
Journal of Pure and Applied Algebra 219 (2015) 3030–3052
Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

www.elsevier.com/locate/jpaa

Homotopy equivalences between p-subgroup categories ✩

Matthew Gelvin, Jesper M. Møller
Institut for Matematiske Fag, Universitetsparken 5, DK-2100 København, Denmark

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 January 2013
Received in revised form 26 August 
2014
Available online 30 October 2014
Communicated by C.A. Weibel

MSC:
05E15; 20J15

Let S∗
G be the Brown poset of nonidentity p-subgroups of the finite group G ordered 

by inclusion. Results of Bouc and Quillen show that S∗
G is homotopy equivalent to 

its subposets S∗+rad
G of nonidentity radical p-subgroups and S∗+eab

G of nonidentity 
elementary abelian p-subgroups. In this note we extend these results for the Brown 
poset of G to other categories of p-subgroups of G, including the p-fusion system 
of G.
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1. Introduction

Let p be a prime number and G a finite group of order divisible by p.
The Brown poset S∗

G consists of the nonidentity p-subgroups of G; this can be viewed topologically as 
the simplicial complex |S∗

G|. Brown showed in Ref. [6] that consideration of the Euler characteristic χ(|S∗
G|)

of S∗
G leads to a sort of topological Sylow’s Theorem: If |G|p is the maximal power of p dividing |G|, then 

χ(|S∗
G|) ≡ 1 modulo |G|p. Thus, G gives rise to a combinatorial geometric object — the realization of a 

category — whose topology reflects some of the algebraic structure of G.
S∗
G is comparatively simple for a category, but there are other constructions we might consider to gain 

further understanding of G. Dwyer’s theory of homology decompositions [8] shows that even recalling the 
natural G-action on S∗

G is enough to determine the p-homology of G, though not conversely. On the other 
hand, the centric linking system Lsfc

G of Ref. [4], whose objects are the p-self-centralzing subgroups of G, 
is significantly more complicated than S∗

G but both determines and is determined by the p-completed 
classifying space of G.

In each of these examples, the topological data is overdetermined by the category: We could have obtained 
the same result with a smaller collections of p-subgroups of G. Quillen showed [18] that the realization of 
S∗
G has the same homotopy type (and hence the same Euler characteristic) as the full subcategory S∗+eab

G
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of nontrivial elementary abelian subgroups of G, and Bouc later proved [1] the dual result that the full 
subcategory S∗+rad

G of G-radical p-subgroups is also homotopy equivalent. Dwyer’s notion of an ample
collection of subgroups is precisely the requirement that the p-homology of G can be recovered from the 
resulting sub-G-poset; both elementary abelian and G-radical subgroups form such a collection. And finally, 
the inclusion of the full subcategory of G-radical subgroups Lsfc+rad

G ⊆ Lsfc
G was shown to be a homotopy 

equivalence in Ref. [3].
In this paper we are interested in exploring the homotopy type of several such p-subgroup categories: 

Brown posets S∗
G, transporter systems T ∗

G , linking systems L∗
G, orbit systems OG, and the ambient-group free 

abstractions of these: Frobenius categories (or fusion systems) F , exterior quotients of Frobenius categories 
F̃ (the fusion-theoretic analogue of an orbit category), and abstract linking systems L. See Section 2 for 
definitions. More precisely, we are interested in identifying certain classes of subgroups that control the 
homotopy type of each of these p-subgroup categories, in the sense of the main results of Sections 6–10:

Theorem A. The following inclusion functors are homotopy equivalences.

(a) S∗+eab
G ↪→ S∗

G, S∗+rad
G ↪→ S∗

G, Ssfc+rad
G ↪→ Ssfc

G

(b) T ∗+eab
G ↪→ T ∗

G, T ∗+rad
G ↪→ T ∗

G , T sfc+rad
G ↪→ T sfc

G

(c) F∗+eab ↪→ F∗

(d) Orad
G ↪→ OG, O∗+rad

G ↪→ O∗
G, Osfc+rad

G ↪→ Osfc
G

(e) F̃∗+eab ↪→ F̃∗, F̃ sfc+rad ↪→ F̃ sfc

(f) L∗+eab
G ↪→ L∗

G, Lsfc+rad ↪→ Lsfc

Here and for the rest of the paper, a functor of categories a homotopy equivalence if the induced map of 
geometric realizations is a homotopy equivalence.

As indicated above, some of these results are well known in the literature, while others are new and 
provide new insight into the topological relationships between these categories. For instance, Theorem A, 
(c) and (e), together with the equality of categories F∗+eab = F̃∗+eab implies the unexpected

Corollary. The quotient functor F∗ → F̃∗ is a homotopy equivalence.

More generally, we find it curious that the combinatorics of the Frobenius category F∗
G, which is generally 

thought of as simply an organizing framework for the p-local data of G, can identify the elementary abelian 
p-subgroups of G. Similarly, the orbit category OG is able to identify the G-radical and the cyclic subgroups, 
and the exterior quotient F̃ sfc of an abstract Frobenius category F is able to identify the F-radical subgroups. 
We take this as evidence of a general theme that p-subgroup categories encode group structure in unexpected 
ways.

To understand the manner in which the shapes of our p-subgroup categories determine certain group-
theoretic data, we must discuss our method of proof for Theorem A. Indeed, for us the method is at least 
as interesting as the final result. There are two interwoven threads to this story: In one, we make use of 
Leinster’s theory of Euler characteristics for a general category [14] to identify a class of subgroups that 
is likely to control homotopy of the p-subgroup category; in the other, we make use of a special case of 
Quillen’s celebrated Theorem A on homotopy equivalences of categories [17] to prove that our proposed 
class of subgroup actually does control the homotopy type. We now summarize these points.

Consider first the special case of an inclusion of posets ι : P ⊆ Q. Here, Quillen’s Theorem A says that P
is homotopy equivalent to Q if every slice or coslice category of ι is contractible. In other words, it suffices 
to show that for every q ∈ Q, we have P/q := {p ∈ P | p ≤ q} is contractible; or dually that for every q ∈ Q, 
q/P := {p ∈ P | q ≤ p} is contractible. Rephrased slightly: In order for ι to be a homotopy equivalence, it 
is necessary that every object q ∈ Q whose proper slice category P//q := {p ∈ P | p � q} is noncontractible
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be an object of P, or that the dual criterion hold. The first case led to Quillen’s result S∗+eab
G � S∗

G, and 
the second to Bouc’s homotopy equivalence S∗+rad

G � S∗
G.

When we generalize to our p-subgroup categories, it’s important to note that we are not generalizing very 
far: All of the categories C we consider in this paper are finite EI-categories, so that every endomorphism of 
every object of C is an isomorphism. For us then, the role of proper slice category C//x of x ∈ C is filled by 
the category of nonisomorphisms with target x; the slice category is dually the category of nonisomorphisms 
with source x. See Section 3 for precise definitions. We then have our main technical tool for showing that 
a class of subgroups controls homotopy, appearing as Theorem 4.3:

Theorem B. The homotopy type of a finite EI-category C is controlled by the set of objects whose proper slice 
categories are noncontractible, or dually those objects whose proper coslice categories are noncontractible.

In other words, if all you care about is the homotopy type of C, you might as well throw away all objects 
x such that C//x � ∗. This material is covered in Section 4, and the key technical results needed for 
implementation of Theorem B is collected in Section 5.

Of course, this is only helpful if we have a proposed class of subgroups that might control homotopy of the 
p-subgroup category. In order to direct our search we turn to Leinster’s Euler characteristics for categories. 
This is a generalization of the Euler characteristic of a poset or a space, which relies on the notions of 
weightings and coweightings for a category C. Roughly speaking, these are functions k•C, kC• : Ob(C) → Q
that serve as right and left “inverses” to the generalized incidence matrix, which records the number of 
morphisms between any two object of C. If both a weighting and a coweighting for C exist, as is always the 
case for finite EI-categories, then the Euler characteristic χ(C) of C is the common sum of the values of either 
function and the reduced Euler characteristic of C is χ̃(C) := χ(C) − 1. The connection with Theorem B
comes from Theorem 3.7, whose key point is the following

Theorem C. Let C be a finite EI-category. There is a weighting for C that on an object x takes a value propor-
tional to the reduced Euler characteristic of the proper coslice category of x. Dually, there is a coweighting 
whose value on x is proportional to the reduced Euler characteristic of the proper slice category of x. Thus 
there are constants κx and κx such that

kxC = κx · χ̃(x//C) and kCx = κx · χ̃(C//x).

Thus the weighting is concentrated on the objects whose proper coslice categories have nonzero reduced 
Euler characteristic, which our intuition suggests must be noncontractible. While it appears to be an open 
question whether C contractible implies χ̃(C) = 0 in general, we have from [14, Proposition 2.4(a)] that an 
adjunction between two categories forces equality of their Euler characteristics. In particular, every category 
with an initial or terminal object has trivial reduced Euler characteristic, which turns out to be the relevant 
consideration in this paper. This all suggests (but does not prove!) that the classes of subgroups we consider 
should be those with nonzero (co)weightings in our p-subgroup categories, which were computed in Ref. [13].
With our Euler characteristic calculations in hand, we conclude by applying Theorem B.

2. p-Subgroup categories

This section contains precise definitions of the p-subgroup categories occurring in this paper. By conven-
tion, maps act on elements from the right, and composition of morphisms is written in diagrammatic order. 
Likewise, functors act on categories from the right.

If a and b are objects in a category C, we write C(a, b) for the set of C-morphisms with domain a and 
codomain b, and C(a) is the monoid of C-endomorphisms of a. All categories considered in this paper are 
EI-categories, so for us C(a) is in fact a group.
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Fix a finite group G. The most fundamental p-subgroup category we consider is the poset SG of all 
p-subgroups of G, ordered by inclusion. In other words, SG is the category whose objects are all p-subgroups 
of G with one morphism H → K whenever H ≤ K and no morphisms otherwise.

SG forms the backbone for all of the p-subgroup categories we consider. With our finite group G still in 
mind, we consider the following categories, all of which have as objects the p-subgroups of G:

TG: The transporter category of G; morphisms are elements of G conjugating one subgroup into another.
FG: The Frobenius, or p-fusion, category of G [16,5]; morphisms are group homomorphisms between sub-

groups which are restrictions of G-conjugations.
LG: The linking category of all p-subgroups G; an intermediary between TG and FG, thought of as killing 

the p′-part of the kernel of the natural functor TG → FG [4].1
OG: The p-orbit category of G; morphisms are G-maps between transitive G-sets with p-group isotropy.
F̃G: The exterior quotient of the Frobenius category FG; a fusion-theoretic analogue of OG [16, 1.3, 4.8].

More explicitly, for any p-subgroups H and K of G, the morphisms of the above categories are given by:

TG(H,K) = NG(H,K) LG(H,K) = OpCG(H)\NG(H,K)

FG(H,K) = CG(H)\NG(H,K) OG(H,K) = NG(H,K)/K

F̃G(H,K) = CG(H)\NG(H,K)/K

where NG(H, K) is the transporter set {g ∈ G | Hg ≤ K} and OpL denotes the minimal normal p-power 
index subgroup of L. Composition in these categories is induced by the group multiplication of G.

If H ≤ G is a p-subgroup, the automorphism groups in these categories of G are given by

SG(H) = 1, TG(H) = NG(H), LG(H) = OpCG(H)\NG(H),

FG(H) = CG(H)\NG(H), OG(H) = NG(H)/H, F̃G(H) = CG(H)\NG(H)/H.

The six categories are related by the commutative diagram

SG TG LG FG

OG F̃G

of one faithful and five full functors.
SG contains the identity subgroup as an initial object, so it is contractible. More topologically interesting 

is the Brown poset S∗
G of all nonidentity subgroups of G, which has long been an object of interest as a sort 

of geometry for the finite group G (cf. [6,18]). More generally, decorating one of our p-subgroup categories 
with an asterisk will denote the full subcategory of nonidentity subgroups: T ∗

G, F∗
G, etc.

Sylow’s Theorem implies that each of our p-subgroup categories (other than SG) is equivalent to its full 
subcategory with objects the subgroups of a fixed Sylow p-subgroup P ∈ Sylp(G). We will prefer to work 
with these “pointed” versions, especially as this convention allows us to work with abstract p-subgroup 
categories that make no reference to an ambient group G:

Fix a finite nonidentity p-group P . A Frobenius P -category, or (abstract) saturated fusion system over P , 
is a category whose objects are the subgroups of P and whose morphisms satisfy a set of axioms [16,5] that 

1 Note that in much of the literature, only a full subcategory of LG is considered, the centric linking system Lsfc
G . This full 

subcategory has much better homotopical properties than the full linking category, and we will concentrate on it once the notion 
of F-self-centralizing, or F-centric, subgroup is recalled below.
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distill the properties of the Frobenius categories FG coming from a group G. There are examples of abstract 
Frobenius P -categories F that are exotic in the sense that there is no finite group G with FG equal to F .

The exterior quotient, or orbit category, of F is the category F̃ whose objects are the subgroups of P and 
with morphism sets

F̃(H,K) = F(H,K)/FK(K)

are F-morphisms modulo inner automorphisms of the codomain. Composition in F induces composition in 
its quotient category F̃ .

While the term “orbit category” reflects certain similarities between the exterior quotient F̃ and the 
category of p-orbits OG, these are not the same construction; even in the presence of an ambient group G, 
the categories OG and F̃G are distinct.

Finally, we recall the fundamental notions of G- and F-self-centralizing and G- and F-radical subgroups. 
As usual, OpK is the largest normal p-subgroup of the finite group K [11, Chp 6.3].

Definition 2.1. (See [16, 4.8.1], [5, Definition A.3], [1, Proposition 4].) The p-subgroup H of G is

• p-self-centralizing in G if the center Z(H) of H is a Sylow p-subgroup of the centralizer CG(H) of H;
• G-radical if OpOG(H) = 1, or, equivalently, H = OpNG(H).

Definition 2.2. (See [16, 4.8], [5, Definition A.9].) An object H of F is

• F-self-centralizing if CP (ϕH) ≤ ϕH for every F-morphism ϕ ∈ F(H, P ) with domain H;
• F-radical if OpF̃(H) = 1.

If p | |G|, every p-self-centralizing subgroup of G is nontrivial, as is every F-self-centralizing subgroup 
of P .

Let P be a Sylow p-subgroup of G and F = FG the induced Frobenius P -category. For every H ≤ P ,

H is F-self-centralizing ⇐⇒ H is p-self-centralizing in G

H is F-self-centralizing and F-radical =⇒ H is G-radical

and the second implication cannot be reversed.
According to Quillen [18, Proposition 2.4], we have

S∗
K is noncontractible =⇒ OpK = 1 (2.3)

for any finite group K. In the present context, this means that

S∗
OG(H) is noncontractible =⇒ H is G-radical (2.4)

S∗
F̃(H) is noncontractible =⇒ H is F-radical (2.5)

Properties (2.4) and (2.5) will be very important in the proof of our homotopy equivalences. (Quillen 
conjectures in [18, Conjecture 2.9] that the reverse implication of (2.3) is true. If Quillen’s conjecture holds, 
then the reverse implications of (2.4) and (2.5) are true as well.)
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3. Weightings and coweightings for EI-categories

Let C be a finite category and [C] the set of isomorphism classes of its objects. In this section we show 
that we can use coslice categories to define weightings in the sense of Leinster [14]. In particular, we will 
relate the Euler characteristic of C to the Euler characteristic of its coslice categories.

Definition 3.1. (See [14, Definitions 1.10, 2.2].) A weighting for C is a function k•C : Ob(C) → Q so that

∀a ∈ Ob(C):
∑

b∈Ob(C)

∣∣C(a, b)
∣∣kbC = 1,

and a coweighting for C is a function kC• : Ob(C) → Q so that

∀b ∈ Ob(C):
∑

a∈Ob(C)

kCa
∣∣C(a, b)

∣∣ = 1.

If C has both a weighting and a coweighting, then∑
a∈Ob(C)

kaC =
∑

b∈Ob(C)

kCb =: χ(C)

is the Euler characteristic of C. The reduced Euler characteristic of C is χ̃(C) = χ(C) − 1.

A general finite category may not admit a weighting or coweighting, or it may have several. If at least one 
of each exists, the Euler characteristic is independent of the choice of weighting or coweighting. Moreover, if 
there are several (co)weightings, we will normalize by singling out the unique (co)weighting that is constant 
on each isomorphism class of our category.

If C is an EI-category, its objects can be arranged in such an order so that the matrix [C] is upper 
triangular. It follows that any finite EI-category has a unique weighting and a unique coweighting that are 
constant on isomorphism classes of objects [14, Lemma 1.3, Theorem 1.4, Lemma 1.12].

We will be interested in piecing together global (co)weightings from local data, to be described in terms 
of the (co)slice construction.

Definition 3.2 (Coslice and slice categories). Let C be a category with objects x and y, and A a full subcat-
egory of C.

• x/A is the category of C-morphisms from x to an object of A (the coslice of A under x)
• A/y is the category of C-morphisms from an object of A to y (the slice of A over y)
• x//A is the full subcategory of x/A with objects all nonisomorphisms from x to an object of A (the 

proper coslice of A under x)
• A//y is the full subcategory of A/y with objects all nonisomorphisms from an object of A to y (the 

proper slice of A over y)

Thus an object of x/A is a C-morphism ϕ1 ∈ C(x, a1), and an (x/C)-morphism from ϕ1 to ϕ2 ∈ C(x, a2)
is any η ∈ C(a1, a2) that makes the following triangle commute in C:

x
ϕ1 ϕ2

�

a1 η
a2

The other (co)slice categories are defined similarly.
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The (co)slice constructions define functors •/A : Cop → CAT and A/• : C → CAT via (pre)composition 
of morphisms. The proper (co)slice constructions do not in general piece together to form a functor, for 
the simple reason that the composite of two nonisomorphisms can be an isomorphism. However, if C is an 
EI-category, this obstruction vanishes and we also have functors •//A: Cop → CAT and A//•: C → CAT. 
Again, all p-subgroup categories considered in this paper are EI-categories.

Definition 3.3. If C is an EI-category, we write

supp(•/A) =
{
x ∈ Ob(C)

∣∣ x/A is noncontractible
}

supp(A/•) =
{
y ∈ Ob(C)

∣∣ A/y is noncontractible
}

supp(•//A) =
{
x ∈ Ob(C)

∣∣ x//A is noncontractible
}

supp(A//•) =
{
y ∈ Ob(C)

∣∣ A//y is noncontractible
}

for the supports of the coslice functors •/A, •//A: Cop → CAT and slice functors A/•, A//•: C → CAT.

The notation A//• and •//A is taken from [12, p. 269].

Lemma 3.4. Let C be any finite category admitting a weighting k•C: Ob(C) → Q. Let a be any object of C. 
The function

k•a/C = k
cod(•)
C : Ob(a/C) → Q, ka

ϕ→b
a/C = kbC ,

is a weighting for the coslice a/C of C under a.

Proof. The set of objects of a/C, which is the set of C-morphisms with domain a, is partitioned

Ob(a/C) =
∐

b∈Ob(C)

C(a, b) (3.5)

according to codomains. Also, for any C-morphism ϕ ∈ C(a, b) with codomain b and any C-object c, the set 
of C-morphisms from b to c is partitioned

C(b, c) =
∐

ψ∈C(a,c)

(a/C)(ϕ,ψ) (3.6)

into a/C-morphism sets with domain ϕ. The computation

∑
ψ∈Ob(a/C)

∣∣a/C(ϕ,ψ)
∣∣kcod(ψ)

C
(3.5)=

∑
b∈Ob(C)

∑
ψ∈C(a,b)

∣∣a/C(ϕ,ψ)
∣∣kcod(ψ)

C
(3.6)=

∑
b∈Ob(C)

∣∣C(cod(ϕ), b
)∣∣kbC = 1

shows that the function kcod(•)
C is a weighting on a/C. �

We can simplify the computation of (co)weightings by concentrating on the case where each isomorphism 
class contains a single object. For C a finite EI-category with an object a, let aC be the set of objects 
C-isomorphic to a, [C] some fixed equivalent skeletal subcategory, and [a] the unique object in [C] and aC. 
Then C has a weighting k•C if and only if [C] has a weighting k•[C], and we can construct one from the other:

k
[b]
[C] =

∑
C

kyC , kbC = 1
|bC | · k

[b]
[C], b ∈ Ob(C), [b] ∈ Ob

(
[C]

)
.

y∈b
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Similarly, C has a coweighting if and only if [C] does. Note that the (co)weightings on C that arise in this 
manner are necessarily constant on C-isomorphism classes of objects.

A full subcategory I of a category C is a left ideal if any C-morphism whose domain is an object of I is 
an I-morphism. For instance, if C is an EI-category and a an object of C then a//C is a left ideal in a/C by 
[14, Lemma 1.3].

Theorem 3.7. Let C be a finite EI-category, and let k•C and kC• be the weighting and the coweighting on C
that are constant on isomorphism classes of objects of C. Then

kaC = −χ̃(a//C)
|aC ||C(a)| , kCb = −χ̃(C//b)

|bC ||C(b)| , a, b ∈ Ob(C),

and the Euler characteristic of C is

∑
[a]∈[C]

−χ̃(a//C)
|C(a)| = χ(C) =

∑
[b]∈[C]

−χ̃(C//b)
|C(b)|

where the sums run over the set [C] of isomorphism classes of objects of C.

Proof. We shall only prove the statement about the weighting since the statement about the coweighting 
is entirely dual. C is a finite EI-category, so it is easy to see that the coslice categories a/C and a//C
are also finite EI-categories. Thus they admit weightings and coweightings, and have well-defined Euler 
characteristics. Since a//C is a left ideal in a/C, the weighting for a/C from Lemma 3.4 restricts to a 
weighting for a//C [13, Remark 2.6]. The category a/C has an initial object, so it is contractible and has 
Euler characteristic 1. Therefore

1 =
∑

ϕ∈Ob(a/C)

k
cod(ϕ)
C =

∣∣aC∣∣∣∣C(a)
∣∣kaC +

∑
ϕ∈Ob(a//C)

k
cod(ϕ)
C =

∣∣aC∣∣∣∣C(a)
∣∣kaC + χ(a//C)

because the weighting k•C is assumed to be constant on the isomorphism class [a] of a. �
The rational functions

k
[a]
[C] = −χ̃(a//C)

|C(a)| , k
[C]
[b] = −χ̃(C//b)

|C(b)| , [a], [b] ∈
[
Ob(C)

]
,

are the weighting and the coweighting for [C], respectively.
In the case S is a poset, we sometimes write a≤S, a<S, S≤b, S<b for a/S, a//S, S/b, S//b, respectively. 

Using this notation, the last part of Theorem 3.7 takes the following form.

Corollary 3.8. The Euler characteristic of a finite poset S is the sum

∑
a∈Ob(S)

−χ̃(a<S) = χ(S) =
∑

b∈Ob(S)

−χ̃(S<b)

of the negatives of the local reduced Euler characteristics.

This reproduces a well-known result from the combinatorial theory of posets.
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4. Homotopy equivalences between categories

The famous Quillen’s Theorem A provides a sufficiency criterion for a functor between two categories to 
be a homotopy equivalence. We quote this theorem here not in its full generality, but only for the special 
case that is of interest to us.

Theorem 4.1 (Quillen’s Theorem A for inclusions of categories). (See [17, Theorem A].) Let C be a category 
and A a full subcategory. The inclusion A ↪→ C is a homotopy equivalence if either supp(•/A) or supp(A/•)
is empty.

We also quote a perhaps less well-known result of Bouc providing a sufficient condition for an inclusion 
of posets to be a homotopy equivalence.

Theorem 4.2 (Bouc’s theorem for posets). (See [1].) Let S be a finite poset and A a subposet. The inclusion 
A ↪→ S is a homotopy equivalence if either supp(•//S) or supp(S//•) is contained in Ob(A).

In this section we generalize Bouc’s theorem for poset inclusions to finite EI-category inclusions. This 
boils down to a repurposing of Quillen’s Theorem A in terms of our notion of support, and should be thought 
of as a statement about what sort of objects control the homotopy type of a finite EI-category.

Theorem 4.3 (Bouc’s theorem for finite EI-categories). Let C be a finite EI-category and A a full subcategory 
that is closed under isomorphisms. The inclusion of A ↪→ C is a homotopy equivalence if either supp(•//C)
or supp(C//•) is contained in Ob(A).

Proof. Assume that Ob(A) contains the support supp(•//C) of the functor •//C. The claim is that the 
inclusion functor ι: A → C is a homotopy equivalence. It suffices to show that the coslice x/A of A is 
contractible for every object x of C (Theorem 4.1).

For any object x of C define the height of x, ht(x), to be the maximal length of any path

x0 → x1 → · · · → xh = x

of nonisomorphisms in C terminating at x. The height of x is finite since there are no circuits in paths of 
nonisomorphisms [14, Lemma 1.3]. If there is a nonisomorphism from x0 to x1, then ht(x0) < ht(x1). Define 
ht(C) to be the maximal height of any object of C.

Suppose that x is an object of C of maximal height, ht(C). Then x//C is the empty category because 
there is no nonisomorphism from x to any object of C. The empty category is not contractible, so x ∈
supp(•//C) ⊂ Ob(A) is an object of A. Then x/A is contractible with the identity of x as an initial object.

Let now x be any object of C such that the coslice y/A of A is contractible for all objects y of height 
greater than ht(x). Then the functor

x//ι:x//A → x//C

is a homotopy equivalence by Theorem 4.1 because the category

(x → y)/(x//ι) = y/A

is contractible for every object x → y of x//C. In the case x is an object of A, x/A is contractible as before. 
In the case x is not an object of A, x/A = x//A because there can be no isomorphism from x to an object 
of A as A is closed under isomorphisms. We now have
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x/A = x//A � x//C

and x//C is contractible since x /∈ supp(•//C). Thus x/A is also contractible.
By finite downward induction on ht(x) we see that x/A is contractible for all objects x of C. �

Remark 4.4. Theorem 4.3 is the main technical tool of this paper, but it should also be thought of as 
a descriptive statement about control of homotopy type of finite EI-categories. We will use the following 
reinterpretation: If C is a finite EI-category, then either (a) those objects whose proper slice categories 
are contractible do not, as a whole, contribute to the overall homotopy type of C, or (b) the same holds 
for those objects with contractible proper coslice categories. (Note that the union of these two classes 
cannot be discarded without affecting the homotopy type, as the example of the poset x < y shows.) In our 
search for homotopy equivalences between p-subgroup categories, we will therefore concentrate on identifying 
those objects with contractible proper (co)slices. Morally speaking, the reduced Euler characteristic of a 
contractible category should vanish, although this remains an open question as of this writing. Nevertheless, 
our intuition and the combinatorics developed in the previous section will guide our search in what follows, 
ultimately leading to success.

5. Subgroup categories for p-groups

In this section we collect several technical examples that will allow us to apply Theorem 4.3 more generally.
For any small category C and any set D ⊂ Ob(C) of objects of C, we let CD denote the full subcategory of 

C generated by the objects in the set D. For instance, if H � K are p-subgroups of G, then F [H,K)
G denotes 

the full subcategory of FG with objects the set of all subgroups L of G for which H ≤ L � K.
In the following lemma we consider

S(1,P )
P : the poset of nonidentity proper subgroups of P

O[1,P )
P : the full subcategory of OP with objects all proper subgroups of P

F̃ (1,P )
P : the full subcategory of F̃P with objects all nonidentity proper subgroups of P

for P a nonidentity p-group. We write μ for the Möbius function of the poset SP [20, §3.7], and we abbreviate 
μ(1, K) to μ(K) for any subgroup K of P .

Lemma 5.1. Let P be a nonidentity p-subgroup. Then

(a) • χ̃(S(1,P )
P ) = μ(P )

• χ̃(F̃ (1,P )
P ) = χ̃(F (1,P )

P ) = μ(P )
|P :Z(P )|

• χ(O[1,P )
P ) =

{
p−1 P is cyclic
1 else

(b) S(1,P )
P is noncontractible ⇐⇒ P is elementary abelian.

(c) O[1,P )
P is homotopy equivalent to O[1,V )

V , where V = P/Φ(P ) is the Frattini quotient of P .
(d) F̃ (1,P )

P is noncontractible ⇐⇒ P is elementary abelian.

Proof. (a) It is well known that χ̃(S(1,P )
P ) = χ̃(1, P ) = μ(P ) ([20, 3.8.5, 3.8.6], [13, 2.3]). The formulas for 

χ̃(F̃ (1,P )
P ) and χ(O[1,P )

P ) follow from [13, Remark 2.6, Example 3.7, Theorem 7.7, Theorem 4.1]: If kF̃• is a 
coweighting for F̃ (1,P ]

P then

1 = χ
(
F̃ (1,P ]

P

)
= χ

(
F̃ (1,P )

P

)
+ kF̃P = χ

(
F̃ (1,P )

P

)
+ −μ(P )
|P : Z(P )|
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because F̃ (1,P ]
P is contractible, with P as a terminal object, containing the right ideal F̃ (1,P )

P . Similarly, if
kO• is a coweighting for OP then

1 = χ(OP ) = χ
(
O[1,P )

P

)
+ kOP = χ

(
O[1,P )

P

)
+
{

1 − 1
p P is cyclic

0 P is not cyclic

and the expression for the Euler characteristic of O[1,P )
P follows.

(b) If P is elementary abelian, S(1,P )
P is well known to be a bouquet of spheres [18, §10], and is therefore 

not contractible. If P is not elementary abelian, the Frattini subgroup Φ(P ) is nontrivial [11, Chp 5, 
Theorem 1.3]. There are adjoint functors

S(1,P )
P

�

S [Φ(P ),P )
P

r

r

S [1,P )
P

�

where Q
 = QΦ(P ) and Qr = Q for Q ≤ P . Observe that Q � P =⇒ QΦ(P ) � P because the Frattini 
subgroup is the group of nongenerators of P . The poset on the right, S [1,P )

P , is contractible with the trivial 
group as an initial object. The poset on the left, S(1,P )

P , is therefore also contractible. Alternatively, the 
natural transformations Q ≤ QΦ(P ) ≥ Φ(P ), 1 ≤ Q � P , define a homotopy from the identity of S(1,P )

P to 
a constant map.

(c) There are functors

O[1,P )
P

�

O[Φ(P ),P )
P

r
O[1,P/Φ(P ))

P/Φ(P )

∼=
u

where r and 
 are adjoint functors and u is an isomorphism. The functors r and 
 are given by Q
 = QΦ(P )
and Qr = Q for Q ≤ P . The category in the middle, O[Φ(P ),P )

P , is isomorphic to the category O[1,P/Φ(P ))
P/Φ(P ) . 

To see this, observe that all supergroups of the Frattini subgroup Φ(P ) are normal, so that OP (Q1, Q2) =
P/Q2 = P/Φ(P )

Q2/Φ(P ) = OP/Φ(P )(Q1/Φ(P ), Q2/Φ(P )) when Q1 and Q2 both contain Φ(P ).
(d) If P is elementary abelian, then F̃P = SP and F̃ (1,P )

P = S(1,P )
P , is noncontractible by (b). If P is not 

elementary abelian, the Frattini subgroup Φ(P ) is a nontrivial normal subgroup and so is its intersection 
with the center Z(P ) of P [19, 5.2.1]. There are adjoint equivalences of categories

F̃ (1,P )
P

�

F̃ [Φ(P )∩Z(P ),P )
P

r

r

F̃ [1,P )
P

�

where Q
 = QΦ(P ) and Qr = Q for Q � P . The category to the right, F̃ [1,P )
P , is contractible because it has 

the trivial group as an initial object. The category to the left, F̃ (1,P )
P , is therefore also contractible. �

One might be led by Lemma 5.1(a) to suspect that, for any nonidentity p-group P ,

O[1,P )
P is noncontractible =⇒ P is cyclic

or, equivalently, for any nonidentity elementary abelian p-group V ,

O[1,V )
V is noncontractible =⇒ rank(V ) = 1

To see that these two statements are equivalent, recall that the Frattini quotient of P is cyclic precisely 
when P itself is cyclic [11, Chp 5, Corollary 1.2] and use Lemma 5.1(c). However, Example 5.2 demonstrates 
that these statements are false.
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Example 5.2. Let V = Cr
p be the elementary abelian p-group of rank r ≥ 1. The objects of the category 

O[1,V )
V are the proper subgroups of V , and the set of morphisms from H � V to K � V is

O[1,V )
V (H,K) =

{
V/K if H ≤ K

∅ otherwise

with composition in this category induced from composition in the abelian group V .
If the rank r = 1, then the category O[1,V )

V = O{1}
V is the cyclic group V , which is not contractible.

Let us now explore the category O[1,V )
V in the case where the rank r > 1. There is an obvious functor

π:O[1,V )
V → S [1,V )

V

to the poset of proper subgroups of V . For any proper subgroup K of V , the π-slice over K is π/K = O[1,K]
V . 

There is an adjunction

O[1,K]
V

�

O{K}
V

r
, r


ε= 1O{K}
V

, 1O[1,K]
V

η⇒ 
r,

where H
 = K and Kr = K. The functor r includes the full subcategory of OV with K as its only object into 
the full subcategory of all subgroups of K. The functor 
 is the projection OV (H1, H2) = V/H2 → V/K =
OV (K, K), H1 ≤ H2 ≤ K. Thus the category O[1,K]

V is homotopy equivalent to the category O{K}
V which is 

the group V/K. The composite functor spectral sequence ([10, pp. 155–157], [9, Proof of Proposition 2.3])

E2
st = Hs

(
S [1,V )
V ;Ht(V/•;Fp)

)
=⇒ Hs+t

(
O[1,V )

V ;Fp

)
(5.3)

associated to the functor π provides information about the homology groups of the category O[1,V )
V . Here, 

we write Hs(S [1,V )
V ; Ht(V/•)) for the sth left derived of the functor colimHt(V/•). In concrete terms, these 

groups are the homology groups of the normalized chain complex [15, Theorem VIII.6.1] of the simplicial 
abelian group 

∐
∗ Ht(V/•) [2, XII.5.5],

0 ←
⊕

0≤L0<V

Ht(V/L0)
∂1←−

⊕
0≤L0<L1<V

Ht(V/L0)
∂2←− · · · ∂s←−

⊕
0≤L0<L1···<Ls<V

Ht(V/L0)
∂s+1←− · · ·

with boundary homomorphism ∂s is defined by deleting single entries of the s-flag L0 < L1 < · · · < Ls and 
applying Ht(V/L0) → Ht(V/L1) in the case of deletion of the first entry. This chain complex is trivial in 
degrees > r − 1 so that the spectral sequence (5.3) is concentrated in the vertical band 0 ≤ s ≤ r − 1.

Take r = 2 and p = 2 and consider the category O[1,V )
V where V is the Klein 4-group. The objects of 

O[1,V )
V are the identity subgroup, {0}, and three subgroups, L1, L2, and L3, of order 2. The category O[1,V )

V

is

L1

V/L1

L2

V/L2

L3

V/L3

{0}
V/L1

V/L2

V/L3

V

ζ =

⎛
⎜⎜⎝

4 2 2 2
0 2 0 0
0 0 2 0
0 0 0 2

⎞
⎟⎟⎠ kO• = (1/4, 1/4, 1/4, 1/4) χ

(
O[1,V )

V

)
= 1
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with composition induced from addition in the abelian group V . Here ζ is the generalized incidence matrix 
that records the number of morphisms between objects. The first quadrant spectral sequence (5.3) is con-
centrated on the two vertical lines s = 0 and s = 1 so that all differentials are trivial. The groups E2

0t = E∞
0t

and E2
1t = E∞

1t are the homology groups of the normalized simplicial replacement chain complex

· · · ← 0 ← Ht(V/0) ⊕Ht(V/L1) ⊕Ht(V/L2) ⊕Ht(V/L3) ← Ht(V/0) ⊕Ht(V/0) ⊕Ht(V/0) ← 0 →←

concentrated in degrees 0 and 1. Since Ht(V/0) has dimension t + 1, Ht(V/Li), i = 1, 2, 3, is 1-dimensional, 
the term E∞

1,t has dimension at least 2t −1, and consequently dimF2 Ht+1(O[1,V )
V ; F2) ≥ 2t −1 for all degrees 

t ≥ 1.
The above argument is easily seen to work for any prime p and we conclude that dimFp

Ht+1(O[1,V )
V ; Fp) ≥

pt − 1 for all degrees t ≥ 1 when the rank r = 2. Thus O[1,V )
V is noncontractible when V has rank r = 2.

Here are few remarks about the spectral sequence (5.3) for arbitrary prime p and rank r ≥ 2. When 
t = 0, E2

s0 = Hs(S [1,V )
V ; Fp), so that E2

00 = Fp and E2
s0 = 0 for s > 0, as S [1,V )

V is contractible. When t > 0, 
we conjecture, based on computer calculations, that E2

st = 0 except for s = r− 1. We have not been able to 
prove this conjecture.

6. Brown posets and transporter categories

We now begin the process of proving the results summarized in Theorem A, which will take up the 
remainder of the paper.

Let G be a finite group of order divisible by p and SG the poset of p-subgroups of G. The Brown poset 
for G is the subposet S∗

G = S(1,G]
G of nonidentity p-subgroups of G. We show that the homotopy type of S∗

G

is determined by either the elementary abelian p-subgroups of G, or the G-radical subgroups of G, as well 
as showing that the full subcategory of p-self-centralizing subgroups of G has its homotopy determined by 
the G-radical, p-self-centralizing subgroups. The results of this section are not new, but they provide the 
template of our argument, which we outline now:

For each claim of Theorem 6.1, we break the proof into two separate parts: The computation of the 
Euler characteristic of the general (co)slice of the larger category, and actual proof of homotopy equivalence 
through an application of Bouc’s Theorem 4.3. These parts are labelled [EC] and [HE], respectively. The 
truth of the result is shown in the second part, whereas the Euler characteristics calculation is not, strictly 
speaking, necessary for the proof of the theorem. Instead, it is offered as a moral argument as to why we 
should expect the result to be true, following Remark 4.4.

In fact, the work of the [HE] sections lies in establishing an adjunction between the (co)slice categories 
of interest and other categories with whose contractibility is well understood. As adjunctions preserve Euler 
characteristic [14, Proposition 2.4(a)], we could reinterpret [HE] as an alternate derivation of certain Euler 
characteristic computations from Ref. [13].

Let us consider as a toy example Part (a) of Theorem 6.1, which is Quillen’s result [18] that the homotopy 
type of S∗

G is determined by the subposet S∗+eab
G of elementary abelian p-subgroups. By Theorem 4.3, we 

must find those objects K of S∗
G whose proper slice categories S∗

G//K are not contractible. We will ultimately 
find that these are precisely the elementary abelian p-subgroups of G (the “second part” of the proof), but 
first we pretend not to know this and ask what sort of subgroups we should consider. A good first guess 
would be those objects whose proper slice categories have nonzero reduced Euler characteristic, as those 
proper slice categories should be (and, in fact, are) noncontractible. This does not guarantee that all other 
objects have contractible proper slice categories, but with a little more work, this turns out to be the case. 
This basic chain of reasoning will be repeated for all of the similar results that follow.
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Theorem 6.1. (See [1,18].) The following inclusions are homotopy equivalences:

(a) S∗+eab
G ↪→ S∗

G (b) S∗+rad
G ↪→ S∗

G (c) Ssfc+rad
G ↪→ Ssfc

G

Proof. We now flesh out the details of the above paragraph:

(a) [EC] The coweighting for S∗
G can be expressed in two different ways by [13, Theorem 1.1.(1)] and 

Theorem 3.7,

−χ̃
(
S(1,K)
K

)
= kK = −χ̃

(
S∗
G//K

)
,

so that the categories S∗
G//K and S(1,K)

K have identical Euler characteristics. By Lemma 5.1(b), 
χ̃(S(1,K)

K ) = 0 unless K is elementary abelian. This suggests that the class of subgroups with non-
contractible proper slice categories is precisely the elementary abelian p-subgroups of G.
[HE] Indeed, the categories S∗

G//K and S(1,K)
K not only have the same Euler characteristics, they are 

themselves identical! Lemma 5.1(b) then gives us more information:

supp
(
S∗
G//•

)
=

{
k ∈ Ob

(
S∗
G

) ∣∣ K is elementary abelian
}

= Ob
(
S∗+eab
G

)
and Bouc’s Theorem 4.3 shows that the inclusion of S∗+eab

G into S∗
G is a homotopy equivalence.

(b) [EC] The weighting for S∗
G can be expressed in two different ways by [13, Theorem 1.3.(1)] and Theo-

rem 3.7:

−χ̃
(
S∗
OG(H)

)
= kHS = −χ̃

(
H//S∗

G

)
.

In particular, the categories H//S∗
G and S∗

OG(H) have identical Euler characteristics. By property (2.4), 
if S∗

OG(H) is not contractible, then H must be G-radical. Therefore the class of subgroups whose proper 
coslice category has nonzero Euler characteristic is contained in the class of G-radical subgroups.
[HE] We show that this equality of reduced Euler characteristics reflects a homotopy equivalence 
H//S∗

G � S∗
OG(H). For any nonidentity p-subgroup H of G, there are functors

H/S∗
G

rH

SOG(H)
iH

, H//S∗
G

rH

S∗
OG(H)

iH

given by KrH = NK(H)/H for all p-supergroups K of H and KiH = K when K = K/H and 
H ≤ K ≤ NG(H) [18, Lemma 6.1]. The composite functor iHrH is the identity of SOG(H) and there is 
a natural transformation from rHiH : K �→ NK(H) to the identity functor of H/S∗

G. This shows that 
these functors are homotopy equivalences of categories. By property (2.4),

supp
(
•//S∗

G

)
=

{
H ∈ Ob

(
S∗
G

) ∣∣ S∗
OG(H) is noncontractible

}
⊆

{
H ∈ Ob

(
S∗
G

) ∣∣ H is G-radical
}

= Ob
(
S∗+rad
G

)
and Bouc’s Theorem 4.3 shows that the inclusion of S∗+rad

G into S∗
G is a homotopy equivalence.

(c) Since any p-supergroup of a p-self-centralizing G-subgroup is itself p-self-centralizing, H//Ssfc
G = H//S∗

G

for any p-self-centralizing subgroup H of G. The result then follows from Part (b). �
Example 6.2. If G = C2 ×Σ3 and p = 2, then Ssfc

G is a discrete poset consisting of the 3 Sylow 2-subgroups, 
while S∗

G is contractible since O2G = C2 is nontrivial. Thus the inclusion Ssfc
G → S∗

G is not a homotopy 
equivalence.
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The following proposition points out that the largest normal p-subgroup is the smallest G-radical 
p-subgroup. It implies that the poset S∗+rad

G has a smallest element in the case OpG is nontrivial. In light of 
Theorem 6.1(b), this could be thought of as the essential ingredient that goes into Quillen’s property (2.3).
(We thank Andy Chermak for the proof.)

Proposition 6.3. Any G-radical p-subgroup of G contains the G-radical p-subgroup OpG.

Proof. It is clear that OpG is a normal G-radical p-subgroup. Let H be a p-subgroup of G not containing 
OpG. The normalizer of H in the p-subgroup (OpG)H is normal in NG(H) for any element of G normalizing 
H normalizes (OpG)H. Since N(OpG)H(H) is a normal p-subgroup of NG(H) strictly larger than H, the 
p-subgroup H is not G-radical. �

We close this section by moving from p-subgroup posets to more general EI-categories. Let TG be the 
transporter category of p-subgroups of G.

Theorem 6.4. The following inclusions are homotopy equivalences:

(a) T ∗+eab
G ↪→ T ∗

G (b) T ∗+rad
G ↪→ T ∗

G (c) T sfc+rad
G ↪→ T sfc

G

Proof. Every morphism of T ∗
G is both epi and mono, so it follows that the (co)slice categories of objects 

should be identifiable with the Brown posets of certain groups relating those objects to G. With this in 
mind, the argument follows that of Theorem 6.1 closely.

(a) [EC] The coweighting on [T ∗
G] is computed in [13, Theorem 1.1.(2)]. Theorem 3.7 gives an alternate 

calculation of the coweighting in terms of Euler characteristics of proper slice categories:

−χ̃(S(1,K)
K )

|T ∗
G(K)| = k

[T ]
[K] = −χ̃(T ∗

G//K)
|T ∗

G(K)| .

Lemma 5.1(a) then implies that χ̃(T ∗
G//K) is nonzero iff K is elementary abelian.

[HE] In fact, Lemma 5.1 says more: S(1,K)
K is noncontractible iff K is elementary abelian. Our goal is then 

to show that the equality of reduced Euler characteristics χ̃(S(1,K)
K ) = χ̃(T ∗

G//K) reflects a homotopy 
equivalence S(1,K)

K = T ∗
G//K; once this has been accomplished, Theorem 4.3 will complete the result.

There are functors

S(1,K]
K

rK

T ∗
G/K

iK

, S(1,K)
K

rK

T ∗
G//K

iK

,

given by HrK = (H 1→ K) and (H g→ K)iK = Hg. Clearly these are equivalences of categories, so we 
have our desired homotopy equivalence S(1,K)

K = T ∗
G//K and the result is proved.

(b) [EC] The weighting of [T ∗
G ] was computed in [13, Theorem 1.3.(2)]. Comparing this to the alternate 

calculation of the weighting Theorem 3.7, we have

−χ̃(S∗
OG(H))

|T ∗
G(H)| = k

[H]
[T ] = −χ̃(H//T ∗

G)
|T ∗

G(H)| .

Property (2.4) implies that χ̃(H//T ∗
G) �= 0 implies that H is G-radical.
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[HE] If we can show that there is a homotopy equivalence S∗
OG(H) � H//T ∗

G , the full strength of 
property (2.4) will yield supp(•//T ∗

G) is contained in the class of G-radical subgroup, so Theorem 4.3
will give the result. There are functors

H/T ∗
G

rH

SOG(H)
iH

, H//T ∗
G

rH

S∗
OG(H)

iH

given by (H g→ K)rH = NK(Hg)g−1
/H and KiH = (H 1→ K) where K = K/H and we have H ≤

K ≤ NG(H). Clearly iHrh = idS∗
OG(H)

, and we have a natural transformation η : rHiH ⇒ idH//T ∗
G

induced by the inclusion NK(Hg)g−1 ≤ NG(H). Thus the two categories are homotopy equivalent, and 
the result is proved.

(c) Follows from Part (b) and the observation that supergroups of p-self-centralizing subgroups of G are 
themselves p-self-centralizing. �

Suppose that C is a small category and X, Y : C → CAT are functors with values in the category CAT
of small categories. If there is a natural transformation from X to Y with components X(c) → Y (c), 
c ∈ Ob(C), that are all homotopy equivalences, then the induced functor 

∫
C X →

∫
C Y of Grothendieck 

constructions is a homotopy equivalence. This follows from Thomason’s homotopy colimit theorem [21] and 
homotopy invariance of the homotopy colimit [2, Ch. XII, §4, Homotopy Lemma 4.2]. As the inclusions of 
Theorem 6.1 are G-equivariant inclusions of G-categories and T ∗

G is the Grothendieck construction of the 
G-action on S∗

G, etc., we obtain an alternative proof of Proposition 6.4. Similarly, if OpG is nontrivial, there 
is a homotopy equivalence G ↪→ T ∗+rad

G induced by the G-equivariant homotopy equivalence ∗ ↪→ S∗+rad
G of 

Proposition 6.3.

7. Frobenius categories

Let P be a finite p-group and F a Frobenius P -category. In this section we show that the homotopy type 
of F∗ is determined by the elementary abelian subgroups of P .

We will need the following facts:

• All morphisms in F are monomorphisms, which implies
• For any K ≤ P , the categories F∗/K and F∗//K are thin, i.e., there is at most one morphism between 

any two objects
• The coweighting for F∗ vanishes off the elementary abelian subgroups [13, Theorem 7.5]

Theorem 7.1. The inclusion F∗+eab → F∗ is a homotopy equivalence.

Proof.

[EC] We compute the coweighting on [F∗] using both [13, Theorem 7.5] and Theorem 3.7:

−χ̃(S(1,K)
K )

|F∗(K)| = k
[F∗]
[K] = −χ̃(F∗//K)

|F∗(K)|

Therefore S(1,K)
K and F∗//K have identical Euler characteristics. By Lemma 5.1(b), χ̃(F∗//K) �= 0

implies K is elementary abelian.
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[HE] Indeed, there are functors

F∗/K
rK

S(1,K]
K

iK

, F∗//K
rK

S(1,K)
K

iK

The functor rK takes ϕ ∈ F∗(H, K) to its image Hϕ in K. The functor iK takes H ≤ K to the 
inclusion H ↪→ K of H into K. Obviously, iKrK is the identity functor of S(1,K]

K , and there is a natural 
transformation from the identity functor to the endofunctor rKiK : (H ϕ→ K) �→ (Hϕ ↪→ K) of F∗/K. 
This shows that rK and iK are homotopy equivalences between F∗/K and S(1,K]

K . Their restrictions 
are homotopy equivalences between F∗//K and S(1,K)

K . By the full strength of Lemma 5.1(b),

supp
(
F∗//•

)
= Ob

(
F∗+eab)

and Bouc’s Theorem 4.3 shows that the inclusion of F∗+eab into F∗ is a homotopy equivalence. �
In the course of the proof of Theorem 7.1 we saw that the homotopy type of the category F∗//K of 

F∗-nonisomorphisms to K depends only on K, not on F . This reflects the curious fact that the shape of 
the Frobenius P -category is able to detect some algebraic information of the underlying p-group.

We know of no formula for the weighting of a general Frobenius category F . There is an explicit formula 
in [13, Theorem 1.3.(3)] for the weighting of the Frobenius category FG associated to a finite group G, but 
we have not been able to determine the support of this weighting or describe the categories H//F∗

G.

8. Orbit categories

Let G be a finite group of order divisible by p and OG the orbit category of p-subgroups of G.
We will need the following facts:

• The trivial subgroup is not initial in OG

• All morphisms in OG are epimorphisms, therefore
• The categories H/O∗

G and H//O∗
G are thin

• The weighting for OG vanishes off the G-radical p-subgroups of G [13, Proposition 3.14]
• The coweighting for OG vanishes off the cyclic p-subgroups [13, Theorem 4.1]

Theorem 8.1. The following inclusions are homotopy equivalences:

(a) Orad
G ↪→ OG (b) O∗+rad

G ↪→ O∗
G (c) Osfc+rad

G ↪→ Osfc
G

Proof. The setup for each claim is identical.

[EC] The two expressions for the weighting for [OG] from [13, Eq. (3.15)] and Theorem 3.7 yield

−χ̃(S∗
OG(H))

|OG(H)| = k
[H]
[OG] = −χ̃(H//OG)

|OG(H)| ,

so that S∗
OG(H) and H//OG have identical Euler characteristics. Since χ̃(S∗

OG(H)) �= 0 implies H is 
G-radical (property (2.4)), each claim is at least plausible.
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[HE] We show that the equality of reduced Euler characteristics reflects a homotopy equivalence S∗
OG(H) �

H//OG; the result will then follow from the contractibility of S∗
OG(H) by property (2.4) and Theo-

rem 4.3. For any nonidentity p-subgroup H of G, there are functors

rH :H/OG → SOG(H), rH :H//OG → S∗
OG(H).

The functor rH takes gK ∈ OG(H, K) = NG(H, K)/K to the subgroup NgK(H)/H of OG(H) =
NG(H)/H. Let L be a p-subgroup such that H ≤ L ≤ NG(H) and let L = L/H be the image of 
L in NG(H)/H = OG(H). The category L/rH is the full subcategory of OG/H generated by all 
morphisms gK ∈ OG(H, K) such that L ≤ NgK(H). The inclusion of H into L is an object of L/rH
as L = NL(H). Note that the morphism gK: H → K extends to a morphism gK: L → K because 
Lg ≤ NgK(H)g = NK(Hg) ≤ K. There is thus a morphism

H
gK

L
gK

K

in L/rH . This shows that the inclusion H ↪→ L is an initial object of L/rH . By Quillen’s The-
orem A (Theorem 4.1), the functor rH is a homotopy equivalence from H/OG to SOG(H). The 
same argument shows that rH restricts to a homotopy equivalence from H//OG to S∗

OG(H). Thus 
supp(•//OG) ⊂ Ob(Orad

G ) and Part (a) is proved.
Since O∗

G and Osfc
G are left ideals in OG, H//O∗

G = H//OG and H//Osfc
G = H//OG for any nonidentity, 

respectively, p-self-centralizing subgroup H of G. By property (2.4),

supp
(
•//O∗

G

)
⊂ Ob

(
O∗+rad

G

)
, supp

(
•//Osfc

G

)
⊂ Ob

(
Osfc+rad

G

)
proving (b) and (c). �

It seems that there should be a dual result to Theorem 8.1 involving certain “small” subgroups in place of 
the “large” G-radical class. More precisely, there should be a theorem whose proof uses slices in place of the 
coslices of the previous argument. The relevant class of subgroups to consider would then be those contained 
in supp(OG//•). However, we cannot identify this class of subgroups at this point, and indeed experimental 
evidence leads us to conjecture that all p-subgroups will necessarily be contained in the support. If this 
conjecture holds, the dual theorem would reduce to the tautology OG � OG, which would not be particularly 
enlightening.

9. Exterior quotients of Frobenius categories

Let P be a nonidentity finite p-group, F a Frobenius P -category, and F̃ the exterior quotient of F [16, 
1.3, 2.6, 4.8]. In this section we examine the homotopy types of F̃∗ and F̃ sfc.

We begin with F̃∗, searching for a class of “small” subgroups that control the homotopy type. For our 
Euler characteristic intuition-building, the essential fact here is that the coweighting for [F̃∗] vanishes off of 
the elementary abelian subgroups by [13, Theorem 7.7].

Theorem 9.1. The inclusion F̃∗+eab ↪→ F̃∗ is a homotopy equivalence.
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Proof.

[EC] Comparing the reduced Euler characteristic expression for the coweighting of [F̃∗] from Theorem 3.7
to [13, Theorem 7.7] yields

−χ̃(F̃ (1,K)
K )

|F̃∗(K)|
= k

[F̃∗]
[K] = −χ̃(F̃∗//K)

|F̃∗(K)|
.

Therefore F̃ (1,K)
K and F̃∗//K have identical Euler characteristics for any object K of F̃∗. By 

Lemma 5.1(a) and (d), χ̃(F̃∗//K) can only be nonzero if K is elementary abelian.
[HE] In fact, there are equivalences of categories

iK : F̃ (1,K]
K → F̃∗/K, iK : F̃ (1,K)

K → F̃∗//K

On an object H ≤ K, we have HiK = [ιHK ] ∈ F̃∗(H, K) is the class of the inclusion ιHK ∈ F∗(H, K) of 
H into K. Observe that there is an obvious identification of morphism sets

F̃∗
K(H1, H2) =

(
F̃∗/K

)
(H1iK , H2iK),

which defines the effect of iK on morphism sets. Thus iK is full and faithful. It is also easily seen to 
be essentially surjective on objects, hence an equivalence of categories.
Combining the homotopy equivalence F̃ (1,K)

K � F∗//K with Lemma 5.1(d), we have

supp
(
F̃∗//•

)
= Ob

(
F̃∗+eab)

and Bouc’s Theorem 4.3 shows that the inclusion of F̃∗+eab into F̃∗ is a homotopy equivalence. �
We now turn to the question of finding a “large” collection of subgroups that controls the homotopy type 

of the exterior quotient, in some sense dual to the elementary abelian subgroups of Theorem 9.1. There is 
a new technical difficult we must take into consideration here: We lack a good understanding of the full 
exterior quotient of a Frobenius P -category. Much more is known about the F-self-centralizing subcategory 
F̃ sfc, where we can make use of the following facts:

• All morphisms in F̃ sfc are epimorphisms [16, Corollary 4.9], therefore
• The categories H/F̃ sfc are thin
• The weighting for F̃ sfc

G vanishes off the FG-radical subgroups [13, Corollary 8.6]

We will also need the following technical result, which is a reformulation of [7, Proposition 2.4]:

Lemma 9.2. Let H, N , and K be objects of F such that H is F-self-centralizing and H ≤ N ≤ NP (H). An 
F-morphism ϕ: H → K extends to an F-morphism ψ: N → K if and only if FN (H)ϕ ≤ FK(Hϕ).

Proof. We prove the “if” implication, as the converse is clear. Since H is F-self-centralizing, the same is true 
of Hϕ and thus Hϕ is fully centralized in F [16, 4.8]. By the Extension Axiom for Frobenius P -categories 
and our assumption, ϕ: H → K extends to a morphism ρ: N → P [16, 2.10.1]. We claim that (x)ρ ∈ K

for all x ∈ N . By assumption, there is some y ∈ K such that conjugation with (x)ρ and with y has the 
same effect on Hϕ. This means that (x)ρy−1 ∈ CP (Hϕ) ≤ Z(Hϕ) ≤ Hϕ ≤ K, and thus (x)ρ ∈ K. The 
corestriction ψ = K|ρ: N → K of ψ: N → P extends ϕ: H → K. �
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Consequently,

F̃(N,K) = F̃(H,K)FN (H)

under the assumptions of Lemma 9.2.
We are now ready to prove:

Theorem 9.3. The inclusion F̃ sfc+rad ↪→ F̃ sfc is a homotopy equivalence.

Proof. Fix an F-self-centralizing subgroup H ≤ P , and let G := F̃(H) be the automorphism group of H
in the exterior quotient category.

[EC] Consider the special case that F̃ sfc = F̃ sfc
G for some finite group G inducing the exterior quotient cat-

egory F̃ . The weighting for F̃ sfc
G was computed in [13, Proposition 8.5]; comparison with Theorem 3.7

yields

−χ̃(S∗
F̃sfc

G (H))

|F̃ sfc
G (H)|

= k
[H]
[F̃sfc

G ]
= −χ̃(H//F̃ sfc

G )
|F̃ sfc

G (H)|
.

Thus the proper coslice category H//F̃ sfc
G and the poset S∗

F̃sfc
G (H) have identical Euler characteristics 

for any object H of F̃ sfc.
We believe that an abstract version of [13, Proposition 8.5] that does not reference an ambient finite 
group is true as well. Such a result would imply that H//F̃ sfc and S∗

F̃sfc(H) should in general have 

identical reduced Euler characteristics. (In fact, this result will follow from the homotopy equivalence of 
the next paragraph.) As the Euler characteristic computation serves primarily to direct our attention 
toward the class of subgroups that control the homotopy type, this special case is already enough to 
suggest that we should consider the F-radical subgroups. That is where we will focus our attention.

[HE] We claim there is a homotopy equivalence H//F̃ � S∗
F̃(H). There are functors

rH :H/F̃ → SF̃(H), rH :H//F̃ → S∗
F̃(H) (9.4)

There is no loss of generality in assuming that H is fully normalized in F̃ , so that the order of the 
P -normalizer of H is maximal in its F̃-isomorphism class. The functor rH is defined by [ϕ]rH =
ϕF̃K(Hϕ), where [ϕ] = ϕFK(K) ∈ F̃(H, K) = F(H, K)/FK(K) is an object of H/F̃ . Note that this 
is well-defined even though ϕ is only defined up to conjugacy in K. The group

F̃K

(
Hϕ

)
= CK

(
Hϕ

)
\NK

(
Hϕ

)
/Hϕ = Z

(
Hϕ

)
\NK

(
Hϕ

)
/Hϕ = NK

(
Hϕ

)
/Hϕ

and the isomorphic group rH(ϕFK(K)) = ϕF̃K(Hϕ) are related by the commutative diagram

H

ϕF̃K(Hϕ)

ϕ

∼=
Hϕ

F̃K(Hϕ)=NK(Hϕ)/Hϕ

H
ϕ

∼=
Hϕ

It is clear that ϕF̃K(Hϕ) is a p-subgroup of F̃(H) and that rH(ϕ1) ≤ rH(ϕ2) whenever there is an
F̃-morphism
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H
ϕ1FK1 (K1) ϕ2FK2 (K2)

K1 K2

under H. Thus rH is a functor. We now want to use Quillen’s Theorem A to show that rH is an 
equivalence of categories.
Let L be a p-subgroup of F̃(H) = F(H)/FH(H). We may assume that L is contained in the Sylow 
p-subgroup F̃P (H) = NP (H)/H of F̃(H) (which is known to be Sylow by the assumption that H
is fully normalized in F̃). There is a unique p-subgroup L ∈ [P, NP (H)] such that L = L/H. The 
category L/rH is the full subcategory of H/F̃ generated by all objects ϕFK(K) ∈ F̃(H, K) such that 
Lϕ ≤ F̃K(Hϕ) = NK(Hϕ)/Hϕ, or, equivalently, Lϕ ≤ NK(Hϕ). Here is an attempt to visualize this 
relationship:

H

L/H

∼=

ϕ
Hϕ

NK(Hϕ)/Hϕ

H ∼=

ϕ
Hϕ

The inclusion ιHL : H ↪→ L of H into L represents both a morphism in F̃(H, L) and an object of L/rH
because L is contained in (ιHLFL(L))rH = NL(H)/H = L/H = L. By Lemma 9.2 there is an extension 
in F̃ of ϕ: H → K

H
ιHL ϕ

L K

to a morphism L → K. We have now shown that ιHLFL(L) is an initial object of L/rH for any 
object L of SF̃(H). According to Quillen’s Theorem A (Theorem 4.1), rH is a homotopy equivalence 
of categories.
Since the functor rH takes nonisomorphisms ϕFK(K) ∈ F̃(H, K) ⊂ Ob(H/F̃) to nonidentity 
p-subgroups of F̃(H), it restricts to a functor rH : H//F̃ → S∗

F̃(H)
of H//F̃ into the Brown poset 

of the automorphism group of H. But since L/rH is contractible for any nonidentity p-subgroup L
of F̃(H), we already know that the restricted functor rH is a homotopy equivalence of categories. By 
property (2.5),

supp
(
•//F̃ sfc) ⊂ Ob

(
F̃ sfc+rad)

and Bouc’s Theorem 4.3 shows that the inclusion of F̃ sfc+rad into F̃ sfc is a homotopy equivalence. �
10. Linking categories

Let Lsfc be the centric linking system associated to a Frobenius P -category F [5, Definition 1.7]. We will 
prove that the homotopy type of Lsfc is controlled by the F-radical subgroups. This result is part of [3, 
Theorem B], the full strength of which would be accessible by our methods if we were to consider the more 
general notion of a quasicentric linking system.
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We will need the following facts:

• All morphisms in Lsfc are monomorphisms and epimorphisms [16, Proposition 24.2]
• The weighting for Lsfc vanishes off the F-radical subgroups [13, Proposition 8.5]

Theorem 10.1. The inclusion functor Lsfc+rad → Lsfc is a homotopy equivalence.

Proof. Let H be an F-self-centralizing object of F . The functor π̃: Lsfc → F̃ sfc is bijective on objects and 
|K|-to-1 for on morphism sets Lsfc(H, K) → F̃ sfc(H, K) with codomain K ∈ Ob(F sfc). K = LK(K) ≤ L(K)
acts freely from the right on L(H, K) with quotient Lsfc(H, K)/K = F̃ sfc(H, K) [5, Lemma 1.10]. This 
implies that if ϕ1 ∈ L(H, K1), ϕ2 ∈ L(H, K2), and the commutative F̃-diagram to the right has a solution

H
ϕ1 ϕ2

L
K1 K2

H
(ϕ1)π (ϕ2)π

F̃
K1 K2

then the commutative L-diagram to the left has a unique solution [5, Lemma 1.10]. Consider the functor

H/π̃:H/Lsfc → H/F̃ sfc

induced by the functor π̃: Lsfc → F̃ sfc. The above considerations mean that any ϕ ∈ L(H, K) ⊂ Ob(H/L) is 
initial in the category (ϕ)π̃/H/π̃. By Quillen’s Theorem A (Theorem 4.1), H/π̃ is a homotopy equivalence.

Restricting to the nonisomorphisms we get a homotopy equivalence H//π̃: H//L → H//F̃ . Compose 
these homotopy equivalences with the homotopy equivalences of (9.4) to get homotopy equivalences

H/Lsfc → SF̃(H), H//Lsfc → S∗
F̃(H) (10.2)

By property (2.5),

supp
(
•//Lsfc) ⊂ Ob

(
Lsfc+rad)

and Bouc’s Theorem 4.3 shows that the inclusion of Lsfc+rad into Lsfc is a homotopy equivalence. �
It is worth noting that the main connection between the theory of Frobenius P -categories and topology 

comes from the classifying space of Lsfc, which should be thought of as a generalization of the p-completion 
of the classifying space of a finite group. What is interesting in the preceding proof is that we are able 
to show that control of homotopy for the linking system actually comes from the seemingly less natural 
question about control of homotopy in the exterior quotient category F̃ sfc.

Finally, we close with the dual statement, where the homotopy type is controlled by the “small” non-
identity elementary abelian groups subgroups of P . As there is currently no clear definition for an abstract 
linking system which has all nonidentity subgroups of P as objects, we will restrict our attention to the case 
where an actual finite group induces L∗

G.

Proposition 10.3. The inclusion L∗+eab
G → L∗

G is a homotopy equivalence.

Proof. The two expressions, from [13, Theorem 1.1.(2)], and Lemma 5.1(a) and Theorem 3.7, for the 
coweighting for [L∗

G]

−χ̃(S(1,K)
K )

∗ = k
[L∗

G]
[K] = −χ̃(L∗

G//K)
∗
|LG(K)| |LG(K)|
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show that S(1,K)
K and L∗

G//K have identical Euler characteristics for any object K of L∗
G. In fact they are 

homotopy equivalent as we see in much the same way as in the proof of Theorem 7.1. The proof now follows 
from Bouc’s Theorem 4.3 because supp(L∗

G//K) ⊂ Ob(L∗+eab
G ) by Lemma 5.1(b). �

References

[1] Serge Bouc, Homologie de certains ensembles ordonnés, C. R. Acad. Sci. Paris Sér. I Math. 299 (2) (1984) 49–52, MR 
756517 (85k:20150).

[2] A.K. Bousfield, D.M. Kan, Homotopy Limits, Completions and Localizations, 2nd ed., Lect. Notes Math., vol. 304, 
Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, 1987.

[3] Carles Broto, Natàlia Castellana, Jesper Grodal, Ran Levi, Bob Oliver, Subgroup families controlling p-local finite groups, 
Proc. Lond. Math. Soc. (3) 91 (2) (2005) 325–354, MR MR2167090 (2007e:20111).

[4] Carles Broto, Ran Levi, Bob Oliver, Homotopy equivalences of p-completed classifying spaces of finite groups, Invent. 
Math. 151 (3) (2003) 611–664, MR MR1961340 (2004c:55031).

[5] Carles Broto, Ran Levi, Bob Oliver, The homotopy theory of fusion systems, J. Am. Math. Soc. 16 (4) (2003) 779–856 
(electronic), MR 1 992 826.

[6] Kenneth S. Brown, Euler characteristics of groups: the p-fractional part, Invent. Math. 29 (1) (1975) 1–5, MR 0385008 
(52 #5878).

[7] Antonio Díaz, Assaf Libman, The Burnside ring of fusion systems, Adv. Math. 222 (6) (2009) 1943–1963, MR 2562769 
(2011a:20039).

[8] W.G. Dwyer, Homology decompositions for classifying spaces of finite groups, Topology 36 (4) (1997) 783–804, MR 1432421 
(97m:55016).

[9] W.G. Dwyer, C.W. Wilkerson, A cohomology decomposition theorem, Topology 31 (2) (1992) 433–443, MR MR1167181 
(93h:55008).

[10] P. Gabriel, M. Zisman, Calculus of Fractions and Homotopy Theory, Ergeb. Math. Ihrer Grenzgeb., vol. 35, Springer-Verlag 
New York, Inc., New York, 1967, MR 0210125 (35 #1019).

[11] Daniel Gorenstein, Finite Groups, Harper & Row Publishers, New York, 1968, MR MR0231903 (38 #229).
[12] Stefan Jackowski, Jolanta Słomińska, G-functors, G-posets and homotopy decompositions of G-spaces, Fundam. Math. 

169 (3) (2001) 249–287, MR 1852128 (2002h:55017).
[13] Martin Wedel Jacobsen, Jesper M. Møller, Euler characteristics and Möbius algebras of p-subgroup categories, J. Pure 

Appl. Algebra 216 (12) (2012) 2665–2696, MR 2943749.
[14] Tom Leinster, The Euler characteristic of a category, Doc. Math. 13 (2008) 21–49, MR MR2393085.
[15] Saunders MacLane, Homology, first ed., Grundlehren Math. Wiss., Band 114, Springer-Verlag, Berlin, 1967, MR 

MR0349792 (50 #2285).
[16] Lluís Puig, Frobenius Categories versus Brauer Blocks: The Grothendieck Group of the Frobenius Category of a Brauer 

Block, Prog. Math., vol. 274, Birkhäuser Verlag, Basel, 2009, MR MR2502803.
[17] Daniel Quillen, Higher algebraic K-theory. I, in: Algebraic K-theory, I: Higher K-theories, Proc. Conf., Battelle Memorial 

Inst., Seattle, Wash., 1972, in: Lect. Notes Math., vol. 341, Springer, Berlin, 1973, pp. 85–147, MR 0338129 (49 #2895).
[18] Daniel Quillen, Homotopy properties of the poset of nontrivial p-subgroups of a group, Adv. Math. 28 (2) (1978) 101–128, 

MR MR493916 (80k:20049).
[19] Derek J.S. Robinson, A Course in the Theory of Groups, second ed., Springer-Verlag, New York, 1996, MR 96f:20001.
[20] Richard P. Stanley, Enumerative Combinatorics, vol. 1, Camb. Stud. Adv. Math., vol. 49, Cambridge University Press, 

Cambridge, 1997, With a foreword by Gian-Carlo Rota, Corrected reprint of the 1986 original, MR MR1442260 (98a:05001).
[21] R.W. Thomason, Homotopy colimits in the category of small categories, Math. Proc. Camb. Philos. Soc. 85 (1) (1979) 

91–109, MR 510404 (80b:18015).

http://refhub.elsevier.com/S0022-4049(14)00283-7/bib626F7563383461s1
http://refhub.elsevier.com/S0022-4049(14)00283-7/bib626F7563383461s1
http://refhub.elsevier.com/S0022-4049(14)00283-7/bib626Bs1
http://refhub.elsevier.com/S0022-4049(14)00283-7/bib626Bs1
http://refhub.elsevier.com/S0022-4049(14)00283-7/bib6263676C6F3031s1
http://refhub.elsevier.com/S0022-4049(14)00283-7/bib6263676C6F3031s1
http://refhub.elsevier.com/S0022-4049(14)00283-7/bib626C6F31s1
http://refhub.elsevier.com/S0022-4049(14)00283-7/bib626C6F31s1
http://refhub.elsevier.com/S0022-4049(14)00283-7/bib626C6F3033s1
http://refhub.elsevier.com/S0022-4049(14)00283-7/bib626C6F3033s1
http://refhub.elsevier.com/S0022-4049(14)00283-7/bib62726F776E3735s1
http://refhub.elsevier.com/S0022-4049(14)00283-7/bib62726F776E3735s1
http://refhub.elsevier.com/S0022-4049(14)00283-7/bib6469617A5F6C69626D616E3039s1
http://refhub.elsevier.com/S0022-4049(14)00283-7/bib6469617A5F6C69626D616E3039s1
http://refhub.elsevier.com/S0022-4049(14)00283-7/bib64777965723937s1
http://refhub.elsevier.com/S0022-4049(14)00283-7/bib64777965723937s1
http://refhub.elsevier.com/S0022-4049(14)00283-7/bib64773A636F646563s1
http://refhub.elsevier.com/S0022-4049(14)00283-7/bib64773A636F646563s1
http://refhub.elsevier.com/S0022-4049(14)00283-7/bib6761627269656C5F7A69736D616E3637s1
http://refhub.elsevier.com/S0022-4049(14)00283-7/bib6761627269656C5F7A69736D616E3637s1
http://refhub.elsevier.com/S0022-4049(14)00283-7/bib676F72656E737465696E3638s1
http://refhub.elsevier.com/S0022-4049(14)00283-7/bib6A61636B6F77736B695F736C6F6D696E736B6132303031s1
http://refhub.elsevier.com/S0022-4049(14)00283-7/bib6A61636B6F77736B695F736C6F6D696E736B6132303031s1
http://refhub.elsevier.com/S0022-4049(14)00283-7/bib6A6D6D5F6D776A3A32303130s1
http://refhub.elsevier.com/S0022-4049(14)00283-7/bib6A6D6D5F6D776A3A32303130s1
http://refhub.elsevier.com/S0022-4049(14)00283-7/bib6C65696E737465723038s1
http://refhub.elsevier.com/S0022-4049(14)00283-7/bib6D61636C616E65s1
http://refhub.elsevier.com/S0022-4049(14)00283-7/bib6D61636C616E65s1
http://refhub.elsevier.com/S0022-4049(14)00283-7/bib707569673039s1
http://refhub.elsevier.com/S0022-4049(14)00283-7/bib707569673039s1
http://refhub.elsevier.com/S0022-4049(14)00283-7/bib7175696C6C656E3733s1
http://refhub.elsevier.com/S0022-4049(14)00283-7/bib7175696C6C656E3733s1
http://refhub.elsevier.com/S0022-4049(14)00283-7/bib7175696C6C656E3738s1
http://refhub.elsevier.com/S0022-4049(14)00283-7/bib7175696C6C656E3738s1
http://refhub.elsevier.com/S0022-4049(14)00283-7/bib726F62696E736F6E3A67726F757073s1
http://refhub.elsevier.com/S0022-4049(14)00283-7/bib7374616E6C65793937s1
http://refhub.elsevier.com/S0022-4049(14)00283-7/bib7374616E6C65793937s1
http://refhub.elsevier.com/S0022-4049(14)00283-7/bib74686F6D61736F6E3739s1
http://refhub.elsevier.com/S0022-4049(14)00283-7/bib74686F6D61736F6E3739s1

	Homotopy equivalences between p-subgroup categories
	1 Introduction
	2 p-Subgroup categories
	3 Weightings and coweightings for EI-categories
	4 Homotopy equivalences between categories
	5 Subgroup categories for p-groups
	6 Brown posets and transporter categories
	7 Frobenius categories
	8 Orbit categories
	9 Exterior quotients of Frobenius categories
	10 Linking categories
	References


