examples 2.3 and 2.4 the
intersection products intU1

on EN2
and intU2

on EN̄2
. The goal of the section is to construct a homotopy

commuting diagram:
(3.3)

C∗(E1,R1)

FN2

��

(F,F0)

((

Prop 3.8

intU1 //

Prop 2.6

C∗−n(E1|U1
,R1|U1

)

FN2

��

(F,F0)

{{

Prop 3.6

C∗(EN2 ,RN2)
intU1 // C∗−n(EN3 ,RN3)

ĥ

��

Prop 3.5
C∗+k(E1,2×Dk, E1,2 × ∂Dk ∪R1,2 ×Dk)

Jp∗τe∩K

OO

Jp∗η ∩K'
��

C∗(EN̄2
,RN̄2

)

��

intU2 //

Prop 2.6

C∗−n(EN̄3
,RN̄3

)

��

C∗(E2,R2)
intU2 // C∗−n(E2|U2 ,R2|U2)

where we already know that the top and bottom squares homotopy commute as a direct application of
Proposition 2.6. In this section, we will construct the middle square and check that the three remaining
pieces of the diagram commute. In the diagram, the second vertical map on the left hand side is dashed
to emphasize that it goes the “wrong way”, an issue that we will take care of in Sections 3.3 and 3.4 in

case (A) and (B) respectively. We start by defining the map ĥ.

Recall from Proposition 1.4 the diffeomorphism h : M1 ×M2 ×Dk −→M1 ×M2 ×Dk, isotopic to the
identity, that identifies the tubular neighborhoods ν3N3 and ν̄3N̄3 fixing their 0-section M1, and that is
the identity outside U1,2 × D̊k.

Proposition 3.4. Suppose that (F, F0) : (E1,R1)→ (E2,R2) is as in Assumption (A) or (B). Then there
is a pair of continuous maps

(ĥ, ĥ0) : (E1,2 ×Dk,R1,2 ×Dk) −→ (E1,2 ×Dk,R1,2 ×Dk)

such that
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(1) The map p : E1,2 ×Dk →M1 ×M2 ×Dk intertwines the maps ĥ and h, for h the diffeomorphism
of Proposition 1.4. Likewise, the map R1,2 × Dk → M1 ×M2 × Dk (composing with the map

U1,2×Dk →M1×M2×Dk in case (B)) intertwines the maps ĥ0 and h. In particular, ĥ(EN3
) ⊂ EN̄3

and ĥ((EN3
)c) ⊂ (EN̄3

)c and ĥ0(RN3
) ⊂ RN̄3

;

(2) The map ĥ fixes E1,2 ×Dk|M1 and E1,2 ×Dk|(U1,2×D̊k)c ;

(3) The pair (ĥ, ĥ0) is homotopic to the identity relative to E1,2 ×Dk|M1 and E1,2 ×Dk|(U1,2×D̊k)c .

Proof. From Proposition 1.4 we have that h = id× h̃ : M1×M2×Dk →M1×M2×Dk restricting to the
identity outside U1,2×D̊k by (1) in the proposition. Write h(m,n, x) = (m,n′, x′). If (m,n, x) 6= (m,n′, x′),
which can only happen if they are in U1,2 ×Dk, let id×λ in U1,2 ×Dk be the geodesic between these two
points, keeping the M1-coordinate fixed. (The M2 component of λ is a straight line in the ball of radius
ε around f(m) in M2, and its Dk component is the straight line from x to x′ in Dk.) Define

h : U1,2 ×Dk × I → U1,2 ×Dk

by h(m,n, x, t) = (m,λ(t)), with λ the above defined path. This is a continuous map, and it extends to
the a map h : M1 ×M2 ×Dk × I →M1 ×M2 ×Dk by defining it to be the projection outside U1,2 ×Dk.

Recall that h restricts to the identity on M1
(id,f,e)−−−−→ M1 ×M2 ×Dk as well as outside U1,2 × D̊k. Let

p = p× id : E1,2 ×Dk × I →M1 ×M2 ×Dk × I denote the pulled back fibration and consider the lifting
problem

(E1,2 ×Dk)× {0} ∪
(
(E1,2 ×Dk)|M1

∪ (E1,2 ×Dk|Uc1,2×Dk)
)
× I id //

� _

��

E1,2 ×Dk

p

��

(E1,2 ×Dk)× I
h◦p

//

ĥ◦p
22

M1 ×M2 ×Dk

and similarly for R1,2 × Dk, though restricting to the subspace U1,2 × Dk in case (B). We define ĥ by

setting ĥ(m, γ, x) = ĥ ◦ p(m, γ, x, 1) after solving the resulting relative lifting problem. All the desired
properties then hold by construction. �

We now show that the middle square in Diagram 3.3 commutes.

Proposition 3.5. Suppose that (F, F0) : (E1,R1) → (E2,R2) is a map as in Assumption (A) or (B).
Then the middle square in Diagram (3.3)

C∗(EN2
,RN2

)

intU1

��

C∗+k(E1,2 ×Dk,R1,2 ×Dk ∪ E1,2 × ∂Dk)

[[p∗τ3∩]]

ss

[[p∗τ̄3∩]]

++

[[p∗τ̄e∩]]
oo

[p∗η̄∩]
// C∗(EN̄2

,RN̄2
)

intU2

��

C∗−n(EN3
,RN3

)
ĥ // C∗−n(EN̄3

,RN̄3
)

commutes up to chain homotopy. Moreover, the maps [p∗η∩] and ĥ are homology isomorphisms.

Proof. Recall from Propositions 1.1 and 1.3 that the classes τ3 ∈ Cn+k(M1 × M2 × Dk, ν3(N3)c) and
τ̄3 ∈ Cn+k(M1×M2×Dk, ν3(N̄3)c) are Thom classes for the bundlesN3 and N̄3. The left and right triangles
in the diagrams are the lift to E1,2×Dk of the triangles occurring in Propositions 1.1(3) and 1.3(3), with the
left diagonal map capping with p∗τ3 and right diagonal map capping with p∗τ̄3. The commutativity of the
diagrams follows from Proposition A.1 using the relations τ3 := p∗2τM1 ∪ τe and τ̄3 := p̄∗2(f × 1)∗τM2

∪ η.

Finally the middle triangle commutes by Proposition 3.4 (3), that gives in particular that (ĥ, ĥ0) is
homotopic to the identity relative to E1,2 × ∂Dk, and Proposition 1.4(4), that gives the compatibility
between capping with τ3 and with τ̄3. �

The following result gives the compatibility between the right-hand vertical composition [ĥ] induced by

ĥ in Diagram 3.3 and the map induced by (F, F0) on the fibrations restricted to the neighborhoods of the
diagonals, or equivalently to the diagonal itself:
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Proposition 3.6. The diagram of pairs of spaces

(E1|U1 ,R1|U1)

��

(E1|M1 ,R1|M1)? _'oo

��

(F,F0)

��

(EN3
,RN3

) = (EN2
|U1
,RN2

|U1
)

(ĥ,ĥ0)

��

EN2
|M1

? _oo

��

E e

ss

(EN̄3
,RN̄3

) = (EN̄2
|U1
,RN̄2

|U1
)

��

(E2|U2 ,R2|U2) (E2|M2 ,R2|M2)? _'oo

commutes. Moreover, under Assumptions (A) and (B), the horizontal maps are homotopy equivalences,
and hence induce an isomorphism in homology. In particular, the right hand side of Diagram 3.3 commutes.

Proof. The first statement follows from the fact that (ĥ, ĥ0) is isotopic to the identity relative to EN2
|M1

=
E1,2×Dk|M1

by Proposition 3.4 (3), giving the commutativity of the middle triangle, and the second follows
from the fact that Ei,Ri → Ui are fibrations, and Mi → Ui are homotopy equivalences, for i = 1, 2. �

Finally we show that the left vertical composition in Diagram 3.3 agrees with the map induced by
(F, F0) in homology.

Let

ι :
(
E1,2 ×Dk, (E1,2 × ∂Dk) ∪R1,2 ×Dk

)
−→

(
E1,2 ×Dk, (EN2

)c ∪R1,2 ×Dk
)

j : (EN2
,RN2

) ↪→ (E1,2 ×Dk,R1,2 ×Dk)

denote the maps of pairs, and similarly for ῑ and j̄.

Lemma 3.7. If f is a degree 1 map, then the following diagram commutes up to homotopy:

(3.4) C∗+k(E1,2 ×Dk, (EN2)c ∪R1,2 ×Dk)
[p∗τe∩]

// C∗(EN2
,RN2

)

j

��

C∗+k(E1,2 ×Dk, E1,2 × ∂Dk ∪R1,2 ×Dk)

ῑ

��

ι

OO

p∗(η̄)∩
//

Jp∗η∩K
,,

Jp∗τe∩K
22

C∗(E1,2 ×Dk,R1,2 ×Dk)

C∗+k(E1,2 ×Dk, (EN̄2
)c ∪R1,2 ×Dk)

[p∗η∩]
// C∗(EN̄2

,RN̄2
)

j̄

OO

where the dashed arrows are added for clarity; by definition the two triangles on the left side of the diagram
commute. Moreover, the maps Jp∗η∩K and j̄ in the diagram are isomorphism, and hence

Jp∗τe∩K : H∗+k(E1,2 ×Dk, E1,2 × ∂Dk ∪R1,2 ×Dk) −→ H∗(EN2 ,RN2)

is an isomorphism if and only if the map of pairs

j : (EN2 ,RN2)→ (E1,2 ×Dk,R1,2 ×Dk)

induces an isomorphism in homology.

Proof. Lemma 1.5 together with the commutativity of

(E1,2 ×Dk, E1,2 × ∂Dk)

p

��

ι // (E1,2 ×Dk, (EN2
)c)

p

��

(M1 ×M2 ×Dk,M1 ×M2 × ∂Dk)
id×i

// (M1 ×M2 ×Dk, ν2(N2)c)



ON THE INVARIANCE OF THE STRING TOPOLOGY COPRODUCT 19

and naturality of the cap product gives that the top square in the statement commutes up to a homotopy
relative to the half-constant loops (coming from chosen chain inverses to excision). The commutativity of
the bottom square follows similarly by definition of η.

The map j̄ induces an isomorphism in homology since EN̄2
∼= E1,2 × Rk and RN̄2

∼= R1,2 × Rk and the
map j̄ is just a linear map on the last coordinates. The map p∗(1 × η)∩ is an isomorphism in homology
because it is the relative version of the suspension isomorphism for E1,2 ×Dk and R1,2 ×Dk. This proves
the result. �

Proposition 3.8. The left hand side of Diagram (3.3) commutes.

Proof. By the lemma, we can replace the zig-zag capping with τe and η with the maps j and j̄. Now we
just observe that these maps fit in a commuting diagram

H∗(E1,R1)

(F,F0)

�� ((

// H∗(EN2 ,RN2)

j

��

H∗(E1,2 ×Dk,R1,2 ×Dk) H∗+k(E1,2 ×Dk,R1,2 ×Dk)

[[p∗τ̄e∩]]
kk

[p∗η̄∩]
oo

[[p∗η̄∩]]
ss

H∗(E2,R2) H∗(EN̄2
,RN̄2

)oo

j̄

OO

where the right part of the diagram commutes by the lemma, and where going around the left and right
hand sides of the diagram gives the maps appearing in Diagram 3.3. �

3.3. Homotopy invariance of a (relative) intersection product under Assumption (A). In this
section, we use the results we have proved so far to give a proof of the following:

Theorem 3.9. Let f : M1 → M2 be a degree 1 homotopy equivalence and (F, F0) : (E1,R1) → (E2,R2)
be as in Assumption (A). Then there is a chain homotopy

(F, F0) ◦ intM1
'H intM2

◦ (F, F0) : C∗(E1,R1) −→ C∗−n(E2|M2
,R2|M2

).

The same holds under Assumption (B) if also N2 ∩ (U1,2 ×Dk) ' U1,2 ×Dk.

The above result is closely related to [21, Thm 4.11]. We give here a complete proof for completeness.

Corollary 3.10 (Homotopy invariance of the Chas-Sullivan product and a relative version). Let f :
M1 → M2 be a degree 1 homotopy equivalence. Then the induced map F = Λf : Λ1 → Λ2 respects the
Chas-Sullivan product, also when considered relative to “half-constant loops”: the diagram

H∗(Λ1 × Λ1,M1 × Λ1 ∪ Λ1 ×M1)
intM1 //

��

H∗n(Λ1 ×M1
Λ1,M1 ×M1

Λ1 ∪ Λ1 ×M1
M1)

��

H∗(Λ2 × Λ2,M2 × Λ2 ∪ Λ2 ×M2)
intM2 // H∗n(Λ2 ×M2 Λ2,M2 ×M2 Λ2 ∪ Λ2 ×M2 M2)

commutes. The non-relative version of this diagram also commutes. Composed with the concatenation
map, it gives the homotopy invariance of the Chas-Sullivan product, as first proved in [7].

Proof. Apply Theorem 3.9 to the fibrations ev0 × ev0 : Ei = Λi × Λi → Mi ×Mi for i = 1, 2 and their
restriction to Ri = Mi × Λi ∪ Λi ×Mi, with the map F = Λf × Λf . �

Example 3.11 (Products for mapping spaces). Given spaces X1, X2 with chosen good basepoints x1, x2

(so the evaluation maps are fibrations), and a map X3 → X1 ∪x1∼x2
X2, one can mimmic the definition

of the Chas-Sullivan product and get an intersection product

H∗(Map(X1,M)×Map(X2,M))
intM−−−→ H∗−n(Map(X1,M)×M Map(X2,M)) −→ H∗−n(Map(X3,M))

that is homotopy invariant by Theorem 3.9. For example, one could take X1 = X2 = X3 = Sn with a
chosen map

X3 = Sn → Sn/Sn−1 '−→ Sn ∨ Sn = X1 ∪x1∼x2 X2



20 NATHALIE WAHL

induced by collapsing an equatorial sphere.

Example 3.12 (String coproducts). The homotopy invariance of the non-relative (and almost completely
trivial) coproduct follows from the above theorem, using the fibrations ev0, 12

: Λi →Mi×Mi with F = Λf .

Consider now the subspace Ri ⊂ Λi of half-constant loops, i.e. loops γ such that γ is constant on [0, 1
2 ] or

[ 1
2 , 1]. The same coproduct on the pair (Λi,Ri) does not satisfy the assumptions of the theorem anymore,

since in this case the restriction ev0, 12
: Ri →Mi ×Mi is only a fibration over the diagonal.

Another non-example would be the S1–parametrized coproduct associated to the map

ev0,t : Λi × S1 →Mi ×Mi

evaluating the loop at time 0 and t ∈ S1, as this map is not a fibration over Mi ×Mi.

Proof of Theorem 3.9. The results proved so far can be summarized in the following diagram
(3.5)

C∗(E1,R1)

FN2

��

intM1 //

Prop 2.6

C∗−n(E1|M1
,R1|M1

)

��

C∗(EN2
,RN2

)

j

uu

intM1

//

Prop 3.5

C∗−n(EN3
,RN3

)

ĥ

��

C∗(E1,2×Dk,R)
∼=

))

C∗+k(E1,2×Dk, ∂Dk ∪R)Lem 3.7

Jp∗τe∩K
jj

Jp∗η ∩K
tt

44
∼=

C∗(EN̄2
,RN̄2

)
intM2 //

j̄

ii

��

Prop 2.6

C∗−n(EN̄3
,RN̄3

)

��

C∗(E2,R2)
intM2

// C∗−n(E2|M2
,R2|M2

)

where R = R1,2 ×Dk, and where the left-hand and right-hand vertical compositions agree with the map
F in homology by Propositions 3.8 and 3.6 respectively. The diagram homotopy commutes under both
assumptions (A) and (B) when f is a degree 1 homotopy equivalence, but commutativity of the diagram
only allows us to conclude if we know that the map Jp∗τe∩K is homotopy invertible, or equivalently that the
map j is homotopy invertible. Now, this follows from Proposition 3.3 under Assumption (A), and under
Assumption (B) if we additionally have that N2 ∩ (U1,2 × Dk) ' U1,2 × Dk, since RN2

is the pullback
fibration over the first of these two spaces of the fibration R1,2 ×Dk −→ U1,2 ×Dk. �

3.4. Quantifying the failure of invariance of relative intersection products under Assump-
tion (B). Suppose that the map (F, F0) : (E1,R1)→ (E2,R2) only satisfies the weaker Assumption (B),
that is Ei →Mi×Mi are fibrations but Ri →Mi×Mi are only fibrations when restricted to Ui. Forgetting
about the relative parts R1 and R2, Theorem 3.9 implies that the map F : E1 → E2 respects the intersec-
tion products when f is a degree 1 homotopy equivalence. This can be used to obtain an obstruction of
invariance of the relative map (F, F0) using the following algebraic lemma:

Lemma 3.13. Suppose that φ, ψ : (C∗, D∗) → (E∗, F∗) are relative chain maps that are non-relatively
chain homotopic: φ ' ψ : C∗ → E∗. Let H : C∗ → E∗+1 be a chain homotopy between φ and ψ. Then for
a relative cycle a ∈ C∗ with ∂a ∈ D∗−1, we have that

φ(a)− ψ(a) = H(∂a) ∈ H∗(E∗, F∗).

We want to apply the lemma to the maps φ = F ◦intM1
and ψ = intM2

◦F from (C∗, D∗) = C∗(E1,R1) to
(E∗, F∗) = C∗(E2,R2), with the homotopy H coming from the homotopy commutativity of Diagram (3.5),
as given by Theorem 3.9 in the non-relative case.

As already mentioned above, a key difference between Assumptions (A) and (B) is that Proposition 3.3,
saying that the map denoted j in Diagram (3.5) is homotopy invertible, holds in the first case but not
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necessarily in the second. A consequence of this is that the wrong way map Jp∗τe∩K in the diagram can
only be assumed invertible up to a homotopy that need not preserve the relative part. The following result
makes precise how this affects the invariance property of intersection products.

Let

α = [[p∗τ̄e∩]] ◦ (×Dk) ◦ j̄−1 ◦ j : H∗(EN2 ,RN2) −→ H∗(EN2 ,RN2)

denote the “monodromy” around the left square in Diagram (3.5), and let

LN2
H∗(RN2

) −→ H∗+1(EN2
,RN2

)

denote the map induced by the homotopy LN2 : EN2 × I → EN2 between the identity and j−1 ◦ j :
H∗(EN2 ,RN2 |M1)→ H∗(EN2 ,RN2 |M1), as given by Proposition 3.3.

Theorem 3.14. Let F : (E1,R1)→ (E2,R2) be as in Assumption (B). The difference F ◦intM1
−intM2

◦F
in homology is given by the composition

H∗(E1,R1)
∂−→ H∗−1(R1)

FN2−−−→ H∗−1(RN2
)
α−→ H∗−1(RN2

)
LN2−−−→ H∗(EN2

,RN2
)

intU1−−−→ H∗−n(EN3
,RN3

)
ĥ−→ C∗(EN̄3

,RN̄3
)→ C∗−n(E2|M2

,R2|M2
)

That is for A ∈ H∗(E1,R1), we have(
F ◦ intM1 − intM2 ◦ F

)
(A) = intU1(LN2(α(∂N2A)× I)),

where ∂N2
= FN2

◦ ∂ denotes the image of the boundary in RN2
and where we have supressed the last two

maps from the notation.

Proof. We start as in the proof of Theorem 3.9 with Diagram (3.5). We need to compare the outside
compositions F ◦ intM1 and intM2 ◦ F in relative homology and we know that the diagram commutes in
non-relative homology. To apply Lemma 3.13, we need a chain homotopy that gives the commutativity in
homology. We pick as homotopy inverse to the wrong way map Jp∗τe∩K the composition β = (×Dk)◦j̄−1◦j
that makes the square to its left commute. With this choice, the pentagone on its right does not commute
anymore, and looking at Proposition 3.5, we see more precisely that what does not commute anymore is
a triangle

C∗(EN2)

β=(×Dk)◦j̄−1◦j
))

intU1 // C∗−n(EN3)

C∗+k(E1,2 ×Dk, E1,2 × ∂Dk)

[[p∗τ3∩]]

55

where we know that the triangle with the original arrow commutes, i.e. that intM1 ◦ Jp∗τe∩K ' [[p∗τ3∩]].
Denoting that homotopy H1, which we know by Proposition 3.5 exists respecting the relative terms, we
thus have

[[p∗τ3∩]] ◦ β 'H1
intU1

◦ Jp∗τe∩K ◦ β = intU1
◦ α

where we see that Jp∗τe∩K◦β is indeed the definition of the map α. So left is to give a homotopy witnessing
that the map α is (non-relatively) homotopic to the identity. We can get such a homotopy in terms of the
homotopy LN2

as follows:

α = [[p∗τ̄e∩]] ◦ (×Dk) ◦ j̄−1 ◦ j 'LN2
◦α j

−1 ◦ j ◦ [[p∗τ̄e∩]] ◦ (×Dk) ◦ j̄−1 ◦ j

' j−1 ◦ j̄ ◦ [[p∗η̄∩]] ◦ (×Dk) ◦ j̄−1 ◦ j
' j−1 ◦ j̄ ◦ j̄−1 ◦ j ' j−1 ◦ j 'LN2

id

where LN2
is the homotopy LN2

in reverse. So in relative homology, the homotopy is the sum H =
(LN2

◦ α) + LN2
.
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By Lemma 3.13, the failure of invariance on a class A ∈ H∗(E1,R1) is computed by the resulting homo-
topy applied to its boundary ∂A ∈ H∗−1(R1). Putting together our computation back into Diagram (3.5)
with the map Jp∗τe∩K replaced by the chosen inverse β, we see that this failure is given as

G(intU1(H(FN2(∂A)))× I))) = G(intM1(LN2(α(∂N2A)× I)) +G(intM1(LN2(∂N2A× I)),

where only the first term is non-trivial, since ∂N2
A = FN2

(∂A) lies inside RN2
|M1

. �

3.5. Construction of the main homotopy in the case of mapping spaces. We give here an explicit
choice for the homotopy LN2

in the special case relevant to the string coproduct, and more generally for
certain mapping spaces. This choice will have additional properties that will be useful for the proofs of
Theorems A and C. The construction will use “higher homotopy data” one can associate to a homotopy
equivalence, as we describe now.

Given a homotopy equivalence f : M1 → M2, we make the following choices. Let g be a homotopy
inverse for f . We choose h1 : M1 × I → M1 a homotopy g ◦ f ' id, h2 : M2 × I → M2 a homotopy
f ◦ g ' id and K : M1 × I × I → M2 a homotopy f ◦ h1 ' h2 ◦ (f × id) relative to M1 × ∂I, where both
maps agree. This is possible by Vogt’s lemma [29], and a contractible choice by e.g.; Riehl-Verity [25,
Prop 4.4.7].

Let PM2 = Maps(I,M2) denote the path space of M2. Evaluation at 0 and 1 defines a fibration

ev0,1 : PM2 −→M2 ×M2.

Using the same convention as before, we denote ev0,1 : PN2
→ N2 the pulled-back fibration over N2 =

M1 ×N(f, e). Recall that elements of N2 can be written as tuples (m,m′, (V,W )) with m,m′ ∈ M1 and
(V,W ) ∈ T∗(M2 × Dk), where we identify N(f, e) with the subbundle of T (M2 × Dk) = TM2 ⊕ Rk of
vectors orthogonal to (f, e)∗TM1.

The intersection N2∩(id, f)M1×Dk is a version of the fake diagonal ∆f
1 , since for (m,m′, (V,W )) ∈ N2

to also lie in (id, f)M1 ×Dk, we need to have f(m) = expf(m′) V , and expf(m′) V is canonically close to

f(m′). For such m,m′ ∈M1, the homotopy h1 defines paths f ◦h1(m,−) and f ◦h1(m′,−) in M2, between
f ◦ g ◦ f(m) and f(m) (resp. f ◦ g ◦ f(m′) and f(m′)). Even when f(m) is assumed close to f(m′), these
two paths have no reason to stay close to each other. A way to formulate the following result is to say
that the higher homotopy K can be used to give a homotopy between these two paths, naturally in m and
m′, and staying in N2.

Lemma 3.15. The homotopy data (f, g, h1, h2,K) defines a map

K =
(
h1 ◦ (π × id),KP , e ◦ h1 ◦ (π′ × id)

)
:
(
N2 ∩ ((id, f)M1 ×Dk)

)
× I −→ PN2

for (π, π′) : N2 = M1 ×N(f, e)→M1 ×M1 the two projections to M1, with the property that

KP(m,m′, (V,W ), t)(t′) =

{
f ◦ h1(m, t) t′ = 0
f ◦ h1(m′, t) t′ = 1.

Proof. Let

KP(m,m′ + (V,W ), t) := K(m, t,−) ∗ h2(exp−1
f(m′)((1− (−))V, t) ∗ K(m′, t, 1− (−)).

This concatenated path is well-defined since K(m, t,−) is a path from f ◦ h1(m, t) to h2(f(m), t) =
h2(exp−1

f(m′)(V ), t), since we assumed (m,m′, V,W ) ∈ (id, f)M1 ×Dk, then h2(exp−1
f(m′)((1− (−))V, t) is a

path from there to h2(f(m′), t), which is connected by the last part K(m′, t, 1− (−)) to f ◦ h1(m′, t), as
needed. The evaluation map takes these thin loops to the 0-section of N2 by construction. �

Let S be a topological space, and s0, s1 ∈ S two points such that (S, {s0, s1}) is an NDR-pair. This
means in particular that S comes equipped with a map

u : S ∼= S × {1} ↪→ S × I −→ S × {0} ∪ {s0, s1} × I
where the second map is a retraction, so that u(si) = (si, 1) for i = 0, 1. We will here consider evaluation
maps on mapping spaces of the form

E = Maps(S,M)
p:=evs0,s1−−−−−−−→M ×M.
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The map pi can be seen to be a fibration using the map u just defined. The map u also defines a preferred
image of PM in E :

Definition 3.16. For (S, s0, s1) as above, consider the map

π : S
u−−→ S × {0} ∪ {s0, s1} × I � {s0} × I ∪(s0,0)∼(s1,0) {s1} × I ∼= I

where the second map is the projection. Define

Ethin := π∗(PM) = {γ : S →M | γ = γ0 ◦ π for γ0 ∈ PM} ⊂ E
to be the image of the path space under precomposition with π.

Of particular interest to us will be subspaces Ri ⊂ Ei of the following form: let P = {Pa}a∈A be a
collection of subspaces of S, all containing s0 and s1 and with each Pa ↪→ S a cofibration. Define

Ri := ∪a∈A{γ ∈ Maps(S,Mi) | γ(s) = γ(s0) ∀s ∈ Pa}
Rεi := ∪a∈A{γ ∈ Maps(S,Mi) | |γ(s)− γ(s0)| < ε ∀s ∈ Pa}

Then Rεi is a fibration over Ui, so (Ei,Rεi ) is a pair as in Assumption (B). The stricter version Ri, that is
only a fibration over the diagonal Mi ⊂Mi ×Mi, will play a role too.

Our main examples will be of the following form: let S = Ir/∂Ir with s0 = 0 and s1 = c = ( 1
2 , . . . ,

1
2 ),

and with P = {Ij−1 × [0, 1
2 ]× In−j}rj=1 ∪ {Ij−1 × [ 1

2 , 1]× In−j}rj=1. Then Ei = ΛrMi is the r-loop space
and

Ri = ∪rj=1{γ : (Ir/∂Ir)→M | γ|Ij−1×[0, 12 ]×In−j or γ|Ij−1×[ 1
2 ,1]×In−j is constant} ⊂ ΛrM,

is a subspace of half-constant loops.
We will denote E0

i := {γ ∈ Maps(S,Mi) | γ is constant} ∼= Mi the subspace of constant maps, and
likewise for E0

N2
and E0

1,2. Note that

E0
N2
∼= N2 ∩ ((id, f)M1 ×Dk),

where the right hand space is the space appearing in the source of the map K above.

Recall that j : EN2
→ E1,2 × Dk is the inclusion. By Proposition 3.3, we know that j is a homotopy

equivalence relative to the subspace RN2
|M1

sitting over the diagonal M1 ↪→ M1 ×M2 × Dk. We make
here the following choice of homotopy inverse for j in the present case of mapping spaces:

Proposition 3.17. Let (E2 = Maps(S,M2),R2) be mapping spaces associated to triples (S, {s0, s1}, P =
{Pa}a∈A) as above. Then the map j−1 : E1,2 ×Dk −→ EN2

defined by

j−1(m, γ, x) = (g ◦ f(m), f ◦ g ◦ γ, e ◦ g(γ(s1)))

is a homotopy inverse to the inclusion j :
(
EN2 ,RN2 |M1

)
→
(
E1,2×Dk, (R1,2×Dk)|M1

)
, with the following

properties:

(i) The map j−1 preserves the constant and partially constant maps: j−1(E0
1,2 × Dk) ⊂ E0

N2
and

j−1(R1,2 ×Dk) ⊂ RN2
.

We can choose the homotopy LN2
: EN2

× I → EN2
between j−1 ◦ j and the identity, relative to RN2

|M1
as

well as its subspace E0
N2
|M1 , and so that

(ii) ev0 ◦ LN2 = h1(ev0 × φ) : EN2 × I →M1 for φ : I → I a monotone reparametrization.
(iii) LN2

(E0
N2
× ∂I) ⊂ E0

N2
and LN2

(E0
N2
× I) ⊂ EthinN2

. Moreover, under the identification E0
N2

∼=
N2 ∩ (id, f)M1 × Dk, we have that LN2 |E0

N2
×I ' π∗K for K the map of Lemma 3.15 and π∗ :

PN2
→ EthinN2

the map induced by π.

Proof. By construction, the map j−1 has image inside EN2 , landing in the subspace of maps evaluating
to the 0-section of N2. The map j−1 preserves constant loops and partially constant loops since it only
changes the loop by postcomposing with the map f ◦ g, and it preserves (E1,2 ×Dk)|M1

= EN2
|M1

since
if (m, γ, x) satisfies that γ(s1) = f(m) and x = e(m), then (g ◦ f(m), f ◦ g ◦ γ, e ◦ g(γ(s1))) also satisfies
that f ◦ g ◦ γ(s1) = f(g ◦ f(m)) and e ◦ g(γ(s1)) = e(g ◦ f(m)). Hence it also preserves (R1,2 ×Dk)|M1 =
EN2 |M1 ∩R1,2 ×Dk = RN2 |M1 and (E0

1,2 ×Dk)|M1 = E0
N2
|M1 . So property (i) in the statement holds.
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We will check that j−1 is a relative homotopy inverse by writing down explicit homotopies LN2
:

EN2
× I → EN2

and L1,2 : E1,2 ×Dk × I → E1,2 ×Dk between j−1 ◦ j (resp. j ◦ j−1) and the identity. The
homotopy LN2

will be constructed in such a way that (ii) and (iii) in the statement will be satisfied.

We start by defining the homotopy L1,2. Let (m, γ, x) ∈ E1,2 ×Dk. Then

j ◦ j−1(m, γ, x) = (g ◦ f(m), f ◦ g ◦ γ, e ◦ g(γ(s1))).

We can use the homotopy h1 on the first component, to get a homotopy between m and g ◦ f(m), and the
homotopy h2 will give a homotopy between γ and f ◦ g ◦ γ. However the pair (h1(m, t), h2(γ, t))) does not
live in E1,2 since the map h2(γ, t) : S →M2, evaluated at s0 as t varies, is the path h2(f(m), t) instead of
f(h1(m, t)) as would be required. To match our choice of homotopy on the first and second component,
we can use the higher homotopy K, which is exactly connecting such points.

Let S↑ := S × {0} ∪ {s0, s1} × I denote the “spiky version” of S and recall from above that we have a

map u : S → S↑ taking si to (si, 1) for i = 0, 1. Define first L↑1,2 : E1,2 ×Dk × I → E1,2 ×Dk by

L↑1,2(m, γ, x, t) = (h1(m, t), γKt , `(x, t))

for `(x,−) is the straight line from x to e(g(γ(s1))) and γKt : S
u−→ S↑ −→M2 defined on S↑ by

γKt (s) = h2(γ(s), t)

γKt (s0, t
′) = K(m, t, 1− t′)

γKt (s1, t
′) = h2(γ(s1), t),

that is we use the path defined by K(m, t,−) : I →M2 from f(h1(m, t)) to h2(f(m), t) in reverse on the
spike s0× I, and otherwise we use h2(γ, t). See Figure 1 for an illustration in the case where S = S1 with
s0, s1 two antipodal points.

As K is a homotopy relative to M1 × ∂I, we have that K(m, t,−) is a trivial path when t = 0 or 1,

so that L↑1,2(m, γ, x, 0) = (m, γ, x) and L↑1,2(m, γ, x, 1) = (g ◦ f(m), f ◦ g ◦ γ, e(g(γ(s1)))), so that L↑1,2 is

indeed a homotopy between the identity and j ◦ j−1.

γ

f ◦g◦γ

f ◦g◦γ(s1)h2

K

f(m)=γ(s0)

γ(s1)

h2(γ(s1), t)

f ◦g◦γ(s0)
= f ◦g◦f(m)

f ◦h1(m, t)

Figure 1. The loop component of L1,2(m, γ,−).

γ

f ◦g◦γ

h2

K

f(m)

f(m′)γ(s1)=

K

f ◦h1(m, t)

f ◦h1(m′,−)

Figure 2. The loop component of LN2(m, γ, x,−).

The homotopy L↑1,2 does not yet preserve RN2 |M1 though, since the constant part of such loops γ will go

through the family of paths K(m, t,−) between f(h1(m, t)) and h2(γ(s0), t), and hence not stay constant.

Also the disc component will need to be modified. We modify L↑1,2 as follows: Let vm,t : M2 → M2 be
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f ◦h1(m, t)h2(f(m), t) h2(f(m), t)vm,t

K(m, t,−)

Figure 3. Deformation map vm,t : M2 →M2

defined by

vm,t(n) =


K(m, t, 1− 2|n−h2(f(m),t)|

εt
) |n− h2(f(m), t)| ≤ εt

expf(m)(2(|n− h2(f(m), t)| − 1
2 ) exp−1

h2(f(m),t)(n)) εt ≤ |n− h2(f(m), t)| ≤ 2εt

n |n− h2(f(m), t)| ≥ 2εt

where εt = min(tε, (1− t)ε) is 0 at times t = 0 and t = 1 and 0 < εt ≤ ε
2 when t 6= 0, 1. The map vm,t is

illustrated in Figure 3. It has the following properties:

• it takes the points at distance εt of h2(f(m), t) to the path defined by K(m, t,−) between that
point and f ◦ h1(m, t);
• it stretches the points at distance between εt and 2εt to the ball of radius 2εt around h2(f(m), t);
• it fixes the rest of M2;
• it is the identity at the times t = 0 and 1 where εt = 0 and the path K(m, t,−) is a constant path.

Now we define L1,2 : E1,2 ×Dk × I → E1,2 ×Dk via the formula:

L1,2(m, γ, x, t)(s) = (h1(m, t), γ̄Kt ,
˜̀(x, t)), where γ̄Kt (s) = vm,t ◦ h2(γ(s), t)

which essentially a reparametrization of L↑1,2 with the extra property that the map γ̄Kt : S → M2 now

satisfies that γ̄Kt (s) = γ̄Kt (s0) = f(h1(m, t)) for all s ∈ S such that γ(s) = γ(s0), since for such points,

γKt (s) = h2(γ(s), t) = h2(f(m), t). In particular, L1,2 does preserve R1,2. The path ˜̀(x,−) equals `(m,−)
outside EN2

, is defined to be e ◦ h1(m′,−) on points (m, γ, x) such that (γ(s1), x) = (f(m′), e(m′)), and
is the linear interpolation of these two maps on the rest of EN2

⊂ E1,2 × Dk. Hence L1,2 preserves
(R1,2 ×Dk)|M1

.

We are left to define LN2 , a homotopy between the identity and j−1 ◦ j. We have again that j−1 ◦
j(m, γ, x) = (g ◦ f(m), f ◦ g(γ), e(g ◦ γ(s1))).

We will start by defining LN2
on the subspace EN2

|M1
. On this subspace of EN2

, we can define LN2

with the same definition as L1,2: Let LN2
|M1

: EN2
|M1
× I → EN2

|M1
be defined by

LN2
|M1

(m, γ, e(m), t)(s) = (h1(m, t), γ̄Kt , e(h1(m, t))), where γ̄Kt (s) = vm,t ◦ h2(γ(s), t).

Just as for L1,2 above, this maps respects the subspace RN2
|M1

since γKt (s) = γKt (s0) whenever the same
holds for γ. It thus also respect E0

N2
|M1 . (Note that this homotopy only works on the restriction of EN2

to the actual diagonal M1 and cannot easily be modified to work for a point (m, γ, e(m′)) living instead

over the fake diagonal ∆f
1 .)

We now extend the definition to EN2 × I. Given (m, γ, x) ∈ EN2 , write (γ(s1), x) = m′ + (V,W ) ∈
N(f, e), where we identify N(f, e) with a subbundle of T (M2 × Dk) as above. The map-component of
the homotopy will be defined in two parts: first pushing the map γ along expf(m′)(1 − t)V around s1,

so it goes through f(m′) at s1, and then homotoping further just as in the case of L1,2 using the added
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sticks along K both at s0 and s1. For elements not in RN2
|M1

, it is enough to work with “spiky maps”

L↑N2
: EN2

×Dk × I → E↑N2
×Dk. Set

L↑N2
(m, γ, x, t) =

{
(m, γN2

2t , e(m
′) + (1− 2t)W ) 0 ≤ t ≤ 1

2

(h1(m, 2t− 1), (γN2
1 )K,K2t−1, e(h1(m′, 2t− 1))) 1

2 ≤ t ≤ 1.

The map γN2
t : S →M2 is defined by

γN2
t (s) = h

(
γ(s1), expf(m′)(u1(s)(1− t)V ))

)
(γ(s))

for h : UM2
→ Diff(M2) the push-map of [14, Lem 2.1], here taking γ(s1) to expf(m′)((1− t)V ) and only

affecting the map γ at s ∈ S close to s1, where u1 : S
u−→ S↑ � I is the projection to {s1} × I so that

u1(s) = t if u(s) = (s1, t) and u1(s) = 0 else. The map γK,Kt : S
u−→ S↑ →M2 is defined on S↑ by

γK,Kt (s) = h2(γ(s), t)

γK,Kt (s0, t
′) = K(m, t, 1− t′)

γK,Kt (s1, t
′) = K(m′, t, 1− t′).

Finally we define LN2
by gluing together the maps LN2

|M1
and L↑N2

using the interpolation parameter:
let δ : EN2 → [0, 1] be defined by

δ(m, γ, x) = min(
|γ(s1)− f(m)|

ε
+
|x− e(m)|

ε
, 1).

Then δ−1(0) = EN2
|M1

is the subspace of tuples (m, γ, x) satisfying that γ(s1) = f(m) and x = e(m).
Define

LN2(m, γ, x, t) =

 (m, γN2
2t
δ

, e(m′) + (1− 2t
δ )W ) 0 ≤ t ≤ δ

2

(h1(m, 2t−δ
2−δ ), δ(γN2

1 )K,K2t−δ
2−δ

+ (1− δ)(γN2
1 )

K

2t−δ
2−δ

, e(h1(m′, 2t−δ
2−δ ))) δ

2 ≤ t ≤ 1

for δ = δ(m, γ, x), and where the interpolation δγK,Kt + (1 − δ)γ̄Kt is defined pointwise in M2, and is
well-defined for points with δ < 1.

One checks that (ii) holds with the reparametrization φ : I → I collapsing the interval [0, δ2 ]. For (iii),

the fact that LN2
(E0
N2
× ∂I) ⊂ E0

N2
is in fact a consequence of (i). More generally, LN2

(E0
N2
× I) ⊂ EthinN2

since γN2
t , (̄γN2

1 )Kt , and (γN2
1 )K,Kt are thin maps by definitions, and interpolation preserves the property

of being a thin map. Explicitly, for (m, γ, x) ∈ E0
N2

, with γ = [n] the constant map at n ∈ M2, and

(n, x) = (m′, (V,W )) ∈ N(f, e), we have that γN2
t is the thin loop non-trivial only on {s1} × I where

it goes back and forth along expf(m′)(rV ) for 1 ≥ r ≥ 1 − t. The map (γN2
1 )K,Kt then adds the paths

K(m, t,−) and K(m′, t,−) to h2(γN2
1 , t), reconstructing the map KE up to a reparametrization. When

δ < 1, this is interpolated with the homotopic map (̄γN2
1 )Kt . Hence LN2

is indeed homotopic to K on this
subspace. �

We will see below that the non-trivial homotopy comes from the fact that the “fake” half-constant loops,
those that are half-constant but that do no live over M1, are not necessarily preserved by the homotopy
LN2 .

4. The string coproduct and the proof of Theorems A and C

We now explain how to deduce the formula in Theorem A from applying Theorem 3.14 and C in the
case of the string coproduct, and more generally for the higher coproducts.

4.1. The string coproduct in terms of the trivial coproduct. Let ev = ev0, 12
: ΛM →M ×M be

the evaluation map defined by ev(γ) = (γ(0), γ( 1
2 )). Then

ΛM |M = {γ ∈ ΛM | γ(
1

2
) = γ(0)}
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identifies with the “figure eight space”, seen as the subspace of ΛM of loops γ having a self-intersection
γ(0) = γ( 1

2 ). We let R ⊂ ΛM |M denote the subspace of half-constant loops:

R = {γ ∈ ΛM | γ(t) = γ(0) ∀t ∈ [0,
1

2
] or ∀t ∈ [

1

2
, 1]},

with

Rε = {γ ∈ ΛM | |γ(t)− γ(0)| < ε ∀t ∈ [0,
1

2
] or ∀t ∈ [

1

2
, 1]}

the subspace of almost half-constant loops.
Following [11] (see also [14, Thm 2.13], combining with Section 3.2 of that paper, or [21, sec 2.5]), we

can compute the string coproduct as the composition

(4.1) H∗(ΛM,M)
×I−−→ H∗+1(ΛM × I,ΛM × ∂I ∪M × I)

J−−→ H∗+1(ΛM,Rε)
intUM−−−−→ H∗+1−n(ΛM |UM ,Rε)

r−→ H∗+1−n(ΛM |M ,R)
cut−−→ H∗+1−n(ΛM × ΛM,M × ΛM ∪ ΛM ×M)

where

J : ΛM × I → ΛM

is the reparametrizing map defined by J(γ, s) = γ ◦θ 1
2→s

for θ 1
2→s

: [0, 1]→ [0, 1] the piecewise linear map

that fixes 0 and 1 and takes 1
2 to s, and r = Q1◦k 1

2
: ΛM |UM → ΛM |M is the composition of the retraction

map k 1
2

deforming the loops so the almost self-intersection at time 1
2 becomes an actual intersection as

in [14, Sec 2.4] and the squeezing map Q1 of [14, Lem 3.5] retracting small balls around γ(0) to further
retract Rε to R. It has the property that it retracts Rε to R. The papers [11, 14] mainly work with R
rather than Rε, but this makes no difference for the resulting composed map, as already used in [14].

Any map f : M1 → M2 induces a map Λf : ΛM1 → ΛM2 that respects the constant loops and half-
constant loops, as well as their ε version for appropriately chosen ε1, ε2. Also, the maps ×I, J and cut are
all natural in maps of the form Λf . Hence the question of homotopy invariance of the coproduct reduces
to the homotopy/non-homotopy invariance of the middle composition

intM : H∗(ΛM,Rε)
intUM−−−−→ H∗−n(ΛM |UM ,Rε)

r−→ H∗−n(ΛM |M ,R)

in (4.3), which is a relative version of the short trivial coproduct

intM : H∗−n(ΛM) −→ H∗−n(ΛM |M ) ∼= H∗(ΛM ×M ΛM)

(denoted ∨F
1
2

in [14]) that looks for self-intersections of the form γ(0) = γ( 1
2 ) and does not cut. This last

operation has long been known to be essentially trivial (see [28] and [14, Lem 4.5]), and we also know
from Proposition 2.6 that it is homotopy invariant, a property that could also be checked directly in this
case. What we are interested in here is how invariant the relative version of this map is. Given that the
(almost) half-constant loops Rε define a fibration over UM , and not M ×M , we are in the situation of
Assumption (B), and we know from Theorem 3.14 that there is an obstruction to invariance coming from
applying certain maps to the boundary of the class of loops considered. We start by analysing what the
boundary is like in the case considered here.

Lemma 4.1. Suppose A ∈ C∗(Λ1) is a non-relative cylce. Then

∂(J(A× I)) = [M1] ∧A−A ∧ [M1]

is the left and right half-constant loops versions of A.

Proof. Given that J is a chain map, ∂(J(A× I)) = J(A× ∂I). Now J(γ, 0) = γ(0) ∗ γ reparametrizes the
loop to become constant on [0, 1

2 ] and similarly J(γ, 1) = γ ∗ γ(1). This is precisely the effect on chain of
taking a Chas-Sullivan product with the fundamental class. �

We want to emphasize that the chain A × I in the above lemma is never a cycle in C∗(Λ1 × I), as
∂(J(A×I))) is always non-trivial. The lemma shows that this last cycle identifies with [M1]∧A−A∧ [M1],
which is a boundary in C∗(Λ1), corresponding to the fact that [M1] is a unit for the string product. It is
however not a boundary in C∗(R1), where we will be considering it.
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From Theorem 3.14, we have that the failure of invariance for such a cycle A is computed by

cut ◦ ĥ ◦ intM1 ◦ LN2((α([M1] ∧A−A ∧ [M1]))× I)
)

(4.2)

To prove Theorem A, we will “pull out” ∧A and A∧ in the above expression.

4.2. Higher coproducts. Let ΛrM = Maps(Sr,M) denote the space of r-loops in M , and recall from
the introduction the higher coproduct

∨r : H∗(Λ
rM)

intM−−−→ H∗+r−n((ΛrM × Ir)|M ,Λr × ∂Ir)
reread−−−−→ H∗+r−n(Maps(S1 × Sr−1,M),Rr)

that looks for self-intersections of the form γ(0) = γ(t) for some t = (t1, . . . , tr) ∈ Ir, where we identify
Sr with Ir/∂Ir, and then “rereads” the loops by precomposing loops (Ir/∂Ir)/0∼t −→M with the map

S1 × Sr−1 ∼= S1 × ∂Ir −→ (Ir/∂Ir)/0∼c
(θ 1

2
→tj

)rj=1

−−−−−−−→ (Ir/∂Ir)/0∼t

where the first map takes S1×{t} to the line from t to c = ( 1
2 , . . . ,

1
2 ), which is a circle in the target, and

the map θ 1
2→tj

: [0, 1] → [0, 1] is the same reparametrization map as in the previous section, applied one

coordinate at a time. Here

Rr =

r⋃
j=1

{γ ∈ Maps(S1 × Sr−1,M) | γ(s, s′) = γ(0,0) ∀s′ ∈ Sr−1
j,` or ∀s′ ∈ Sr−1

j,r }

where Sr−1
j,` = Sr−1 ∩ (Ij−1 × [0, 1

2 ] × Ir−j) and Sr−1
j,r = Sr−1 ∩ (Ij−1 × [ 1

2 , 1] × Ir−j) are the “left” and

“right” hemispheres of Sr−1 in the jth direction. Note that the reread map does indeed take Λr × ∂Ir to
Rr because of the reparametrizations θ.

This operation is a direct generalization of the string coproduct considered above, and just like the
string coproduct, it can be computed using a relative version of a “trivial coproduct”. Let

RΛr =

r⋃
j=1

{γ ∈ ΛrM | γ(s) = γ(0) ∀s ∈ Ij−1 × [0,
1

2
]× Ir−j or ∀s ∈ Ij−1 × [

1

2
, 1]× Ir−j}

be the subspace of half-constant loops, and likewise for its ε–version RεΛr . We can compute the higher
string coproduct as the composition

(4.3) H∗(Λ
rM)

×Ir−−→ H∗+r(ΛM
r × Ir,ΛM × ∂Ir) Jr−−→ H∗+r(Λ

rM,RεΛr )
intUM−−−−→

H∗+r−n(ΛrM |UM ,RεΛr )
r−→ H∗+r−n(ΛrM |M ,RΛr )

reread−−−−→ H∗+r−n(Maps(S1 × Sr−1,M),Rr)
where

Jr : ΛrM × Ir → ΛrM

is the reparametrizing map defined by Jr(γ, t) = γ ◦ (θ 1
2→tj

)rj=1, and r = Q1 ◦ k 1
2

: ΛrM |UM → ΛrM |M
is the composition of the retraction map k 1

2
deforming the r-loops so the almost self-intersection at time

c = ( 1
2 , . . . ,

1
2 ) becomes an actual intersection, just as in [14, Sec 2.4], and the squeezing map Q1 of [14,

Lem 3.5] retracting a small ball around γ(0) to further retract RεΛr to RΛr . The reread map is now just
precomposing with the map S1 × Sr−1 → (Ir/∂Ir)/0∼c described above.

To give an analogue of Lemma 4.1 in higher dimensions, we need an appropriate higher version of the
string product, namely a standard intersection product, followed by a concatenation map along ∂Ir. We
can do this using the action of the little r-disc operad Dr on r-loops sharing the same basepoint. In the
case r = 1, this operation will recover the two terms [M1] ∧A−A ∧ [M1] in one go.

Let

[−,−] : C∗(Λ
rM ×M ΛrM)

−×b−−−→ C∗+r−1(ΛrM ×M ΛrM ×Dr(2)) −→ C∗+r−1(ΛrM)

denote the Browder (or Gerstenhaber) bracket, defined just as for based loop spaces, where b is a chain
representative of the generator of Hr−1(Dr(2)), the top homology of the little r-discs operad in arity 2,
and the second map is the standard little disc action on r-loops, which make sense as long as the loops
share the same basepoint. Now define the higher product

(4.4) ∧∂Ir : C∗(Λ
rM × ΛrM)

intM−−−→ C∗−n(ΛrM ×M ΛrM)
[−,−]−−−→ C∗+r−1−n(ΛrM).
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Lemma 4.2. Suppose A ∈ C∗(ΛrM1). Then ∂(Jr(A× Ir)) ' [M1] ∧∂Ir A ∈ C∗+r−1(RΛrM1
).

Proof. Let b : ∂Ir → Dr(2) be a choice of representative for [−,−], e.g. as in Figure 4, with the two
subdiscs placed along the line through the center containing t, and such that the second disc lies inside
a single hemisphere, so that the value of the bracket on [M1] × A is indeed within half-constant loops.
Note now that the reparametrized loop Jr(a, t) is homotopic to the loop b(t)(a, a(0)), and the homotopy
can be chosen continuously in t. The result follows from the fact that [M1] is a unit for the intersection
product. �

Just like in the case r = 1, the class ∂(Jr(A× Ir)) would be trivial if considered in H∗−1(ΛrM1), but
it is in general not trivial in H∗−1(RΛrM1).

4.3. Intermediate intersection products. In what follows, we write

Λi = ΛrMi

for the r-loop space of Mi, for i = 1, 2, and Rεi ,Ri for its subspaces (almost) half-constant loops, and use
the notations ΛN2

,Λ1,2, etc. for the pulled-back fibrations from Λ2 and Rε2 as for general fibrations in the
Section 3. We write Λ0

i for the subspace of constant loops in a loop space Λi, and likewise for ΛN2
etc.

Recall from Section 3.4 the map α = [ev∗τe∩] ◦ (×Dk) ◦ j̄−1 ◦ j : (ΛN2
,RN2

) → (ΛN2
,RN2

). This
map does not affect the loop component, and thus respects constant loops and half-constant loops. In
particular, α[M1] can be considered in Cn(Λ0

N2
) and α([M1] ∧1

∂Ir A) in C∗(RN2).

To prove Theorems A and C, we will need intermediate intersection products, coming from the following
spaces over M1 ×M1:

Λ0
1 × Λ1

ev=(ev0,ev0)
%%

e×id
// Λ0
N2
× Λ1

��

j×id
// (Λ0

1,2 ×Dk)× Λ1

vv

j̄−1×id

∼=
// (Λ0

N̄2
)× Λ1

ev=(ev0,ev0)ooM1 ×M1

followed by the concatenation map [−,−] of the previous section. The first and last vertical maps are
fibrations, and one could also replace Λ0

1 (resp. Λ0
1,2) with Λε1 (resp. Λε1,2) in the first factor. The second

vertical map is not in general a fibration because of the factor Λ0
N2

, even if we replace it by its ε–version,
but we can none-the-less construct a retraction map

r1 : Λ0
N2
×U1

Λ1 −→ Λ0
N2
×M1

Λ1

simply by adding a stick to the loop in Λ1. (Adding a stick to an r-loop is formally done using the map
u : S → S↑ of Section 3.5 in the case S = Ir/∂Ir.)

This data gives in particular compatible intersection products

(4.5) H∗(Λ
0
1 × Λ1)

��

intU1 // H∗−n(Λ0
1 ×U1

Λ1)

��

r1 // H∗−n(Λ0
1 ×M1

Λ1)

��

[−,−]
// H∗+r−1−n(R1)

��

H∗(Λ
0
N2
× Λ1)

intU1 // H∗−n(Λ0
N2
×U1

Λ1)
r1 // H∗−n(Λ0

N2
×M1

Λ1)
[−,−]

// H∗+r−1−n(RN2
)

and likewise for the other pairs of spaces.

Proposition 4.3. Let α : H∗(RN2)→ H∗(RN2) be as in Section 3.4. For any cycle A ∈ H∗(Λ1),

α
(
[M1] ∧1

∂Ir A
)

= α[M1] ∧1
∂Ir A ∈ H∗(RN2

),

where the products are respectively the first and second intersection products in (4.5).
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Proof. We want to show that the following diagram commutes, where the right hand horizontal maps are
retractions, adding sticks on the (potentially long) loops in Λ1, followed by concatenations, as above.

H∗(Λ
0
1 × Λ1)

j̄−1◦j◦e
��

intU1 // H∗−n(Λ0
1 ×U1

Λ1)

��

[−,−]◦r1
// H∗+r−1−n(R1)

��

H∗(Λ
0
N̄2
× Λ1)

intU1 //

×Dk
��

(−1)nk

H∗−n(Λ0
N̄2
×U1

Λ1))

(−1)(r−1)k

[−,−]◦r1
//

×Dk
��

H∗+r−1−n(RN̄2
)

×Dk

��

H∗+k(Λ0
1,2 × Λ1 ×Dk, ∂Dk)

intU1

//

τ

��

H∗+k−n(Λ0
1,2 ×U1 Λ1 ×Dk, ∂Dk)

[−,−]◦r1
//

τ

��

H∗+k+r−1−n(R1,2 ×Dk, ∂Dk)

τ

��

H∗+k(Λ0
1,2 ×Dk × Λ1, ∂D

k)
intU1 //

[ev∗τe∩]×1

��

(−1)nk

H∗+k−n((Λ0
1,2 ×Dk)×U1 Λ1, ∂D

k)

(−1)(r−1)k

[−,−]◦r1
//

[ev∗τe∩]×1

��

H∗+k+r−1−n(R1,2 ×Dk, ∂Dk)

[ev∗τe∩]

��

H∗(Λ
0
N2
× Λ1)

intU1

// H∗−n(Λ0
N2
×U1

Λ1)
[−,−]◦r1

// H∗+r−1−n(R2)

In left column, the first and third squares commute by naturality of the intersection product over a fixed
manifold (Proposition 2.6), the second from commuting cap and cross product up to a sign (−1)nk, and
the fourth by commuting two caps, again up to a sign (−1)nk. For the right column, there is ×[Sr−1] as
part of the map [−,−], which creates likewise signs (−1)(r−1)k when commuted with crossing with the
disc Dk in the second square, and capping with the pull-back of τe in the last square. The other squares
commute by naturality. �

4.4. Enhanced version of the main homotopy. Recall that the homotopy LN2
constructed in Propo-

sition 3.17 is a homotopy between j−1 ◦ j and the identity, whose M1-component is the chosen homotopy
h1 : M1 × I →M1. Let

L̂N2
: ΛN2

× I
(ev0×id,LN2

)
−−−−−−−−−→ (M1 × I)×h1

ΛN2

be the enhanced version of LN2
(generalised trace of the homotopy) that remembers the original M1 and

time components of the loops. Here we have supressed the reparametrization map φ of Proposition 3.17
and the evaluation map ev0 in the notation, that is

(M1 × I)×h1
ΛN2

:= {(m, t,m′, γ, x) ∈ (M1 × I)× ΛN2
| h1(m,φ(t)) = m′}.

By Proposition 3.17, the above map induces a chain map

L̂N2
(−× I) : C∗(Λ

0
N2

) −→ C∗+1((M1 × I)×h1
ΛN2

, (M1 × I)×h1
Λ0
N2

).

Now there is an intersection product associated to the map

ev : ((M1 × I)×h1
ΛN2

)× Λ1 −→M1 ×M1

defined by ev(m, t,m′, γ, x, λ) = (m,λ(0)), and likewise for its restriction to constant loops in ΛN2
. It can

be followed by the retraction map r1 and concatenation [−,−] after applying the h1 the resulting loop.
Picking the representative for [−,−] ∈ C∗(Dr(2)) shown in Figure 4, we have that concatenation induces
a map

[−, h1(−)] :
(

((M1 × I)×h1 ΛN2)×M1 Λ1, ((M1 × I)×h1 Λ0
N2

)×M1 Λ1

)
→ (ΛN2 , RN2)

where the map takes (m, t, (m′, γ, x), λ) to (m′, [γ, f ◦ h1(λ, φ(t))], x). Note that this makes sense since:

(i) The concatenated loop agrees with γ at times 0 and c, hence the loop is still in ΛN2 since γ was in
that space.

(ii) The concatenation with f ◦ h1(λ, t) makes sense since we assumed λ(0) = m and m′ = h1(m,φ(t)),
so in particular γ(0) = f(m′) = f ◦ h1(λ(0), φ(t)).

(iii) If γ is constant, the resulting concatenated loop will be more than half-constant by our choice of
bracket.
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1

2
c

t

Figure 4. Choice of a class in C∗(Dr(2)) defining the bracket [−,−]

We denote the resulting product

∧h1

∂Ir : C∗((M1 × I)×h1
ΛN2
× Λ1, (M1 × I)×h1

Λ0
N2
× Λ1)→ C∗+r−1−n(ΛN2

,RN2
).

Proposition 4.4. For any cycle A ∈ C∗(Λ1) and B ∈ C∗(Λ0
N2

), we have that

LN2(B ∧1
∂Ir A)× I) = L̂N2

(B × I) ∧h1

∂Ir A ∈ H∗(ΛN2
,RN2

)

Proof. We need to check that the following diagram commutes:

C∗(Λ
0
N2
× Λ1 × I, ∂I)

[ev∗0,0τ1∩]

��

τ // C∗(Λ
0
N2
× I × Λ1, ∂I)

L̂N2 //

[ev∗0,0τ1∩]

��

C∗((M1 × I)×h1 ΛN2 × Λ1,R)

[ev∗τ1∩]

��

C∗−n(Λ0
N2
×M1 Λ1 × I, ∂I)

τ //

×[b]

��

C∗−n((Λ0
N2
× I)×M1 Λ1, ∂I)

×[b]

��

L̂N2 // C∗−n(((M1 × I)×h1 ΛN2)×M1 Λ1,RM1)

×[b]

��

C∗+r−1−n((−)×Dr(2), ∂I)
τ //

��

C∗+r−1−n((−)×Dr(2), ∂I)
L̂N2 // C∗+r−1−n((−)×Dr(2),RM1 ×Dr(2))

��

C∗+r−1−n(RN2 × I, ∂I)
LN2 // C∗+r−1−n(ΛN2 ,RN2)

where R := (M1× I)×h1Λ0
N2
×Λ1 and RM1 = ((M1× I)×h1 Λ0

N2
)×M1Λ1. The two top squares commute

by the naturality of the cap product, because the evaluation maps are compatible, and the following two
squares by naturality of the cross product. The bottom square commutes up to homotopy on the space
level. Indeed, starting from (m, γ, x, λ, t, β) in the top left corner of that square, going each half gives a
tuple of the form {

(m,βN2
t , e(m′) + (1− 2t)W ) 0 ≤ t ≤ u

2

(h1(m, 2t−u
2−u ), uβK,K2t−u

2−u
+ (1− u)β̄K2t−u

2−u
, e(h1(m′, 2t−u

2−u ))) u
2 ≤ t ≤ 1

where βN2
t = β(γN2

t , f ◦ λ) in both cases, but where βK,Kt has the form β(γK,Kt , f ◦ h1(λ, t)) going around

the top half, while it has the form β(γK,Kt , h2(f ◦ λ, t)) going around the lower half, and similarly for β̄Kt .
Now such loops are canonically homotopic by gradually applying the homotopy K to λ. �

4.5. Proof of Theorems A and C. We give here a proof of the two formulas stated in the introduction,
modulo characterizing the obstruction class that will arise in the proof, which we postpone to Section 4.6.
We start with one last preparatory step.

To compute the obstruction to invariance, following (4.2) (see also Theorem 3.14), after applying the
homotopy LN2

we have to apply the intersection product pulled back from M1 along the maps ΛN2
→

N2 → M1 ×M1. This operation commutes, up to a sign, with the product operation, as shown by the
following result.
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Proposition 4.5. For any cycle A ∈ C∗(Λ1) and B ∈ C∗(Λ0
N2

), we have that

intM1

(
L̂N2(B × I) ∧1

∂Ir A
)

= (−1)rnintM1

(
L̂N2(B × I)

)
∧1
∂Ir A ∈ H∗(ΛN2 |M1 ,RεN2

),

Proof. There are two evaluation maps

ev1, ev2 : (M1 × I)×h1
ΛN2
× Λ1 −→M1 ×M1

defined by ev1((m, t), (m′, γ, x), λ) = (m,λ(0)) and ev2((m, t), (m′, γ, x), λ) = (m′,m′′) for m′′ such that
(γ( 1

2 ), x) = m′′ + W in N(f, e). The left side of the equation is capping first with ev∗1τM1
, crossing with

[b], and then with ev∗2τM1
, while on the right side of the equation one first caps with ev∗2τM1

. Commuting

these cap and cross products gives a sign (−1)n
2+(r−1)n = (−1)rn. �

We are now ready to prove the main theorem.

Proof of Theorem A. Combining Lemma 4.1 and Theorem 3.14, we have that the failure of invariance is
computed by

reread ◦ forget ◦ ĥ ◦ intM1
◦ LN2

(α([M1] ∧1
∂Ir A))× I)

)
which can be rewritten as

(−1)rn reread ◦ forget ◦ ĥ ◦ intM1
(L̂N2

(α[M1]× I) ∧1
∂Ir A)

by Propositions 4.3, 4.4, 4.5. Let

TN3
:= (−1)rnintM1

(L̂N2
(α[M1]× I)) ∈ H1(ΛN3

,Λ0
N3

)

with TN̄3
∈ H1(ΛN̄3

,RN̄3
) its image under ĥ. Given that ĥ fixes Λ1, we thus get that the failure can be

written as

reread ◦ forget(TN̄3
∧1
∂T r A)

where we recall that, as indicated by the notation, the product ∧1
∂Ir is an intersection product pulled-back

from M1. The forgetfull map is the map from Λ1,2 ×Dk to Λ2 that only remembers the loop component.
Now note that the product ∧1

∂Ir is here a product on ΛN̄3
× Λ1 relative to RN̄3

× Λ1. Hence it satisfies
Assumption (A) and by Theorem 3.9 it is equivalent to compute this product in Λ2 after the forgetful
map instead. It follows that we can write the obstruction as

reread(TΛ2 ∧2
∂Ir f∗A)

for TΛ2
the image of TN̄3

in H1(Λ2,R2). Finally, our choice of Browder operation (see Figure 4) is so that

reread(B ∧2
∂Ir f∗A) = reread(B) ∧2

∂Ir f∗A

where the product on the right hand side is the intersection product lifted from M2 followed by the map

H∗(Maps(S1 × Sr−1,M2)×M2
Λ2)

[−,−]−−−→ H∗+r−1(Maps(S1 × Sr−1,R2))

coming from a generalized little disc action of the class b̃ ∈ Cr−1(Emb(D2, S1 × Sr−1)) corresponding to
the classe b of Figure 4 under the reread map S1 × Sr−1 → (Ir/∂Ir)/0∼c. Let

Tr := reread(TΛ2
) = (−1)rn reread ◦ forget ◦ ĥ ◦ intM1

◦ LN2
(α[M1]× I) ∈ H1(Maps(S1 × Sr−1,M2),R).

Putting all of this together, we have shown that the failure of invariance is computed by

Tr ∧2
∂Ir f∗(A).

Setting Tf := T1, this proves Theorem A in the case r = 1 (up to the characterization of Tf ). To
prove Theorem C, we are left to identify the class Tr with the suspension sr−1T1 of the class in the case
s = 1. This follows from Proposition 3.17(iii). Indeed the proposition gives that LN2

(α[M1] × I) '
KE(evα[M1]×I) is a class of thin loops of the form given by Lemma 3.15. After applying the composition

reread ◦ forget ◦ ĥ ◦ intM1 , we see that it does not dependent on the Sr−1-factor, and can be given as a
composition

S1 × Sr−1 → S1 Tf−−→M2

for Tf the obstruction class in the case r = 1. �
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4.6. The obstruction class and the fake diagonal. The obstruction class Tf has two main ingredients:
the class α[M1], and then the homotopy LN2

. From Proposition 3.17, we know that LN2
(α[M1]) can be

constructed out of the homotopy data (f, g, h1, h2,K), and we will explain here in what sense [α[M1] is a
transverse version of the diagonal, hence explaining the end of the statement of Theorem A. We will then
deduce two possible reasons for the obstruction to vanish: one from α[M1] actually coming from ΛεN2

|M1 ,
and one from the higher homotopy K is “small”.

Recall that ∆f
1 = {(m,m′) ∈M1 ×M1 | f(m) = f(m′)}. This subspace is essentially never a manifold,

and in particular does not immediately define a homology class. The issue comes from the fact that the
map (f, f) : M1 ×M1 →M2 ×M2 is not transverse to the diagonal of M2 (unless dim(M2) = 0). But we
can always deform f by a small homotopy to a map f ′ transverse to f (see e.g.; [17, Cor IV.2.5]), i.e. such
that the pair (f, f ′) is transverse to the diagonal in M2 ×M2.

So fix f ′ 'h0
f a small deformation of f transverse to it and let

∆f
1 := {(m,m′) ∈M1 ×M1 | f ′(m) = f(m′)} ⊂M1 ×M1.

This is now an n-dimensional submanifold of M1×M1, whose homology class is independent of the choice
of f ′. (See Figure 5 below for an example.) Define also the corresponding class of almost constant loops

∆̂
f

1 := {(m, γm,m′ , e(m′)) ∈ ΛεN2
| (m,m′) ∈ ∆f

1}
where the loop γm,m′ is defined as

γm,m′ : Ir
1−dc(−)−−−−−→ I

h0(m,−)−−−−−→M2

for dc : Ir → I the normalised distance to the center of the cube. Note that, while the loops γm,m′ are
all canonically contractible in M2, they are not contractible anymore in general when considered as the
tuple (m, γm,m′ , e(m

′)) ∈ ΛN2
, since there is no garantie that we can retract f(m′) to f(m) along h0 while

staying inside N2.

Proposition 4.6. We have that α[M1] = [∆̂
f

1 ] ∈ Hn(RεN2
), where [M1] is as before identified with the

class of constant loops in Λ1, and α is as in the previous sections.

Proof. Let D : M1×Dk → ΛN2
be defined by D(m,x) = (m, [f(m)], x), where [f(m)] denotes the constant

loop at f(m). Then
α[M1] = p̄∗τ̄e ∩D[M1 ×Dk] ∈ Hn(RεN2

).

The map D is homotopic to D′ : M1 ×Dk → ΛN2
defined by D(m,x) = (m,Γh0

(m,−), x). Hence ᾱ[M1]
can also be computed as p̄∗τ̄e ∩D′[M1 ×Dk]. We have

M1 ×Dk D′ // ΛN2

ev // N2 ⊂M1 ×M2 ×Dk

Σ = (ev ◦D′)−1(M1 ×M1)
?�

OO

// M1 ×M1.
?�

id×(f,e)

OO

By transversality, the normal bundle N2 of M1 ×M1 in M1 ×M2 ×Dk pulls back to a normal bundle of
Σ in M1 × Dk, and thus (D′)∗p̄∗τ̄e is a Thom class for that embedding. Hence capping with that class

intersects with the 0-section Σ, and ᾱ[M1] is the restriction of D′ to Σ, which is precisely the class [∆̂
f

1 ]
in the statement. �

Corollary 4.7. If the class α[M1] = [∆̂
f

1 ] ∈ Hn(ΛεN2
) can be represented by a class with support in

ΛεN2
|M1 , then Tf vanishes.

Proof. The homotopy LN2 is a homotopy relative to RN2 |M1 , and in fact also preserves, up to homotopy
ΛεN2
|M1

. It follows that Tf can be represented in constant loops and hence is 0 in H∗(Λ2,M2). �

The fake diagonal ∆f
1 is typically not a submanifold of M1 ×M1, because of the lack of transversality

encountered above. The following example shows that this can fail in a “tranverse way”, with ∆f
1 is the

union of ∆1 and a transverse submanifold. We will also see in the example that ∆f
1 is a better behaved

object.
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Example 4.8. Let f : I → I be a smooth map that folds part of the interval, as illustrated in Figure 5.

Then f is homotopic to the identity, but the map ∆1 ↪→ ∆f
1
∼= ∆1 ∪S0 S1 is not a homotopy equivalence.

In particular, we see that the question of whether ∆1 ↪→ ∆f
1 is a homotopy equivalence is itself not a

property invariant under replacing f by a homotopic map.

a b c d

f

a b c d

a

b

c

d ∆f
1

a b c d

a

b

c

d ∆f
1

Figure 5. Graph of the map f : I → I of Example 4.8 and associated fake diagonal ∆f
1

Example 4.9. Suppose that M2 = M1/B for B ⊂ M1 a contractible subspace, and suppose that f :

M1 → M2 is the collapse map. Then ∆f
1 = ∆1 ∪∆B (B × B) is homotopic to ∆1. Indeed, the map

pB : ∆f
1 → ∆1 defined on B × B by pB(b, b′) = (b, b) and on ∆1 as the identity, is a homotopy inverse to

the inclusion. In particular, Corollary 4.7 implies that Tf vanishes on elementary collapses.

The following question was in part raised by Tom Goodwillie3:

Question 1. Can one always modify f within its homotopy class so that ∆f
1 = ∆1 ∪ Df with Df a

submanifold of M1 ×M1 that is transverse to ∆1? and if yes, are the classes [Df ] and [∆f
1 ] equal in

Hn(ΛεN2
,ΛεN2

|UM1
)?

Remark 4.10 (Simple homotopy equivalences). The previous example shows that Tf vanishes on elementary
collapses. To show that Tf vanishes on simple homotopy equivalences more generally, as expected give
the result of [22], one needs to understand how the obstruction Tf behaves under composition.

For our second vanishing condition, we start by defining a “smallness” condition for homotopies.

Definition 4.11. We call f : M1 →M2 an ε–bounded homotopy equivalence if we can choose g, h1, h2 as
above such that

(i) |n− n′| < ε implies |h2(n, t)− h2(n′, t)| < ε for all n, n′ ∈M2 and all t ∈ I;
(ii) |f ◦ h1(m, t)− h2(f(m), t)| < ε for every m ∈M1 and all t ∈ I.

Note that when f is ε–bounded with ε smaller than the injectivity radius of M2, then we can choose
K(m, t,−) to be the geodesic path from f ◦ h1(m, t) to h2(f(m), t), that is we can choose K to consist of
small paths.

Corollary 4.12. Suppose that the homotopy equivalence f : M1 →M2 is ε-bounded. Then Tf vanishes.

Proof. By Proposition 3.17(iii), we have that LN2(α[M1]× I) can be computed as KE(evα[M1]× I), for
KE the map of Lemma 3.15. Now the boundedness assumption on f is exactly ensuring that the map KE
has image in small loops. Hence Tf is 0 in H∗(Λ2,M2). �

Remark 4.13. (i) The lens spaces L(1, 7) and L(2, 7) used in Naef’s example in [20] also appeared in the
work of Longoni-Salvatore, who showed that their 2-points configuration spaces F2(L(1, 7)) and F2(L(2, 7))
are not homotopy equivalent [18]. Note that these configuration spaces are exactly the complements of

the diagonal in M ×M for M the one or the other manifold. The complement of the fake diagonal ∆f
1

appears in [24] in the context of studying the question of homotopy invariance of configuration spaces. It

3In a question session during the Andrew Ranicki memorial conference.
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is a natural question to ask whether a condition for a homotopy equivalence f to respect the coproduct
can be formulated in terms of the configuration spaces of two points in the manifolds. See also [23] for
further relationship between the string topology product and coproduct, and the configuration space of
two points in the manifold.

(ii) A naive version of the assumption of Corollary 4.7 would be that the inclusion ∆1 → ∆f
1 is a homo-

topy equivalence, which is equivalent to the condition that ∆f
1 → ∆2 is a homotopy equivalence, that is

requiring that the product homotopy equivalence f × f : M1 ×M1 → M2 ×M2 restricts to a homotopy
equivalence on the inverse image of ∆2. As pointed out to us by Wolfgang Lück, this is a codimension n
analogue of Cappell’s splitting theorem, that gives conditions involving the Whitehead torsion for this to
hold when considering a codimension 1 submanifold of the target [3].
(iii) The coproduct is part of a larger (expected) family of string topology operations parametrized by the
harmonic compactification of moduli space, see [31, Sec 6.6] for a rational version of this, or [9, 13] for
work in this direction. Obstructions related to higher diagonals are to be expected for operations such
as the families [30, Sec 4], and hence also related to configuration spaces of any number of points in the
manifold.

Appendix A. Composing tubular embeddings

Given a composition of embeddings M1
f1
↪→ M2

f2
↪→ M3 and choices of tubular neighborhoods for each

embedding, we will construct here an associated tubular neighborhood for the composed map and study
its properties.

Proposition A.1. Consider

(A.1) N1

p1

��

� t

ν1

''

N2

p2

��

� t

ν2

''
M1
� � f1 // M2

� � f2 // M3.

with f1, f2 codimension k and l embeddings respectively, N1, N2 the associated normal bundles and ν1, ν2

chosen tubular neighborhoods. Then

(1) The bundle N12 := N1 ⊕ f∗1N2 −→M1 is isomorphic to the normal bundle of f2 ◦ f1.
(2) There is an isomorphism

N12 = N1 ⊕ f∗1N2

∼= //

p

''

ν∗1N2
∼= N2|ν1N1

� � //

xx

N2

p2

��

� p

ν2

!!

M1

��

f1

11N1
p1oo � � ν1 // M2

f2

// M3

as bundles over N1, where p is the natural projection, with the property that the resulting compo-
sition

ν12 := ν2 ◦ ν̂1 : N12
ν̂1−→ N2

ν2−→M3

is a tubular neighborhood for f2 ◦ f1 : M1 ↪→M3. Explicitly, ν12(m,V,W ) = ν2(ν1(m,V ),W ′) for
W ′ ∈ (N2)ν1(m,V ) the parallel transport of W along the path ν1(m, tV ).

(3) Let τ1 ∈ Ck(M2, ν1(N1)c) and τ2 ∈ Cl(M3, ν2(N2)c) be Thom classes for (N1, ν1) and (N2, ν2).
Let p∗2τ1 be the image of τ1 along the maps

Ck(M2, ν1(N1)c)
p∗2−→ Ck(N2, ν̂1(N12)c)

∼−→ Ck(M3, ν12(N12)c),

where the second map is the quasi-isomorphism induced by ν2 and excision. Then

τ12 := p∗2τ1 ∪ τ2 ∈ Ck+l(M3, ν12(N12)c)
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is a Thom class for the tubular embedding ν12. Moreover, the diagram

C∗(M3)
Jτ2∩K

//

Jτ12∩K
))

C∗−l(M2)

Jτ1∩K
��

C∗−k−l(M1)

commutes up to homotopy, where

Jτ1∩K : C∗(M2)→ C∗(M2, ν1(N1)c)
[τ1∩]−−−→ C∗−k(N1)

'−→ C∗−k(M1)

Jτ2∩K : C∗(M3)→ C∗(M3, ν2(N2)c)
[τ2∩]−−−→ C∗−l(N2)

'−→ C∗−k(M2)

Jτ12∩K : C∗(M3)→ C∗(M3, ν12(N12)c)
[τ12∩]−−−−→ C∗−k−l(N12)

'−→ C∗−k−l(M1)

are the maps induced by capping with the respective Thom classes after taking small simplices (see
[14, A.2] for details about the map [τ∩]), and retracting to the zero section at the end.

To prove the proposition, we will, as in the rest of the paper, pick Riemannian metrics. This allows us
for example to consider the normal bundle of an embedding as a subbundle of the tangent bundle of the
target, as we explain now: Let

f : M ↪→M ′

be an embedding of manifolds, with M compact and M ′ a Riemannian manifold. Let p : N →M be the
normal bundle of f . The metric of M ′ gives an identification of N with a subbundle of TM ′|M :

(A.2) N ≡ TM⊥ =: {(m,W ) | m ∈M , W ∈ Tf(m)M
′ and W⊥f∗TmM}

and thus splits the exact sequence
0→ TM → TM ′ → N → 0

of bundles over M . We will identify N with this subbundle.

The following lemma is an elementary consequence of the inverse function theorem.

Lemma A.2. Let N →M be the normal bundle of the embedding f : M ↪→M ′ as above. Suppose that

ν : N −→M ′

has the following properties:

(i) ν(m, 0) = f(m) for all m ∈M .
(ii) The map

dν : T(m,0)N → Tf(m)M
′

is surjective.

Then there exists ε > 0 so that the restriction of ν to Nε is a tubular embedding of M in M ′, for
Nε = {(m,W ) ∈ N | |W | < ε}.

Proof of Proposition A.1. Choose a Riemannian metric on M3. Let M1 and M2 carry the induced metrics.
Statement (1) follows from (suppressing the inclusion maps f1, f2):

N ≡ TM⊥1 ⊂ TM3; N1 ≡ TM⊥1 ⊂ TM2; N2 ≡ TM⊥2 ⊂ TM3,

so that for each m ∈M1,
Nm ≡ (N1)m ⊕ (N2)f(m).

As a consequence we can and will identify

N ∼= N12 ≡

(m,V,W )
∣∣∣ m ∈M1,
V ∈ Tf1(m)M2, V⊥ df1TmM1, and
W ∈ Tf(m)M3, W⊥ df2Tf1(m)M2

 .

To prove (2), define ν̂1 : N12 → N2 by

ν̂1(m,V,W ) = (ν1(m,V ),W ′)
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where W ′ ∈ (N2)ν1(m,V ) is the vector obtained from W by parallel transport along the path ν1(m, tV ).
The inverse is given by parallel transporting back, which gives the claimed isomorphism by uniqueness of
such transports.

We then apply the lemma in the case M = M1, M ′ = M3, f = f2 ◦ f1, and ν = ν12. We need
to check condition (ii) of the lemma. Fix m ∈ M1. Because ν1 : N1 → M2 is a tubular embedding,
the map dν1 : T(m,0)N1 → TmM2 is surjective, and the tangent space to M2 in M3 is in the image of
dν12 =: d(ν2 ◦ ν̂1). Now let W ∈ N2; that is, W ∈ TmM3, with W⊥TmM2. We find by definition
ν̂1(m, 0,W ) = (m,W ) ∈ N2 and ν12(m, 0,W ) = ν2 ◦ ν̂1(m, 0,W ) = (m,W ). (When V = 0, the parallel
transport is trivial.) Since TmM3 is spanned by TmM2 and dν2N2, we conclude that

ν12∗ : T(m,0)N12 → TmM3

is surjective.

To show the commutativity of the diagram in statement (3), we decompose the diagram as

(A.3) C∗(M3) //

&&

C∗(M3, N
c
2 )

[τ2∩]
// C∗−k(N2)

��

p2 // C∗−k(M2)

��

C∗(M3, N
c
12)

[τ12∩]
((

C∗−k(N2, N
c
12)

[p∗2τ1∩]

��

p2 // C∗−k(M2, N
c
1 )

[τ1∩]

��

C∗−k−l(N12)
p2 //

p12

((

C∗−k−l(N1)

p1

��

C∗−k−l(M1)

where we have suppressed the embeddings νi, ν̂i for readability. Commutativity follows from the naturality
of the cap product [τ∩] and the compatibility of the cup and cap products.

We are left to check that τ12 is the Thom class of the composition, which follows from its definition as

τ12∩[M3] = p∗2τ1∩(τ2∩[M3]) = p∗2τ1∩(f2)∗[M2] = (f2)∗(f
∗
2 p
∗
2τ1∩[M2]) = (f2)∗(τ1∩[M2]) = (f2)∗(f1)∗[M1],

in homology, where we used that p2 ◦ f2 : M2 → N2 →M2 is the identity. �
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