
The 2-dimensional hydrogen atom

In these notes we investigate a particular partial differential equation arising from the quan-
tum mechanical description of a hydrogen atom. For simplicity we consider the atom in a
2-dimensional instead of a3-dimensional universe. For convenience we put all fundamental
constants of nature equal to1.

The problem. In quantum mechanics the electron is described by a so calledwave func-
tion. A wave function is a complex valued functionΨ onR×R

2 that gives the probability
to find the electron at a certain position. To be more precise,suppose the positionx0 of
the electron is measured at timet0 and assume thatU is a compact subset ofR2. Then the
probability that the positionx0 of the electron is insideU is given by

P
(

x0 ∈ U
)

=

∫

U

|Ψ(t0, x)|2 dx.

Since the probability to find the electron anywhere inR
2 equals1, the wave-function has to

satisfy
∫

R2

|Ψ(t, x)|2 dx = 1 (t ∈ R).

The evolution of the wave function of the electron is given bythe Schr̈odinger equation

i
∂

∂t
Ψ = HΨ. (1)

HereH is the partial differential operatorH = −∆+ V , where

∆ =
∂2

∂x21
+

∂2

∂x22

is the Laplacian andV is the potential of the electric field originating from the proton at the
origin, i.e., the Coulomb potential

V : R2 \ {0} → R; x 7→ − 1

‖x‖ .

(there are good arguments for taking the potentialx 7→ log(‖x‖) instead, but that would
make the2-dimensional case deviate more from the3-dimensional). In the physics litera-
ture, the operatorH is called the Hamiltonian. The term−∆ is the quantum mechanical
equivalent of kinetic energy. Since the total energy is the sum of the kinetic energy and the
potential energy, the Hamiltonian is an operator describing the total energy of the electron.

We call a functionψ : R2 \{0} → C a (normalized)eigenfunctionofH with eigenvalue
E if it

• satisfies the so-called time-independent Schrodinger equation

Hψ = Eψ. (2)



• isC3 and bounded onR2 \ {0} (because we need it in what follows)

• satisfies the normalization condition
∫

R2

|ψ(x)|2 dx = 1 (3)

It can be shown that ifψ is an eigenfunction ofH with eigenvalueE, thenE < 0. The
physical significance of eigenvalues ofH is that these are the (negative) values that can
occur as the outcome of an energy measurement.

It can also be shown that the wave function of the electron in ahydrogen atom can at
any timet in good approximation be written as a linear combination of eigenfunctions ofH.
The mathematical problem to be solved first is then to determine these eigenfunctions. Let
E < 0 and putλ = 2

√
−E.

Eigenfunctions. We want to find the non-zero solutionsψ to the Scr̈odinger equation
(2), which satisfy the•’s above. To do this we will first rewrite the equation using polar
coordinates.

LetΦ : R>0 × (−π, π) → R
2 \ (R≤0 × {0}) be given by

Φ(r, θ) = (r cos θ, r sin θ) .

Then forf ∈ C2(R2)

(∆f) ◦ Φ(r, θ) =
(

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)

(f ◦ Φ)(r, θ).

Before we apply this to the eigenfunction with eigenvalueE = −λ2/4, it is convenient to
substituteρ = λr and writeΦ̃(ρ, θ) = Φ(ρ/λ, θ). This leads instead to

(∆f) ◦ Φ̃(ρ, θ) = λ2
(

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2
∂2

∂θ2

)

(ψ ◦ Φ̃)(ρ, θ)

Now we apply to the eigenequationHψ = Eψ. We writeφ for ψ ◦ Φ̃ and conclude (recall
thatH = −∆− 1

r
)

( ∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2
∂2

∂θ2
+

1

λρ
− 1

4

)

φ(ρ, θ) = 0
(

ρ ∈ R>0, θ ∈ (−π, π)
)

. (4)

It is this partial differential equation which we want to solve, and we shall do this by the
method of separation of variables, in analogy with has been done previously for the Laplace
equation.

We look for solutions in product formφ(ρ, θ) = R(ρ)Θ(θ) and after division by1
ρ2
RΘ

we find the following separated equation

R′′ + 1
ρ
R′ +

(

1
λρ

− 1
4

)

R

1
ρ2
R

= −Θ′′

Θ



which then has to be a constantκ. This leads to the equations

R′′ +
1

ρ
R′ +

(

1

λρ
− 1

4

)

R− κ

ρ2
R = 0

and
Θ′′ + κΘ = 0

As Θ has to be2π-periodic in the angular variableθ, we conclude thatΘ(θ) = einθ and
κ = n2 for somen ∈ Z (just as what we saw for the Laplace equation). We are thus ledto
look for a solution which is given by a Fourier series with respect toθ,

φ(ρ, θ) =
∑

l∈Z

cl(ρ)e
ilθ (θ ∈ R), (5)

where the coefficientcl : R>0 → C is expected to satisfy the equation forR above. That
this is possible for any eigenfunctionψ follows from the fact thatφ(ρ, ·) can be extended to
a2π-periodicC1 function for everyρ > 0 with Fourier coefficients

cl(ρ) =
1

2π

∫ π

−π

φ(ρ, θ) e−ilθ dθ. (6)

If we insert (5) into (4), interchange differentiation and summation and use the uniqueness
of the Fourier series, we obtain (as expected) the followingdifferential equation for thecl:

( d2

dρ2
+

1

ρ

d

dρ
− l2

ρ2
+

1

λρ
− 1

4

)

cl(ρ) = 0 (ρ ∈ R>0). (7)

This equation has a regular singularity at the origin and canbe solved by the power series
method of Frobenius. Rather than doing this directly, it turns out to be an advantage first to
simplify it by a change of variables.

The change of variables we apply is

cl(ρ) = e−
ρ

2ρ|l|γl(ρ) (ρ ∈ R>0)

for some functionγl(ρ). Then

e
ρ

2ρ−|l|dcl
dρ

(ρ) =
dγl
dρ

(ρ) +
( |l|
ρ

− 1

2

)

γl(ρ)

e
ρ

2ρ−|l|d
2cl
dρ2

(ρ) =
d2γl
dρ2

(ρ) + 2
( |l|
ρ

− 1

2

)dγl
dρ

(ρ) +
( l2 − |l|

ρ2
− |l|

ρ
+

1

4

)

γl(ρ).

If we apply this and multiply bye
ρ

2ρ1−|l|, we obtain

ρ
d2γl
dρ2

(ρ) +
(

2|l|+ 1− ρ
)dγl
dρ

(ρ) +
(1

λ
− |l| − 1

2

)

γl(ρ) = 0. (8)

Solutions to (8). We will now construct two linearly independent solutions tothis dif-
ferential equation. To find the first one, we make the Ansatz that for ρ > 0, we can write



γl(ρ) as a power series
∑∞

m=0 amρ
m for certain coefficientsam ∈ C. If we formally insert

this series into (8) and interchange differentiation and summation, then we obtain

0 =
∞
∑

m=0

am

(

m(m− 1)ρm−1 +m(2|l|+ 1)ρm−1 +
(

−m+
1

λ
− |l| − 1

2

)

ρm
)

(9)

=
∞
∑

m=1

(

am
(

m2 + 2|l|m
)

− am−1

(

m+ |l| − 1

λ
− 1

2

)

)

ρm−1.

The identity principle implies that the coefficients on the right-hand side of (9) are all
zero, i.e.,

am =
m+ |l| − 1

λ
− 1

2

m2 + 2|l|m am−1 (m ∈ N). (10)

This relation uniquely determines theam for m ≥ 1 in terms ofa0. We choosea0 = 1. Then

am =

(

m
∏

k=1

k + |l| − 1
λ
− 1

2

k2 + 2|l|k

)

. (11)

Note that ifam = 0 for somem ∈ N, thenam+j = 0 for all j ∈ N, and
∑∞

m=0 amρ
m is a

finite sum. Otherwise

lim
m→∞

am
am−1

= lim
m→∞

m+ |l| − 1
λ
− 1

2

m2 + 2|l|m = 0,

and the radius of convergence of the seriesγl,1(ρ) =
∑∞

m=0 amρ
m is infinite. In any case the

sum defines a solution of (8) onR.
The linear equation (8) is of order2, hence it has a2-dimensional solution space. A

solutionγl,2, which is linearly independent ofγl,1, can be found by an Ansatz that it has the
form

γl,2(ρ) = c ln(ρ)γl,1 +
∞
∑

m=−2|l|

bmρ
m, (12)

for some constantc and coefficientsbm. However, this solution is unbounded forρ →
0, and it will soon be discarded. Since we have found two linearly independent solutions
to the second order linear differential equation (8), any other solution onR>0 is a linear
combination of these two.

Behavior of the solutions. The functionψ is by assumption bounded. Therefore

|cl(ρ)| =
∣

∣

∣

∣

1

2π

∫ π

−π

ψ ◦ Φ(ρ, θ)e−ilθ dθ

∣

∣

∣

∣

≤ 1

2π

∫ π

−π

|ψ ◦ Φ(ρ, θ)| dθ ≤ sup |ψ|.

Hence thecl are bounded functions. Furthermore, they are linear combinations

cl(ρ) = C1e
− ρ

2ρ|l|γl,1(ρ) + C2e
− ρ

2ρ|l|γl,2(ρ) (ρ ∈ R>0).

It follow that cl is bounded if and only ifC2 = 0.



Notice that for sufficiently largem the expressionm + |l| − 1
λ
− 1

2
is strictly positive.

Therefore, for thosem theam are either all non-negative or all non-positive. Moreover,

m+ |l| − 1
λ
− 1

2

m2 + 2|l|m

behaves like1
m

for largem, hence it follows from (10) that|am| ≥ 1
2m

|am−1| for sufficiently
largem. Sinceam andam−1 carry the same sign (or are both zero) for sufficiently largem,
we have the three possibilities,am = am−1 = 0, am ≥ 1

2m
am−1 > 0, or am ≤ 1

2m
am−1 < 0

for suchm. It follows that there are the possibilities:

• there exists am0 such thatam = 0 for m ≥ m0.

• there exists am0 and a constantc > 0 such thatam > c
2mm!

for m ≥ m0

• there exists am0 and a constantc > 0 such thatam < −c
2mm!

for m ≥ m0.

We will now exclude the last two cases. They both imply

|
∞
∑

m=0

amρ
m| ≥ |

∞
∑

m=m0

amρ
m| −

m0−1
∑

m=0

1

2mm!
|am|ρm

≥ c

∞
∑

m=m0

1

2mm!
ρm −

m0−1
∑

m=0

1

2mm!
|am|ρm

= c

∞
∑

m=0

1

2mm!
ρm −

m0−1
∑

m=0

1

2mm!
(c+ |am|)ρm = ce

ρ

2 − P (ρ)

with a polynomialP . Since the exponential function dominates the polynomial for ρ suffi-
ciently large, we conclude that there existsc1 > 0 andρ0 > 0 such that

|
∞
∑

m=0

amρ
m| ≥ c1e

ρ

2

for all ρ ≥ ρ0. Hence

|cl(ρ)| = |C1|e−
ρ

2ρ|l||
∞
∑

m=0

amρ
m| ≥ c1|C1| ρ|l|. (ρ ∈ R>0).

In particular it follows that in that case
∫

R>0

ρ|cl(ρ)|2 dρ is infinite. By the Plancherel for-
mula for the fourier series

∑

l cl(ρ)e
ilθ,

|cl(ρ)|2 ≤
∑

l∈Z

|cl(ρ)|2 =
∫

θ∈(−π,π)

|φ(ρ, θ)|2 dθ

and hence
∫

ρ∈R>0

ρ|cl(ρ)|2 dρ ≤
∫

ρ∈R>0

∫

θ∈(−π,π)

|φ(ρ, θ)|2 dθ ρ dρ = λ2
∫

R2

|ψ(x)|2 dx,



which is finite. This is a contradiction, and the last mentioned cases have been excluded.
We conclude thatam = 0 for sufficiently largem, or equivalentlyγl is a polynomial.

These polynomials are calledassociated Laguerre polynomials. Note that ifγl is a polyno-
mial, then

∫

ρ∈R>0

ρ|e− ρ

2ρ|l|γl(ρ)|2 dρ <∞

so that the contradiction of before is not reached in this case.

Quantization of energy. Since the power series has to break off, it follows from (10)
that if cl is non-zero, thenm1 + |l| − 1

λ
− 1

2
= 0 for somem1 ≥ 1. Equivalently,

E = −(
λ

2
)2 =

−1

(2m1 + 2|l| − 1)2

Sincem1 + |l| ∈ N, this means that not all negative real numbers are eigenvalues. Let
n = m1 + |l| − 1, thenn ∈ Z≥0 and

En =
−1

(2n+ 1)2
.

Since the set of eigenvalues is discrete, and this set is the set of all negative values that can
occur as the possible outcomes of energy measurements, the energy of the hydrogen atom is
said to bequantized.

Associated Laguerre polynomials and eigenfunctions Let α andβ be non-negative
integers. The unique solutionL = Lβ

α of

x
d2L

dx2
+ (β + 1− x)

dL

dx
+ αL = 0 (13)

that is polynomial and satisfies the initial conditionL(0) =
(

α+β

α

)

, is called the associated
Laguerre polynomial of degreeα and parameterβ. An alternative description of these poly-
nomials is given by theRodrigues’ formula

Lβ
α(x) =

x−βex

α!

dα

dxα
(e−xxα+β)

From the previous discussion and comparison of (8) with (13)it follows that the eigen-
functions ofH with eigenvalueEn are linear combinations of the functionsψn,l given by

ψn,l ◦ Φ(ρ, θ) =
1

Nn,l

eilθe−
ρ

2ρ|l|L
2|l|
n−|l|,

with l an integer between−n andn andNn,l chosen such that
∫

R2 |ψn,l(x)|2 dx = 1. If
ψ =

∑n

l=−n dlψn,l and
∑n

l=−n |dl|2 = 1, thenψ satisfies (3), henceψ is an eigenfunction of
H with eigenvalueEn. In fact every eigenfunction with eigenvalueEn is of this form (the
eigenspace is2n+ 1-dimensional, and the functionsψn,l form an orthonormal basis).

Having determined the eigenfunctions forH, the next step is to solve (1) with a pre-
scribed initial valueΨ(0, x) = ψ(x) by the Ansatz thatΨ(t, x) is a sum of eigenfunctions
for H with t-dependent coefficients. This is done in Exercise 1 below in the case where the
sum is finite.



Exercises

Exercise 1. Assume thatψ =
∑n

k=0 ckψk, where theck ∈ C and theψk are eigenfunctions
ofH with eigenvaluesEk. Find a solution to the initial value problem given by (1) and

Ψ(0, x) = ψ(x) (x ∈ R
2)

in terms of theck and theψk.

Exercise 2. Use the integral formula forcl to prove that for everyl ∈ Z the functioncl is
C2. Now use (7) to prove that thecl are in factC∞. Prove that

dk

dρk
φ(ρ, θ) =

∑

l∈Z

dk

dρk
cl(ρ)e

ilθ

for k = 1, 2.

Exercise 3. Use the differential equation and the initial value condition to show that

Lβ
α(x) =

α
∑

m=0

(−1)m

m!

(

α + β

α−m

)

xm

Use this to prove Rodrigues’ formula.

Exercise 4. Letα ∈ R. Consider the Hermite equation of orderα

y′′ − 2xy′ + 2αy = 0. (14)

(a) Find the recursive formula for a power series solution.

(b) Show that the radius of convergence of the power series

y1(x) = 1 +
∞
∑

n=1

(−2)n
∏n−1

k=0(α− 2k)

(2n)!
x2n

and

y2(x) = x+
∞
∑

n=1

(−2)n
∏n−1

k=0(α− 2k − 1)

(2n+ 1)!
x2n+1

is infinite. Show thaty1 andy2 are two solutions and prove that they are linearly inde-
pendent.

(c) Show thaty1 is a polynomial ifα is a non-negative even integer andy2 is a polynomial
if α is a positive odd integer.

The polynomial solutions of (14) of degreen such that the top coefficientan equals2n, are
called Hermite polynomials. They occur in quantum physics as the eigenfunctions for the
Schr̈odinger equation of the harmonic oscillator.


