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Preface

The present lecture notes are intended for the course ”Beting”. The purpose is to give a

detailed probabilistic introduction to conditional distributions and how this concept is used

to define and describe Markov chains and Bayesian networks.

The chapters 1–4 are mainly based on different sets of lecture notes written by Ernst Hansen

but are adapted to suit students with the knowledge obtained in the courses MI, VidSand1,

and VidSand2. Parts of these chapters also contain material inspired by lecture notes written

by Martin Jacobsen and Søren Tolver Jensen. Chapter 5 is an adapted version of a set of

lecture notes written by Søren Tolver Jensen and Martin Jacobsen. These notes themselves

were inspired by earlier notes by Søren Feodor Nielsen. Chapter 6 contains some standard

results on Bayesian networks - though both formulations and proofs are formulated in the

rather general framework from chapter 3 and 4.

There are exercises in the end of each chapter and hints to selected exercises in the end of

the notes. Some exercises are adapted versions of exercises and exam exercises from previous

lecture notes. Others are inspired by examples and results collected from a large number of

monographs on Markov chains, stochastic simulation, and probability theory in general.

I am grateful to both students and the teaching assistants from the last two years, Ketil Bier-

ing Tvermosegaard and Daniele Cappelletti, who have contributed to the notes by identifying

mistakes and suggesting improvements.

Anders Rønn-Nielsen

København, 2014
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Chapter 1

Conditional distributions

Let (X ,E) and (Y,K) be two measurable spaces. In this chapter we shall discuss the relation

between measures on the product space (X × Y,E ⊗ K) and measures on the two marginal

spaces (X ,E) and (Y,K). More precisely we will see that measures on the product space can

be constructed from measures on the two marginal spaces. A particularly simple example is

a product measure µ⊗ ν where µ and ν are measures on (X ,E) and (Y,K) respectively.

The two factors X and Y will not enter the setup symmetrically in the more general con-

struction.

1.1 Markov kernels

Definition 1.1.1. A (X ,E)–Markov Kernel on (Y,K) is a family of probability measures

(Px)x∈X on (Y,K) indexed by points in X such that the map

x 7→ Px(B)

is E− B–measurable for every fixed B ∈ K.

Theorem 1.1.2. Let (X ,E) and (Y,K) be measurable spaces, let ν be a σ–finite measure on

(Y,K), and let f ∈M+(X × Y,E⊗K) have the property that∫
f(x, y) dν(y) = 1 for all x ∈ X .
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Then (Px)x∈X given by

Px(B) =

∫
B

f(x, y) dν(y) for all B ∈ K, x ∈ X

is a (X ,E)–Markov Kernel on (Y,K).

Proof. For each fixed set B ∈ K we need to argue that

x 7→
∫

1X×B(x, y)f(x, y) dν(y)

is an E–measurable function. That is a direct result of EH Theorem 8.7 applied to the

function 1X×Bf .

Lemma 1.1.3. If (Y,K) has an intersection–stable generating system D, then (Px)x∈X is a

(X ,E)–Markov Kernel on (Y,K) if only

x 7→ Px(D)

is E− B-measurable for all fixed D ∈ D.

Proof. Define

H = {F ∈ K : x 7→ Px(F ) is E− B–measurable}

It is easily checked that H is a Dynkin Class. Since D ⊆ H, we have H = K.

Lemma 1.1.4. Let (Px)x∈X be a (X ,E)–Markov kernel on (Y,K). For each G ∈ E⊗K the

map

x 7→ Px(Gx)

is E− B–measurable.

Proof. Let

H = {G ∈ E⊗K : x 7→ Px(Gx) is E− B–measurable}

and consider a product set A×B ∈ E⊗K. Then

(A×B)x =

{
∅ if x /∈ A
B if x ∈ A

such that

Px((A×B)x) =

{
0 if x /∈ A
Px(B) if x ∈ A

= 1A(x) · Px(B)
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This is a product of two E−B–measurable functions. Hence it is E−B–measurable. Thereby

we conclude that H contains all product sets, and since this is a intersection stable generating

system for E⊗K, we have H = E⊗K, if we can show that H is a Dynkin class:

We already have that X × Y ∈ H – it is a product set! Assume that G1 ⊆ G2 are two sets

in H. Then obviously also Gx1 ⊆ Gx2 for all x ∈ X , and

(G2 \G1)x = Gx2 \Gx1 .

Then

Px((G2 \G1)x) = Px(Gx2)− Px(Gx1)

which is a difference between two measurable functions. Hence G2 \G1 ∈ H.

Finally, assume that G1 ⊆ G2 ⊆ · · · is an increasing sequence of H–sets. Similarly to above

we have Gx1 ⊆ Gx2 ⊆ · · · and ( ∞⋃
n=1

Gn

)x
=

∞⋃
n=1

Gxn .

Then

Px

(( ∞⋃
n=1

Gn

)x)
= Px

( ∞⋃
n=1

Gxn

)
= lim
n→∞

Px(Gxn)

This limit is E − B–measurable, since each of the functions x 7→ Px(Gxn) are measurable.

Then
⋃∞
n=1Gn ∈ H.

1.2 Integration of Markov kernels

Theorem 1.2.1. Let µ be a probability measure on (X ,E) and let (Px)x∈X be a (X ,E)–

Markov kernel on (Y,K). There exists a uniquely determined probability measure λ on (X ×
Y,E⊗K) satisfying

λ(A×B) =

∫
A

Px(B) dµ(x)

for all A ∈ E and B ∈ K.

The probability measure λ constructed in Theorem 1.2.1 is called the integration of (Px)x∈X

with respect to µ. The interpretation is that λ describes an experiment on X × Y that is

performed in two steps: The first step is drawing x ∈ X . The second step is drawing y ∈ Y
according to a probability measure that is determined by x.
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Proof. The uniqueness follows, since λ is determined on all product sets and these form an

intersection stable generating system for E⊗K.

In order to prove the existence, we define

λ(G) =

∫
Px(Gx) dµ(x)

For each G ∈ E⊗K the integrand is measurable according to Lemma 1.1.4. It is furthermore

non–negative, such that λ(G) is well–defined with values in [0,∞].

Now let G1, G2, . . . be a sequence of disjoint sets in E ⊗ K. Then for each x ∈ X the sets

Gx1 , G
x
2 , . . . are disjoint as well. Hence

λ
( ∞⋃
n=1

Gn

)
=

∫
Px

(( ∞⋃
n=1

Gn

)x)
dµ(x) =

∫ ∞∑
n=1

Px(Gxn) dµ(x) =

∞∑
n=1

λ(Gn)

In the second equality we have used that each Px is a measure, and in the third equality we

have used monotone convergence to interchange integration and summation. From this we

have that λ is a measure. And since

λ(X × Y) =

∫
Px((X × Y)x) dµ(x) =

∫
Px(Y) dµ(x) =

∫
1 dµ(x) = 1

we obtain, than λ is actually a probability measure. Finally, it follows that

λ(A×B) =

∫
Px((A×B)x) dµ(x) =

∫
1A(x)Px(B) dµ(x) =

∫
A

Px(B) dµ(x)

for all A ∈ E and B ∈ K.

Corollary 1.2.2. Let µ be a probability measure on (X ,E) and let (Px)x∈X be a (X ,E)–

Markov kernel on (Y,K). Let λ be the integration of (Px)x∈X with respect to µ. Then λ

satisfies

λ(A× Y) = µ(A) for all A ∈ E

λ(X ×B) =

∫
Px(B) dµ(x) for all B ∈ K

Proof. The second statement is obvious. For the first result just note that Px(Y) = 1 for all

x ∈ X .

The probability measure on (Y,K) defined by λ(X ×B) is called the mixture of the Markov

kernel with respect to µ.

Example 1.2.3. Let µ be a probability measure on (X ,E) and let ν be a probability measure
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on (Y,K). Define Px = ν for all x ∈ X . Then, trivially, (Px)x∈X is a X–Markov kernel on

Y. Let λ be the integration of this kernel with respect to λ. Then for all A ∈ E and B ∈ K

λ(A×B) =

∫
A

ν(B) dµ(x) = µ(A) · ν(B) .

The only measure satisfying this property is the product measure µ⊗ ν, so λ = µ⊗ ν. Hence

a product measure is a particularly simple example of a measure constructed by integrating

a Markov kernel. ◦

Example 1.2.4. Let µ be the Poisson distribution with parameter λ. For each x ∈ N0

we define Px to be the binomial distribution with parameters (x, p). Then it is seen that

(Px)x∈N0 is a N0–Markov kernel on N0.

Let ξ be the mixture of (Px)x∈N0
with respect to µ. This must be a probability measure on

N0 and is thereby given by the probability function q. For n ∈ N0 we obtain

q(n) =

∞∑
k=n

(
k

n

)
pn(1− p)k−nλ

k

k!
e−λ

=
(λp)n

n!
e−λ

∞∑
k=n

(
(1− p)λ

)k−n
(k − n)!

=
(λp)n

n!
e−λe(1−p)λ

=
(λp)n

n!
e−λp

Hence the mixture ξ is seen to be the Poisson distribution with parameter λp. ◦

Theorem 1.2.5 (Uniqueness of integration). Suppose that (Y,K) has a countable generating

system that is intersection stable. Let µ and µ̃ be two probability measures on (X ,E) and

assume that (Px)x∈X and (P̃x)x∈X are two (X ,E)–Markov kernels on (Y,K). Let λ be the

integration of (Px)x∈X with respect to µ, and let λ̃ be the integration of (P̃x)x∈X with respect

to µ̃. Define

E0 = {x ∈ X : Px = P̃x}

Then λ = λ̃ if and only if µ = µ̃ and µ(E0) = 1.

Proof. Let (Bn)n∈N be a countable generating system for (Y,K). Then

E0 =

∞⋂
n=1

{x ∈ X : Px(Bn) = P̃x(Bn)}

from which we can conclude that E0 ∈ E.
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Assume that µ = µ̃ and µ(E0) = 1. Then for all A ∈ E and B ∈ K we have

λ(A×B) =

∫
A∩E0

Px(B) dµ(x) =

∫
A∩E0

P̃x(B) dµ̃(x) = λ̃(A×B)

and thereby λ = λ̃.

Assume conversely that λ = λ̃. According to Corollary 1.2.2 we have for all A ∈ E

µ(A) = λ(A× Y) = λ̃(A× Y) = µ̃(A)

such that µ = µ̃.

The proof will be complete, if we can show that

µ({x ∈ X : Px(Bn) 6= P̃x(Bn)}) = 0

for all n ∈ N. Consider for this the set

E+
n = {x ∈ X : Px(Bn) > P̃x(Bn)} .

Using this definition gives∫
E+
n

(Px(Bn)− P̃x(Bn)) dµ(x) = λ(E+
n ×Bn)− λ̃(E+

n ×Bn) = 0

and since the integrand is strictly positive on E+
n , we can conclude that µ(E+

n ) = 0. It is

shown similarly that µ(E−n ) = 0, where

E−n = {x ∈ X : Px(Bn) < P̃x(Bn)} .

1.3 Properties for the integration measure

In this section we will consider integration with respect to λ, where λ is the integrated

measure of a Markov kernel (Px)x∈X with respect to some probability measure µ. We shall

see, that such λ–integrals can be calculated by successive integration similar to what is known

for product measures.

Lemma 1.3.1. Let (Px)x∈X be a (X ,E)–Markov kernel on (Y,K) and assume that f :

X × Y → [0,∞] is E⊗K–measurable. Then the map

x 7→
∫
f(x, y) dPx(y) (1.1)

is E–measurable.
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Proof. Firstly note that for fixed x then f(x, y) = f ◦ix(y) which is a K–measurable function.

Hence the integral in (1.1) is well–defined. Now assume that f is a simple function

f =

n∑
k=1

ck1Gk (1.2)

where c1, . . . , cn ∈ (0,∞) and G1, . . . , Gn are disjoint sets in E⊗K. Since

1Gk(x, y) = 1Gxk (y)

for all x and y, we obtain∫
f(x, y) dPx(y) =

n∑
k=1

∫
ck1Gk(x, y) dPx(y)

=

n∑
k=1

ck

∫
1Gxk (y) dPx(y)

=

n∑
k=1

ckPx(Gxk)

According to Lemma 1.1.4 this is a linear combination of E–measurable functions. Hence it

is E–measurable.

Now assume that f is a general function inM+(X ×Y,E⊗K). Then there exists a sequence

(fn)n∈N of non–negative simple functions with fn(x, y) ↑ f(x, y) for all x ∈ X and y ∈ Y.

For fixed x we have from monotone convergence, that∫
fn(x, y) dPx(y) ↑

∫
f(x, y) dPx(y) .

Hence the right hand side is the point–wise limit of E–measurable functions. Thereby it is

E–measurable.

Theorem 1.3.2 (Extended Tonelli). Let µ be a probability measure on (X ,E), and assume

that (Px)x∈X is a (X ,E)–Markov kernel on (Y,K). Let λ be the integration of (Px)x∈X with

respect to µ. For every E⊗K–measurable function f : X × Y → [0,∞] it holds that∫
f(x, y) dλ(x, y) =

∫∫
f(x, y) dPx(y) dµ(x)

Proof. The inner integral on the right hand side is according to Lemma 1.3.1 E–measurable

with values in [0,∞]. Hence both the left hand side and the right hand side are well–defined.
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Now assume that f is a simple function on the form (1.2). Then∫
f dλ =

n∑
k=1

ckλ(Gk)

=

n∑
k=1

ck

∫
Px(Gxk) dµ(x)

=

n∑
k=1

ck

∫∫
1Gxk (y) dPx(y) dµ(x)

=

n∑
k=1

ck

∫∫
1Gk(x, y) dPx(y) dµ(x)

=

∫∫ n∑
k=1

ck1Gk(x, y) dPx(y) dµ(x)

=

∫∫
f(x, y) dPx(y) dµ(x)

which shows the result, when f is a simple function.

Now let f be a general function inM+(X ×Y,E⊗K). Then there exists a sequence (fn)n∈N

of non–negative simple functions with fn ↑ f . Then from monotone convergence∫
f dλ = lim

n→∞

∫
fn dλ = lim

n→∞

∫∫
fn(x, y) dPx(y) dµ(x)

But monotone convergence also yields∫
fn(x, y) dPx(y) ↑

∫
f(x, y) dPx(y)

and applying monotone convergence once more then gives∫∫
fn(x, y) dPx(y) dµ(x) ↑

∫∫
f(x, y) dPx(y) dµ(x) ,

and this shows the theorem.

Theorem 1.3.3 (Extended Fubini). Let µ be a probability measure on (X ,E) and assume

that (Px)x∈X is a (X ,E)–Markov kernel on (Y,K). Let λ be the integration of (Px)x∈X with

respect to µ. For every E⊗K–measurable and λ–integrable function f : X × Y → R it holds

that

A0 = {x ∈ X :

∫
|f(x, y)| dPx(y) <∞}

is E–measurable with µ(A0) = 1. Furthermore it is fulfilled that the function

x 7→ g(x) :=

{ ∫
f(x, y) dPx(y) x ∈ A0

0 x /∈ A0
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is E–measurable and µ–integrable, and that∫
f(x, y) dλ(x, y) =

∫
A0

∫
f(x, y) dPx(y) dµ(x) .

Note: The extended Tonelli’s Theorem can be applied to determine whether f is λ–integrable

– that is whether
∫
|f | dλ <∞.

Proof. It follows from Lemma 1.3.1 that A0 ∈ E. The extended Tonelli’s Theorem gives∫∫
|f(x, y)| dPx(y) dµ(x) =

∫
|f | dλ <∞ .

Hence the integral
∫
|f(x, y)| dPx(y) must be finite for µ almost all x ∈ X such that µ(A0) =

1. For each x ∈ A0 we have∫
f(x, y) dPx(y) =

∫
f+(x, y) dPx(y)−

∫
f−(x, y) dPx(y)

From this we see that the function g defined in the theorem is measurable according to

Lemma 1.3.1. Furthermore we obtain from the extended Tonelli that∫
|g(x)|dµ(x) =

∫
A0

∣∣∣∣∫ f(x, y) dPx(y)

∣∣∣∣ dµ(x)

≤
∫∫

1A0×Y(x, y)|f(x, y)| dPx(y) dµ(x)

<∞ ,

showing that g is µ–integrable. Finally, we have from the extended Tonelli that∫
A0

∫
f(x, y) dPx(y) dµ(x)

=

∫
A0

∫
f(x, y)+ dPx(y) dµ(x)−

∫
A0

∫
f(x, y)− dPx(y) dµ(x)

=

∫
1A0

(x)f+(x, y) dλ(x, y)−
∫

1A0
(x)f−(x, y) dλ(x, y)

=

∫
1A0(x)f(x, y) dλ(x, y)

=

∫
A0×Y

f(x, y) dλ(x, y) .

But from Corollary 1.2.2 we have

λ(A0 × Y) = µ(A0)
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so ∫
A0×Y

f(x, y) dλ(x, y) =

∫
f(x, y) dλ(x, y)

1.4 Conditional distributions

In an experiment where two random variables X and Y are observed, it is often convenient to

consider the probabilistic model in two steps: X is observed first, afterwards Y is observed.

Here it is natural to believe that the mechanism that decides the value of Y depends on the

drawn value of X. This two–step model can be constructed by considering the simultaneous

distribution of X and Y as the integration of the conditional distribution of Y given X with

respect to the distribution of X.

Definition 1.4.1. Let X and Y be random variables defined on the probability space (Ω,F, P )

with values in (X ,E) and (Y,K) respectively. Let (Px)x∈X be a (X ,E)–Markov kernel on

(Y,K). We say that (Px)x∈X is the conditional distribution of Y given X, if the simultaneous

distribution (X,Y )(P ) (a probability measure on (X×Y,E⊗K)) is the integration of (Px)x∈X

with respect to X(P ). That is, if

P (X ∈ A, Y ∈ B) = X(P )(A×B) =

∫
A

Px(B) dX(P )(x)

for all A ∈ E and B ∈ K.

Note that we say the conditional distribution although according to Theorem 1.2.5 the

Markov kernel can be changed on nullsets (with respect to X(P )). The strictly correct

term would be a conditional distribution. When stating the conditional distribution, it

is not necessary to give the entire Markov kernel (Px)x∈X . Since the Markov kernel is

integrated with respect to X(P ) it will be enough to give (Px)x∈A0
, where A0 ∈ E is a set

with P (X ∈ A0) = 1.

Conversely, a conditional distribution given by (Px)x∈A0 , where P (X ∈ A0) = 1, can be

extended to a ”true” Markov kernel (P̃x)x∈X by the definition

P̃x =

{
Px x ∈ A0

P0 x /∈ A0
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with P0 is some probability measure on (Y,K). Note that x 7→ P̃x(B) is measurable, since

A0 is a measurable set.

The interpretation of the conditional distribution of Y given X is that Px describes the

distribution of Y if we know that X = x. This interpretation is very useful although it should

not be taken too seriously, since it may be difficult to give a strict mathematical description

when the event X = x is a nullset. Nevertheless, we will denote Px the conditional

distribution of Y given X = x.

This interpretation leads to the following alternative notation for a Markov kernel (Px)x∈X

that is a conditional distribution of Y given X:

PY (B |X = x) = Px(B) for B ∈ K .

A more relaxed but useful notation will be simply talking about ’the distribution of Y | X = x

instead’ of the longer ’the distribution Px , when (Px)x∈X is the conditional distribution of

Y given X’. We will also from time to time write expressions like Y | X = x ∼ ν.

Later in this chapter we will show the following very important result:

Theorem 1.4.2. Let X and Y be random variables defined on the probability space (Ω,F, P )

with values in (X ,E) and (Y,K) respectively, such that Y is a Borel space. Then there exists

a conditional distribution of Y given X.

This result is particularly important, since (as we shall show) R,Rn and R∞ are Borel sets.

The proof is not constructive in the sense that it is not in general clear how the Markov

kernels should look like. The construction of the Markov kernels is however possible in a

number of more concrete situations.

Theorem 1.4.3. Assume that X and Y are random variables on (X ,E) and (Y,K) such

that (Px)x∈X is the conditional distribution of Y given X. Then X and Y are independent

if and only if Px does not depend on x.

That the Markov kernel is independent of x means, that it can be chosen such that

Px = P0

for all x ∈ X . In the case of independence, then Px = P0 = Y (P ) for all x ∈ X .

Proof. Suppose that X and Y are independent. Then for A ∈ E and B ∈ K

P (X ∈ A, Y ∈ B) = X(P )(A) · Y (P )(B) =

∫
A

Y (P )(B) dX(P )(x)
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which shows, that the constant Markov kernel (Y (P ))x∈X is the conditional distribution of

Y given X.

Conversely, assume that Px = P0 for all x ∈ X , where P0 is some probability measure on

(Y,K). Then for Y ∈ K we have

P (Y ∈ B) = P (X ∈ X , Y ∈ B) =

∫
Px(B) dX(P )(x) =

∫
P0(B) dX(P )(x) = P0(B)

which shows, that Y (P ) = P0. Furthermore for A ∈ E and B ∈ K we obtain

P (X ∈ A, Y ∈ B) =

∫
A

Px(B) dX(P )(x) =

∫
A

P0(B) dX(P )(x)

= X(P )(A)P0(B) = P (X ∈ A)P (Y ∈ B)

leading to the conclusion that X and Y are independent.

Hence independence between two variables X and Y is the same as the conditional distri-

bution of Y given X being constant. If conversely the conditional distribution consists of

very different probability measures, then it seems reasonable to believe that there is a strong

dependence between X and Y .

In the following theorem it is seen that if X is a discrete random variable, then the conditional

distribution is just given by elementary conditional probabilities.

Theorem 1.4.4. Let X and Y be random variables defined on (Ω,F, P ) with values in (X ,E)

and (Y,K). Assume that X is finite or countable and that E is the paving that consists of all

subsets of X . Then the conditional distribution of Y given X is determined by

Px(B) =
P (X = x, Y ∈ B)

P (X = x)
for B ∈ K , (1.3)

for all x ∈ X with P (X = x) > 0.

Note that Px(B) is simply defined as the conditional distribution of (Y ∈ B) given the set

(X = x):

Px(B) =
P (X = x, Y ∈ B)

P (X = x)
= P (Y ∈ B |X = x)

Proof. Let A0 = {x ∈ X : P (X = x) > 0} and note that X(P )(A0) = 1 such that (1.3)

defines a (X ,E)–Markov kernel on (Y,K) – the measurability is not a problem, since all
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functions on X are E–measurable. For A ⊆ X and B ∈ K we have∫
A

Px(B) dX(P )(x) =

∫
A∩A0

Px(B) dX(P )(x)

=
∑

x∈A∩A0

P (X = x, Y ∈ B)

P (X = x)
P (X = x)

=
∑

x∈A∩A0

P (X = x, Y ∈ B)

= P (X ∈ A ∩A0, Y ∈ B)

= P (X ∈ A, Y ∈ B)

such that (Px)x∈X actually is the conditional distribution of Y given X.

Example 1.4.5. Let X1 and X2 be independent random variables that are Poisson dis-

tributed with parameters λ1 and λ2. Then the distribution of X = X1 + X2 is a Poisson

distribution with parameter λ = λ1 + λ2. We will find the conditional distribution of X1

given X by indicating Px({n}) for all x, n ∈ N0. This must be sufficient, since all Px are

concentrated on N0. Using Theorem 1.3 yields for x ∈ N0 and n = 0, 1, . . . , x that

Px({n}) =
P (X1 = n,X2 = x− n)

P (X = x)

=
P (X1 = n)P (X2 = x− n)

P (X = x)

=

λn1
n! e
−λ1

λx−n2

(x−n)!e
−λ2

λx

x! e
−λ

=

(
x

n

)(
λ1

λ1 + λ2

)n(
λ2

λ1 + λ2

)x−n
Hence the conditional distribution of X1 given X = x is a binomial distribution with param-

eters (x, λ1

λ2+λ2
). ◦

Theorem 1.4.6. Assume that X and Y are random variables defined on (Ω,F, P ) with values

in (X ,E) and (Y,K) respectively. Assume that (Px)x∈X is the conditional distribution of Y

given X. Furthermore let µ and ν be σ–finite measures on (X ,E) and (Y,K) respectively

and assume that X(P ) = f · µ. Finally assume that (Px)x∈X is a (X ,E)–Markov kernel on

(Y,K) of the type constructed in Theorem 1.1.2: Assume that Px = gx ·ν, where the function

(x, y) 7→ gx(y) is E⊗K–measurable.

Then the simultaneous distribution of X and Y is given by (X,Y )(P ) = h · µ⊗ ν, where

h(x, y) = f(x) gx(y) for all x ∈ X , y ∈ Y
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Proof. Let A ∈ E and B ∈ K. Then

(X,Y )(P )(A×B) = P (X ∈ A, Y ∈ B)

=

∫
1A(x)Px(B) dX(P )(x)

=

∫
1A(x)

(∫
1B(y)gx(y) dν(y)

)
f(x) dµ(x)

=

∫ ∫
1A×B(x, y) f(x)gx(y)dν(y)dµ(x)

=

∫
1A×B(x, y)h(x, y)d(µ⊗ ν)(x, y)

where the last equaility is due to Tonelli. We see that (X,Y )(P ) and h · µ ⊗ ν coincide on

all product sets, and thereby they must be equal.

The theorem states that the simultaneous density is the product of the marginal density and

the conditional densities. The next theorem gives the converse result: The densities for the

conditional distribution is the fraction between the simultaneous density and the marginal

density.

Theorem 1.4.7. Assume that X and Y are random variables defined on (Ω,F, P ) with

values in (X ,E) and (Y,K) respectively. Furthermore let µ and ν be σ–finite measures on

(X ,E) and (Y,K) respectively and assume that (X,Y )(P ) = h · µ⊗ ν. Then the conditional

distribution of Y given X exists. The marginal distribution of X has density with respect to

µ given by

f(x) =

∫
h(x, y) dν(y)

Let A0 = {x ∈ X : 0 < f(x) < ∞}. Then X(P )(A0) = 1 and the conditional distribution

(Px)x∈X of Y given X has density with respect to ν given by

gx(y) =
h(x, y)

f(x)

for all x ∈ A0.

Proof. Finding the marginal density for X(P ) is a well–known calculation. For A ∈ E we
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have

X(P )(A) = (X,Y )(P )(A× Y)

=

∫
A×Y

h(x, y) d(µ⊗ ν)(x, y)

=

∫
A

∫
h(x, y) dν(y) dµ(x)

=

∫
A

f(x) dµ(x)

according to Tonelli. Thus X(P ) has density f with respect to µ.

Now define the sets

A1 = {x ∈ X : f(x) = 0} and A2 = {x ∈ X : f(x) =∞} .

Since X(P )(X ) = 1 we have

1 ≥ X(P )(A2) =

∫
A2

f(x) dµ(x) =∞ · µ(A2)

so µ(A2) = 0. Clearly we have that X(P )(A1) = 0, such that X(P )(A0) = 1.

From Tonelli we have that x 7→
∫
h(x, y)dν(y) = f(x) is E− B–measurable. Then also

(x, y) 7→ 1A0
(x)

h(x, y)

f(x)
= 1A0

(x)gx(y)

is E⊗K−B–measurable, and we have from Theorem 1.1.2 that (Px)x∈A0
is a Markov kernel,

when Px = gx · µ. Finally we have for A ∈ E and B ∈ K that∫
A

Px(B) dX(P )(x) =

∫
A∩A0

(∫
B

gx(y) dν(y)

)
f(x) dµ(x)

=

∫
A∩A0

(∫
B

h(x, y)

f(x)
dν(y)

)
f(x) dµ(x)

=

∫
A

(∫
B

h(x, y) dν(y)

)
dµ(x)

=

∫
A×B

h(x, y)d(µ⊗ ν)(x, y)

= (X,Y )(P )(A×B)

= P (X ∈ A, Y ∈ B) ,

which shows, that (Px)x∈A0 is the conditional distribution for Y given X.
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1.5 Existence of conditional distributions

Assume that X and Z are random variables defined on (Ω,F, P ) with values in (X ,E) and

(R,B) respectively. Assume that E|Z| < ∞. Recall that the conditional expectation of Z

given X exists and it satisfies 1)–3) in Theorem A.2.6. The fact that E(Z|X) is σ(X)–

measurable gives the existence of a measurable map φ : (X ,E)→ (R,B) such that

E(Z|X) = φ(X) P almost surely .

If Z is an indicator function 1F for some F ∈ F, then Z is obviously integrable such that

E(1F |X) is well–defined. We call this a conditional probability (givenX) and use the notation

P (F |X) = E(1F |X)

Note that 0 ≤ P (F |X) ≤ 1 P–a.s., and we can choose a version of P (F |X) such that it has

values in [0, 1] for all ω ∈ Ω. Once again we can find a E− B–measurable map φF such that

P (F |X) = φF (X)

We shall furthermore use the notation

P (F |X = x) = φF (x) .

The conditional probability P (F |X) is obviously determined by the map φF , so we shall

also let this map be called the conditional probability of F given X. Hence φF with values

in [0, 1] is a conditional probability of F given X if it is E − B–measurable and satisfies

φF (X) = P (F |X).

Going back to the properties 1)–3) of Theorem A.2.6 that characterises conditional expecta-

tions we obtain

Theorem 1.5.1. A E−B–measurable map φF with values in [0, 1] is a conditional probability

of F given X, if and only if it holds that∫
A

φF (x) dX(P )(x) = P ((X ∈ A) ∩ F ) (1.4)

for all A ∈ E.

Proof. Assume that φF is E − B measurable with values in [0, 1]. Then according to the

change-of-variable theorem (Theorem A.1.8) it holds∫
X∈A

φB(X) dP =

∫
A

φB(x) dX(P )(x)



1.5 Existence of conditional distributions 17

Hence equation (1.4) is fulfilled, if and only if∫
X∈A

φB(X) dP = P ((X ∈ A) ∩ F ) =

∫
(X∈A)

1F dP

is fulfilled for all A ∈ E. And this is by definition fulfilled, if and only if φB(X) is the

conditional expectation of 1F given X.

Corollary 1.5.2. Let X and Y be random variables defined on the probability space (Ω,F, P )

with values in (X ,E) and (R,B) respectively. Assume that (Px)x∈X ) is a conditional distri-

bution of Y given X. Then for all B ∈ B the function φ defined by φ(x) = Px(B) is a

conditional probability of (Y ∈ B) given X.

Proof. Recall that (Px)x∈X satisfies∫
A

Px(B) dX(P )(x) = P (X ∈ A, Y ∈ B)

for all A ∈ E and B ∈ B. Use Theorem 1.5.1.

The following immediate consequence of properties for conditional expectations will be useful

Lemma 1.5.3. The following results holds

(a) Assume that A ⊆ B. Then

P (A |X = x) ≤ P (B |X = x)

for X(P ) almost all x ∈ X .

(b) If (An)n∈N is an increasing sequence of sets, then

lim
n→∞

P (An |X = x) = P
( ∞⋃
n=1

An|X = x
)

for X(P ) almost all x ∈ X .

(c) If (An)n∈N is a decreasing sequence of sets, then

lim
n→∞

P (An |X = x) = P
( ∞⋂
n=1

An|X = x
)

for X(P ) almost all x ∈ X .
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Proof. (a) We have 1A ≤ 1B so

P (A |X) = E(1A|X) ≤ E(1B |X) = P (B |X) P–a.s. .

If we write φA(X) = P (A |X) and φB(X) = P (B |X), then we have

= X(P )({x ∈ X : P (A |X = x) ≤ P (B |X = x)})

= X(P )({x ∈ X : φA(x) ≤ φB(x)})

= P ({ω ∈ Ω : φA(X(ω)) ≤ φB(X(ω))})

= P (P (A |X) ≤ P (B |X)) = 1

(b) Let A0 =
⋃∞
n=1An and note that 1An ↑ 1A0

. Then it follows from (7) in Theorem

A.2.5 that

P (An|X)→ P (A0|X) P–a.s.

and then the result can be concluded as in (a).

(c) Use that 1A1
− 1An is increasing and repeat the argument from (b).

The idea is to use such conditional probabilities of the events (Y ∈ A) given X to construct

the conditional distribution of Y given X. Since we already know that the conditional

probabilities P (Y ∈ B|X) exists, then it seems really simple and obvious just to define

Px(B) = P (Y ∈ B |X = x) for all B ∈ K. The problem is that P (Y ∈ B |X) is only

determined almost surely and that the nullsets varies with B. We have, however, for B1 and

B2 disjoint sets that

P (Y ∈ (B1 ∪B2) |X) = P (Y ∈ B1 |X) + P (Y ∈ B2 |X) P–a.s.

such that also

P (Y ∈ (B1 ∪B2) |X = x) = P (Y ∈ B1 |X = x) + P (Y ∈ B2 |X = x)

for X(P ) almost all x ∈ X . This is of course necessary, if Px should be a probability measure.

The problem is, that for other sets B̃1 and B̃2, then the nullsets where the above equalities

are not true may be different. If there are uncountably many sets in K, then it may be

impossible to choose Px, such that e.g. the above equalities are true for all B1 and B2.

We are now ready to prove

Theorem 1.5.4. Let X and Y be random variables defined on the probability space (Ω,F, P )

with values in (X ,E) and (R,B) respectively. Then there exists a conditional distribution of

Y given X.
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Proof. We shall exploit the fact that probabilities on (R,B) are characterised by their dis-

tribution function, and that these in turn are completely determined by their values on the

rational numbers Q.

Let for q ∈ Q,

P (Y ≤ q |X)

be a conditional probability of (Y ≤ q) given X. If q < r ∈ Q then we have 1(Y≤q) ≤ 1(Y≤r)

so

P (Y ≤ q |X) = E(1(Y≤q)|X) ≤ E(1(Y≤r)|X) = P (Y ≤ r |X) P–a.s. .

Define

Aqr = {x ∈ X : P (Y ≤ q |X = x) ≤ P (Y ≤ r |X = x)} ∈ E ,

then we have P (Aqr) = 1 by Lemma 1.5.3 (a), such that also P (A0) = 1, where A0 =⋂
q<r∈QAqr. For some fixed x ∈ A0 we must have that the function

q 7→ P (Y ≤ q |X = x)

is increasing on Q. In particular we must have, that for x ∈ A0 the limits

L−(x) = lim
q→−∞,q∈Q

P (Y ≤ q |X = x) ,

L+(x) = lim
q→∞,q∈Q

P (Y ≤ q |X = x)

exists. Since (Y ≤ n) ↑ R, we must have from Lemma 1.5.3 (b) that X(P )(G+) = 1, where

G+ = {x ∈ X : lim
n→∞

P (Y ≤ n |X = x) = 1} ∈ E .

Hence it must hold that L+(x) = 1 for X ∈ A0 ∩ G+. It can be seen similarly that

X(P )(G−) = 1, where

G− = {x ∈ X : lim
n→−∞

P (Y ≤ n |X = x) = 0} ∈ E .

Altogether we have that X(P )(M) = 1, where M = A0 ∩G+ ∩G− and that for x ∈ M the

function q 7→ P (Y ≤ q |X = x) is increasing on Q with the limit 1 at +∞ and the limit 0 at

−∞.

Hence for each x ∈ M the function q 7→ P (Y ≤ q |X = x) looks like a distribution function

– and we are looking for distributions indexed by x – but it needs to be defined on R instead

of Q. So define for x ∈M

F (y |X = x) = inf{P (Y ≤ q |X = x) : q ∈ Q, q > y}

and note, that (since q 7→ P (Y ≤ q |X = x) is increasing) we have

F (y |X = x) = lim
n→∞

P (Y ≤ qn |X = x)
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whenever q1 > q2 > · · · > y is a decreasing sequence with y as the limit. From this we see

that y 7→ F (y |X = x) satisfies:

• it is increasing:

Let y1 < y2 and choose qn ↓ y1 and rn ↓ y2 rational, such that qn < rn for all n ∈ N.

• it has limit 1 in +∞:

For ε > 0 choose q0 such that P (Y ≤ q |X = x) ≥ 1 − ε for q ≥ q0. Realise that

F (y |X = x) ≥ 1− ε.

• it has limit 0 in −∞:

For ε > 0 choose q0 such that P (Y ≤ q |X = x) ≤ ε for q ≤ q0. Then it is seen that

F (y |X = x) ≤ ε for y ≤ q0 − 1 by choosing qn ↓ y such that qn ≤ q0 for all n ∈ N.

• it is right continuous:

Let y ∈ R and ε > 0. Choose q0 such that P (Y ≤ q |X = x) ≤ F (y |X = x) + ε for

q ≤ y+ q0. Realise that F (y′ |X = x) ≤ F (y |X = x) + ε for y′ ≤ y+ q0/2 (just choose

qn ↓ y′ with all qn ≤ y + q0).

Hence it is seen that y 7→ F (y |X = x) is a distribution function for some distribution Px on

(R,B) for each x ∈M . For x /∈M define

Px = P0

with P0 some probability on (R,B).

Now our claim is, that the constructed family of measures (Px)x∈X is the conditional distri-

bution of Y given X. That Px is a probability measure for each x ∈ X is fulfilled by the

construction, so it is only needed to check that for each B ∈ B

(i’) x 7→ Px(B) is E− B–measurable

(ii’) ∫
A

Px(B) dX(P )(x) = P (X ∈ A, Y ∈ B)

for all A ∈ E.

Let

H = {B ∈ B : (i) and (ii) are fulfilled}
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Then it is shown rather easily that H is a Dynkin class, and we will have shown that H = B,

if we can show that D ⊆ H, where D is the intersection stable generating system for B given

by

D = {(−∞, x] : x ∈ R}

So let x ∈ R and choose a decreasing rational sequence qn ↓ x. Then

Px((−∞, x]) =

{
F (y |X = x) x ∈M
P0((−∞, x]) x /∈M

=

{
limn→∞ P (Y ≤ qn |X = x) x ∈M
P0((−∞, x]) x /∈M

.

This must be measurable as a function of x, since M ∈ E, and each function x 7→ P (Y ≤
qn |X = x) is E− B–measurable. Furthermore we obtain (using X(P )(M) = 1)∫

A

Px((−∞, x]) dX(P )(x) =

∫
A∩M

F (y |X = x) dX(P )(x)

= lim
n→∞

∫
A∩M

P (Y ≤ qn |X = x) dX(P )(x)

= lim
n→∞

P (X ∈ A ∩M,Y ≤ qn)

= P (X ∈ A ∩M,Y ≤ x)

= P (X ∈ A, Y ≤ x)

In the third equality we have used Theorem 1.5.1, since the maps x 7→ P (Y ≤ qn |X = x)

are conditional probabilities of (Y ≤ qn) given X. Hence (i’) and (ii’) are show for A =

(−∞, x].

The result can be generalised to other random variables than the R–valued

Definition 1.5.5. A measurable space Y,K) is a Borel space, if there exist B0 ∈ B and a

bijective, bi–measurable map ϕ : (Y,K)→ (B0, B0 ∩ B).

It is in particular required that both ϕ and ϕ−1 are measurable. Note that we consider B0

as a subspace of (R,B) equipped with the σ–algebra B0 ∩ B = {B0 ∩ B : B ∈ B}. The

bi–measurability then amounts to

ϕ−1(B) ∈ K for B ∈ B0 ∩ B

ϕ(A) ∈ B0 ∩ B for A ∈ K

Theorem 1.5.6. If Y is a random variable taking values in a Borel space (Y,K), then there

exists a conditional distribution of Y given X.
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Proof. Consider Z = ϕ(Y ) (ϕ is of course given as in Definition 1.5.5), so according to

Theorem 1.5.4 there exists a conditional distribution (P̃x)x∈X of Z given X.

For all x ∈ X the probability measure P̃x is concentrated on B0 and can therefore be viewed

as a probability measure on (B0, B0∩B). The probability measure obtained from this by the

transformation ϕ−1 is a probability measure Px on (Y,K). It is easily seen that (Px)x∈X is

a conditional distribution of Y given X.

Theorem 1.5.6 is useful because of the following fact:

Theorem 1.5.7. For all n ∈ N, (Rn,Bn) is a Borel space. Furthermore, (R∞,B∞) is a

Borel space.

Sketch of proof. We shall almost show that ([0, 1]2, [0, 1]2 ∩ B2) is a Borel space. Consider

the binary expansion of an arbitrary x ∈ [0, 1],

x =

∞∑
n=1

xn
1

2n
, x < 1

x = 1 · 20 +

∞∑
n=1

0 · 1

2n
, x = 1 ,

where all xn ∈ {0, 1} and the expansion is uniquely determined by the requirement that the

sequence (xn) must contain infinitely many 0’s.

Now define a map φ : [0, 1]→ [0, 1]2 by φ(x) = (y1, y2), where

y1 =

∞∑
n=1

x2n−1
1

2n
, y2 =

∞∑
n=1

x2n
1

2n

φ is surjective, but not injective (for instance, φ(1) = φ(0.101010101 · · · )), but by remov-

ing countably many points from [0, 1] we may turn φ into a bi–measurable bijection onto

([0, 1]2, [0, 1]2 ∩ B2), the inverse of which, ϕ, satisfies the requirements given in Definition

1.5.5.

A more refined application of the same idea can be used to show that ([0, 1]∞, [0, 1]∞ ∩B∞)

is a Borel space: Consider φ(x) = (y1, y2, . . .), where yn has the binary expansion given by

the n’th row of
y1 : x0 x1 x3 x6 · · ·
y1 : x2 x4 x7 x11 · · ·
y1 : x5 x8 x12 x17 · · ·
y1 : x9 x13 x18 x24 · · ·

...
...

...
...
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1.6 Exercises

Exercise 1.1. Assume that X1 and X2 are independent random variables that are both

binomially distributed with parameters (n, p). Define the random variable X = X1 + X2.

Find the conditional distribution of X1 given X (Hint). ◦

Exercise 1.2. Let X and Y be random variables defined on (Ω,F, P ). Assume that

• X has the binomial distribution with parameters (n, p1)

• The conditional distribution of Y given X = x is binomial with parameters (n, p2)

Find the marginal distribution of Y and try to give an intuitive explanation of the result. ◦

Exercise 1.3.

(1) Assume that X and Y are two random variables defined on (Ω,F, P ) with values in

(X ,E) and (Y,K) respectively, and let (Px)x∈X be the conditional distribution of Y

given X. Let f : X × Y → [0,∞) be a E⊗K–measurable function. Show that

E[f(X,Y )] =

∫∫
f(x, y) dPx(y) dX(P )(x)

Hint: Use the extended Tonelli to calculate an integral with respect to (X,Y )(P ) as a

double integral.

(2) Assume that X is uniformly distributed on (0, 1). Assume that the conditional dis-

tribution (Px)x∈(0,1) of Y given X fulfils that Px is the exponential distribution with

mean value x. Find EY (Hint).

◦

Exercise 1.4. Let Y be a finite or countable set, and let K consist of all subsets of Y.

Assume that Y is a random variable defined on (Ω,F, P ) with values in (Y,K). Let p(y)
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denote the probability function for Y . Let X be another finite or countable set, and assume

that t : Y → X is some map. Define X = t(Y ).

(1) Show that X has probability function

r(x) =
∑

y∈t−1(x)

p(y)

(2) Show that (Px)x∈X is the conditional distribution of Y given X, where each Px has

probability function

qx(y) =
p(y)1{x}(t(y))

r(x)

◦

Exercise 1.5. Let Y1, . . . , Yn be independent and identically distributed random variables

defined on (Ω,F, P ) with values in {0, 1}. Assume that

P (Y1 = 0) = 1− p , P (Y1 = 1) = p

for some 0 < p < 1. Define t : {0, 1}n → {0, 1, . . . , n} by

t(y1, . . . , yn) = y1 + · · ·+ yn

Define X = t(Y1, . . . , Yn).

(1) Realise that X has the binomial distribution with parameters (n, p) and argue that

P (X = x) > 0 for all x = 0, 1, . . . , n.

(2) Show that (Px)x=0,...,n is the conditional distribution of Y = (Y1, . . . , Yn) given X,

where Px is the uniform distribution on {(y1, . . . , yn) ∈ Rn : y1 + · · ·+ yn = x}.

◦

Exercise 1.6. Let X and Y be random variables defined on (Ω,F, P ). Assume that

• X has the binomial distribution with parameters (n, p1).

• The conditional distribution of Y given X = x is binomial with parameters (x, p2).
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Find the marginal distribution of Y and try to give an intuitive explanation of the result. ◦

Exercise 1.7. Let X and Y be random variables with values in (X ,E) and (Y,K) respec-

tively, such that (Px)x∈X is the conditional distribution of Y given X. Assume that µ and

ν are σ–finite measures on (X ,E) and (Y,K). Assume furthermore that X(P ) has density f

with respect to µ, and that for each x ∈ X the probability Px has density gx with respect to

ν, such that (x, y) 7→ gx(y) is E⊗K− B–measurable.

(1) Show that

`(y) =

∫
gx(y)f(x)µ(dx)

is the density for the marginal distribution of Y with respect to ν.

(2) Show that Y (P )(B0) = 1, where B0 = {y ∈ Y : 0 < `(y) <∞}.

(3) Show that the conditional distribution of X given Y exists and is given by (Qy)y∈Y ,

where Qy has density with respect to ν given by

ky(x) =
gx(y)f(x)

`(y)

for y ∈ B0 .

◦

Exercise 1.8. Assume that X is Gamma–distributed with parameters (λ, β) and that the

conditional distribution of Y given X is given by (Px)x∈R, where Px is the Poisson distribution

with parameter x.

(1) Show that the marginal distribution of Y is a negative binomial distribution and find

the parameters.

(2) Show that the conditional distributions of X given Y are Γ–distributions.

◦

Exercise 1.9. Let X and Y be real valued random variables defined on (Ω,F, P ). Let C ∈ B
be a fixed subset of R. Consider the following game: We are told the value of X, and are

based on this information supposed to guess whether Y ∈ C or not.
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It seems natural to expect that we in two different games, where the same value of X is

observed, give the same guess of whether Y ∈ C or not – we know the same in the two

situations. Hence giving a rule for guessing must be the same as indicating a set A: If we

observe X ∈ A then we guess that Y ∈ C, and if we observe X /∈ A, then we guess that

Y /∈ C.

Obviously, different choices of A may lead to more or less successful guessing rules (we define

a guessing rule to be successful, if it often leads to the right guess...). Let (Px)x∈R be the

conditional distribution of Y given X.

(1) Show that for a given guessing rule, then

P (right guess) =

∫
A

Px(C) dX(P )(x) +

∫
Ac
Px(Cc) dX(P )(x)

(2) Show that the optimal guessing rule corresponds to the set

A0 = {x ∈ R : Px(C) ≥ 1

2
} .

(3) How is the optimal guessing rule, if X and Y are independent?

(4) How is the optimal guessing rule, if X = Y ?

◦

Exercise 1.10. Let X be a random variable with values in (X ,E) that is defined on a

probability space (Ω,F, P ). Let furthermore F ∈ F and consider the random variable 1F .

(1) Find the Markov kernel (Pz)z∈{0,1} that is the conditional distribution of X given 1F .

(2) Find the Markov kernel (Qx)x∈X that is the conditional distribution of 1F given X

(Hint).

◦



Chapter 2

Conditional distributions:

Transformations and moments

2.1 Transformations of conditional distributions

In this section we shall present a series of transformation results for conditional distribu-

tions. They have a somewhat similar content: In a framework with three or more random

variables, where we know some of the conditional distributions, then some other conditional

distributions can be expressed.

It is complicated to understand how conditional distributions are specified in situations with

three ore more random variables. The reader is encouraged to spend much time under-

standing the content of the results, rather than the proofs. The stated results are not very

surprising if the content is understood. And the proofs are rather mechanical: Firstly, it is

argued that some expression is a Markov kernel, and then it is shown that this Markov kernel

is the right conditional distribution.

Assume in this section, that X, Y , X1, X2, Y1 and Y2 are random variables defined on

(Ω,F, P ) with values in (X ,E), (Y,K), (X1,E1), (X2,E2), (Y1,K1) and (Y2,K2) respectively.

Theorem 2.1.1 (Substitution Theorem). Assume that (Px)x∈X is the conditional distribu-

tion of Y given X. Let (Z,H) be a measurable space, and let φ : X ×Y → Z be a measurable

map. Define Z = φ(X,Y ). Then the conditional distribution of Z given X exists and is
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determined by (P̃x)x∈X , where

P̃x = (φ ◦ ix)(Px)

Note that this is not at all surprising: If we know that X = x, then we have Z = φ(x, Y ) =

(φ ◦ ix)(Y ), and apparently we are allowed to plug the conditional distribution into this

formula.

Proof. For a fixed C ∈ H we have

P̃x(C) = Px((φ ◦ ix)−1(C)) = Px((φ−1(C))x) ,

which is a measurable function of x, since (Px)x∈X is a Markov kernel. Hence (P̃x)x∈X is a

Markov kernel (each P̃x is a probability measure since it is the image measure by the function

φ ◦ ix).

Now let A ∈ E and C ∈ H. Then

P (X ∈ A,Z ∈ C) = (X,Y )(P )((A× Y) ∩ φ−1(C)) .

It is seen that if x /∈ A then

((A× Y) ∩ φ−1(C))x = ∅

and if x ∈ A we have

((A× Y) ∩ φ−1(C))x = (φ−1(C))x = (φ ◦ ix)−1(C) .

Hence

P (X ∈ A,Z ∈ C) =

∫
A

Px((φ ◦ ix)−1(C)) dX(P )(x) =

∫
A

P̃x(C) dX(P )(x) ,

which is what we wanted to prove.

Example 2.1.2. In this example we consider the p–dimensional normal distribution. Recall

that this distribution is uniquely determined by the mean vector ξ ∈ Rp and the covariance

matrix Σ which is a positive semidefinite p × p matrix. If X is a random vector in Rp with

this distribution, we write X ∼ Np(ξ,Σ). If A is a p× p matrix and b ∈ Rp we have

AX + b ∼ Np(b+Aξ,AΣAT ) (2.1)

where AT denotes the transposition of A. Let p = r+ s with 1 ≤ r, 1 ≤ s, and let X1 be the

the first r coordinates of X. In the following we write

X =

(
X1

X2

)
, ξ =

(
ξ1

ξ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,
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where ΣT12 = Σ21, since Σ is positive semidefinite and thereby symmetric. It is furthermore a

well–known property of the normal distribution that X1 and X2 are independent if and only

if Σ12 = 0. In the following we shall assume that Σ22 is positive define such that Σ−122 exists.

The aim will be to find the conditional distribution of X1 given X2. For this define Z =

X1 − Σ12Σ−122 X2. Then we have (with e.g. Ir the r–dimensional identity matrix)(
Z

X2

)
=

(
Ir −Σ12Σ−122

0 Is

)(
X1

X2

)
Since (

Ir −Σ12Σ−122

0 Is

)(
Σ11 Σ12

Σ21 Σ22

)(
Ir 0

−Σ12Σ−122 Is

)

=

(
Ir −Σ12Σ−122

0 Is

)(
Σ11 − Σ12Σ−122 Σ21 Σ12

0 Σ22

)

=

(
Σ11 − Σ12Σ−122 Σ21 0

0 Σ22

)
,

it follows from (2.1) that(
Z

X2

)
∼ Nr+s

((
ξ1 − Σ12Σ−122 ξ2

ξ2

)
,

(
Σ11 − Σ12Σ−122 Σ21 0

0 Σ22

))
.

From this we see that Z and X2 are independent and that

Z ∼ Nr(ξ1 − Σ12Σ−122 ξ2 , Σ11 − Σ12Σ−122 Σ21) .

Hence this normal distribution is also the conditional distribution of Z given X2 (Theorem

3). Then using the substitution X1 = Z + Σ12Σ−122 X2 gives according to Theorem 2.1.1 and

(2.1) that

X1 |X2 = x ∼ Nr(ξ1 + Σ12Σ−122 (x− ξ2) , Σ11 − Σ12Σ−122 Σ21)

◦

Example 2.1.3. Assume that X and Y a real valued variables such that the simultane-

ous distribution of (X,Y ) is a Dirichlet distribution with parameters (λ1, λ2, λ). Then the

distribution of (X,Y ) has density

f(x, y) =
Γ(λ+ λ1 + λ2)

Γ(λ)Γ(λ1)Γ(λ2)
xλ1−1yλ2−1(1− x− y)λ−1

on the set {x, y) ∈ R2 : 0 < x, 0 < y, x + y < 1}. It can be shown that the marginal

distribution of X is a B–distribution with parameters (λ1, λ2 + λ). Hence it has density

g(x) =
Γ(λ+ λ1 + λ2)

Γ(λ1)Γ(λ2 + λ2)
xλ1−1(1− x)λ2+λ−1
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for x ∈ (0, 1). The conditional distribution Px of Y given X = x for x ∈ (0, 1) must be

concentrated on the interval (0, 1− x) and have density

fx(y) =
(f(x, y)

g(x)
=

Γ(λ2 + λ)

Γ(λ)Γ(λ2)

(
y

1− x

)λ2−1(
1− y

1− x

)λ−1
1

1− x
.

If Px is transformed by the map y → y
1−x then a B–distribution with parameters (λ2, λ)

is obtained. According to Theorem 2.1.1 the constant family consisting of B–distributions

with parameters (λ2, λ) indexed by x ∈ (0, 1) must be the conditional distribution of Y
1−X

given X. It follows from Theorem 1.4.3 that Y
1−X and X are independent and that Y

1−X is

B–distributed with parameters (λ2, λ). ◦

Theorem 2.1.4. Assume that (Px)x∈X is the conditional distribution of Y given X. Let

Z,H) be a measurable space and let t : X → Z be a E−H–measurable map. Define Z = t(X).

Then the conditional distribution (Qx,z)(x,z)∈X×Z of Y given (X,Z) is given by

Qx,z = Px for all x ∈ X , z ∈ Z (2.2)

Note: This is a situation where it is quite clear that conditional distributions are not uniquely

determined. The variable (X,Z) has not values in the entire X × Z but only on the graph

of t, meaning the set of points

{(x, y) ∈ X × Z : z = t(x)}

Then Qx,z could be defined as any probability measure outside the graph, if only some

measurability conditions are fulfilled. Hence the the Markov kernel defined in (2.2) is not the

only possible conditional distribution of Y given (X,Z) – it is simply a convenient choice.

Proof. It is easily argued that a (X ×Z,E⊗H)–Markov kernel (Qx,z)(x,z)∈X×Z on (Y,K) is

defined by (2.2). For A ∈ E, B ∈ K and C ∈ H we have∫
A×C

Qx,z(B) d(X,Z)(P )(x, z) =

∫
1A×C(x, z)Qx,z(B) d((id, t) ◦X)(P )(x, z)

=

∫
1A×C ◦ (id, t)(x)Q(id,t)(x)(B) dX(P )(x)

=

∫
1A∩t−1(C)(x)Px(B) dX(P )(x) .

Since (Px)x∈X is the conditional distribution of Y given X, the last integral can be identified

as

P (X ∈ A ∩ t−1(C), Y ∈ B) = P (X ∈ A,Z ∈ C, Y ∈ B)

= P ((X,Z) ∈ A× C, Y ∈ B) .
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By fixing B and letting A× C vary it is obtained (by uniqueness of measures) that∫
G

Qx,z(B) d(X,Z)(P )(x, z) = P ((X,Z) ∈ G, Y ∈ B)

for all G ∈ E⊗H and all B ∈ K. Hence it is concluded that (Qx,z)(x,z)∈X×Z is the conditional

distribution of Y given (X,Z).

Theorem 2.1.5. Let (Px)x∈X be the conditional distribution of Y given X. Let (Z,H) be a

measurable space and let t : X → Z be an E−H–measurable map. Define Z = t(X).

If an (Z,H)–Markov kernel (Qz)z∈Z on (Y K) exists such that

Px = Qt(x) for all x ∈ X ,

then (Qz)z∈Z is the conditional distribution of Y given Z

A more relaxed formulation of this is, that if the conditional distribution of Y given X only

depends on X through t(X), then this is also the conditional distribution of Y given t(X).

Proof. Let C ∈ H and B ∈ K. According to the change–variable–theorem we have

P (Z ∈ C, Y ∈ B) = P (X ∈ t−1(C), Y ∈ B)

=

∫
1t−1(C)(x)Px(B) dX(P )(x)

=

∫
1C ◦ t(x)Qt(x)(B) dX(P )(x)

=

∫
1C(z)Qz(B) d(t ◦X)(P )(z)

=

∫
C

Qz(B) dZ(P )(z) .

Hence (Qz)z∈Z is the conditional distribution of Y given Z.

Theorem 2.1.6. Let Z be a random variable with values in (Z,H). Assume that (Qx,y)(x,y)∈X×Y

is the conditional distribution of Z given (X,Y ), and assume that (Px)x∈X is the conditional

distribution of Y given X. Then (Rx)x∈X is the conditional distribution of Z given X, where

Rx(C) =

∫
Qx,y(C) dPx(y)

for C ∈ H.
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Proof. For fixed x ∈ X we note that the reduced family (Qx,y)y∈Y is a (Y,K)–Markov kernel

on (Z,H). And Rx is the mixture (the first coordinate of the integrated measure) of this

Markov kernel with respect to Px. In particular we see that Rx is a probability measure on

(Z,H).

Choose C ∈ H. Since (Qx,y)x,y)∈X×Y is a Markov kernel on (Z,H) we have that

(x, y) 7→ Qx,y(C)

is an E⊗K–measurable, non–negative map. Hence

x 7→ Rx(C) =

∫
Qx,y(C) dPx(y)

is E–measurable, which means that (Rx)x∈X is an (X ,E)–Markov kernel on (Z,H).

Finally let A ∈ E and C ∈ H. Then the extended Tonelli’sTheorem yields that

P (X ∈ A,Z ∈ C) = P (X ∈ A, Y ∈ Y, Z ∈ C)

=

∫
A×Y

Qx,y(C) d(X,Y )(P )(x, y)

=

∫∫
1A×Y(x, y)Qx,y(C) dPx(y) dX(P )(x)

=

∫
1A(x)Rx(C) dX(P )(x)

Thereby it follows that (Rx)x∈X is the conditional distribution of Z given X.

The two next Theorems can be considered as one bi–implication saying that if X1 and X2

are independent, then independence between (X1, Y1) and (X2, Y2) can be expressed as a

property of the conditional distribution of (Y1, Y2) given (X1, X2).

Theorem 2.1.7. Assume that the variables (X1, Y1) and (X2, Y2) are independent, and let

(P ix)x∈Xi be the conditional distribution of Yi given Xi, i = 1, 2. Then (Qx1,x2
)(x1,x2)∈X1×X2

is the conditional distribution of (Y1, Y2) given (X1, X2), where

Qx1,x2
= P 1

x1
⊗ P 2

x2
.

Proof. For each (x1, x2) ∈ X1 × X2 we obviously have that Qx1,x2 is a probability measure

on (Y1 ×Y2,K1 ⊗K2). For a measurable product set B1 ×B2, where B1 ∈ K1 and B2 ∈ K2

we have

Qx1,x2
(B1 ×B2) = P 1

x1
(B1)P 2

x2
(B2) .
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And since both (x1, x2) 7→ P 1
x1

(B1) and (x1, x2) 7→ P 2
x2

(B2) are E1⊗E2–measurable, we must

have that Qx1,x2
(B1 × B2) is measurable as well. According to Lemma 1.1.3 we must have,

that Qx1,x2
(G) is E1 ⊗E2–measurable for all G ∈ K1 ⊗K2. Hence (Qx1,x2

)(x1,x2)∈X1×X2
is a

Markov kernel.

Now let Ai ∈ Ei and Bi ∈ Ki for i = 1, 2. The assumption that (X1, Y1) and (X2, Y2) are

independent will in particular make X1 and X2 independent, such that∫
A1×A2

Qx1,x2(B1 ×B2) d(X1, X2)(P )(x1, x2)

=

∫
1A1(x1)1A2(x2)P 1

x1
(B1)P 2

x2
(B2) d(X1(P )⊗X2(P ))(x1, x2)

Using Tonelli gives∫
A1×A2

Qx1,x2(B1 ×B2) d(X1, X2)(P )(x1, x2)

=

(∫
1A1

(x1)P 1
x1

(B1) dX1(P )(x1)

)(∫
1A2

(x2)P 2
x2

(B2) dX2(P )(x2)

)
= P (X1 ∈ A1, Y1 ∈ B1)P (X2 ∈ A2, Y2 ∈ B2)

= P ((X1, Y1) ∈ A1 ×B1, (X2, Y2) ∈ A2 ×B2)

= P ((X1, X2) ∈ A1 ×A2, (Y1, Y2) ∈ B1 ×B2)

From having A1 and A2 fixed while varying B1 and B2 it is seen (from uniqueness of measures)

that ∫
A1×A2

Qx1,x2(G2) d(X1, X2)(P )(x1, x2)

= P ((X1, X2) ∈ A1 ×A2, (Y1, Y2) ∈ G2)

If we conversely fix G2 in this expression and let A1 and A2 vary, then we obtain∫
G1

Qx1,x2
(G2) d(X1, X2)(P )(x1, x2) = P ((X1, X2) ∈ G1, (Y1, Y2) ∈ G2)

for all G1 ∈ E1 ⊗ E2 and G2 ∈ K1 ⊗ K2. Hence (Qx1,x2
)(x1,x2)∈X1×X2

is the conditional

distribution of (Y1, Y2) given (X1, X2).

Theorem 2.1.8. Let the variables X1 and X2 be independent and let (Qx1,x2
)(x1,x2)∈X1×X2

be the conditional distribution of (Y1, Y2) given (X1, X2). Assume that each Qx1,x2
factorises

on the form

Qx1,x2 = P 1
x1
⊗ P 2

x2

for two families (P 1
x1

)x1∈X1
and (P 2

x2
)x2∈X2

of probability measures on (Y1,K1) and (Y2,K2)

respectively.
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Then (P 1
x1

)x1∈X1
is the conditional distribution of Y1 given X1 and (P 2

x2
)x2∈X2

is the condi-

tional distribution of Y2 given X2. Furthermore (X1, Y1) and (X2, Y2) are independent.

Proof. Firstly, we will argue that (P 1
x1

)x1∈X1
is an (X1,E1)–Markov kernel on (Y1,K1). Let

B1 ∈ K1 and choose a fixed x2 ∈ X2. Then

P 1
x1

(B1) = P 1
x1

(B1)P 2
x2

(Y2) = Qx1,x2
(B1 × Y2) .

Since (x1, x2) 7→ Qx1,x2
(B1×Y2) is E1⊗E2–measurable and the inclusion map x1 7→ (x1, x2)

is E1−E1⊗E2 –measurable, we can conclude that x1 7→ P 1
x1

(B1) is E1–measurable. Similarly

(P 2
x2

)x2∈X2 is an (X2,E2)-Markov kernel on (Y2,K2).

For A1 ∈ E1 and B1 ∈ K1 we have

P (X1 ∈ A1, Y1 ∈ B1) = P ((X1, X2) ∈ A1 ×X2, (Y1, Y2) ∈ B1 × Y2)

=

∫
A1×X2

Qx1,x2
(B1 × Y2) d(X1, X2)(P )(x1, x2)

=

∫
1A1

(x1)P 1
x1

(B1) d(X1(P )⊗X2(P ))(x1, x2)

=

∫
A1

P 1
x1

(B1) dX1(P )(x1) ,

where we have used Tonelli’s Theorem. Hence (P 1
x1

)x1∈X1
is the conditional distribution of

Y1 given X1. Similarly, it is seen that (P 2
x2

)x2∈X2 is the conditional distribution of Y2 given

X2.

For Ai ∈ Ei and Bi ∈ Ki, i = 1, 2, we have

P ((X1, Y1) ∈ A1 ×B1, (X2, Y2) ∈ A2 ×B2)

= P ((X1, X2) ∈ A1 ×A2, (Y1, Y2) ∈ B1 ×B2)

=

∫
A1×A2

Qx1,x2
(B1 ×B2) d(X1, X2)(P )(x1, x2)

=

∫
1A1

(x1)1A2
(x2)P 1

x1
(B1)P 2

x2
(B2) d(X1(P )⊗X2(P ))(x1, x2)

=

(∫
A1

P 1
x1

(B1) dX1(P )(x1)

)(∫
A2

P 2
x2

(B2) dX2(P )(x2)

)
= P (X1 ∈ A1, Y1 ∈ B1)P (X2 ∈ A2, Y2 ∈ B2)

= P ((X1, Y1) ∈ A1 ×B1)P ((X2, Y2) ∈ A2 ×B2)

From fixing A1 and B1 and letting A2 and B2 vary we obtain (by using the uniqueness of
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measures)

P ((X1, Y1) ∈ A1 ×B1, (X2, Y2) ∈ G2)

= P ((X1, Y1) ∈ A1 ×B1)P ((X2, Y2) ∈ G2)

for all A1 ∈ E1, B1 ∈ K1 and G2 ∈ E2 ⊗K2. And by fixing G2 and letting A1 and B1 vary,

we obtain that

P ((X1, Y1) ∈ G1, (X2, Y2) ∈ G2) = P ((X1, Y1) ∈ G1)P ((X2, Y2) ∈ G2)

for all G1 ∈ E1 ⊗ K1 and G2 ∈ E2 ⊗ K2. Thereby it is seen that (X1, Y1) and (X2, Y2) are

independent.

2.2 Conditional moments

Recall (See appendix) that if X and Y are random variables defined on (Ω,F, P ) with values

in (X ,E) and (R,B) respectively, and furthermore E|Y | < ∞, then there exists a random

variable E(Y |X) satisfying 1)–3) in Theorem A.2.6

1) E(Y | X) is σ(X)-measurable

2) E|E(Y | X)| <∞

3) For all A ∈ E it holds that∫
(X∈A)

E(Y | X)dP =

∫
(X∈A)

Y dP ,

and that the fact that E(Y |X) is σ(X)–measurable is equivalent to the existence of a mea-

surable map φ : (X ,E)→ (R,B) such that

E(Y |X) = φ(X) P almost surely .

We call φ(x) the conditional expectation of Y given X = x and write

φ(x) = E(Y |X = x) .

We have the following important (and notationally comfortable) result saying, that the con-

ditional expectation E(Y |X = x) can be calculated as the expectation in the conditional

distribution



36 Conditional distributions: Transformations and moments

Theorem 2.2.1. Assume that X and Y are random variables defined on (Ω,F, P ) and with

values in (X ,E) and (R,B) respectively. Let (Px)x∈X be the conditional distribution of Y

given X.

If E|Y | <∞, then X(P )(A0) = 1, where

A0 = {x ∈ X : Px has finite first order moment} .

Define for x ∈ A0

E(Y |X = x) =

∫
y dPx(y)

Then the function x 7→ E(Y |X = x) is a conditional expectation of Y given X.

Note: The last result above could be understood as follows: Define the function φ : X → R

φ(x) = 1A0
(x)

∫
y dPx(y)

Then the random variable φ(X) satisfies 1)–3) in Theorem A.2.6, such that it is a conditional

expectation of Y given X.

Proof. Consider the function f : X × R→ R given by f(x, y) = y. Since∫
|f(x, y)|d(X,Y )(P )(x, y) =

∫
|f(X,Y )| dP = E|Y | <∞ ,

it follows from the extended Fubini, that∫
|y|dPx(y) =

∫
|f(x, y)|dPx(y) <∞

for X(P ) almost all x ∈ X , such that X(P )(A0) = 1.

Define φ : X → R by

φ(x) =

{ ∫
y dPx(y) , x ∈ A0

0 , x /∈ A0

Then according to the extended Fubini, we have that φ is E−B–measurable. We will argue,

that φ(X) is a conditional expectation of Y given X by verifying the conditions 1)–3). Since

φ is measurable we have that φ(X) is σ(X)–measurable. Furthermore (using the change-of-
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variable theorem, Theorem A.1.8)

E|φ(X)| =
∫
|φ(X)| dP

=

∫
|φ(x)|dX(P )(x)

=

∫
A0

|
∫
y dPx(y)|dX(P )(x)

≤
∫ (∫

|y|dPx(y)

)
dX(P )(x)

=

∫
|y|d(X,Y )(P )(x, y) <∞

In the last equality we have used the extended Tonelli. This shows, that 2) is satisfied for

φ(X). Finally we have for A ∈ E∫
(X∈A)

φ(X) dP =

∫
A

φ(x) dX(P )(x)

=

∫
A∩A0

∫
y dPx(y) dX(P )(x)

=

∫∫
1A∩A0

(x)y dPx(y) dX(P )(x)

=

∫
1A∩A0

(x)y d(X,Y )(P )(x, y)

=

∫
1A∩A0

(X)Y dP

=

∫
(X∈A∩A0)

Y dP

=

∫
(X∈A)

Y dP

In the fourth equality we have used the extended Fubini’s theorem. This shows that also

condition 3) is fulfilled, such that φ(X) is a conditional expectation of Y given X, so we in

particular have

E(Y |X = x) = φ(x) =

∫
y dPx(y)

for x ∈ A0.

In the framework of theorem 2.2.1, where E|Y | <∞, we have that∫
y dPx(y) = E(Y |X = x)
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Notation: Since φ(x) = 1A0
(x)
∫
y dPx(y) is a measurable function of x according to the

extended Fubini, then it makes sense to consider the random variable φ(X) and write

E(Y |X) = φ(X)

As noted in the comment after Theorem 2.2.1 this equals a version of the ”ordinary” condi-

tional expectation of Y given X.

The following result, that is already known for conditional expectations, can be shown using

the conditional distribution results from the proof of Theorem 2.2.1:

Theorem 2.2.2. Assume that X and Y are random variables defined on (Ω,F, P ) with values

in (X ,E) and (R,B) respectively. If E|Y | <∞, then E|E(Y |X)| <∞ and

E((E(Y |X)) = EY

Figure 2.1: 1000 points simulated from the distribution from (X,Y ). EY describes the center

of all points projected to the y–axis (here this is ≈ 0). E(Y |X = x) describes the mean of

the points, that has first coordinate x (here this mean will be ≈ −1.5)

Proof. In the proof of 2.2.1 we saw that φ(X) = E(Y |X) is integrable, and that∫
(X∈A)

φ(X) dP =

∫
(X∈A)

Y dP

Simply let A = X . Then

E(E(Y |X)) =

∫
φ(X) =

∫
Y dP = EY
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Theorem 2.2.3. Assume that X and Y are random variables defined (Ω,F, P ) with values in

(X ,E) and (Y,K) respectively. Suppose that the conditional distribution (Px)x∈X of Y given

X exists. Let φ : X × Y → R be a measurable function and define Z = φ(X,Y ). Assume

that E|Z| <∞. Then

E(Z |X = x) =

∫
φ(x, y) dPx(y)

for X(P ) almost all x ∈ X .

Proof. According to Theorem 2.1.1 we have that the conditional distribution of Z given X

is given by the Markov kernel (P̃x)x∈X , where

P̃x = (φ ◦ ix)(Px)

Then according to Theorem 2.2.1 we have for X(P ) almost all x ∈ X

E(Z |X = x) =

∫
z dP̃x(z) =

∫
(φ ◦ ix)(y) dPx(y) =

∫
φ(x, y) dPx(y)

Corollary 2.2.4. Assume that X and Y are independent random variables defined (Ω,F, P )

with values in (X ,E) and (Y,K) respectively. Let φ : X × Y → R be a measurable function

and define Z = φ(X,Y ). Assume that E|φ(X,Y )| <∞. Then

E(φ(X,Y ) |X = x) =

∫
φ(x, y) dX(P )(y)

for X(P ) almost all x ∈ X .

Proof. We have that (X(P ))x∈X is the conditional distribution of Y given X.

We can also use Theorem 2.2.3 to show the following result, that is well–known from the

framework of conditional expectations:

Corollary 2.2.5. Assume that Y and Z are real valued random variables with E|Y | < ∞
and E|Z| <∞. Let X be a random variable with values in (X ,E). Then

E(Y + Z |X = x) = E(Y |X = x) + E(Z |X = x)

for X(P ) almost all x ∈ X .
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Proof. Let (Px)x∈X be the conditional distribution of (Y, Z) given X. Then

E(Y + Z |X = x) =

∫
(y + z) dPx(y, z)

for X(P ) almost all x ∈ X . And

E(Y |X = x) =

∫
y dPx(y, z) E(Z |X = x) =

∫
z dPx(y, z)

for X(P ) almost all x ∈ X .

If Y is real valued with EY 2 < ∞, and (Px)x∈X is the conditional distribution of Y given

X, then we can define the conditional variance of Y given X = x by

V (Y |X = x) =

∫
y2 dPx(y)−

(∫
y dPx(y)

)2

which will be well–defined for X(P ) almost all x ∈ X . Letting V (Y |X) be the composition

of X and x 7→ V (Y |X = x) gives

V (Y |X) = E(Y 2 |X)− E(Y |X)2

Theorem 2.2.6. Let X and Y be random variables defined on (Ω,F, P ) with values in (X ,E)

and (R,B) respectively. If EY 2 <∞, then

V Y = E
(
V (Y |X)

)
+ V

(
E(Y |X)

)
.

Proof.

E
(
V (Y |X)

)
+ V

(
E(Y |X)

)
= E

(
E(Y 2 |X)− E(Y |X)2

)
+ E

(
E(Y |X)2

)
−
(
E
(
E(Y |X)

))2
= E

(
E(Y 2 |X)

)
−
(
E
(
E(Y |X)

))2

Example 2.2.7. Consider Figure 2.2. The variance V Y measures how much the projection

of all points onto the y–axis varies around their center. V (Y |X = x) measures how much the

part of the points, that have first coordinate x varies around their center. The two expressions

are normally not particularly close. In this example V Y is rather big, while V (Y |X = x) is

small for all x. ◦
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Example 2.2.8. In example 2.1.2 we studied the situation where(
X1

X2

)
∼ Nr+s

((
ξ1

ξ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))
,

and we found that

X1 |X2 = x ∼ Nr(ξ1 + Σ12Σ−122 (x− ξ2) , Σ11 − Σ12Σ−122 Σ21)

If we assume that X1 is one–dimensional, we have defined E(X1 | X2 = x) and V (X1 | X2 =

x). Since conditional expectations and conditional variances are calculated as expectations

and variances in the conditional distributions, we have

E(X1 | X2) = ξ1 + Σ12Σ−122 (x− ξ2)

V (X1 | X2) = Σ11 − Σ12Σ−122 Σ21

Note that the conditional variance does not depend on x but is different from V (X1). ◦

Confusing conditional variances and ordinary variances is a quite common mistake – and

that may lead to substantial problems.

2.3 Exercises

Exercise 2.1. Assume that X is uniformly distributed on (0, 1) and that the conditional

distribution of Y given X = x is a binomial distribution with parameters (n, x) We could say

that Y has a binomial distribution with fixed length n and random probability parameter.

(1) What are the possible values of Y ? Argue that E|Y | <∞.

(2) Find E(Y |X = x) and E(Y |X).

(3) Find EY .

(4) Find P (Y = k) for all k being a possible value of Y . What is the marginal distribution

of Y ?

◦
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Exercise 2.2. Let X and Y be random variables with values in (X ,E) and (Y,K) respec-

tively. Assume that (Px) is the conditional distribution of Y given X. Let

A0 = {x ∈ X |
∫
|y|Px(dy) <∞}

and assume that X(P )(A0) = 1. Define

φ(x) = 1A0(x)

∫
|y|Px(dy) .

Show that Eφ(X) = E|Y | and conclude that

Eφ(X) <∞ if and only if E|Y | <∞

(Hint). ◦

Exercise 2.3. Assume that X has the exponential distribution with mean 1, and assume

that the conditional distribution of Y given X = x is a Poisson distribution with parameter

x. We could say that Y is Poisson distributed with random parameter.

(1) Use Exercise 2.2 to argue that E|Y | <∞.

(2) Find E(Y |X = x) and E(Y |X).

(3) Find EY .

(4) Find P (Y = k) for all k being a possible value of Y . What is the marginal distribution

of Y ?

◦

Exercise 2.4. Let X and Y be independent random variables that both have the uniform

distribution on (0, 1). Define Z = XY .

(1) Find the conditional distribution of Z given X.

(2) What are the possible values of Z? Argue that E|Z| <∞.

(3) Find E(Z |X) and use this to find EZ.

(4) Find EZ without using conditional distributions.
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◦

Exercise 2.5. Assume that X1, X2, . . . is a sequence of independent and identically dis-

tributed random variables such that E|X1| < ∞. Assume that N is a random variables

with values in N such that EN <∞. Assume that N and (X1, X2, . . .) are independent (we

consider (X1, X2, . . .) as a random variable with values in (R∞,B∞)). Define the random

variable Y by

Y =

N∑
k=1

Yk

(1) Show that the conditional distribution (Pn)n∈N of Y given N is determined such that

Pn is the distribution of
∑n
k=1 Yk. Argue similarly that the conditional distribu-

tion (Qn)n∈N of
∑N
k=1 |Yk| given N is determined such that Qn is the distribution

of
∑n
k=1 |Yk|.

(2) Show that ∫
|y|Qn(dy) = n|E1|

for all n ∈ N.

(3) Use (2) and Exercise 2.2 to obtain that

E

(
N∑
k=1

|Yk|

)
= ENE|Y1| <∞

(4) Show that E(Y |N = n) = nEY1 and that EY = ENEY1.

◦

Exercise 2.6. Let f and g be densities for distributions on [0,∞). Assume that there exists

a constant c > 0 such that

f(x) ≤ cg(x) for all x ∈ [0,∞)

Think of a situation where we want to simulate random variables with a distribution that

has density f , but where f is so complicated that this is not straightforward to do directly.

Suppose on the other hand that g is a simple well–known density that we actually can simulate

from. An algorithm to produce a random variable X with density f is the acceptance–

rejection algorithm:
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(i) Generate Y with density g and U uniform on (0, 1) such that Y ⊥⊥ U

(ii) If U ≤ f(Y )/(cg(Y )), let X = Y . Otherwise return to (i)

The idea of this exercise is to show that X generated in the algorithm above actually has

density f .

So let Y have density g and let U be uniform on (0, 1). Assume that Y and U are independent.

Define the random variable

Z =

{
1 , U ≤ f(Y )

cg(Y )

0 , U > f(Y )
cg(Y )

(1) Show that P (Z = 1) = 1
c (Hint).

(2) Show that P (Y ∈ B |Z = 1) =
∫
B
f(x) dx for all B ∈ B.

(3) Conclude that the algorithm produces a variable X with density f , and discuss which

value of c we should choose.

◦

Exercise 2.7. Think of a situation where we want to estimate the value z that is given by

z = EZ

for some real valued random variable Z. Let Z1, Z2, . . . , Zn be independent replications of

Z. Then

ẑ1n =
1

n

n∑
k=1

Zk

is an estimator for z.

(1) Show that ẑ1n is unbiased

Eẑ1n = z

and find the variance V ẑ1n.

A method to improve the estimator could be finding some random variable X and consider

the new variable E(Z |X). Now let (Z1, X1), . . . , (Zn, Xn) be independent replications of

(Z,X), and define the estimator

ẑ2n =
1

n

n∑
k=1

E(Zk |Xk)
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(2) Show that ẑ2n is unbiased and that

V ẑ2n ≤ V ẑ1n

Apparently this method will improve the estimator no matter which variable X we choose.

But of course some choices may be more clever than others.

(3) What happens, if we use X = 1 (or some other constant), and why is this a bad idea

anyway?

We will consider two specific examples of variables Z. In both examples we shall just let

n = 1, since increasing values of n simply makes both variances smaller by a factor 1/n, and

thereby does not change anything in the comparison.

In the first example we shall find estimators for the very well–known value π (although we

already know π much more accurately than we will ever be able to estimate, the example

serves as a very good illustration of what is going on). Let

Z = 4 · 1(U2
1+U

2≤1) ,

where U1 and U2 are independent and both uniform on (0, 1). Define the first estimator

ẑ1 = Z.

(4) Show that Eẑ1 = π (Hint).

Define the estimator ẑ2 by

ẑ2 = E(Z |U1)

(5) Show that ẑ2 = 4
√

1− U2
1 .

(6) Try to simulate 10000 replications of both ẑ1 and ẑ2. Compare the variances – and also

compare with the theoretical variance of ẑ1.

In the next example, the estimation has some real practical use. Assume that X1 and X2 are

independent and has a distribution ν. Assume that X1, X2 ≥ 0 and that ν has density f with
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respect to the Lebesgue measure. Furthermore think of a situation, where the distribution

of S = X1 +X2 is complicated to calculate. We are interested in estimating

z(s) = P (S > x)

especially for large values of x.

The simple estimator will in this framework be

ẑ1(x) = 1(X1+X2>x)

The problem is, that if x is very large, then it is very rare that this estimator is non–zero.

Even if we make many replications. Instead we shall try to construct an estimator using

conditional expectations.

Firstly, we try something similar to above. Define

ẑ2(x) = P (S > x |X1)

(7) Show that

ẑ2(x) = F̄ (x−X1) ,

where F̄ is the survival function for ν:

F̄ (x) = ν((x,∞)) .

Let

X(1) = min{X1, X2} and X(2) = max{X1, X2}

(8) Show that the conditional distribution of X(2) given X(1) is determined by the Markov

kernel (Py)y≥0, where

Py(B) =
ν(B ∩ (y,∞))

ν((y,∞))

(Hint).

We now define a conditional estimator by

ẑ3(x) = P (S > x |X(1))

(9) Show that

ẑ3(x) =
F̄
(

max{x−X(1), X(1)}
)

F̄ (X(1))
,
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Now assume that ν is the Weibull distribution with shape parameter 0.5. Then the density

f is given by

0.5x−0.5e−x
0.5

for x > 0. And F̄ is

F̄ (x) = e−x
0.5

(10) Simulate 10000 replications of the three estimators (with e.g. x = 20 and x = 50) and

compare the variances.

◦

Exercise 2.8. Let X be a real valued random variable with E|X| <∞.

(1) Show that the conditional distribution of X given X is given by the Markov kernel

(δx)x∈X , where δx is the Dirac Measure in x:

δx(B) =

{
1 , x ∈ B
0 , x /∈ B

(2) Show that E(X |X = x) = x and E(X |X) = X.

(3) Assume that Y is another real valued random variable with E|Y | <∞ and E|XY | <∞.

Show that E(XY |X = x) = xE(Y |X = x) and E(XY |X) = XE(Y |X).

◦

Exercise 2.9. Let W be the set (0, 1)2. Assume that we generate N points in W in the

following way:

• Let N be Poisson distributed with parameter λ.

• Let (U1
1 , U

2
1 ), (U1

2 , U
2
2 ), . . . , (U1

N , U
2
N ) be independent and identically distributed such

that U1
k and U2

k are independent and uniformly distributed on (0, 1). This makes each

(U1
k , U

2
k ) uniformly distributed on W .

In this exercise we will show that the collection of points (U1
1 , U

2
1 ), . . . , (U1

N , U
2
N ) in W is

a Poisson process on W : Define for a subset A ⊆ W the random variable N(A) to be the
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number of points in A:

N(A) =

N∑
k=1

1(Uk1 ,Uk2 )∈A)

• N(A) is Poisson distributed with parameter λm2(A), where m2(A) is the area (2–

dimensional Lebesgue measure) of A.

• For disjoint sets A1, . . . , Am the variables N(A1), . . . , N(Am) are independent.

The result will follow by finding conditional distributions given N

(1) Show that for U1 and U2 independent and uniformly distributed on (0, 1) and A some

subset of W , then

P ((U1, U2) ∈ A) = m2(A)

(2) Let A1, . . . , Am be disjoint subsets of W such that
⋃m
j=1Aj = W . Argue that the con-

ditional distribution of (N(A1), . . . , N(Am)) given N = n is a polynomial distribution

with length n and probability parameters (m2(A1), . . . ,m2(Am)) (Hint).

(3) Show that N(A1), . . . , N(Am) are independent and that each N(Aj) is Poisson dis-

tributed with parameter λm2(Aj) (Hint).

Now assume that k : W → [0, 1] is a measurable function that is bounded by 1. Define for

each subset A of W the number

K(A) =

∫
A

k(x, y)m2(dx, dy)

(4) Give a suggestion for how to obtain a collection of points (V 1
1 , V

2
1 ), . . . , (V 1

M , V
2
M ) in W ,

such that for each subset A of W we have that the number of points in A

M(A) =

M∑
k=1

1((V 1
j ,V

2
j )∈A)

is Poisson distributed with parameter λK(A) (Hint).

◦
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Exercise 2.10. Assume that (X,Y ) is a real valued random vector, such that E|Y | < ∞.

Assume that the random vector (X, Ỹ ) has the same distribution as (X,Y ), where Ỹ is

another real valued random variable..

(1) Show that E(Y | X) = E(Ỹ | X) a.s.

Now assume that X1, . . . , Xn are independent and identically distributed with E|X1| < ∞.

Define Sn = X1 + · · ·+Xn.

(2) Argue that (X1, Sn) has the same distribution as (Xk, Sn) for all k = 1, . . . , n.

(3) Show that E(X1 | Sn) = Sn/n (Hint).

◦
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Chapter 3

Conditional independence

In this chapter we will work on a general probability space (Ω,F, P ). All events occurring will

silently be assumed to be F-measurable, all σ-algebras occurring will silently be assumed to

be subalgebras of F, and all stochastic variables X : (Ω,F)→ (X ,E) will silently be assumed

to be F− E measurable.

The general convention is that random variables with names like X or Xi or variations thereof

have values in a generic space (X ,E), unless it is explicitly stated that they are real valued

(or integer valued or whatever). Similarly, variables with names like Y or Z will have values

in (Y,K) and (Z,G) respectively.

Recall that (X ,E) is a Borel space if it is in bijective, bimeasurable correspondence with

(R,B) or a subspace of this. Such a correspondence enables us to replace X with R, whenever

there is an advantage in that. It turns out that every sensible space has this property, unless

it its very, very huge (non-separable metric spaces, with the σ-algebra generated by the open

sets, say).

The above generic X , Y and Z-spaces are always assumed to be Borel spaces.
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3.1 Conditional probabilities given a σ–algebra

So far we have considered conditional expectations E(Y |X), where we condition on a random

variable X. This is an integrable and σ(X)–measurable random variable satisfying∫
(X∈A)

E(Y |X) dP =

∫
(X∈A)

Y dP

for all A ∈ X . We have furthermore seen that this variable can be calculated as the mean in

the conditional distribution of Y given X.

A natural generalisation of this concept is conditional expectations given a σ–algebra: For a

real valued random variable Y satisfying that E|Y | <∞ and a σ-algebra H, the conditional

expectation E(Y | H) of Y given H is any H-measurable and integrable random variable

satisfying the integral conditions∫
H

E(Y | H) dP =

∫
H

Y dP for all H ∈ H . (3.1)

as defined in Definition A.2.2.

We shall be concerned with the conditional probability of an event A given H – This is

defined similar to P (A |X): We simply use the conditional expectation of the indicator 1A,

that is

P (A | H) = E(1A | H) .

The integrability condition (3.1) will in this case take the form∫
H

P (A | H) dP = P (A ∩H) for all H ∈ H . (3.2)

We will make frequent use of the monotonicity property of conditional expectations, that

make sure that

0 ≤ P (A | H) ≤ 1 a.s.

and even that

A ⊆ B ⇒ P (A | H) ≤ P (B | H) a.s

Furthermore, the double conditioning theorem (Theorem A.2.5) says in this context that

E
(
P (A | H) | G

)
= P (A | G) a.s

whenever the two σ-algebras G and H satisfies that G ⊆ H.
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3.2 Conditionally independent events

Definition 3.2.1. Two events A and B are are conditionally independent given a σ-

algebra H, if

P (A ∩B | H) = P (A | H)P (B | H) a.s. (3.3)

Symbolically, we will write A ⊥⊥ B | H if (3.3) is satisfied.

Speaking colloquially, we will frequently say that A and B are independent given H if (3.3)

is satisfied - repeated use of the word conditionally makes the sentences sound tedious.

Please note that conditional independence represents an intricate relation between the two

events and the σ-algebra. The σ-algebra H is really an integral part of the definition. Whether

A and B are conditionally independent or not, depends crucially on which σ-algebra we are

conditioning.

If H ⊆ G are two σ-algebras, it is completely possible that two events A and B are indepen-

dent given H, while they are not independent given the finer σ-algebra G. But it is equally

possible that A and B are independent given G, while they are not independent given the

coarser σ-algebra H. Changing the σ-algebra on which we are conditioning is usually a very

challenging task - and indeed a task which is at the core of Markov Chain Theory.

Example 3.2.2. Recall that a σ-algebra H is a trivial if every event in H has probability

0 or 1. The most obvious trivial σ-algebra is

H = {∅,Ω} ,

but there are plenty of other trivial algebras arising all over probability theory - tail algebras,

symmetric algebras, invariant σ-algebras in ergodic theory and what not. If H is trivial, we

observe that

P (A | H) = P (A) a.s.

for any event A, since the relation∫
H

P (A) dP = P (A ∩H) ,

is satisfied for all H-sets H, both those of probability 0 (where there is nothing to prove) and

those of probability 1 (where there is also nothing to prove). Hence (3.3) translates to

P (A ∩B) = P (A)P (B) . (3.4)
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A priori the formula has an a.s.-qualifier, but as it is a relation between deterministic numbers,

it is either true or false, with no probability involved.

Hence we see that conditional independence of two events given a trivial σ-algebra is simply

classical independence of the events. ◦

Example 3.2.3. If C is yet another event, and if H is the σ-algebra generated by that event,

H = {∅, C, Cc,Ω} ,

then it is readily checked that

P (A | H) =


P (A ∩ C)

P (C)
on C

P (A ∩ Cc)
P (Cc)

on Cc

a.s

for any event A. If we suppose that H is non-trivial, meaning that P (C) ∈ (0, 1), we see

that (3.3) translates to the two conditions

P (A ∩B ∩ C)

P (C)
=
P (A ∩ C)

P (C)

P (B ∩ C)

P (C)
,

P (A ∩B ∩ Cc)
P (Cc)

=
P (A ∩ Cc)
P (Cc)

P (B ∩ Cc)
P (Cc)

.

These two conditions cannot be deduced from each other, and they are not related to (3.4).

For instance, the probability table

C

B Bc

A 2
18

1
18

Ac 4
18

2
18

Cc

B Bc

A 2
18

4
18

Ac 1
18

2
18

corresponds to a situation where A ⊥⊥ B | H but where A and B are dependent, as can

readily be checked.

On the other hand, the probability table

C

B Bc

A 1
12

2
12

Ac 2
12

1
12

Cc

B Bc

A 2
12

1
12

Ac 1
12

2
12
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corresponds to a situation where A and B are independent, but where they are not indepen-

dent given H. ◦

Example 3.2.4. If we have a finite partition D of Ω,

D = {D1, . . . , Dn}

where the atoms of D (the Di-sets) are pairwise disjoint and unite to the whole of Ω, the

σ-algebra generated by D is the family of all unions,

H =

{⋃
i∈I

Di | I ⊆ {1, . . . , n}

}
.

If we let

D∗ = {D ∈ D | P (D) > 0} ,

it is easily checked that

P (A | H) =
∑
D∈D∗

P (A ∩D)

P (D)
1D a.s.

for any event A. In this setting, condtion (3.3) translates into

P (A ∩B ∩D)

P (D)
=
P (A ∩D)

P (D)

P (B ∩D)

P (D)
for all D ∈ D∗ .

Again, whether this holds or not is very sensitive to the specific atoms. If an atom is divided

into two, there is no telling if A and B are independent on each of the two subatoms, just

because we know if they are independent on the original atom. And similarly, if two atoms

are coalesced, we may loose or create conditional independence, as the case may be. ◦

3.3 Conditionally independent σ-algebras

Definition 3.3.1. Two classes of events, A and B, are conditionally independent given a

σ-algebra H if

A ⊥⊥ B | H for all A ∈ A, B ∈ B . (3.5)

Symbolically, we will write A ⊥⊥ B | H if (3.5) is satisfied.

We will almost exclusively use this concept in situations where the two classes of events are

σ-algebras, but it is nice to be allowed to formulate things in a slightly broader fashion.

We may for instance see that it typically is enough to check (3.5) on two generators of the

σ-algebras under consideration:
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Lemma 3.3.2. Let A and B be two classes of events, both stable under formation of inter-

sections. Then

A ⊥⊥ B | H ⇒ σ(A) ⊥⊥ σ(B) | H .

Proof. A prototypical application of Dynkins lemma. For each set F ∈ F we consider the

class

CF = {E ∈ F | F ⊥⊥ E | H} ,

and we observe that this is a Dynkin class. If we take A ∈ A, we know that B ⊆ CA. Using

Dynkins lemma, we see that σ(B) ⊆ CA. On the other hand, conditional independence of

two events is a property that is symmetric in the two events, so we can reformulate this fact

as A ⊆ CB for any set B ∈ σ(B). Using Dynkins lemma again establishes that σ(A) ⊆ CB
for any set B ∈ σ(B). And though this may look awkward, it is in fact the property we are

after.

Conditional independence of classes of events is of course just as sensitive to the exact choice

of the σ-algebra on which we are conditioning, as conditional independence of events were.

In fact, if

A = {∅, A,Ac,Ω} , B = {∅, B,Bc,Ω} ,

then A ⊥⊥ B | H if and only if A ⊥⊥ B | H, as is readily seen from lemma 3.3.2. So the

counterexamples to any kind of simple behaviour under change of the conditioning algebra

given in section 3.2 also apply in this setting.

Example 3.3.3. Assume that H is a trivial σ–algebra. Then we saw in Example 3.2.2,

that two sets A and B are conditionally independent given H, if and only if they are truly

independent. This translates directly into conditional independence of classes of events: If

H is trivial, then two classes A and B satisfies

A ⊥⊥ B | H ⇔ A ⊥⊥ B

Assume conversely that H = F. Then for all F ∈ F we have

P (F |F) = 1F a.s. ,

since 1F is F–measurable. Hence it is seen that for any choice of A and B we have with

A ∈ A and B ∈ B that

P (A |F)P (B |F) = 1A · 1B = 1A∩B = P (A ∩B |F) a.s. ,



3.3 Conditionally independent σ-algebras 57

so we conclude that A and B are always conditionally independent given F. ◦

Example 3.3.4. Assume that A, B and H are independent. Then with A ∈ A we observe

P (A |H) = P (A) a.s.

since for H ∈ H the relation∫
H

P (A) dP = P (A)P (H) = P (A ∩H)

is satisfied. Then – using the independence between A and B – we obtain

P (A |H)P (B |H) = P (A) · P (B) = P (A ∩B) = P (A ∩B |H) a.s. .

In the last equality we used that A ∩B ⊥⊥ H since both A and B are independent of H. We

conclude that A and B are independent given H as well. ◦

Lemma 3.3.5 (Reduction). Let A and B be two classes of events, and let A′ ⊆ A be a

subclass. Then

A ⊥⊥ B | H ⇒ A′ ⊥⊥ B | H .

Proof. This is a quite trivial observation, which hardly deserves to be called a lemma. The

statement on the right hand side involves fewer events than the statement on the left hand

side, so the implication is obvious.

Theorem 3.3.6. Let A,B and H be three σ-algebras. Suppose that A ⊥⊥ B | H. If X is an

A-measurable real valued random variable, and if Y is a B-measurable real valued random

variable, such that E|X| <∞, E|Y | <∞ and E|XY | <∞, then it holds that

E(XY | H) = E(X | H)E(Y | H) a.e.

Proof. A prototypical extension result. We know the theorem to be true for indicator vari-

ables. Hence it is true for simple variables. The monotone convergence theorem for condi-

tional expectations will show it is true for non-negative variables, and a final handwaving

will dismiss the problems of positive and negative parts.
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Conditional independence is by its very definition symmetric in the two events, or more

general, in the two classes of events. Rather surprisingly, it turns out that the most fruitful

way of working with the concept is through an asymmetric formulation:

Theorem 3.3.7. Let A, B and H be σ-algebras. It holds that A ⊥⊥ B | H if and only if

P (A | B ∨H) = P (A | H) a.s (3.6)

for every event A ∈ A.

In the theorem B ∨ H denotes the smallest σ–algebra that contains both B and H. This

σ–algebra must be generated by the ∩–stable generating system given by

{B ∩H : B ∈ B, H ∈ H}

Proof. Notice that for any three events A ∈ A, B ∈ B and H ∈ H we have that∫
B∩H

P (A | H) dP =

∫
H

1B P (A | H) dP =

∫
H

E
(

1B P (A | H) | H
)
dP

=

∫
H

P (A | H)P (B | H) dP

, (3.7)

In the second equality we have used the integration property from the definition of condi-

tional expectations. In the third equality we have used the following calculation rule from

conditional expectations: If X is H–measurable, then E(XY |H) = XE(Y |H) (we also need

to assume that E|X| < ∞, E|Y | < ∞ and E|XY | < ∞ such that the conditional expecta-

tions are well defined). Suppose that A and B are conditionally independent given H. Then

we can work the above line of equations one step further to see that∫
B∩H

P (A | H) dP =

∫
H

P (A ∩B | H) dP = P (A ∩B ∩H) .

Since the events of the form B ∩ H is a generator for the σ-algebra B ∨ H that is stable

under formation of intersections, and as P (A | H) is H-measurable, and thereby in particular

B∨H–measurable, we conclude that P (A | H) indeed does satisfy all conditions for being the

conditional probability of A given B ∨H. And hence (3.6) holds.

For the opposite implication, we may utilise (3.6) on the starting end of (3.7), and obtain

that ∫
H

P (A | H)P (B | H) dP =

∫
H∩B

P (A | B ∨H) dP = P (A ∩B ∩H) .

As P (A | H)P (B | H) is indeed H-measurable, we see that it satisfies all conditions for

being the conditional probability of A ∩ B given H. And hence A and B are conditionally

independent given H.
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The asymmetric condition (3.6) is usually paraphrased by saying that there is no extra

information in B for making predictions on the occurrence of an A-set, when we already have

access to the information in H. All the information in B, useful for that prediction, is already

contained in H. The symmetry between A and B is not clearly visible here, but somehow it

is still there.

Corollary 3.3.8. Let A, B and H be σ-algebras. If A ⊥⊥ B | H then it holds for any

A-measurable real random variable X such that E|X| <∞ that

E(X | B ∨H) = E(X | H) a.e (3.8)

Proof. Follows from 3.3.7 by the same extension technique, that was used to prove theorem

3.3.6.

Example 3.3.9. Assume that A and H are σ–algebras. We clearly have H ∨ H = H, such

that

P (A | H ∨H) = P (A | H)

Then it follows that A ⊥⊥ H | H. The same argument applies to deduce that A ⊥⊥ B | H
whenever B ⊆ H. ◦

3.4 Shifting information around

The asymmetric approach to the defining conditional independence from Theorem 3.3.7 can

be explored further: In fact, when we already condition on H it makes no difference adding

sets from H to the sets from B.

Theorem 3.4.1. Let A, B and H be σ-algebras.

A ⊥⊥ B | H ⇒ A ⊥⊥ (B ∨H) | H .

Proof. Take A ∈ A. We have that

P
(
A | (B ∨H) ∨H

)
= P (A | B ∨H) = P (A | H) ,
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where the first equality is true for trivial reason (we are conditioning on the same σ-algebra),

and the second equality is true due to the conditional independence of A and B given H. But

now conditional independence of A and B ∨H given H follows from theorem 3.3.7.

Theorem 3.4.2. Let A, B and H be σ-algebras. Suppose that G is yet another σ-algebra,

satisfying that H ⊆ G ⊆ H ∨ B. Then it holds that

A ⊥⊥ B | H ⇒ A ⊥⊥ B | G .

Proof. Take A ∈ A. By repeated conditioning we have that

P (A | B ∨G) = E
(
P (A | B ∨G ∨H) | B ∨G

)
= E

(
P (A | B ∨H) | B ∨G

)
= E

(
P (A | H) | B ∨G

)
= P (A | H)

as P (A | H) is itself H-measurable, and thus G-measurable, and in particular B ∨ G-

measurable. But by the exact same argument we have that

P (A | G) = E
(
P (A | H ∨ B) | G

)
= E

(
P (A | H) | G

)
= P (A | H) .

And thus in particular P (A | B∨G) = P (A | G), which establishes conditional independence

of A and B given G.

Theorem 3.4.3. Let A, B, G and H be σ-algebras. It holds that

A ⊥⊥ B | H and A ⊥⊥ G | B ∨H ⇒ A ⊥⊥ (B ∨G) | H .

Proof. Take A ∈ A. It holds that

P (A | (B ∨G) ∨H) = P (A | B ∨H) = P (A | H) .

The first equality is due to conditional independence of A and G given B ∨H, the second is

due to conditional independence of A and B given H. The combination of course gives that

A and B ∨G are independent given H.

Example 3.4.4. None of the theorems so far will tell us how to throw information away in

the conditioning algebra, while retaining conditional independence. But the theorems can in

certain situations be combined to that effect.
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Suppose that A ⊥⊥ B | G ∨H. Theorem 3.4.3 tells us that if we furthermore know that

A ⊥⊥ G | H

then A ⊥⊥ (B ∨ G) | H. But we can throw events away in the classes that are conditionally

independent for free, so it actually follows that A ⊥⊥ B | H. By symmetry, we can also get

rid of G if we know it is conditionally independent of B given H. ◦

3.5 Conditionally independent random variables

In many cases we have σ-algebras generated by random variables. We will make no distinction

between the random variable X and the σ-algebra σ(X) generated by X, and we will write

things like

X ⊥⊥ Y | Z instead of σ(X) ⊥⊥ σ(Y ) | σ(Z)

without notification.

Example 3.5.1. Assume that the random variables X, Y and Z are independent. then

of course the corresponding σ–algebras σ(X), σ(Y ) and σ(Z) are independent, such that

Example 3.3.4 gives

σ(X) ⊥⊥ σ(Y ) | σ(Z)

which corresponds to saying

X ⊥⊥ Y | Z

◦

Example 3.5.2. Consider a normal distribution in three dimensions, where the one–

dimensional marginals are standard normals, X

Y

Z

 ∼ N

 0

0

0

 ,

 1 ρ β

ρ 1 β

β β 1


 . (3.9)

Here we have taken the two correlations involving Z to be identical, to keep the problem

simple.

Independence of X and Y is controlled be the parameter ρ. If ρ = 0 they are independent,

if ρ > 0 they are positively correlated and if ρ < 0 they are negatively correlated.
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The conditional distribution of X and Y given Z = z is

N

((
0

0

)
+

(
β

β

)
(z − 0) ,

(
1 ρ

ρ 1

)
−

(
β

β

)
(β β)

)

= N

((
β z

β z

)
,

(
1− β2 ρ− β2

ρ− β2 1− β2

))
.

Note that the variance does not depend on the specific value of z. Hence we can conclude

that X and Y are conditionally independent given Z if

ρ− β2 = 0 .

More precisely, the sign of ρ−β2 controls the direction of the conditional correlation between

X and Y given Z.

In figure 3.1 we have illustrated this phenomenon. In the (ρ, β)-plane we have found the

domain which corresponds to legal covariance-matrices (all three eigenvalues being non-

negative). It is seen that this domain is divided into three: a part which corresponds to

negative marginal correlation and negative conditional correlation between X and Y . A

part which corresponds to positive marginal correlation but negative conditional correlation.

And a third part which corresponds to positive marginal and conditional correlation. If

we did not employ the restriction that the two Z-correlations should be equal, we could of

course have a fourth domain, corresponding to negative marginal but positive conditional

correlation.

In this context, the message is that marginal correlations and conditional correlations are

two very different things, and in particular that marginal independence and conditional

independence are unrelated phenomena. ◦

Theorem 3.5.3. Let the conditional distributions of Y and Z given X be respectively

(Px)x∈X and (Qx)x∈X . Define

Rx = Px ⊗Qx , Lx,z = Px .

If Y ⊥⊥ Z | X, then (Rx)x∈X is the conditional distribution of (Y,Z) given X, and (Lx,z)(x,z)∈X×Z

is the conditional distribution of Y given (X,Z).

Proof. It is easily checked that (Rx)x∈X is a X -kernel on Y × Z. To check the integral
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Figure 3.1: Marginal independence and conditional independence in normal distributions of

type (3.9). The shaded area contains the (ρ, β)-values for which the normal distribution exists.

The vertical line corresponds to marginal independence of X and Y (positive correlation is on the

right hand side). The parabolic curve corresponds to conditional independence of X and Y given Z

(positive conditional correlation is in the interior of the parabola). Note the domain where there is

positive marginal correlation but negative conditional correlation.

condition, we write∫
A

Rx(B × C)X(P )(dx) =

∫
A

Px(B)Qx(C)X(P )(dx)

=

∫
(X∈A)

P (Y ∈ B | X)P (Z ∈ C | X) dP

=

∫
(X∈A)

P (Y ∈ B,Z ∈ C | X) dP

= P (X ∈ A, Y ∈ B,Z ∈ C)

In the second equality above we use that the function x 7→ Px(B) is a version of the conditional

probability x 7→ P (B | X = x), and similarly Qx(C) can be replaced by P (C | X = x). The
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third equality is an application of conditional independence, and the fourth is simply the

definition of conditional probabilities. Standard arguments extend these computations from

product sets B×C to general measurable subsets of Y×Z. Hence (Rx)x∈X is the conditional

distribution of (Y,Z) given X.

The proof of the second half of the theorem proceeds in exactly the same way, utilising the

asymmetric formulation of conditional independence instead of the definition:∫
A×C

Lx,z(B) (X,Z)(P )(dx, dz) =

∫
A×C

Px(B) (X,Z)(P )(dx, dz)

=

∫
(X∈A,Z∈C)

P (Y ∈ B | X) dP

=

∫
(X∈A,Z∈C)

P (Y ∈ B | X,Z) dP

= P (X ∈ A, Y ∈ B,Z ∈ C)

There are converses of both halves of this theorem. We choose to formulate them separately.

They may come in handy under various circumstances, but in general we will go to quite

some length in order to circumvent any use of them.

Theorem 3.5.4. Suppose that the conditional distribution (Rx)x∈X of (Y, Z) given X has

product structure of the form

Rx = Px ⊗Qx for all x ∈ X

for two families (Px)x∈X and (Qx)x∈X of probability measures on Y and Z respectively. Then

both these families are Markov kernels, they are the conditional distributions of Y given X

and of Z given X respectively, and it holds that Y ⊥⊥ Z | X.

Proof. The first two statements are trivially checked. The statement about conditional in-

dependence follows from

P (Y ∈ B,Z ∈ C | X = x) = Rx(B × C)

= Px(B)Qx(C)

= P (Y ∈ B | X = x)P (Z ∈ C | X = x)
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for all x ∈ X . Such that also

P (Y ∈ B,Z ∈ C | X) = P (Y ∈ B | X)P (Z ∈ C | X)

Note: this is not just a.s., but for all ω ∈ Ω!

Theorem 3.5.5. Suppose that the conditional distribution (Lx,z)(x,z)∈X×Z of Y given (X,Z)

has the structure

Lx,z = Px for all x ∈ X , z ∈ Z

for some family (Px)x∈X of probability measures on Y. Then this family is a Markov kernel,

it is the conditional distribution of Y given X, and it holds that Y ⊥⊥ Z | X.

Proof. The first statement is trivially checked. The second statement follows from Theorem

2.1.4. The statement about conditional independence follows from the asymmetric charac-

terization, since

P (Y ∈ B | X = x) = Px(B) = Lx,z(B) = P (Y ∈ B | X = x, Z = z)

for all x and z, such that

P (Y ∈ B | X) = P (Y ∈ B | X,Z) .

Note: Apparently the fact that Y ⊥⊥ Z | X is a statement about the joint distribution of

(X,Y, Z). Then three other variables X ′, Y ′ and Z ′ that have the same joint distribution,

will satisfy the same conditional independence relation as the original triple.

Finally comes a rather deep result, that indeed will be useful when trying to understand

Markov chains

Theorem 3.5.6. Let X and Y be random variables with values in (X ,E) and (Y,K). There

exists a map φ : X × (0, 1) → Y, which is E ⊗ B(0,1) − K measurable, with the following

property: if X ′ is a random variable with the same distribution as X, U is a real valued

random variable, independent of X and uniformly distributed on (0, 1), and if we let

Y ′ = φ(X ′, U)

then (X ′, Y ′) has the same distribution as (X,Y ).
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Proof. Due to the underlying assumption that the spaces involved are Borel spaces, we may

assume that (Y,K) = (R,B). Let (Px)x∈X be the conditional distribution of Y given X.

We know that the conditional distribution of U given X is very degenerate:

Qx = ν for all x ∈ X ,

where ν is the uniform distribution on (0, 1). By the substitution theorem, the conditional

distribution of Y ′ given X ′ is

Rx = φ ◦ ix(Qx) = φ ◦ ix(ν) .

The proof is complete, once we show how to choose φ such that Rx = Px for every x, as the

joint distribution is uniquely determined from one marginal distribution and the conditional

distribution of the remaining marginal given the first.

The deep claim is not so much that it is possible to choose φ is such a way that

φ ◦ ix(ν) = Px for all x ∈ X . (3.10)

For if we let Fx be the distribution function corresponding to Px, and if we let qx be a quantile

function for Fx, it is well known that qx(ν) = Px. So we may let

φ(x, u) = qx(u) ,

and (3.10) will be satisfied bona fide.

What is a deep claim is that the construction can be carried out in a way that guarantees

φ to be measurable. There is a choice involved, in the sense that quantile functions are not

unique, and even though the individual quantile functions are increasing, and thus necessarily

measurable, the various choices may destroy joint measurability.

The key is to get rid of the choices, and find an operationally defined quantile function. A

nice one is

qx(p) = inf{y ∈ R | Fx(y) > p} for all x ∈ X , p ∈ (0, 1) .

The idea is to single out the largest possible p-quantile whenever there is a choice. Let us

prove that this is in fact a quantile function:

For fixed x and p, we have that

{y ∈ R | Fx(y) > p} =

 (y0,∞)

[y0,∞)
,
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for some y0 ∈ R. Whether we have the open or the halfclosed interval, depends on the

specifics of the situation, but in both cases we see that qx(p) = y0. For each n we have that

y0 + 1
n > y0, and thus

Fx

(
y0 +

1

n

)
> p .

Using right continuity of Fx, we can conclude that

Fx(y0) ≥ p .

Similarly, y0 − 1
n < y0, and so

Fx

(
y0 −

1

n

)
≤ p .

Using monotonicity of Fx, we can conclude that

Fx(y0−) ≤ p .

Together these inequalities show that y0 is a p-quantile for Fx.

As for measurability, an elementary argument shows that

{(x, p) | qx(p) < z} =
⋃

w<z,w∈Q
{(x, p) | Fx(w) > p} . (3.11)

For any fixed w, the map

x 7→ Fx(w) = Px

(
(−∞, w]

)
is measurable, as (Px)x∈X is a Markov kernel. Hence (x, p) 7→ (Fx(w), p) is measurable, and

thus

{(x, p) | Fx(w) > p} = {(x, p) | Fx(w)− p > 0}

is measurable set. The fact that the right hand side of (3.11) is a countable union, shows

that the left hand side is a measurable set.

The point of theorem 3.5.6 is that we may think of as any pair of variables as generated in

a two-step procedure, where the generation of the second variable can be accomplished by

mixing the first variable with random noise. It is the way that the mixing is carried out, that

determines the joint distribution.

The update function φ is not at all unique. There are literally uncountably many ways

to choose it. In certain cases it matters which one we use, in most cases it is irrelevant.

However, in typical applications there is a specific update function that almost forces itself

upon us.
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3.6 Exercises

Exercise 3.1. Let Y and Z be real valued random variables such that EY 2 < ∞ and

EZ2 <∞. Let X be a random variable with values in the measurable space (X ,E). Define

the conditional covariance between Y and Z given X by

Cov(Y, Z | X) = E(Y Z | X)− E(Y | X)E(Z | X)

(1) Show that

Cov(Y, Z) = E(Cov(Y,Z | X)) + Cov(E(Y | X), E(Z | X))

(2) Assume that Y ⊥⊥ Z | X. Show that Cov(Y,Z | X) = 0 a.s. (Hint).

Now assume that X is a real valued random variable with EX2 < ∞, and assume that Y1

and Y2 are two other random variables with the same conditional distribution (Px)x∈R given

X, where

Px = N (x, 1)

Assume that Y1 ⊥⊥ Y2 | X .

(3) Show that EY 2
1 = EY 2

2 <∞ (Hint).

(4) Show that Cov(Y1, Y2) = V (X) (Hint).

◦

Exercise 3.2. Assume that X1 and X2 are real valued random variables. Let (Px)x∈R be

the conditional distribution of X1 given X1 +X2.

Define for each x ∈ R and B ∈ B the set

x−B = {x− y : y ∈ B}

and define the collection of measures (Qx)x∈R by

Qx(B) = Px(x−B)



3.6 Exercises 69

(1) Show that (Qx)x∈R is the conditional distribution of X2 given X1 +X2.

Define for each x ∈ R the measure Rx on (R2,B2) by

Rx(A×B) = Px(A ∩ (x−B))

for A,B ∈ B.

(2) Show that (Rx)x∈R is the conditional distribution of (X1, X2) given X1 +X2 (Hint).

(3) Assume that X1 ⊥⊥ X2 | X1 +X2. Show that for all x ∈ R it holds that Px(A) ∈ {0, 1}
for all A ∈ B. Conclude that Px = δφ(x), where φ(x) is some real number dependent

on x (Hint).

(4) Show that the function φ from (3) is measurable (Hint).

(5) Show that if X1 ⊥⊥ X2 | X1 + X2, then there exists measurable functions φ1 and φ2,

such that

X1 = φ1(X1 +X2) a.s., and X2 = φ2(X1 +X2) a.s.

(Hint).

(6) Give an example of real random variables X1, X2 and X3, where

X1 ⊥⊥ X2 | X1 +X2 +X3 .

(Hint).

◦

Exercise 3.3. In this exercise we shall find an update function (as in theorem 3.5.6) in the

situation, where both X and Y are finite.

(1) Assume that p1, . . . , pn ∈ (0, 1) with p1 + · · ·+ pn = 1. Define for k = 1, . . . , n

qk = p1 + . . .+ pk

Let U have the uniform distribution on (0, 1). Define the random variable Y by

Y =

n∑
k=1

1(Y≤qk)

Show that P (Y = k) = pk for each k = 1, . . . , n.
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(2) Assume that X is a random variable with values in {1, . . . ,m} and that Y is a random

variable with values in {1, . . . , n}. Find a measurable function

φ : {1, . . . ,m} × (0, 1)→ {1, . . . , n}

such that if X ′ has the same distribution as X and if U is uniform on (0, 1) and

independent of X ′, then (X ′, Y ′) has the same distribution as (X,Y ), where Y ′ =

φ(X ′, U) (Hint).

◦

Exercise 3.4. Assume that X is a real random variable and that (Px)x∈R is the conditional

distribution of Y given X, where Px is the exponential distribution with mean x.

Find a measurable function

φ : R× (0, 1)→ R

such that if X ′ has the same distribution as X and if U is uniform on (0, 1) and independent

of X ′, then (X ′, Y ′) has the same distribution as (X,Y ), where Y ′ = φ(X ′, U) (Hint). ◦



Chapter 4

Markov chains

Also in this chapter we will work on a general probability space (Ω,F, P ) and all events

occurring will be assumed to be F–measurable and other σ–algebras will be assumed to be

sub σ–algebras of F. Furthermore all random variables (typically sequences X0, X1, X2, . . .)

will be defined on this probability space and usually have values in the Borel space (X ,E),

unless it is explicitly stated that they a real valued.

4.1 The fundamental Markov property

Definition 4.1.1. A sequence X0, X1, X2, . . . of random variables with values in a common

space (X ,E) is a Markov chain if

Xn+1 ⊥⊥ (X0, X1, . . . , Xn−1) | Xn for n = 1, 2, . . . (4.1)

We refer to (4.1) as the fundamental Markov property. In colloquial terms, we say that

the immediate future - represented by Xn+1 - is independent of the entire past given the

present.

For a Markov chain X0, X1, . . . the one-step conditional distributions are of paramount im-

portance as we shall see from the following immediate result
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Theorem 4.1.2. Assume that X0, X1, . . . is a Markov chain with values in (X ,E). Let for

each n ∈ N the Markov kernel (Pn,x)x∈X be the conditional distributions of Xn+1 given Xn.

Then the Markov kernel given by

(x0, x1, . . . , xn) 7→ Pn,xn

is in fact the conditional distribution of Xn+1 given (X0, X1, . . . , Xn).

Proof. This follows directly from Theorem 3.5.3 and the conditional independence from the

definition of X0, X1, . . . being a Markov chain.

We will call (Pn,x)x∈X the one–step transition probabilities. That the Markov kernel

(Pn−1,xn)(x0,...,xn−1)∈Xn is the conditional distribution of Xn given (X0, X1, . . . , Xn−1) gives

P (X0 ∈ A0, X1 ∈ A1, . . . , Xn ∈ An)

=

∫
A0×...×An−1

Pn−1,xn−1
(An) d(X0, X1, . . . , Xn−1)(P )(x0, x1, . . . , xn−1) .

But utilising that (Pn−2,x)x∈X by a slight change of the index set can be considered the

conditional distribution of Xn−1 given (X0, X1, . . . , Xn−2), we can by the extended Tonelli

theorem write the above integral as a double integral:

P (X0 ∈ A0, X1 ∈ A1, . . . , Xn ∈ An)

=

∫
A0×...×An−2

∫
An−1

Pn−1,xn−1
(An) dPn−2,xn−2

(xn−1) d(X0, . . . , Xn−2)(P )(x0, . . . , xn−2) .

And of course this process can be carried on, until we have the probability expressed as a

n-fold integral:

P (X0 ∈ A0, X1 ∈ A1, . . . , Xn ∈ An)

=

∫
A0

∫
A1

. . .

∫
An−1

Pn−1,xn−1
(An) dPn−2,xn−2

(xn−1) . . . dP0,x0
(x1) dX0(P )(dx0) .

In order to be slightly more specific, and avoid the indexing circus and the dots, an example

of such a statement is

P (X0 ∈ A,X1 ∈ B,X2 ∈ C,X3 ∈ D)

=

∫
A

∫
B

∫
C

P2,z(D) dP1,y(z) dP0,x(y) dX0(P )(x) .

We can think of a Markov chain X0, X1, . . . as a random variable with values in the sequence

space (X∞,E∞). So far we have assumed that a Markov chain (X0, X1, . . .) was given and
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used this to express the finite dimensional distributions of (X0, . . . , Xn) using the distribution

of X0 and all the transition probabilities (Pn,x)x∈X . Suppose conversely that we are given a

probability measure µ on (X ,E) and Markov kernels (Pn,x)x∈X for all n ∈ N for each n ∈ N
then we want to know whether a Markov chain (X0, X1, . . .) exists with X0(P ) = µ and

such that (Pn,x)x∈X is the conditional distribution of Xn+1 given Xn. We will construct the

probability measure on (X∞,E∞) that is the distribution of this Markov chain. Firstly, we

can construct a probability measure Pnµ on (Xn+1,En+1) by defining

Pnµ (A0 ×A1 × · · · ×An)

=

∫
A0

∫
A1

. . .

∫
An−1

Pn−1,xn−1
(An) dPn−2,xn−2

(xn−1) . . . dP0,x0
(x1) dµ(x0) .

These probability measures can be ”collected” to a probability on (X∞,E∞)

Theorem 4.1.3. Given a probability measure µ on (X ,E) and Markov kernels (Pn,x)x∈X

for all n ∈ N there exists a uniquely determined probability measure Pµ on (X∞,E∞) that

satisfies

Pµ(Bn+1 × E∞) = Pnµ (Bn+1)

for all Bn+1 ∈ En+1. Any process (X0, X1, . . .) with this distribution is a Markov chain with

X0(P ) = µ and (Pn,x)x∈X as the conditional distribution of Xn+1 given Xn.

Proof. The existence and uniqueness of the probability measure is a direct application of

Kolmogorov’s consistency theorem (we shall not go into any details, but according to the

consistency theorem it suffices that the measures Pnµ satisfies

Pn+1
µ (Bn+1 × E) = Pnµ (Bn+1)

for all n ∈ N0 and all Bn+1 ∈ En+1, which is easily seen to be true.)

Suppose that (X0, X1, . . .) has distribution Pµ such that (X1, . . . , Xn) has distribution Pnµ .

Then doing the calculations from above backwards shows that

P (X0 ∈ A0, X1 ∈ A1, . . . , Xn+1 ∈ An+1)

=

∫
A0×...×An

Pn,xn(An+1) d(X0, X1, . . . , Xn)(P )(x0, x1, . . . , xn) .

which by definition gives that (Pn,xn)(x1,...,xn)∈X is the conditional distribution of Xn+1 given

(X0, . . . , Xn). Since this only depends on xn, we conclude from Theorem 3.5.5 that

Xn+1 ⊥⊥ (X0, . . . , Xn−1) | Xn

and that (Pn,x)x∈X as the conditional distribution of Xn+1 given Xn.
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Recall that it is always possible to find an underlying probability space (Ω,F, P ) and a

random variable defined on Ω, such that this variable has a given probability measure as its

distribution!!

Example 4.1.4. Assume that X is finite – for convenience assume that X = {1, . . . ,m}
– and let X0, X1, . . . be a Markov chain on X . Assume furthermore that the transition

probabilities (Px)x∈X are independent of n. Then X0, X1, . . . is a so-called time homogeneous

Markov chain (this concept will be discussed in a later section) on the discrete state space

X . We have that (Px)x∈X is determined by the point probabilities

pij = P (Xn+1 = j | Xn = i)

with i, j ∈ {1, . . . ,m}. We shall call this collection of probabilities (pij) the transition

matrix for the Markov chain, and write it as

P̂ =


p11 p12 · · · p1m

p21 p22 · · · p2m
...

...
. . .

...

pm1 pm2 · · · pmm

 .

In this example it is also possible to express the probability measure Pnµ , since it is completely

determined by the one–point probabilities:

Pnµ ({x0, x1, . . . , xn}) = P (X0 = x0, X1 = x1, . . . , Xn = xn)

= µ({x0})
n∏
k=1

pxk−1,xk

◦

We have learned how to find the finite-dimensional distributions of a Markov chain through

multiple integrals involving the one-step transition kernels. Believe it or not, this horrible

characterisation is usually taken as the definition of a Markov chain!

It seems plausible to most people that this property generalises certain facts about Markov

Chains on a discrete space. But nobody has the slightest clue on how to check if it is

satisfied for a concrete Markov chain. The literature abounds with statements that this

or that collection of random variables form a Markov chain, but there is never a proof -

the Markov property is taken as selfevident, even when it clearly is not. The problem is

that no one will even know where to start, if they have to check that the finite-dimensional

marginal distributions have an integral representation of the specified form. . . . It is way too
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complicated to be checkable in any practical sense. And hence the common conspiracy in

the literature: if everybody keeps quite, nobody will notice the problem.

As we shall see, definition 4.1.1 can in fact be checked in a number of non-trivial situations,

and so it represents a definite progress - we do not have to rely on divine insight when we

claim processes to be Markovian.

Theorem 4.1.5. If X0, X1, X2, . . . is a Markov Chain, it holds that

(Xn, Xn+1, . . .) ⊥⊥ (X0, X2, . . . , Xn) | Xn for all n = 1, 2, . . .

Proof. We show by induction on k that

(Xn, Xn+1, . . . , Xn+k) ⊥⊥ (X0, X1, . . . , Xn) | Xn (4.2)

As the algebra
∞⋃
k=1

σ(Xn, . . . , Xn+k)

is a generator for σ(Xn, Xn+1, . . .), stable under intersections, the extension of the result

from the ’finite horizon future’ to the ’infinite horizon future’ follows from lemma 3.3.2.

To show (4.2) we observe that the statement for k = 1 is the very definition of the Markov

chain (and for k = 0 it is downright triviality).

We know that

Xn+k+1 ⊥⊥ (X0, . . . , Xn, Xn+1, . . . , Xn+k) | Xn+k .

By shifting information to the right hand σ–algebra to the conditioning σ–algebra, we obtain

that

Xn+k+1 ⊥⊥ (X0, . . . , Xn, Xn+1, . . . , Xn+k) | (Xn, . . . Xn+k) .

If we by induction assume that the property (4.2) is true for k, we have that combine via

theorem 3.4.3 to obtain that

(Xn, Xn+1, . . . , Xn+k, Xn+k+1) ⊥⊥ (X0, X1, . . . , Xn) | Xn .
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We usually refer to theorem 4.1.5 as the general Markov property - or simply as the

Markov property. Colloquially speaking, the σ-algebra generated by (Xn, Xn+1, . . .) repre-

sents ’the future’, and so the Markov property says that the future is independent of the past,

given the present. What we have just proved is that if the immediate future only depends

upon the past via the present at all times, then the general future will also depend upon the

past via the present. Variations of the theme is clearly possible, for instance that

(X0, X1, . . . , Xm) ⊥⊥ (Xn, Xn+1, . . .) | (Xm, . . . , Xn) .

whenever m < n. This follows from shifting information around as we just did, followed by

a reduction.

A formulation of the Markov property that is sometimes useful, and in fact by some authors

is taken as the definition of a Markov Chain, is the following: if X0, X1, . . . is a Markov chain,

and if f : XN → R is a bounded, measurable function, then for any n it holds that

E
(
f(Xn, Xn+1, . . .) | X0, X1, . . . , Xn

)
= E

(
f(Xn, Xn+1, . . .) | Xn

)
a.s

This follows from combining theorem 4.1.5 and corollary 3.3.8. It is a nice property to have,

and it is very flexible to work with. Used on functions like

(x1, x2, . . .) 7→ 1B(x2)

it gives the fundamental Markovian property as a consequence. But considered as a definition,

it has the same basic flaw as the definition via multiple integrals: nobody has a clue on how

to check if it is satisfied in concrete examples.

Theorem 4.1.6. Let Y1, Y2, . . . be independent variables, which we for simplicity assume

have values in the same space (Y,K). Furthermore, let φn : X × Y → X be a sequence of

measurable maps.

Let X1 be yet another variable, independent of the Y ’s, and define

Xn = φn(Xn−1, Yn) for n = 1, 2, . . . (4.3)

The process X0, X1, . . . is a Markov chain.

Proof. Due to independence, we have that

Yn+1 ⊥⊥ (X0, Y1, . . . , Yn) .

Which we might formulate as

Yn+1 ⊥⊥ (X0, Y1, . . . , Yn) | {∅,Ω} .
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As Xn is deterministically given by (X0, Y1, . . . , Yn), it is of course measurable with respect

to the σ-algebra generated by these variables. And hence we may float it to the conditioning

side,

Yn+1 ⊥⊥ (X0, Y1, . . . , Yn−1) | Xn .

From there it may float back to the leftmost algebra, giving

(Xn, Yn+1) ⊥⊥ (X0, Y1, . . . , Yn) | Xn .

Now, Xn+1 is (Xn, Yn+1)-measurable, andX0, X1, . . . , Xn are all (X0, Y1, . . . , Yn)-measurable.

So by diminishing, we obtain that

Xn+1 ⊥⊥ (X0, X1, . . . , Xn−1) | Xn

as desired.

We usually refer to (4.3) as an update scheme for the Markov proces, and we refer to the

Y -process as the underlying error variables or noise variables.

Theorem 4.1.7. Let X0, X1, . . . be a Markov chain. There are update functions

φn : X × (0, 1)→ X for all n = 1, 2, . . .

with the following property: if U1, U2, . . . are a sequence of independent standard uniformly

distributed stochastic variables, and if X ′1 is independent of the U ’s, and has the same dis-

tribution as X1, then the update scheme

X ′n = φn(X ′n−1, Un) for n = 1, 2, . . .

produces a proces X ′0, X
′
1, X

′
2, . . . with the same distribution as the original proces X0, X1, X2, . . ..

Proof. We may represent the original chain by its initial distribution (the distribution of X0)

and each of its one-step transition kernels (Pn,x)x∈X . From these building blocks, we can

build up the finite dimensional distributions of the process, and hence the joint distribution

of all the entire process.

Each of the one-step transition kernels has an update function φn according to theorem 3.5.6.

Using these in the update scheme above will produce a Markov chain with the same onestep

transition kernels and then same initial distribution as the original chain, and hence the same

overall distribution.
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So from at distributional point of view, we may always assume that a Markov chains is given

by an update scheme - if a specific process, we happen to study, is not in update form, we

can replace it by another process which is in update form, and which is indistinguishable

from the first from a probabilistic point of view. The caveat is that the update functions are

not in any way unique, and it may not be easy to produce update functions that make any

sense intuitively.

The representations of Markov chains via update schemes is necessary for simulation pur-

poses: a computer program that simulates a Markov chain must almost inevitably have form

of an update scheme. But the idea also has a number of purely probabilistic applications.

Example 4.1.8. We will show in an exercise how a discrete state space Markov chains can

be constructed using an update scheme. ◦

Example 4.1.9. The random walk, based on an iid. innovation sequence X1, X2, . . ., is

by definition the stochastic process S0, S1, S2, . . . given by

Sn =

n∑
i=1

Xi ,

with the convention that S0 = 0. This is a Markov chain with update scheme

Sn = Sn−1 +Xn .

It is typically assumed that the innovations have mean zero, but random walks with positive

(or negative) drift (meaning that the innovations have a non–zero mean) are study objects

in their own right. ◦

Example 4.1.10. The reflecting random walk, based on an iid. innovation sequence

X1, X2, . . ., is by definition the Markov chain with update scheme

T0 = 0 , Tn = (Tn−1 +Xn)+ .

A random walk with negative drift is frequently studied through the corresponding reflecting

random walk, which exhibits the ’upwards excursions’ of the random walk ◦

Example 4.1.11. The classical AR(1)-process on the real axis is given by the update scheme

Xn+1 = ρXn + εn+1

where the ε’s are independent and identically distributed. As a first choice, the errors are

typically normally distributed with mean zero. But other choices are clearly possible. We
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also have to specify the distribution of X0 in order to specify the joint distribution of the

process.

In a sense, the behaviour of the AR(1)-process is not very dependent on the specific choice of

error distribution or initial distribution. The key is the magnitude of ρ. If |ρ| < 1, the process

will behave in a stable and quite predictable way. If |ρ| > 1 the process will on the other

hand explode. If ρ = 1 we are back in the random walk case. And if ρ = −1, we are essential

also back in the random walk case, even though it becomes slightly more complicated to

formulate the results. We will return to this classification time and time again during the

course. ◦

Example 4.1.12. There is a straight forward generalisation of the AR(1) process to Rk via

the update scheme

Xn = RXn−1 + εn

Here R is a k × k matrix, and the ε’s are an iid. sequence of Rk-valued stochastic variables

- a typical choice is to make the errors N (0,Σ)-distributed, where Σ is some legal variance

matrix.

It is rather complicated to describe the long time behaviour of the chain, but at a first

description it will depend on the eigenvalues of R. If all the eigenvalues are smaller than

one in modulus, the matrix represents a linear map that contracts everything to 0. And

this contraction in so dominating, that it even governs the stochastic behaviour. If some

of the eigenvalues are outside of the complex unit circle, things become more complicate.

The corresponding eigen–directions will be ’directions of explosion’, and they will in a sense

govern the stochastic behaviour, unless the error distribution is so singular, that the process

will never have a non-zero component in an exploding direction.

Hence there is a very delicate interplay between the deterministic behaviour of the underlying

linear map, and the measure–theoretic singularities of the error distribution. At first sight

it would seem like a mathematical game to explore this interplay - it does not seem to be

relevant from a modelling point of view. But it actually pops up in many places, and the

problem must be considered seriously, ◦

Example 4.1.13. The AR(2)-process on the real axis is given by the update scheme

Xn+1 = αXn + βXn−1 + εn+1

where the ε’s are independent and identically distributed, typically normal with mean zero.

As it stands, this update scheme does not give rise to a Markov process, because it does
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not just depend on the present observation, but also a lagged observation. Furthermore, we

need both X0 and X1 in order to be able to run the update mechanism.

But a slight rearrangement will in fact give a Markov chain. If we stack the process, and

consider the process in R2 given by

Yn =

(
Xn

Xn−1

)
,

we see that the Y -proces fits into the update scheme

Yn =

(
αXn−1 + βXn−2 + εn

Xn−1

)
=

(
α β

1 0

)(
Xn−1

Xn−2

)
+

(
εn

0

)

=

(
α β

1 0

)
Yn−1 +

(
εn

0

)

This shows that the AR(2)-process is just an AR(1)-process in disguise, and hence it is

’practically Markovian’. The price we pay for this simplification is however, that the errors

in the AR(1) updating scheme are quite degenerate - they are essentially one-dimensional.

This perhaps sheds some light on the remarks as to why it is necessary to study AR(1)-process

in full generality, even with singular error distributions. ◦

Example 4.1.14. Consider independent, identically distributed non-negative real random

variables Y1, Y2, . . ., and think of them as representing waiting times between events. The

occurrence of the n’th event is thus happening at time

Sn =

n∑
i=1

Yi .

The corresponding renewal process is the continuous time process, which for each time

point indicates how many events that have occurred,

Nt = sup{n : Sn ≤ t}

Renewal processes are very important in many branches of probability, in particular in

Markov chain theory.

We will mainly be interested in the case where all the waiting times are integers, and this we

assume from now on. Hence the natural discrete time renewal process is

Nn = sup{k : Sk ≤ n} for n = 0, 1, 2, . . .
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Note that the renewal process itself is not Markovian. Not in general, at least. If we consider

the case where

P (Yi = 2) = P (Yi = 3) =
1

2
for i = 1, 2, . . . ,

it is clear that exactly one event has taken place at time 3, that is N3 = 1. This makes the

σ-algebra generated by N3 trivial, and so the Markov property is ruled out, if we show that

N2 and N4 are not independent. But the joint distribution of these two variables is given by

the table

N4 = 1 N4 = 2

N2 = 0 1
2 0

N2 = 1 1
4

1
4

and this table does not give independence. If we think about it for at moment, the lack

of Markovianess of renewal processes is rather evident: Nn+1 will either be equal to Nn or

equal to Nn + 1, the latter case corresponding to an event occuring at time n+ 1. When we

try to predict whether an event will occure at time n+ 1, the relevant knowledge is not how

many events that have occurred at time n, but rather the exact time of the last event - an

information hidden deeper in the past.

But there are other processes, associated to the renewal proces, that do posses the Markov

property. One such proces is the forward recurrence time chain, V1, V2, . . . given by

Vn = inf{Sk − n : k such that Sk > n}

For any timepoint n, the value of Vn is the waiting time until the next event. If Vn ≥ 2,

there is no event taking place at time n + 1, and so Vn+1 = Vn − 1. But if Vn = 1, there is

an event taking place at time n+ 1, and the value of Vn+1 will be the length of the waiting

period until the next event. Hence it is very easy to calculate the one-step probabilities:

P̃ =


ν1 ν2 ν3 . . .

1 0 0 . . .

0 1 0 . . .
...

...
...

. . .


where ν1, ν2, . . . form the point masses of the waiting time distribution ν. But the relevance

of the one-step probabilities are not clear, unless we know that the forward recurrence time

chain is a Markov chain. And while that is true, a rigorous demonstration is not trivial. In a

later example we will establish Markovianess as a consequence of the so-called strong Markov

property for the underlying random walk.
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A related process is the backward recurrence time chain , B0, B1, . . . given by

Bn = inf{n− Sk : Sk ≤ n} for n = 0, 1, 2, . . .

For any time point n, the value of Bn is the time that has occurred since the last event. If an

event is taking place at time n, the value of Bn is 0. Otherwise, we have the simple relation

Bn = Bn−1 + 1. Also in this case it is easy to compute the one-step probabilities,

P̃ =


µ0 1 0 0 . . .

µ1 0 1 0 . . .

µ2 0 0 1 . . .
...

...
...

...
. . .


where

µk = P (Y1 = k + 1 | Y1 > k) .

The relevance of this matrix, though, will only become clear once it is established that the

backward recurrence time chain is Markovian. ◦

Example 4.1.15. If X0, X1, . . . is a Markov chain, and if f : X → Y is a measurable

function, we may consider the process Y0, Y1, . . . given by

Yn = f(Xn) for n = 0, 1, 2, . . .

It is an important problem to find out if the Y -process is Markovian as well. While reduction

easily gives that

Yn+1 ⊥⊥ (Y0, . . . , Yn−1) | Xn ,

there is no telling when we can shrink the conditioning algebra from σ(Xn) to σ(Yn). The

prominence of this problem arises, of course, from the fact that Y -process is usually not

Markovian. It is actually rather difficult to find examples where the Markov property is

preserved, but non-Markovianess is usually a mess to establish.

To construct an explicit example, we may let the X-process be an asymmetric random walk

on three points, say with one-step transition matrix

P̃ =

 0 p 1− p
1− p 0 p

p 1− p 0


The initial distribution can be taken as the equidistribution. This process is a random

movement on the corners of a triangle. When p 6= 1
2 , the process has a preoccupation for
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steps with a specific orientation. If p is close to one, the X-process will move 1 7→ 2 7→ 3 7→
1 7→ 2 7→ . . ., if p is close to 0 the X-process will move the other way around. As selftransitions

are not possible, the variable (X0, X1, X2) has only twelve non-zero pointmasses,

1 2 1 p(1− p)/3
1 2 3 p2/3

1 3 1 p(1− p)/3
1 3 2 (1− p)2/3
2 1 2 p(1− p)/3
2 1 3 (1− p)2/3

2 3 1 p2/3

2 3 2 p(1− p)/3
3 1 2 p2/3

3 1 3 p(1− p)/3
3 2 1 (1− p)2/3
3 2 3 p(1− p)/3

The transformation we will consider is f : {1, 2, 3} → {1, 2} given by

f(1) = 1 , f(2) = 2 , f(3) = 2 .

So the Y -process is identical to the X-process, except for the fact that the original states 2 and

3 are collapsed into one superstate, which for simplicity is called 2. The variable (Y0, Y1, Y2)

has five point masses (as 2-2 transitions are now perfectly legal, while 1-1 transitions are still

forbidden),

1 2 1 2p(1− p)/3
1 2 2 p2/3 + (1− p)2/3
2 1 2 p2/3 + 2p(1− p)/3 + (1− p)2/3
2 2 1 p2/3 + (1− p)2/3
2 2 2 2p(1− p)/3

If we stratify this probability table by Y1, we get

Y1 = 1

Y2 = 1 Y2 = 2

Y0 = 1 0 0

Y0 = 2 0 p2/3 + 2p(1− p)/3 + (1− p)2/3

and

Y1 = 2

Y2 = 1 Y2 = 2

Y0 = 1 2p(1− p)/3 p2/3 + (1− p)2/3
Y0 = 2 p2/3 + (1− p)2/3 2p(1− p)/3

There is actually independence in the Y1 = 1 table, even if it is of a somewhat degenerate

form. But there is no independence in the Y1 = 2 table, unless p = 1
2 . ◦
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4.2 The strong Markov property

The Markov property formulates a relationship between the past, the present and the future,

which is to hold for all values of ’the present’, if a process is to be called a Markov chain. At

least it has to hold for all deterministic values. But it turns out time and time again, that

we need the Markov property to hold in extended situations, where the value of ’the present’

is not known in advance, but has a certain stochastic element to it. As an example, we may

consider ’the present’ to be the first time, the process enters a certain subset of X .

To introduce the relevant formalism, we focus on a fixed process X0, X1, . . . with values in

some measurable space (X ,E). The process may or may not be a Markov chain, presently that

is not relevant. The process generates a filtration, a sequence of σ-algebras F0 ⊆ F1 ⊆ . . .

given by

Fn = σ(X0, X1, . . .) for n = 0, 1, 2, . . .

There is also a natural limit algebra F∞, generated by all the variables X0, X1, . . . or - if we

like - generated by the filtration. It may happen that F∞ equals the fundamental σ-algebra

F, but typically this is not the case. All the random variables are of course adapted to the

filtration, meaning that Xn is Fn-measurable for each n.

A random variable τ with values in the countable set N∗0 = {0, 1, 2, . . . ,∞} is called a random

time. A random time is a stopping time with respect to the filtration F0 ⊆ F1 ⊆ . . . if it

satisfies that

(τ = n) ∈ Fn for n = 0, 1, 2, . . .

The stopping time condition means that for each n there is a measurable subset Bn ⊆ Xn+1

such that

(τ = n) =
(

(X0, X1, . . . , Xn) ∈ Bn
)
.

The implication is that we are able to read off from the values of X0, X1, . . . , Xn whether

τ = n or not. By observing the X-process for some time, we know if τ has occurred or not.

Example 4.2.1. The most obvious example of a stopping time is a determinstic time. The

’random variable’ τ = n satisfies the necessary condition, as is easily checked.

The second obvious example is the first hitting time of a set A, as in

τ = inf{n = 0, 1, . . . : Xn ∈ A}

Observing that τ ∧σ and τ ∨σ (minimum and maximum) for two stopping times τ and σ are

themselves stopping times, we can construct a vast number of new stopping times. A typical
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construction would be τ ∧ n for a fixed n. A similar construction would be the first hitting

time for a set A after a given stopping time σ. As in

τ = inf{σ + 1, σ + 2, . . . : Xσ+j ∈ A} .

In Markov chain theory it is customary to discuss both the first hitting time of a set A,

typically denoted by σA, and the first return time of A, typically denoted by τA which is

the first hitting time after time 0. Unless the chain starts in A, the first hitting time and the

first return time to A agree. But when there is a difference, the first return time is usually

the most relevant. ◦

It is in principle allowed that a stopping time τ can obtain the value ∞. In martingale

theory this is not only a sensible convention, but in fact a useful idea, that vastly simplifyes

a number of formulations. But in Markov chain theory, infinite stopping times are a menace,

and we will usually not allow them. We will focus on three types of stopping times: The

bounded stopping times, which never take on values above a certain threshold known to

us, The finite stopping times, which never take on the value ∞, but may take on arbitrarily

large integral values. And the almost surely finite stopping times, which satisfy that

P (τ <∞) = 1 .

We would really like all our stopping times to be finite - but that would exclude the first

hitting times from considerations. Consider the waiting times until head comes up in a coin

tossing experiment. With probability one, head comes up sooner or later. But there is a

formal possibility that head never comes up, and we have to deal with this possibility in our

formalism. We could cut the corresponding nullset out of the background probability space

Ω, to ensure that head always comes up. But if we follow that route, we will have to do

this kind of surgery on the background space whenever we introduce a new stopping time,

and it becomes technically very unpleasant in the long run. It is much neater to allow that

stopping times take on the value ∞ - as long as we sure this only happens on a nullset.

If X0, X1, . . . is a process and τ is a corresponding stopping time, we introduce the symbol

Xτ as the value of the proces at the random time τ . If τ is finite, the formal definition may

be written as

Xτ =

∞∑
n=0

1(τ=n)Xn .

From a strict point of view, this formula only makes sense if X is a vector space. But even

in the general case it is a much more distinct way of expressing the definition than the

case-by-case formula it covers.
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But to a certain extend, the definition of Xτ breaks down if the stopping time can take on

the value ∞ - even if this only happens with probability zero. In order to do something in

that situation, we adopt the convention that whenever we introduce a new measurable space

(X ,E) on which stochastic variables may have values, we equip it with a standard variable

X∗ - on Rn we could let the standard variable have the deterministic value 0. We will assume

that this standard variable is measurable with respect to F∞ but no other details matter.

Having introduced a standard variable, we may then define

Xτ =

∞∑
n=0

1(τ=n)Xn + 1(τ=∞)X
∗ .

If τ assumes the value∞ with positive probability, the choice of standard variable is of course

important for the behaviour of Xτ . But as long as τ is almost surely finite, the invention

of the standard variable is a purely formal gimmick. Observe that Xτ becomes measurable

with respect to F∞:

(Xτ ∈ A) =

∞⋃
n=0

(Xτ ∈ A) ∩ (τ = n) ∪ (Xτ ∈ A) ∩ (τ =∞)

=

∞⋃
n=0

(Xn ∈ A) ∩ (τ = n) ∪ (X∗ ∈ A) ∩ (τ =∞)

The only event in this composition that does not obviously satisfy the relevant measurability

condition is (τ =∞). But the complement (τ <∞) is the union of event of the form (τ = n),

and this establishes measurability.

Corresponding to a stopping time τ , we have a natural notion of ’the past’, namely the

σ-algebra

Fτ = {F ∈ F | F ∩ (τ = n) ∈ Fn for all n = 0, 1, . . .} .

Lemma 4.2.2. Let X0, X1, . . . be a stochastic process, and let τ be an adapted stopping time.

Then the variables τ and Xτ are both Fτ -measurable.

Proof. Trivial manipulations. If we consider the event (τ = k), we have that

(τ = k) ∩ (τ = n) =

{
(τ = n) if k = n

∅ if k 6= n

In both cases we get that (τ = k) ∩ (τ = n) ∈ Fn. And hence (τ = k) ∈ Fτ . This shows the

measurability of τ .

Similarly, if we let A be a measurable subset of X , we have that

(Xτ ∈ A) ∩ (τ = n) = (Xn ∈ A) ∩ (τ = n) ∈ Fn ,
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so (Xτ ∈ A) ∈ Fτ .

Lemma 4.2.3. Let X0, X1, . . . be a stochastic proces, and let τ and σ be two adapted stopping

times. It holds that

σ ≤ τ ⇒ Fσ ⊆ Fτ .

Proof. This is well known.

Lemma 4.2.4. Let X0, X1, . . . be a Markov chain, with corresponding filtration F0 ⊆ F1 ⊆
. . .. If Z and W are two bounded real variables, both Fn-measurable, then it holds that

E(Z | Xn) = E(W | Xn) a.s. ⇒ E(Z | Xn, Xn+1) = E(W | Xn, Xn+1) a.s. .

Proof. This is really a trivial consequence of the Markov property. The future variable Xn+1

is independent of the past algebra Fn, in particular of Z and W , given the present variable

Xn. Referring to the asymmetric formulation of conditional independence in corollary 3.3.8,

we obtain the string of equations

E(Z | Xn, Xn+1) = E(Z | Xn) = E(W | Xn) = E(W | Xn, Xn+1) a.s.

Note the amusing fact that we are somehow using the Markov property backwards in this

proof. The argument can be verbalised as saying that when we are attempting to ’predict

the past’, there is no information in knowing the future - only the present matters.

Lemma 4.2.5. Let X0, X1, . . . be a process, with corresponding filtration F0 ⊆ F1 ⊆ . . ., and

let τ be an adapted stopping time. Let Z be a real valued random variable, measurable with

respect to Fτ . For any n <∞ it holds that 1(τ=n)Z is measurable with respect to Fn.

Proof. We simply observe that for any B ∈ B we have one of two situations, depending on

whether B contains 0 or not:

(
1(τ=n)Z ∈ B

)
=

 (Z ∈ B) ∩ (τ = n) 0 /∈ B

(Z ∈ B) ∩ (τ = n) ∪ (τ 6= n) 0 ∈ B
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Since Z is assumed to be Fτ -measurable, (Z ∈ B) will be an Fτ -set, and so (Z ∈ B)∩(τ = n)

will be an Fn-set. Also the event (τ 6= n) is Fn-measurable - its complement has the relevant

measurability per definition. So in either case
(

1(τ=n)Z ∈ B
)

is in Fn.

Lemma 4.2.6. Let X0, X1, . . . be a process, with corresponding filtration F0 ⊆ F1 ⊆ . . ., and

let τ be an adapted stopping time. For any event F and any n <∞ it holds that

E
(

1(τ=n)P (F | Xτ , τ) | Xn

)
= P

(
F ∩ (τ = n) | Xn

)
a.s (4.4)

Proof. The claim that two conditional expectations with respect to Xn are the same, of

course means that the two random variables integrate to the same thing, when integrated

over σ(Xn)-events. Observe that∫
(Xn∈A)

1(τ=n)P (F | Xτ , τ) dP =

∫
(Xτ∈A,τ=n)

P (F | Xτ , τ) dP

= P
(
F ∩ (Xτ ∈ A, τ = n)

)
,

since the middle integral is oven an σ(Xτ , τ)-event. Similarly it holds that∫
(Xn∈A)

1F∩(τ=n) dP = P
(
F ∩ (Xn ∈ A) ∩ (τ = n)

)
= P

(
F ∩ (Xτ ∈ A, τ = n)

)
.

Note that ( 4.4) may be formulated

E
(
P (F ∩ (τ = n) | Xτ , τ) | Xn

)
= P

(
F ∩ (τ = n) | Xn

)
a.s

since 1(τ=n) is σ(Xτ , τ)-measurable. Hence we see that the statement is really about a double

conditioning situation. The statement remains non-trivial, however, because the σ-algebras

in question, Fn and σ(Xτ , τ), are not nested. In fact, the statement is only true due to the

specific nature of the event F ∩ (τ = n) and its interplay with the two σ-algebras.

Theorem 4.2.7 (Strong Markov property). Let X0, X1, . . . be a Markov chain, with corre-

sponding filtration F0 ⊆ F1 ⊆ . . .. Let τ be an adapted stopping time, and assume that τ is

almost surely finite. Then

Xτ+1 ⊥⊥ Fτ | (τ,Xτ )
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Proof. We prove that for any F ∈ Fτ it holds that

P (F | Xτ , Xτ+1, τ) = P (F | Xτ , τ) a.s (4.5)

which is another way of formulating the the-future-is-irrelvant-for-predicting-the-past phe-

nomenon, we have previously encountered. The right hand side of (4.5) clearly has the

measurability properties to be a version of the left hand side, so we only need to check that

it has the right integrals over σ(Xτ , Xτ+1, τ)-events. For finite n we see that∫
(τ=n,Xτ∈A,Xτ+1∈B)

P (F | Xτ , τ) dP =

∫
(Xn∈A,Xn+1∈B)

1(τ=n)P (F | Xτ , τ) dP

Combining the lemmas, we see that we can replace the integrand by 1(τ=n)∩F to obtain∫
(τ=n,Xτ∈A,Xτ+1∈B)

P (F | Xτ , τ) dP = P
(

(Xn ∈ A,Xn+1 ∈ B, τ = n) ∩ F
)

= P
(

(Xτ ∈ A,Xτ+1 ∈ B) ∩ (τ = n) ∩ F
)

It is trivially true that∫
(τ=∞,Xτ∈A,Xτ+1∈B)

P (F | Xτ , τ) dP = P
(

(Xτ ∈ A,Xτ+1 ∈ B) ∩ (τ =∞) ∩ F
)

since both sides are zero, due to the assumption that τ is almost surely finite. The events of

the form (τ = n,Xτ ∈ A,Xτ+1 ∈ B) (including the events with n = ∞)) form a generator

for σ(Xτ , Xτ+1, τ), stable under the formation of intersections. And hence it follows that∫
G

P (F | Xτ , τ) dP = P (G ∩ F ) for all G ∈ F(Xτ , Xτ+1, τ) .

That is, we have established (4.5).

This ’strong Markov property’ is slightly weaker than we would have liked. The immediate

future only becomes independent of the past given the present if ’the present’ includes a

glance at the clock. One can construct examples which shows that in general the information

of the random time cannot be dispensed of, see example 4.2.8. But in the next section we

will go hunting for a condition, where all times look the same, and where there is no essential

information in knowing the value of τ . In that framework we will be able to strengthen

the conclusion in theorem 4.2.7 to obtain what is generally perceived as the strong Markov

property in the literature.

Example 4.2.8. Consider an asymmetric random walk on three points with a direction
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which oscillates back and forth. The one-step transition matrices are

P2n−1 =

 0 p q

q 0 p

p q 0

 , P2n =

 0 q p

p 0 q

q p 0


where p+ q = 1. As starting distribution, we can take the equidistribution on state 2 and 3.

As stopping time we take the first hitting time of state 1. In that case Xτ = 1 almost surely,

and so there is no information contained in that variable.

If Xτ+1 ⊥⊥ Fτ | Xτ , this triviality implies that Xτ+1 is unconditionally independent of Fτ .

And as τ is Fτ -measurable, it in fact implies that Xτ+1 is independent of τ . This is clearly

false, because the conditional distribution of Xτ+1 given τ will depend rather drastically on

whether τ is odd or even - unless of course p = 1
2 .

The example demonstrates that we can not in all cases strengthen the general strong Markov

property Xτ+1 ⊥⊥ Fτ | (τ,Xτ ) to the simpler and perhaps more attractive statement Xτ+1 ⊥
⊥ Fτ | Xτ . ◦

4.3 Homogeneity

Virtually every single Markov chain we will consider, will have a further simplifying property

called time homogeneity.

As it was shown in Theorem 4.1.3 the distribution of a Markov chain is given by the sequence

of one-step transition probabilities and the initial distribution. The one-step probabilities is a

sequence of kernels (Pn,x)x∈X , where the n’th kernel is a version of the conditional distribution

of Xn+1 given Xn. There is a certain amount of choice involved in these kernels, and maybe

it is possible to adjust these choices, so that a single Markov kernel can be used as the one-

step transition kernel in every step. In that case we call the chain time homogeneous, and

write

P
D
= Xn+1 | Xn for n = 0, 1, 2, . . .

Spelled out, the condition is that there is one Markov kernel that satisfies

P (Xn ∈ A,Xn+1 ∈ B) =

∫
A

Px(B) dXn(P )(x) for all A,B and n .

Many Markov chains present themselves to us in a form, where the time homogeneity is
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obvious. But if it is not obvious, time homogeneity is almost impossible to establish: there

are many ways to pick the various 1-step transition kernels, and if these are not picked with

the purpose of being equal, then they will surely differ.

The obvious example exhibiting the problems is the random walk, with symmetric ±1 incre-

ments. It is a time homogenous Markov chain with transition matrix

pnm =


1
2 if m = n+ 1

1
2 if m = n− 1

0 otherwise

This is the obvious transition matrix that everybody will write down - before they start

thinking. But if we somehow miss that, and just start calculating, there are lots of other

choices. Usually we insist that the random walk starts in 0. If that is the case, the transition

matrix for the time 2 to time 3 transition is only uniquely given from the states −2, 0 and

2. Similarly, the transition matrix for the time 3 to time 4 transition is only uniquely given

from the states −3, −1, 1 and 3. Transitions from all other states are not determined at all.

So if we pick the transition matrices one by one, it is quite unlikely that we will pick the

same every time, unless we have some principle to guide us.

The reason why so many chains are blatantly time homogeneous, is because they arise via

time homogeneous update schemes. That is, an update scheme of the form

Xn+1 = φ(Xn, Yn+1)

where Y1, Y2, . . . are independent and identically distributed. The error distribution does

not vary with time, and the update function does not vary with time, hence the one-step

transition probabilities do not vary with time.

In the opposite direction, it is also clear that if (X0, X1, . . .) is a Markov chain where all the

one-step transitions kernels are the same, then there is an update scheme of the above sort

generating the process.

The examples we gave of Markov chains with specified update schemes were all of this time

homogeneous form. Actually, time-varying update schemes virtually never appears in ap-

plications. With one notable exception: simulated annealing which is an optimisation

algorithm based on Markov chains.

However, for processes constructed on top of other processes, neither the Markov structure

nor the time homogeneity may be immediately visible. We have shown that we may examine
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the Markov property from first principles - but the random walk example above shows that

we have to be very careful when we check for time homogeneity. We adopt the following

slightly weaker definition:

Definition 4.3.1. A Markov chain X0, X1, . . . is weakly time homogeneous is

Xτ+1 ⊥⊥ τ | Xτ

for every adapted, almost surely finite stopping time τ .

This definition undoubtedly looks confusing. There is a nice linguistic catch in that homo-

geneity with this definition reflects that something is ’independent of time’ in a stochastic

sense. But apart from that, the definition may seem arbitrary. However, the definitions has

its merits, as we shall see. And at least for Markov chains on finite spaces, it is possible to

prove that weak time homogeneity implies strict homogeneity, as defined in terms of constant

one-step transition kernels or constant update schemes.

In order to show an equivalent definition of weak homogeneity, we need the following technical

results

Theorem 4.3.2. Let X and Y be two random variables, with values in the same space

(X ,E). For any event A and any α > 0 it holds that

P
(∣∣∣P (A | X)− P (A | Y )

∣∣∣ > α
)
≤ 16P (X 6= Y )

α
.

Proof. The key technical result we will have to prove is that∣∣∣∣∫
D

P (A | X) dP − P (A ∩D)

∣∣∣∣ ≤ 2P (X 6= Y ) , (4.6)

for any event D ∈ σ(X,Y ). If we have this inequality at our disposal, we can use it on the

event

D+ =
(
P (A | X)− P (A | X,Y ) > α

)
which is σ(X,Y )-measurable, to obtain that

αP (D+) ≤
∫
D+

P (A | X)− P (A | X,Y ) dP =

∫
D+

P (A | X) dP − P (A ∩D+)

≤ 2P (X 6= Y ) .
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Using a similar argument in the other tail, we obtain that

P
(∣∣∣P (A | X)− P (A | X,Y )

∣∣∣ > α
)
≤ 4P (X 6= Y )

α
.

And observing that the event (∣∣∣P (A | X)− P (A | Y )
∣∣∣ > α

)
is a subset of(∣∣∣P (A | X)− P (A | X,Y )

∣∣∣ > α

2

)
∪

(∣∣∣P (A | Y )− P (A | X,Y )
∣∣∣ > α

2

)
the theorem is established.

To show (4.6), take D ∈ σ(X,Y ). We can assume that D = ((X,Y ) ∈ B) for some set

B ∈ E⊗ E. Let

D∗ = ((X,X) ∈ B) .

Clearly D∗ is σ(X)-measurable, and

(D4D∗) ⊆ (X 6= Y ) ,

where we have used the notation A4B = A∪B \A∩B = A \B ∪B \A. Now we have that∣∣∣∣∫
D

P (A | X) dP − P (A ∩D)

∣∣∣∣
≤
∣∣∣∣∫
D

P (A | X) dP −
∫
D∗

P (A | X) dP

∣∣∣∣+ |P (A ∩D∗)− P (A ∩D)|

≤ 2P (D \D∗) + 2P (D∗ \D)

as desired. Here we have used that the integrand P (A | X) is bounded by 1.

Corollary 4.3.3. Let X,X1, X2, . . . be a sequence of random variables. If

P (Xn = X)→ 1 for n→∞ ,

it holds for any event A that

P (A | Xn)
P→ P (A | X) .

Proof. It follows directly from theorem 4.3.2 that for any α > 0,

P
(∣∣∣P (A | Xn)− P (A | X)

∣∣∣ > α
)
≤ 16P (Xn 6= X)

α
→ 0 for n→∞ ,

which establishes convergence in probability.
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Now we can prove

Theorem 4.3.4. If a Markov chain X0, X1, . . . satisfies that

Xτ+1 ⊥⊥ τ | Xτ (4.7)

for every bounded adapted stopping time τ , it is weakly time homogenous.

Proof. Let τ be an adapted and almost surely finite stopping time. Consider the event

(τ = k), and let us first discuss the finite case, where k < ∞. Pick N so large that k < N ,

and consider the stopping time τ ∧N . Clearly (τ = k) = (τ ∧N = k). Using (4.7) on τ ∧N ,

we obtain that

P (τ = k | X(τ∧N)+1, Xτ∧N ) = P (τ ∧N = k | X(τ∧N)+1, Xτ∧N )

= P (τ ∧N = k | Xτ∧N )

= P (τ = k | Xτ∧N ) a.s.

Letting N tend to infinity, we see that

P (Xτ∧N = Xτ )→ 1 , P
(

(X(τ∧N)+1, Xτ∧N ) = (Xτ+1, Xτ )
)
→ 1 ,

simply because P (τ ∧ N = τ) = P (τ ≤ N) → 1 for N → ∞. By corollary 4.3.3 it follows

that

P (τ = k | Xτ+1, Xτ ) = P (τ = k | Xτ ) a.s.

To finish the proof, we have to consider the case k = ∞ as well. But as τ is almost surely

finite,

P (τ =∞ | Xτ+1, Xτ ) = 0 = P (τ =∞ | Xτ ) a.s.

and we are done.

Theorem 4.3.5. A time homogeneous Markov chain X0, X1, . . . is weakly time homogeneous.

Proof. We may assume that the Markov chain has update form,

Xn+1 = φ(Xn, Un+1)

for some fixed map φ, and a sequence of independent, standard uniformly distributed real

stochastic variables U1, U2, . . .. Let τ be a finite stopping time. Then

Xτ+1 =

∞∑
n=0

1(τ=n)Xn+1 =

∞∑
n=0

1(τ=n)φ(Xn, Un+1) = φ(Xτ , Ũ) (4.8)
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where we have introduced the variable

Ũ =

∞∑
n=0

1(τ=n)Un+1 .

Take an event F ∈ Fτ . Then it holds that

P
(

(Ũ ∈ A) ∩ F
)

=

∞∑
n=0

P
(

(Ũ ∈ A) ∩ F ∩ (τ = n)
)

=

∞∑
n=0

P
(

(Un+1 ∈ A) ∩ F ∩ (τ = n)
)
.

Using that F ∩ (τ = n) is Fn-measurable, and that Un+1 is independent of Fn, as this algebra

is contained in σ(X0, U1, . . . , Un), we get that

P
(

(Ũ ∈ A) ∩ F
)

=

∞∑
n=0

P
(
Un+1 ∈ A

)
P
(
F ∩ (τ = n)

)
= P

(
U1 ∈ A

) ∞∑
n=0

P
(
F ∩ (τ = n)

)
= P (U1 ∈ A) P (F ) .

We can draw two consequences: For one thing, Ũ is standard uniformly distributed. But

more important: we see that

Ũ ⊥⊥ Fτ .

Observing that Xτ is Fτ -measurable, we may float information to the (trivial) conditioning

side, and obtain that

Ũ ⊥⊥ Fτ | Xτ .

We may float information back, and obtain

(Ũ ,Xτ ) ⊥⊥ Fτ | Xτ .

As Xτ+1 according to (4.8) is σ(Xτ , Ũ)-measurable, and ad τ is Fτ -measurable, it follows by

reduction that

Xτ+1 ⊥⊥ τ | Xτ ,

as desired.

A nice consequence of the proof is that the conditional distribution of Xτ+1 given Xτ is

simply the same as the common conditional distribution of Xn+1 given Xn, since it follows

the same update rule with an error variable that is standard uniformly distributed.
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Theorem 4.3.6 (Strong Markov property). Let X0, X1, . . . be a Markov chain, with corre-

sponding filtration F0 ⊆ F1 ⊆ . . .. Let τ be an adapted stopping time, and assume that τ is

almost surely finite. If the chain is weakly time homogeneous, then

Xτ+1 ⊥⊥ Fτ | Xτ

Proof. We combine weak homogeneity and theorem 4.2.7 via theorem 3.4.3, the result drops

out for free.

This version of the strong Markov property is perhaps the key property of time homogeneous

Markov chains in any formulation.

Corollary 4.3.7. Let X0, X1, . . . be a Markov chain, with corresponding filtration F0 ⊆ F1 ⊆
. . .. Let τ be an adapted stopping time, and assume that τ is almost surely finite. If the chain

is weakly time homogeneous, then

(Xτ+1, Xτ+2, . . .) ⊥⊥ Fτ | Xτ (4.9)

Proof. We show by an induction argument that

(Xτ+1, Xτ+2, . . . , Xτ+k) ⊥⊥ Fτ | Xτ (4.10)

for all values of k. The crux of the matter is that σ = τ + k is a stopping time. Hence

Xτ+k+1 ⊥⊥ Fτ+k | Xτ+k

As the variables Xτ , Xτ+1, . . . , Xτ+k are all Fτ+k-measurable, we can shift them to the

conditiong algebra, and obtain

Xτ+k+1 ⊥⊥ Fτ+k | (Xτ , Xτ+1, . . . , Xτ+k)

As τ + k ≥ τ we see that Fτ ⊆ Fτ+k, so by reduction it follows that

Xτ+k+1 ⊥⊥ Fτ | (Xτ , Xτ+1, . . . , Xτ+k)

Combining with the inductive hypothesis (4.10) we obtain via theorem 3.4.3 that

(Xτ+1, Xτ+2, . . . , Xτ+k+1) ⊥⊥ Fτ | Xτ

as desired.
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Example 4.3.8. Let X0, X1, . . . be a weakly time homogeneous Markov chain with values

in X , let x ∈ X be a specified state, and let τ be an almost surely finite stopping time with

the property that Xτ = x almost surely.

The obvious example where such a phenomenon occurs, is the case where X is finite, and

where τ is the first (or the second or the k’the) hitting time for the state x. A slight amount

of work will usually establish that τ is almost surely finite - though it need not always be the

case, the reader is reminded of concepts like ’transience’ and ’recurrence’, that play important

roles in the study of discrete (and as it turns out, also of general) Markov chains.

If we have such a situation where Xτ is constant, σ(Xτ ) is a trivial algebra. Hence conditional

independence given Xτ is the same as unconditional independence, and the strong Markov

property thus implies that

Xτ+1, Xτ+1, . . . ⊥⊥ Fτ .

This phenomenon is called regeneration - the future is independent of the past in such a

time point. The importance of regeneration can not be overestimated. To a large extend,

analysis of the asymptotic behaviour of Markov chains is analysis of regeneration.

To understand why regeneration is so important, assume that τ1 < τ2 < . . . is an increasing

sequence of almost surely finite regenerations time points, for instance the first, the second,

the third, . . . hitting time of a specified state. Let f : X → R be a bounded measurable

function. Then the excursions

τ2∑
n=τ1+1

f(Xn) ,

τ3∑
n=τ2+1

f(Xn) ,

τ4∑
n=τ3+1

f(Xn) , . . .

are independent random variables. Say, the the third is independent of the two former since

it is given by the τ3-future, while the two former are given by the τ3-past. In most cases these

variables are also identically distributed and have finite mean. And this gives the asymptotic

result that

1

k

τk∑
n=0

f(Xn) =
1

k

τ1∑
n=1

f(Xn) +
1

k

k−1∑
`=1

τ`+1∑
n=τ`+1

f(Xn)

will converge almost surely to the mean of an individual excursion. A law of large number

can be established from this observation, combined with the so called renewal theorem, which

control the behaviour of the regeneration time points.

Also central limit theorems for Markov chains, and indeed laws of iterated logarithm, can be

obtained from the decomposition of the chain into iid. excursions. ◦
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Example 4.3.9. Let Y1, Y2, . . . be iid. stochastic variables with values in N. They are

interpreted as waiting times between events. The events themselves occur at times

Sn =

n∑
i=1

Yi for n = 0, 1, . . .

(though the event at time 0 is probably fake - it is purely conventional). We are interested

in the associated forward recurrence time chain

Vn = inf{Sk − n : Sk > n} for n = 0, 1, . . .

and we intend to prove that this is a Markovian.

The key argument is an application of the strong Markov property of the underlying random

walk S0, S1, . . ., which of course is a time homogeneous Markov chain. For a given time point

n we can define a random time

τ = inf{m ∈ N : Sm > n} .

This is clearly a stopping with respect to the filtration generated by S0, S1, . . .. As each

waiting time Yi is at least 1, we see that τ ≤ n+ 1 - so τ is in fact a bounded stopping time.

Hence the strong Markov property shows that

(Sτ , Sτ+1, . . .) ⊥⊥ Fτ | Sτ .

But note that

Vn = Sτ − n , (4.11)

So the σ-algebra generated by Vn is the same as the σ-algebra generated by Sτ , and we have

that

(Sτ , Sτ+1, . . .) ⊥⊥ Fτ | Vn .

Hence the Markov property for the forward recurrence time chain will follow by reduction,

if we can show that V0, V1, . . . and Vn−1 are measurable with respect to Fτ , and if Vn+1 is

measurable with respect to σ(Sτ , Sτ+1, . . .).

The past is easily dealt with. If we consider some k = 0, 1, . . . , n− 1, there is an associated

stopping time

σ = inf{m ∈ N : Sm > k} ,

Similarly to (4.11) we have that Vk = Sσ. As σ ≤ τ , it follows that Fσ ⊆ Fτ , and as Sσ is

Fσ-measurable, it follows that Vk is Fτ -measurable as desired.
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The future requires slightly more care. There are two cases, corresponding to whether an

event occurs at time n+1 or not. That is corresponding to whether Sτ = n+1 or Sτ > n+1.

In the latter case we will see the same event, looking forward from time n and n + 1. But

if there is an event at time n+ 1, this is the event we will see looking forward from time n,

while we will see the next event when looking forward from time n + 1. That event will be

Sτ+1. Combining these observations, we get

Vn+1 =

 Sτ − (n− 1) if Sτ > n+ 1

Sτ+1 − (n+ 1) if Sτ = n+ 1

It is evident from this formula, that Vn+1 is measurable with respect to σ(Sτ , Sτ+1). And so

the much more, it is measurable with respect to σ(Sτ , Sτ+1, . . .). ◦

4.4 An integration formula for a homogeneous Markov

chain

Assume that X0, X1, X2, . . . is a time homogeneous Markov chain. Let (Px)x∈X be the

transition probability, and let µ be the distribution of X0. Recall from the considerations

before Theorem 4.1.3 that we derived an expression for the distribution of (X0, . . . , Xn)

P (X0 ∈ A0, . . . , Xn ∈ An)

=

∫
A0

∫
A1

. . .

∫
An−1

Pxn−1(An) dPxn−2(xn−1) . . . dPx0(x1) dX0(P )(x0)

Note that this could be written as∫
A0

Pnx (A1 × · · · ×An) dX0(P )(x) ,

where Pnx is given by the integrals

Pnx (A1 × · · · ×An)

=

∫
A1

. . .

∫
An−1

Pxn−1
(An) dPxn−2

(xn−1) . . . dPx(x1)

It is easily seen that (Pnx )x∈X is a Markov kernel (on (Xn,En)). So we have

Theorem 4.4.1. Let X0, X1, X2, . . . be a time homogeneous Markov chain with one-step

probabilities P . Then for all n ∈ N

(X1, . . . , Xn) | X0
D
= Pn
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Observe that if X0 ≡ x (similar to saying that X0(P ) = δx) then we have that

P ((X1, . . . , Xn) ∈ B) =

∫
Pny dX0(P )(y) = Pnx (B) ,

so we can interpret Pnx to be the marginal distribution of (X1, . . . , Xn) if the chain is started

deterministically in x. Equivalently this can be expressed as Pnx = Pnδx . This interpretation

is very useful.

Since (Px)x∈X is the conditional distribution of Xn+1 given Xn for all n ∈ N we almost

immediately obtain

Theorem 4.4.2. Let X0, X1, X2, . . . be a time homogeneous Markov chain with one-step

probabilities P . Then for all n ∈ N

(Xk+1, . . . , Xk+n) | Xk
D
= Pn for all k ∈ N

Proof. Simply write

P (Xk ∈ Ak, . . . , Xk+n ∈ Ak+n)

=

∫
Ak

∫
Ak+1

. . .

∫
Ak+n−1

Pxk+n−1
(Ak+n) dPxk+n−2

(xk+n−1) . . . dPxk(xk+1) dXk(P )(xk)

=

∫
Ak

Pnx (Ak+1 × · · · ×Ak+n) dXk(P )(x)

which shows the result.

4.5 The Chapmann-Kolmogorov equations

In this section, we will be discussing a number of Markov kernels on a fixed space (X ,E).

They will be denoted by generic symbols like P , Q and R. To be specific, when we write

Q, we are talking about an (X ,E)-Markov kernel on (X ,E), which in all its glory could be

spelled out as (Qx)x∈X.

Definition 4.5.1. We define the composition of two Markov kernels P and Q on X as the

new Markov kernel P ∗Q, given by

(P ∗Q)x(A) =

∫
Py(A) dQx(y) for all A ∈ E, x ∈ X .



4.5 The Chapmann-Kolmogorov equations 101

Of course it has to be checked that P ∗ Q really is a new Markov kernel, but that presents

no difficulty. We could extend the definition to composition of kernels on different spaces: if

Q is an X -kernel on Y, and P is a Y-kernel on Z, then P ∗ Q given by the above formula,

is an X -kernel on Z. A certain amount of bookkeeping has to be developed in order to keep

track on where the various kernels live, and we will not pursue this matter.

Lemma 4.5.2. If P and Q are two Markov kernels on X , then∫
f(z) d(P ∗Q)x(z) =

∫∫
f(z) dPy(z) dQx(y) ,

at least for all non-negative measurable functions f : X → R, and all bounded, measurable

functions.

Proof. An application of the extended Tonelli/Fubini theorem. Note that by definition, the

integral formula is true for indicators f(x) = 1A(x).

Lemma 4.5.3. Let X, Y and Z be random variables with values in (X ,E). Suppose

1) Q is the conditional distribution of Y given X,

2) P is the conditional distribution of Z given Y ,

3) X ⊥⊥ Z | Y .

Then P ∗Q is the conditional distribution of Z given X.

Proof. A simple computation. Observe that the conditional independence gives that the

conditional distribution of Z given (X,Y ) is the Markov kernel (x, y) 7→ Py. Hence

P (X ∈ A,Z ∈ C) = P (X ∈ A, Y ∈ X , Z ∈ C) =

∫
A×X

Py(C) d(X,Y )(P )(x, y)

=

∫
A

∫
Py(C) dQx(y) dX(P )(x)

=

∫
A

(P ∗Q)x(C) dX(P )(x)

Lemma 4.5.3 makes it evident that compositon of Markov kernels is not commutative. In

general, P ∗Q 6= Q ∗ P . But other simple properties hold:
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Lemma 4.5.4. Composition of Markov kernels on (X ,E) is associative. That is, if P , Q

and R are three Markov kernels, then(
P ∗Q

)
∗R = P ∗

(
Q ∗R

)
.

Proof. For any x ∈ X and A ∈ E we have((
P ∗Q

)
∗R
)
x

(A) =

∫
(P ∗Q)y(A) dRx(y) =

∫ ∫
Pz(A) dQy(z) dRx(y)

=

∫
Pz(A) d(Q ∗R)x(z) =

(
P ∗

(
Q ∗R

))
x

(A) .

The associativity lets us interpret long composition of Markov kernels without ambiguity -

it does not really matter in which order, the compositions are carried out. In particular we

can define powers of a Markov chain,

P ∗n = P ∗ P ∗ . . . ∗ P︸ ︷︷ ︸
n factors

without worrying about if the compositions should be carried out from left to right or from

right to left or from the middle and out. And we have immediately formulas like

P ∗ (n+m) = P ∗n ∗ P ∗m . (4.12)

We may even extend the notion of power to a ’power of zero’, if we define P ∗ 0 as the trivial

Markov kernel, consisting of a onepoint measure in each point

P ∗0x = δx

With this extension (4.12) holds for all n,m ≥ 0.

Suppose now that X0, X1, . . . is a Markov chain on (X ,E). Suppose it is time homogeneous

in the classical sense: there is a single Markov kernel P that can act as one-step transition

probability from time n to time n+ 1 for all values of n. Symbolically written:

P
D
= Xn+1 | Xn for n = 0, 1, 2, . . .

In this scenario we are able to write the entire transition structure of the chain in terms of

composition powers of P . We obtain formulae like

P ∗k
D
= Xn+k | Xn for n, k = 0, 1, 2, . . . , (4.13)
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A formal proof of this statement is based on lemma 4.5.3, and proceeds via induction on

k - the details are left to the reader. A combined use of (4.12) and (4.13) is prototypical

in Markov chain theory, and is usually referred to as a use of the Chapman-Kolmogorov

equations. You could say that the Chapman-Kolmogorov equations are not really equations,

but a principle, that combines the power formula (4.12) (which is a trivial consequence of

the associativity of composition of Markov kernels) with the interpretation of the kernels

in the formula as specific conditional distributions. As in ’we can compute the conditional

distribution of Xn+k+m given Xn by finding the conditional distribution of Xn+k given Xn

and the conditional distribution of Xn+k+m give Xn+k and combine them via composition’.

Example 4.5.5. Let X0, X1, X2, . . . be a time homogeneous Markov chain with one-step

transition probability P . For a fixed k > 0, the process X0, Xk, X2k, X3k, . . . is called the

k-skeleton of the original chain. This is itself a Markov chain, as the original chain satisfies

the Markov property

X0, X1, . . . , Xnk−1 ⊥⊥ Xnk+1, Xnk+2, . . . | Xnk

and this can be reduced to

X0, Xk, . . . , X(n−1)k ⊥⊥ X(n+1)k | Xnk .

Note also that the k-skeleton chain is time homogenous with one-step transition probaility

P̂ k as follows from the Chapman-Kolmogorov equations. ◦

4.6 Stationary distributions

Recall that a process X0, X1, X2, . . . is called stationary, if

(X1, X2, X3, . . .)
D
= (X0, X1, X2, . . .)

and that we have the very useful result

Theorem 4.6.1. A stochastic process X0, X1, X2, . . . is stationary if and only if

(X1, X2, . . . , Xn+1)
D
= (X0, X1, . . . , Xn)

for all n ∈ N.

Recall that for a Markov chain X0, X1, . . . with transition probability (Px) and initial distri-

bution µ, we find the marginal distribution of X1 as

P (X1 ∈ A) = P (X0 ∈ X , X1 ∈ A) =

∫
Px(A) dX0(P )(x) =

∫
Px(A) dµ(x)
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We have the following extremely simple condition for stationarity saying that it is only need

that X0 and X1 has the same distribution

Theorem 4.6.2. assume that X0, X1, X2, . . . is a time homogeneous Markov chain with one-

step transition probability P and initial distribution µ = X0(P ). Then the Markov chain is

stationary, if

µ(A) =

∫
Px(A) dµ(x) (4.14)

for all A ∈ E.

Proof. We can express the distribution of (X0, . . . , Xn) as follows when using that Pn is the

conditional distribution of (X1, . . . , Xn) given X0

P (X0 ∈ A0, . . . , Xn ∈ An) =

∫
A0

Pnx (A1 × · · ·An) dX0(P )(x)

Using that Pn is also the conditional distribution of (X2, . . . , Xn+1) given X1 we obtain that

the distribution of (X1, . . . , Xn+1) is given by

P ((X1 ∈ A0, . . . , Xn+1 ∈ An) =

∫
A0

Pnx (A1 × · · ·An) dX1(P )(x)

From this we see, that the process will be stationary, if X0(P ) = X1(P ), which is similar to

(4.14). That ”only if” holds follows from letting n = 1 in Theorem 4.6.1, which gives that

X0
D
= X1

is a necessity for stationarity.

4.7 Exercises

Exercise 4.1. Assume that X0, X1, X2, . . . is a Markov chain. Show that also X0, X2, X4, . . .

is a Markov chain (Hint). ◦

Exercise 4.2. Consider the one–dimensional AR(1)–process

Xn+1 = ρXn + εn+1 ,

where all ε1, ε2, . . . are iid with a N (0, 1) distribution. Assume that X0 is independent of all

the ε’s.
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(1) Find the conditional distribution of Xn+1 given Xn for all n ∈ N0

(2) Assume that |ρ| < 1, and assume that X0 has a N (0, σ2) distribution. Find σ2 such

that all Xn has the same distribution as X0. Is this possible, if |ρ| ≤ 1?

◦

Exercise 4.3. In general a renewal process (as defined in Example 4.1.14) does not have the

Markov property. In this exercise we shall see an example, where the ”memoryless property”

of a geometric distribution actually makes a renewal process Markovian.

Let Z1, Z2, . . . be independent and identically distributed Bernoulli variables with success

probability p ∈ (0, 1):

P (Zn = 1) = p P (Zn = 0)1− p

Define the associated random walk

Mn =

n∑
k=1

Zk

for n = 0, 1, 2, . . ..

(1) Argue that M0,M1, . . . is a Markov chain.

Let (Fn)n∈N0
be the corresponding filtration:

Fn = σ(M0, . . . ,Mn)

Also define the random times

Tn = inf{m ∈ N0 : Mm ≥ n}

for n = 0, 1, 2, . . ..

(2) Show that each Tn is a stopping time with respect to the filtration (Fn)n∈N0
.

(3) Show that each Tn is almost surely finite (Hint).

(4) Argue that T0 < T1 < T2 < · · · (not a deep result:-)).

Now define the ”waiting times”

Yn = Tn − Tn−1

for n = 1, 2, . . ..
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(5) Show that the sequence Y1, Y2, . . . are independent and identically distributed with

common distribution

P (Yn = k) = (1− p)k−1p for k = 1, 2, . . . (4.15)

(Hint).

(6) Define N0, N1, N2, . . . to be the renewal process generated by Y1, Y2, . . .: Let

Sn =

n∑
k=1

Yk

and define

Nn = sup{k : Sk ≤ n}

Show that Nn = Mn for all n = 0, 1, 2, . . . (Hint).

(7) Collect the results from (1)-(5) to a proof of the general statement: If Y1, Y2, . . . are in-

dependent and identically distributed with distribution as in (4.15), then the associated

renewal process is a Markov chain.

◦

Exercise 4.4. Assume that X0, X1, X2, . . . is a Markov chain. Assume that τ is an almost

surely finite stopping time.

(1) Show that τ + k is a stopping time for each k ∈ N (Hint).

(2) Show that σ(τ) = σ(τ + k) for each k ∈ N.

(3) Show that the sequence (Xτ+k, τ + k)k∈N0
is a Markov chain (Hint).

◦

Exercise 4.5. Assume that X0, X1, X2, . . . is a time homogeneous Markov chain with values

in (X ,E). Assume that τ is an almost surely finite stopping time.

(1) Show that the sequence Xτ , Xτ+1, Xτ+2, . . . is a Markov chain (Hint).

(2) Show that the Markov chain is time homogeneous with

Xτ+k+1 | Xτ+k
D
= Xk+1 | Xk

(Hint).
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Now assume that X0 = x for some x ∈ X . Furthermore let

τ = inf{n ≥ 1 : Xn = x}

and assume that P (τ <∞) = 1.

(3) Argue that X0, X1, X2, . . . and Xτ , Xτ+1, Xτ+2 have the same distribution.

Define

Nx =

∞∑
n=1

1(Xn=x)

(4) Show that P (Nx =∞) = 1.

◦

Exercise 4.6. Assume that (X1
0 , X

1
1 , X

1
2 , . . .) and (X2

0 , X
2
1 , X

2
2 , . . .) are two independent

time homogeneous Markov chains on (X ,E) with the same transition probabilities (Px)x∈X .

Let

τ = inf{n ∈ N0 : X1
n = X2

n}

and assume that P (τ <∞) = 1.

(1) Show that τ is a stopping time with respect to the (filtration generated by) the process

(X1
n, X

2
n)n∈N0

.

Define the process X0, X1, X2, . . . by

Xn =

{
X1
n n ≤ τ

X2
n n > τ

We can assume that the two Markov chains have the same update scheme:

X1
n+1 = φ(X1

n, U
1
n+1)

X2
n+1 = φ(X2

n, U
2
n+1)

where all U1
1 , U

1
2 , . . . , U

2
1 , U

2
2 , . . . are iid uniformly distributed. Define the new sequence

U1, U2, . . . by

Un = U1
n · 1(τ≥n) + U2

n · 1(τ<n)
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(2) Show that U1, U2, . . . are iid following the uniform distribution (Hint).

(3) Show that X0, X1, X2, . . . is a time homogeneous Markov chain with transition proba-

bilities (Px)x∈X (Hint).

◦

Exercise 4.7. Assume that X0X1, X2, . . . is a time homogeneous Markov chain on (X ,E).

Let A be some measurable subset of X and define the first hitting time of A by

τA = inf{n ∈ N0 : Xn ∈ A}

Define σB to be the first time the process hits the set B after time τA

σB = inf{n > τA : Xn ∈ B}

(1) Show that

XσB ⊥⊥ FτA | XτA

(Hint).

Now let the set A be fixed and define the sequence of stopping times τ1 < τ2 < . . . by

τ1 = τA

and recursively

τn+1 = inf{n > τn : Xn ∈ A}

(2) Show that Xτ1 , Xτ2 , . . . is a Markov chain.

(3) Show that Xτ1 , Xτ2 , . . . is time homogeneous (Hint).

◦

Exercise 4.8. Assume that X0, X1, X2, . . . is a time homogeneous Markov chain with tran-

sition probabilities (Px)x∈X . Let τ be a first hitting time

τ = inf{n ∈ N0 : Xn ∈ A}

for some measurable set A ⊆ X . Define the process Y0, Y1, Y2, . . . by

Yn = Xτ∧n

for all n ∈ N0.
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(1) Show that Y0, Y1, Y2, . . . is a Markov chain (Hint).

(2) Show that Y0, Y1, Y2, . . . is time homogeneous and find the transition probabilities

(Hint).

◦
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Chapter 5

Ergodic theory for Markov

chains on general state spaces

Consider a stochastic process X0, X1, X2, . . . with values in some measurable space (X ,E).

Then we are often interested in knowing, when empirical means like

1

n

n−1∑
k=0

f(Xk, Xk+1, Xk+2, . . .)

converges, where f : X∞ → R is some measurable function defined on the sequence space

X∞.

A well known simple result is the Strong Law of Large Numbers:

Theorem 5.0.1. Assume that X0, X1, X2, . . . are independent and identically distributed.

Assume that f : X → R is a measurable function such that E|f(X0)| <∞. Then

1

n

n−1∑
k=0

f(Xk)→ Ef(X0) a.s.

as n→∞.

A much more general result is The Ergodic Theorem. To formulate that result, we need to

recall some definitions from the course VidSand1.
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Let in the following X0, X1, X2, . . . be a stochastic process with values in (X ,E). Let P
be the distribution of the sequence (X0, X1, X2, . . .) – hence it is a probability measure on

(X∞,E∞). Let S : X∞ → X∞ be the shift

S(x0, x1, x2, . . .) = (x1, x2, x3, . . .)

Note that X0, X1, X2, . . . is stationary, if

(X0, X1, X2, . . .)
D
= S(X0, X1, X2, . . .)

We define the invariant σ–algebra for S by

I = {A ∈ E∞ : S−1(A) = A}

Definition 5.0.2. A stationary process X0, X1, X2, . . . with distribution P is called ergodic

if

P(A) ∈ {0, 1}

for all A ∈ I.

For ergodic processes we have the Ergodic Theorem

Theorem 5.0.3 (Ergodic theorem). Let X0, X1, X2, . . . be a stationary and ergodic process,

and let f : X∞ → R be a measurable map, such that

E|f(X0, X1, X2, . . .)| <∞ .

Then
1

n

n−1∑
k=0

f(Xk, Xk+1, Xk+2, . . .)→ Ef(X0, X1, X2, . . .) a.s.

as n→∞.

Note: The limit can be written as

Ef(X0, X1, X2, . . .) =

∫
f(x0, x1, x2, . . .) dP(x0, x1, x2, . . .)

which will be a useful notation later on.

A useful tool to check whether a process is ergodic is the concept of being mixing

Definition 5.0.4. Let X0, X1, X2, . . . be a stationary stochastic process with distribution P.

We say that S is mixing with respect to P, if for all F and G in E∞

lim
n→∞

P (F ∩ S−n(G)) = P (F )P (G)
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because we have the result

Theorem 5.0.5. If S is mixing with respect to P, then X0, X1, X2, . . . is ergodic.

The following Corollary gives a condition that ensures S being mixing

Corollary 5.0.6. If it for all m, k ∈ N0 and all A ∈ Em+1 and B ∈ Ek+1 holds that

lim
N→∞

P ((X0, . . . , Xm) ∈ A, (XN , . . . , XN+k ∈ B)

= P ((X0, . . . , Xm) ∈ A)P ((X0, . . . , Xk) ∈ B) ,

then the shift S is mixing with respect to P.

In this chapter we will find conditions that makes Markov chains ergodic, such that the

Ergodic Theorem holds. In fact, we will obtain a much stronger result: The averages in the

theorem may converge even in situations, where the process is not stationary!

5.1 Convergence of transition probabilities

We start by introducing a convergence concept for sequences of probability measures on

(X ,E).

Definition 5.1.1. Let µ0 and ν0, ν1, ν2, . . . be probability measures on the same measurable

space (X ,E). We say, that νn converges to µ0 as n→∞ and write νn → µ0, provided

lim
n→∞

∫
h(y) dνn(y) =

∫
h(y) dµ0(y) (5.1)

for every bounded and measurable function h on (X ,E).

This a very strong form of convergence, e.g. it follows for h = 1B that

lim
n→∞

νn(B) = µ0(B)

for every B ∈ E.

The standard form of weak convergence requires that (5.1) holds for all continuous and

bounded functions. However, that will only make sense if there is a topology on the state

space X . But in that case the convergence above is stronger than weak convergence. If

X is a finite space, then all bounded functions are continuous, and hence the two forms of

convergence are equal.



114 Ergodic theory for Markov chains on general state spaces

Theorem 5.1.2. Assume that X0, X1, X2, . . . is a Markov chain with transition probabilities

(Px)x∈X . If there exists a probability measure µ0 such that P ∗nx → µ0 for every x ∈ X ,

then µ0 is a stationary initial distribution of X0, X1, X2, . . ., and it is the only stationary

distribution.

Proof. That µ0 is a stationary distribution is seen as as follows: Let A ∈ E. Then because

of the Chapmann Kolmogorov equation

µ0(A) = lim
n→∞

P ∗(n+1)
y (A) = lim

n→∞

∫
Px(A) dP ∗ny (x) =

∫
Px(A)dµ0(x)

which due to Theorem 4.6.2 shows, that the Markov chain is stationary, if X0(P ) = µ0.

Now we show the uniqueness: Assume that µ is a stationary initial distribution. If we let

X0(P ) = µ we obtain that Xn(P ) = X0(P ), so

µ(A) = P (Xn ∈ A) = P (X0 ∈ X , Xn ∈ A) =

∫
P ∗nx (A) dX0(P )(x) =

∫
P ∗nx (A) dµ(x)

where we have used that P ∗n
D
= Xn | X0. But let n → ∞ in the above equality. From

dominated convergence (since all 0 ≤ P ∗nx (A) ≤ 1) we obtain that

µ(A) =

∫
µ0(A) dµ(x) = µ0(A) ,

showing that µ = µ0.

Theorem 5.1.3. Assume that X0, X1, X2, . . . is a Markov chain with transition probabilities

(Px)x∈X , and assume that there exists a probability measure µ0 such that P ∗nx → µ0 for every

x ∈ X . Assume that X0(P ) = µ0 such that the Markov chain is stationary, and let Pµ0
be

the distribution of the Markov chain. Then it holds that the shift S is mixing with respect to

Pµ0
, and in particular the Markov chain is ergodic.

Proof. Assume that X0(P ) = µ0. Let A ∈ Em+1 and B ∈ Ek and consider

P ((X0, . . . , Xm) ∈ A, (XN+1, . . . , XN+k ∈ B) (5.2)

=P ((X0, . . . , Xm) ∈ A,XN ∈ X , (XN+1, . . . , XN+k) ∈ B)

=

∫
A×X

PkxN (B) d(X0, . . . , Xm, XN )(P )(x0, . . . , xm, xN )

=

∫
A

∫
Pky (B) dP ∗(N−m)

xm (y) d(X0, . . . , Xm)(P )(x0, . . . , xm)
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In the second equality we have used that Pk D= (XN+1, . . . , XN+k) | XN , and

(XN+1, . . . , XN+k) ⊥⊥ (X0, . . . , Xm) | XN .

In the third equality we used that P ∗(N−m) D= XN | Xm. For the inner integral we obtain∫
Pky (B) dP ∗(N−m)

xm (y)→
∫
Pky (B) dµ0(y)

= P ((X1, . . . , Xk) ∈ B) = P ((X0, . . . , Xk−1) ∈ B)

as N →∞. So from Dominated convergence we obtain that the probability in (5.2) has the

limit ∫
A

P ((X0, . . . , Xk) ∈ B)d(X0, . . . , Xm)(P )(x0, . . . , xm)

= P ((X0, . . . , Xm) ∈ A)P ((X0, . . . , Xk−1) ∈ B)

which according to Corollary 5.0.6 is precisely what is needed to say that S is mixing.

5.2 Transition probabilities with densities

We will in the rest of this chapter make the assumption, that all the transition probabilities

(Px)x∈X have densities with respect to some σ–finite measure ν on (X ,E). We demand that

for all x ∈ X it holds that

Px(A) =

∫
A

kx(y) dν(y) ,

where (x, y) 7→ kx(y) is (X 2,E2)− (R,B) measurable, and of course y 7→ kx(y) is the density

of Px with respect to ν.

Then using the Chapmann Kolmogorov equation gives for n > 1 that

P ∗nx (A) = (P ∗ P ∗(n−1))x(A)

=

∫
Py(A) dP ∗(n−1)x (y)

=

∫ (∫
A

ky(z) dν(z)

)
dP ∗(n−1)x (y)

=

∫
A

(∫
ky(z) dP ∗(n−1)x dy)

)
dν(z) ,

which shows that P ∗nx has density

knx (y) =

∫
kz(y)dP (n−1)

x (z)
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with respect to ν. Using that P
∗(n−1)
x similarly have density k

(n−1)
x gives

knx (y) =

∫
k(n−1)x (z)kz(y) dν(z) .

Repeating the same arguments with n and k arbitrary gives

k(n+k)x (y) =

∫
k(n)x (z) k(k)z (y) dν(z) (5.3)

Now assume that X0, X1, X2, . . . is a Markov chain with transition probabilities (Px)x∈X with

densities as above. Assume furthermore that X0 has distribution µ. Then the distribution

of Xn is given by

P (Xn ∈ A) = P (X0 ∈ X , Xn ∈ A)

=

∫
P ∗nx (A) dµ(x)

=

∫ (∫
A

k(n)x (y) dν(y)

)
dµ(x)

=

∫
A

(∫
k(n)x (y) dµ(x)

)
dν(y)

which shows that Xn(P ) has density P ∗n(µ) with respect to ν, where

P ∗n(µ)(y) =

∫
k(n)x (y) dµ(x)

In the case, where µ has density f with respect to ν, we will use the notation P ∗n(f) for the

density of Xn(P ). In that case we have

P ∗n(f)(y) =

∫
k(n)x (y)f(x) dν(x)

Using (5.3) gives the following version of the Chapmann Kolmogorov equation

P ∗(n+k)(µ)(y) =

∫
k(n+k)x (y) dµ(x)

=

∫∫
k(n)x (z) k(k)z (y) dν(z) dµ(x)

=

∫
k(k)z (y)

(∫
k(n)x (z) dµ(x)

)
︸ ︷︷ ︸

=P∗n(µ)(z)

dν(z)

= P ∗k
(
P ∗n(µ)

)
(y) (5.4)

The equation (5.3) used again – now with (n, k) = (n, 1) – gives

P ∗n(kx)(y) =

∫
k(n)z (y) kx(z) dν(z) = k(n+1)

x (y) (5.5)
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5.3 Asymptotic stability

Let L1(ν) be the vector space of all ν–integrable functions, and define

D = {f ∈ L1(ν) : f ≥ 0,

∫
f dν = 1 }

to be the subset of L1(ν) consisting of all the probability densities. On L1(ν) we have the

L1 norm given by

‖f‖ =

∫
|f | dν

for f ∈ L1(ν).

Definition 5.3.1. Transition probabilities (Px)x∈X that have densities (kx)x∈X with respect

to ν are called asymptotically stable if there exists f0 ∈ D such that

∀f ∈ D : lim
n→∞

‖P ∗n(f)− f0‖ = 0 . (5.6)

Theorem 5.3.2. Let X0, X1, X2, . . . be a time homogeneous Markov chain with transition

with transition probabilities (Px)x∈X that are asymptotically stable. Then the probability

measure µ0 = f0 · ν with density f0 with respect to ν is the only stationary initial distribu-

tion. Furthermore the shift S is mixing for the distribution Pµ0
of the stationary chain. In

particular the stationary chain is ergodic.

Proof. Let x ∈ X . Since k
(n)
x (y) = P ∗(n−1)(kx)(y) according to (5.5) we have∫ ∣∣∣k(n)x (y)− f0(y)

∣∣∣ dν(y) =
∥∥∥P ∗(n−1)(kx)− f0

∥∥∥→ 0

as n→∞, where the convergence follows from (5.6). Now let h : X → R be a bounded and

measurable function with |h| ≤ c. Then for all x ∈ X it holds that∣∣∣∣∫ h(y) dP ∗nx (y)−
∫
h(y) dµ0(y)

∣∣∣∣
=

∣∣∣∣∫ h(y) k(n)x (y) dν(y)−
∫
h(y) f0(y)dν(y)

∣∣∣∣
≤
∫
|h(y)|

∣∣k(n)x (y)− f0(y)
∣∣dν(y)

≤ c
∫ ∣∣k(n)x (y)− f0(y)

∣∣dν(y) → 0

as n → ∞. Hence we have shown that P ∗nx → µ0 for all x ∈ X . The theorem follows from

the Theorems 5.1.2 and 5.1.3.
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Note: In the proof we only used that

∀x ∈ X : lim
n→∞

∥∥k(n)x − f0
∥∥→ 0

but as we shall see in the following lemma, this is in fact equivalent to the assumption (5.6)

giving asymptotic stability.

Lemma 5.3.3. Consider the framework from Theorem 5.3.2. Let P(X ,E) be the set of all

probability measures on (X ,E). Then the following conditions (a), (b) and (c) are equivalent

(a) ∀x ∈ X : limn→∞
∥∥k(n)x − f0

∥∥→ 0

(b) ∀f ∈ D : limn→∞
∥∥P ∗n(f)− f0

∥∥ = 0

(c) ∀µ ∈ P(X ,E) : limn→∞
∥∥P ∗n(µ)− f0

∥∥ = 0

Proof. It is obvious that (c) ⇒ (b) ⇒ (a), so we only need to show that (a) ⇒ (c). To show

this, we firstly derive the following: Let µ be a probability measure on (X ,E). Then

∥∥P ∗n(µ)− f0
∥∥ =

∫ ∣∣∣ ∫ k(n)x (y) dµ(x)− f0(y)
∣∣∣dν(y)

=

∫ ∣∣∣ ∫ k(n)x (y)µ(dx)−
∫
f0(y) dµ(x)

∣∣∣dν(y)

≤
∫ (∫ ∣∣k(n)x (y)− f0(y)

∣∣dµ(x)
)

dν(y)

=

∫ (∫ ∣∣k(n)x (y)− f0(y)
∣∣dν(y)

)
dµ(x) ,

and since ∫ ∣∣k(n)x (y)− f0(y)
∣∣dν(y) ≤

∫
k(n)x (y)dν(y) +

∫
f0(y) dν(y) = 2 ,

it follows from Dominated convergence and (a) that the double integral tends to 0 as n →
∞.

Note that the conditions (a), (b) and (c) are equivalent to L1(ν)–convergence of the density

of Xn(P ) to the density f0, if

(a) X0 ≡ x for some x ∈ X

(b) the distribution of X0 has a density w.r.t. ν

(c) the distribution of X0 is an arbitrary distribution
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Condition (a) is the weakest of the three. Condition (b) will be the most convenient to work

with, and condition (c) is the strongest implying the following result

Notation:

Recall that Pµ denotes the distribution on (X∞,E∞) of X0, X1, X2, . . ., when X0
D
= µ.

We will also need a notation for the probability measure on (Ω,F) that gives X0 this distribu-

tion: For a given probability measure µ on (X ,E), we let Pµ denote the probability measure

on (Ω,F), that makes X0
D
= µ.

Theorem 5.3.4. Assume that X0, X1, X2, . . . is a time homogeneous Markov chain with

transition probabilities (Px)x∈X that have densities with respect to ν and are asymptotically

stable with µ0 = f0 · ν as the stationary distribution. then no matter which distribution µ

that is chosen to be the initial distribution of X0, then the following holds:

If f : X∞ → R is a measurable function, such that∫
|f(x0, x1, x2, . . .)|dPµ0(x0, x1, x2, . . .) <∞ ,

then

1

n

n−1∑
k=0

f(Xk, Xk+1, Xk+2, . . .)→
∫
f(x0, x1, x2, . . .) dPµ0(x0, x1, x2, . . .) Pµ–a.s.

as n→∞.

Proof. Recall that

Pk = (Xn+1, . . . , Xn+k) | Xn

for all n ∈ N. Then we have for all Bk ∈ Ek that

Pµ((Xn+1, . . . , Xn+k) ∈ Bk) =

∫
Pkx (Bk) dXn(Pµ)(x)

=

∫
Pkx (Bk)P ∗n(µ)(x) dν(x) ,

where we have used, that Xn has density P ∗n(µ) under Pµ. Also recall that Pkx (Bk) can be

considered as the probability of Pδx((X1, . . . , Xk) ∈ Bk) in a situation, where X0 ≡ x (hence

the notation Pδx !!). Hence we can write

Pkx (Bk) = Pδx(X ×Bk ×X∞)

so we have

Pµ((Xn+1, . . . , Xn+k) ∈ Bk) =

∫
Pδx(X ×Bk ×X∞)P ∗n(µ)(x) dν(x)
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for all Bk ∈ Ek. By standard extension arguments (since {Bk × X∞ : Bk ∈ Ek, k ∈ N} is

an intersection stable generating class for E∞) we have

Pµ((Xn+1, Xn+2, . . .) ∈ B) =

∫
Pδx(X ×B)P ∗n(µ)(x) dν(x)

for all B ∈ E∞. Now define H ∈ E∞ by

H =

(
1

n

n−1∑
k=0

f(Xk, Xk+1, Xk+2, . . .)→
∫
f(x0, x1, x2, . . .) dPµ0

(x0, x1, x2, . . .)

)

Then H is in the tail σ–algebra for the sequence X0, X1, X2, . . ., so in fact, H has the form

H =
(
(Xn+1, Xn+2, . . .) ∈ Dn

)
for every n ∈ N and some Dn ∈ E∞. Thereby we have, that

∣∣Pµ(H)− Pµ0(H)
∣∣ =

∣∣∣ ∫ Pδx(X ×Dn)P ∗n(µ)(x) dν(x)−
∫
Pδx(X ×Dn)P ∗n(f0)(x) dν(x)

∣∣∣
=
∣∣∣ ∫ Pδx(X ×Dn)P ∗n(µ)(x) dν(x)−

∫
Pδx(X ×Dn) f0(x) dν(x)

∣∣∣
≤
∫
Pδx(X ×Dn)

∣∣P ∗n(µ)(x)− f0(x)
∣∣dν(x)

≤
∫ ∣∣P ∗n(µ)(x)− f0(x)

∣∣ dν(x)

=
∥∥P ∗n(µ)− f0

∥∥
→ 0

as n → ∞. Since we already know that Pµ0
(H) = 1 according to Theorem 5.3.2, we must

also have that Pµ(H) = 1.

The concept used above is L1(ν)–convergence of densities with respect to the σ–finite measure

ν. If a sequence of densitites converges in L1(ν)–norm, there exists a subsequence converging

ν–a.e. (almost everywhere). It is worth noting that suitably understood, the converse also

holds

Lemma 5.3.5. If f, f0, f1, f2, . . . ∈ D and limn→∞ fn(x) = f(x) ν–a.e., then limn→∞ ‖fn−
f‖ = 0.

In other words, if a sequence converges pointwise a.e. there is also L1–convergence.
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Proof. Define dn = f − fn. Then d+n ≤ f and from using dominated convergence it follows

that

lim
n→∞

∫
d+n dν =

∫
lim
n→∞

d+n dν =

∫
0 dν = 0 .

Since d−n = d+n + fn − f we have

lim
n→∞

∫
d−n dν = lim

n→∞

∫
d+n dν + lim

n→∞
fn dν −

∫
f dν = 0 + 1− 1 = 0

(where it is used that f is a density) and therefore

lim
n→∞

∫
|f − fn| dν = lim

n→∞

∫
d+n dν + lim

n→∞

∫
d−n dν = 0 + 0 = 0

Example 5.3.6. Consider the autoregressive process of order 1. Here (X ,E) = (R,B), and

for all n ∈ N0

Xn+1 = ρXn + εn+1 ,

where U1, U2, . . . are independent and identically distributed and furthermore independent

of X0. We assume that each εn has a N (0, 1) distribution. In an exercise it is shown that

the conditional distribution (P ∗nx )x∈R of Xn given X0 is given by

P ∗nx = N (ρnx, σ2
n) ,

where

σ2
n =

1− ρ2n

1− ρ2

Hence the n–step transition densities are given by

k(n)x (y) =
1√

2πσ2
n

exp

(
− (y − ρnx)2

2σ2
n

)
If |ρ| < 1 we see that

σ2
n → σ2

0 :=
1

1− ρ2

and furthermore ρnx→ 0. So we have obtained that

k(n)x (y)→ 1√
2πσ2

0

exp

(
− y2

2σ2
0

)
for all x and y in R. By a reference to Lemma 5.3.5 we see, that the transition probabilities

are asymptotically stable with N (0, σ2
0) as the stationary distribution. ◦
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Example 5.3.7. Here we consider the ARCH(1)–process: Assume that the Markov chain

X0, X1, X2, . . . is given on the update form

Xn+1 =
√
γ + αX2

nεn+1 ,

where (again) ε1, ε2, . . . are independent and identically distributed and furthermore inde-

pendent of X0. Here we have the transition probabilities (Px)x∈R, where

Px = N (0, γ + αx2)

corresponding to the densities

kx(y) =
1√

2π(γ + αx2)
exp

(
− y2

2(γ + αx2)

)
It is not possible to find the n–step transition densities and neither does one know the

stationary initial distribution in the cases where it exists. We shall see later that the Markov

chain is stable if (and only if) α < 3.56 . . . . ◦

5.4 Minorisation

We still consider the setup, where the transition probabilities (Px)x∈X have densities (kx)x∈X

with respect to a σ–finite measure ν.

Recall that we for a density f ∈ D found

P ∗n(f)(y) =

∫
k(n)x (y)f(x) dν(x) (5.7)

to be the density of Xn if X0 has density f . It makes sense to use this definition for all

f ∈ L1(ν) – we shall see in the following lemma, that the resulting function is well defined

and that P ∗n(f) ∈ L1(ν) as well.

Lemma 5.4.1. The definition in (5.7) defines a linear map P ∗n : L1(ν)→ L1(ν). Further-

more it holds that

f ≥ 0 ⇒ P ∗n(f) ≥ 0 and ‖P ∗n(f)‖ = ‖f‖ .

For f ∈ L1(ν) it holds that(
P ∗n(f)

)+ ≤ P ∗n(f+) and
(
P ∗n(f)

)− ≤ P ∗n(f−) .

Moreover P ∗n is a contraction

‖P ∗n(f)‖ ≤ ‖f‖ .
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Proof. It is obvious, that the map is linear, and that f ≥ 0 implies that P ∗nf ≥ 0 (since kx

is non–negative). For f ≥ 0 we have

‖P ∗n(f)‖ =

∫
P ∗n(f)(y) dν(y) =

∫ (∫
k(n)x (y)f(x) dν(x)

)
dν(y) ,

which using Fubini’s theorem

=

∫
f(x)

(∫
k(n)x (y) dν(y)

)
dν(x) =

∫
f(x) dν(x) = ‖f‖ .

From this we see in particular that the definition of P ∗n(f) must make sense for all f ∈ L1(ν),

since the integrals involved are finite when integrating |f |. Since the map is linear and

positive (maps non–negative functions to non–negative functions), it must be increasing such

that (since f+ ≥ f) P ∗n(f+) ≥ P ∗n(f). But since always P ∗n(f+) ≥ 0 we derive

P ∗n(f+) ≥
(
P ∗n(f)

)+
The argument for the negative part is similar. Then

|P ∗n(f)| =
(
P ∗n(f)

)+
+
(
P ∗n(f)

)−
≤
(
P ∗n(f+)

)
+
(
P ∗n(f−)

)
= P ∗n(f+ + f−) = P ∗n(|f |)

so

‖P ∗n(f)‖ ≤ ‖P ∗n(|f |)‖ = ‖f‖

Definition 5.4.2. A non–negative integrable function h ∈ L1(ν) is said to be a minorant

for the transition probabilities if ‖h‖ > 0 and there for all f ∈ D exists a sequence of non–

negative functions εn(f) in L1(ν) such that

P ∗n(f) ≥ h− εn(f) (5.8)

and

lim
n→∞

‖εn(f)‖ =

∫
εn(f) dν = 0 (5.9)

Note:

If it holds that P ∗n(f)− h ≥ 0 from some step onward, then we have that h is a minorant,

and we can simply let εn(f) = 0 from this step.

The inequality (5.8) is equivalent to saying that

εn(f) ≥ (h− P ∗n(f))+ = (P ∗n(f)− h)−
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so we could of course define εn = (P ∗n(f) − h)− and have that (5.9) is satisfied precisely

when ‖(P ∗n(f) − h)−‖ → 0. However the definition using εn–functions is simpler to work

with. The inequality (5.8) may be written as

|P ∗n(f)− h| ≤ P ∗n(f)− h+ 2εn(f)

so

‖P ∗n(f)− h‖ ≤
∫
P ∗n(f)− h+ 2εn(f) dν

= 1− ‖h‖+ 2‖εn(f)‖

Letting n→∞ on the right hand side gives

lim sup
n→∞

‖P ∗n(f)− h‖ ≤ 1− ‖h‖ (5.10)

Think of a Markov chain X0, X1, X2, . . ., where X0
D
= µ and where the transition probabilities

(Px)x∈X have a minorant. Then we have the following, using P ∗n(µ) = P ∗(n−1)(P ∗1(µ)),

where P ∗1(µ) is a density

lim inf
n→∞

Pµ(Xn ∈ B) = lim inf
n→∞

∫
B

P ∗n(µ) dν =

∫
B

P ∗(n−1)(P ∗1(µ)) dν ≥
∫
B

h dν

Since
∫
h dν > 0, this shows that the probability mass cannot ”vanish” when n → ∞, if

a minorant exists. Hence (part of) the intuition of the existence of a minorant is that the

distribution of the variables cannot keep changing – the probability mass is (partly) fixed by

the function h, so there are limits for how much it can ”move around”.

Theorem 5.4.3. The transition probabilities (Px)x∈X for a Markov chain are asymptotically

stable if and only if there exists a minorant

Proof. First assume that the transition probabilities are stable

∀f ∈ D : lim
n→∞

‖P ∗n(f)− f0‖ = 0 .

In particular we have for a given density f ∈ D that

‖(P ∗n(f)− f0)−‖ ≤ ‖P ∗n(f)− f0‖ → 0

which shows that the stationary density f0 is a minorant.

Assume conversely, that a minorant h exists. From (5.10) it follows that 0 < ‖h‖ ≤ 1. It is

also seen from (5.10), that it suffices to show that there exists a minorant h with ‖h‖ = 1.

The idea in the proof will be to find a maximal minorant. let

c = sup{ ‖h‖ : h is a minorant} .
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Then 0 < c ≤ 1 and we can choose a sequence of minorants h1, h2, . . . so ‖hm‖ → c for

m→∞. Now we show that the maximum h1 ∨ h2 is again a minorant if both h1 and h2 are

minorants: We have

P ∗n(f) ≥ h1 − ε1,n(f) and P ∗n(f) ≥ h2 − ε2,n(f)

Then also

P ∗n(f) ≥ h1 ∨ h2 − ε1,n(f) ∨ ε2,n(f) ,

where ‖ε1,n(f)∨ ε2,n(f)‖ ≤ ‖ε1,n(f) + ε2,n(f)‖ ≤ ‖ε1,n(f)‖+ ‖ε2,n(f)‖ → 0. And this shows,

that h1 ∨ h2 is a minorant.

Then we can assume that the sequence h1, h2, . . . is increasing, h1 ≤ h2 ≤ · · · , and hence the

limit h0 = limm→∞ hn is well defined. Furthermore we see from monotone convergence that

‖h0‖ =

∫
h0 dν = lim

m→∞

∫
hm dν = lim

m→∞
‖hm‖ = c

and similarly we have that limm→∞ ‖h0 − hm‖ = 0. Furthermore we must have, that h0 is a

minorant as well, since

P ∗n(f)− h0 = P ∗n(f)− hm + hm − h0 ≥ −εm,n(f)− |hm − h0| ,

giving
(
P ∗n(f)− h0

)− ≤ εm,n(f) + |hm − h0| such that

lim sup
n→∞

∥∥(P ∗n(f)− h0
)∥∥ ≤ ‖hm − h0‖ .

And since this is true for all m ∈ N, and the right hand side have limit 0, when m→∞, we

must have that ∥∥(P ∗n(f)− h0
)∥∥→ 0

as requested.

Now let h be another minorant. Then also h ∨ h0 is a minorant, and since

c ≥
∫
h ∨ h0 dν ≥

∫
h0 dν = c

we conclude that h ≤ h0 ν–a.e.

From the inequality P ∗n(f) ≥ h0 − εn(f) it follows (using that P ∗1 is increasing) that

P ∗(n+1)(f) = P ∗n(P ∗n(f)) ≥ P ∗1(h0)− P ∗1(εn(f)) ,
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and because ‖P ∗1(εn(f))‖ = ‖εn(f)‖ → 0, we see that P ∗1(h0) is a minorant. Consequently

h0 ≥ P ∗1(h0) ν–a.e., but since∫
h0 dν = ‖h0‖ = ‖P ∗1(h0)‖ =

∫
P ∗1(h0) dν

we conclude that in fact h0 = P ∗1(h0) ν–a.e. Defining f0 = h0/c such that f0 is a probability

density, we see that also f0 = P ∗1(f0) ν–a.s. showing that f0 is the density for a stationary

initial distribution.

Now let h be some minorant. We want to show that the Markov chain is asymptotically

stable. Let therefore f ∈ D and we want to show that ‖P ∗n(f)− f0‖ → 0. Define g = f − f0
and assume without loss of generality that d = ‖g‖/2 > 0 (otherwise there would be nothing

to show). Since
∫
g dν = 1− 1 = 0 we must have that ‖g+‖ = ‖g−‖ = d. Now

‖P ∗n(f)− f0‖ = ‖P ∗n(f)− P ∗n(f0)‖

= ‖P ∗n(g)‖

= ‖d(P ∗n(g+/d)− h)− d(P ∗n(g−/d)− h)‖

= d‖P ∗n(g+/d)− h‖+ d‖P ∗n(g−/d)− h‖ ,

and because g+/d, g−/d ∈ D it follows from (5.10) that

lim sup
n→∞

‖P ∗n(f)− f0‖ ≤ lim sup
n→∞

d
(
‖P ∗n(g+/d)− h‖+ ‖P ∗n(g−/d)− h‖

)
(5.11)

= 2d(1− ‖h‖) (5.12)

= ‖f − f0‖(1− ‖h‖) . (5.13)

By replacing f by P ∗m(f) we obtain for each m = 1, 2, . . . that

lim sup
n→∞

‖P ∗n(f)− f0‖ = lim sup
n→∞

‖P ∗(n+m)(f)− f0‖

= lim sup
n→∞

‖P ∗n(P ∗m(f))− f0‖

≤ ‖P ∗m(f)− f0‖(1− ‖h‖) ,

and by letting m→∞ it follows from (5.11) that

lim sup
n→∞

‖P ∗n(f)− f0‖ ≤ ‖f − f0‖(1− ‖h‖)2 .

Repeating this argument gives that

lim sup
n→∞

‖P ∗n(f)− f0‖ ≤ ‖f − f0‖(1− ‖h‖)k .
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for each k = 1, 2, . . .. And since 1− ‖h‖ < 1 we obtain

lim
n→∞

‖P ∗n(f)− f0‖ = 0

from letting k →∞.

For deciding whether a function is a minorant or not, the following result proves useful

Lemma 5.4.4. Let D∗ be a dense subset of D. Then h is a minorant if for all f ∈ D∗

there exists a sequence of non–negative functions εn(f) in L1(ν) such that (5.8) and (5.9)

are satisfied.

Proof. For f ∈ D and f∗ ∈ D∗ we have

P ∗n(f)− h = P ∗n(f∗)− h+ P ∗n(f)− P ∗n(f∗) ≥ −εn(f∗) + P ∗n(f − f∗) ,

and therefore (P ∗n(f)− h)− ≤ εn(f∗) + |P ∗n(f − f∗)| and consequently

lim sup
n→∞

‖(P ∗n(f)− h)−‖ ≤ lim sup
n→∞

‖P ∗n(f − f∗)‖ ≤ ‖f − f∗‖ .

Since inff∗∈D ‖f − f∗‖ = 0 it follows that

lim
n→∞

‖(P ∗n(f)− h)−‖ = 0

5.5 The drift criterion

In this section we will develop a very useful necessary condition for the existence of a minorant.

Theorem 5.5.1. Let V : (X ,E) → (R,B) be a non–negative measurable function such that

0 ≤ α < 1 and 0 ≤ β <∞ exists with∫
V (y) dPx(y) ≤ αV (x) + β for all x ∈ X (5.14)

Furthermore assume that there exists m ∈ N such that for some r > β/(1−α)+1 the function

y 7→ inf
{x :V (x)≤r}

k(m)
x (y)

is measurable, and that ∫
inf

{x :V (x)≤r}
k(m)
x (y) dν(y) > 0 . (5.15)

Then it holds that the transition probabilities are asymptotically stable.
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The function V is called a drift function or a Lyapounov function. Typically the be-

haviour of V is such that V (x) → ∞, when x approaches the boundary of X , so the set

{x ∈ X : V (x) ≤ r} is bounded. Usually it is quite easy to verify condition (5.15), so the

critical condition is (5.14). Since α < 1 – informally phrased – the condition states that the

Markov chain has a tendency to drift towards x’s with low values of V (x). The condition

(5.14) may become more clear if we rewrite it using random variables:

E(V (Xn+1) | Xn = x) ≤ αV (x) + β

Proof. The idea in the proof is to determine a minorant, because then it will follow from

Theorem 5.4.3 that the transition probabilities are asymptotically stable. Define B = {x ∈
X : V (x) ≤ r} and

h(y) = inf
x∈B

k(m)
x (y) .

Then for f ∈ D

P ∗(m+n)(f)(y) = P ∗m
(
P ∗n(f)

)
=

∫
k(m)
x (y)P ∗n(f)(x) dν(x)

≥ h(y)

∫
B

P ∗n(f)(x) dν(x) .

Let δ = 1− 1
r ( β

1−α + 1) > 0. We shall show that∫
B

P ∗n(f)(x) dν(x) > δ (5.16)

for n sufficiently large (depending on f). Because then P ∗(n+m)(f)(y) ≥ δh(y) for n suffi-

ciently large, and it will follow that δh is a minorant.

Now ∫
P ∗n(f)(x)dν(x) = Pf ·ν

(
Xn ∈ B

)
= Pf ·ν

(
V (Xn) ≤ r

)
= 1− Pf ·ν

(
V (Xn) > r

)
and by Markov’s inequality

Pf ·ν
(
V (Xn) > r

)
≤ 1

r
Ef ·ν

(
V (Xn+1)

)
,
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where Ef ·ν denotes integration with respect to Pf ·ν . To establish (5.16) it suffices to show

that Ef ·ν
(
V (Xn)

)
≤ β

1−α + 1 for n sufficiently large. But

Ef ·ν
(
V (Xn)

)
=

∫
V (x)dXn(Pf ·ν)(x)

=

∫
V (y)d(Xn−1, Xn)(Pf ·ν)(x, y)

=

∫∫
V (y) dPx(y) dXn−1(Pf ·ν)(x)

≤ (αV (x) + β)dXn−1(Pf ·ν)(x)

= α

∫
V (x)dXn−1(Pf ·ν)(x) + β

≤ · · ·

≤ β(1 + α+ · · ·+ αn−1) + αn
∫
V (x)dX0(Pf ·ν)(x)

= β(1 + α+ · · ·+ αn−1) + αn
∫
V (x)f(x)dν(x)

≤ β

1− α
+ αn

∫
V (x)f(x)dν(x)

If
∫
V (x)f(x) dν(x) <∞, the last quantity is ≤ β

1−α + 1 for n sufficiently large.

The argument above works for f ∈ D such that
∫
V (x)f(x)dν(x) <∞, and we now complete

the proof of the theorem by appealing to Lemma 5.4.4 and verifying that D∗ = {f ∈ D :∫
V (x)f(x) dν(x) <∞} is dense in D.

So let f ∈ D. We want to find a sequence (fk)k∈N with each fk ∈ D∗ and with ‖f − fk‖ → 0.

Define Bk = {x ∈ X : V (x) ≤ k} and ck =
∫
Bk
f(x) dν(x) for k = 1, 2, . . .. Then fk =

1Bkf/ck ∈ D∗, and

‖f − fk‖ = ‖f − 1Bkf/ck‖

= (1/ck − 1)

∫
Bk

f(x) dν(x) +

∫
Bck

f(x) dν(x)

= (1/ck − 1)ck + (1− ck)

= 2(1− ck)→ 0

as k →∞.

Note: The assumption in the theorem that y 7→ inf{x :V (x)≤r} k
(m)
x (y) should be measurable

is not necessary. It is sufficient to complete the proof, that there exists a non–negative
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measurable function g : X → R such that

inf
{x :V (x)≤r}

k(m)
x (y) ≥ g(y)

for all y ∈ X , and ∫
g(y) dν(y) > 0 .

From Theorem 5.5.1 we can obtain that a given Markov chain has asymptotically stable

transition probabilities, such that a stationary initial distribution exists and the averages

from Theorem 5.3.4 converges (towards integrals with respect to the stationary distribution).

But it says nothing about how the stationary distribution behaves. However, in order to use

the convergence of such averages it is necessary to know whether integrals on the form

Ef0·ν |f(X0, X1, X2, . . .)| =
∫
|f(x0, x1, x2, . . .)|dPf0·ν(x0, x1, x2, . . .)

are finite. For this the following corollary can be helpful.

Corollary 5.5.2. Assume that the conditions from Theorem 5.5.1 are satisfied and let f0

denote the density for the stationary initial distribution. Then

Ef0·ν(V (X0)) =

∫
V (x)f0(x) dν(x) <∞ .

Proof. Let f ∈ D∗ and M > 0. From the proof above we have∫ (
V (x) ∧M

)
P ∗n(f)(x)dν(x) ≤

∫
V (x)P ∗n(f)(x)dν(x)

=

∫
V (x) dXn(Pf ·ν)(x)

≤ β

1− α
+ αn

∫
V (x)f(x)dν(x)

and since the transition probabilities are asymptotically stable∣∣∣ ∫ (V (x) ∧M
)
P ∗n(f)(x)dν(x)−

∫ (
V (x) ∧M

)
f0(x)dν(x)

∣∣∣
≤
∫ (

V (x) ∧M
) ∣∣P ∗n(f)(x)− f0(x)

∣∣dν(x)

≤ ‖P ∗n(f)− f0‖ → 0

as n → ∞. It follows that
∫ (
V (x) ∧M

)
f0(x)dν(x) ≤ β(1 − α) and letting M → ∞ then

yields that
∫
V (x)f0(x)dν(x) ≤ β(1− α) .
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Example 5.5.3. Continuation of Example 5.3.7. For the ARCH(1)–process we have

X2
n+1 = (γ + αX2

n)ε2n+1 .

We shall look for a drift function on the form

V (x) = |x|2δ

with δ > 0. Since

X2δ
n+1 = (γ + αX2

n)δ|εn+1|2δ

the condition (5.14) means that (due to the Substitution Theorem 2.1.1, since Px
D
=
√
γ + αx2ε)

(γ + αx2)δE(|ε|2δ) ≤ α0|x|2δ + β

for some β, some α0 < 1, and where ε has a standard normal distribution. For small values

of x, β takes care of this. The condition therefore becomes

αδE(|ε|2δ) < 1 . (5.17)

As a special case take δ = 1. The condition is then satisfied if α < 1 and from the corollary

we see that the stationary initial distribution has finite second order moment.

Because E((αε2)0) = 1, the inequality (5.17) may be written

E
(exp(δ log(αε2)− exp(0 log(αε2)

δ

)
=

1

δ

(
E(exp(δ log(αε2))− E(exp(0 log(αε2))

)
< 0

If we let δ → 0 we obtain the condition E(log(αε2)) < 0 which is equivalent to

α < exp(−E(log(ε2))) = 3.56 . . .

Hence this condition ensures that the transition probabilities are asymptotically stable. ◦

5.6 Exercises

Exercise 5.1. Assume that X0, X1, X2, . . . is a time homogeneous Markov chain on X ,E)

with transition probabilities (Px)x∈X . Let x ∈ X and define the stopping time

τ = inf{n ∈ N : Xn = x} .
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Let X0 ≡ x and assume that P (τ <∞) = 1. Assume furthermore that Eτ <∞. Define for

each set A ∈ E

µ(A) =
1

Eτ
E

(
τ−1∑
n=0

1(Xn∈A)

)

(1) Show that µ is a probability measure on (X ,E)

(2) Show that for all non–negative measurable functions f : X → R it holds that∫
f dµ =

1

Eτ

(
τ−1∑
n=0

f(Xn)

)

(Hint).

(3) Show that for A ∈ E∫
Px(A) dµ(x) =

1

Eτ

∞∑
n=0

E
(
PXn(A)1(τ>n)

)
=

1

Eτ

∞∑
n=0

∫
(τ>n)

P (Xn+1 ∈ A | Fn) dP ,

where Fn = σ(X0, . . . , Xn) (Hint).

(4) Obtain that ∫
Px(A) dµ(x) =

1

Eτ
E

(
τ−1∑
n=0

1(Xn+1∈A)

)
(Hint).

(5) Show that

E(1(Xτ∈A)) = E(1(X0∈A))

and use this to obtain ∫
Px(A) dµ(x) =

1

Eτ
E

(
τ−1∑
n=0

1(Xn∈A)

)
.

Conclude that µ is a stationary initial distribution for the Markov chain.

Now define τ1 = τ and recursively

τN = inf{n > τN−1 : Xn = x}

Let furthermore f : X → R be bounded and measurable.
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(6) Argue that the real valued variables

τ1−1∑
n=0

f(Xn),

τ2−1∑
n=τ1

f(Xn),

τ3−1∑
n=τ2

f(Xn), . . .

are independent and identically distributed (you do not have to give detailed argu-

ments).

Also argue that τ1, τ2−τ1, τ3−τ2, . . . are independent and identically distributed (Hint).

(7) Show that

1

τN

τN−1∑
n=0

f(Xn)→
∫
f dµ a.s.

as n→∞ (Hint).

◦

Exercise 5.2. Reconsider the one–dimensional AR(1)–process on (R,B) from 4.2

Xn+1 = ρXn + εn+1 ,

where all ε1, ε2, . . . are iid with a N (0, 1) distribution. Assume that X0 is independent of all

the ε’s.

(1) Find the conditional distribution (P ∗nx )x∈R of Xn given X0 for all n ∈ N0 (Hint).

(2) Assume that |ρ| < 1. Show that P ∗nx converges to µ0 for all x ∈ R, where

µ0 = N
(

0,
1

1− ρ2
)

(Hint).

◦

Exercise 5.3. Consider the AR(1) model from 5.2 and Example 5.3.6, but now assume that

|ρ| > 1. From 5.2 and the example it is known that the transition densities are given by

k(n)x (y) =
1√

2πσ2
n

exp

(
− (y − ρnx)2

2σ2
n

)
with respect to the Lebesgue measure λ.
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(1) Show that for all x, y ∈ R
k(n)x (y)→ 0

as n→∞.

(2) Show that there does not exist a stationary initial distribution for the Markov chain

(Hint).

◦

Exercise 5.4. Let X0, X1, X2, . . . be a time homogeneous Markov chain on (X ,E) with

transition probabilities (Px)x∈X and initial distribution µ. Assume that each Px has density

kx with respect to the σ–finite measure ν. Furthermore assume that µ has density f with

respect to ν.

Recall that we in section 4.4 defined (Pnx )x∈X to be the conditional distribution of (X1, . . . , Xn)

given X1.

(1) Show that Pnx has density kn,x(x1, . . . , xn) with respect to ν⊗n, where

kn,x(x1, . . . , xn) =

n∏
i=1

kxi−1(xi)

(Hint).

(2) Show that the distribution of (X0, . . . , Xn) has density

hn(x0, . . . , xn) = f(x0)kn,x0(x1, . . . , xn)

with respect to ν⊗n+1.

If the transition densities (kx)x∈X = (kθx)x∈X depends on some unknown parameter θ ∈ Θ, we

can use the density hn from (2) to write the likelihood function, when observing (X0, . . . , Xn).

However, in Markov chain models it is quite often only the transition densities that are

specified and not the initial density f . In such cases, one will typically use the conditional

likelihood given X0 = x as in question (1). Especially in situations with many observations

it can be argued that not very much information is thrown away by considering the first

observation as known.

Now consider the AR(1) model from 5.2, where |ρ| < 1.
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(3) Find the conditional likelihood function for (X1, . . . , Xn) given X0 = x.

(4) Show that the conditional maximum likelihood estimate for ρ given X0 = x is

ρ̂n =

∑n−1
i=0 XiXi+1∑n−1
i=0 X

2
i

(Hint).

(5) Show that no matter what is the distribution of X0, then the estimate from (4) is

strongly consistent:

ρ̂n → ρ a.s.

as n→∞ (Hint).

◦

Exercise 5.5. Let X0, X1, X2, . . . be a real valued time homogeneous Markov chain given

by the update scheme

Xn+1 = φ(Xn, Un+1) ,

where all U1, U2, . . . are independent and identically distributed with common density f

with respect to the Lebesgue measure λ on (R,B). Assume furthermore that (U1, U2, . . .) is

independent of X0, and that φ : R2 → R is measurable, such that

• y 7→ φ(x, y) is bijective and continuously differentiable for all x ∈ R.

• δyφ(x, y) 6= 0 for all (x, y) ∈ R2, where δyφ(x, y) denotes the derivative with respect to

y.

Show that the transition probabilities (Px)x∈X for the Markov chain have densities (kx)x∈X

with respect to the Lebesgue measure, where

kx(y) =
1

|δyφ(x, φ(x, ·)−1(y))|
f(φ(x, ·)−1(y))

(Hint). ◦

Exercise 5.6. Assume that ξ : R → R and σ : R → (0,∞) are continuous functions, and

that (Un)n∈N is a sequence of independent and identically distributed random variables with

finite second order moment, such that EU1 = 0 and V U1 = 1. Define recursively

Xn+1 = ξ(Xn) + σ(Xn)Un+1 ,

where X0 is a real random variable, that is independent of (Un)n∈N and has distribution µ.
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(1) Argue that X0, X1, X2, . . . is a Markov chain.

(2) Assume that for some n ∈ N it holds that

Eξ(Xn)2 <∞ and Eσ(Xn)2 <∞

Show that EX2
n+1 <∞ and find E(Xn+1 | Xn = x) and V (Xn+1 | Xn = x).

Now assume that the distribution of U1 (and all Un) has density f with respect to the

Lebesgue measure.

(3) Find the density for the transition probabilities.

Assume that the density f : R→ R is continuous and strictly positive.

(4) Assume that

lim sup
|x|→∞

ξ(x)2 + σ(x)2

x2
< 1 (5.18)

Show that the transition probabilities are asymptotically stable using V (x) = x2 as a

drift function (Hint).

(5) Assume that EX2
0 <∞. Show that EX2

n <∞ for all n ∈ N (Hint).

◦

Exercise 5.7. This exercise gives an example of the Markov chains from 5.6. So assume that

U1, U2, . . . are independent and identically distributed with EU1 = 0 and V U1 = 1. Assume

that U1 has a continuous and strictly positive density f with respect to λ. Define σ(x) ≡ 1

and

ξ(x) = (α1x+ β1)1(−∞,γ)(x) + (α2x+ β2)1[γ,∞)(x) ,

and assume that α1γ + β1 = α2γ + β2.

(1) Draw ξ(x) as a function of x, and argue that it is continuous.

(2) Let X0, X1, X2, . . . be a Markov chain given by

Xn+1 = ξ(Xn) + σ(Xn)Un+1 ,

where X0 is independent of (Un)n∈N. Find conditions in terms of α1, β1, α2, β2 such

that the transition probabilities are asymptotically stable.
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(3) Try simulating X0, . . . , X10000 in a situation, where X0 = 0, U1 ∼ N (0, 1), −α1 = α2 =
1
2 , and β1 = β2 = γ = 0. Plot (n,Xn)n∈N0

and (Xn, Xn+1)n∈N0
and comment the two

plots.

◦

Exercise 5.8. Assume that f : [0,∞)→ (0,∞) is a continuous and strictly positive density

on the interval [0,∞). Let U1, U2, . . . be a sequence of independent and identically distributed

real non–negative variables with common density f . Assume that there exists β > 0 such

that ∫ ∞
0

eβxf(x) dx <∞ .

Assume that X0 is independent of (Un)n∈N and define the Markov chain X0, X1, X2, . . . by

Xn+1 = |Xn − Un+1|

for n ∈ N0.

(1) Show that the transition probabilities (Px)x∈R have densities (kx)x∈R given by

kx(y) = f(x+ y) + f(x− y)1(y<x) .

(Hint).

(2) Show that ∫ ∞
0

eβykx(y) dy = e−βx
∫ ∞
x

eβyf(y) dy +

∫ x

0

e−βyf(y) dy

(3) Show that the transition probabilities are asymptotically stable and that there exists a

uniquely determined stationary density f0 (Hint).

(4) Show that if X0 has the stationary distribution, then EXn
0 <∞ for all n ∈ N (Hint).

(5) Let X0 have the stationary distribution. Show that

EX0 =
EU2

1

2EU1

(Hint).

(6) Assume that f(x) = e−x. Show that in this case also f0(x) = e−x (Hint).
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◦

Exercise 5.9. Let X0, X1, X2, . . . be a Markov chain on (X ,E) with transition probabilities

(Px)x∈X such that each Px has density kx with respect to a σ–finite measure ν. Assume that

for some m it holds that y 7→ inf{x∈X} k
(m)(y) is measurable with∫

inf
{x∈X}

k(m)(y) dν(y) > 0 .

Show that the transition probabilities are asymptotically stable (Hint). ◦

Exercise 5.10. The Gibb’s sampler.

Let (X,Y ) be a vector of random variables with values in (X × Y,E ⊗ K). Assume that

(X,Y ) has density f0 with respect to ν1 ⊗ ν2.

Think of a situation, where f0 is rather complicated and difficult to simulate from (or maybe

we do not even know it). Instead we know the densities for the conditional distributions of

X | Y and Y | X. These densities will be denoted (f1y )y∈X and (f2x)x∈X respectively.

The idea is to generate a Markov chain (Zn)n∈N0
consisting of vectors Zn = (Xn, Yn) that

have asymptotically stable transition densities with f0 as the stationary distribution.

We define (Zn)n∈N0
as follows:

(a) Let Z0 = (X0, Y0) = (x, y) for some (x, y) ∈ X 2.

(b) Given Zn = (Xn, Yn) = (xn, yn) draw Xn+1 from the distribution with density f1yn .

(c) Given Xn+1 = xn+1 draw Yn+1 from the distribution with density f2xn+1
.

(d) Define Zn+1 = (Xn+1, Yn+1)

(e) Add 1 to n and go back to (b).

The above successive definition of Z0, Z1, Z2, . . . could of course be written more formally as:

For each n ∈ N0 we have

• Xn+1 ⊥⊥ (Z0, . . . , Zn) | Yn

• With (Q1
y)y∈Y = Xn+1 | Yn each Q1

y has density f1y .
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• Yn+1 ⊥⊥ (Z0, . . . , Zn) | Xn+1

• With (Q2
x)x∈X = Yn+1 | Xn+1 each Q2

x has density f2x .

(1) Argue that Z0, Z1, Z2, . . . is a Markov chain.

Let (Px,y)(x,y)∈X×Y be the transition probabilities of this Markov chain.

(2) Show that the Px1,y1 has density k(x1,y1) with respect to ν1 ⊗ ν2, where

k(x1,y1)(x2, y2) = f1y1(x2)f2x2
(y2)

(Hint).

(3) Show that f0 is a stationary density for the transitions (Hint).

Now assume that X = [0, 1], Y = {0, 1}, ν1 = λ (restricted to [0, 1]), and that ν2 is the

counting measure τ on {0, 1}. Furthermore assume that the conditional distribution of Xn+1

given Yn is given by

Q1
y
D
= B(y + 1, 2− y)

meaning that

f1y1(x2) =
1

B(y1 + 1, 2− y1)
xy12 (1− x2)1−y2

and that the conditional distribution of Yn+1 given Xn+1 = xn+1 is a Binomial distribution

with parameters (
1,

xn+1a

xn+1a+ (1− xn+1b)

)
for some given non–negative constants a and b.

(4) Show that the Markov chain Z0, Z1, Z2, . . . is asymptotically stable (Hint).

◦
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Chapter 6

An introduction to Bayesian

networks

6.1 Introduction

Consider an n–dimensional vector of random variables X = (X1, . . . , Xn), where each Xi e.g.

have values in some Borel space (X ,E).

A very simple model for the distribution of X could be to assume that X1, . . . , Xn are

independent. Then we have

P (X1 ∈ A1, . . . , Xn ∈ An) = P (X1 ∈ A1) · · ·P (Xn ∈ An)

so in order to determine the distribution of X, we only need to determine the n marginal

distributions. The problem is, that this model very often is far too simple; It is necessary to

allow for some dependence structure in the simultaneous distribution.

If we take this to the other extreme, we could simply use the model, where X is allowed

to have any distribution on (Xn,En). Then we will have to take care of all dependencies

between all combinations of variables. If n is very large, this will be far too complex to

handle.
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Example 6.1.1. Consider the variables X1, . . . , Xn in the very simple case, where X =

{0, 1}. If the variables are independent only the n parameters p1, . . . , pn will be necessary to

determine the distribution of (X1, . . . , Xn)

P (Xk = 1) = pk

If on the other hand, there is dependence then all the 2n probabilities

P (X1 = a1, . . . , Xn = an)

will have to be decided, with ak ∈ {0, 1} for k = 1, . . . , n. ◦

Example 6.1.2. In a microarray experiment the expression levels of a large number of genes

are measured simultaneously, and it is expected that there will be correlations between the

levels of the different genes. These correlation structures are of great interest, and can lead

to a deeper biological understanding.

Consider a gene expression data set produced from an experiment, where the expression levels

of p genes are recorded for n independent samples. This leads to a data set {x1, . . . , xn} where

each vector xk = (xk1 , . . . , x
k
n) is an independent observation of the vector (X1, . . . , Xp). The

difficulty in the analysis of data like this is that typically p is much larger than n. ◦

For large values of n a solution could be to assume that there is still some dependence in the

model, but in such a way that there are not too many dependencies to take care of.

As we shall see in the following example it often makes sense to assume some structure in a

set of observations.

Example 6.1.3. Imagine the situation, when you go to the university in the morning. It

may happen that you do not arrive in time for the first lecture.... And this can have various

reasons. It could be that your alarm did not work this morning, such that you overslept, and

it is also possible that the bus was late. All of this will probably have influence on whether

you were at the university in time.

In Figure 6.1 it is indicated which dependence structures that seems reasonable. For example

it does not make sense to believe that there is dependence between the bus arrival and your

alarm. Furthermore it is reasonable that the alarm only has influence on the arrival time via

the knowledge of whether you overslept: If we know that you did not oversleep, then it will

not be fair to use the alarm as an excuse for being late. ◦
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Figure 6.1: A scheme of your morning situation.

The purpose of this chapter is to give a theoretical description of dependence structures like

the one in Example 6.1.3.

6.2 Directed graphs

Definition 6.2.1. A directed graph G = (V, E) is a set of nodes V = (v1, . . . , vn) and a set

of edges E. Each edge is a directed connection between to elements vi, vj ∈ V, where i 6= j.

Such a directed connection will be denoted vi → vj.

Definition 6.2.2. We say that v1, . . . , vk form a path in the directed graph G, if vi → vi+1

for every i = 1, . . . , k − 1. We write vi  vj if there exists a path from vi to vj.

Definition 6.2.3. A cycle in a directed graph G is a path v1, . . . , vk, where v1 = vk. A

graph is acyclic if it contains no cycles.

The concept of a directed acyclic graph (DAG) will be the basis in this chapter. This will be

the graphical representation that underlies Bayesian networks.

Definition 6.2.4. Let G = (V, E) be a directed acyclic graph, and let B be a subset of V.

The subgraph GB = (B, EB) is the graph, that only consists of the nodes in B and only with

the edges from E that are connections between elements in B.

Another useful notion is that of an ordering of the nodes in a directed graph that is consistent

with the directions of the edges.
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Definition 6.2.5. Let G = (V, E) be a directed acyclic graph. An ordering of the nodes

v1, . . . , vn is an ordering relative to G: If vi → vj, then i < j.

It is always possible to find an ordering in a directed acyclic graph!
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Figure 6.2: An example of a directed acyclic graph with 6 nodes and 5 edges. We e.g. see that

a f , and that {a, b, c} is the set of parents of d.

We shall also for a node v ∈ V define the parents, descendants, and non–descendants of v.

Definition 6.2.6. Let G = (V, E) be a directed acyclic graph, and let vi ∈ V. Then we say

that

(i) vj is a parent of vi, if vj → vi.

Pvi = {vj ∈ V : vj → vi}

denotes the set of all the parents of vi.

(ii) vj is a child of vi, if vi → vj. We let

Cvi = {vj ∈ V : vi → vj}

denote the set of all children of vi.

(iii) vk is an ancestor of vi, if there exists a path, such that vk  vi. We let

Avi = {vk ∈ V : vk  vi} ∪ {vi}
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denote the set of all ancestors of vi.

Let B be some subset of V. Then we let AB denote the subset of V that contains B and

all ancestors of elements in B. Then

AB = ∪v∈BAv

(iv) vk is a descendant of vi, if there exists a path, such that vi  vk. We let

Dvi = {vk ∈ V : vi  vk}

denote the set of all descendants of vi. Furthermore we let NDvi denote the set of all

non-descendants of vi and define it by

NDvi = V \ {Dvi ∪ {i}}

6.3 Moral graphs and separation

Definition 6.3.1. An undirected graph G = (V, E) is a set of nodes V = (v1, . . . , vn) and

a set of edges E. Each edge is a connection between two elements vi, vj ∈ V, where i 6= j.

Such an undirected connection will be denoted vi − vj.

Definition 6.3.2. Let G = (V, E) be a directed acyclic graph. The moral graph Gm of G
is an undirected graph with the same nodes as G, but where vi − vj in Gm if either they are

connected in G or they share a child.

In the anachronistically named moral graph, all parents are ”married”!

Definition 6.3.3. Let G = (V, E) be an undirected graph, and let S be some subset of V.

Let vi, vj ∈ V \S. We say that S separates vi and vj, if all paths from vi to vj intersects S.

Assume that A, B and S are disjoint subsets of V. We say that S separates A and B, if it

separates all vi ∈ A and vj ∈ B.

Example 6.3.4.

Consider the graph G that is depicted in Figure 6.3. The graph is acyclic, and the parent

and child sets of each node can be found. For example P4 = {1, 2} and C4 = {5}. Similarly

A4 = {1, 2}, D4 = {5} and ND4 = {1, 2, 3}. The corresponding moral graph is also shown

in this figure. ◦
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Figure 6.3: The graphs discussed in Example 6.3.4. On the left is an example of a directed acyclic

graph, and on the right the moral graph.

6.4 Bayesian networks

Consider a directed acyclic graph G = (V, E) with V = {v1, . . . , vn} and consider a random

vector X of length n, that is indexed by the nodes in the graph

X = (Xv1 , . . . , Xvn) .

In the following we shall use the notation Pv(X) = {Xu : u ∈ Pv} and similarly for Cv(X),

Av(X) Dv(X) and NDv(X).

Assume that each of the variables Xv has values in the Borel space (X ,E). We let P = X(P )

denote the distribution of X – hence P is a probability measure on (Xn,En).

We have the following definition of a Bayesian network

Definition 6.4.1. Let G = (V, E) be a DAG containing n nodes, and let X = (Xv1 , . . . , Xvn)

be a vector of random variables with values in (X ,E) indexed by V. let P be the distribution

of X.

The triplet (G,X,P) is called a Bayesian network, if for each v ∈ V

Xv ⊥⊥ NDv(X) | Pv(X) .
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Example 6.4.2. Assume that X is indexed by the graph in Figure 6.2, and assume that

(G,X,P) is a Bayesian network. Then we e.g. have the conditional independence

Xf ⊥⊥ (Xa, Xb, Xc) | (Xd, Xe)

and the true independence

Xa ⊥⊥ Xb ⊥⊥ Xc

◦

Example 6.4.3. Assume thatX0, X1, X2, . . . is a Markov chain, and consider X = (X0, . . . , Xn)

for some n. Consider the very simple graph G given by

0→ 1→ 2→ · · · → n

then for each k ∈ {0, . . . , n} we have that Pk = {k − 1}, NDk = {0, . . . , k − 1} and we

therefore have

Xk ⊥⊥ NDk(X) | Pk(X)

Hence it is seen that (G,X,X(P )) is a Bayesian network. ◦

In the rest of this chapter we shall (for our own convenience and without loss of generality)

assume that V = {1, . . . , n} and that this an ordering of the elements in V.

We shall need a (little...) more notation. Let n(i) be the number of elements in Pi for each

i ∈ V, and let

(Pi,x)x∈Xn(i)

denote the conditional distribution of Xi given Pi(X). If Pi is empty, we simply use the

unconditional distribution of Xi. Similarly to the definition of Pi(X) we shall consider Pi(x)

for the vector x = (x1, . . . , xn). So we have

Pi(x) = {xj : j ∈ Pi}

Now we can formulate and prove

Theorem 6.4.4. Let G = (V, E) be a graph with V = {1, . . . , n} (for convenience. Let

X = (X1, . . . , Xn) be a random vector indexed by V. Assume that 1, . . . , n is an ordering of

the nodes in V.

Then (G,X,P) is a Bayesian network if and only if the distribution P of X is given by the

conditional distributions {
(Pi,x)x∈Xn(i) : i ∈ V

}
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in the following way

P(A1 × · · · ×An)

=

∫
A1

. . .

∫
An−1

Pn,Pn(x)(An)Pn−1,Pn−1(x)(dxn−1) · · ·P2,P2(x)(dx2)P1(dx1)

Proof. Let for each i ∈ {1, . . . , n}
(
Qi,(x1,...,xi−1)

)
be the conditional distribution of Xi given

(X1, . . . , Xi−1). We let Q1 be the marginal distribution of X1. With this notation we can

always write

P(A1 × · · · ×An)

=

∫
A1

. . .

∫
An−1

Qn,(x1,...,xn−1)(An)Qn−1,(x1,...,xn−2)(dxn−1) · · ·Q2,x1
(dx2)Q1(dx1)

Now the integral representation of P(A1 × · · · ×An) in the theorem follows by noticing that

for each i we have the conditional independence

Xi ⊥⊥ (X1, . . . , Xi−1) | Pi(X) ,

such that

Qi,(x1,...,xi−1) = Pi,Pi(x) .

Assume conversely that the distribution P has the integral form. Then it is seen that for

each i ∈ {1, . . . , n} the conditional distribution of Xi given (X1, . . . , Xi−1) is given by the

Markov kernel (with a slight change of the index–set)

(Pi,x)x∈Xn(i) (6.1)

From this we see for each i

Xi ⊥⊥ (X1, . . . , Xi−1) | Pi(X)

Now let i be fixed, and let v1, . . . , vm be the elements in the non–descendants of i that are

not among {1, . . . , i− 1}:

{v1, . . . , vm} = NDi \ {1, . . . , i− 1}

We furthermore assume that v1, . . . , vm are ordered according to the ordering of V. We want

to show that

Xi ⊥⊥ (X1, . . . , Xi−1, Xv1 , . . . , Xvm) | Pi(X) (6.2)

and this will be shown using induction over k = 0, . . . ,m. As the induction start for k = 0

we have the conditional independence in (6.1). So now assume that for some k ∈ {0, . . . ,m}
we have

Xi ⊥⊥ (X1, . . . , Xi−1, Xv1 , . . . , Xvk) | Pi(X) (6.3)
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For Xvk+1
we have

Xvk+1
⊥⊥ (X1, . . . , Xvk+1−1) | Pvk+1

(X)

Note that because of the ordering, we must have {1, . . . , i−1, v1, . . . , vk} ⊆ {1, . . . , vk+1−1}.
So we can move this information to the conditioning side

Xvk+1
⊥⊥ (X1, . . . , Xvk+1−1) | Pvk+1

(X), X1, . . . , Xi−1, Xv1 , . . . , Xvk

Also note that since vk+1 is among the non–descendants of i, then also the elements in Pvk+1

must be among the non–descendants. Hence Pvk+1
⊆ {1, . . . , i−1, v1, . . . , vk}, so we actually

have

Xvk+1
⊥⊥ (X1, . . . , Xvk+1−1) | X1, . . . , Xi−1, Xv1 , . . . , Xvk

which by reduction gives

Xvk+1
⊥⊥ Xi | X1, . . . , Xi−1, Xv1 , . . . , Xvk

Hence (since obviously Pi ⊆ {1, . . . , i− 1}) we have from Theorem 3.4.3 that

Xi ⊥⊥ (X1, . . . , Xi−1, Xv1 , . . . , Xvk+1
) | Pi(X)

So the desired result (6.2) follows by induction.

The integral form from Theorem 6.4.4 becomes much more clear in the situation, where the

distribution P has density.

Theorem 6.4.5. Assume that the distribution of (X1, . . . , Xn) has density f with respect to

ν∗n, where ν is a σ–finite measure on (X ,E). Then (G,X,P) is a Bayesian network if and

only if the density factorises

f(x1, . . . , xn) =

n∏
i=1

f(xi | Pi(x)) ,

where each f(xi | Pi(x)) is the density of the conditional distribution of Xi given Pi(X).

Proof. This result follows immediately from Theorem 6.4.4, since we know from Chapter

1, that all the conditional densities exists and that a factorisation as above determines the

simultaneous distribution uniquely.

Of course we can use update schemes in order to describe how Xi depends on it’s parents

Pi(X) more concretely. We have results very similar to Theorem 4.1.6 and Theorem 4.1.7.
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Theorem 6.4.6. Assume that X = (X1, . . . , Xn) is defined recursively such that

X1 = φ1(U1)

X2 = φ2(X1, U2)

X3 = φ3(X1, X2, U3)

. . . . . .

Xn = φn(X1, . . . , Xn−1, Un)

where U1, . . . , Un are independent. Define a graph G = (V, E), where j /∈ Pi if j > i, and if

j < i then j ∈ Pi if and only if φi(x1, . . . , xi−1) depends on xj. Then (G,X,P) is a Bayesian

network, and 1, . . . , n is an ordering of the notes in V.

Proof. Similar to the proof of Theorem 4.1.6 - but with heavier notation.

The most simple form of the update scheme is a linear model. This is explained in the

following example.

Example 6.4.7. Assume that X = (X1, . . . , Xn) is defined recursively such that

X1 = ε1

X2 = γ2,1X1 + ε2

X3 = γ3,1X1 + γ3,2X2 + ε3

. . . . . .

Xn = γn,1X1 + · · ·+ γn,n−1Xn−1 + εn

where ε1, . . . , εn are iid. A Bayesian network over X then consists of a graph G = (V, E)

where γi,j 6= 0 if and only if j ∈ Pi.

A simple and useful model would be obtained by assuming that εi ∼ N (0, 1) for i = 1, . . . , n.

In that case Theorem 6.4.5 can be applied to derive the simultaneous density of X. ◦

Theorem 6.4.8. Assume (G,X,P) is a Bayesian network, and assume that 1, . . . , n is an

ordering of the notes in V. Then there exists update functions φ1, . . . , φn with φi : Xn(i) ×
(0, 1) → X , such that if U1, . . . , Un are independent standard uniformly distributed, and
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X ′1, . . . , X
′
n are defined by

X1 = φ1(U1)

X2 = φ2(X1, U2)

X3 = φ3(X1, X2, U3)

. . . . . .

Xn = φn(X1, . . . , Xn−1, Un)

then (X ′1, . . . , X
′
n) has the same distribution as (X1, . . . , Xn).

Proof. Similar to the proof of Theorem 4.1.7.

6.5 Global Markov property

We have the following result, that can be seen as a generalisation of the conditional indepen-

dence that appears in the definition of a Bayesian network.

Theorem 6.5.1. Assume that (G,X,P) is a Bayesian network, and let A, B and S be

disjoint sets in V, such that S separates A and B in the moral graph
(
GAA∪B∪S

)m
of the

sub-graph containing all ancestors of A, B and S. Then

XA ⊥⊥ XB | XS ,

where e.g. XA denotes {Xi : i ∈ A}.

Example 6.5.2. In Figure 6.4 a representation of a Bayesian network can be seen. It can

be seen, that S separates A and B in the moral graph
(
GAA∪B∪S

)m
, so we have that

XA ⊥⊥ XB | XS ,

◦

Most of the work in the proof is in obtaining the following result, which is formulated as a

separate result in order to ease notation.

Lemma 6.5.3. Assume that (G,X,P) is a Bayesian network, and let A, B and S be disjoint

sets in V, such that V = A ∪ B ∪ S. Assume furthermore that S separates A and B in the

moral graph Gm. Then

XA ⊥⊥ XB | XS ,
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Figure 6.4: A representation of a Bayesian network, where A and B are conditionally independent

given S.

Proof. We still assume that V = {1, . . . , n} are ordered. Define for each k ∈ {1, . . . , n}

Ak = A ∩ {1, . . . , k}

Bk = B ∩ {1, . . . , k}

Sk = S ∩ {1, . . . , k}

Let k0 be the smallest number among {1, . . . , n}, where both Ak0 and Bk0 are non–empty.

Assume that k0 ∈ A. Then both Bk0 and Sk0 are parts of the non–descendants of k0, so

Xk0 ⊥⊥ XBk0
, XSk0

| Pk0(X)

We can move XSk0
to the conditioning side and use reduction

Xk0 ⊥⊥ XBk0
| Pk0(X), XSk0

and since the parents of k0 necessarily must be in Sk0 , we have

Xk0 ⊥⊥ XBk0
| XSk0

We now proceed by induction over k = k0, . . . , n. So assume that for some k

XAk ⊥⊥ XBk | XSk (6.4)

and consider k + 1. There are three different scenarios

(a) k + 1 ∈ A
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(b) k + 1 ∈ B

(c) k + 1 ∈ S

and we would like to argue that in any case, it holds that

XAk+1
⊥⊥ XBk+1

| XSk+1
(6.5)

The arguments for (a) and (b) will be identical (because of symmetry), so we shall only

consider the scenarios (a) and (c).

First assume that k + 1 ∈ A. Since all of the subsets Ak, Bk and Sk are among the non–

descendants of k + 1 we have

Xk+1 ⊥⊥ XAk , XBk , XSk | Pk+1(X)

and we move XAk and XSk to the conditioning side and use reduction

Xk+1 ⊥⊥ XBk | Pk+1(X), XAk , XSk

Furthermore we see that the parents of k + 1 are in Sk ∪Ak, so the result is simply

Xk+1 ⊥⊥ XBk | XAk , XSk (6.6)

When combining (6.4) and (6.6) it follows from Theorem 3.18, that

XAk , Xk+1 ⊥⊥ XBk | XSk

which is the same as (6.5).

Now assume instead that k + 1 ∈ S. Then it is not possible that k + 1 has parents in both

A and B. So assume that Pk+1 ⊆ A∪ S (the proof in the B–case will be similar). As before

we must have

Xk+1 ⊥⊥ XAk , XBk , XSk | Pk(X)

and thereby also

Xk+1 ⊥⊥ XBk | Pk+1(X), XAk , XSk

such that (since Pk+1 ⊆ Ak, Sk)

Xk+1 ⊥⊥ XBk | XAk , XSk

Together with (6.4) this gives according to Theorem 3.18 that

XAk , Xk+1 ⊥⊥ XBk | XSk
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Now we move Xk+1 to the conditioning side and use reduction. Then

XAk ⊥⊥ XBk | XSk , Xk+1

which is the same as (6.5) in the situation, where k + 1 ∈ S.

Proof of Theorem 6.5.1. Let V ′ be the subset of V that contains all the nodes in AA∪B∪S ,

and let E ′ be all the edges in E that are connections between elements in V ′. Let G′ = (V ′, E ′)
be the corresponding DAG. Then we must have that

(G′, XV′ , XV′(P ))

is a Bayesian network. We now define A′ to be all the nodes in V ′ that are not separated

from A by S. Let B′ be all the nodes in V ′ that are not in A′ or S. Then obviously, we have

that A′, B′ and S are disjoint with A ⊆ A′, B ⊆ B′ and such that A′ and B′ are separated

by S.

Then it follows from Lemma 6.5.3 that

XA′ ⊥⊥ XB′ | XS

such that it by reduction follows that

XA ⊥⊥ XB | XS .
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Supplementary material

A.1 Measurable spaces

In this section we recall some of the main definitions and results from measure theory that

are used throughout the book. Consider a set X and let E be a collection of subsets of X .

Definition A.1.1. We say that E is a σ–algebra on X , if it holds that

• X ∈ E

• If A ∈ E, then Ac ∈ E

• If A1, A2, . . . ∈ E, then ∪∞n=1An ∈ E

If X is some set, and E is a σ–algebra on X , then we say that the pair (X ,E) is a measurable

space. If D is a collection of subsets of X , then we define σ(D) to be the smallest σ–algebra

on X that contains D. For a σ–algebra E on X and a collection H of subsets of X , we say

that H is a generating system for E, if E = σ(H).

If it for some collection H of subsets of X holds for all A,B ∈ H that A ∩ B ∈ H, then we

say that H is stable under finite intersections.

Definition A.1.2. We say that H is a Dynkin class on X , if it holds that
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1) X ∈ H ,

2) If A,B ∈ H with A ⊆ B, then B \A ∈ H

3) If A1, A2, . . . ∈ H with A1 ⊆ A2 ⊆ . . ., then ∪∞n=1An ∈ H

We have

Theorem A.1.3 (Dynkin’s lemma). Let D ⊆ H ⊆ E be collections of subsets of X . assume

that E = σ(D) and that D is stable under finite intersections. If furthermore H is a Dynkin

class, then H = E.

Definition A.1.4. Let (X ,E) be a measurable space. We say that a function µ : H→ [0,∞]

is a measure (on (X ,H)), if

1) µ(∅) = 0

2) If A1, A2, . . . ∈ H are pairwise disjoint sets, then µ(∪∞n=1An) =
∑∞
n=1 µ(An)

We say that a measure µ on (X ,E) is a probability measure, if µ(X ) = 1. In the affirmative

we call (X ,E, µ) a probability space.

Theorem A.1.5 (Uniqueness theorem for probability measures). Let µ and ν be two prob-

ability measures on (X ,E). Let H be a generating system for E which is stable under finite

intersection. If µ(A) = ν(A) for all A ∈ H, then µ(A) = ν(A) for all A ∈ E.

Let (X ,E) and (Y,K) be two measurable spaces. Then we can consider the product space

(X ×Y,E⊗K). Here the product σ–algebra E⊗K is generated by the system of all product

sets

D = {A×B : A ∈ E, B ∈ K}

Note that D is stable under intersections. If λ and λ̃ are two measures on (X × Y,E ⊗ K)

that are equal on product sets

λ(A×B) = λ̃(A×B)

for all A ∈ E and B ∈ K, then according to Theorem A.1.5 we have λ = λ̃.

Let µ be a measure on (X ,E) and µ be a measure on (Y,K). Then µ⊗ν denotes the uniquely

determined measure defined by (µ⊗ ν)(A×B) = µ(A)ν(B).
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Theorem A.1.6 (Tonelli’s theorem). Let µ be a probability measure on (X ,E) and ν be

probability measure on (Y,K), and assume that f is nonnegative and E ⊗ K measurable.

Then ∫
f(x, y) d(µ⊗ ν)(x, y) =

∫∫
f(x, y) dν(y) dµ(x).

Theorem A.1.7 (Fubini’s theorem). Let µ be a probability measure on (X ,E) and ν be

probability measure on (Y,K), and assume that f is E⊗K measurable and µ⊗ ν integrable.

Then y 7→ f(x, y) is integrable with respect to ν for µ-almost all x, the set where this is the

case is measurable, and it holds that∫
f(x, y) d(µ⊗ ν)(x, y) =

∫∫
f(x, y) dν(y) dµ(x).

We will also need the following abstract change-of-variable theorem

Theorem A.1.8. Let mu be a measure on (X ,E) and let (Y,K) be some other measurable

space. Let t : XX → Y Y be measurable, and let f : Y Y → R be Borel measurable. Then

f is t(µ)-integrable if and only if f ◦ t is µ-integrable, and in the affirmative, it holds that∫
f dt(µ) =

∫
f ◦ tdµ.

Let again (X ,E) and (Y,K) be two measurable spaces. Define the inclusion map ix : Y →
X × Y by

ix(y) = (x, y) for y ∈ X .

Then ix is K− E⊗K–measurable for each fixed y ∈ Y. For G ∈ E⊗K define

Gx = {y ∈ Y : (x, y) ∈ G} = i−1x (G)

Note that Gx is K–measurable due to the measurability of ix.

A.2 Random variables and conditional expectations

Assume that (Ω,F, P ) is a probability space and (X ,E) is some measurable space. We say

that X : Ω→ X is a random variable on (Ω,F) with values in (X ,E), if it F−E–measurable.

That is

X−1(A) = (X ∈ A) ∈ F



158 Supplementary material

for all A ∈ E. For a random variable X on (Ω,F) with values in (X ,E) we define σ(X) to

be the smallest σ–algebra that makes X measurable. Then σ(X) is the sub σ–algebra of F
given by

σ(X) = {(X ∈ A) : A ∈ E}

We have the following extremely useful result

Theorem A.2.1. Assume that X is a random variable with values in (X ,E) and that Z

is a real–valued random variable.Then Z is σ(X)–measurable if and only if there exists a

measurable function φ : (X ,E)→ (R,B) such that

Z = φ ◦X

Let D be a sub σ–algebra of F.

Definition A.2.2. Let X be a real random variable defined on (Ω,F, P ) with E|X| < ∞.

A conditional expectation of X given D is a real random variable denoted E(X | D) that

satisfies

1) E(X | D) is D–measurable

2) E|E(X | D)| <∞

3) For all D ∈ D it holds ∫
D

E(X | D)dP =

∫
D

XdP

We uniqueness of conditional expectations

Theorem A.2.3. (1) If U and
∼
U are both conditional expectations of X given D, then U =

∼
U

a.s.

(2) If U is a conditional expectation of X given D and
∼
U is D-measurable with

∼
U = U a.s.

then
∼
U is also a conditional expectation of X given D.

and existence

Theorem A.2.4. If X is a real random variable with E|X| <∞, then there exists a condi-

tional expectation of X given D.
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Furthermore we have a series of nice properties. Let X,Xn and Y be real random variables,

all of which are integrable.

Theorem A.2.5. (1) If X = c a.s., where c ∈ R is a constant, then E(X|D) = c a.s.

(2) For α, β ∈ R it holds that

E(αX + βY |D) = αE(X|D) + βE(Y |D) a.s.

(3) If X ≥ 0 a.s. then E(X|D) ≥ 0 a.s. If Y ≥ X a.s. then E(Y |D) ≥ E(X|D) a.s.

(4) If D ⊆ D are sub σ-algebras of F then

E(X|D) = E[E(X|E)|D] = E[E(X|D)|E] a.s.

(5) If σ(X) and D are independent then

E(X|D) = EX a.s.

(6) If X is D-measurable then

E(X|D) = X a.s.

(7) If it holds for all n ∈ N that Xn ≥ 0 a.s. and Xn+1 ≥ Xn a.s. with limXn = X a.s.,

then

lim
n→∞

E(Xn|D) = E(X|D) a.s.

(8) If X is D-measurable and E|XY | <∞, then

E(XY |D) = X E(Y |D) a.s.

(9) If f : R → R is a measurable function that is convex on an interval I, such that

P (X ∈ I) = 1 and E|f(X)| <∞, then it holds that

f
(
E(X|D)

)
≤ E

(
f(X)|D)

)
a.s.

Now assume that X is a random variable with values in (X ,E) and that Y is a real random

variable with E|Y | < ∞. If we are looking for the conditional expectation of Y given

D = σ(X), then we write E(Y | X) rather than E(Y | σ(X)). The resulting random variable

is referred to as the conditional expectation of Y given X. We have
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Theorem A.2.6. Let Y be a real random variable with E|Y | < ∞, and assume that X is

a random variable with values in (X ,E). Then the conditional expectation E(Y | X) of Y

given Y is characterised by

1) E(Y | X) is σ(X)-measurable

2) E|E(Y | X)| <∞

3) For all A ∈ E it holds that∫
(X∈A)

E(Y | X)dP =

∫
(X∈A)

Y dP

According to Theorem A.2.1 there exists a measurable map φ : X → R such that

E(Y | X) = φ(X)
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Hints for exercises

B.1 Hints for chapter 1

Hints for exercise 1.1. Use Theorem 1.3. Show that the conditional distribution is a hyper-

geometric distribution and find the parameters. ◦

Hints for exercise 1.3.

(1) Use the extended Tonelli to calculate an integral with respect to (X,Y )(P ) as a double

integral.

(2) Px has density

fx(y) =
1

x
e−y/x for y > 0

with respect to the Lebesgue measure. Use question (1) to find EY .

◦

Hints for exercise 1.10.

(2) Recall that according to Theorem 1.5.1 there exists a E−B–measurable function φF with

values in [0, 1] that satisfies (1.4) in the notes. Use this function in the construction.
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◦

B.2 Hints for chapter 2

Hints for exercise 2.2. Get inspiration from the proof of Theorem 2.2.1! ◦

Hints for exercise 2.6.

(1) Write

P (Z = 1) = P (U ≤ f(Y )

cg(Y )
) = E(P (U ≤ f(Y )

cg(Y )
|Y )) = ...

◦

Hints for exercise 2.7.

(4) Use that (U1, U2) is uniform on (0, 1)2, such that for A ⊆ (0, 1)2 the probability

P ((U1, U2) ∈ A) is simply the area of A.

(8) You should show that∫
A

Py(B)X(1)(P )(dy) = P (X(1) ∈ A,X(2) ∈ B)

Use the change–of–variable theorem to obtain∫
A

Px1
(B)X(1)(P )(dx1) =

∫
(X1∈A)

1(X1<X2)
ν(B ∩ (X1,∞))

ν((X1,∞))
dP

+

∫
(X2∈A)

1(X2<X1)
ν(B ∩ (X2,∞))

ν((X2,∞))
dP

Use the change–of–variable theorem again (integrate with respect to (X1, X2)(P )) and

use Tonelli (since X1 ⊥⊥ X2).

◦

Hints for exercise 2.9.
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(2) Simply use that the points (U1
1 , U

2
1 ), . . . , (U1

N , U
2
N ) are independent and e.g. have prob-

ability m2(Aj) to be in Aj .

(3) Show the (unconditional) probability

P (N(A1) = n1, . . . , N(Am) = nm) =

m∏
j=1

(λm2(Aj))
nj

nj !
e−λm2(Aj)

(4) Use the points (U1
1 , U

2
1 ), . . . , (U1

N , U
2
N ) and then remove some of them with a probability

that depends on the value of k(U1
k , U

2
k ). Get inspiration from Exercise 2.6...

◦

Hints for exercise 2.10.

(3) Use (1) and (2) to calculate E(Sn | Sn).

◦

B.3 Hints for chapter 3

Hints for exercise 3.1.

(2) Use Theorem 3.3.6.

(3) Use e.g. the extended Tonelli.

(4) Use (1) and (2).

◦

Hints for exercise 3.2.

(2) Write

P (X1 ∈ A,X2 ∈ B,X1 +X2 ∈ C) = P (X1 ∈ A, (X1 +X2)−X1 ∈ B,X1 +X2 ∈ C)

and write it as an integral with respect to (X1, X1 +X2). Use the extended Tonelli.
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(3) For the first result, write B = x − A and use Theorem 3.5.3 to find an alternative

expression for Rx. For the second result, you can e.g. consider the distribution function

for Px and realise that it only has the values 0 and 1, such that it must have exactly

one jump (and this must be of size 1).

(4) Calculate E(X1 | X1 +X2).

(5) You should use φ1 = φ. Calculate the probability P (X1 = φ(X1 +X2)) as an integral

with respect to (X1, X1+X2) and use the extended Tonelli. You now have an expression

for Px...

(6) Choose X3 such that X1 +X2 +X3 is particularly simple.

◦

Hints for exercise 3.3.

(2) Let for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}

pij = P (Y = j | X = i)

These conditional probabilities are simply the point probabilities in the conditional

distribution of Y given X. Use (1) for each value of i.

◦

Hints for exercise 3.4. Recall that if U is uniform on (0, 1), then −β log(1 − U) has an

exponential distribution. ◦

B.4 Hints for chapter 4

Hints for exercise 4.1. Use Theorem 4.1.5 and reduction. ◦

Hints for exercise 4.3.

(3) The Strong Law of Large Numbers may be useful: If X1, X2, . . . are iid with E|X1| <∞,
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then
1

n

n∑
k=1

Xk → EX1 P–a.s.

(5) Rewrite P (Y1 = m1, . . . , Yn = mn) to an event concerning the Z–variables.

(6) Show that both of the processes N0, N1, . . . and M0,M1, . . . only have jumps at the

times T1, T2, . . ..

◦

Hints for exercise 4.4.

(1) Rewrite the set (τ + k = n) = (τ = n− k).

(3) You should show that for all n ∈ N0(
Xτ+n+1, τ + n+ 1

)
⊥⊥
(
Xτ , τ,Xτ+1, τ + 1, . . . , Xτ+n, τ + n

)
| Xτ+n, τ + n

Use Theorem 4.2.7 with the stopping time τ +n, and move some information around...

◦

Hints for exercise 4.5.

(1) Use Theorem 4.3.6 for the stopping times τ + k.

(2) See the remark after the proof of Theorem 4.3.5.

◦

Hints for exercise 4.6.

(2) Show that P (U1 ∈ A1, . . . , Un ∈ An) = P (U1 ∈ A1) · · ·P (Un ∈ An) for all n ∈ N.

Divide according to the value of τ , and use that e.g. U1
k+1 is independent of (U1 ∈

A1, . . . , Uk ∈ Ak) ∩ (τ = k).

(3) Realise that Xn+1 = φ(Xn, Un+1).
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◦

Hints for exercise 4.7.

(1) Write

XσB =

∞∑
k=0

XτA+k1(σB=τA+k)

and write (σB = τA + k) as a set involving XτA+1, . . . , XτA+k.

(3) Argue that

(X1, X2, . . .) | X0
D
= (Xτk+1, Xτk+2, . . .) | Xτk

and that for some function ψ, we have

Xτ1 = ψ(X1, X2, . . .) and Xτk+1
= ψ(Xτk+1, Xτk+2, . . .)

◦

Hints for exercise 4.8.

(1) You should show that

Xτ∧(n+1) ⊥⊥ (Xτ∧0, . . . , Xτ∧(n−1)) | Xτ∧n

Use the strong Markov property to obtain

(Xτ∧n, Xτ∧n+1) ⊥⊥ Fτ∧n | Xτ∧n

Firstly, use that (Xτ∧0, . . . , Xτ∧(n−1)) is Fτ∧n–measurable. Then write

Xτ∧(n+1) = Xτ∧n+11(τ>n) +Xτ∧n1(τ≤n) (B.1)

Obtain e.g. 1(τ≤n) as a function of Xτ∧n.

(2) Use (B.1) and the substitution theorem. Show that the conditional distribution of Yn+1

given Yn is (Qx)x∈X , where

Qx =

{
δx x ∈ A
Px x /∈ A

◦
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B.5 Hints for chapter 5

Hints for exercise 5.1.

(2) Standard approximation argument using indicator functions.

(3) For the last equality recall/use that PXn(A) is a version of P (Xn+1 ∈ A | Xn). Use the

Markov property.

(4) Hint: Use that (τ > n) is Fn–measurable.

(6) See example 4.3.8.

(7) Use The Strong Law of Large Numbers (applied to both 1
N

∑τN−1
k=0 f(Xn) and τN/N).

◦

Hints for exercise 5.2.

(1) Show and use that

Xn = ρnX0 + ρn−1ε1 + ρn−2ε2 + · · ·+ ρεn−1 + εn

(2) If f is a bounded measurable function and ν = N (µ, σ2), then∫
f dν =

∫
f(x)

1√
2σ2

exp
(
− 1

2σ2
(x− µ)2

)
dλ(x) ,

where λ is the Lebesgue measure. Use Dominated convergence and that

∞∑
n=0

ρ2n =
1

1− ρ2
.

◦

Hints for exercise 5.3.

(2) Assume for contradiction that a stationary initial distribution µ exists. Find N ∈ N
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such that P (X0 ∈ [−N,N ]) > 0. Then for all n ∈ N

0 < P (X0 ∈ [−N,N ]) = P (Xn ∈ [−N,N ])

= · · ·

=

∫
R

∫
[−N,N ]

k(n)x (y) dλ(y)dµ(x) .

Let n→∞ and get 0.

◦

Hints for exercise 5.4.

(1) Simply use the integral representation of Pnx (A1 × · · · ×An).

(4) Consider the conditional likelihood function as a function of ρ and find maximum.

(5) In Example 5.3.6 (and almost also in Exercise 5.2) it was shown that the transition

densities are asymptotically stable and that N (0, 1/(1 − ρ2)) is the stationary initial

distribution. Let f0 be the density for this distribution. Use Theorem 5.3.4 to obtain

that e.g.

1

n

n−1∑
i=0

XiXi+1 → Ef0·λ(X0X1) a.s. ,

where Ef0·λ means expectation in a model, where X0 ∼ N (0, 1/(1− ρ2)).

◦

Hints for exercise 5.5. A standard argument using transformation of densities. ◦

Hints for exercise 5.6.

(4) Use that there must exist α < 1 and K <∞ such that

ξ(x)2 + σ(x)2

x2
< α for |x| > K

Also use that for all compact sets B we must (?) have

inf
(x,y)∈[−r,r]×B

kx(y) > 0 ,

since (x, y)→ kx(y) is continuous.
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(5) Use induction and (2).

◦

Hints for exercise 5.8.

(1) You could show that ∫ y

0

kx(y) dx = P (|x− U1| ≤ y) .

Use substitution...

(3) Use (2) and the drift function V (x) = eβx. Let α =
∫∞
0
e−βyf(y) dy.

(4) Use Corollary 5.5.2 and that for all n ∈ N exists Kn such that xn ≤ eβx +Kn.

(5) Use that EX2
0 = EX2

1 .

(6) Let X0 have density e−x and find the density of X1.

◦

Hints for exercise 5.9. Consider a constant drift function. ◦

Hints for exercise 5.10.

(2) You should simply show, that

P (X1 ∈ A1, Y1 ∈ B1, X2 ∈ A2, Y2 ∈ B2)

=

∫
A1×B1

(∫
A2×B2

k(x1,y1)(x2, y2) d(ν1 ⊗ ν2)(x2, y2)
)

d(X1, Y1)(P )(x1, y1)

(3) You should show that

f0(x2, y2) = P ∗1(f0) =

∫∫
k(x1,y1)(x2, y2)f0(x1, y1)dν1(x1) dν2(y1)

For this, first show that∫
f0(x1, y1)dν1(x1)f1y1(x2) = f0(y1, x2)

(Recall, that f0 is the density for (X,Y ). It can be helpful to invent the notation f0,1

for the marginal density of X and f0,2 for the marginal density of Y ).
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(4) Find the transition density k(x1,y1)(x2, y2) (this will not depend on x1). Use 5.9, since

infimum over (x1, y1) ∈ [0, 1]× {0, 1} is extremely simple.

◦
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