The 2-dimensional hydrogen atom

In these notes we investigate a particular partial diffea¢equation arising from the quan-
tum mechanical description of a hydrogen atom. For sintglisie consider the atom in a
2-dimensional instead of &dimensional universe. For convenience we put all funddaten
constants of nature equal 1o

Theproblem. In quantum mechanics the electron is described by a so ca#ted func-
tion. A wave function is a complex valued functidgnon R x R? that gives the probability
to find the electron at a certain position. To be more presappose the position, of
the electron is measured at timgand assume thdf is a compact subset &2. Then the
probability that the position, of the electron is insid€ is given by

P($0 < U) = /U |\I/(t0,l')|2dl‘

Since the probability to find the electron anywher&ihequalsl, the wave-function has to
satisfy

/ U (t,z)|* de =1 (t € R).
R2
The evolution of the wave function of the electron is givertliy Schodinger equation

0
zalll = HU. (1)

Here H is the partial differential operatdi = —A + V, where

0? 0?
3t o

is the Laplacian andl” is the potential of the electric field originating from theton at the
origin, i.e., the Coulomb potential
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(there are good arguments for taking the potentiab> log(||=||) instead, but that would
make the2-dimensional case deviate more from thdimensional). In the physics litera-
ture, the operatof! is called the Hamiltonian. The termA is the quantum mechanical
equivalent of kinetic energy. Since the total energy is tima sf the kinetic energy and the
potential energy, the Hamiltonian is an operator desagitine total energy of the electron.

We call a function) : R*\ {0} — C a (normalizedgigenfunctiorof H with eigenvalue
Eifit

o satisfies the so-called time-independent Schrodingertequa

Hy = Ev. (2)



e is C® and bounded oR? \ {0} (because we need it in what follows)

e satisfies the normalization condition

()" dz =1 ®3)
R2

It can be shown that if) is an eigenfunction of{ with eigenvalueF, thenE < 0. The
physical significance of eigenvalues &f is that these are the (negative) values that can
occur as the outcome of an energy measurement.

It can also be shown that the wave function of the electron fiydrogen atom can at
any timet in good approximation be written as a linear combinationigéefunctions off/.
The mathematical problem to be solved first is then to deterthese eigenfunctions. Let
E < 0and put\ = 2v/—E.

Eigenfunctions. We want to find the non-zero solutiogsto the Scédinger equation
(2), which satisfy thes’s above. To do this we will first rewrite the equation usindgpo
coordinates.

Let®: R.o x (—m,7) = R?\ (R« x {0}) be given by

®(r,0) = (rcosf,rsinb).
Then forf € C*(R?)

? 10 1 0?
(Af) o CD(T, 0) = (ﬁ + ;5 + ﬁﬁ) (f o @)(7“, 9)

Before we apply this to the eigenfunction with eigenvaltie= —\?/4, it is convenient to
substitutep = Ar and write®(p, ) = ®(p/ A, 0). This leads instead to

(10 1 .
(A7)0 8(p.0) =0 (5 + 55+ 0 ) (0o B)(p.0)

Now we apply to the eigenequatidiiyy = E. We write ¢ for ¢» o ® and conclude (recall
thatH = —A — 1

2 10 10> 1 1
(a—p2+;a—p+ﬁw+)\—p—z>¢(p,9)zo (pER>0,9€(—7T,7T)). (4)
It is this partial differential equation which we want to we| and we shall do this by the
method of separation of variables, in analogy with has bese greviously for the Laplace
equation.
We look for solutions in product form(p, §) = R(p)©(#) and after division bypl—gR@
we find the following separated equation

RAIR+ (L-DR o
IR o




which then has to be a constantThis leads to the equations

1 1 1 K
/! T/ - = v —
R+pR+(/\p 4>R p2R 0
and

0"+kO =0

As © has to be2r-periodic in the angular variablg, we conclude tha®(d) = ¢ and
x = n? for somen € Z (just as what we saw for the Laplace equation). We are thutled
look for a solution which is given by a Fourier series withpest tod,

6(p,0) = alp)e” (0 €R), (5)

leZ

where the coefficient; : R., — C is expected to satisfy the equation fBrabove. That
this is possible for any eigenfunctianfollows from the fact that)(p, -) can be extended to
a2r-periodicC! function for everyp > 0 with Fourier coefficients

alp) =5 | S0y o (6)

If we insert (5) into (4), interchange differentiation andvemation and use the uniqueness
of the Fourier series, we obtain (as expected) the followliffgrential equation for the;:

2 1d P 1 1

— t— — =4+ — — - = : 7

(2 5a = T3~ 1)@ =0 (PR (7)
This equation has a regular singularity at the origin andlmasolved by the power series
method of Frobenius. Rather than doing this directly, it $usat to be an advantage first to
simplify it by a change of variables.
The change of variables we apply is

U

alp) =e 2ply(p)  (p€Rsy)

for some functiony,(p). Then

St = D) (% - 1)’n(p)

dp dp 2
o _pde & 0 1vd 2oqopo1
s —mea _ & o1 _ 2\ B
0 (p) i (p) + (p 2) i (,0)+< 7 p —{—4)’)/1(,0).
If we apply this and multiply by2 o'l we obtain
d2’7l dv, 1 1
pg @)+ (2 1=0) 500 + (5 = 11 = 5 )ulo) =0 ®)

Solutions to (8). We will now construct two linearly independent solutiongha dif-
ferential equation. To find the first one, we make the Ansadr fibr p > 0, we can write



v(p) as a power series. ~_ a,,,p™ for certain coefficients,, € C. If we formally insert
this series into (8) and interchange differentiation andmsiation, then we obtain

o0

0 = > an(mlm — 1 m@l + 1) 4 (—mt 5[l = 5)o") ©)

m=0
00

= 3 (a4 20im) — s (4 11— 5 )"

m=1

The identity principle implies that the coefficients on tihght-hand side of (9) are all
zero, i.e.,
_mtl-i-3
 m2+2[llm
This relation uniquely determines thg, for m > 1 in terms ofay,. We choose, = 1. Then

ThEI -3 -3
o . 11
¢ (H K2+ 2|1k (11)

k=1

Aym—1 (m S N) (10)

m

Note that ifa,, = 0 for somem € N, thena,,,; = 0forall j € N, and}_~_ a,p" is a
finite sum. Otherwise

1

2 pu—

Il —1_
lim 2 — g A

mM—00 (lyy,—_1 m—oo M2+ 2]l|m
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and the radius of convergence of the sefigsp) = > ~_, a.,p™ is infinite. In any case the
sum defines a solution of (8) dd.

The linear equation (8) is of orde; hence it has &-dimensional solution space. A
solution~; », which is linearly independent of ;, can be found by an Ansatz that it has the
form

n2(p) = clp)ni+ Y bmp™ (12)
m=-—2|l|

for some constant and coefficients,,. However, this solution is unbounded for —
0, and it will soon be discarded. Since we have found two liiyeiadependent solutions
to the second order linear differential equation (8), arhyeotsolution onR. is a linear
combination of these two.

Behavior of the solutions. The functiony is by assumption bounded. Therefore

1

1 [7 . i
lcai(p)| = ‘%/_ woq)(P,@)elwd@’ < %/_ |th o ®(p,0)] dO < sup |¢].

Hence the; are bounded functions. Furthermore, they are linear coatioims
alp) = Cre 2y (p) + Cae™2pya(p)  (p € Ra).

It follow that ¢; is bounded if and only i€, = 0.



Notice that for sufficiently largen the expressiom: + |I| — % — % is strictly positive.
Therefore, for those: thea,, are either all non-negative or all non-positive. Moreover,

m+l|—5—3

2
m? + 2|l|m

behaves Iikejz for largem, hence it follows from (10) thdt,,,| > ﬁ|am_1| for sufficiently
largem. Sincea,, anda,,_, carry the same sign (or are both zero) for sufficiently large
we have the three possibilities,, = a,,—1 = 0, @ > 5=am-1 > 0, 0y, < 5=ap-1 < 0

for suchm. It follows that there are the possibilities:

e there exists an, such that,,, = 0 for m > m,.

e there exists an, and a constant > 0 such thati,,, > 57— form > my
e there exists an, and a constant > 0 such that,,, < 575; for m > m.
We will now exclude the last two cases. They both imply
mo—1 1
> 21 ane" = X gl
m=myo :
mo—1 1
203 gt = O ol
m=mg
o] 1 mo—1 1
m mo__ g _
= szo SmP r;) Sy (€ T laml)p™ = cez — P(p)

with a polynomial P. Since the exponential function dominates the polynonuapfsuffi-
ciently large, we conclude that there exists> 0 andp, > 0 such that

oo
13 ] > et
m=0

forall p > py. Hence

la(p)l = [Cile 5" Y~ amp™| = erCil p". (p € Rso)-

m=0

In particular it follows that in that casg,  pla(p)|® dp is infinite. By the Plancherel for-
mula for the fourier serie¥_, ¢;(p)e™,

a)P <3 la()? = / L letora

l€Z

and hence

/ plalp)? dp < / / 16(p,0) d6 pdp = N2 / () de,
pPER< 0 pER> JOE(—m,7) R?2



which is finite. This is a contradiction, and the last mengidicases have been excluded.

We conclude that,, = 0 for sufficiently largem, or equivalentlyy, is a polynomial.
These polynomials are callesgsociated Laguerre polynomialsiote that if+; is a polyno-
mial, then

[ st p < oo
PER>0

so that the contradiction of before is not reached in thig cas

Quantization of energy. Since the power series has to break off, it follows from (10)
that if ¢; is non-zero, them; + |I| — & — 5 = 0 for somem; > 1. Equivalently,
-1
(2mq +2|l] — 1)2

2 =

Sincem; + |l| € N, this means that not all negative real numbers are eigezsallet
n=my +|l| — 1, thenn € Z>, and
—1
E,=———.
(2n + 1)2
Since the set of eigenvalues is discrete, and this set isthef all negative values that can

occur as the possible outcomes of energy measurementsatgyef the hydrogen atom is
said to begquantized

Associated Laguerre polynomials and eigenfunctions Let o« and S be non-negative
integers. The unique solutiah= L” of
d*L dL
that is polynomial and satisfies the initial conditiﬁ(ﬂ) = (**7), is called the associated
Laguerre polynomial of degreeand parametes. An alternative description of these poly-
nomials is given by th&odrigues’ formula

—Ber (o
ol dx>

From the previous discussion and comparison of (8) with {tlf8jlows that the eigen-
functions of H with eigenvaluel,, are linear combinations of the functiong; given by

Ly(x) = (e7"2*7)

Ui o ®(p,0) = Nlnl e il LY,

with [ an integer betweern andn and N,,; chosen such thaf,, [, (z)[? dz = 1. If
v =>" dip,andd>|d)|* = 1, theny satisfies (3), hence is an eigenfunction of
H with eigenvalueF,,. In fact every eigenfunction with eigenvaldg, is of this form (the
eigenspace i8n + 1-dimensional, and the functions, ; form an orthonormal basis).

Having determined the eigenfunctions far, the next step is to solve (1) with a pre-
scribed initial value¥ (0, z) = ¥ (x) by the Ansatz that’(¢, z) is a sum of eigenfunctions
for H with t-dependent coefficients. This is done in Exercise 1 belowercase where the
sumi is finite.



Exercises

Exercise 1. Assume that) = ), _ cx¥, Where they, € C and they,, are eigenfunctions
of H with eigenvalueds,.. Find a solution to the initial value problem given by (1) and

v(0,7) = (z) (v €R?)
in terms of the:, and theyy,.

Exercise 2. Use the integral formula for; to prove that for every € Z the functionc; is
C2. Now use (7) to prove that theare in factC>°. Prove that

d* d* 19
d_df¢(p’ 0) = Z d—pkcl(p)e

leZ
fork =1,2.
Exercise 3. Use the differential equation and the initial value conalitito show that

O

m=0
Use this to prove Rodrigues’ formula.
Exercise4. Leta € R. Consider the Hermite equation of order
y" — 2xy + 20y = 0. (14)
(a) Find the recursive formula for a power series solution.

(b) Show that the radius of convergence of the power series

n—1
_1+Z ko(a_2k)$2n
and )
Z 0(a—2k:—1) 2n+1
_I_l_z (2n + 1)! ’

Is infinite. Show that; andy, are two solutions and prove that they are linearly inde-
pendent.

(c) Show thaty, is a polynomial ifo is @ non-negative even integer apglis a polynomial
if o is a positive odd integer.

The polynomial solutions of (14) of degreesuch that the top coefficienf, equals2™, are
called Hermite polynomials. They occur in quantum physisha eigenfunctions for the
Schibdinger equation of the harmonic oscillator.



