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Abstract

The framecdh-discs operad Dy, is studied as semidirect product®(n) and the littlen-discs
operad. Our equivariant recognition principle says that a grouplike space actedfdnbig
equivalent to then-fold loop space on a® O(n)-space. Examples of Dy-spaces are nerves

of ribbon braided monoidal categories. We compute the rational homolodyDgf, which
produces higher Batalin—Vilkovisky algebra structuresrf@ven. We study quadratic duality

for semidirect product operads and compute the double loop space homology of a manifold as
BV-algebra.

1. Introduction

The topology of iterated loop spaces was thoroughly investigated in the seventies. These spaces
have a wealth of homology operations parametrized by the famous operads of little discs, denoted
by Dy in the text. The notion of operad was introduced in the first place for this pur@o$@].[
Such machinery allows, for example, the reconstruction of an iterated delooping if one has full
knowledge of the operad action on an iterated loop space. Moreover any connected space acted on
by the little discs is weakly homotopy equivalent to an iterated loop space. This fact is the celebrated
recognition principle.

Our main objective is to extend this theory by adding the operatiotating the discs. The
operad generated by the littediscsD,, and the rotations irs O(n) is the framecdh-discs operad
f Dy, first introduced in 10]. Our recognition principle for framed-discs (Theorem 3.1) says that
aconnected (or grouplike) space acted on by the framdibcs operad is weakly homotopic to an
n-fold loop space on aB O(n)-space.

Thus the looping and delooping functors induce a categorical equivalence bel\@geyrspaces
and spaces acted on by the franmediscs operad, under the correct connectivity assumptions. The
main technique consists in presenting the framed little discs as a semidirect product of the little discs
and the special orthogonal group.
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For agroupG and aG-operadA, that is, an operad in the monoidal category@&paces, one
can define an operad x G in the category of spaces, tsemidirect producbf A andG. The
definition is such that the frameddiscs f D, is the semidirect produd®, x SO(n). Semidirect
products of this type have the following property: a spxces an.A x G-algebra if and only if
X is an.A-algebra in the category @-spaces. This allows us to studyDy-algebras by studying
Dn-algebrasS O(n)-equivariantly.

One can actually construct an opefag x G for any representatio® — O(n) of a topological
group. Our recognition principle constructs loop and deloop functors between the cate@dry of
spaces and the category®f, x G-spaces, inducing equivalences of ‘naive’ homotopy categories.

If G is trivial, this is May’s original recognition principle.

We next investigate the homology of the spaces with an action of the framed discs operad. We
consider semidirect products for graded operaddi ifs a graded Hopf algebra arfél a graded
operad acted on bid, one can construct a graded opefd« H which is such that & x H-
algebra in the category of chain complexes is exactR-algebra in the category of differential
gradedH-modules. The homology functor (with field coefficients) commutes with the semidirect
product construction. The homology &), can thus be studied as the semidirect prodti®,,) x
H(SO(n)). This approach yields a conceptual proof of the fact that the rational homology of an
algebra over the framed 2-discs is a Batalin—Vilkovisky algeb@ pnd computes more generally
the rational homology of the frameatdiscs operad for any (Theorem 5.4). Fon ewen this
produces Batalin—Vilkovisky structures in higher degrees.

In section 6, we define a notion of quadratic duality for semidirect products. We diratizéd
by dualizing P in the category ofH°P-modules. We show that the Batalin—Vilkovisky operad is
self-dual up to a shift.

As an application, we explain how to compute the rational homology of a double loop space on
an S-manifold M as a BV-algebra, starting from the complex of differential forms\bnogether
with a derivation induced by the action (Theorem 6.5). This extends result§linfjhereM is a
double suspension, antll]], where only the Gerstenhaber algebra structure is considered.

We end the article by relating the framed 2-discs to the ribbon braid groups, extending work of
Fiedorowicz in the case of the little discs and the braid groups. We show that classifying spaces
of ribbon braided monoidal categories are double loop spaced-spaces (Theorem 7.7). This
follows from the equivalence between the framed 2-discs and a ribbon braid groups operads. We
also give a criterion for an operad to be equivalent to the framed little 2-discs operad (Theorem 7.3).

2. Equivariant operads

We work in the categoryfop of compactly generated weak Hausdorff topological spaces.GLet
be a topological group. The category of I&tspaces, denote@-Top , is asymmetric monoidal
category by the Cartesian product. We can thus consider operads in this category, which we call
G-operads

Let A be aG-operad. SaA consists of a sequence &f-spacesA(k) for k € N, with G-
equivariant operad structure maps and symmetric group actions. Note that thesuditl} is also
preserved by th&-action.

We will denote the action of an elemegte G on an elemer € A(k) by ga.

The following notion first appeared iAiT].

DEFINITION 2.1 Let A be aG-operad. Defined x G, thesemidirect producof A andG, to bethe
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Fig. 1 Element off Dp(3) = D(3) x (S1)3

following operad inTop, for k € N:
(A% G)(k) = A(k) x G

with ¥ acting diagonally on the right, permuting the component&bfnd acting on4(k), and
the map

Y 1 (AxG)K) X (Ax G)(N) x -+ X (A x G)(Nk) —> (A x G)(Ng + -+ Nk)
given by
y((@,9), (b, hh), ..., (b, ) = (ya(@ gibr, ..., gkbo), gaht, ..., gkh®),

whereh' = (hi,..., hi,) andgi.h' = (gihi, ..., gih},). The unitinA x G(1) is (1, ), formed
from the units of4 andG.

The G-equivariance of/a is necessary for the associativity of the structure map of the semidirect
product operad.

Note that the semidirect produdtx G can be thought of as the semidirect product of the operad
A and the opera@, whereG(k) = GK and the operad structures mapsjofire given by the right
part ofy above.

ExAMPLE 2.2 The example we have in mind is the framed discs opdrRgd. Let Dy, be the little
n-discs operad of Boardman and Vogt. HeriggKk) is the space of embedding$, D" — D"

of k copies of the uninh-disc into itself such that the maps are compositions of positive dilations
and translations, and the images are disjoint. The framed diggsis defined similarly but one
allows rotations for the embeddings. As spacdeBy, (k) = Dn(k) x (SO(n))K, theith element of

S O(n) encoding the rotation of theh disc. In factDy is anS O(n)-operad and Dy, is a semidirect
product in the above sense:

fDn - Dn X SO(H)

The action ofSO(n) on Dy (k) rotates the little discs around their centre. Note that the whole
orthogonal groupO(n) acts onDx(K) in such a way thaD, x O(n) is well defined. We will
consider semidirect products @, with any topological grougs equipped with a continuous
homomorphismp : G — O(n). We will suppressy from the notation and denote the resulting
semidirect product simply b, x G.
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PrRoOPOSITION 2.3 Let. A and G be as in Definitio?.1 A space X is anA x G)-algebra if and

only if X is anA-algebra in the category of G-spaces, that is, X admits a G-action4uadyebra

structure map$ 4 : A(k) x XK — X satisfying o 4(a, X1, . .., X)) = 0.4(9a, gX4, - . . , §X).
Moreoverfd 4w ((@, (91, ---, Gk))\ X1, - -, Xk) = 04(a, 91X1, - - ., GkXk)-

As an immediate consequence we have this corollary.

COROLLARY 2.4 Let X, Y betwo (A x G)-algebras. Amap f X — Y is amap of(A4 x G)-
algebras if and only if it is and-algebra map and a G-map.

We will use the following examples of framed algebras.

EXAMPLE 2.5 Let Y be a pointeds-space and leD,, denote the monad associated to the operad
Dn [19, Const. 2.4];D,Y is the freeDy-algebra on the pointed spa¥e Let Q"Y denote the based
n-fold loop space olY, seen as the space of maps from the oritsc D" to Y sending the boundary
to the base point. The spa@®fY carries a naturaD,-algebra structurelp, Theorem 5.1].

Let¢p : G — O(n) be a continuous group homomorphism. The spdag¥ and Q"Y are
Dn x G-algebras, with the action @f € G on|[c; y1, ..., Y] € DnY, wherec € Dp(k), Vi €Y,
given by

glC; Y1, ..., Ykl = [9(9)C; OY1, - .., O¥kl.
and on[y(t)] € Q"Y, wheret € D" and[y(t)] denotes tha-fold loopt — y(t), given by

aly(®)] = [gy(¢ (@) L)1

3. Recognition principle

Lety : G —> O(n) be as above and |&t be a grouplikeD, x G-algebra, that is, the components
of X form a group by the product induced by any elemerbjj{2). As X is aDp x G-algebra, it

is in particular a@D,-algebra.

May introduced a deloop functdd, from Dyp-algebras to pointed spaces definedByX :=
B(x", Dp, X), whereB is the two-sided bar constructiotd, Const. 9.6],% the suspension and
Dy, is the freeDp-algebra functor, as above. May’s recognition principle says & weakly
equivalent toQ"B, X asDyp-algebra. May also showed that, conversdy,applied to am-fold
loop space"Y produces a space weakly homotopy equivalent tehenY is (n — 1)-connected:;
see [19, Theorem 13.1] and its improvement i, p. 487 (21)].

In what follows, we consider the behaviour@f and B, with respect tdG-actions, and provide
arecognition principle for algebras ovéx, x G.

Let Dy x G-Topg, Dn x G-Topy and G-Top;, be respectively the categories of grouplike,
connectedD,, x G-algebras and-connected pointe@®-spaces. The categori€& Top and Dy, x
G-Top are closed model categories with weak homotopy equivalences as weak equivaeBdes |
1, Remark 4.2]. For a model categafywe will denote by Ho() its associated homotopy category,
obtained by inverting the weak equivalences. We define the homotopy categorigst{e{Top)),
Ho(Dn x G-Topg) and HoG-Top;,) to bethe full subcategories of the categories B« G-Top),
Ho(D,, x G-Top) and HoG-Top*) containing the grouplike, connected anetonnected objects
respectively.

For any G-spaceY, we have seen in Example 2.5 th&"Y has aD,, x G-algebra structure
induced by the diagonal action &f. On the other hand, we will define@-action onBy X for any
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Dn x G-algebraX. Hence,Q" and B, will be functors between the categories of poin@gpaces
and of D, x G-algebras.

THEOREM 3.1 For each continuous homomorphigim G — O(n), we have functors

Qg = Q" : G-Top;,_; —> Dn x G-Topy,

BY = Bn : Dn x G-Topy —> G-Top;;_;
which induce an equivalence of categories
Ho(G-Topj,_;) =~ Ho(Dn x G-Topgy)).
For k > n, this equivalence restricts to
Ho(G-Topg) =~ Ho(Dp x G-Topy_p)-
Proof. May’s recognition principle 19, Theorem 13.1] is obtained through the following maps:
X <— B(Dp, Dp, X) -5 B(Q"Z", Dy, X) — Q"B(Z", Dy, X) = Q"B X,

where all maps ar®,-maps betwee,-spaces. WheiX is aD,, x G-algebra, we want to define
G-actions on the spaces involved which inddge x G-algebra structures and such that all maps
areG-maps.

The functorsD,, X" andQ" restrict to functors in the category &-spaces where, for arg-
spaceY, we define the action o, Y, ="Y andQ"Y diagonally as in Example 2.5. Hence for any
G-spaceY the G-action onQ"E"Y is given by

glo (t), YOI = [¢(@)a ($(9) ), gy(p(9) D)1,

whereg € G, t,o(t) € D" andy(t) € Y. This produces &,, x G-algebra structure of"x"Y
such that May’s map : DY — Q"Z"Y is aG-map, and thus &, x G-map.

We extend now these actions on the simplicial spa8&&®,, Dn, X), B(Q"X", D, X) and
QNB(Z", Dy, X).

Recall that the double bar constructiBigF, C, X) is defined simplicially, for a mona@, aleft
C-functor F and aC-algebraX by B(F, C, X) = |B.(F, C, X)|, whereBp(F, C, X) = FCPX,
with boundary and degeneracy maps using the left functor, monad and algebra structure maps. The
group G acts then orBp(F, C, X) through its action on the functofs andC, which comes to
‘rotate everything’. For example, the actiongf G on a 1-simplex oB(Q"%", Dy, X) is given

by
glo (1), c(t), xa (1), . .., Xk(t)]
= [¢(9)7 ($(9) D), p(@)c(p(9) 1), gxa (B (@) M), . .., gx(P(9) MD)].

With these actions, all maps above &@emaps betwee®,, x G-spaces an®, X is equipped
with an explicitG-action.
On the other hand, we have a weak homotopy equivalel®;&heorem 13.13, p. 487 (21)]

8*
B,2"Y = B(". Dy, "Y) 20 snony &, v

for any (n — 1)-connected spac¥. If Y is a G-space, then this composite isGamap with the
actions onB,Q"Y and="Q"Y defined as above.
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Note that we have constructed equivariant deloopings in the weak sense: our weak equivalences
areG-equivariant maps that are weak equivalences, but do not necessarily induce weak equivalences
of all fixed point sets. It would of course be nice if one could construct deloopings in the strong
sense.

4. Equivariant algebraic operads

For the next three sections, we work in the category of chain complexes over &, fegldsidering
only operads having trivial differential. We call these opergi@gled operadsFor an elemenk of
achain complex, we denote by| its degree.

Let H be a graded associative cocommutative Hopf algebra over akfielthe tensor product
of two H-modules inherits arH-structure which is induced by the coproductlef As H is
cocommutative, the category of differential graddemodules, denotedi-Mod, is asymmetric
monoidal category with product the ordinary tensor product. Hence it makes sense to consider
operads and their algebras in this category. We call such opegedie() operads of H-modules

As in the topological case, we can construct semidirect products.

PrRoPosITION 4.1 Let P be a graded operad of H-modules. There exists a graded operad, the
semidirect producP x H, such that algebras over P in the category of H-modules are exactly
P x H-algebras.

The operad is defined lyP x H)(n) = P(n) ® H®". The structure maps are defined similarly
to the topological case, using the comultiplicatmof H and using interchanging homomorphisms
with appropriate signs.

Taking homology with coefficients in the field provides a bridge from the topological to the
algebraic setting.

PrROPsITION 4.2 Let G be a topological group acting on a topological operdd There is a
natural isomorphism of operads (il x G) = H(A) x H(G).

Suppose now thaP is a quadratic (graded) operad, namBhhas binary generators and trinary
relations 12, 2.1.7]. We will restrict ourselves to the case whét€l) = k, concentrated in
dimension 0. ExplicityP = F(V)/(R), whereF (V) is the free operad generated bk&]-
module of binary operation and(R) is the ideal generated byk&>3]-submoduleR C F(V)(3).

PrROPOsITION 4.3 Let H be a cocommutative Hopf algebra and £ F(V)/(R) a quadratic
operad. Then P is an operad of H-modules if and only if

(i) Visan(H,k[X2])-bimodule;
(i) RS F(V)(3) isan(H,k[X3])-sub-bimodule.
In this case, we will call P a quadratic operad of H-modules.

Proof. An element of the free operad ahis described by a tree with vertices labeled\by18,
section 1.9]. We define the action bf on such an element by acting on the labels of the vertices,
using the comultiplication oH. This is well defined asd is cocommutative. It induces a-
module structure or (V) which induces one orP(n) for all n by condition (ii). The operad
structure maps are theth-equivariant by construction.
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Letc: H — H ® H be the comultiplication. Fog € H we write informally(c ® id)(c(9)) =
Yig®g ®g"

ProPcsITION4.4 Let P = F(V)/(R) be a quadratic operad of H-modules as above. A chain
complex X is an algebra over R H if and only if

(i) X is an H-module,
(i) X is aP-algebra,
(i) foreachge H,ve Vandxye X,

g(x, y)) = Y (=D FIHETIIEXD g/ () (g (x). g (y)).
i

Proof. The H-equivariance of the algebra map : P(2) ® X ® X — X is given by the
commutativity of the following diagram:

HOPQ®X®X — o H® X
lTO(CQ@id)oC

HOPQ @H®X®H® X b
JW®¢®¢

PQ ® X ® X % X

where¢ and give the action ofH on X and P(2) respectively, and is the interchange. This
diagram translates, for the generatorsRif2), into condition (iii) of the proposition. TheH-
equivariance of the structure mafasfor k > 2 is aconsequence of the fact thdtgenerated (k),
that the operadic compositionfi$-equivariant and that the structure mapsatisfy the associativity
axiom.

5. Batalin—Vilkovisky algebras
In this section we study the homology of the framedliscs with coefficients in a field of
characteristic 0. Our result generalizes Getzler’s result in the ase 2 which says that the
homology of the framed 2-discs is the Batalin—Vilkovisky operdd Eection 4]. Our proof uses
semidirect products.

We will actually work without units, which means that our operdisatisfy P(0) = 0.

DEFINITION 5.1 Let e, denote the operad

en(k) := H(Dn(k)), k=1,
en(0) =0.
Algebras over,, n > 2, are calledh-algebras
Let fe, be the operad
fen(k) :== H(fDn(k)), k=1,
fen(0) =0.

So fey, = e, x H(SO(n)).
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We want to describe algebras ovée,, using what is known foe,.

Cohen’s study oH (Dy) in [3, Theorem 1.2] implies that amalgebraX is a differential graded
commutative algebra with a Lie bracket of degree 1, that is, the bracket satisfies the following
relations:

(|_1) (X, yl+ (_1)(|X\+n—1)(IYI+n71)[y7 X] =0,
(L2) 3[x, y] = [3X, y] + (=D)XI*"=1[x, dy],
(L3) [x, [y, ZI1 = [[X, Y1, Z] + (=) XIFn=DAyIFn=Dry 1% 7]],

and the Poisson relation

(PLIIX, y x 2] = [X, Y] ¥ 2+ (=DVIXHFn=Dy 4 [x 7]

holds.

Gerstenhaber algebrasorrespond to the case= 2. The opera@, is thus quadratic.

Note thatD,,(2) is S O(n)-equivariantly homotopic t&"~1. In ann-algebra, the product comes
from the generating class € Hp(Dnh(2)) = k and the bracket from the fundamental class
b € H_1(Dn(2) = k, if we define[x,y] = (-1 DIXIp(x,y) [3, Definition 5.7 and
Theorem 1.2].

Forn even the homology of the frameaddiscs will include the following structure.

DEFINITION 5.2 A Batalin—Vilkovisky n-algebra Xs a graded commutative algebra with a linear
endomorphisna : X — X of degreen— 1 such thatA? = 0 and for eaclx, y, z € X the following
BV-axiom holds:

A(xy2 = AxY)Z+ (~DMxA(y2) + (=) XTVyA(x2) — Ax)yz
—(=)™xAy)z - ()M VixyA@). (1)

We will denote by BV, the operad describing Batalin—Vilkoviskyalgebras.

So a Batalin—Vilkovisky algebra (or BV-algebra), in the senself,[is a BV»-algebra.

In order to determine the homology opettdd f D), we need to know the Hopf algebra structure
of H(SO(n)) and the effectin homology of the action®fO(n) onD,(2). For dimensional reasons,
one always has(b) = 0 for eachs € H(SO(n)). On the other hand (x) = m.(8), wherer, is
induced in homology by the evaluation map SO(n) — "1, via Dp(2) ~ S 1.

LEMMA 5.3 [20, Corollary 3.15]For n > 1, over a field of characteristi®, the Hopf algebra
H(SO2n) = A(B1,-.--,Bn-1.22n—1) is the free exterior algebra on primitive generators
Bi € Hzi_1(SO2n)) and azn—1 € Hap—1(SO(2n)). Moreover, 7. (fi) = 0 for all i and
7x(aon—1) = b € Hon_1(S?1) is the fundamental class.

The Hopf algebra HSO(2n + 1)) = A(B1, ..., Bn) is the free exterior algebra on primitive
generatorsgi € Hai—1(SO(2n + 1)), andm.(B;) = Ofor all i.

If a Hopf algebraH acts trivially, via the co-unit, on an operd we call the semidirect product
just thedirect productand denote it by? x H. Note that aP x H-algebra is arH-moduleX with
a P-algebra structure satisfying a-equivariance condition which is trivial only H acts trivially
on X. In particular, anyP-algebra is & x H-algebra with the triviaH-module structure.
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THEOREMS5.4 For n > 1there are isomorphisms of operads
feont1 = ent1 x H(SO@2n + 1))
and
feon = BVon x H(SO(2n — 1)).

Hence an f g, 1-algebra is a(2n + 1)-algebra together with endomorphismisof degreedi — 1
fori =1,...,nsuch thatﬁi2 =0, Bipj = —pjpi foreachi j, and eachg; is a(2n + 1)-algebra
derivation, that is, a derivation with respect to both the product and the bracket.

On the other hand, an fg-algebra is aBVon-algebra together with endomorphismisof degree
4i —1fori =1,...,n— 1squaring to0 and anti-commuting as in the odd case, which moreover
anti-commute with th8V operator A and are derivations with respect to the product.

Proof. By Proposition 4.4X is an f ey-algebra if and only iX is a module oveH (SO(n)) which is
ann-algebra equivariantly with respect to the actiotbfS O(n)). If § is an element oH (SO(n)),
the equivariance condition requires that

S(X%Y) =8()(X, Y) + X % y 4+ (—1)XIx % 8y, )

8b(x, y) = 8(b)(X, y) + (=D th(8x, y) + (-1 1h(x, sy, ®)

where equations (2), (3) are obtained by setting §, v = x andg = §, v = bin turn in condition
(iii) of Proposition 4.4.

Recall thas(b) = 0 for anys € H(SO(n)). Also, recall thafx, y] = (—1)"DXIp(x, y).

In the odd caselH (SO(2n + 1)) is generated by operat@t, ..., By which satisfyg; (b) = 0.
So equations (2) and (3) become

Bi(x*y) = pix*xy+ (=D¥xxpy, 4)

BilX, y1 = [Bix, yl + (=D™[x, Biyl. (5)

Hence all the operators are derivations of the product and the bracket adnn-algebra with
additional operatorgs, ..., Bn.

In the even casdil (SO(2n)) is generated by operatofs, .. ., fn—1 andazn_1, with Bj(x) =0
andaon—1(*) = b. Sothe g; satisfy equations (4) and (5). Hence they are derivations of the product
and the bracket. On the other hands= aon_1 satisfies the equations

ax*xy) = (—DXx, y] + ax x y + (=D x * ay, (6)

a[x, y1 = [ax, Y] + (=D *x, ay]; (7
equation (6) expresses the bracket in terms of the produat and

X,y = (D)Ma(x x y) — (=DXa(x) x y — x x a(y). (8
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If we substitute this expression into the Poisson relation of thalgebra structure, we get exactly

the BVop-axiom (equation (1)). Henae and the product produce a Batalin—Vilkovisky-algebra
structure onX. Proposition 1.2 of I0] shows that equation (7) and the Lie algebra axioms of an
n-algebra follow from the BY{-axiom in the cas@ = 2. The general case follows from the same
calculation. Finally, using equation (6), one can rewrite equation (5) in ternas tife g; and

the product. It becomes a redundant equation. Hence all the relations involving the bracket are
redundant and afiey,-algebra is a BY,-algebra with additional operatogs, . . ., fn—1 (o and the
bracket being included in the BV-structure).

Note that there is no non-trivials-equivariant map fronHo(Dan+1(2)) to Hon(D2n+1(2)). So
(2n + 1)-algebras cannot give rise to ‘odd’ BV-structures as in the even case.

We have already seen that iterated loop spaces are algebras over the framed discs operad. We
deduce the following example.

ExAamPLE 5.5 The homology of am-fold loop space on a pointeédO(n)-space is an algebra over
fen.

Another interesting class of algebras over the homolog§Bf, comes from the spac&"1M
of unbased maps frol®" 1 to a manifoldM. For a complexV, define thesuspensiortV of V by
(EV)i = Vi1

ExAaMPLE 5.6 [23] Let M be ad-dimensional oriented manifold. Then tdefold desuspended
homology= —9H (A"~1M) is an algebra ovef &,.

Werecall that théoraid groupBk onk strings has generatars, . .., rg_1 and relations;rj 1rj =
igafifipa for1 <i <k—2andrirj =rjri for1 <i < j —1 < k— 2. Theribbon braid group
RBk has an extra generattyr(see Fig. 2), and an extra relatipp 1 tkrk—1tk = tkrk—1tkrk—1. There
is a surjectiorRgBx — X, sending a ribbon to the permutation induced by its ends.pline ribbon
braid group P Bk is the kernel of this map, and thmure braid groupis PBx = PRBk N Bk. It
turns out thaRBx = Bk x ZX andP RBkx = P« x ZK, whereZK encodes the number of twists on
each ribbon. Note that1(fD2(k)) = P RBk. IndeedfDa(k) = Do(k) x (ShHX, the factorD,(k)
is homotopy equivalent to the configuration sp&a@&?, k) of k ordered points ifR?, and it is well
known thatr(F (R?, k)) = PBk [15, Proposition X.6.14].

REMARK 5.7 The lantern relation was introduced ia3] by Johnson for its relevance to the
mapping class group of surfaces. It is defined by the following equation in the mapping class
group of a sphere with four holeSg, = Tg, Te, Te; Te, Te, Te,, WhereTe denotes the Dehn twist
along the curveC. See Fig. 3 for the relevant curves on a sphere with four holes, or equivalently
on a disc with three holes. The mapping class group is the group of path components of orientation
preserving diffeomorphisms which fix the boundary pointwise. For a sphere with four holes, this
group is isomorphic to the pure ribbon braid graRjR83. The lantern relation is thus a relation in
P R8s and gives rise to a relation id1( f D2(3)) which is the abelianization d® R3s. It was noted
by Tillmann that, with this interpretation, one gets precisely the BV-axiom (equation 1). Indeed, up
to signs, the curvé&; represents the operati@r, y, z) — AX x y % z. MoreoverE; corresponds
toxXx Ay*xz, E3toX*xy* Az E4t0 A(Xxy*2), C1to A(X*Y) x 2, CotoX * A(Y x z) andCgz to
Y x A(X * Z).

This geometric interpretation gives a direct proof of the fact thattdy D;)-algebra is a BV-
algebra.
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i—1 i i

Fig. 2 Generators of the ribbon braid gro&sy

Fig. 3 Lantern relation

6. Quadratic duality for semidirect products

Recall that we work in the category of differential graded vector spaces, or chain complexes, over
afield k of characteristic 0, and with operads having trivial differential. In this section, we assume
moreover that the vector spaces have finite type.

Let P be a quadratic operad dfi-modules. We assume th&(0) = 0 and P(1) = k is
concentrated in degree O.

Recall that ifP = F(V)/(R) is the quadratic operad generated bywith relationsR, then
its quadratic dualis the operadP' := F(V)/(R}), whereV = V* ® sgn,, V* is the linear
dual, sga is the sign representation of the symmetric graiy and R* is the annihilator oRR in
F(V)(3) = F(V)(3)* [12, 2.1.7]. The dualP x H)' of P x H in this sense is not naturally a
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semidirect product operad. Thinking Bfx H as the operaé in H-Mod, we consider instead the
following duality.

DEFINITION 6.1 Thedual of a semidirect product B H is the operadP x H)T := P! x HOP,
whereP' is the quadratic dual P and H°P denotesH with the opposite multiplication.

This makes sense becauReis an operad oH °P-modules (using Proposition 4.3).
Thesuspensionf an operadP is the operad\ P defined by

AP(n) = ="1(P(n)) ® sgn,,

with the operad structure induced By(wherex"~1(P(n)) is then — 1 suspension of the graded
vector spaceP(n)). This operad has the property that a chain complez a A P-algebra if and
only if ¥ Ais aP-algebra.

In the following example, we show that the operad of Batalin—Vilkovisky algebras, as a semidirect
product, is self-dual up to suspension.

EXAMPLE 6.2 1.BV} =g, x H(S"1) = AT2'BVy,;
2. fe;n = e’Zn x H(SO(2n))°P = A1"2'BV5, x H(SO(2n — 1));

3. fézrn+1 = A72”e2n+1 x H(SO(2n + 1)).

Proof. We give a proof of (1). It is known that the quadratic dual of the opezgdis its own

(2n — 1)-fold desuspensiom1~2"ey,, with productp’ = b* dual to the original brackes, and
bracketty = p* dual to the original producp ([11, Theorem 3.1] or9, Proposition 9.5]). Since
azn—1(p) = b, it follows thataon_1(b*) = p*. So the classyo,—1 gives an operatoA of degree

2n — 1 with A(p’) = b’ andA(b") = 0, which thus induces a BV structure as in Theorem 5.4 but
this time with product in degree 2n.

Let the complexA be aP-algebra inH-Mod. Define the complexCp(A) to be the freeP'-
algebra on the desuspensionAf:

Ce(A) = P(P'k+1) ®x,,, (ZTAH)K)
k>0

with differential d; + do, whered; is induced by the differentiad of A andd; is induced by the
P-algebra structure of.. (See [L6, sections 1.1.9, 1.4] for more details. Note that Livernet works
with the dual complex, the freB'-coalgebra or A.) ThenCp(A) has anH°P-module structure
induced by the action off on A and on(P'(n))*. This action commutes witd; as A is anH-
module, and it commutes witth, as theP-algebra structure oA is H-equivariant. Finally, the
P'-algebra structure dEp (A) is H°P-equivariant because is an operad oH-modules.

For aP-algebraA, the P-homology of AdenotedHp (A), isdefined to be the homology of the
complexCp(A) [18, Definition 3.93]. AsP x H has trivial differential, we have the following
proposition.

PROPGCSITION 6.3 Let A be a Px H-algebra. Then G(A) and Hp(A) are P' x H°P-algebras.



OPERADS AND ALGEBRAS 225

REMARK 6.4 When the operadP is Koszul[12, Definition 4.1.3], the complexXCp(A) induces

an equivalence of homotopy categories between appropriate categorRslgebras andP'-
(co)algebras. (Sedl§, section 1.4] forP in degree 0, or11, Theorem 2.25]. Note that inif]

Getzler and Jones work with cooperads as well as coalgebras, using a dual cd®penatead of

P!, whereP! = A~1(P1)*. This comes to working with the complex dual®p (A) and placing

the suspension in the operad rather than in the algebra.) The proposition can be used to extend these
equivalences to the corresponding categorieB of H-algebras andP' x H°P-(co)algebras.

We apply operadic homology in order to compute explicitly the BV-algebra structure of the
homology of the double loop space on a manifold. This improtésTheorem 6.1 ], where the
Gerstenhaber algebra structure was computed.

Let M be a 2-connected manifold with a smodgh-action f : S! x M — M preserving a
base pointkg. Let A*(M) be the commutative algebra of differential forms Mnvanishing onxg
in degree 0, with non-negative grading, anddétdenote the standard volume form &h. The
St-action induces a derivation on .A*(M) of degree—1. To defineA on a formw, write uniquely
f*(w) = do A w1 + wp, S0 thatdd does not appear in the expressionofin local coordinates
0, X4, ..., %Xm). Then setA(w) := i*(w1), wherei is the inclusiori : M = {1} x M < Sl x M. A
simple computation shows that is a derivation with respect to the wedge product and commutes
with the exterior derivative.

We want to show than? = 0. Write uniquely(St x f)* f*(w) = d8’ A d8” A wa + wp SO
thatd®’ A d6” does not appear in the expressionugfin local coordinategd’, 6”, x1, ..., Xm).
Then A%(w) = i*(wa), Wherei now denotes the inclusiokl — S! x S x M. On the other
hand, letm : St x St — S! denote the multiplication. As we have an actio8! x f)* f*(w) =
(M x M)*f*(w) = (do’ + db”) A w1 + wo. Hencew, = 0, which shows thah?(w) = 0.

Thus, by reversing the signs of the gradistf,(M) is a BV-algebra with trivial bracket and, by
Example 6.2, the suspensi@h4d*(M) is a BV'-algebra.

Let H denote the reduced homology with coefficientskinand letG = e, denote the
Gerstenhaber operad.

THEOREM6.5 The G-homology of theBVT-algebra £.4*(M) is isomorphic toH (Q22M) as a
BV-algebra.

Proof. By the Milnor—Moore theoremt (22M) is the free commutative algebra on the homotopy
groupsm,(Q22M) @ k = =27,(M) ® k, which are embedded ifl (22M) via the Hurewicz
homomorphismsg, Theorem 21.5]. Cohen showed B Remark 1.2] that the bracket ¢fi(22M)
restricts to the Whitehead product an(£2?M) ® k. On the other hand, sincel*(M) has a
trivial bracket, an easy computation (sei,[section 6.3]) shows that the operadic homology
Hg! (2.A*(M)) is the free commutative algebra 6ty -1 com (£.A%(M)), and this, by the deRham-—
Sullivan theory, is naturally isomorphic to thg(Lie)-algebrax 2, (M) ® k, where the bracket is
the Whitehead product, up to a sig?4[ 1.3.(11);4, Theorem 5(b)].

ThusHg: (Z.A*(M)) is naturally isomorphic tid (2?M) as a Gerstenhaber algebra. As'B¥
G' x H(Sh, all we are left to prove is that the geometric operatgron H (Q22M) coincides with
the algebraic operataka on Hg: (X.4*(M)) under this isomorphism. It is sufficient to check it on
the generator® —27,.(M) ® k ¢ H(Q2M). It isalso enough to prove this in the universal case.
Indeed, take an elemeate 7,(M), with n > 2, and a smooth representative S" — M. The
universal (based$!-space is

(8 x SH/(x x SH~ A S,
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with Sl-action given by multiplication on the second factor. As this is not a manifold, we
have to work in the relative case. Let*(S" x S, SY) be the kernel of the restriction
A*(S" x S — A*(x x S1). Asbefore, theSt-action induces an operataron A*(S" x St, Sh.
With non-positive grading this maked*(S" x St, S') into a BV-algebra. The map of pairs
z: (S x S xx S - (M, xp) defined byz(x,9) = 6(y(x)) induces a BV-algebra map
A*(M) — A*(S" x St, Sh, and thus a BV-algebra map @;-homology. Letw be the standard
volume form onS”; H (A*(S” x St, S1)) is generated by the clags] in dimensiom and[w A d6]
in dimensionn + 1. The vector subspacdé of A*(S" x St, SY generated bylé A w andw is
a sub-BV-algebra, with trivial product, bracket and differential. By definitidiidd A w) = w.
The inclusionV c A*(S" x St, Sl) is a weak equivalence and thus induces an isomorphism of
BV-algebras orG'-homology. SoHg (V) = Hg (SA*(S" x St, Sh) as BV-algebra, and the
latter is isomorphic td1 (22(S" A Si)) as Gerstenhaber algebra, by the procedure described above
applied to the relative case.

By definition, the operadic homologyls (XV) is the free Gerstenhaber algebra®n?(V*),
with dual basigen_», en_1} (Whereen_» = = 20* ande,_1 = ¥ %(w A d¥)* ), and (algebraic)
operatorA = Ay induced byAs(en—2) = en—1.

Let us compute the geometric brackej.

The class,_» corresponds under the isomorphism to the spherical class induced by the map

Q-2 a Q' A Sh)
Q23"

wherei is the inclusion ofS" in S" A St. Let p: S"A St — S? A St = S be the projection.
Then(£22p)s(en-1) € Hn_1(22S"*1) is represented by the médp: "1 — Q23" adjoint to
the identity.

g1—— %" A S

b o
adild) P
QZSTH-l
Now consider the diagram
g2y sl QS A S
lq sz%p)l
-1 b Q25+l

whereq is the projectionq : "2 x St - 2 A St = 1 andt(x,0) is the result
of the action of9 on a(x). Because the respective adjoir88 x "2 x S — S™1 have
both degree one this diagram homotopy commutes. SAsn St ~ S v S™*1 we have
Q2(S" A Sh) ~ Q2%2(S" 2 v S"-1). By computations of Fred Coheh,(2222(S"2v S'71)) is
the free Gerstenhaber algebra on generaprsande,_» of degreen — 1 andn — 2 respectively B,
Theorem 3.2]. SimilarlyH (223"*1) = H(©?%22(S1)) is the free Gerstenhaber algebra on a
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single generatoe,_1. The map(Q?p). kills en_». As en_» does not generate anything in degree
n—1, (Q2p), is an isomorphism in that degree.

Sinceq has degree one ang([S"2 x Sl]) = Ag(en—2), we conclude thathg(en—2) = en_1.
The general case follows by naturality.

7. Application to ribbon braided categories

We construct in this section a categorical operad out of the ribbon braid groups. Taking the nerve of
the categories provides a topological operad equivalent to the framed 2-discs operad. We exhibit this
equivalence using a characterization of operads equivalehD We also describe the algebras
over the categorical ribbon operad. This extends work of Fiedorowicz in the braid¢8keljetails
and proofs about the ribbon case can be foun@n gections 1.4 and 1.5].

In order to characterize topological operads equivalent to the framed 2-discs, we consider the
following notion of equivalence.

DEFINITION 7.1 A map of topological operadsA — B is an equivalenceif each map
A(k) — B(k) is aXk-equivariant homotopy equivalence.

An operadA is anEn-operad (respf Ep-operad ) if there is a chain of equivalences connecting
A to Dy, (resp. fDp).

We will need to consider operads having ribbon braid groups actions instead of the usual
symmetric groups actions.

DEFINITION 7.2 A collection of spacesl = {A(k)} is aribbon operadif there is a right action of
RBk on A(k) for eachk and if there are associative structure maps

y  AK) x A(n7) x -+ x A(Nk) = ANy + -+ 4+ Nk)
with two-sided unite € A(1), satisfying the equivariance conditions

y(a.o, b]_, P bk) = )/(a, b[a]fl(l)’ ey b[a]—l(k)).o'(nl, ey nk)

and
y@,brry, ..., bk) =y@ by, ..., 00).(11 D - ® w),

foralla € A(K), by € A(nj),o € RBk, 7i € RBn,. where[o] is the permutation induced lay, the
ribbono(ny, ..., Nk) € RBn,+...4n, is Obtained froms by replacing theth ribbon byn; ribbons,
and(ty @ - - - @ tv) is the block sum of the ribbong, . . ., .

A ribbon operadA is called anR, operadif each.A(k) is a contractible numerable principal

RpBk-space.

Adapting Fiedorowicz's proof in the case of braid groups digoperads, we obtain the
following.

THEOREM 7.3 Atopological operadA is an f B operad if and only if its operad structure lifts to
an Ry, operad structure on its universal cove.

There is a general method for constructing categorical operads from certain families of groups
[25; 26, section 1.2]. Our main example dfE; operads comes from this construction, after
taking the nerve. The ribbon braid groups give rise in this way to a categorical opgrad
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where R(k) is thetranslationcategory with set of objectRBx/P R8k = Xk, and the morphisms
Homg(o P RBk, T P RBk) = P RBk can be thought as multiplications on the left by elementRg:

tho1

TtPRBk <«— oPRg,

whereh € PRB¢ ando, t € RBk. The operad structure maps are defined on objects as in the
associative operad, and on morphisms by

T
y(0o1 <— 00,01, ..., k) = T(nao_l(l)’ ceey n(ro_l(k))(’otfo_l(l) DD pgo—l(k))»

where the right-hand side is defined as in Definition 7.2.
Let |R| denote the topological operad obtained by applying the nerve constructiBn 80
IR|(k) = |R(Kk)] is the nerve of the categoi(k).

PROPGSITION 7.4 The operadR| is an f B-operad.

Proof. The universal cover ofR(k)| is the realization of the simplicial séf R8x, which is a
contractible space with freRBg-action. In order to use Theorem 7.3, one has to show that the
operad structure dR| lifts to its universal cover. The ribbon operad structure one obtairs Rfy

is a ribbon version of the well-knowR, operad structure on classifying spaces of the categories
EXk.

We next describeR-algebras.

DEFINITION 7.5 A braided monoidal categoris a monoidal categoryA, ®) equipped with a
braiding, that is, a natural family of isomorphisms

c=cap:A®B—BQ®A
satisfying the ‘braid relations’:
([d®cac)ocao(cap®id)=aocoa: (A®B)®C - B® (C® A),
and
(cac®id)oato(id®cgc)=alocoal:A®(BRC)— (CR® A ®B,

wherea denotes the associativity isomorphism.

The category is braidedtrict monoidal if the monoidal structure is strict, that is, if the
associativity and unit isomorphisms are the identity.

A ribbon braided(strict) monoidal category.A, ®, ¢, t) is a braided (strict) monoidal category
(A, ®, ¢) equipped with d@wist, that is, a natural family of isomorphisms

tT=to:A— A

such thatr; = id1, where 1 is the unit object ofl, and satisfying the following compatibility with
the braiding:tags = Ce, a0 T8 ® tacCap : AQ B - A® B (see Fig. 4).
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Fig. 4 Compatibility between the twist and the braiding

Braided monoidal categories arise in the theory of quantum groups and their associated link
invariants R1; 15, Chapter XIll]. Shum shows in22] that a ribbon braided structure provides a
natural solution to coherence questions for braided monoidal categories equipped with a duality.
Note that ribbon braided categories with a left duality are cailgoon categoriesn [15].

Symmetric monoidal and braided monoidal categories are the algebras over categorical operads
constructed out of the symmetric and braid groups respectively. In the ribbon case we have the
following.

PROPCSITION 7.6 A category is an R-algebra if and only if it is a ribbon braided strict monoidal
category.

If Ais anR-algebra, there are functofg : R(k) x AKX > A. The product inA4 is defined on
objects byA ® B = 6x(idyx,, A, B) and on morphisms by ® g = 62(idRrg,, f, g). The braiding
is given byca g = 02(r1, ida, idg), wherery € RB2 is is given in Fig. 2 and the twist is defined by
a = 01(t1, ida), wheret; is the generator oRA;.

Consider the monoi®® x7 EZ. There are monoid maps

Sl>~ (R xyz%) < RxyzEZ — (*xz EZ) = BZ.

So anySt-space oBZ-space is canonically di x 7 EZ-space. If one denotes HyD, and|R| the
universal cover operadff,-operads) off D, and|R| respectively, the above maps are restrictions
of the operad map$ D, <— D, xpRrs |RI — |R| in arity 1. Using our recognition principle
(Theorem 3.1) and Theorem 7.3, we obtain the following:

THEOREM7.7 The nerve of a ribbon braided monoidal catega@tyafter group completion, is
weakly homotopy equivalent to a double loop sp@é¥ on an $-space Y. TheSactionon Y is
induced by the twist o6 and the equivalence is given Byx 7z EZ-equivariant maps.

Proof. Let C be a ribbon braided monoidal category anddétbe the strictification ofC as a
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monoidal category. The categafythen inherits a ribbon braided structure from the one existing on
C (see [14, Example 2.4] for the braid case). Indeed,fet (C’, ®) — (C, ®) be an equivalence of
monoidal categories. Define the braiditigs : A® B — B®' AonC’ to be the unique morphism

in C’ whose image undef is the composité (A®' B) > FA® FB < FBRFA S F(B®' A).
Define the twist similarly. The relations are satisfied by the faithfulne$s of
The nervelC’| is an|R|-algebra. The spad€| is not necessarily afR|-algebra, but it admits a

BZ-action induced by the twist afj, and the equivalencié| = |C’| is BZ-equivariant.

Now the spaceX = B(f Dy, fD2 xprs |R|, |C]) is weakly homotopy equivalent 6’| and is
an f Dp-algebra. The equivalence is obtained through the following diagram of weak equivalences
inR xz EZ-Top:

B(f D2, fD2 xprg IR, IC']) «—— B(fD2 xprg |R|, D2 xprs R, |C'])

|

B(RL IRI, IC') — IC'].

The group completion ofX is then equivalent to a double loop spa@8Y, whereY =
B(x2, Dy, X) and theSt-action onX now induces one o¥, as explained in Theorem 3.1.
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