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Abstract

The framedn-discs operadf Dn is studied as semidirect product ofSO(n) and the littlen-discs
operad. Our equivariant recognition principle says that a grouplike space acted on byf Dn is
equivalent to then-fold loop space on anSO(n)-space. Examples off D2-spaces are nerves
of ribbon braided monoidal categories. We compute the rational homology off Dn, which
produces higher Batalin–Vilkovisky algebra structures forn even. We study quadratic duality
for semidirect product operads and compute the double loop space homology of a manifold as
BV-algebra.

1. Introduction

The topology of iterated loop spaces was thoroughly investigated in the seventies. These spaces
have a wealth of homology operations parametrized by the famous operads of little discs, denoted
by Dn in the text. The notion of operad was introduced in the first place for this purpose [2, 19].
Such machinery allows, for example, the reconstruction of an iterated delooping if one has full
knowledge of the operad action on an iterated loop space. Moreover any connected space acted on
by the little discs is weakly homotopy equivalent to an iterated loop space. This fact is the celebrated
recognition principle.

Our main objective is to extend this theory by adding the operationsrotating the discs. The
operad generated by the littlen-discsDn and the rotations inSO(n) is the framedn-discs operad
f Dn, first introduced in [10]. Our recognition principle for framedn-discs (Theorem 3.1) says that
a connected (or grouplike) space acted on by the framedn-discs operad is weakly homotopic to an
n-fold loop space on anSO(n)-space.

Thus the looping and delooping functors induce a categorical equivalence betweenSO(n)-spaces
and spaces acted on by the framedn-discs operad, under the correct connectivity assumptions. The
main technique consists in presenting the framed little discs as a semidirect product of the little discs
and the special orthogonal group.
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For a groupG and aG-operadA, that is, an operad in the monoidal category ofG-spaces, one
can define an operadA � G in the category of spaces, thesemidirect productof A andG. The
definition is such that the framedn-discs f Dn is the semidirect productDn � SO(n). Semidirect
products of this type have the following property: a spaceX is anA � G-algebra if and only if
X is anA-algebra in the category ofG-spaces. This allows us to studyf Dn-algebras by studying
Dn-algebrasSO(n)-equivariantly.

One can actually construct an operadDn � G for any representationG → O(n) of a topological
group. Our recognition principle constructs loop and deloop functors between the category ofG-
spaces and the category ofDn � G-spaces, inducing equivalences of ‘naive’ homotopy categories.
If G is trivial, this is May’s original recognition principle.

We next investigate the homology of the spaces with an action of the framed discs operad. We
consider semidirect products for graded operads: ifH is a graded Hopf algebra andP a graded
operad acted on byH , one can construct a graded operadP � H which is such that aP � H -
algebra in the category of chain complexes is exactly aP-algebra in the category of differential
gradedH -modules. The homology functor (with field coefficients) commutes with the semidirect
product construction. The homology off Dn can thus be studied as the semidirect productH(Dn)�

H(SO(n)). This approach yields a conceptual proof of the fact that the rational homology of an
algebra over the framed 2-discs is a Batalin–Vilkovisky algebra [10], and computes more generally
the rational homology of the framedn-discs operad for anyn (Theorem 5.4). Forn even this
produces Batalin–Vilkovisky structures in higher degrees.

In section 6, we define a notion of quadratic duality for semidirect products. We dualizeP � H
by dualizingP in the category ofHop-modules. We show that the Batalin–Vilkovisky operad is
self-dual up to a shift.

As an application, we explain how to compute the rational homology of a double loop space on
an S1-manifold M as a BV-algebra, starting from the complex of differential forms onM together
with a derivation induced by the action (Theorem 6.5). This extends results in [10], whereM is a
double suspension, and [11], where only the Gerstenhaber algebra structure is considered.

We end the article by relating the framed 2-discs to the ribbon braid groups, extending work of
Fiedorowicz in the case of the little discs and the braid groups. We show that classifying spaces
of ribbon braided monoidal categories are double loop spaces onS1-spaces (Theorem 7.7). This
follows from the equivalence between the framed 2-discs and a ribbon braid groups operads. We
also give a criterion for an operad to be equivalent to the framed little 2-discs operad (Theorem 7.3).

2. Equivariant operads

We work in the categoryTop of compactly generated weak Hausdorff topological spaces. LetG
be a topological group. The category of leftG-spaces, denotedG-Top , is asymmetric monoidal
category by the Cartesian product. We can thus consider operads in this category, which we call
G-operads.

Let A be aG-operad. SoA consists of a sequence ofG-spacesA(k) for k ∈ N, with G-
equivariant operad structure maps and symmetric group actions. Note that the unit 1∈ A(1) is also
preserved by theG-action.

Wewill denote the action of an elementg ∈ G on an elementa ∈ A(k) by ga.
The following notion first appeared in [17].

DEFINITION 2.1 LetA be aG-operad. DefineA� G, thesemidirect productof A andG, to bethe
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Fig. 1 Element of f D2(3) = D2(3) × (S1)3

following operad inTop , for k ∈ N:

(A � G)(k) = A(k) × Gk

with �k acting diagonally on the right, permuting the components ofGk and acting onA(k), and
the map

γ : (A � G)(k) × (A � G)(n1) × · · · × (A � G)(nk) −→ (A � G)(n1 + · · · + nk)

given by

γ ((a, g), (b1, h1), . . . , (bk, hk)) = (γA(a, g1b1, . . . , gkbk), g1h1, . . . , gkhk),

wherehi = (hi
1, . . . , hi

ni
) andgi .hi = (gi hi

1, . . . , gi hi
ni

). The unit inA � G(1) is (1, e), formed
from the units ofA andG.

TheG-equivariance ofγA is necessary for the associativity of the structure map of the semidirect
product operad.

Note that the semidirect productA� G can be thought of as the semidirect product of the operad
A and the operadG, whereG(k) = Gk and the operad structures maps ofG are given by the right
part ofγ above.

EXAMPLE 2.2 The example we have in mind is the framed discs operadf Dn. Let Dn be the little
n-discs operad of Boardman and Vogt. HenceDn(k) is the space of embeddings

∐
k Dn → Dn

of k copies of the unitn-disc into itself such that the maps are compositions of positive dilations
and translations, and the images are disjoint. The framed discsf Dn is defined similarly but one
allows rotations for the embeddings. As spaces,f Dn(k) = Dn(k) × (SO(n))k, the i th element of
SO(n) encoding the rotation of thei th disc. In fact,Dn is anSO(n)-operad andf Dn is a semidirect
product in the above sense:

f Dn = Dn � SO(n).

The action ofSO(n) on Dn(k) rotates the little discs around their centre. Note that the whole
orthogonal groupO(n) acts onDn(k) in such a way thatDn � O(n) is well defined. We will
consider semidirect products ofDn with any topological groupG equipped with a continuous
homomorphismφ : G → O(n). We will suppressφ from the notation and denote the resulting
semidirect product simply byDn � G.
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PROPOSITION 2.3 LetA and G be as in Definition2.1. A space X is an(A � G)-algebra if and
only if X is anA-algebra in the category of G-spaces, that is, X admits a G-action andA-algebra
structure mapsθA : A(k) × Xk −→ X satisfying g(θA(a, x1, . . . , xk)) = θA(ga, gx1, . . . , gxk).

Moreover,θA�G((a, (g1, . . . , gk)), x1, . . . , xk) = θA(a, g1x1, . . . , gkxk).

As an immediate consequence we have this corollary.

COROLLARY 2.4 Let X, Y betwo (A � G)-algebras. A map f: X −→ Y is amap of(A � G)-
algebras if and only if it is anA-algebra map and a G-map.

Wewill use the following examples of framed algebras.

EXAMPLE 2.5 Let Y be a pointedG-space and letDn denote the monad associated to the operad
Dn [19, Const. 2.4];DnY is the freeDn-algebra on the pointed spaceY. Let �nY denote the based
n-fold loop space onY, seen as the space of maps from the unitn-discDn to Y sending the boundary
to the base point. The space�nY carries a naturalDn-algebra structure [19, Theorem 5.1].

Let φ : G −→ O(n) be a continuous group homomorphism. The spacesDnY and�nY are
Dn � G-algebras, with the action ofg ∈ G on [c; y1, . . . , yk] ∈ DnY, wherec ∈ Dn(k), yi ∈ Y,
given by

g[c; y1, . . . , yk] = [φ(g)c; gy1, . . . , gyk],
and on[y(t)] ∈ �nY, wheret ∈ Dn and[y(t)] denotes then-fold loop t �→ y(t), given by

g[y(t)] = [gy(φ(g)−1(t))].

3. Recognition principle

Let φ : G −→ O(n) be as above and letX be a grouplikeDn � G-algebra, that is, the components
of X form a group by the product induced by any element inDn(2). As X is aDn � G-algebra, it
is in particular aDn-algebra.

May introduced a deloop functorBn from Dn-algebras to pointed spaces defined byBnX :=
B(�n, Dn, X), whereB is the two-sided bar construction [19, Const. 9.6],� the suspension and
Dn is the freeDn-algebra functor, as above. May’s recognition principle says thatX is weakly
equivalent to�nBnX asDn-algebra. May also showed that, conversely,Bn applied to ann-fold
loop space�nY produces a space weakly homotopy equivalent toY whenY is (n − 1)-connected;
see [19, Theorem 13.1] and its improvement in [3, p. 487 (21)].

In what follows, we consider the behaviour of�n andBn with respect toG-actions, and provide
a recognition principle for algebras overDn � G.

Let Dn � G-Topgl , Dn � G-Top0 and G-Top∗
n be respectively the categories of grouplike,

connectedDn � G-algebras andn-connected pointedG-spaces. The categoriesG-Top andDn �

G-Top are closed model categories with weak homotopy equivalences as weak equivalences [5, 3.1;
1, Remark 4.2]. For a model categoryC, we will denote by Ho(C) its associated homotopy category,
obtained by inverting the weak equivalences. We define the homotopy categories Ho(Dn�G-Topgl ),
Ho(Dn � G-Top0) and Ho(G-Top∗

n) to be the full subcategories of the categories Ho(Dn � G-Top),
Ho(Dn � G-Top) and Ho(G-Top∗) containing the grouplike, connected andn-connected objects
respectively.

For anyG-spaceY, we have seen in Example 2.5 that�nY has aDn � G-algebra structure
induced by the diagonal action ofG. On the other hand, we will define aG-action onBnX for any
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Dn � G-algebraX. Hence,�n andBn will be functors between the categories of pointedG-spaces
and ofDn � G-algebras.

THEOREM 3.1 For each continuous homomorphismφ : G −→ O(n), wehave functors

�n
φ = �n : G-Top∗

n−1 −→ Dn � G-Topgl ,

Bφ
n = Bn : Dn � G-Topgl −→ G-Top∗

n−1

which induce an equivalence of categories

Ho(G-Top∗
n−1) � Ho(Dn � G-Topgl).

For k � n, this equivalence restricts to

Ho(G-Top∗
k) � Ho(Dn � G-Topk−n).

Proof. May’s recognition principle [19, Theorem 13.1] is obtained through the following maps:

X ←− B(Dn, Dn, X)
α−→ B(�n�n, Dn, X) −→ �nB(�n, Dn, X) = �nBnX,

where all maps areDn-maps betweenDn-spaces. WhenX is aDn � G-algebra, we want to define
G-actions on the spaces involved which induceDn � G-algebra structures and such that all maps
areG-maps.

The functorsDn, �n and�n restrict to functors in the category ofG-spaces where, for anyG-
spaceY, wedefine the action onDnY, �nY and�nY diagonally as in Example 2.5. Hence for any
G-spaceY theG-action on�n�nY is given by

g[σ(t), y(t)] = [φ(g)σ (φ(g)−1t), gy(φ(g)−1t)],
whereg ∈ G, t, σ (t) ∈ Dn andy(t) ∈ Y. This produces aDn � G-algebra structure on�n�nY
such that May’s mapα : DnY −→ �n�nY is aG-map, and thus aDn � G-map.

We extend now these actions on the simplicial spacesB(Dn, Dn, X), B(�n�n, Dn, X) and
�nB(�n, Dn, X).

Recall that the double bar constructionB(F, C, X) is defined simplicially, for a monadC, a left
C-functor F and aC-algebraX by B(F, C, X) = |B∗(F, C, X)|, whereBp(F, C, X) = FCpX,
with boundary and degeneracy maps using the left functor, monad and algebra structure maps. The
group G acts then onBp(F, C, X) through its action on the functorsF andC, which comes to
‘rotate everything’. For example, the action ofg ∈ G on a 1-simplex ofB(�n�n, Dn, X) is given
by

g[σ(t), c(t), x1(t), . . . , xk(t)]
= [φ(g)σ (φ(g)−1t), φ(g)c(φ(g)−1t), gx1(φ(g)−1t), . . . , gxk(φ(g)−1t)].

With these actions, all maps above areG-maps betweenDn � G-spaces andBnX is equipped
with an explicitG-action.

On the other hand, we have a weak homotopy equivalence [19, Theorem 13.1;3, p. 487 (21)]

Bn�
nY = B(�n, Dn, �

nY)
|δ∗

0|−→ �n�nY
e−→ Y

for any (n − 1)-connected spaceY. If Y is a G-space, then this composite is aG-map with the
actions onBn�

nY and�n�nY defined as above.
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Note that we have constructed equivariant deloopings in the weak sense: our weak equivalences
areG-equivariant maps that are weak equivalences, but do not necessarily induce weak equivalences
of all fixed point sets. It would of course be nice if one could construct deloopings in the strong
sense.

4. Equivariant algebraic operads

For the next three sections, we work in the category of chain complexes over a fieldk, considering
only operads having trivial differential. We call these operadsgraded operads. For an elementx of
achain complex, we denote by|x| its degree.

Let H be a graded associative cocommutative Hopf algebra over a fieldk. The tensor product
of two H -modules inherits anH -structure which is induced by the coproduct ofH . As H is
cocommutative, the category of differential gradedH -modules, denotedH -Mod, is asymmetric
monoidal category with product the ordinary tensor product. Hence it makes sense to consider
operads and their algebras in this category. We call such operads (graded) operads of H-modules.

As in the topological case, we can construct semidirect products.

PROPOSITION 4.1 Let P be a graded operad of H-modules. There exists a graded operad, the
semidirect productP � H, such that algebras over P in the category of H-modules are exactly
P � H-algebras.

The operad is defined by(P � H)(n) = P(n) ⊗ H⊗n. The structure maps are defined similarly
to the topological case, using the comultiplicationc of H and using interchanging homomorphisms
with appropriate signs.

Taking homology with coefficients in the fieldk provides a bridge from the topological to the
algebraic setting.

PROPOSITION 4.2 Let G be a topological group acting on a topological operadA. There is a
natural isomorphism of operads H(A � G) ∼= H(A) � H(G).

Suppose now thatP is a quadratic (graded) operad, namelyP has binary generators and trinary
relations [12, 2.1.7]. We will restrict ourselves to the case whereP(1) = k, concentrated in
dimension 0. ExplicitlyP = F(V)/(R), whereF(V) is the free operad generated by ak[�2]-
module of binary operationsV and(R) is the ideal generated by ak[�3]-submoduleR ⊂ F(V)(3).

PROPOSITION 4.3 Let H be a cocommutative Hopf algebra and P= F(V)/(R) a quadratic
operad. Then P is an operad of H-modules if and only if

(i) V is an(H, k[�2])-bimodule;

(ii) R ⊆ F(V)(3) is an(H, k[�3])-sub-bimodule.

In this case, we will call P a quadratic operad of H-modules.

Proof. An element of the free operad onV is described by a tree with vertices labeled byV [18,
section 1.9]. We define the action ofH on such an element by acting on the labels of the vertices,
using the comultiplication ofH . This is well defined asH is cocommutative. It induces anH -
module structure onF(V) which induces one onP(n) for all n by condition (ii). The operad
structure maps are thenH -equivariant by construction.
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Let c : H → H ⊗ H be the comultiplication. Forg ∈ H we write informally(c ⊗ id)(c(g)) =∑
i g′

i ⊗ g′′
i ⊗ g′′′

i .

PROPOSITION 4.4 Let P = F(V)/(R) be a quadratic operad of H-modules as above. A chain
complex X is an algebra over P� H if and only if

(i) X is an H-module,

(ii) X is a P-algebra,

(iii) for each g∈ H, v ∈ V and x, y ∈ X,

g(v(x, y)) =
∑

i

(−1)|g′′
i ||v|+|g′′′

i |(|v|+|x|)g′
i (v)(g′′

i (x), g′′′
i (y)).

Proof. The H -equivariance of the algebra mapθ2 : P(2) ⊗ X ⊗ X −→ X is given by the
commutativity of the following diagram:

H ⊗ P(2) ⊗ X ⊗ X
H⊗θ2 ��

T◦(c⊗id)◦c
��

H ⊗ X

φ

��

H ⊗ P(2) ⊗ H ⊗ X ⊗ H ⊗ X

ψ⊗φ⊗φ

��

P(2) ⊗ X ⊗ X
θ2 �� X

whereφ andψ give the action ofH on X and P(2) respectively, andT is the interchange. This
diagram translates, for the generators ofP(2), into condition (iii) of the proposition. TheH -
equivariance of the structure mapsθk for k > 2 is aconsequence of the fact thatV generatesP(k),
that the operadic composition isH -equivariant and that the structure mapsθ satisfy the associativity
axiom.

5. Batalin–Vilkovisky algebras

In this section we study the homology of the framedn-discs with coefficients in a fieldk of
characteristic 0. Our result generalizes Getzler’s result in the casen = 2 which says that the
homology of the framed 2-discs is the Batalin–Vilkovisky operad [10, section 4]. Our proof uses
semidirect products.

Wewill actually work without units, which means that our operadsP satisfyP(0) = 0.

DEFINITION 5.1 Let en denote the operad

en(k) := H(Dn(k)), k � 1,

en(0) = 0.

Algebras overen, n � 2, are calledn-algebras.
Let f en be the operad

f en(k) := H( f Dn(k)), k � 1,

f en(0) = 0.

So f en = en � H(SO(n)).
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Wewant to describe algebras overf en, using what is known foren.
Cohen’s study ofH(Dn) in [3, Theorem 1.2] implies that ann-algebraX is a differential graded

commutative algebra with a Lie bracket of degreen − 1, that is, the bracket satisfies the following
relations:

(L1) [x, y] + (−1)(|x|+n−1)(|y|+n−1)[y, x] = 0,

(L2) ∂[x, y] = [∂x, y] + (−1)|x|+n−1[x, ∂y],
(L3) [x, [y, z]] = [[x, y], z] + (−1)(|x|+n−1)(|y|+n−1)[y, [x, z]],

and the Poisson relation

(P1)] [x, y ∗ z] = [x, y] ∗ z + (−1)|y|(|x|+n−1)y ∗ [x, z]

holds.
Gerstenhaber algebrascorrespond to the casen = 2. The operaden is thus quadratic.
Note thatDn(2) is SO(n)-equivariantly homotopic toSn−1. In ann-algebra, the product comes

from the generating class∗ ∈ H0(Dn(2)) ∼= k and the bracket from the fundamental class
b ∈ Hn−1(Dn(2)) ∼= k, if we define [x, y] = (−1)(n−1)|x|b(x, y) [3, Definition 5.7 and
Theorem 1.2].

For n even the homology of the framedn-discs will include the following structure.

DEFINITION 5.2 A Batalin–Vilkovisky n-algebra Xis a graded commutative algebra with a linear
endomorphism� : X → X of degreen−1 such that�2 = 0 and for eachx, y, z ∈ X the following
BV-axiom holds:

�(xyz) = �(xy)z + (−1)|x|x�(yz) + (−1)(|x|+1)|y|y�(xz) − �(x)yz

−(−1)|x|x�(y)z − (−1)|x|+|y|xy�(z). (1)

Wewill denote by BVn the operad describing Batalin–Vilkoviskyn-algebras.

So a Batalin–Vilkovisky algebra (or BV-algebra), in the sense of [10], is a BV2-algebra.
In order to determine the homology operadH( f Dn), weneed to know the Hopf algebra structure

of H(SO(n)) and the effect in homology of the action ofSO(n) onDn(2). For dimensional reasons,
one always hasδ(b) = 0 for eachδ ∈ H̃(SO(n)). On the other handδ(∗) = π∗(δ), whereπ∗ is
induced in homology by the evaluation mapπ : SO(n) → Sn−1, viaDn(2) � Sn−1.

LEMMA 5.3 [20, Corollary 3.15]For n � 1, over a field of characteristic0, the Hopf algebra
H(SO(2n)) = ∧

(β1, . . . , βn−1, α2n−1) is the free exterior algebra on primitive generators
βi ∈ H4i −1(SO(2n)) and α2n−1 ∈ H2n−1(SO(2n)). Moreover, π∗(βi ) = 0 for all i and
π∗(α2n−1) = b ∈ H2n−1(S2n−1) is the fundamental class.

The Hopf algebra H(SO(2n + 1)) = ∧
(β1, . . . , βn) is the free exterior algebra on primitive

generatorsβi ∈ H4i −1(SO(2n + 1)), andπ∗(βi ) = 0 for all i .

If a Hopf algebraH acts trivially, via the co-unit, on an operadP, wecall the semidirect product
just thedirect productand denote it byP × H . Note that aP × H -algebra is anH -moduleX with
a P-algebra structure satisfying anH -equivariance condition which is trivial only ifH acts trivially
on X. In particular, anyP-algebra is aP × H -algebra with the trivialH -module structure.
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THEOREM 5.4 For n � 1 there are isomorphisms of operads

f e2n+1 ∼= e2n+1 × H(SO(2n + 1))

and

f e2n ∼= BV2n × H(SO(2n − 1)).

Hence an f e2n+1-algebra is a(2n + 1)-algebra together with endomorphismsβi of degree4i − 1
for i = 1, . . . , n such thatβ2

i = 0, βi β j = −β j βi for each i, j , and eachβi is a (2n + 1)-algebra
derivation, that is, a derivation with respect to both the product and the bracket.

On the other hand, an f e2n-algebra is aBV2n-algebra together with endomorphismsβi of degree
4i − 1 for i = 1, . . . , n − 1 squaring to0 and anti-commuting as in the odd case, which moreover
anti-commute with theBV operator� and are derivations with respect to the product.

Proof. By Proposition 4.4,X is an f en-algebra if and only ifX is a module overH(SO(n)) which is
ann-algebra equivariantly with respect to the action ofH(SO(n)). If δ is an element ofH(SO(n)),
the equivariance condition requires that

δ(x ∗ y) = δ(∗)(x, y) + δx ∗ y + (−1)|x|x ∗ δy, (2)

δb(x, y) = δ(b)(x, y) + (−1)n−1b(δx, y) + (−1)|x|+n−1b(x, δy) , (3)

where equations (2), (3) are obtained by settingg = δ, v = ∗ andg = δ, v = b in turn in condition
(iii) of Proposition 4.4.

Recall thatδ(b) = 0 for anyδ ∈ H(SO(n)). Also, recall that[x, y] = (−1)(n−1)|x|b(x, y).
In the odd case,H(SO(2n + 1)) is generated by operatorβ1, . . . , βn which satisfyβi (b) = 0.

So equations (2) and (3) become

βi (x ∗ y) = βi x ∗ y + (−1)|x|x ∗ βi y, (4)

βi [x, y] = [βi x, y] + (−1)|x|[x, βi y]. (5)

Hence all the operators are derivations of the product and the bracket andX is ann-algebra with
additional operatorsβ1, . . . , βn.

In the even case,H(SO(2n)) is generated by operatorsβ1, . . . , βn−1 andα2n−1, with βi (∗) = 0
andα2n−1(∗) = b. Sotheβi satisfy equations (4) and (5). Hence they are derivations of the product
and the bracket. On the other hand,α = α2n−1 satisfies the equations

α(x ∗ y) = (−1)|x|[x, y] + αx ∗ y + (−1)|x|x ∗ αy, (6)

α[x, y] = [αx, y] + (−1)|x|+1[x, αy]; (7)

equation (6) expresses the bracket in terms of the product andα :

[x, y] = (−1)|x|α(x ∗ y) − (−1)|x|α(x) ∗ y − x ∗ α(y). (8)
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If we substitute this expression into the Poisson relation of the 2n-algebra structure, we get exactly
the BV2n-axiom (equation (1)). Henceα and the product produce a Batalin–Vilkovisky 2n-algebra
structure onX. Proposition 1.2 of [10] shows that equation (7) and the Lie algebra axioms of an
n-algebra follow from the BVn-axiom in the casen = 2. The general case follows from the same
calculation. Finally, using equation (6), one can rewrite equation (5) in terms ofα, the βi and
the product. It becomes a redundant equation. Hence all the relations involving the bracket are
redundant and anf e2n-algebra is a BV2n-algebra with additional operatorsβ1, . . . , βn−1 (α and the
bracket being included in the BV-structure).

Note that there is no non-trivial�2-equivariant map fromH0(D2n+1(2)) to H2n(D2n+1(2)). So
(2n + 1)-algebras cannot give rise to ‘odd’ BV-structures as in the even case.

We have already seen that iterated loop spaces are algebras over the framed discs operad. We
deduce the following example.

EXAMPLE 5.5 The homology of ann-fold loop space on a pointedSO(n)-space is an algebra over
f en.

Another interesting class of algebras over the homology off Dn comes from the space�n−1M
of unbased maps fromSn−1 to a manifoldM . For a complexV , define thesuspension�V of V by
(�V)i = Vi −1.

EXAMPLE 5.6 [23] Let M be ad-dimensional oriented manifold. Then thed-fold desuspended
homology�−d H(�n−1M) is an algebra overf en.

Werecall that thebraid groupβk onk strings has generatorsr1, . . . , rk−1 and relationsri r i +1ri =
ri +1ri r i +1 for 1 � i � k − 2 andri r j = r j r i for 1 � i < j − 1 � k − 2. Theribbon braid group
Rβk has an extra generatortk (see Fig. 2), and an extra relationrk−1tkrk−1tk = tkrk−1tkrk−1. There
is a surjectionRβk � �k, sending a ribbon to the permutation induced by its ends. Thepure ribbon
braid group P Rβk is the kernel of this map, and thepure braid groupis Pβk = P Rβk ∩ βk. It
turns out thatRβk = βk � Z

k andP Rβk = Pβk × Z
k, whereZ

k encodes the number of twists on
each ribbon. Note thatπ1( f D2(k)) = P Rβk. Indeed f D2(k) = D2(k) × (S1)k, the factorD2(k)

is homotopy equivalent to the configuration spaceF(R2, k) of k ordered points inR2, and it is well
known thatπ1(F(R2, k)) = Pβk [15, Proposition X.6.14].

REMARK 5.7 The lantern relation was introduced in [13] by Johnson for its relevance to the
mapping class group of surfaces. It is defined by the following equation in the mapping class
group of a sphere with four holes:TE4 = TE1TE2TE3TC1TC2TC3, whereTC denotes the Dehn twist
along the curveC. See Fig. 3 for the relevant curves on a sphere with four holes, or equivalently
on a disc with three holes. The mapping class group is the group of path components of orientation
preserving diffeomorphisms which fix the boundary pointwise. For a sphere with four holes, this
group is isomorphic to the pure ribbon braid groupP Rβ3. The lantern relation is thus a relation in
P Rβ3 and gives rise to a relation inH1( f D2(3)) which is the abelianization ofP Rβ3. It was noted
by Tillmann that, with this interpretation, one gets precisely the BV-axiom (equation 1). Indeed, up
to signs, the curveE1 represents the operation(x, y, z) �→ �x ∗ y ∗ z. MoreoverE2 corresponds
to x ∗ �y ∗ z, E3 to x ∗ y ∗ �z, E4 to �(x ∗ y ∗ z), C1 to �(x ∗ y) ∗ z, C2 to x ∗ �(y ∗ z) andC3 to
y ∗ �(x ∗ z).

This geometric interpretation gives a direct proof of the fact that anyH( f D2)-algebra is a BV-
algebra.
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6. Quadratic duality for semidirect products

Recall that we work in the category of differential graded vector spaces, or chain complexes, over
a field k of characteristic 0, and with operads having trivial differential. In this section, we assume
moreover that the vector spaces have finite type.

Let P be a quadratic operad ofH -modules. We assume thatP(0) = 0 and P(1) = k is
concentrated in degree 0.

Recall that if P = F(V)/(R) is the quadratic operad generated byV with relationsR, then
its quadratic dualis the operadP! := F(V̌)/(R⊥), where V̌ = V∗ ⊗ sgn2, V∗ is the linear
dual, sgn2 is the sign representation of the symmetric group�2, and R⊥ is the annihilator ofR in
F(V̌)(3) = F(V)(3)∗ [12, 2.1.7]. The dual(P � H)! of P � H in this sense is not naturally a
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semidirect product operad. Thinking ofP � H as the operadP in H -Mod, weconsider instead the
following duality.

DEFINITION 6.1 Thedual of a semidirect product P� H is the operad(P � H)† := P!
� Hop,

whereP! is the quadratic dual ofP andHop denotesH with the opposite multiplication.

This makes sense becauseP! is an operad ofHop-modules (using Proposition 4.3).
Thesuspensionof an operadP is the operad�P defined by

�P(n) = �n−1(P(n)) ⊗ sgnn,

with the operad structure induced byP (where�n−1(P(n)) is then − 1 suspension of the graded
vector spaceP(n)). This operad has the property that a chain complexA is a�P-algebra if and
only if �A is a P-algebra.

In the following example, we show that the operad of Batalin–Vilkovisky algebras, as a semidirect
product, is self-dual up to suspension.

EXAMPLE 6.2 1. BV†
2n := e!

2n � H(S2n−1) = �1−2nBV2n;

2. f e†
2n := e!

2n � H(SO(2n))op = �1−2nBV2n × H(SO(2n − 1));

3. f e†
2n+1 = �−2ne2n+1 × H(SO(2n + 1)).

Proof. We give a proof of (1). It is known that the quadratic dual of the operade2n is its own
(2n − 1)-fold desuspension�1−2ne2n, with product p′ = b∗ dual to the original bracketb, and
bracketb′ = p∗ dual to the original productp ( [11, Theorem 3.1] or [9, Proposition 9.5]). Since
α2n−1(p) = b, it follows thatα2n−1(b∗) = p∗. So the classα2n−1 gives an operator� of degree
2n − 1 with �(p′) = b′ and�(b′) = 0, which thus induces a BV structure as in Theorem 5.4 but
this time with product in degree 1− 2n.

Let the complexA be a P-algebra inH -Mod. Define the complexCP(A) to be the freeP!-
algebra on the desuspension ofA∗:

CP(A) =
⊕

k�0

(P!(k + 1) ⊗�k+1 (�−1A∗)⊗k+1)

with differential d1 + d2, whered1 is induced by the differential∂ of A andd2 is induced by the
P-algebra structure ofA. (See [16, sections 1.1.9, 1.4] for more details. Note that Livernet works
with the dual complex, the freeP!-coalgebra on�A.) ThenCP(A) has anHop-module structure
induced by the action ofH on A and on(P!(n))∗. This action commutes withd1 as A is an H -
module, and it commutes withd2 as theP-algebra structure ofA is H -equivariant. Finally, the
P!-algebra structure ofCP(A) is Hop-equivariant becauseP is an operad ofH -modules.

For a P-algebraA, the P-homology of A, denotedHP(A), is defined to be the homology of the
complexCP(A) [18, Definition 3.93]. AsP � H has trivial differential, we have the following
proposition.

PROPOSITION 6.3 Let A be a P� H-algebra. Then CP(A) and HP(A) are P!
� Hop-algebras.



OPERADS AND ALGEBRAS 225

REMARK 6.4 When the operadP is Koszul [12, Definition 4.1.3], the complexCP(A) induces
an equivalence of homotopy categories between appropriate categories ofP-algebras andP!-
(co)algebras. (See [16, section 1.4] forP in degree 0, or [11, Theorem 2.25]. Note that in [11]
Getzler and Jones work with cooperads as well as coalgebras, using a dual cooperadP⊥ instead of
P!, whereP! = �−1(P⊥)∗. This comes to working with the complex dual toCP(A) and placing
the suspension in the operad rather than in the algebra.) The proposition can be used to extend these
equivalences to the corresponding categories ofP � H -algebras andP!

� Hop-(co)algebras.

We apply operadic homology in order to compute explicitly the BV-algebra structure of the
homology of the double loop space on a manifold. This improves [11, Theorem 6.1 ], where the
Gerstenhaber algebra structure was computed.

Let M be a 2-connected manifold with a smoothS1-action f : S1 × M → M preserving a
base pointx0. Let A∗(M) be the commutative algebra of differential forms onM vanishing onx0
in degree 0, with non-negative grading, and letdθ denote the standard volume form onS1. The
S1-action induces a derivation� onA∗(M) of degree−1. To define� on a formω, write uniquely
f ∗(ω) = dθ ∧ ω1 + ω2, so that dθ does not appear in the expression ofω2 in local coordinates
(θ, x1, . . . , xm). Then set�(ω) := i ∗(ω1), wherei is the inclusioni : M ∼= {1}× M ↪→ S1× M . A
simple computation shows that� is a derivation with respect to the wedge product and commutes
with the exterior derivative.

We want to show that�2 = 0. Write uniquely(S1 × f )∗ f ∗(ω) = dθ ′ ∧ dθ ′′ ∧ ωa + ωb so
that dθ ′ ∧ dθ ′′ does not appear in the expression ofωb in local coordinates(θ ′, θ ′′, x1, . . . , xm).
Then�2(ω) = i ∗(ωa), wherei now denotes the inclusionM ↪→ S1 × S1 × M . On the other
hand, letm : S1 × S1 → S1 denote the multiplication. As we have an action,(S1 × f )∗ f ∗(ω) =
(m × M)∗ f ∗(ω) = (dθ ′ + dθ ′′) ∧ ω1 + ω2. Henceωa = 0, which shows that�2(ω) = 0.

Thus, by reversing the signs of the grading,A∗(M) is a BV-algebra with trivial bracket and, by
Example 6.2, the suspension�A∗(M) is a BV†-algebra.

Let H̃ denote the reduced homology with coefficients ink, and let G = e2 denote the
Gerstenhaber operad.

THEOREM 6.5 The G!-homology of theBV†-algebra �A∗(M) is isomorphic toH̃(�2M) as a
BV-algebra.

Proof. By the Milnor–Moore theorem,̃H(�2M) is the free commutative algebra on the homotopy
groupsπ∗(�2M) ⊗ k = �−2π∗(M) ⊗ k, which are embedded iñH(�2M) via the Hurewicz
homomorphisms [6, Theorem 21.5]. Cohen showed in [3, Remark 1.2] that the bracket oñH(�2M)

restricts to the Whitehead product onπ∗(�2M) ⊗ k. On the other hand, sinceA∗(M) has a
trivial bracket, an easy computation (see [11, section 6.3]) shows that the operadic homology
HG!(�A∗(M)) is the free commutative algebra onH�−1(Com)(�A∗(M)), and this, by the deRham–
Sullivan theory, is naturally isomorphic to the�(Lie)-algebra�−2π∗(M) ⊗ k, where the bracket is
the Whitehead product, up to a sign [24, I.3.(11);4, Theorem 5(b)].

ThusHG!(�A∗(M)) is naturally isomorphic toH̃(�2M) as a Gerstenhaber algebra. As BV† =
G!

� H(S1), all we are left to prove is that the geometric operator�g on H̃(�2M) coincides with
the algebraic operator�a on HG!(�A∗(M)) under this isomorphism. It is sufficient to check it on
the generators�−2π∗(M) ⊗ k ⊂ H̃(�2M). It is also enough to prove this in the universal case.
Indeed, take an elementc ∈ πn(M), with n > 2, and a smooth representativeγ : Sn → M . The
universal (based)S1-space is

(Sn × S1)/(∗ × S1) � Sn ∧ S1+,
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with S1-action given by multiplication on the second factor. As this is not a manifold, we
have to work in the relative case. LetA∗(Sn × S1, S1) be the kernel of the restriction
A∗(Sn × S1) → A∗(∗ × S1). Asbefore, theS1-action induces an operator� onA∗(Sn × S1, S1).
With non-positive grading this makesA∗(Sn × S1, S1) into a BV-algebra. The map of pairs
z : (Sn × S1, ∗ × S1) → (M, x0) defined byz(x, θ) = θ(γ (x)) induces a BV-algebra map
A∗(M) → A∗(Sn × S1, S1), and thus a BV-algebra map onG!-homology. Letω be the standard
volume form onSn; H(A∗(Sn × S1, S1)) is generated by the class[ω] in dimensionn and[ω ∧ dθ ]
in dimensionn + 1. The vector subspaceV of A∗(Sn × S1, S1) generated bydθ ∧ ω andω is
a sub-BV-algebra, with trivial product, bracket and differential. By definition,�(dθ ∧ ω) = ω.
The inclusionV ⊂ A∗(Sn × S1, S1) is a weak equivalence and thus induces an isomorphism of
BV-algebras onG!-homology. SoHG!(�V) ∼= HG!(�A∗(Sn × S1, S1)) as BV-algebra, and the
latter is isomorphic toH̃(�2(Sn ∧ S1+)) as Gerstenhaber algebra, by the procedure described above
applied to the relative case.

By definition, the operadic homologyHG!(�V) is the free Gerstenhaber algebra on�−2(V∗),
with dual basis{en−2, en−1} (whereen−2 = �−2ω∗ anden−1 = �−2(ω ∧ dθ)∗ ), and (algebraic)
operator� = �a induced by�a(en−2) = en−1.

Let us compute the geometric bracket�g.
The classen−2 corresponds under the isomorphism to the spherical class induced by the map

Sn−2 a ��

adj(Id)
����

��
��

��
� �2(Sn ∧ S1+)

�2Sn

�2(i )

������������

wherei is the inclusion ofSn in Sn ∧ S1+. Let p : Sn ∧ S1+ → Sn ∧ S1 = Sn+1 be the projection.
Then(�2 p)∗(en−1) ∈ Hn−1(�

2Sn+1) is represented by the mapb : Sn−1 → �2Sn+1 adjoint to
the identity.

Sn−1 ��

b

adj(Id)
����������������� �2(Sn ∧ S1+)

�2(p)

��

�2Sn+1

Now consider the diagram

Sn−2 × S1

q

��

t �� �2(Sn ∧ S1+)

�2(p)

��

Sn−1 b �� �2Sn+1

where q is the projectionq : Sn−2 × S1 → Sn−2 ∧ S1 = Sn−1 and t (x, θ) is the result
of the action ofθ on a(x). Because the respective adjointsS2 × Sn−2 × S1 → Sn+1 have
both degree one this diagram homotopy commutes. AsSn ∧ S1+ � Sn ∨ Sn+1, we have
�2(Sn ∧ S1+) � �2�2(Sn−2 ∨ Sn−1). By computations of Fred Cohen,H(�2�2(Sn−2 ∨ Sn−1)) is
the free Gerstenhaber algebra on generatorsen−1 anden−2 of degreen−1 andn−2 respectively [3,
Theorem 3.2]. Similarly,H(�2Sn+1) = H(�2�2(Sn−1)) is the free Gerstenhaber algebra on a
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single generatoren−1. The map(�2 p)∗ kills en−2. As en−2 does not generate anything in degree
n − 1, (�2 p)∗ is an isomorphism in that degree.

Sinceq has degree one andt∗([Sn−2 × S1]) = �g(en−2), we conclude that�g(en−2) = en−1.
The general case follows by naturality.

7. Application to ribbon braided categories

Weconstruct in this section a categorical operad out of the ribbon braid groups. Taking the nerve of
the categories provides a topological operad equivalent to the framed 2-discs operad. We exhibit this
equivalence using a characterization of operads equivalent tof D2. We also describe the algebras
over the categorical ribbon operad. This extends work of Fiedorowicz in the braid case [7,8]. Details
and proofs about the ribbon case can be found in [26, sections 1.4 and 1.5].

In order to characterize topological operads equivalent to the framed 2-discs, we consider the
following notion of equivalence.

DEFINITION 7.1 A map of topological operadsA → B is an equivalenceif each map
A(k) → B(k) is a�k-equivariant homotopy equivalence.

An operadA is anEn-operad (resp.f En-operad ) if there is a chain of equivalences connecting
A toDn (resp. f Dn).

We will need to consider operads having ribbon braid groups actions instead of the usual
symmetric groups actions.

DEFINITION 7.2 A collection of spacesA = {A(k)} is aribbon operadif there is a right action of
Rβk onA(k) for eachk and if there are associative structure maps

γ : A(k) × A(n1) × · · · × A(nk) → A(n1 + · · · + nk)

with two-sided unite ∈ A(1), satisfying the equivariance conditions

γ (a.σ, b1, . . . , bk) = γ (a, b[σ ]−1(1), . . . , b[σ ]−1(k)).σ (n1, . . . , nk)

and
γ (a, b1.τ1, . . . , bk.τk) = γ (a, b1, . . . , bk).(τ1 ⊕ · · · ⊕ τk),

for all a ∈ A(k), bi ∈ A(ni ), σ ∈ Rβk, τi ∈ Rβni , where[σ ] is the permutation induced byσ , the
ribbonσ(n1, . . . , nk) ∈ Rβn1+···+nk is obtained fromσ by replacing thei th ribbon byni ribbons,
and(τ1 ⊕ · · · ⊕ τk) is the block sum of the ribbonsτ1, . . . , τk.

A ribbon operadA is called anR∞ operadif eachA(k) is a contractible numerable principal
Rβk-space.

Adapting Fiedorowicz’s proof in the case of braid groups andE2-operads, we obtain the
following.

THEOREM 7.3 A topological operadA is an f E2 operad if and only if its operad structure lifts to
an R∞ operad structure on its universal cover̃A.

There is a general method for constructing categorical operads from certain families of groups
[25; 26, section 1.2]. Our main example off E2 operads comes from this construction, after
taking the nerve. The ribbon braid groups give rise in this way to a categorical operadR,
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whereR(k) is the translationcategory with set of objectsRβk/P Rβk = �k, and the morphisms
HomR(σ P Rβk, τ P Rβk) ∼= P Rβk can be thought as multiplications on the left by elements ofRβk:

τ P Rβk
τhσ−1←− σ P Rβk,

whereh ∈ P Rβk andσ, τ ∈ Rβk. The operad structure maps are defined on objects as in the
associative operad, and on morphisms by

γ (σ1
τ←− σ0, ρ1, . . . , ρk) = τ(n

σ−1
0 (1)

, . . . , n
σ−1

0 (k)
)(ρ

σ−1
0 (1)

⊕ · · · ⊕ ρ
σ−1

0 (k)
),

where the right-hand side is defined as in Definition 7.2.
Let |R| denote the topological operad obtained by applying the nerve construction toR. So

|R|(k) = |R(k)| is the nerve of the categoryR(k).

PROPOSITION 7.4 The operad|R| is an f E2-operad.

Proof. The universal cover of|R(k)| is the realization of the simplicial setE Rβk, which is a
contractible space with freeRβk-action. In order to use Theorem 7.3, one has to show that the
operad structure of|R| lifts to its universal cover. The ribbon operad structure one obtains onE Rβk

is a ribbon version of the well-knownE∞ operad structure on classifying spaces of the categories
E�k.

Wenext describeR-algebras.

DEFINITION 7.5 A braided monoidal categoryis a monoidal category(A, ⊗) equipped with a
braiding, that is, a natural family of isomorphisms

c = cA,B : A ⊗ B −→ B ⊗ A

satisfying the ‘braid relations’:

(id ⊗ cA,C) ◦ a ◦ (cA,B ⊗ id) = a ◦ c ◦ a : (A ⊗ B) ⊗ C → B ⊗ (C ⊗ A),

and

(cA,C ⊗ id) ◦ a−1 ◦ (id ⊗ cB,C) = a−1 ◦ c ◦ a−1 : A ⊗ (B ⊗ C) → (C ⊗ A) ⊗ B,

wherea denotes the associativity isomorphism.
The category is braidedstrict monoidal if the monoidal structure is strict, that is, if the

associativity and unit isomorphisms are the identity.
A ribbon braided(strict) monoidal category(A, ⊗, c, τ ) is a braided (strict) monoidal category

(A, ⊗, c) equipped with atwist, that is, a natural family of isomorphisms

τ = τA : A −→ A

such thatτ1 = id1, where 1 is the unit object ofA, and satisfying the following compatibility with
the braiding:τA⊗B = cB,A ◦ τB ⊗ τA ◦ cA,B : A ⊗ B → A ⊗ B (see Fig. 4).
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=τA⊗B

A ⊗ B

A ⊗ B

cA,B

τB ⊗ τA

cB,A

A ⊗ B

A ⊗ B

Fig. 4 Compatibility between the twist and the braiding

Braided monoidal categories arise in the theory of quantum groups and their associated link
invariants [21; 15, Chapter XIII]. Shum shows in [22] that a ribbon braided structure provides a
natural solution to coherence questions for braided monoidal categories equipped with a duality.
Note that ribbon braided categories with a left duality are calledribbon categoriesin [15].

Symmetric monoidal and braided monoidal categories are the algebras over categorical operads
constructed out of the symmetric and braid groups respectively. In the ribbon case we have the
following.

PROPOSITION 7.6 A category is an R-algebra if and only if it is a ribbon braided strict monoidal
category.

If A is an R-algebra, there are functorsθk : R(k) × Ak → A. The product inA is defined on
objects byA ⊗ B = θ2(id�2, A, B) and on morphisms byf ⊗ g = θ2(idRβ2, f, g). The braiding
is given bycA,B = θ2(r1, idA, idB), wherer1 ∈ Rβ2 is is given in Fig. 2 and the twist is defined by
τA = θ1(t1, idA), wheret1 is the generator ofRβ1.

Consider the monoidR ×Z EZ. There are monoid maps

S1 ∼= (R ×Z ∗)
�←− R ×Z EZ

�−→ (∗ ×Z EZ) ∼= BZ.

So anyS1-space orBZ-space is canonically anR ×Z EZ-space. If one denotes bỹf D2 and|R̃| the
universal cover operads (R∞-operads) off D2 and|R| respectively, the above maps are restrictions

of the operad mapsf D2
�←− ˜f D2 ×P Rβ |R̃| �−→ |R| in arity 1. Using our recognition principle

(Theorem 3.1) and Theorem 7.3, we obtain the following:

THEOREM 7.7 The nerve of a ribbon braided monoidal categoryC, after group completion, is
weakly homotopy equivalent to a double loop space�2Y on an S1-space Y . The S1-action on Y is
induced by the twist onC and the equivalence is given byR ×Z EZ-equivariant maps.

Proof. Let C be a ribbon braided monoidal category and letC′ be the strictification ofC as a
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monoidal category. The categoryC′ then inherits a ribbon braided structure from the one existing on
C (see [14, Example 2.4] for the braid case). Indeed, letF : (C′, ⊗′) → (C, ⊗) be an equivalence of
monoidal categories. Define the braidingc′

A,B : A⊗′ B → B⊗′ A onC′ to be the unique morphism

in C′ whose image underF is the compositeF(A⊗′ B)
�→ F A⊗ FB

c→ FB⊗ F A
�→ F(B⊗′ A).

Define the twist similarly. The relations are satisfied by the faithfulness ofF .
The nerve|C′| is an|R|-algebra. The space|C| is not necessarily an|R|-algebra, but it admits a

BZ-action induced by the twist onC, and the equivalence|C| �−→ |C′| is BZ-equivariant.
Now the spaceX = B( f D2, ˜f D2 ×P Rβ

˜|R|, |C′|) is weakly homotopy equivalent to|C′| and is
an f D2-algebra. The equivalence is obtained through the following diagram of weak equivalences
in R ×Z EZ-Top:

B( f D2, ˜f D2 ×P Rβ
˜|R|, |C′|) B( ˜f D2 ×P Rβ

˜|R|, ˜f D2 ×P Rβ
˜|R|, |C′|)��

��

B(|R|, |R|, |C′|) −→ |C′|.
The group completion ofX is then equivalent to a double loop space�2Y, where Y =

B(�2, D2, X) and theS1-action onX now induces one onY, as explained in Theorem 3.1.
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