Curves and Surfaces

Lecture Notes for Geometry 1

Second printing 2013

Henrik Schlichtkrull
Department of Mathematics
University of Copenhagen

Preface

The topic of these notes is differential geometry. Differential geometry is the study of geometrical objects using techniques of differential calculus, in particular differentiation of functions. The objects that will be studied here are curves and surfaces in two- and three-dimensional space, and they are primarily studied by means of parametrization. The main properties of these objects, which will be studied, are notions related to the shape. We will study tangents of curves and tangent spaces of surfaces, and the notion of curvature will be introduced. These notions are defined through differentiation of the parametrization, and they are related to first and second derivatives, respectively.

The notion of curvature is quite complicated for surfaces, and the study of this notion will take up a large part of the notes. The culmination is a famous theorem of Gauss, which shows that the so-called Gauss curvature of a surface can be calculated directly from quantities which can be measured on the surface itself, without any reference to the surrounding three dimensional space. This theorem has played a profound role in the development of more advanced differential geometry, which was initiated by Riemann.

The theory developed in these notes originates from mathematicians of the 18th and 19th centuries. Principal contributors were Euler (1707-1783), Monge (1746-1818) and Gauss (1777-1855), but the topic has much deeper roots, since it builds on the foundations laid by Euclid (325-265 BC).

In these notes a significant emphasis is placed on the interplay between intuitive geometry and exact mathematics. Ideas are explained by numerous illustrations, but they are also given rigorous proofs. It is my hope that the student of the text will perceive the importance of both viewpoints. The notes are adapted to an intensive course which runs over 7 weeks, so that each chapter corresponds approximately to one week of teaching.

The notes were written and used for the first time in 2005 . The present version, intended for 2011, has been improved and corrected thanks to the suggestions of many students. Undoubtedly there are places where further revision would be desirable, and I will appreciate all comments and corrections. The drawings are made with Anders Thorup's program SPLINES, downloadable from http://www.math.ku.dk/~thorup/splines/.

Henrik Schlichtkrull
March 2011

Preface to the 2012 edition

The two major differences between these notes and the 2011 edition are:
A) The terminology and the assumptions regarding parametrized surfaces have changed. Now, the set $\sigma(U)$, lying in \mathbb{R}^{3}, is seen to be the fundamental object, while the parametrization $\sigma: U \mapsto \mathbb{R}^{3}$ and the open set $U \subseteq \mathbb{R}^{2}$, while of course indispensable, are secondary to that. Furthermore, σ is here, among other things, a homeomorphism.
B) A Chapter 8, "Gauss-Bonnet", has been added.

Besides this, a few minor additions have been given.
Henrik Schlichtkrull has generously made the TeX code of the 2011 version available to facilitate these modifications. Besides this, the changes are my doing, and represent only my own point of view.

Contents

Preface -2
Preface to the 2012 edition -3
Contents -4

1. Parametrized curves and surfaces. 1
1.1 Curves 1
1.2 Surfaces 3
1.3 Graphs 7
1.4 Level sets 8
1.5 The implicit function theorem, two variables 9
1.6 The implicit function theorem, more variables 13
1.7 The implicit function theorem, more equations 15
1.8 Exercises 18
2. Tangents 21
2.1 Regular curves and tangent lines 21
2.2 The tangent line of a level set 37
2.3 The tangent planes of a regular surface 24
2.4 Reparametrization of curves 27
2.5 Reparametrization of surfaces 28
2.6 Invariance under reparametrization 29
2.7 The unit normal, orientation 30
2.8 Regular curves as graphs 31
2.9 The inverse function theorem 33
2.10 Regular surfaces as graphs 35
2.11 Curves on a regular parametrized surface 36
2.12 Embedded surfaces 37
2.13 Exercises 38
3. The first fundamental form 43
3.1 Arc length 43
3.2 Lines as shortest curves 45
3.3 Unit speed parametrization 46
3.4 The first fundamental form 47
3.5 Introduction to areas and plane integrals 50
3.6 Null sets 59
3.7 Double integrals 55
3.8 Transformation of integrals 57
3.9 Surface area 57
3.10 Exercises 59
4. Curvature 65
4.1 Curvature of plane curves 65
4.2 Curvature of unit speed curves 67
4.3 The tangent angle 69
4.4 Curvature of space curves 71
4.5 Torsion 73
4.6 The osculating plane and the binormal vector 74
4.7 The Frenet formulas 75
4.8 Curvature of curves on a surface 76
4.9 Interpretation of normal curvature 79
4.10 Geodesics 80
4.11 Exercises 81
5. The second fundamental form 85
5.1 The shape operator 85
5.2 The second fundamental form 88
5.3 Coordinate expressions for the second fundamental form. 89
5.4 A formula for the shape operator 90
5.5 Diagonalization of the second fundamental form 92
5.6 The graph of a quadratic form 94
5.7 The type of a point on a surface 97
5.8 Exercises 98
6. Teorema egregium 103
6.1 The Gaussian curvature 103
6.2 Intrinsic geometry 104
6.3 Christoffel symbols 106
6.4 The remarkable theorem of Gauss 109
6.5 Isometries 110
6.6 Exercises 117
7. Geodesics 121
7.1 The geodesic equations 121
7.2 Existence of geodesics 124
7.3 Geodesic coordinates 124
7.4 The first fundamental form of a geodesic coordinate system 125
7.5 Interpretation of the Gauss theorem 127
7.6 Exercises 129
8. Gauss-Bonnet 131
8.1 Vector fields along curves 131
8.2 The finer details of parallel transport 133
8.3 Geodesics and the Gauss curvature 135
8.4 Gauss and Euler 137
8.5 Exercises 140
Appendices 141
A Euclidean spaces 141
B Differentiable functions of several variables 143
C Normal vectors and cross products 147
D Diagonalization of symmetric matrices 149
E Hyperbolic functions 153
Notational index 155
Index 157

Chapter 1

Parametrized curves and surfaces

In this chapter the basic concepts of curves and surfaces are introduced, and examples are given. These concepts will be described as subsets of \mathbb{R}^{2} or \mathbb{R}^{3} with a given parametrization, but also as subsets defined by equations. The connection from equations to parametrizations is drawn by means of the implicit function theorems (Theorems 1.5, 1.6 and 1.7).

1.1 Curves

It is well known from elementary geometry that a line in \mathbb{R}^{2} or \mathbb{R}^{3} can be described by means of a parametrization $t \mapsto p+t q$ where $q \neq 0$ and p are fixed vectors, and the parameter t runs over the real numbers. Likewise, a circle in \mathbb{R}^{2} (say with center 0 and radius 1) can be parametrized by $t \mapsto(r \cos t, r \sin t)$ where $t \in \mathbb{R}$. The common nature of these examples is expressed in the following definition.

Definition 1.1. A parametrized continuous curve in $\mathbb{R}^{n}(n=2,3, \ldots)$ is a continuous map $\gamma: I \rightarrow \mathbb{R}^{n}$, where $I \subset \mathbb{R}$ is an open interval (with endpoints $-\infty \leq a<b \leq \infty)$.

The image set $\mathcal{C}=\gamma(I) \subset \mathbb{R}^{n}$ is called the trace of the curve. It is important to notice that we distinguish the curve and its trace. Physically, a curve describes the motion of a particle in n-space, and the trace is the trajectory of the particle. If the particle follows the same trajectory, but with different speed or direction, the curve is considered to be different.

For example, the positive x-axis is the trace of the parametrized curve $\gamma(t)=(t, 0)$ where $t \in I=] 0, \infty\left[\right.$, but it is also the trace of $\tilde{\gamma}(t)=\left(e^{t}, 0\right)$ with $t \in \mathbb{R}$.

Notice also that we do not require the parametrization to be injective. A point in the trace, which corresponds to more than one parameter value t, is called a self-intersection of the curve.

An extreme example of self-intersection can be seen below in the Example 1.1.2 with the ellipse. Here, all points are self-intersections because values $t+2 \pi k$ correspond to the same point for all $k \in \mathbb{Z}$.

In these notes we will mainly be concerned with plane curves ($n=2$) and space curves $(n=3)$, but in order to treat both cases simultaneously it is convenient not to specify n. We do not assume $n \leq 3$ for the time being, since it does not lead to any simplifications.

A parametrized continuous curve, for which the map $\gamma: I \rightarrow \mathbb{R}^{n}$ is differentiable up to all orders, is called a parametrized smooth curve. Recall that a map f into \mathbb{R}^{n} is differentiable if each of its components f_{1}, \ldots, f_{n} is differentiable. The class of continuous curves is wide and the requirement of smoothness is a strong limitation. For example, the bizarre Peano curve, which is defined on $[0,1]$ and has the entire unit square as trace, is continuous but not smooth. In these notes we will only study smooth curves, and we therefore adopt the convention that from now on a parametrized curve is smooth, unless otherwise mentioned.

We have already seen that lines and circles can be parametrized as smooth curves. Here are some further examples.

Example 1.1.1. The constant curve given by $\gamma(t)=p, t \in I$, where $p \in \mathbb{R}^{n}$ is fixed and I some open interval, is a parametrized curve.

Example 1.1.2. The map $\gamma(t)=(a \cos t, b \sin t)$, where $a, b>0$ are constants, parametrizes the ellipse $\mathcal{C}=\left\{(x, y) \left\lvert\, \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\right.\right\}$.

Example 1.1.3. Let $\gamma(t)=(a \cosh t, b \sinh t)$ where $a, b>0$ and (see Appendix E)

$$
\cosh t=\frac{e^{t}+e^{-t}}{2}, \quad \sinh t=\frac{e^{t}-e^{-t}}{2}
$$

Using the equation $\cosh ^{2} t-\sinh ^{2} t=1$ we see that γ is a parametrization of the hyperbola (branch) $\mathcal{C}=\left\{(x, y) \left\lvert\, \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1\right., x>0\right\}$.

Example 1.1.4. The space curve $\gamma(t)=(\lambda t, r \cos (\omega t), r \sin (\omega t))$, where $r>0$ and $\lambda, \omega \neq 0$ are constants, is called a helix. It is the spiraling motion of a point which moves along the x-axis with velocity λ while at the same time rotating around this axis with radius r and angular velocity ω.

1.2 Surfaces

We will in the following be working with fundamental properties of functions. One such is continuity, and we recall that the definition given in Appendix A (page 142) is equivalent, where applicable, to the following more general definition:

Definition of continuity. A function f defined on a metric space A and with valuesis in a metric space B is continuous if and only if $f^{-1}(O)$ is an open subset of A for any open subset O of B.

Any subset $A \subseteq \mathbb{R}^{n}$ is a metric space with the metric from \mathbb{R}^{n}. The open subsets of A are precisely the intersections of A with the open sets in \mathbb{R}^{n}.

Let $A \subset \mathbb{R}^{n}$. In this chapter we will often use the following proposition without proof.

Proposition 1.2. A map $\phi: A \mapsto \mathbb{R}^{m}$ is continuous if there exists an open set $W \subseteq \mathbb{R}^{n}$ and a continuous function $F: W \mapsto \mathbb{R}^{m}$ such that $A \subseteq W$ and ϕ is the restriction to A of the function F.

If $A=\cup_{i=1}^{N} A_{i}$ and if for each i there is a pair W_{i}, F_{i} as above, referring to $A_{i},\left.\phi\right|_{A_{i}}$, then ϕ is continuous.
Lemma 1.2. Let $\theta_{0} \in \mathbb{R}$ be fixed. The map $\left.c:\right] \theta_{0}, \theta_{0}+2 \pi\left[\mapsto \mathbb{R}^{2}: c(\theta)=\right.$ $(\cos \theta, \sin \theta)$ has got a continuous inverse. This inverse we will occasionally denote by $c_{\theta_{0}}^{-1}$. Notice that the image of c is the full unit circle in \mathbb{R}^{2} except the point $\left(\cos \theta_{0}, \sin \theta_{0}\right)$.

Let $U \subseteq \mathbb{R}^{m}$ be open, and let σ be a map from U to \mathbb{R}^{n}. We will say that σ is smooth if it is infinitely often differentiable. This is equivalent to all the coordinate functions $\sigma_{1}, \ldots, \sigma_{n}$ of σ being infinitely often differentiable with respect to the variables u_{1}, \ldots, u_{m} of U.
Definition 1.2. A parametrized surface $S=S_{\text {par }}$ in \mathbb{R}^{3} is a subset of \mathbb{R}^{3} that can be obtained as $S=S_{p a r}=\sigma(U)$, where σ is a map $\sigma: U \rightarrow \mathbb{R}^{3}$, and
such that the following conditions are satisfied:

$$
\begin{array}{rll}
(P 0): & U \subset \mathbb{R}^{2} \text { is an open, non-empty set } \\
(P I): & \sigma \text { is smooth } \\
(P I I): & \sigma \text { is injective } \\
(P I I I): & \sigma^{-1} \text { is continuous }
\end{array}
$$

The pair (σ, U) will often be called a coordinate chart or a local chart. Furthermore, U will be called the local coordinates, and σ will be called the parametrization of the parametrized surface.

It will often be convenient to consider the pair $(u, v) \in U$ as a set of coordinates of the point $\sigma(u, v)$ in the image $\mathcal{S}=\sigma(U)$. This will be formalized later.

It is often also useful to consider open subsets of parametrized surfaces. In this connection observe

Lemma 1.2. Let $\Omega \subseteq \mathbb{R}^{3}$ be an open set and let $S=\sigma(U)$ be a parametrized surface. Then $\Omega \cap S$ is a parametrized surface. Furthermore, if $U_{1} \subset U$ is an open subset, then $\sigma\left(U_{1}\right)$ is a a parametrized surface.
Proof. Since σ is smooth it is, in particular, continuous. Hence $\tilde{U}=\sigma^{-1}(\Omega \cap$ $\sigma(U))=\sigma^{-1}(\Omega)$ is an open subset of U. If we let $\tilde{\sigma}$ denote the restriction of σ to this set, it is clear that the pair $(\tilde{\sigma}, \tilde{U})$ fulfills the requirements $(P 0),(P I),(P I I),(P I I I)$ and that $\Omega \cap S=\tilde{\sigma}(\tilde{U})$. The proof of the second claim is omitted. Again, it is a restriction of σ that is used; in this case to U_{1}.

We will say that $\Omega \cap S$ is a restriction of the parametrized surface S and that $\tilde{\sigma}$ is a restriction of σ.

Example 1.2.1. A plane. Let $\mathbf{p}, \mathbf{q}_{1}, \mathbf{q}_{2} \in \mathbb{R}^{3}$ be fixed vectors and let

$$
\sigma(u, v)=\mathbf{p}+u \mathbf{q}_{1}+v \mathbf{q}_{2}
$$

for $(u, v) \in U=\mathbb{R}^{2}$. If $\mathbf{q}_{1}, \mathbf{q}_{2}$ are linearly independent, the image $\sigma(U)$ is a plane. Otherwise it is a line or a point. Let us for simplicity assume that \mathbf{q}_{1} and \mathbf{q}_{2} are orthogonal unit vectors. Then σ is smooth and injective. Let \mathbf{q}_{3} be an additional vector such that $\left\{\mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}\right\}$ is an orthonormal basis in \mathbb{R}^{3}. The map

$$
F:(x, y, z) \mapsto\left(((x, y, z)-\mathbf{p}) \cdot \mathbf{q}_{1},((x, y, z)-\mathbf{p}) \cdot \mathbf{q}_{2}\right)
$$

is clearly continuous. Restricted to $\sigma(U)$ it is identical to σ^{-1}. Thus a plane is a parametrized surface, and any open subset of a plane is also a parametrized surface.

Example 1.2.2. A sphere. Let

$$
\sigma(u, v)=(\cos u \cos v, \cos u \sin v, \sin u)
$$

where $(u, v) \in \mathbb{R}^{2}$. This is a standard parametrization of the unit sphere

$$
S^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\}
$$

The parameters u and v are called latitude and longitude, and together they are called spherical coordinates.

This parametrization covers the total sphere, but it is not injective. On the other hand, if we set, for example, $U=]-\frac{\pi}{2}, \frac{\pi}{2}[\times]-\pi, \pi[$, then $\sigma(U) \subset$ \mathbb{R}^{3} is a parametrized surface. The map σ is clearly smooth and injective on the open set U. It is not surjective onto S^{2}, since a half-circle on the 'back' of the sphere will be outside the image $\sigma(U)$. On the other hand, naturally, it is surjective onto $\sigma(U)$. The continuous function F_{1} defined on $\left\{(x, y, z) \in \mathbb{R}^{r} \mid\|z\|<1\right\}$ by

$$
F_{1}(x, y, z)=\arcsin z,
$$

and the continuous function F_{2} defined on $\left\{(x, y, z) \in \mathbb{R}^{3} \mid(x, y) \neq(0,0)\right\}$ by

$$
F_{2}(x, y, z)=c_{-\pi}^{-1}\left(\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}}}\right)
$$

make up the coordinate functions of a continuous function F defined on the open set $\left\{(x, y, z) \in \mathbb{R}^{r} \mid(x, y) \neq(0,0)\|z\|<1\right\}$ which coincides with σ^{-1} on $\sigma(U)$. Thus $\sigma(U) \subset S^{2}$ is a parametrized surface.

We remark, that the problem with the lack of surjectivity is not essential. Other parametrizations may be considered. For instance $\tilde{\sigma}: U=$ $]-\frac{\pi}{2}, \frac{\pi}{2}[\times] 0,2 \pi\left[\mapsto \mathbb{R}^{3}\right.$ defined by

$$
\sigma(u, v)=(\cos u \cos v, \sin u, \cos u \sin v) .
$$

In this way one can "cover" S^{2} by parametrizations. We will return to this topic later.

Example 1.2.3. A cylinder. Let $r_{0}>0$ and put

$$
\sigma(u, v)=\left(r_{0} \cos v, r_{0} \sin v, u\right)
$$

where $(u, v) \in \mathbb{R}^{2}$. The image \mathcal{S} of σ is the cylinder $\left\{(x, y, z) \mid x^{2}+y^{2}=r_{0}^{2}\right\}$ of radius r_{0}.

As before we have to restrict to a smaller set U if we want σ to be injective, for example by requiring v to belong in a fixed open interval of length 2π.

Actually, the whole cylinder is in fact a parametrized surface since one can define a map ρ on the open set $U=\left\{(x, y) \in \mathbb{R}^{2} \mid 0<\left(x^{2}+y^{2}\right)<\pi^{2}\right\}$ into \mathbb{R}^{3} that covers the cylinder:

A point $(x, y) \in U$ can be written in polar coordinates as

$$
x=r \cos \theta \text { and } y=r \sin \theta \text { with } 0<r<\pi .
$$

Then define ρ by

$$
\rho(x, y)=\left(\cos \theta, \sin \theta, \frac{\cos r}{\sin r}\right)
$$

and observe that this does not depend on which angle $\theta+N 2 \pi(N \in \mathbb{Z})$ we use. One can easily check that this satisfies all the requirements thus making the cylinder with radius 1 a parametrized surface in \mathbb{R}^{3}.

Example 1.2.4. A cone. Let $\lambda>0$ and

$$
\sigma(u, v)=(\lambda u \cos v, \lambda u \sin v, u)
$$

where $(u, v) \in \mathbb{R}^{2}$, then the image of σ is the cone $\left\{(x, y, z) \mid x^{2}+y^{2}=\lambda^{2} z^{2}\right\}$.

1.3 Graphs

By definition, the graph of a map $h: A \rightarrow B$, where A and B are arbitrary sets, is the set of all pairs $(x, h(x)) \in A \times B$, where $x \in A$.

Let $h: I \rightarrow \mathbb{R}$ be a smooth function, where $I \subset \mathbb{R}$ is an open interval. The $\operatorname{map} t \mapsto(t, h(t))$ from I to \mathbb{R}^{2} parametrizes the graph and makes it into a parametrized plane curve. We shall always regard the graph as being this parametrized curve.

Likewise we shall regard the graph of a smooth function $h: I \rightarrow \mathbb{R}^{2}$ as the parametrized curve $t \mapsto(t, h(t))=\left(t, h_{1}(t), h_{2}(t)\right)$ in \mathbb{R}^{3}.

Example 1.3.1. The graph of an affine linear function $h(t)=a t+b, \mathbb{R} \rightarrow \mathbb{R}$ (where $a, b \in \mathbb{R}$), is the line in \mathbb{R}^{2} parametrized by $(t, a t+b)$. All lines which are not perpendicular to the x-axis can be parametrized in this fashion.

Similarly the graph of an affine linear function $h(t)=a t+b, \mathbb{R} \rightarrow \mathbb{R}^{2}$ (where $a=\left(a_{1}, a_{2}\right), b=\left(b_{1}, b_{2}\right) \in \mathbb{R}^{2}$), is the line in \mathbb{R}^{3} parametrized by
$\left(t, a_{1} t+b_{1}, a_{2} t+b_{2}\right)$. All lines of direction not perpendicular to the x-axis can be parametrized in this fashion.

Example 1.3.2. The helix in Example 1.1.4 with $\lambda=1$ is the 3-dimensional graph of the map $h: \mathbb{R} \rightarrow \mathbb{R}^{2}$ defined by $h(t)=(r \cos (\omega t), r \sin (\omega t))$.

We shall also consider surfaces, which are graphs. If $h: U \rightarrow \mathbb{R}$ is a smooth function defined on an open set $U \subset \mathbb{R}^{2}$, then the graph of h is the set

$$
\mathcal{G}_{h}=\{(u, v, h(u, v)) \mid(u, v) \in U\} \subset \mathbb{R}^{3} .
$$

Equipped with the map

$$
\sigma_{h}(u, v)=(u, v, h(u, v)), \quad(u, v) \in U
$$

the graph is a parametrized smooth surface:
Properties (P0) and (PI) are clear and will not be discussed further. As for $(P I I)$, notice that we clearly have

$$
\begin{aligned}
\sigma\left(u_{1}, v_{1}\right)=\left(u_{1}, v_{1}, h\left(u_{1}, v_{)}\right)=\right. & \left(u_{2}, v_{2}, h\left(u_{2}, v_{2}\right)\right)=\sigma\left(u_{2}, v_{2}\right) \\
& \Rightarrow\left(u_{1}, v_{1}\right)=\left(u_{2}, v_{2}\right),
\end{aligned}
$$

so that σ_{h} is injective.
Finally, property (PIII) is established in the following very typical way: Let $\operatorname{Pr}(x, y, z)=(x, y)$ be the projection from \mathbb{R}^{3} to \mathbb{R}^{2}. This map is clearly continuous. Indeed, it is linear. The restriction of Pr to \mathcal{G}_{h} is equal to σ^{-1}, and hence, by Proposition 1.2, σ^{-1} is continuous.

Example 1.3.3. The graph of an affine linear function $\mathbb{R}^{2} \rightarrow \mathbb{R}$ is a plane in \mathbb{R}^{3}. Say $h(u, v)=a u+b v+c$ where $a, b, c \in \mathbb{R}$, then $\sigma(u, v)=(u, v, a u+b v+c)$. All planes, except those which are perpendicular to the $x y$-plane, can be parametrized in this fashion.

Example 1.3.6. The graph of the function $h(u, v)=\sqrt{1-u^{2}-v^{2}}$, defined on the unit disk $U=\left\{(u, v) \in \mathbb{R}^{2} \mid u^{2}+v^{2}<1\right\}$ is a half-sphere.

1.4 Level sets

Very often a plane curve is described, not by means of a parametrization, but by an equation. For example, a line is represented by an equation of the form $a x+b y=c$ with $a, b, c \in \mathbb{R}$ and $(a, b) \neq(0,0)$, and a circle is represented by an equation of the form $\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=r^{2}$ with $r>0$.

Similarly a surface can be described by an equation. For example, a plane in \mathbb{R}^{3} is the set of solutions to an equation $a x+b y+c z=d$, where $(a, b, c) \neq$ $(0,0,0)$, and a sphere is represented by $\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}=r^{2}$.

We shall now give a general definition which covers both situations.

Definition 1.4.1. Let $\Omega \subset \mathbb{R}^{n}$ be open and let $f: \Omega \rightarrow \mathbb{R}$ be a continuous function. The level sets for f are the sets

$$
\mathcal{C}=\{x \in \Omega \mid f(x)=c\}
$$

of solutions in Ω to the equation $f(x)=c$, where $c \in \mathbb{R}$ is a fixed constant.
In this course the function f will be assumed to be smooth. However, the smoothness alone does not ensure that the level sets for f can be parametrized as smooth curves or surfaces (in case $n=2$ or 3). For example, a level set for the trivial function $f=0$ on \mathbb{R}^{2}, that is, the set of solutions to an equation $0=c$, is either the empty set or the full set \mathbb{R}^{2}. Some extra condition will be needed on f in order that the set is a curve.
Definition 1.4.2. Let $f: \Omega \rightarrow \mathbb{R}$ be smooth, where $\Omega \subset \mathbb{R}^{n}$ is open. A point $p \in \Omega$ is called critical if

$$
\frac{\partial f}{\partial x_{1}}(p)=\cdots=\frac{\partial f}{\partial x_{n}}(p)=0 .
$$

Let us consider some examples in the plane case $n=2$. It will be seen in all the examples that if we exclude critical points, the level sets can be parametrized as curves. A precise statement to this effect is given in the corollary in Section 1.5.
Example 1.4.1. Consider the linear equation $a x+b y=c$ whose solutions comprise a level set for $f(x, y)=a x+b y$. If $(a, b) \neq(0,0)$ then there are no critical points. In this case the set of solutions form a line, hence can be parametrized as a curve. On the other hand, if $(a, b)=(0,0)$ then $f(x, y)=a x+b y$ is the trivial function and all points are critical.
Example 1.4.2. Let $f(x, y)=x^{2}+y^{2}$, then $\frac{\partial f}{\partial x}=2 x$ and $\frac{\partial f}{\partial y}=2 y$, so $(0,0)$ is the only critical point. The level sets for $c>0$ contain no critical points. They are circles, hence can be parametrized as smooth curves. The level set for $c=0$ consists only of the critical point $(0,0)$ and it is exactly in this case the circles degenerate to a point.
Example 1.4.3. Consider the equation $f(x, y)=x y=0$. Here $\partial f / \partial x=y$ and $\partial f / \partial y=x$, and hence the origin $(0,0)$ is the only critical point. In fact, the level set given by $f(x, y)=0$ is the union of the two axes, which exactly fails to be a 'reasonable' curve at the origin.

1.5 The implicit function theorem, two variables

The implicit function theorem describes conditions under which a given equation in two variables can be solved to obtain one of the variables as a function of the other variable. For some simple equations, for example
$y^{2}-2 x y+1=0$, explicit solutions are easily obtained by simple algebra, here $y=x+\sqrt{x^{2}-1}$ and $y=x-\sqrt{x^{2}-1}$, but for other equations such explicit solutions cannot be derived. The reason for this need not be lack of algebraic skill on our side, since a solution may not exist at all. The implicit function theorem expresses a simple condition which guarantees the existence of a function h, such that the solution is $y=h(x)$.

Theorem 1.5. Let $f: \Omega \rightarrow \mathbb{R}$ be a smooth function, where $\Omega \subset \mathbb{R}^{2}$ is open. Let

$$
\mathcal{C}=\{(x, y) \in \Omega \mid f(x, y)=c\}
$$

be the set of solutions to the equation $f(x, y)=c$. Let $p=\left(x_{0}, y_{0}\right) \in \mathcal{C}$ be given, and assume that $\frac{\partial f}{\partial y} \neq 0$ at p.

Then there exist open intervals I and J around x_{0} and y_{0}, respectively, such that the rectangle $W=I \times J$ is contained in Ω, and a smooth map $h: I \rightarrow J$ such that

$$
\begin{equation*}
\mathcal{C} \cap W=\{(x, h(x)) \mid x \in I\} \tag{1}
\end{equation*}
$$

that is, in the neighborhood W of p, \mathcal{C} is the graph of h. Furthermore,

$$
\begin{equation*}
\forall x \in I: f(x, h(x))=0 \tag{1’}
\end{equation*}
$$

Proof. Assume for simplicity that $c=0$, and that the value of $\frac{\partial f}{\partial y}$ at p is positive. These properties can be arranged by a simple replacement of f which does not affect the set \mathcal{C}. Choose $\delta>0$ such that the neighborhood $\left\{(x, y)\left|\left|x-x_{0}\right| \leq \delta,\left|y-y_{0}\right| \leq \delta\right\}\right.$ of p lies inside Ω, and such that $\frac{\partial f}{\partial y} \geq a$ on this neighborhood, for some constant $a>0$ (continuity of $\frac{\partial f}{\partial y}$ is used). Then $y \mapsto f(x, y)$ is strictly increasing on the interval $\left[y_{0}-\delta, y_{0}+\delta\right]$, for each fixed x with $\left|x-x_{0}\right|<\delta$.

In particular, since $p \in \mathcal{C}$ we have $f(p)=f\left(x_{0}, y_{0}\right)=0$, and hence

$$
f\left(x_{0}, y_{0}-\delta\right)<0 \quad \text { and } \quad f\left(x_{0}, y_{0}+\delta\right)>0
$$

By continuity in x_{0} of each of the maps $x \mapsto f\left(x, y_{0} \pm \delta\right)$, there exists a positive number $\eta \leq \delta$ such that $f\left(x, y_{0}-\delta\right)<0$ and $f\left(x, y_{0}+\delta\right)>0$ for all x with $\left|x-x_{0}\right|<\eta$.

Let $I=\left\{x| | x-x_{0} \mid<\eta\right\}$, and let $x \in I$. Since $y \mapsto f(x, y)$ is strictly increasing and continuous, and since $f\left(x, y_{0}-\delta\right)<0$ and $f\left(x, y_{0}+\delta\right)>0$, there exists a unique y between $y_{0}-\delta$ and $y_{0}+\delta$ with $f(x, y)=0$. This value of y is denoted $h(x)$. Then h maps I into $J=] y_{0}-\delta, y_{0}+\delta[$ and satisfies $f(x, h(x))=0$. The identity of the sets in (1) follows from the uniqueness of y. We will complete the proof of the theorem by showing that h is smooth.

We first prove that h is continuous. Fix $x \in I$ and let $y=h(x)$, then $f(x, y)=0$. Let Δx be sufficiently small so that $x+\Delta x \in I$. Associated to Δx we define Δy such that $y+\Delta y=h(x+\Delta x)$, then also $f(x+\Delta x, y+\Delta y)=0$.

The asserted continuity amounts to the statement that $\Delta y \rightarrow 0$ when $\Delta x \rightarrow 0$. The function

$$
t \mapsto \varphi(t)=f(x+t \Delta x, y+t \Delta y)
$$

is zero both for $t=0$ and $t=1$. By the mean value theorem (Rolle's theorem) there exists a number $\theta \in(0,1)$ (depending on $\Delta x)$ such that

$$
\varphi^{\prime}(\theta)=0 .
$$

Differentiating φ by means of the chain rule we thus obtain

$$
\frac{\partial f}{\partial x}(x+\theta \Delta x, y+\theta \Delta y) \Delta x+\frac{\partial f}{\partial y}(x+\theta \Delta x, y+\theta \Delta y) \Delta y=0 .
$$

Hence

$$
\Delta y=-\frac{\frac{\partial f}{\partial x}(x+\theta \Delta x, y+\theta \Delta y)}{\frac{\partial f}{\partial y}(x+\theta \Delta x, y+\theta \Delta y)} \Delta x
$$

and since $\left|\frac{\partial f}{\partial x}\right|$ is bounded, and $\frac{\partial f}{\partial y} \geq a>0$, it follows that $\Delta y \rightarrow 0$ when $\Delta x \rightarrow 0$, as claimed.

Next we prove that h is differentiable, which with the notation from above amounts to the convergence of $\Delta y / \Delta x$ as $\Delta x \rightarrow 0$. In fact, since $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ are continuous, this follows immediately from the equation above. Moreover, the limit is given by

$$
\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=-\frac{\frac{\partial f}{\partial x}(x, y)}{\frac{\partial f}{\partial y}(x, y)}
$$

Hence h is differentiable and satisfies

$$
\begin{equation*}
h^{\prime}(x)=-\frac{\frac{\partial f}{\partial x}(x, h(x))}{\frac{\partial f}{\partial y}(x, h(x))} . \tag{2}
\end{equation*}
$$

Finally, we prove by induction that h is smooth. Assuming that h is r times differentiable for some natural number r, we see from equation (2) that so is h^{\prime}. Hence h is $r+1$ times differentiable.

Notice that (2) can be obtained from (1^{\prime}) by the chain rule, once the differentiability of h has been established. This gives a way to remember the formula for $h^{\prime}(x)$, but also points to furmulas for higher order derivatives of h.

Corollary 1.5. Let $f: \Omega \rightarrow \mathbb{R}$ be a smooth function, where $\Omega \subset \mathbb{R}^{2}$ is open. Let

$$
\mathcal{C}=\{(x, y) \in \Omega \mid f(x, y)=c\}
$$

and let $p=\left(x_{0}, y_{0}\right) \in \mathcal{C}$. Assume that p is not a critical point.
Then there exists an open rectangle $W \subset \Omega$ around p, such that $\mathcal{C} \cap W$ is the graph of a smooth function h, considered either as $y=h(x)$ or as $x=h(y)$.

In particular, it follows that the level set can be parametrized as a smooth curve in a neighborhood of each non-critical point.
Proof. By assumption $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ are not both zero at p. If $\frac{\partial f}{\partial y}(p) \neq 0$ the conclusion is already in the previous theorem. Otherwise, we interchange x and y.

Example 1.5.1. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by $f(x, y)=y^{2}-2 x y+1$, and consider the level set $\mathcal{C}=\{(x, y) \mid f(x, y)=0\}$. Then $\frac{\partial f}{\partial y}=2 y-2 x$, which is zero if and only if $x=y$. Inserting $y=x$ in the equation $y^{2}-2 x y+1=0$, we see that the only points in \mathcal{C} where $\frac{\partial f}{\partial y}=0$ are $p=(1,1)$ and $q=(-1,-1)$.

We can then conclude from the theorem that the level set \mathcal{C} can be attained as a graph of the form $y=h(x)$ in a neighborhood of each of its points, except possibly p and q (the theorem gives no information in case $\frac{\partial f}{\partial y}=0$).

On the other hand, the partial derivative $\frac{\partial f}{\partial x}=-2 y$ is never zero on \mathcal{C} (since $y=0$ in $y^{2}-2 x y+1=0$ leads to a contradiction), and thus \mathcal{C} has the form of a graph $x=h(y)$ in a neighborhood of all its points.

In fact, the equation can be easily solved with respect to both x and y :

$$
y=x \pm \sqrt{x^{2}-1}, \quad x=\frac{1}{2}\left(y+\frac{1}{y}\right) .
$$

The formula on the left gives two expressions, each with y a function of x. Only one of these is relevant in a neighborhood of a given point $(x, y) \in$
\mathcal{C}, provided $|x|>1$. However, at the points where $x= \pm 1$, these two expressions for y collapse, and neither of them gives a well-defined function in a neighborhood, because $|x|<1$ is not allowed in the square root. Notice that these are exactly the two points where $\frac{\partial f}{\partial y}=0$.

The expression for x, on the other hand, is defined and smooth for all $y \neq 0$ (and $y=0$ never occurs in \mathcal{C}).

Example 1.5.2. Let $f(x, y)=x^{4}-x^{2}+y^{2}$, and $\mathcal{C}=\{(x, y) \mid f(x, y)=0\}$. The derivatives

$$
\frac{\partial f}{\partial x}=4 x^{3}-2 x \quad \text { and } \quad \frac{\partial f}{\partial y}=2 y
$$

are both zero if and only if (x, y) is one of the three points

$$
(0,0), \quad\left(\sqrt{\frac{1}{2}}, 0\right), \quad\left(-\sqrt{\frac{1}{2}}, 0\right)
$$

Only the first one of these belongs to \mathcal{C}, and this point is therefore the only critical point in \mathcal{C}.

The set \mathcal{C} is shown in the following figure. It can be shown that \mathcal{C} is the trace of the parametrized curve $\gamma(t)=(\cos t, \cos t \sin t)$, which has a self-intersection exactly in the critical point $(0,0)$.

1.6 The implicit function theorem, more variables

We will now consider the analogue for surfaces of the theory of the preceding section. Where the solution set for an equation in two variables was described as a parametrized curve, the analogous theorem describes the solution set for an equation in three variables as a parametrized surface.

In fact, it is convenient to state the theorem as a theorem treating an equation in n variables, with arbitrary $n \geq 2$. In this fashion the theorem becomes a generalization rather than an analogue.

In order to compare easily with the previous theorem we denote our variables in \mathbb{R}^{n+1} by $(x, y)=\left(x_{1}, \ldots, x_{n}, y\right)$ where $x \in \mathbb{R}^{n}$ and $y \in \mathbb{R}$. By definition, an interval in \mathbb{R}^{n} is a product $I_{1} \times \cdots \times I_{n}$ of intervals in \mathbb{R}.

Theorem 1.6. Let $f: \Omega \rightarrow \mathbb{R}$ be a smooth function, where $\Omega \subset \mathbb{R}^{n+1}$ is open. Let

$$
\mathcal{S}=\{(x, y) \in \Omega \mid f(x, y)=c\}
$$

and let $p=\left(x^{0}, y^{0}\right) \in \mathcal{S}$. Assume that $\frac{\partial f}{\partial y} \neq 0$ at p.
Then there exist open intervals $I \subset \mathbb{R}^{n}$ and $J \subset \mathbb{R}$ around x^{0} and y^{0}, respectively, such that the interval $W=I \times J$ is contained in Ω, and a smooth map $h: I \rightarrow J$ such that

$$
\mathcal{S} \cap W=\{(x, h(x)) \mid x \in I\},
$$

that is, in the neighborhood W of p, \mathcal{S} is the graph of h.
Proof. Notice the similarity with Theorem 1.5, the only difference being that $x \in \mathbb{R}$ is replaced by $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$. In fact, the proof is a rather straightforward generalization of the proof of Theorem 1.5, and it is therefore omitted.

Let us take $n=3$, and replace the notation $\left(x_{1}, x_{2}, y\right)$ by (x, y, z). We obtain the following result which is analogous to the corollary in Section 1.5.

Corollary 1.6. Let $f: \Omega \rightarrow \mathbb{R}$ be a smooth function, where $\Omega \subset \mathbb{R}^{3}$ is open. Let

$$
\mathcal{S}=\{(x, y, z) \in \Omega \mid f(x, y, z)=c\}
$$

and let $p=\left(x_{0}, y_{0}, z_{0}\right) \in \mathcal{S}$. Assume that p is not a critical point.
Then there exist an open interval $W \subset \Omega$ around p, such that $\mathcal{S} \cap W$ is the graph of a smooth function h, considered either as $z=h(x, y)$, as $y=h(x, z)$ or as $x=h(y, z)$.

In particular, it follows that the level set can be parametrized as a smooth surface in a neighborhood of each non-critical point.
Proof. By assumption at least one of the partial derivatives $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ and $\frac{\partial f}{\partial z}$ is not zero at p. Interchanging z with x or y if necessary, we may assume that it is $\frac{\partial f}{\partial z}$. The conclusion then follows from the previous theorem.

Example 1.6.1. The equation for a plane in $\mathbb{R}^{3}, a x+b y+c z=d$, where $(a, b, c) \neq(0,0,0)$, satisfies the assumption of the preceding corollary. If $c \neq$ 0 , the plane is the graph $z=h(x, y)$ of the function $h(x, y)=(d-a x-b y) / c$.

If $c=0$ the plane is vertical, and we cannot exhibit it as a graph of the form $z=h(x, y)$, but then we can exhibit it as a graph over one of the other coordinate planes.

Example 1.6.2. The surfaces introduced in Examples 1.2.2-1.2.4, sphere, cylinder and cone, are level sets for, respectively, $f(x, y, z)=x^{2}+y^{2}+z^{2}$, $f(x, y, z)=x^{2}+y^{2}$ and $f(x, y, z)=x^{2}+y^{2}-z^{2}$. These functions all satisfy the assumption of the corollary above, except for the vertex $(0,0,0)$ of the cone.

Example 1.6.3. Let $f(x, y, z)=z e^{x}+y z$ and consider the equation $f(x, y, z)=1$ in a neighborhood of the point $p=(0,0,1)$ (which solves the equation). The partial derivative $\frac{\partial f}{\partial z}=e^{x}+y$ is 1 at this point, so by the implicit function theorem the solution z exists as a function of (x, y) in a neighborhood of $(0,0,1)$. In fact, the equation has the solution $z=$ $1 /\left(e^{x}+y\right)$. However, if the equation is replaced by for example $f(x, y, z)=$ $z e^{x}+\sin (y z)=1$, then it is impossible to write down a solution to the equation in terms of known functions, but the conclusion from the implicit function theorem remains the same since we still have $\frac{\partial f}{\partial z}=1$ at p.

1.7 The implicit function theorem, more equations

We have seen that an equation $f(x, y)=c$ in \mathbb{R}^{2} defines a plane curve, and that an equation $f(x, y, z)=c$ in \mathbb{R}^{3} defines a surface (under suitable circumstances). In order to define a curve in \mathbb{R}^{3} we need two equations. For example, the x-axis is the set defined by equations $y=0$ and $z=0$. Consider two equations of the form

$$
\begin{aligned}
& f_{1}(x, y, z)=c_{1} \\
& f_{2}(x, y, z)=c_{2}
\end{aligned}
$$

where f_{1}, f_{2} maps an open set $\Omega \subset \mathbb{R}^{3}$ into \mathbb{R}. We say that we have two equations in three variables. It is actually more convenient to write the equations in the form

$$
f(x, y, z)=c
$$

where $f=\left(f_{1}, f_{2}\right)$ maps Ω into \mathbb{R}^{2}, and where $c=\left(c_{1}, c_{2}\right)$. We want to generalize Theorem 1.6 in order to deal with this situation.

In fact, we will generalize even further, to functions $f: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, that is, to the case of m equations in n variables, the only condition being that $n>m$. For the application to space curves, only $n=3$ and $m=2$ is needed, and the reader is encouraged to specialize to this case at first reading.

It is convenient for the comparison with Theorem 1.6 to write elements in \mathbb{R}^{n} as (x, y) where $x=\left(x_{1}, \ldots, x_{n-m}\right) \in \mathbb{R}^{n-m}$ and $y=\left(y_{1}, \ldots, y_{m}\right) \in \mathbb{R}^{m}$. The goal is to obtain y as a function of x.

Theorem 1.7. Let $f: \Omega \rightarrow \mathbb{R}^{m}$ be a smooth function, where $\Omega \subset \mathbb{R}^{n}$ is open. Let $c \in \mathbb{R}^{m}$ be fixed. Let

$$
\mathcal{C}=\{(x, y) \in \Omega \mid f(x, y)=c\}
$$

and let $p=\left(x^{0}, y^{0}\right) \in \mathcal{C}$. Assume that the determinant of the $m \times m$ matrix

$$
A=\frac{\partial f_{i}}{\partial y_{j}}(p)
$$

consisting of the last m columns of the Jacobian $\operatorname{Df}(p)$, is non-zero.
Then there exist open intervals $I \subset \mathbb{R}^{n-m}$ and $J \subset \mathbb{R}^{m}$ around x^{0} and y^{0}, respectively, such that $W=I \times J \subset \Omega$, and a smooth map $H_{m}: I \rightarrow J$ such that

$$
\mathcal{C} \cap W=\left\{\left(x, H_{m}(x)\right) \mid x \in I\right\}
$$

that is, in the neighborhood W of p, \mathcal{C} is the graph of $H_{m}: I \rightarrow J$.
Proof. The most common technique for solving several equations in several variables is elimination of variables. That is, we use one of the equations to express a particular variable in terms of the others, and insert this expression in the remaining equations. The chosen variable has then been eliminated, and the number of equations is reduced by one. This will also be our strategy in the present proof.

We prove the theorem by induction on m. The case $m=1$ was already treated in Theorem 1.6. Thus, we assume that $m \geq 2$ and that the conclusion of the theorem is valid for functions into \mathbb{R}^{m-1}. We can safely assume that $c=0$, since this can be arranged by subtraction of the constant from f.

Since $\operatorname{det} A$ is non-zero, A is invertible. We want to replace $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ by the function $A^{-1} \circ f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, obtained by multiplying all image vectors $f(x, y) \in \mathbb{R}^{m}$ with the constant matrix A^{-1}. Since multiplication by A^{-1} is a bijection, the equations $f(x, y)=0$ and $A^{-1} f(x, y)=0$ are equivalent. The Jacobian of the linear map, multiplication by A^{-1}, is the matrix A^{-1} itself (see Example B.1), and hence it follows from the chain rule that

$$
D\left(A^{-1} \circ f\right)(p)=A^{-1} \cdot D f(p)
$$

We see that the last m columns of $D\left(A^{-1} \circ f\right)(p)$ comprise a unit matrix $\delta_{k j}$. By the replacement of f with $A^{-1} \circ f$ we thus obtain a function whose Jacobian matrix at p has a unit matrix in its last m columns, and for which the solution set \mathcal{C} is unaltered. From now on we assume this replacement has been carried out, that is, we assume $\partial f_{k} / \partial y_{j}=\delta_{k j}$.

In particular, for the function f_{m} whose derivatives are in the last row of $D f$, we have that $\partial f_{m} / \partial y_{m}(p)=1$. We will apply Theorem 1.6 to the equation $f_{m}(x, y)=0$. The effect of the theorem is that the last variable,
y_{m}, can be written as a smooth function of the remaining variables. We write the remaining variables as $\left(x, y^{\prime}\right) \in \mathbb{R}^{n-1}$ where $y^{\prime}=\left(y_{1}, \ldots, y_{m-1}\right)$. More precisely, it then follows that there exists an interval neighborhood $W_{1}=I_{1} \times J_{1}$ around p, where $I_{1} \subset \mathbb{R}^{n-1}$ and $J_{1} \subset \mathbb{R}$, and a smooth function $h: I_{1} \rightarrow J_{1}$ such that for $(x, y)=\left(x, y^{\prime}, y_{m}\right) \in W_{1}$ we have $f_{m}(x, y)=0$ if and only if

$$
y_{m}=h\left(x, y^{\prime}\right) .
$$

Let the function $F: I_{1} \subset \mathbb{R}^{n-1} \rightarrow \mathbb{R}^{m-1}$ be defined by

$$
\begin{equation*}
F_{k}\left(x, y^{\prime}\right)=f_{k}\left(x, y^{\prime}, h\left(x, y^{\prime}\right)\right) \tag{3}
\end{equation*}
$$

for $k=1, \ldots, m-1$, where as before $y^{\prime}=\left(y_{1}, \ldots, y_{m-1}\right)$. The partial derivatives of F_{k} are obtained by applying the chain rule to (3):

$$
\frac{\partial F_{k}}{\partial y_{j}}=\frac{\partial f_{k}}{\partial y_{j}}+\frac{\partial f_{k}}{\partial y_{m}} \frac{\partial h}{\partial y_{j}} \quad(j=1, \ldots, m-1)
$$

and at p we thus have $\frac{\partial F_{k}}{\partial y_{j}}=\frac{\partial f_{k}}{\partial y_{j}}=\delta_{k j}$ (because $\frac{\partial f_{k}}{\partial y_{m}}=0$). The determinant of this matrix being non-zero, we can apply our induction hypothesis to F, and we obtain the existence of an interval neighborhood $W_{2}=I_{2} \times J_{2}$ around $\left(x^{0}, y^{0^{\prime}}\right)$, where $I_{2} \subset \mathbb{R}^{n-m}$ and $J_{2} \subset \mathbb{R}^{m-1}$, and a smooth function $g: I_{2} \rightarrow J_{2}$ such that the solution set for the equation $F\left(x, y^{\prime}\right)=0$ in W_{2} is the graph of g, that is, $F\left(x, y^{\prime}\right)=0$ if and only if $y^{\prime}=g(x)$.

Let the interval $W \subset \mathbb{R}^{n}$ be defined by

$$
W=W_{1} \cap\left\{(x, y) \mid\left(x, y^{\prime}\right) \in W_{2}\right\} .
$$

We now see that for (x, y) in this set we have

$$
(x, y) \in \mathcal{C}
$$

if and only if

$$
f_{k}(x, y)=0, \quad k=1, \ldots, m
$$

if and only if

$$
f_{k}(x, y)=0, \quad k=1, \ldots, m-1 \quad \text { and } \quad y_{m}=h\left(x, y^{\prime}\right)
$$

if and only if

$$
F\left(x, y^{\prime}\right)=0 \quad \text { and } \quad y_{m}=h\left(x, y^{\prime}\right)
$$

if and only if

$$
y^{\prime}=g(x) \quad \text { and } \quad y_{m}=h\left(x, y^{\prime}\right)
$$

if and only if

$$
y=(g(x), h(x, g(x))) .
$$

The function $x \mapsto H_{m}(x)=(g(x), h(x, g(x)))$ is thus seen to be the desired function whose graph is \mathcal{C} in a neighborhood of p.

Corollary 1.7. Let $f: \Omega \rightarrow \mathbb{R}^{2}$ be smooth, where $\Omega \subset \mathbb{R}^{3}$ is open. Let $c \in \mathbb{R}^{2}$ and

$$
p \in \mathcal{C}=\{(x, y, z) \in \Omega \mid f(x, y, z)=c\} .
$$

Assume the rows of $D f(p)(a 2 \times 3$ matrix) are linearly independent.
Then there exist an open interval $W \subset \Omega$ around p, such that $\mathcal{C} \cap W$ can be parametrized as a smooth curve in the form of a graph, considered either as $(y, z)=h(x)$, as $(x, z)=h(y)$ or as $(x, y)=h(z)$.
Proof. At least one of the three 2×2 submatrices of $D f(p)$ has non-zero determinant. With suitable reorganization of variables the theorem can be applied.

Example 1.7. The set of equations

$$
\begin{equation*}
x+x y+z^{2}=3 \quad \wedge \quad x^{3}+2 x z-y^{2} z^{2}=2 \tag{4}
\end{equation*}
$$

has the form $f(x, y, z)=c$ with

$$
f(x, y, z)=\binom{x+x y+z^{2}}{x^{3}+2 x z-y^{2} z^{2}}, \quad c=\binom{3}{2} .
$$

The Jacobian matrix is

$$
D f(x, y, z)=\left(\begin{array}{ccc}
1+y & x & 2 z \\
3 x^{2}+2 z & -2 y z^{2} & 2 x-2 y^{2} z
\end{array}\right)
$$

In the point $(1,1,1)$ the equations (4) are satisfied and the Jacobian is

$$
\left(\begin{array}{ccc}
2 & 1 & 2 \\
5 & -2 & 0
\end{array}\right)
$$

The determinant of the last two columns is $\operatorname{det} A=4$. Since this determinant is not zero, the implicit function theorem assures that the equations can be solved for (y, z) as function of x, in a neighborhood of $(1,1,1)$. In this neighborhood the set of solutions can thus be parametrized as a smooth curve in the form of a 3-dimensional graph $(t, h(t))$ where $h(t)=(y(t), z(t)) \in \mathbb{R}^{2}$.

This example demonstrates the theoretical power of the implicit function theorem, since the explicit solving of (4) for y and z as functions of x is clearly a difficult task.

1.8 Exercises

1 Let $\gamma: I \rightarrow \mathbb{R}^{n}$ be a parametrized curve with $\gamma^{\prime \prime}(t)=0$ for all t. Show that it is a line or a constant curve.

2 The following parametrized curve is called the cycloid

$$
\gamma(t)=(t-\sin t, 1-\cos t), \quad(t \in \mathbb{R})
$$

It is constructed by a circle of radius 1 rolling without slipping along the positive x-axis. The curve is the path of a point on the circumference of the circle. Explain the formula above from this construction.

3 Write $\{(x, y, z) \mid x+2 y-2 z=1\}$ as a parametrized surface.
4 Consider the equation $x^{3}+x y^{2}-2 a y^{2}=0$ in \mathbb{R}^{2}, where $a>0$ is a constant. Show that the parametrized curve

$$
\gamma(t)=\left(\frac{2 a t^{2}}{1+t^{2}}, \frac{2 a t^{3}}{1+t^{2}}\right),
$$

where $t \in \mathbb{R}$, is bijective onto the set of solutions. This curve is called the cissoid of Diocles. Draw a sketch of it (say for $a=1$).

5 Let $\mathcal{S} \subset \mathbb{R}^{3}$ denote the set of solutions to the equation $x^{2}+y-z^{2}=1$.
a. Show that the map $\sigma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ given by

$$
\sigma(u, v)=(u+v, 1-4 u v, u-v)
$$

displays $\mathcal{S}=\sigma(U)$ as a parametrized surface.
b. Show that \mathcal{S} contains no critical points for the function $f(x, y, z)=$ $x^{2}+y-z^{2}$, and determine a smooth function h such that $\mathcal{S}=\mathcal{G}_{h}$ as a parametrized surface.
6 Consider the equation $x^{3} y^{3}-3 x+y=-1$, which is satisfied by $(x, y)=$ $(1,1)$. Show that it is possible to describe the level set as a graph $y=h(x)$ in a neighborhood of this point.
7 Denote by \mathcal{C} the level set in \mathbb{R}^{2} for the equation $4 x^{4}-5 x^{2} y^{2}+y^{4}=0$.
a. Show by means of the implicit function theorem that for each point $\left(x_{0}, y_{0}\right) \in \mathcal{C} \backslash\{(0,0)\}$ there exists a neighborhood in which \mathcal{C} can be described as a graph $y=h(x)$.
b. Solve the equation and determine \mathcal{C} explicitly.

8 The condition $f_{y}^{\prime}\left(x_{0}, y_{0}\right) \neq 0$ in Theorem 1.5 is sufficient but not necessary. That is, if $f_{y}^{\prime}\left(x_{0}, y_{0}\right)=0$ it may still be possible to describe the level set as a graph $y=h(x)$ of a smooth function h in a neighborhood of $\left(x_{0}, y_{0}\right)$. Give an example.

9 Let f be as in Theorem 1.5, but assume instead that $f_{y}^{\prime}\left(x_{0}, y_{0}\right)=0$. Show that if $f_{x}^{\prime}\left(x_{0}, y_{0}\right) \neq 0$, then it is not possible to describe the level set as a graph $y=h(x)$, where h is smooth, in any neighborhood of $\left(x_{0}, y_{0}\right)$.

10 The equation $x y+x z+\sin z=0$ is solved by $(x, y, z)=(0,0,0)$. Show that the solution set in a neighborhood of this point allows a description as a graph. Show that this is the case in a neighborhood of all solutions.

11 Let $\mathcal{G}_{h(x, y)}=\{(x, y, h(x, y))\} \subset \mathbb{R}^{3}$ be the graph of the function $h(x, y)=$ $y-x y^{3}$. Show that in a neighborhood of each point of \mathcal{S} in which $3 x y^{2} \neq 1$, it is possible to write $\mathcal{S}=\mathcal{G}_{g(x, z)}$ as a graph of the form $y=g(x, z)$ with g smooth.

12 Consider the system of equations in \mathbb{R}^{3}

$$
2 x^{2}-x^{2} z^{2}-y^{2}=0 \quad \wedge \quad x y z=1
$$

to which $(1,1,1)$ is a solution. Show that there exists a neighborhood in which the solution set can be described as a graph of the form $(x, y)=$ $h(z)$, where x and y both are functions of z.

13 Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ and $c \in \mathbb{R}^{2}$ be given by

$$
f(x, y, z)=\left(x^{2}+y^{2}+z^{2},\left(x-\frac{1}{2}\right)^{2}+y^{2}\right), \quad c=\left(1, a^{2}\right)
$$

where $a \geq 0$. Let $L \subset \mathbb{R}^{3}$ denote the set of solutions to the system $f(x, y, z)=c$.
a. Explain why L is the intersection of a sphere and a cylinder, and determine their radii.
b. Determine, in each of the following 6 cases, the set of points in L for which the rank of $D f(p)$ is <2, that is, where the rows are linearly dependent.

$$
a=0, \quad 0<a<\frac{1}{2}, \quad a=\frac{1}{2}, \quad \frac{1}{2}<a<\frac{3}{2}, \quad a=\frac{3}{2}, \quad \frac{3}{2}<a .
$$

c. What does the implicit function theorem tell about L in each case. Explain by means of the observation in a.

Chapter 2

Tangents

We have equipped parametrized curves and surfaces with the standing assumption that the parametrization is smooth. However, smoothness alone is not enough to ensure a simple geometric appearance. For example, the plane curve $\gamma(t)=\left(t^{3}, t^{2}\right)$ is perfectly smooth, but in $\gamma(0)=(0,0)$ the trace of the curve has a sharp fold (a so-called 'cusp'), which conflicts with the intuitive notion of smooth. Another striking example will be given in Example 2.1.4 below.

In this chapter we will define a notion of regularity for parametrized curves and surfaces, which is motivated by the desire to exclude anomalies as the one just mentioned. The geometric significance of the regularity condition will be that it allows us to define notions of tangent lines and tangent planes.

2.1 Regular curves and tangent lines

Let $\gamma: I \rightarrow \mathbb{R}^{n}$ be a parametrized curve and let $t_{0} \in I$ be given.
Definition 2.1.1. The curve γ is called regular in t_{0} if $\gamma^{\prime}\left(t_{0}\right) \neq 0$. Otherwise it is called singular. If γ is regular in all points of I we call it a regular parametrized curve or just a regular curve.

For example, the plane curve mentioned above is regular for $t \neq 0$ but it is singular at $t=0$. The standard parametrizations of line and sphere (see Section 1.1), and the curves described in Examples 1.1.2, 1.1.3 and 1.1.4 are all regular curves.

Example 2.1.1 A constant curve (Example 1.1.1) is everywhere singular. Conversely, an everywhere singular parametrized curve is constant, since $\gamma^{\prime}=0$ implies that γ is constant.

Example 2.1.2 A graph $\gamma(t)=(t, h(t))$ (Section 1.3) is a regular curve in \mathbb{R}^{2}, since $\gamma^{\prime}(t)=\left(1, h^{\prime}(t)\right) \neq(0,0)$ (also if $\left.h^{\prime}(t)=0\right)$. Hence, by Corollary 1.5, a level set $f(x, y)=c$ can be parametrized as a regular curve in a neighborhood of each point which is not critical.

Definition 2.1.2. The vector $\gamma^{\prime}\left(t_{0}\right)$ is called the tangent vector to γ at t_{0}. If γ is regular at t_{0}, the line through $p=\gamma\left(t_{0}\right)$ with direction $\gamma^{\prime}\left(t_{0}\right)$ is called the tangent line of the curve.

The latter definition is motivated by the following result, which describes the tangent vector geometrically. The notation $\|v\|$ for vectors $v \in \mathbb{R}^{n}$ is defined in Appendix A.
Theorem 2.1. Assume that γ is regular at t_{0}, and let $v=\gamma^{\prime}\left(t_{0}\right) /\left\|\gamma^{\prime}\left(t_{0}\right)\right\|$ be the unit vector in the direction of the tangent vector. Then

$$
\begin{equation*}
v=\lim _{t \rightarrow t_{0}^{+}} \frac{\gamma(t)-\gamma\left(t_{0}\right)}{\left\|\gamma(t)-\gamma\left(t_{0}\right)\right\|}=\lim _{t \rightarrow t_{0}^{-}} \frac{\gamma\left(t_{0}\right)-\gamma(t)}{\left\|\gamma\left(t_{0}\right)-\gamma(t)\right\|} \tag{1}
\end{equation*}
$$

In other words, the unit tangent vector v is the limit position of the direction from $\gamma\left(t_{0}\right)$ to $\gamma(t)$, as t approaches t_{0} from above, and the limit position of the direction from $\gamma(t)$ to $\gamma\left(t_{0}\right)$, as t approaches t_{0} from below.

Proof. By definition

$$
\gamma^{\prime}\left(t_{0}\right)=\lim _{t \rightarrow t_{0}} \frac{\gamma(t)-\gamma\left(t_{0}\right)}{t-t_{0}}
$$

In particular, since $\gamma^{\prime}\left(t_{0}\right) \neq 0$ it follows that $\gamma(t) \neq \gamma\left(t_{0}\right)$ for all $t \in I$ sufficiently close to (but different from) t_{0}. Thus the denominator of the fraction in (1) is not zero. Moreover for $t>t_{0}$,

$$
\frac{\gamma(t)-\gamma\left(t_{0}\right)}{\left\|\gamma(t)-\gamma\left(t_{0}\right)\right\|}=\frac{1}{\left\|\frac{\gamma(t)-\gamma\left(t_{0}\right)}{t-t_{0}}\right\|} \frac{\gamma(t)-\gamma\left(t_{0}\right)}{t-t_{0}} \rightarrow \frac{1}{\left\|\gamma^{\prime}\left(t_{0}\right)\right\|} \gamma^{\prime}\left(t_{0}\right)
$$

and similarly for $t<t_{0}$.
Example 2.1.3 According to the theorem, regularity of γ is a sufficient condition for (1) to hold. It is not a necessary condition. For example, the
curve $\gamma(t)=\left(t^{3}, 0\right)$ which has the x-axis as its trace, is singular at $t_{0}=0$, but nevertheless both limits in (1) exist and are equal to the unit vector $v=(1,0)$.

Example 2.1.4 A sophisticated example of a non-regular point on a smooth curve can be constructed as follows. Let $\phi: \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by

$$
\phi(t)= \begin{cases}\exp \left(-\frac{1}{t}\right) & \text { if } t>0 \\ 0 & \text { otherwise }\end{cases}
$$

then it can be shown that ϕ is smooth (the derivatives up to all orders vanish at 0). The graph of ϕ is shown to the left in the figure below.

Define $\gamma(t)=(\phi(t), \phi(-t))$ for $t \in \mathbb{R}$. This is a smooth curve whose trace consists of the line segment from 1 to 0 on the y-axis followed by the line segment from 0 to 1 on the x-axes. It is not regular at the origin, which is in accordance with the sharp turn of the curve in that point.

2.2 The tangent line of a level set

We have seen in Example 2.1.2 that the level set given by $f(x, y)=c$ can be parametrized as a regular curve $\gamma(t)$ in a neighborhood of each non-critical point p. We will determine the tangent line of such a parametrization.

Theorem 2.2. Let $\mathcal{C} \subset \mathbb{R}^{2}$ be a level set of a smooth function f, and let $p=\left(x_{0}, y_{0}\right) \in \mathcal{C}$ be non-critical. Let $\gamma: I \rightarrow \mathbb{R}^{2}$ be any parametrized curve with trace $\gamma(I) \subset \mathcal{C}$ and with $\gamma\left(t_{0}\right)=p$ for some $t_{0} \in I$, in which γ is regular. Then the tangent line of γ at t_{0} is characterized by the equation

$$
\frac{\partial f}{\partial x}(p)\left(x-x_{0}\right)+\frac{\partial f}{\partial y}(p)\left(y-y_{0}\right)=0 .
$$

Proof. We shall be using the following simple fact from plane geometry. The line with normal vector $(a, b) \neq(0,0)$ through $\left(x_{0}, y_{0}\right)$ is given by the equation

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)=0 .
$$

We thus have to prove that the tangent line has $\left(\frac{\partial f}{\partial x}(p), \frac{\partial f}{\partial y}(p)\right)$, which is non-zero by assumption, as a normal vector.

Write $\gamma(t)$ in coordinates as $\gamma(t)=(x(t), y(t))$. Since γ maps into the level set we have $f(x(t), y(t))=c$ for all t. By differentiation with the chain rule we obtain

$$
x^{\prime}\left(t_{0}\right) \frac{\partial f}{\partial x}(p)+y^{\prime}\left(t_{0}\right) \frac{\partial f}{\partial y}(p)=0
$$

which exactly shows that $\left(\frac{\partial f}{\partial x}(p), \frac{\partial f}{\partial y}(p)\right)$ is perpendicular to the tangent vector $\gamma^{\prime}\left(t_{0}\right)=\left(x^{\prime}\left(t_{0}\right), y^{\prime}\left(t_{0}\right)\right)$.

Notice that it follows from the theorem that the tangent line depends on the level set through the function f, but it is independent of the chosen parametrization γ.

2.3 The tangent planes of a regular surface

Let $\mathcal{S}=\sigma(U)$ be a parametrized surface as in Chapter 1. Let a point $q=\sigma\left(u_{0}, v_{0}\right) \in S$ be given. Set for convenience $p=\left(u_{0}, v_{0}\right)$.

The notion of regularity for a parametrized surface is somewhat more complicated than that for a curve, because of the fact that we can differentiate with respect to both u and v. Let $\sigma=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ and put

$$
\sigma_{u}^{\prime}=\left(\begin{array}{c}
\frac{\partial \sigma_{1}}{\partial u} \\
\frac{\partial \sigma_{2}}{\partial u} \\
\frac{\partial \sigma_{3}}{\partial u}
\end{array}\right) \quad \text { and } \quad \sigma_{v}^{\prime}=\left(\begin{array}{c}
\frac{\partial \sigma_{1}}{\partial v} \\
\frac{\partial \sigma_{2}}{\partial v} \\
\frac{\partial \sigma_{3}}{\partial v}
\end{array}\right) .
$$

These vectors are the columns in the Jacobi matrix

$$
D \sigma=\left(\begin{array}{ll}
\frac{\partial \sigma_{1}}{\partial u} & \frac{\partial \sigma_{1}}{\partial v} \\
\frac{\partial \sigma_{2}}{\partial u} & \frac{\partial \sigma_{2}}{\partial v} \\
\frac{\partial \sigma_{3}}{\partial u} & \frac{\partial \sigma_{3}}{\partial v}
\end{array}\right) .
$$

Notice that $\sigma_{u}^{\prime}(p)$ and $\sigma_{v}^{\prime}(p)$ are the tangent vectors at $t=0$ to the curves $t \mapsto \sigma\left(u_{0}+t, v_{0}\right)$ and $t \mapsto \sigma\left(u_{0}, v_{0}+t\right)$, respectively.

Definition 2.3.1. A parametrized surface $\sigma(U)$ is called regular at $q=$ $\sigma(p)=\sigma\left(u_{0}, v_{0}\right)$ if
(PIV) The partial derivatives σ_{u}^{\prime} and σ_{v}^{\prime} are linearly independent
when evaluated at p. Otherwise it is called singular. If there is regularity in all points of $\sigma(U)$ we call it a regular parametrized surface. We will also say that the parametrization σ is regular, respectively singular, at p, if (PIV) holds, respectively does not hold.

Recall (see Appendix C) that for two vectors $a=\left(a_{1}, a_{2}, a_{3}\right)$ and $b=$ $\left(b_{1}, b_{2}, b_{3}\right)$ in \mathbb{R}^{3} we define the cross product by

$$
a \times b=\left(\left|\begin{array}{ll}
a_{2} & b_{2} \\
a_{3} & b_{3}
\end{array}\right|,-\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{3} & b_{3}
\end{array}\right|,\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|\right) .
$$

Since a and b are linearly independent if and only if $a \times b \neq 0$, the regularity condition above is equivalent to $\sigma_{u}^{\prime} \times \sigma_{v}^{\prime} \neq 0$.

Example 2.3.1 For the standard spherical coordinates

$$
\sigma(u, v)=(\cos u \cos v, \cos u \sin v, \sin u)
$$

with (u, v) restricted to lie in some open subset, we derive

$$
\sigma_{u}^{\prime}=\left(\begin{array}{c}
-\sin u \cos v \\
-\sin u \sin v \\
\cos u
\end{array}\right), \quad \sigma_{v}^{\prime}=\left(\begin{array}{c}
-\cos u \sin v \\
\cos u \cos v \\
0
\end{array}\right)
$$

and hence

$$
\begin{equation*}
\sigma_{u}^{\prime} \times \sigma_{v}^{\prime}=\left(-\cos ^{2} u \cos v,-\cos ^{2} u \sin v,-\cos u \sin u\right)=-\cos u \sigma(u, v) . \tag{2}
\end{equation*}
$$

In particular, since $\sigma(u, v) \neq 0$ (it has length 1), we see that $\sigma_{u}^{\prime} \times \sigma_{v}^{\prime}=0$ if and only if $\cos u=0$, that is $u= \pm \frac{\pi}{2}$ (up to multiples of 2π). The points $\sigma(p)$ on the sphere, where σ is singular at p, are thus the two poles $(0,0, \pm 1)$. Notice however that by choosing a different parametrization of the sphere, we can arrange that these points are in the regular range (at the cost of some other points becoming singular). For example with $(u, v) \mapsto$ $(\cos u \cos v, \sin u, \cos u \sin v)$, which differs from σ by an interchange of y and z, the points $\sigma(p)$ with p singular are $(0, \pm 1,0)$.

Example 2.3.2 The graph $\mathcal{G}_{h}=\{(u, v, h(u, v))\}$ (Section 1.3) of a function of two variables is a regular surface in \mathbb{R}^{3}, since

$$
\sigma_{u}^{\prime}=\left(1,0, \frac{\partial h}{\partial u}\right) \quad \text { and } \quad \sigma_{v}^{\prime}=\left(0,1, \frac{\partial h}{\partial v}\right)
$$

are linearly independent (also if the partial derivatives of h are 0). Hence, by Corollary 1.6, a level surface $f(x, y, z)=c$ is a regular surface in a neighborhood of each point which is not critical.

Definition 2.3.2. The linear subspace of \mathbb{R}^{3} spanned by the partial derivatives $\sigma_{u}^{\prime}(p)$ and $\sigma_{v}^{\prime}(p)$ is called the tangent space of $\sigma(U)$ at $q=\sigma(p)$. It is denoted $T_{q} \sigma(U)$. The plane through q and parallel to $T_{q} \sigma(U)$ is called the tangent plane of $\sigma(U)$ at q.

From now on, it is a a standing assumption that our parametrized surfaces are regular at all points. Notice that in this case, the tangent space $T_{q} \sigma(U)$ is a two-dimensional subspace of \mathbb{R}^{3}. The pair of vectors $\sigma_{u}^{\prime}(p)$ and $\sigma_{v}^{\prime}(p)$ form a basis for $T_{q} \sigma(U)$, and the use of the word 'plane' for the tangent plane is justified since it is 2 dimensional.

Example 2.3.3 Let σ be the standard parametrization of the unit sphere, as in the Example 2.3.1. At $\left(u_{0}, v_{0}\right)=(0,0)$ we have $\sigma(0,0)=(1,0,0)$ and $\sigma_{u}^{\prime}=e_{3}$ and $\sigma_{v}^{\prime}=e_{2}$ (where e_{1}, e_{2}, e_{3} are the standard basis vectors in \mathbb{R}^{3}). The tangent space at $(0,0)$ is therefore the span of e_{2} and e_{3} (the $y z$-plane), and the tangent plane is the plane through $(1,0,0)$ parallel to this plane. On the other hand, if $u_{0}=\frac{\pi}{2}$ (and v_{0} is arbitrary) so that $\sigma\left(u_{0}, v_{0}\right)=(0,0,1)$, then $\sigma_{u}^{\prime}=\left(-\cos v_{0},-\sin v_{0}, 0\right)$ and $\sigma_{v}^{\prime}=0$, so in this singular case the tangent space at $\left(u_{0}, v_{0}\right)$ is one-dimensional. However, the degeneracy of the tangent space at this point is caused by the singularity of the parametrization, and it has no geometric significance for the sphere. Notice that we will not encounter this problem since we assume (u, v) to lie in some open set, and this excludes, together with the assumption of injectivity, $u_{0}=\frac{\pi}{2}$.

It is convenient to have the notion of tangent space because of its structure as a linear space. On the other hand the tangent plane is more easy to visualize, because it passes through the given point on $\mathcal{S}=\sigma(U)$.

For a level set we have the following analogue of Theorem 2.2.
Theorem 2.3. Let $\mathcal{S} \subset \mathbb{R}^{3}$ be a level set of a smooth function f, and let $q=$ $\left(x_{0}, y_{0}, z_{0}\right) \in \mathcal{S}$ be non-critical. Let $\sigma: U \rightarrow \mathbb{R}^{3}$ be any regular parametrized surface with image $\sigma(U) \subset \mathcal{S}$ and with $\sigma\left(u_{0}, v_{0}\right)=q$ for some $p=\left(u_{0}, v_{0}\right) \in$
U. Then the tangent plane of $\sigma(U)$ at $q=\left(x_{0}, y_{0}, z_{0}\right)$ is characterized by the equation

$$
\frac{\partial f}{\partial x}(p)\left(x-x_{0}\right)+\frac{\partial f}{\partial y}(p)\left(y-y_{0}\right)+\frac{\partial f}{\partial z}(p)\left(z-z_{0}\right)=0 .
$$

Proof. Entirely analogous to that of Theorem 2.2.
As in Section 2.2 we observe that the tangent plane in q of the level set \mathcal{S} depends on f but is independent of the particular parametrization σ.

2.4 Reparametrization of curves

It can often be useful to change the way a given curve is parametrized. For example, one may prefer to parametrize the unit circle not by $(\cos t, \sin t)$, but by $(\cos (\omega t), \sin (\omega t))$ for some angular velocity ω. This concept is formalised in the following definition.

Definition 2.4.1. Let $\gamma: I \rightarrow \mathbb{R}^{n}$ be a parametrized curve, and let $\phi: J \rightarrow$ I be a smooth bijective map with a smooth inverse (I and J being open intervals in \mathbb{R}). The curve $\beta=\gamma \circ \phi: J \rightarrow \mathbb{R}^{n}$ is called a reparametrization of γ.

For the justification of the condition on ϕ we recall the following result from the calculus of functions of one variable.

Theorem 2.4. Let $J \subset \mathbb{R}$ be an open interval and $\phi: J \rightarrow \mathbb{R}$ a smooth map. Let $I=\phi(J)$, then the following conditions are equivalent:
(i) $\phi^{\prime}(u) \neq 0$ for all $u \in J$,
(ii) $\phi: J \rightarrow I$ is bijective, I is an open interval, and $\phi^{-1}: I \rightarrow J$ is smooth. Moreover, if these conditions hold, then

$$
\begin{equation*}
\left(\phi^{-1}\right)^{\prime}(t)=\frac{1}{\phi^{\prime}(u)} \tag{4}
\end{equation*}
$$

for all $t \in I$, where $u=\phi^{-1}(t)$.
Notice that if $\phi^{\prime}(u) \neq 0$ for all $u \in J$ then, by continuity, either $\phi^{\prime}(u)>0$ for all u or $\phi^{\prime}(u)<0$ for all u. Thus ϕ is either monotonically increasing or monotonically decreasing.

Let $\beta=\gamma \circ \phi$ be a reparametrization. It follows from the chain rule that the tangent vectors of β are related to those of γ through

$$
\begin{equation*}
\beta^{\prime}(u)=\phi^{\prime}(u) \gamma^{\prime}(\phi(u)) . \tag{5}
\end{equation*}
$$

Since $\phi^{\prime}(u) \neq 0$ we see that β is regular if and only if γ is regular. Moreover, if $\phi^{\prime}>0$ the tangent vectors of β and γ have mutual directions, and if $\phi^{\prime}<0$ they have opposite directions. We say in the former case, where ϕ is increasing, that the reparametrization preserves direction and in the latter case, where ϕ is decreasing, that the reparametrization reverses direction.

Example 2.4.1 Let $p, q \in \mathbb{R}^{n}$ be fixed, $q \neq 0$. The curve $\beta(u)=p+\tan u q$, $u \in]-\frac{\pi}{2}, \frac{\pi}{2}$ [, is a reparametrization of the line $\gamma(t)=p+t q, t \in \mathbb{R}$. The transformation between t and u is given by $t=\phi(u)=\tan u$. On the other hand, the curve $\alpha(v)=p+v^{3} q$ is not a reparametrization, since $v \mapsto v^{3}$ does not have a differentiable inverse (and in fact, α is not regular).

2.5 Reparametrization of surfaces

We will now generalize some of these concepts to surfaces. The situation is considerably more complicated, because the higher dimensional Euclidean spaces \mathbb{R}^{n} present some subtleties which do not show up in case $n=1$. In particular, the theorem given above does not generalize directly to \mathbb{R}^{n}, as will be explained thoroughly later in this chapter (in Section 2.9).

Definition 2.5.1. Let $U, W \subset \mathbb{R}^{n}$ be open sets. A map $\phi: W \rightarrow U$ which is smooth, bijective and has a smooth inverse is called a diffeomorphism.

For example, a linear map $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a diffeomorphism if and only if the $n \times n$ matrix A that represents it (with respect to some basis for \mathbb{R}^{n}) is invertible. If A is invertible, then L is bijective and its inverse is the linear map represented by A^{-1}, hence this is a smooth map. If A is not invertible, then L is not bijective.

The expression (4) for the derivative of the inverse of a map $J \rightarrow I$, where $I, J \subset \mathbb{R}$, has the following generalization for a diffeomorphism $\phi: W \rightarrow U$:

$$
D\left(\phi^{-1}\right)(p)=(D \phi(q))^{-1}
$$

where $q=\phi^{-1}(p)$. Here $D \phi$ is the Jacobi matrix of ϕ, and the inverse on the right side is that of a matrix. This formula follows by application of the
chain rule to the identity $\phi \circ \phi^{-1}=I$. In particular, the Jacobi matrix of a diffeomorphism is invertible, that is

$$
\operatorname{det}(D \phi(q)) \neq 0
$$

for all $q \in W$.
Definition 2.5.2. Let $\sigma(U) \subset \mathbb{R}^{3}$ be a regular parametrized surface, and let $\phi: W \rightarrow U$ be a diffeomorphism (U and W being open sets in \mathbb{R}^{2})). The surface $\tau(W)=(\sigma \circ \phi)(W) \subset \mathbb{R}^{3}$ is called a reparametrization of $\sigma(U)$. Occationally we will add the words implemented by ϕ.

$$
\nsim \sigma
$$

$$
\gamma=\sigma \circ \phi
$$

Obviously, if $\tau(W)$ is a reparametrization of $\sigma(U)$ implemented by ϕ then $\sigma(U)$ is a reparametrization of $\tau(W)$ implemented by ϕ^{-1}.

Notice here an example of mathematical writing - and reading: Besides this exceptional remark that you are reading right now, it is nowhere mentioned that $(\tau(W))$ is a regular parametrized surface. Information like that is often omitted in order not to make the text too heavy. It is then up to the reader to supply a proof - after having noticed that such a proof is needed!

To be completely precise, $\tau(W)$ is regular parametrized surface if and only if $\sigma(U)$ is a regular parametrized surface.

2.6 Invariance under reparametrization

A reparametrization of a curve is considered geometrically insignificant (at least if it is direction-preserving), and geometric properties of curves are required to be unchanged by such a reparametrization; otherwise they do not qualify for being 'geometric'. For example, it follows from (5) that the tangent vector in u of the reparametrized curve β differs by a multiple from that of γ in $t=\phi(u)$, hence the tangent vector is not 'geometric'. However,
it also follows from (5) that the tangent line is unchanged, hence qualifies better as a 'geometric' object related to the curve. The corresponding result for surfaces is as follows.
Theorem 2.6. Let $\tau(W), \tau=\sigma \circ \phi$, be a reparametrization of $S=\sigma(U)$. Then the tangent spaces are identical:

$$
T_{q} \tau(W)=T_{q} \sigma(U) \quad \forall q \in \tau(W)=\sigma(U)
$$

We say that the tangent space is invariant under reparametrization. It therefore qualifies as a proper geometric object $T_{q} S$ related to the surface S.
Proof. It follows from the chain rule that the partial derivatives of τ are related to those of σ through

$$
D \tau(p)=D \sigma(\phi(p)) \cdot D \phi(p)
$$

where the dot denotes matrix multiplication.
Let (u, v) denote the coordinates in U and let (s, t) denote the coordinates in W. Let

$$
D \phi(p)=\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)
$$

Writing out the above matrix product in terms of the columns τ_{s}^{\prime} and τ_{t}^{\prime} of $D \tau(q)$ and the columns σ_{u}^{\prime} and σ_{v}^{\prime} of $D \sigma(\phi(p))$, it becomes

$$
\begin{equation*}
\tau_{s}^{\prime}=a \sigma_{u}^{\prime}+b \sigma_{v}^{\prime}, \quad \tau_{t}^{\prime}=c \sigma_{u}^{\prime}+d \sigma_{v}^{\prime} \tag{6}
\end{equation*}
$$

These identities show that τ_{s}^{\prime} and τ_{t}^{\prime} are linear combinations of σ_{u}^{\prime} and σ_{v}^{\prime}, hence they belong to the tangent space $T_{\sigma(\phi(p))} \sigma(U)$. It follows that $T_{\tau(p)} \tau(W) \subset T_{\sigma(\phi(p))} \sigma(U)$. Since $\sigma=\tau \circ \phi^{-1}$ is also a reparametrization, the same argument with reversed roles of τ and σ shows that $T_{\sigma(\phi(p))} \sigma \subset$ $T_{\tau(p)} \tau(W)$. Thus the equality of the tangent spaces follows.

Now $\tau(W)$ is regular if and only if $T_{q} \tau(W)$ is two-dimensional for all $q \in \tau(W)$, and $\sigma(U)$ is regular if and only if $T_{q} \sigma(U)$ is two-dimensional for all $q \in \sigma(U)$. The equivalence of the regularity of σ and τ follows.

2.7 The unit normal, orientation

Definition 2.7. If $\sigma(U)$ is a regular parametrized surface and $q=\sigma(p)$, the vector

$$
\mathbf{N}^{\sigma}(q)=\mathbf{N}(p)=\frac{\sigma_{u}^{\prime} \times \sigma_{v}^{\prime}}{\left\|\sigma_{u}^{\prime} \times \sigma_{v}^{\prime}\right\|}(p)
$$

is called the unit normal of the parametrization at q.

Example 2.7.1 It follows from (2) that the unit normal for the unit sphere (with spherical coordinates) is

$$
\mathbf{N}^{\sigma}(q)=-q,
$$

which is the unit vector pointing from q towards the center of the sphere.
The unit normal is perpendicular to the tangent plane in p and has unit length. These properties determine it uniquely up to multiplication with ± 1. Let $\tau=\sigma \circ \phi$ be a reparametrization as in Theorem 2.6. Since $\sigma_{u}^{\prime} \times \sigma_{u}^{\prime}=$ $\sigma_{v}^{\prime} \times \sigma_{v}^{\prime}=0$ and $\sigma_{v}^{\prime} \times \sigma_{u}^{\prime}=-\sigma_{u}^{\prime} \times \sigma_{v}^{\prime}$, it follows from (6) that

$$
\begin{align*}
\tau_{s}^{\prime} \times \tau_{t}^{\prime} & =\left(a \sigma_{u}^{\prime}+b \sigma_{v}^{\prime}\right) \times\left(c \sigma_{u}^{\prime}+d \sigma_{v}^{\prime}\right) \tag{7}\\
& =(a d-b c) \sigma_{u}^{\prime} \times \sigma_{v}^{\prime},
\end{align*}
$$

where $a d-b c=\operatorname{det}(D \phi(q)) \neq 0$. This equation shows that under reparametrisation the unit normal is multiplied with the sign of $a d-b c$:

$$
N^{\sigma}(q)=\frac{a d-b c}{|a d-b c|} N^{\tau}(q)
$$

If $a d-b c>0$ we say that the reparametrization has the same orientation at $q=(\tau \circ \phi)(p)$, otherwise it has the opposite orientation. This notion is analogous to the notion of direction of a parametrized curve.

Example 2.7.2 Let $\sigma: U \rightarrow \mathbb{R}^{3}$ be a regular parametrized surface, and put $W=\left\{(v, u) \in \mathbb{R}^{2} \mid(u, v) \in U\right\}$. The map $\phi: W \rightarrow U$ given by $\phi(v, u)=(u, v)$ is a diffeomorphism, and thus $\tau=\sigma \circ \phi$ is a reparametrization. The effect of this reparametrization is just that it reverses the order of u and v. The Jacobian of ϕ is $D \phi=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, which has determinant -1 . Therefore $\tau(W)$ has the opposite orientation of $\sigma(U)$.

2.8 Regular curves as graphs

We have given three general descriptions of plane curves, namely as parametrized curves, as graphs of real functions, and as level sets of two-variable functions. In Section 1.5 it was seen that away from critical points, a level
set is a graph. Conversely, the graph of a function $y=h(x)$ can be realized as the level set $f(x, y)=0$ of the function $f(x, y)=h(x)-y$.

As remarked in Example 2.1.2 it is clear that all graphs are regular parametrized curves. We shall now establish the converse, that a regular parametrized curve can be reparametrized as a graph in a neighborhood of each of its points. This will complete the description of interconnections between these various types of curves, the conclusion being essentially that they are all the same.

For simplicity we limit our considerations to plane curves, although a completely similar result holds for curves in \mathbb{R}^{3}.

Theorem 2.8. Assume that γ is a plane curve, regular at $t_{0} \in I$. Then there exists a neighborhood of t_{0} in which γ allows a reparametrization as the graph of a smooth function h, considered either as $y=h(x)$ or as $x=h(y)$.

That is, there exists an open interval I^{\prime} such that $t_{0} \in I^{\prime} \subset I$, an open interval J and a smooth bijective map $\phi: J \rightarrow I^{\prime}$ with smooth inverse, such that

$$
\gamma(\phi(u))=(u, h(u))
$$

for all $u \in J$, or

$$
\gamma(\phi(u))=(h(u), u)
$$

for all $u \in J$.

Proof. Write $\gamma(t)=(x(t), y(t))$. The assumption is that $\left(x^{\prime}\left(t_{0}\right), y^{\prime}\left(t_{0}\right)\right) \neq$ $(0,0)$. We are going to prove that if $x^{\prime}\left(t_{0}\right) \neq 0$, so that the tangent vector is not vertical, then the curve allows a reparametrization as a graph of the form $y=h(x)$. An exchange of x and y then implies that if $y^{\prime}\left(t_{0}\right) \neq 0$, then the curve allows a reparametrization as a graph of the form $x=h(y)$.

Assume $x^{\prime}\left(t_{0}\right) \neq 0$. By continuity, there exists an open interval I^{\prime} around t_{0} in which $x^{\prime}(t) \neq 0$. Let $J=\left\{x(t) \mid t \in I^{\prime}\right\}$. It follows from Theorem 2.4 that the function $t \mapsto x(t)$ from I^{\prime} to J is bijective with a smooth inverse. When we use this inverse function $\phi: J \rightarrow I^{\prime}$ for reparametrization we obtain $\tau(u)=\gamma(\phi(u))=(x(\phi(u)), y(\phi(u)))=(u, h(u))$ where $h(u)=y(\phi(u))$.

Example 2.8.1 Let $\gamma(t)=(\cos t, \sin t)$ with $t \in \mathbb{R}$ be the standard parametrisation of the circle, then $\gamma^{\prime}(t)=(-\sin t, \cos t)$. On the upper half
circle, where $t \in] 0, \pi\left[\right.$, we have $x^{\prime}(t) \neq 0$. Then $t \mapsto x(t)=\cos t$ is bijective $\left.I^{\prime}=\right] 0, \pi[\rightarrow]-1,1\left[\right.$ and has a smooth inverse $\cos ^{-1}: J \rightarrow I^{\prime}$. The reparametrization of γ is then

$$
\left.\gamma(\phi(u))=\left(u, \sin \left(\cos ^{-1} u\right)\right)=\left(u, \sqrt{1-u^{2}}\right), \quad u \in J=\right]-1,1[.
$$

The following corollary is readily obtained, because the parametrization $t \mapsto(t, h(t))$ of a graph is injective.

Corollary 2.8. A regular parametrized curve γ is locally injective, that is, there exist around each $t_{0} \in I$ a neighborhood such that the restriction of γ to this neighborhood is injective.

2.9 The inverse function theorem

The following fundamental result from multivariable calculus plays a very prominent role in differential geometry. We need it to obtain the analog of Theorem 2.8 for surfaces.

Theorem 2.9. Let $F: U \rightarrow \mathbb{R}^{m}$ be smooth, where $U \subset \mathbb{R}^{m}$ is open, and let $q \in U$ be given. Suppose that $\operatorname{det}(D F(q)) \neq 0$. Then there exist an open set $W \subset U$ containing q and an open set $V \subset \mathbb{R}^{m}$ containing $F(q)$ such that $V=F(W)$ and such that the restriction of F is a diffeomorphism of W onto V (see Definition 2.5.1).

Proof. It is convenient to distinguish the variables in the source space and the target space (both being \mathbb{R}^{m}) in the way that we view $x=F(y) \in \mathbb{R}^{m}$ as a function of $y \in U$. The inverse function that we are seeking will then give $y \in W$ as a function of $x \in V$.

We shall apply the implicit function theorem with $n=2 m$ to the map $f: \mathbb{R}^{m} \times U \rightarrow \mathbb{R}^{m}$ given by $f(x, y)=-x+F(y)$ where $x \in \mathbb{R}^{m}, y \in U$. Notice that $f(x, y)=0$ if and only if $F(y)=x$. Therefore, if we can exhibit the solution set to the equation $f(x, y)=0$ as the graph $y=h(x)$ of a function h, then $F(y)=x$ if and only if $y=h(x)$. This means exactly that h is inverse to F.

Let $y_{0} \in \mathbb{R}^{m}$ denote the given point q, and let $x_{0}=F\left(y_{0}\right)$. The matrix $A=\frac{\partial f}{\partial y}$ of Theorem 1.7 is exactly $D F(q)$, hence it has a non-vanishing determinant. Thus, according to the theorem there exist open intervals I and J around x_{0} and y_{0}, respectively, and a smooth map $h: I \rightarrow J$ such that $f(x, y)=0$ if and only if $y=h(x)$, for all $(x, y) \in I \times J$. Let $W=J \cap F^{-1}(I)$, then W is open (since F is continuous). It is now seen, as remarked above, that $F: W \rightarrow I$ and $h: I \rightarrow W$ are the inverse maps of each other. Hence F is a diffeomorphism of W onto $V=I$.

Remark The present theorem represents an analogue for functions of several variables of Theorem 2.4. There is, however, a fundamental difference between the two theorems. The theorem we have proved is local, as it only asserts the existence of an inverse to F in some neighborhood of $F(q)$. Even if the condition $\operatorname{det}(D F(q)) \neq 0$ holds for all $q \in U$, an inverse of F need not exist on all of $F(U)$. This is illustrated in the example below, and it contrasts the situation for $n=1$: If $F^{\prime}(x) \neq 0$ on an interval, then F is monotone on that interval, hence bijective, as also stated in Theorem 2.4.

Example 2.9.1 Let $F: U \rightarrow \mathbb{R}^{2}$ be given by

$$
F(x, y)=\left(x^{2}-y^{2}, 2 x y\right)
$$

where $U=\mathbb{R}^{2} \backslash\{(0,0)\}$. The Jacobian of F,

$$
D F(x, y)=\left(\begin{array}{cc}
2 x & -2 y \\
2 y & 2 x
\end{array}\right)
$$

has non-zero determinant for all $q=(x, y) \neq(0,0)$, hence the inverse function theorem implies that for each $q \in U$, the restriction of F to a suitable neighborhood of q is invertible. However, since $F(-q)=F(q)$ for all q, F itself is not injective.

Corollary 2.9. Let $F: U \rightarrow \mathbb{R}^{m}$ be smooth, where $U \subset \mathbb{R}^{m}$ is open, and suppose that $\operatorname{det}(D F(q)) \neq 0$ for each $q \in U$. Then $F(U)$ is open. If in addition F is injective, then F is a diffeomorphism of U onto $F(U)$.

Proof. Let $p \in F(U)$ be given, and write $p=F(q)$. According to the theorem above there exists an open set $W \subset U$ around q such that $F(W)$ open. This open set $F(W)$ is then an open neighborhood of p in $F(U)$, hence $F(U)$ is open.

If F is injective, it has an inverse map $F^{-1}: F(U) \rightarrow U$. According to the theorem, F^{-1} is smooth in a neighborhood p. Since p was arbitrary, F^{-1} is smooth.

2.10 Regular surfaces as graphs

In this section we prove the following analogue for surfaces of Theorem 2.8.
Theorem 2.10. Assume that $S=\sigma(U)$ is a regular parametrized surface and let $q=\sigma(p)$ with $p \in U$. Then there exists an open set $\Omega \subseteq \mathbb{R}^{3}$ containing q such that which $S \cap \Omega$ allows a reparametrization such that it becomes the graph of a smooth function ψ, considered either as $z=\psi(x, y), y=\psi(x, z)$ or as $x=\psi(y, z)$. In $S \cap \Omega, \sigma^{-1}$ is the restriction of a smooth function defined in Ω.

As a consequence of this, together with Theorem 1.6, we see, as we saw for curves in Section 2.8, that there are simple connections between regular parametrized surfaces, graphs of two-variable functions and level sets of three-variable functions, away from critical points. Essentially these are different descriptions of the same kind of objects. Even more can, and will, be said below.

Proof. Write

$$
\sigma(u, v)=(f(u, v), g(u, v), h(u, v)) .
$$

Since σ is regular at p the columns of the Jacobian

$$
D \sigma=\left(\begin{array}{cc}
f_{u}^{\prime} & f_{v}^{\prime} \\
g_{u}^{\prime} & g_{v}^{\prime} \\
h_{u}^{\prime} & h_{v}^{\prime}
\end{array}\right)
$$

are linearly independent at p. By changing the order of the coordinates on \mathbb{R}^{3} if necessary, we may arrange that the two first rows of $\operatorname{D\sigma }(p)$ are independent. Let $\pi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ denote the projection $(x, y, z) \mapsto(x, y)$ and put

$$
F=\pi \circ \sigma: U \rightarrow \mathbb{R}^{2} .
$$

Then $F(u, v)=(f(u, v), g(u, v))$ and

$$
D F=\left(\begin{array}{cc}
f_{u}^{\prime} & f_{v}^{\prime} \\
g_{u}^{\prime} & g_{v}^{\prime}
\end{array}\right) .
$$

It follows that $\operatorname{det} D F(p) \neq 0$. By the inverse function theorem there exists an open neighborhood W of p in U such that F is a diffeomorphism of W onto the open set $V=F(W)=\pi(\sigma(W)) \subset \mathbb{R}^{2}$.

Let $\phi=F^{-1}: V \rightarrow W$, then $\pi \circ \sigma \circ \phi=F \circ \phi$ is the identity map on V, that is, the first two coordinates of $\sigma(\phi(s, t))$ are exactly s and t. We define the function $\psi(s, t)$ as the third coordinate of $\sigma(\phi(s, t))$, then $\sigma(\phi(s, t))=$ $(s, t, \psi(s, t))$ as desired. Finally notice that V is open and hence $\sigma(V)$ is open in $\sigma(U)$ since σ^{-1} is continuous. Hence $\sigma(V)=\sigma(U) \cap \Omega$ for some open set $\Omega \subseteq \mathbb{R}^{3}$.

2.11 Curves on a regular parametrized surface

We shall now give a geometric characterization of the tangent space based on the following definition. Let $S=\sigma(U) \subseteq \mathbb{R}^{3}$ be a regular parametrized surface.

Definition 2.11. A parametrized curve on S is a parametrized curve $\gamma: I \mapsto$ \mathbb{R}^{3}, defined as usual on an open set $I \subseteq \mathbb{R}$, such that $\forall t \in I: \gamma(t) \subset S$. In other words, γ can be written in the form $\gamma=\sigma \circ \mu: I \rightarrow \mathbb{R}^{3}$ where $\mu: I \rightarrow U$ is a parametrized plane curve. The curve μ is the coordinate curve of γ.
Lemma 2.11. γ is smooth if and only if μ is smooth.
Proof. Since σ is smooth, it is clear that the smoothness of μ implies the smoothness of γ. For the converse, observe that it suffices to prove smoothness locally, and here we may assume, by Theorem 2.10, that σ is a graph parametrization. Assume for simplicity that $\sigma(u, v)=(u, v, \phi(u, v))$ then $\gamma(t)=(u(t), v(t), \psi(u(t), v(t)))$ and hence $\mu(t)=(u(t), v(t))$ is smooth.

Example 2.11.1 The helix $\gamma(t)=(\lambda t, r \cos (\omega t), r \sin (\omega t))$ in Example 1.1.4 is realized as a curve $\sigma \circ \mu$ on the cylinder $\sigma(u, v)=(u, r \cos v, r \sin v)$ with coordinate curve $\mu(t)=(\lambda t, \omega t)$.
Lemma 2.11. Let $\gamma=\sigma \circ \mu$ be a parametrized curve on σ. Then

$$
\begin{equation*}
\gamma^{\prime}(t)=u^{\prime}(t) \sigma_{u}^{\prime}(\mu(t))+v^{\prime}(t) \sigma_{v}^{\prime}(\mu(t)) \tag{3}
\end{equation*}
$$

where $u(t)$ and $v(t)$ are the coordinates of $\mu(t)=(u(t), v(t)) \in U$.
Proof. This follows from the chain rule for $D(G \circ F)$ with $G=\sigma: U \rightarrow \mathbb{R}^{3}$ and $F=\mu: I \rightarrow U$, see Appendix B, equation (B.2). The 3×2 matrix $D G=D \sigma$ has columns $\sigma_{u}^{\prime}, \sigma_{v}^{\prime}$, and the derivative $F^{\prime}(t)=\mu^{\prime}(t)$ has the elements $u^{\prime}(t)$ and $v^{\prime}(t)$. Their product $D G(F(t)) F^{\prime}(t)$ is exactly the linear combination $u^{\prime} \sigma_{u}^{\prime}+v^{\prime} \sigma_{v}^{\prime}$, as in (3).

Theorem 2.11. Let $S=\sigma(U)$ as before. The tangent space $T_{q} S$ is equal to the set of tangent vectors $\gamma^{\prime}\left(t_{0}\right)$ of all parametrized curves γ on S with $\gamma\left(t_{0}\right)=q$ for some $t_{0} \in I$.
Proof. Let $q=\sigma(p)$. It follows from (3) that $\gamma^{\prime}\left(t_{0}\right)$ belongs to the span $T_{q} \sigma(U)$ of σ_{u}^{\prime} and σ_{v}^{\prime} for all parametrized curves on $\sigma(U)$ with $\mu\left(t_{0}\right)=p$.

Conversely, let a linear combination $a \sigma_{u}^{\prime}+b \sigma_{v}^{\prime} \in T_{q} \sigma(U)$ be given. Let $p=\left(u_{0}, v_{0}\right)$ and define $\mu(t)=(u(t), v(t))=\left(u_{0}+a t, v_{0}+b t\right)$ for t sufficiently close to 0 , so that $\mu(t) \in U$. Let $\gamma=\sigma \circ \mu$. Then $u^{\prime}(t)=a$ and $v^{\prime}(t)=b$, hence it follows from the expression (3) for $\gamma^{\prime}(t)$ that $\gamma^{\prime}(0)=a \sigma_{u}^{\prime}+b \sigma_{v}^{\prime}$.

This displays once again the intrinsic nature of the tangent space.

2.12 Embedded surfaces

Definition 2.12.1. A subset $S \subseteq \mathbb{R}^{3}$ is a regular embedded surface provided
$(S I): \forall q \in S \exists\left(\sigma_{i}, U_{i}, W_{i}\right)$ such that $q \in \sigma_{i}\left(U_{i}\right)=S \cap W_{i}$,
$\sigma_{i}\left(U_{i}\right)$ is a regular parametrized surface in \mathbb{R}^{3}, and $W_{i} \subset \mathbb{R}^{3}$ is open
(SII) : For each i, j, the change of coordinates map

$$
\sigma_{j}^{-1} \circ \sigma_{i}: \sigma_{i}^{-1}\left(\sigma_{i}\left(U_{i}\right) \cap \sigma_{j}\left(U_{j}\right)\right) \mapsto \sigma_{j}^{-1}\left(\sigma_{i}\left(U_{i}\right) \cap \sigma_{j}\left(U_{j}\right)\right)
$$

is a diffeomorphism.
The pairs $\left(\sigma_{i}, U_{i}\right)$ are called local charts, and the collection $\mathcal{A}=\left\{\left(\sigma_{i}, U_{i}\right)\right\}$ is called an atlas of S.

Notice that we do not insist that the atlas is 'maximal'. See Exercise 16.
It is clear that one can define the notion of a smooth parametrized curve on an embedded surface S. Furthermore, the tangens spaces $T_{q} S$ are welldefined and given by the analogue of Theorem 2.11. To round off this chapter we introduce the following
Definition 2.12.2. Let $f: \Omega \mapsto \mathbb{R}$ be a smooth function defined on an open subset $\Omega \subseteq \mathbb{R}^{3}$. A point $x \in f(\Omega) \subseteq \mathbb{R}$ is called a regular value if $\forall q \in \Omega$ such that $f(q)=x$ one has : q is not a critical point for f.

Proposition 2.12. The level set \mathcal{C}_{x} belonging to a regular value x is a regular embedded surface in \mathbb{R}^{3}.

Definition 2.12.3. Let S_{1}, S_{2} be regular embedded surfaces in \mathbb{R}^{3}, with atlas'es $\mathcal{A}_{1}, \mathcal{A}_{2}$. Let $F: S_{1} \mapsto S_{2}$. We say that F is differentiable if for all local charts $\left(\sigma_{1}, U_{1}\right) \in \mathcal{A}_{1}$ and all local charts $\left(\sigma_{2}, U_{2}\right) \in \mathcal{A}_{2}$ we have

$$
\sigma_{2}^{-1} \circ F \circ \sigma_{1}: \sigma_{1}^{-1}\left(F^{-1}\left(\sigma_{2}\left(U_{2}\right)\right)\right) \mapsto U_{2} \text { is smooth. }
$$

If F is a bijection, and if $F^{-1}: S_{2} \mapsto S_{1}$ is differentiable, we say that F is a diffeomorphism.

2.13 Exercises

1 The following curve is called the cardioid (because of its heart-like shape):

$$
\gamma(t)=(2 \cos t+\cos 2 t, 2 \sin t+\sin 2 t)
$$

For which values of t is it regular? Find the point where t is singular in the figure below. The curve is constructed by a circle of radius 1 rolling without slipping on the outside of a fixed circle also of radius 1 . The curve is the trace of a point on the circumference of the rolling circle.

2 Let $\gamma(t)$ be a parametrized curve which does not pass through the origin, and let $\gamma\left(t_{0}\right)$ be a point of the trace which is closest to the origin. Show that the position vector $\gamma\left(t_{0}\right)$ is orthogonal to the tangent vector $\gamma^{\prime}\left(t_{0}\right)$.
3 Let $\gamma: I \rightarrow \mathbb{R}^{3}$ be a parametrized curve in the $x z$-plane, that is $\gamma(u)=$ $(f(u), 0, g(u))$, and assume that $f(u)>0$ for all $u \in I$. This curve, called the profile curve, is rotated around the z-axis. The result is a so-called surface of revolution :

$$
S_{\gamma}=\{\sigma(u, v)=(f(u) \cos v, f(u) \sin v, g(u)) \mid u \in I, v \in \mathbb{R}\}
$$

a. Explain how the parameter v describes the rotation around the z-axis.
b. Examples: $\gamma(u)=(1,0, u)$ and $\gamma(u)=(u, 0, u)$ (the last case requires $u>0)$. Describe the corresponding surfaces of revolution.
c. Describe a sphere, minus two poles, as a surface of revolution. Which is the profile curve, and which coordinates on the sphere are obtained?
d. Assume that γ is a regular parametrized curve. Show that S_{γ} is a regular embedded surface.
e. Show that the recipe $F_{\theta}: \sigma(u, v) \mapsto \sigma(u, v+\theta)$ yields a well-defined map $F_{\theta}: S_{\gamma} \mapsto S_{\gamma}$. Show that F_{θ} is a diffeomorphism. Describe it geometrically. What is F_{θ}^{-1} ?
4 Let $\sigma(u, v)=(\cos u \cos v, \cos u \sin v, \sin u)$, the standard spherical coordinates, defined on an appropriate open set $U \subset \mathbb{R}^{2}$.
a. Show that the tangent space of $\sigma(U)$ at $q=\sigma(0, \pi)$ is $T_{q} \sigma(U)=$ $\operatorname{Span}\left(e_{2}, e_{3}\right)$. Determine also the tangent space at $q=\sigma\left(\frac{\pi}{4}, 0\right)$.
c. Let $w=(1,1,-1)$. Show that $w \in T_{q} \sigma(U)$ where $q=\sigma\left(\frac{\pi}{4}, 0\right)$, and determine a curve on $\sigma(U)$ through q and with w as its tangent vector.
5 Consider the map $\sigma(u, v)=\left(u^{3}, v^{3}, u v\right),(u, v) \in \mathbb{R}^{2}$.
a. Determine the largest open set $U \subseteq \mathbb{R}^{2}$ for which $\sigma(U)$ is a regular parametrized surface.
b. Determine the tangent space $T_{q} \sigma(U) \subset \mathbb{R}^{3}$ for the points $q_{1}=\sigma(1,0)$ and $q_{2}=\sigma(1,1)$. Determine also the tangent plane in q_{1} and q_{2}.
c. Show that σ is a bijection of \mathbb{R}^{2} onto $\mathcal{S}=\left\{(x, y, z) \mid x y-z^{3}=0\right\}$. Is S a regular embedded surface?
d. Use Theorem 2.3 to determine the tangent plane in q_{1}.
e. The vector $v=(3,6,3)$ belongs to $T_{q} \sigma(U)$ where $q=q_{2}$. Find a curve γ on $\sigma(U)$ with $\gamma\left(t_{0}\right)=q$ and $\gamma^{\prime}\left(t_{0}\right)=v$ (it exists by Theorem 2.11).

6 Let $\sigma(u, v)$ be as in Exercise 5. In each of the following cases, determine whether γ can be realized as a parametrized curve on $\sigma(U)$.
a) $\gamma(t)=\left(t^{3}, t^{3}, t^{2}\right)$,
b) $\gamma(t)=\left(t^{3}, t^{3}, t^{3}\right)$,
c) $\gamma(t)=\left(t, t^{2}, t\right)$.

7 Let

$$
\gamma(t)=\left(\frac{1-t^{2}}{1+t^{2}}, \frac{2 t}{1+t^{2}}\right), \quad t \in \mathbb{R}
$$

Which curve is obtained through the reparametrization $\beta=\gamma \circ \phi$, where $\phi(u)=\tan \frac{u}{2}$ for $\left.u \in\right]-\pi, \pi[?$
8 Let $\mathcal{G}_{h}=\left\{\sigma(u, v)=(u, v, h(u, v)) \mid(u, v) \in \mathbb{R}^{2}\right\}$ be the graph of a function $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Show that the unit normal is given by

$$
\mathbf{N}^{\sigma}(u, v, h(u, v))=\mathbf{N}(u, v)=\frac{\left(-h_{u}^{\prime},-h_{v}^{\prime}, 1\right)}{\sqrt{1+\left(h_{u}^{\prime}\right)^{2}+\left(h_{v}^{\prime}\right)^{2}}}
$$

9 Let $\sigma(u, v),(u, v) \in \mathbb{R}^{2}$ be a smooth surface and put $\tau(s, t)=\sigma(-t, s)$. Show that τ is obtained from σ by a reparametrization. Does it preserve or reverse orientations?

10 Let $\sigma(u, v)=\left(u, u v, \frac{1}{2} v^{2}\right),(u, v) \in \mathbb{R}^{2}$ be a map into \mathbb{R}^{3}. Determine σ_{u}^{\prime}, σ_{v}^{\prime} and $\sigma_{u}^{\prime} \times \sigma_{v}^{\prime}$. For which (u, v) is $\sigma(u, v)$ regular? Determine the unit normal \mathbf{N} at $(u, v)=(4,2)$.

11 Let $\sigma(u, v)=\left(u, u v, \frac{1}{2} v^{2}\right)$ for $(u, v) \in U=\left\{(u, v) \in \mathbb{R}^{2} \mid u \neq 0\right\}$. Show that $(u, v) \mapsto(u, u v)$ is a diffeomorphism $U \rightarrow U$, and determine the inverse map $\phi: U \rightarrow U$. Show that the reparametrization $\tau(U)$ of $\sigma(U)$, given by $\tau=\sigma \circ \phi: U \rightarrow \mathbb{R}^{3}$, is a graph of the form $\mathcal{G}_{h(x, y)}$ with $(x, y) \in U$.

12 Let again $\sigma(u, v)=\left(u, u v, \frac{1}{2} v^{2}\right)$. Find two open sets $U, W \subset \mathbb{R}^{2}$ (nonempty), and a diffeomorphism $\phi: W \rightarrow U$, such that the reparametrization $\rho(W)$ of $\sigma(U)$, with $\rho=\sigma \circ \phi$, is a graph of the form $\mathcal{G}_{h(y, z)}$, where $(y, z) \in W$.

13 Let $U=\left\{(u, v) \in \mathbb{R}^{2} \mid u>v\right\}$ and $\sigma(u, v)=\left(\frac{1}{2}(u+v), \frac{1}{2}\left(u^{2}+v^{2}\right)\right.$, uv) for $(u, v) \in U$. Let $p=(2,0)$ and $q=\sigma(p)$.
a. Show that σ is regular at p, and determine $T_{q} \sigma(U)$.
b. Let $W=\left\{(s, t) \in \mathbb{R}^{2} \mid s^{2}>t\right\}$ and define $\phi: W \rightarrow \mathbb{R}^{2}$ by

$$
\phi(s, t)=\left(s+\sqrt{s^{2}-t}, s-\sqrt{s^{2}-t}\right) .
$$

Show that ϕ is a diffeomorphism of W onto U, and determine whether it preserves or reverses orientation.
c. The surface $\tau(W)$ with $\tau=\sigma \circ \phi$ is the graph of a function. Which?
d. Find $p_{1} \in W$ such that $\phi\left(p_{1}\right)=p$, and determine then $q_{1}=\tau\left(p_{1}\right)$ and $T_{q_{1}} \tau(W)$.

14 In this exercise we identify the set $M_{2,2}$ of 2×2 real matrices with \mathbb{R}^{4} by numbering the entries in some (arbitrary) fashion. Let $F: M_{2,2}=\mathbb{R}^{4} \rightarrow$ $M_{2,2}=\mathbb{R}^{4}$ denote the map $A \mapsto A^{2}$ where the square is computed by matrix multiplication. Determine the 4×4 matrix $D F(I)$, where I is the identity matrix in $M_{2,2}$. Show that every matrix sufficiently close to I has a square root, which is unique if it is required to be sufficiently close to I.

15 Let $\sigma(U) \subseteq \mathbb{R}^{3}$ be an regular parametrized surface, and assume that $\sigma(U)$ is contained in the $x y$-plane. Show that the set $V=\{(s, t) \mid(s, t, 0) \in$ $\sigma(U)\}$ is open in \mathbb{R}^{2}, and that the plane surface $\tau(V)$ with $\tau(s, t)=(s, t, 0)$, $(s, t) \in V$, can be seen as a reparametrization of $\sigma(U)$ (hint: apply Corollary 2.9 to $F=\pi \circ \sigma$ in the proof of Theorem 2.10).

16 An atlas \mathcal{A} when used in the definition of the regular embedded surface S is said to be maximal if whenever one has a triple (σ_{0}, U_{0}, W_{0}) such that for all $\left(\sigma_{i}, u_{i}\right) \in \mathcal{A}$:

$$
\begin{aligned}
(S I)_{0}: & \sigma_{0}\left(U_{0}\right)=S \cap W_{0}, W_{0} \text { is open and } \\
& \sigma_{0}\left(U_{0}\right) \text { is a regular parametrized surface in } \mathbb{R}^{3}
\end{aligned}
$$

$(S I I)_{0}$: For each i, the change of coordinates map

$$
\sigma_{0}^{-1} \circ \sigma_{i}: \sigma_{i}^{-1}\left(\sigma_{i}\left(U_{i}\right) \cap \sigma_{0}\left(U_{0}\right)\right) \mapsto \sigma_{0}^{-1}\left(\sigma_{i}\left(U_{i}\right) \cap \sigma_{0}\left(U_{0}\right)\right)
$$

is a diffeomorphism.
then $\left(\sigma_{0}, U_{0}\right) \in \mathcal{A}$.
An atlas \mathcal{A} is invariant under reparametrizations if $\forall(\sigma, U) \in \mathcal{A}$ and all diffeomorphisms $\phi: W \mapsto U$ with W open in \mathbb{R}^{2} we have that $(\tau, W) \in \mathcal{A}$, when $\tau=\sigma \circ \phi$.

An atlas \mathcal{A} is invariant under restrictions if $\forall(\sigma, U) \in \mathcal{A}$ and all open subsets $\Omega \subseteq \mathbb{R}^{3}$ we have that when we write $\Omega \cap \sigma(U)=\tilde{\sigma}(\tilde{U})$ with $\tilde{U}=$ $\sigma^{-1}(\sigma(U) \cap \Omega)$ and $\tilde{\sigma}$ given as the restriction of σ to \tilde{U}, then $(\tilde{\sigma}, \tilde{U}) \in \mathcal{A}$.
a. Show that any atlas can be naturally imbedded into a maximal atlas.
b. Prove that a maximal atlas is invariant under reparametrizations and restrictions.
c. Let $(\sigma, U) \in \mathcal{A}$, where \mathcal{A} is invariant under restrictions. Assume $U_{1} \subset U$ is an open non-empty subset, and let σ_{1} denote the restriction of σ to U_{1}. Prove that $\left(\sigma_{1}, U_{1}\right) \in \mathcal{A}$
d. Give a simple example of an atlas which is invariant under reparametrizations and restrictions, but is not maximal. [Hint: Extensions?]

Chapter 3

The first fundamental form

We shall introduce notions that allow us to treat metric questions on curves and surfaces, for example the determination of the length of a curve and the area of a subset of a surface. The notion of distance along a curve will be closely associated with the standard notion of the length of a vector in Euclidean space \mathbb{R}^{2} or \mathbb{R}^{3}. The Euclidean notion of length is used on tangent vectors, and it can be viewed as a means to define the distance of very close points ('infinitesimal distances'). The ('global') distance between two points along the curve is then obtained by integration of these local distances.

Areas are defined similarly by multiple integrals. Certain topics in connection with the latter will be dealt with on a more intuitive level, because they are most efficiently treated by means of the Lebesgue measure, which we do not assume the reader to be acquainted with. The notion of area will only be used sporadically in the following chapters, but it is an important concept in the geometry of surfaces.

3.1 Arc length

Let $\gamma: I \rightarrow \mathbb{R}^{n}$ be a smooth curve. The speed of γ at $t \in I$ is defined to be the length $\left\|\gamma^{\prime}(t)\right\|$ of the derivative $\gamma^{\prime}(t) \in \mathbb{R}^{n}$, in accordance with the physical interpretation of γ as describing the motion of a particle in n-space. In this interpretation $\gamma^{\prime}(t)$ is the velocity vector for the particle at time t.

The vector from $\gamma(t)$ to $\gamma(t+\Delta t)$ is approximately $\gamma^{\prime}(t) \Delta t$, according to the first order (linear) approximation of γ, hence the distance between these points on the curve is approximately $\left\|\gamma^{\prime}(t)\right\| \Delta t$. Adding up all these distances and taking the limit $\Delta t \rightarrow 0$, we are lead to the following formula for the distance along γ between $\gamma\left(t_{1}\right)$ and $\gamma\left(t_{2}\right)$:

$$
\begin{equation*}
\int_{t_{1}}^{t_{2}}\left\|\gamma^{\prime}(t)\right\| d t \tag{1}
\end{equation*}
$$

The derivation we gave for this formula is not a rigorous proof. Rather than carrying out such a proof we will take the formula as a definition, and regard the derivation as motivation.

Definition 3.1. Let $\gamma: I \rightarrow \mathbb{R}^{n}$ be a smooth curve. The arc-length of γ from $t_{1} \in I$ to $t_{2} \in I$ is $\int_{t_{1}}^{t_{2}}\left\|\gamma^{\prime}(t)\right\| d t$.

An arc-length function for γ is a primitive of $t \mapsto\left\|\gamma^{\prime}(t)\right\|$, that is, a differentiable function $\ell: I \rightarrow \mathbb{R}$ with $\ell^{\prime}(t)=\left\|\gamma^{\prime}(t)\right\|$. The arc-length from t_{1} to t_{2} is then $\ell\left(t_{2}\right)-\ell\left(t_{1}\right)$. Notice that we do not require $t_{1} \leq t_{2}$. If $t_{2}<t_{1}$, then the arc-length is negative.

Example 3.1.1 Let $\gamma(t)=p+t q$ be a straight line (where $q \neq 0$). The arc length along γ from $p+t_{1} q$ to $p+t_{2} q$ is

$$
\int_{t_{1}}^{t_{2}}\|q\| d t=\|q\|\left(t_{2}-t_{1}\right)=\left\|\gamma\left(t_{2}\right)-\gamma\left(t_{1}\right)\right\|
$$

if $t_{1}<t_{2}$.
Example 3.1.2 A circle of radius r is parametrized by $\gamma(t)=(r \cos t, r \sin t)$, for which the speed $\left\|\gamma^{\prime}(t)\right\|=\|(-r \sin t, r \cos t)\|=r$ is constant. Hence the arc-length from 0 to t is

$$
\int_{0}^{t}\left\|\gamma^{\prime}(t)\right\| d t=r t
$$

Example 3.1.3 For the helix given by $\gamma(t)=(\lambda t, r \cos (\omega t), r \sin (\omega t))$ (see Example 1.1.4) we have $\gamma^{\prime}(t)=(\lambda,-r \omega \sin (\omega t), r \omega \cos (\omega t))$ and the speed $\left\|\gamma^{\prime}(t)\right\|=\sqrt{\lambda^{2}+r^{2} \omega^{2}}$ is again constant. Hence the arc-length measured from 0 is this constant times t.

As explained in Section 2.7, reasonable geometric notions are invariant under reparametrizations that do not reverse orientation. The following result shows that arc length has this property.

Theorem 3.1. Let $\gamma: I \rightarrow \mathbb{R}^{n}$ be a parametrized curve, and let $\beta=\gamma \circ \phi: J \rightarrow$ \mathbb{R}^{n} be a reparamatrization. Let $u_{1}, u_{2} \in J$ and let $t_{i}=\phi\left(u_{i}\right)$ for $i=1,2$.

If ϕ preserves the direction then the arc-length of β from u_{1} to u_{2} equals the arc-length of γ from t_{1} to t_{2}. If ϕ reverses direction the arc-lengths are of the same absolute size but have opposite signs.

Proof. By the chain rule $\beta^{\prime}(u)=\gamma^{\prime}(\phi(u)) \phi^{\prime}(u)$. Hence

$$
\int_{u_{1}}^{u_{2}}\left\|\beta^{\prime}(u)\right\| d u=\int_{u_{1}}^{u_{2}}\left\|\gamma^{\prime}(\phi(u))\right\| \phi^{\prime}(u) \mid d u= \pm \int_{t_{1}}^{t_{2}}\left\|\gamma^{\prime}(t)\right\| d t
$$

where in the last step we have used the substitution $t=\phi(u)$. The sign in front is positive if ϕ^{\prime} is positive, and otherwise negative.

3.2 Lines as shortest curves

Let $P_{1}, P_{2} \in \mathbb{R}^{n}$. The linear curve from P_{1} to P_{2} is parametrized by $t \mapsto P_{1}+t\left(P_{2}-P_{1}\right)$ where $t \in[0 ; 1]$. It has length $\left\|P_{2}-P_{1}\right\|$ (see Example 3.1.1). Its trace, the line segment from P_{1} to P_{2}, is denoted by [P_{1}, P_{2}].

The geometric interpretation of the following theorem is that the linear curve is shortest from P_{1} to P_{2}. Notice however that because of the possibility of reparametrization, the linear curve is not unique in this respect.
Theorem 3.2. Let $\gamma: I \rightarrow \mathbb{R}^{n}$ be a parametrized curve. Let $t_{1}<t_{2}$ in I and let L denote the arc length of γ from t_{1} to t_{2}. Then

$$
\begin{equation*}
L \geq\left\|\gamma\left(t_{2}\right)-\gamma\left(t_{1}\right)\right\| . \tag{2}
\end{equation*}
$$

Proof. Let $P_{1}=\gamma\left(t_{1}\right), P_{2}=\gamma\left(t_{2}\right)$ and $w=P_{2}-P_{1}$, and consider the function

$$
\varphi(t)=\gamma(t) \cdot w
$$

We have $\varphi\left(t_{2}\right)-\varphi\left(t_{1}\right)=\left(P_{2}-P_{1}\right) \cdot w=\|w\|^{2}$, hence by the fundamental theorem of calculus

$$
\|w\|^{2}=\int_{t_{1}}^{t_{2}} \varphi^{\prime}(t) d t
$$

It is easily seen that $\varphi^{\prime}(t)=\gamma^{\prime}(t) \cdot w$, hence

$$
\varphi^{\prime}(t) \leq\left|\varphi^{\prime}(t)\right| \leq\left\|\gamma^{\prime}(t)\right\|\|w\| .
$$

We conclude

$$
\|w\|^{2} \leq \int_{t_{1}}^{t_{2}}\left\|\gamma^{\prime}(t)\right\|\|w\| d t=L\|w\|
$$

from which (2) follows.

3.3 Unit speed parametrization

A parametrized curve γ is said to have unit speed if $\left\|\gamma^{\prime}(t)\right\|=1$ at all points. It is common practice to replace the symbol for the variable by s in this case. For a curve with unit speed, the determination of arc-lengths is particularly simple, because by (1) the arc-length from s_{1} to s_{2} is equal to the difference of the parameters $s_{2}-s_{1}$. We also say that the curve is parametrized by arc-length ${ }^{1}$.
Theorem 3.3. A regular parametrized curve γ allows a direction-preserving reparametrization with unit speed.

Proof. Let $\ell(t)$ be an arbitrary arc-length function for γ, that is, a primitive of the speed function $t \mapsto\left\|\gamma^{\prime}(t)\right\|$. The speed function is smooth since $\gamma^{\prime}(t)$ is smooth and never zero. Hence ℓ is smooth. Notice that $\ell^{\prime}(t)=\left\|\gamma^{\prime}(t)\right\|>0$.

We apply Theorem 2.4 to the function ℓ. It follows that ℓ is bijective onto its image. Furthermore, the inverse function $\phi=\ell^{-1}$ is smooth, and its derivative is given by

$$
\phi^{\prime}(s)=\frac{1}{\ell^{\prime}(t)}=\frac{1}{\left\|\gamma^{\prime}(t)\right\|}>0
$$

where $s=\ell(t)$. We use the function ϕ for the reparametrization. Then

$$
(\gamma \circ \phi)^{\prime}(s)=\gamma^{\prime}(\phi(s)) \phi^{\prime}(s)=\frac{\gamma^{\prime}(t)}{\left\|\gamma^{\prime}(t)\right\|}
$$

where $t=\phi(s)$. Hence $\gamma \circ \phi$ has unit speed.
Example 3.3.1 For a curve γ with constant speed $c \neq 0$, the function $\ell(t)=c t$ is a primitive of the speed function. The inverse of the map $t \mapsto c t$ is $\phi(s)=\frac{s}{c}$, hence a unit speed reparametrization is obtained by inserting $t=\frac{s}{c}$ in the expression for γ. For example a unit speed reparametrization of the circle $\gamma(t)=(r \cos t, r \sin t)$ (see Example 3.1.2) is

$$
\beta(s)=\gamma\left(\frac{s}{r}\right)=\left(r \cos \frac{s}{r}, r \sin \frac{s}{r}\right)
$$

and the helix in Example 3.1.3 is reparametrized with unit speed in

$$
\beta(s)=\left(\lambda \frac{s}{c}, r \cos \left(\omega \frac{s}{c}\right), r \sin \left(\omega \frac{s}{c}\right)\right)
$$

where $c=\sqrt{\lambda^{2}+r^{2} \omega^{2}}$.

[^0]
3.4 The first fundamental form

Let $\sigma(U) \subseteq \mathbb{R}^{3}$ be a regular parametrized surface. We define the following three functions on U, associated with σ :

$$
E(p)=\left\|\sigma_{u}^{\prime}(p)\right\|^{2}, \quad F(p)=\sigma_{u}^{\prime}(p) \cdot \sigma_{v}^{\prime}(p), \quad G(p)=\left\|\sigma_{v}^{\prime}(p)\right\|^{2}
$$

where $p \in U$.
The functions E, F and G are useful for the computation of lengths of tangent vectors. If a vector $w \in T_{q} \sigma(U)$ with $q=\sigma(p)$, has coordinates a, b with respect to the basis $\sigma_{u}^{\prime}(p), \sigma_{v}^{\prime}(p)$, that is $w=a \sigma_{u}^{\prime}+b \sigma_{v}^{\prime}$, then its length is given by

$$
\|w\|^{2}=\left(a \sigma_{u}^{\prime}+b \sigma_{v}^{\prime}\right) \cdot\left(a \sigma_{u}^{\prime}+b \sigma_{v}^{\prime}\right)=E a^{2}+2 F a b+G b^{2} .
$$

Definition 3.4. The map $I_{q}: T_{q} \sigma(U) \rightarrow \mathbb{R}$ that associates to a tangent vector at q the square of its length,

$$
w \mapsto I_{q}(w)=\|w\|^{2}=E(p) a^{2}+2 F(p) a b+G(p) b^{2}
$$

is called the first fundamental form of $\sigma(U)$ in q. The coefficients E, F and G are called the component functions.

The component functions E, F and G are conveniently arranged as the entries of a symmetric matrix

$$
\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right) .
$$

By noting that σ_{u}^{\prime} and σ_{v}^{\prime} are the columns of the Jacobian matrix $D \sigma$, we see that the definition of E, F and G amounts to the matrix identity

$$
\left(\begin{array}{ll}
E & F \tag{3}\\
F & G
\end{array}\right)=(D \sigma)^{t} D \sigma
$$

where t denotes transposition. The formula for the first fundamental form can also be put in matrix form

$$
I_{p}(w)=\binom{a}{b}^{t}\left(\begin{array}{ll}
E(p) & F(p) \\
F(p) & G(p)
\end{array}\right)\binom{a}{b} .
$$

By definition, a quadratic form on a two dimensional real vector space V with basis vectors v_{1}, v_{2} is a map $Q: V \rightarrow \mathbb{R}$, which has the form

$$
w=a v_{1}+b v_{2} \mapsto Q(w)=e a^{2}+2 f a b+g b^{2}
$$

for some numbers $e, f, g \in \mathbb{R}$. The first fundamental form I_{q} is a quadratic form on $T_{q} \sigma(U)$, for each $q \in U$.

Example 3.4.1 For the plane parametrized by $\sigma(u, v)=p+u q_{1}+v q_{2}$, where q_{1}, q_{2} are linearly independent vectors in \mathbb{R}^{3}, we have $\sigma_{u}^{\prime}=q_{1}$ and $\sigma_{v}^{\prime}=q_{2}$. It follows that the component functions are constant:

$$
E=\left\|q_{1}\right\|^{2}, \quad F=q_{1} \cdot q_{2}, \quad G=\left\|q_{2}\right\|^{2}
$$

In particular, if q_{1}, q_{2} is an orthonormal pair, we have $E=G=1, F=0$.
Example 3.4.2 For the parametrization $\sigma(u, v)=(r \cos v, r \sin v, u)$ of the cylinder, we obtain $\sigma_{u}^{\prime}=(0,0,1)$ and $\sigma_{v}^{\prime}=(-r \sin v, r \cos v, 0)$, so that

$$
E=1, \quad F=0, \quad G=r^{2} .
$$

As before, the component functions are constant.
Example 3.4.3 For the unit sphere with spherical coordinates we determined σ_{u}^{\prime} and σ_{v}^{\prime} in Example 2.3.1. An easy computation shows that

$$
E=1, \quad F=0, \quad G=\cos ^{2} u
$$

Notice that in this case the component function $G(p)$ is not constant.
The following theorem illustrates how the first fundamental form contains information about curve lengths: If $\gamma(t)$ is a parametrized curve of the form $\gamma(t)=\sigma(u(t), v(t))$ for a pair of smooth functions with $(u(t), v(t)) \in U$, then (see Lemma 2.11)

$$
\begin{equation*}
\gamma^{\prime}=u^{\prime} \sigma_{u}^{\prime}+v^{\prime} \sigma_{v}^{\prime} . \tag{4}
\end{equation*}
$$

Theorem 3.4. The arc length of a parametrized curve $\gamma(t)=\sigma(u(t), v(t))$ on $\sigma(U)$ is given with respect to the coordinates $(u(t), v(t))$ as follows:

$$
\int_{t_{1}}^{t_{2}}\left(E u^{\prime 2}+2 F u^{\prime} v^{\prime}+G v^{\prime 2}\right)^{1 / 2} d t
$$

where the component functions E, F, G are evaluated in $(u(t), v(t))$ and the derivatives u^{\prime}, v^{\prime} are evaluated in t.

We shall study curves on $\sigma(U)$ in greater detail in Section 2.11.

Proof. This is immediate from Definition 3.1, since by (4)

$$
\left\|\gamma^{\prime}(t)\right\|^{2}=I_{p}\left(\gamma^{\prime}(t)\right)=E u^{\prime}(t)^{2}+2 F u^{\prime}(t) v^{\prime}(t)+G v^{\prime}(t)^{2}
$$

Example 3.4.4 On the unit sphere consider the circle $\gamma(t)=\sigma(u, t)$ with a fixed latitude u. Since u is constant, we have $u^{\prime}=0$, and since $v(t)=t$, we have $v^{\prime}=1$.

With the values of E, F and G from Example 3.4.3 we obtain the total length of γ :

$$
\int_{0}^{2 \pi}\left(E u^{\prime 2}+2 F u^{\prime} v^{\prime}+G v^{\prime 2}\right)^{1 / 2} d t=\int_{0}^{2 \pi} \cos u d t=2 \pi \cos u
$$

Given two vectors

$$
w=a \sigma_{u}^{\prime}(p)+b \sigma_{v}^{\prime}(p) \quad \text { and } \quad \tilde{w}=\tilde{a} \sigma_{u}^{\prime}(p)+\tilde{b} \sigma_{v}^{\prime}(p)
$$

in $T_{q} \sigma(U)$, the first fundamental form gives directly the inner product:

$$
\tilde{w} \cdot w=E a \tilde{a}+F(a \tilde{b}+b \tilde{a})+G b \tilde{b} .
$$

We observe that even though we "borrow" the inner product from \mathbb{R}^{3}, the formula uses only the tangent space and the first fundamental form. Further, if the two vectors are non-zero, and if the angle is $\theta \in[0, \pi]$, then it is wellknown from Euclidean geometry (see Appendix A) that $\cos \theta=\frac{w \cdot \tilde{w}}{\|w\|\|\tilde{w}\|}$, from which we obtain

$$
\begin{equation*}
\cos \theta=\frac{E a \tilde{a}+F(a \tilde{b}+b \tilde{a})+G b \tilde{b}}{\left(E a^{2}+2 F a b+G b^{2}\right)^{1 / 2}\left(E \tilde{a}^{2}+2 F \tilde{a} \tilde{b}+G \tilde{b}^{2}\right)^{1 / 2}} . \tag{5}
\end{equation*}
$$

Although not particularly simple this formula allows the computation of θ from knowledge of the coordinates a, b, \tilde{a} and \tilde{b}. In particular, the angle between σ_{u}^{\prime} and σ_{v}^{\prime} is given by

$$
\cos \theta=\frac{F}{\sqrt{E G}} .
$$

A regular parametrized surface $S=\sigma(U)$ is called orthogonal, if $F(p)=0$ for all $p \in U$, or equivalently, if $\sigma_{u}^{\prime}(p)$ and $\sigma_{v}^{\prime}(p)$ are perpendicular for all p.

Example 3.4.5 Let $\gamma(t)$ be a curve on the unit sphere, which in spherical coordinates is described by $\gamma(t)=\sigma(u(t), v(t))$. We will determine the angle θ between the tangent vector $\gamma^{\prime}(t)$ and the direction (North) of the meridians.

The coordinates of $\gamma^{\prime}(t)$ with respect to $\left(\sigma_{u}^{\prime}, \sigma_{v}^{\prime}\right)$ are determined from (4). They are $a=u^{\prime}(t)$ and $b=v^{\prime}(t)$. The meridians are characterized by having a fixed longitude v, hence the tangent vector of a meridian has direction σ_{u}^{\prime} (with coordinates $\tilde{a}=1, \tilde{b}=0$). With the values of E, F and G from Example 3.4.3 inserted in (5) we obtain

$$
\cos \theta=\frac{u^{\prime}}{\left(\left(u^{\prime}\right)^{2}+\cos ^{2} u\left(v^{\prime}\right)^{2}\right)^{1 / 2}}
$$

3.5 Introduction to areas and plane integrals

In this section we will give a short introduction to the theory of plane integrals of continuous functions. Not all proofs will be given.

Consider a plane set $D \subseteq \mathbb{R}^{2}$. If $D=[a, b] \times[c, d]$, where $a \leq b, c \leq d$, we call it a rectangle, and we define that it has the area $A(D)=(b-a)(d-c)$. Moreover, in this case if $f: D \rightarrow \mathbb{R}$ is continuous we define the integral of f over D by

$$
\begin{equation*}
\int_{D} f d A=\int_{a}^{b} \int_{c}^{d} f(u, v) d v d u \tag{6}
\end{equation*}
$$

It can be shown that the inner integral, $\int_{c}^{d} f(u, v) d v$, depends continuously on u, so that the outer integral makes sense. One can also prove that we have as well

$$
\int_{D} f d A=\int_{c}^{d} \int_{a}^{b} f(u, v) d u d v
$$

that is, the order of the integrations can be interchanged.
If D is not a rectangle, it is more complicated to define its area, and to define integrals over it. By a block-set we will understand a set K which is a finite union of closed rectangles. Notice that by decomposing further the rectangles used, such a set K can always be written as a finite union of closed rectangles, which only overlap on the boundaries. Such a decomposition will be called a partition of the block set. In general, the same block-set may have several different partitions, as in the following figure.

The area $A(K)$ is defined as the sum of the areas of the rectangles in a chosen partition, and the integral $\int_{K} f d A$ of a continuous function f over K is defined as the sum of the integrals over these rectangles. Since the partition of K is not unique, a proper treatment would require that it is verified that these notions are independent of the choice of partition. Intuitively this is quite clear, and we are not going to verify it here. Notice that it follows from these definitions that the area of K is the integral over K of the constant function 1, and that in general

$$
\left|\int_{K} f d A\right| \leq A(K) \sup _{p \in K}|f(p)|,
$$

since this inequality holds for each of the subrectangles in K. Moreover, if K_{1}, K_{2} are block sets which only overlap on their boundaries, then

$$
\int_{K_{1} \cup K_{2}} f d A=\int_{K_{1}} f d A+\int_{K_{2}} f d A .
$$

We will now consider more general sets $D \subset \mathbb{R}^{2}$. In the following definition, we consider smooth curves defined on closed intervals. That is, $\gamma:[a, b] \rightarrow \mathbb{R}^{2}$, where $-\infty<a<b<\infty$. This means that γ is smooth on (a, b) and that γ and all its derivatives have continuous extensions to
$[a, b]$ (that is, they have limits for $t \rightarrow a$ from the right and for $t \rightarrow b$ from the left).

Definition 3.5.1. A set $D \subset \mathbb{R}^{2}$ is called an elementary domain if it is closed and bounded, and if its boundary ∂D is a finite union of (the trace of) smooth curves defined on closed intervals, as above.

An elementary domain

In particular a block-set is an elementary domain, since its boundary is a union of line segments.

Definition 3.5.2. Let $D \subset \mathbb{R}^{2}$ be an elementary domain. The area of D is defined by

$$
A(D)=\sup _{K \subset D} A(K)
$$

where the supremum is taken over all block-sets $K \subset D$. The integral of a continuous function $f: D \rightarrow \mathbb{R}$ with $f(p) \geq 0$ for all p, is defined by

$$
\int_{D} f d A=\sup _{K \subset D} \int_{K} f d A
$$

It should be noticed that the supremums are finite. Since D is bounded, it is contained in a square of sufficiently large side length, say N. Hence the area $A(K)$ of any block-set K inside D is bounded above by the area N^{2} of the square, and hence the same bound is valid for the supremum of the $A(K)$. The integral $\int_{K} f d A$ is bounded by $A(K) \sup _{p \in K} f(p)$, which in turn is bounded by $A(D) \sup _{p \in D} f(p)$, which is finite since f is continuous. The same bound is then valid for the supremum in the definition of the integral.

The assumption $f \geq 0$ is now removed. Let $f: U \rightarrow \mathbb{R}$ be continuous, and put

$$
f_{+}(x)=\max \{0, f(x)\} \quad \text { and } \quad f_{-}(x)=\max \{0,-f(x)\}
$$

so that $f_{+} \geq 0, f_{-} \geq 0$, and $f=f_{+}-f_{-}$. We define

$$
\int_{D} f d A=\int_{D} f_{+} d A-\int_{D} f_{-} d A
$$

It is easily seen that if D is already a block set, these definitions of area and integral amount to the same as was already defined. Moreover, plane
integrals share the following familiar properties of ordinary integrals (with obvious notation), of which we shall give no proof:

$$
\begin{aligned}
\int_{D} f+g d A & =\int_{D} f d A+\int_{D} g d A \\
\int_{D} c f d A & =c \int_{D} f d A \\
\left|\int_{D} f d A\right| & \leq \int_{D}|f| d A \\
\int_{D_{1} \cup D_{2}} f d A & =\int_{D_{1}} f d A+\int_{D_{2}} f d A
\end{aligned}
$$

where in the last line D_{1} and D_{2} are assumed to intersect only with their boundaries.

3.6 Null sets

In this section we will prove a theorem which serves as motivation for the preceding definitions of area and integrals over an elementary domain D. In that definition we only considered block sets which were inside D, and the legitimate question is whether we 'miss' a substantial part of D by this. The theorem below shows that this is not the case, and thus the definitions are reasonable.

We say that a closed bounded set D is a null set if for each $\epsilon>0$ there exists a block-set K of area $<\epsilon$ such that $D \subset K$.

As an example, consider a smooth curve $\gamma:[a, b] \rightarrow \mathbb{R}^{2}$, where $-\infty<a<$ $b<\infty$. This means that γ is smooth on (a, b) and that all derivatives have a continuous extension to $[a, b]$.
Lemma 3.6. Let $\gamma:[a, b] \rightarrow \mathbb{R}^{2}$ be smooth. The trace $\gamma([a, b])$ is a null set.
Proof. Using the continuous arc-length function $s(t)$, we can divide γ in N pieces of equal length ℓ / N, where ℓ is the total length. Each piece is contained in the disk of radius $\ell / 2 N$ centered in the mid-point of the piece (this follows from Theorem 3.2). Hence the piece is also contained in the square of side length ℓ / N with the same center.

The union of these N squares has area at most $N(\ell / N)^{2}=\ell^{2} / N$, which is $\leq \epsilon$ for N sufficiently large.

Since a finite union of null sets is a null set, it follows from the preceding lemma that the boundary of an elementary domain is a null set.
Theorem 3.6. Let $U \subset \mathbb{R}^{2}$ be an open set, and let $f: U \rightarrow[0, \infty[$ be a continuous function. Let $D \subset U$ be an elementary domain. Then

$$
\begin{equation*}
\int_{D} f d A=\inf _{D \subset K \subset U} \int_{K} f d A \tag{7}
\end{equation*}
$$

where the infimum is taken over block-sets K.
Proof. We first observe that there exist block sets K such that $D \subset K \subset U$. The proof of this depends on the fact, that D is closed and bounded and U is open (details are omitted). Thus the infimum on the right is not vacuous. For later use, we choose a fixed block set K_{0} with $D \subset K_{0} \subset U$.

If $k \subset D$ and $K \supset D$ are block-sets, then $k \subset K$ and hence $\int_{k} f d A \leq$ $\int_{K} f d A$. It then follows from Definition 3.5.2 that $\int_{D} f d A \leq \int_{K} f d A$, and hence the inequality \leq holds in (7).

Let $\epsilon>0$ be given. The boundary ∂D is a null set, according to Lemma 3.6. Hence there exists a block-set L around ∂D with area $A(L) \leq \epsilon$.

We may assume that $L \subset K_{0}$ (otherwise we replace L by its intersection with K_{0}). Let K denote the union $D \cup L$ and let k be the difference $D \backslash L$ together with its boundary. Then k and K are block-sets with $k \subset D \subset K \subset$ K_{0}, and since $\int_{k} f d A \leq \int_{D} f d A \leq \int_{K} f d A$ we obtain

$$
0 \leq \int_{K} f d A-\int_{D} f d A \leq \int_{K} f d A-\int_{k} f d A=\int_{L} f d A \leq \epsilon M
$$

where $M=\sup _{K_{0}} f$. Since ϵ was arbitrary, (7) follows.
Thus for functions f as above the integral over D, which was defined by an approximation from the inside of D, can be approximated as well from the outside.

3.7 Double integrals

In the preceding section we have defined the notion of a plane integral over an elementary domain. In the simplest case when the elementary domain happens to be a rectangle, the integral was defined by two consecutive integrals (see equation (6)). In fact a similar formula can be given for a much larger class of elementary domains.

Let $\phi, \psi:[a, b] \rightarrow \mathbb{R}$ be smooth functions with $\phi(u)<\psi(u)$ for $u \in(a, b)$. The set

$$
D=\{(u, v) \mid a \leq u \leq b, \phi(u) \leq v \leq \psi(u)\}
$$

of points between the graphs of ϕ and ψ,

is an elementary domain.
Theorem 3.7. The set D has the area

$$
A(D)=\int_{a}^{b}[\psi(u)-\phi(u)] d u
$$

and the plane integral of a continuous function f over D is

$$
\int_{D} f d A=\int_{a}^{b} \int_{\phi(u)}^{\psi(u)} f(u, v) d v d u
$$

We will not prove this. The formula for the area is well known from elementary calculus. When it comes to computation of plane integrals in practice, it is this formula which is used (not the definition given earlier). More complicated sets are treated by means of a disjoint division into subsets of this form (possibly with u and v interchanged).

Example 3.7.1 The triangle $D=\{(u, v) \mid 0 \leq u, 0 \leq v, 2 u+v \leq 2\}$, has the form as above with inequalities

$$
0 \leq u \leq 1, \quad 0 \leq v \leq 2-2 u
$$

The set D is bounded above and below by the graphs of $\psi(u)=2-2 u$ and $\phi(u)=0$. The area is then

$$
A(D)=\int_{0}^{1}(2-2 u) d u=1
$$

Furthermore, with $f(u, v)=v$, then

$$
\int_{D} v d A=\int_{0}^{1} \int_{0}^{2-2 u} v d v d u=\int_{0}^{1} \frac{1}{2}(2-2 u)^{2} d u=\frac{2}{3}
$$

Notice that D can also be regarded as a set of the form as before, but with the inequalities

$$
0 \leq v \leq 2, \quad 0 \leq u \leq 1-\frac{1}{2} v
$$

(that is, with interchanged roles of u and v).

Of course, the corresponding formulas for the area and the integral lead to the same results as above,

$$
A(D)=\int_{0}^{2}\left(1-\frac{1}{2} v\right) d v=1
$$

and

$$
\int_{D} v d A=\int_{0}^{2} \int_{0}^{1-\frac{1}{2} v} v d u d v=\int_{0}^{2} v\left(1-\frac{1}{2} v\right) d v=\frac{2}{3}
$$

3.8 Transformation of integrals

We shall need the important theorem of transformation of plane integrals, which is a generalization of the formula for substitution of variables in ordinary integrals. Let $\phi: W \rightarrow U$ be a diffeomorphism (see Definition 2.5.1), where $U, W \subset \mathbb{R}^{2}$ are open.

Theorem 3.8. Assume that $D \subset \mathbb{R}^{2}$ is closed and bounded and contained in W. If D is an elementary domain, then so is its image $\phi(D) \subset U$. Moreover,

$$
\int_{\phi(D)} f d A=\int_{D}(f \circ \phi)|\operatorname{det}(D \phi)| d A
$$

for $f: U \rightarrow \mathbb{R}$ continuous.
We shall not prove this theorem here. In particular, with $f=1$ we obtain the following formula for the area

$$
A(\phi(D))=\int_{D}|\operatorname{det}(D \phi)| d A
$$

3.9 Surface area

Let $\sigma(U) \subset \mathbb{R}^{3}$ be a parametrized surface, and let $D \subset \mathbb{R}^{2}$ be an elementary domain, which is contained in U.

Definition 3.9.1. The surface area of $\sigma(D) \subseteq \sigma(U)$ is

$$
\begin{equation*}
A(\sigma(D))=\int_{D}\left\|\sigma_{u}^{\prime} \times \sigma_{v}^{\prime}\right\| d A \tag{8}
\end{equation*}
$$

Recall that $\sigma_{u}^{\prime} \times \sigma_{v}^{\prime}$ is a normal vector to the tangent plane. Its length can be expressed by means of the first fundamental form as follows

$$
\begin{equation*}
\left\|\sigma_{u}^{\prime} \times \sigma_{v}^{\prime}\right\|=\left(E G-F^{2}\right)^{1 / 2} \tag{9}
\end{equation*}
$$

This identity is an immediate consequence of the following general rule of vector calculus:

$$
\|a \times b\|^{2}=\|a\|^{2}\|b\|^{2}-(a \cdot b)^{2}
$$

(see Appendix C).
We often denote the area by $A(\sigma(D))$, although this is not quite legitimate, because in general the area depends on both σ and D, and not just their image $\sigma(D)$, unless some injectivity is assumed of σ.

Notice that if we consider the (x, y)-plane as the surface parametrized by $\sigma(u, v)=(u, v, 0)$, then $E=G=1$ and $F=0$ (see Example 3.4.1) and hence (8) reads

$$
A(\sigma(D))=\int_{D} 1 d A, \quad \text { in the plane. }
$$

by which we see that the new notion of area coincides with the previous one for plane sets.

The definition of area can be motivated by the following geometrical consideration, which is analogous to the motivation that was given for the definition of arc length. Consider a small rectangle in D with (u, v) as its lower left corner and with sides of length Δu and Δv. This rectangle is mapped approximately to the parallelogram in \mathbb{R}^{3} placed at $\sigma(u, v)$ and with the vectors $\Delta u \sigma_{u}^{\prime}$ and $\Delta v \sigma_{v}^{\prime}$ as its sides, according to the first order (linear) approximation of σ.

The area of this parallelogram is

$$
\left\|\Delta u \sigma_{u}^{\prime} \times \Delta v \sigma_{v}^{\prime}\right\|=\left\|\sigma_{u}^{\prime} \times \sigma_{v}^{\prime}\right\| \Delta u \Delta v
$$

Adding up all these areas and taking the limit $(\Delta u, \Delta v) \rightarrow(0,0)$ leads to the formula (8).

Further justification that our definition of surface area is reasonable can be found in the following theorem, which is analogous to Theorem 3.1.

Theorem 3.9. Surface area is invariant under reparametrization.
Proof. Let $\tau(W)=(\sigma \circ \phi)(W) \subseteq \mathbb{R}^{3}$ be a reparametrization of $\sigma(U)$ implemented by the diffeomorphism $\phi: W \mapsto U$ (see Section 2.5), and let $E \subset U$
be an elementary domain. Then $D=\phi^{-1}(E) \subset W$ is an elementary domain. The statement of the theorem amounts to the identity $A(\tau(D))=A(\sigma(E))$.

Since $\tau=\sigma \circ \phi$ we have $\tau(D)=\sigma(E)$, and the statement that these sets have the same area thus appears to be a tautology. However, as we noted earlier, in the definition (8) of the area, reference is made to both the parametrization and the domain, not just their image. For the area of $\tau(D)$, we have

$$
A(\tau(D))=\int_{D}\left\|\tau_{s}^{\prime} \times \tau_{t}^{\prime}\right\| d A
$$

The claim is that this equals

$$
A(\sigma(E))=\int_{E}\left\|\sigma_{u}^{\prime} \times \sigma_{v}^{\prime}\right\| d A
$$

We have from equation (7) in Section 2.8 that for $q \in W$

$$
\tau_{s}^{\prime}(q) \times \tau_{t}^{\prime}(q)=\operatorname{det}(D \phi)(q) \sigma_{u}^{\prime}(\phi(q)) \times \sigma_{v}^{\prime}(\phi(q)) .
$$

Inserting this expression in the formula for $A(\tau(D))$ and using the substitution of variables in Theorem 3.8, we see that $A(\tau(D))=A(\sigma(E))$.

Example 3.9.1 As an illustration, let us compute the surface area of the sphere with radius 1 . It is, as usual, parametrized by the spherical coordinates $\sigma(u, v)$ (see Example 1.2.2), where $(u, v) \in U=\mathbb{R}^{2}$. Let D be the rectangle where $-\frac{\pi}{2} \leq u \leq \frac{\pi}{2}$ and $-\pi \leq v \leq \pi$, then σ is injective on the interior of D. We found in Example 3.4.3 that the first fundamental form is given by $E=1, F=0$ and $G=\cos ^{2} u$, so that $\left(E G-F^{2}\right)^{1 / 2}=\cos u$. We therefore obtain the area

$$
\int_{-\pi}^{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos u d u d v=4 \pi
$$

Definition 3.9.2. Let F be a continuous function $\sigma(U) \mapsto \mathbb{R}$. The surface integral of F over a set of the form $\sigma(D)$ where D is an elementary domain, is

$$
\begin{equation*}
\int_{\sigma(D)} F d \sigma=\int_{D} F(\sigma(u, v))\left\|\sigma_{u}^{\prime} \times \sigma_{v}^{\prime}\right\| d A \tag{10}
\end{equation*}
$$

In particular,

$$
A(\sigma(D))=\int_{\sigma(D)} 1 d \sigma \quad \text { on a surface. }
$$

3.10 Exercises

1 Let $\gamma(t)=\left(3 t, 3 t^{2}, 2 t^{3}\right)$. Show that the speed of the curve is $\left\|\gamma^{\prime}(t)\right\|=$ $3\left(1+2 t^{2}\right)$, and determine the arc length of γ from $t=0$ to t.

2 Let $\gamma(t)=\left(t, \frac{4}{3} t^{3 / 2}, t^{2}\right)$ for $t>0$. Determine that value t_{0} for which the length of γ from $t=t_{0}$ to $t=1$ is equal to the length from $t=1$ to $t=\frac{3}{2}$.
3 Let $\gamma(t)=(t \cos t, t \sin t), t \in \mathbb{R}$. The section of the curve where $t \geq 0$ (drawn below) is called the spiral of Archimedes, because it was described in a book by Archimedes. Determine the arc length of the curve, measured from $t=0$. The following formula can be used

$$
\int \sqrt{1+x^{2}} d x=\frac{x}{2} \sqrt{1+x^{2}}+\frac{1}{2} \ln \left(x+\sqrt{1+x^{2}}\right)+c .
$$

4 The parametrized curve $\gamma(t)=\left(e^{c t} \cos t, e^{c t} \sin t\right), t \in \mathbb{R}$, where $c>0$ is a constant, is called a logarithmic spiral. Determine an arc length function $s(t)$ for γ, and show that $s(t)$ has a limit s_{0} for $t \rightarrow-\infty$. Show that $s(t)-s_{0}$, which can be interpreted as the arc length from $\gamma(-\infty)=$ $(0,0)$ to $\gamma(t)$, is proportional to $\|\gamma(t)\|$. This curve appears in nature, for example in the shape of snail shells. The natural appearance is explained by proportionality in the growth of the diameter of the shell and the length of the snail.

spiral of Archimedes

logarithmic spiral

5 Determine a unit speed parametrization of the line through $(0,1,-3)$ and $(3,3,3)$.
6 Show that the curve $\gamma(t)=\left(\cos t \sin t, \sin ^{2} t, \frac{3}{4} t\right)$ has constant speed, and determine a constant k for which the reparametrization $t \mapsto \gamma(k t)$ has unit speed.

7 Let $\gamma(t)=\left(\frac{2}{3} \cos ^{3} t, \frac{2}{3} \sin ^{3} t\right)$ for $t \in \mathbb{R}$. For which values of t is γ regular? Determine a direction preserving reparametrization with unit speed of the segment where $0<t<\frac{\pi}{2}$. (Use the formula $\int \cos x \sin x d x=\frac{1}{2} \sin ^{2} x+c$.)

8 Let $\gamma(t)=\left(e^{t} \cos t, e^{t} \sin t\right), t \in \mathbb{R}$, be the logarithmic spiral with $c=1$ (see exercise 4). Determine a reparametrization $\beta(s), s>0$, with unit speed such that $\beta(s) \rightarrow(0,0)$ for $s \rightarrow 0$ (the solution explains the name of the curve).

9 Let $\beta=\gamma \circ \phi: J \rightarrow \mathbb{R}^{n}$ be a direction preserving reparametrization of $\gamma: I \rightarrow \mathbb{R}^{n}$, where I and J are open intervals, and assume that both curves γ and β have unit speed. Show that there exists a constant c such that $\phi(s)=s+c$ for all $s \in J$. If $I=] a, b[$, then what is J ? State and prove similar statements for a direction reversing reparametrization.

10 The surface $S=\sigma\left(\mathbb{R}^{2}\right)$ with $\sigma(u, v)=(u \cos v, u \sin v, a v),(u, v) \in \mathbb{R}^{2}$, with $a \neq 0$ constant, is called a helicoid. It resembles a (double) spiral staircase. The following figure shows one winding of the surface (u from -1 to $1, v$ from 0 to 2π)

Show that S is regular parametrized surface, and that the coefficients of the first fundamental form are $E=1, F=0$ and $G=a^{2}+u^{2}$.

11 Consider a parametrized surface $\sigma\left(\mathbb{R}^{2}\right) \subseteq \mathbb{R}^{3}$ for which $E=1, F=0$, $G=1+u^{2}$. Determine the arc length of the curve $t \mapsto \sigma\left(\frac{3}{4}, \frac{4}{5} t\right)$ from $t=0$ to $t=1$. Determine also the angle between the tangent vector at $t=0$ of this curve and the tangent vector at $t=0$ of the curve $t \mapsto \sigma\left(\frac{3}{4}+t, \frac{4}{5} t\right)$.

12 Show that the coefficients E, F and G for the surface of revolution (see page 38) $S_{\gamma}=\{\sigma(u, v)=(f(u) \cos v, f(u) \sin v, g(u))\}$ are given by

$$
E=f^{\prime}(u)^{2}+g^{\prime}(u)^{2}, \quad F=0, \quad G=f(u)^{2}
$$

a. The curve $t \mapsto \sigma\left(u_{0}, t\right)$ on σ, where u_{0} is constant, is called a parallel curve. Show that it has constant speed.
b. The curve $t \mapsto \sigma\left(t, v_{0}\right)$ on σ, where v_{0} is constant, is called a meridian. Show that it has unit speed if the profile curve has unit speed.

13 Let $\sigma(u, v)=\left(\sqrt{1-u^{2}} \cos v, \sqrt{1-u^{2}} \sin v, u\right)$ for $\left.(u, v) \in U=\right]-1,1[\times \mathbb{R}$. Show that $\sigma(U)$ is a regular parametetrized surface equal to the unit sphere, minus the two poles. A map of the Earth based on this parametrization is called a cylinder projection. Explain! Determine E, F and G, and show that σ is area preserving, that is, the area $A(\sigma, D)$ equals the area of D for all elementary domains $D \subset]-1,1[\times[-\pi, \pi]$.

14 Draw the following sets in \mathbb{R}^{2} and verify that they are elementary domains:
a. $D=[1,2] \times[0,1]$.
b. $D=\{(u, v) \mid 1 \leq u \leq 2,0 \leq v \leq u-1\}$.
c. $D=\{(u, v) \mid 0 \leq v \leq 1, v+1 \leq u \leq 2\}$.
d. $D=\{(u, v) \mid 1 \leq u \leq 2,0 \leq v \leq 2-u\}$.

Compute in each case the integral $\int_{D} u d A$. Repeat the computations but with the opposite order of the integrations with respect to u and v.

15 Let $\gamma(t)=\left(3 t, 4 t, 5 \sqrt{1-t^{2}}\right)$ for $\left.t \in\right]-1,1[$.
a. Determine a reparametrization of γ with unit speed. (Use the formula $\int\left(1-t^{2}\right)^{-1 / 2} d t=\sin ^{-1} t+c$, where $\left.\sin ^{-1}:\right]-1,1[\rightarrow]-\frac{\pi}{2}, \frac{\pi}{2}[$ is the inverse function of sin: $]-\frac{\pi}{2}, \frac{\pi}{2}[\rightarrow]-1,1[$.
b. Let

$$
\sigma(u, v)=\left(3 u, 4 u, 5 \sqrt{1-v^{2}}\right),
$$

for $u \in \mathbb{R}$ and $-1<v<1$. Verify that γ can be realized as a parametrized curve on $\sigma(U)$, and determine the coefficients of the tangent vector $\gamma^{\prime}(t)$ with respect to the basis $\left(\sigma_{u}^{\prime}, \sigma_{v}^{\prime}\right)$ for $T_{\gamma(t)} \sigma(U)$ when $v \neq 0$.
c. Determine E, F and G for $\sigma(U)$, and write down a formula for the area $A(\sigma(D))$ where D is the rectangle $D=[0,1] \times\left[0, \frac{1}{2}\right]$.

16 Let σ be a surface of revolution (see Exercise 12). Let

$$
D=\{(u, v) \mid a \leq u \leq b,-\pi \leq v \leq \pi\}
$$

and assume that $[a, b]$ is contained in the interval on which the profile curve is defined.
Verify that the area is given by

$$
A(\sigma(D))=2 \pi \int_{a}^{b}\left(f^{\prime}(u)^{2}+g^{\prime}(u)^{2}\right)^{1 / 2} f(u) d u
$$

Determine the area of the belt on a sphere of radius 1 , where the latitude satisfies $|u| \leq \frac{\pi}{4}$. Determine also the area of the cap, where $\frac{\pi}{4} \leq u \leq \frac{\pi}{2}$.

17 Let $\mathcal{G}_{h}(D)$ denote the graph of a smooth function $z=h(x, y)$ defined over an elementary domain $D \subset \mathbb{R}^{2}$. Verify the formula

$$
A\left(\mathcal{G}_{h}(D)\right)=\int_{D} \sqrt{1+\left(h_{x}^{\prime}\right)^{2}+\left(h_{y}^{\prime}\right)^{2}} d A
$$

Write down an integral formula for the area of that part of a sphere of radius 1 and centered at the origin, where $|x|$ and $|y|$ both are $\leq \frac{1}{\sqrt{2}}$ (disregard the assumption above about D). The computation of the integral is not quite simple. Instead the area can be determined from area of the cap (see Exercise 16) by a simple geometric consideration. How?

18 The torus is the surface of revolution whose profile curve is the circle in the $x z$-plane with radius r and center $(R, 0,0)$, where $R>r)$. It is parametrized by

$$
\sigma(u, v)=((R+r \cos u) \cos v,(R+r \cos u) \sin v, r \sin u) .
$$

Determine its total area.

19 Let $\sigma(u, v)=(u \cos v, u \sin v, v)$ (the helicoid, see Exercise 10). Determine the area $A(\sigma(D))$ for $D=\{(u, v) \mid 0 \leq v \leq 1, v \leq u \leq 1\}$.

Chapter 4

Curvature

In this chapter we introduce and study a quantity, called curvature, which describes the shape of a curve in a given point. More precisely, it is a measure of the rate at which the curve is turning in the point. The number is associated with the second derivative $\gamma^{\prime \prime}(t)$ of a parametrization.

We shall also discuss the curvature of curves on a given surface. In particular, we introduce the so-called geodesic curvature, which describes the turning of a curve relative to the given surface containing the curve.

4.1 Curvature of plane curves

Let $\gamma: I \rightarrow \mathbb{R}^{2}$ be a regular parametrized curve.
Definition 4.1. The real number

$$
\begin{equation*}
\kappa(t)=\frac{\operatorname{det}\left[\gamma^{\prime}(t) \gamma^{\prime \prime}(t)\right]}{\left\|\gamma^{\prime}(t)\right\|^{3}} \tag{1}
\end{equation*}
$$

is called the curvature of γ at t. Here $\left[\gamma^{\prime}(t) \gamma^{\prime \prime}(t)\right]$ denotes the 2×2 matrix with columns $\gamma^{\prime}(t)$ and $\gamma^{\prime \prime}(t)$.

The idea behind the definition is that the turning at t is described by the position and size of the vector $\gamma^{\prime \prime}(t)$ relative to $\gamma^{\prime}(t)$. This relative position of the two vectors is described through their determinant, which measures the area of the parallelogram that they span. For example, if $\gamma^{\prime \prime}(t)$ has the same direction as $\gamma^{\prime}(t)$, then the curve is not turning at all, and the determinant is zero. The power 3 in the denominator will be explained shortly by our desire to have a quantity independent of reparametrization (see Theorem 4.1).

Example 4.1.1 For a straight line with arbitrary parametrization, the vectors γ^{\prime} and $\gamma^{\prime \prime}$ will both have the same direction as the line, hence their determinant is zero. Thus $\kappa=0$ for a line.

Example 4.1.2 For a circle of radius r with counter clockwise parametrization $\gamma(t)=(r \cos t, r \sin t)$ we have

$$
\gamma^{\prime}(t)=(-r \sin t, r \cos t), \quad \gamma^{\prime \prime}(t)=(-r \cos t,-r \sin t)
$$

and

$$
\kappa(t)=\frac{\operatorname{det}\left[\gamma^{\prime}(t) \gamma^{\prime \prime}(t)\right]}{\left\|\gamma^{\prime}(t)\right\|^{3}}=\frac{1}{r} .
$$

Similar computations show that the circle with the clockwise parametrization $\gamma(t)=(r \cos t,-r \sin t)$ has curvature $\kappa=-\frac{1}{r}$.

Example 4.1.3 For an ellipse

$$
\gamma(t)=(a \cos t, b \sin t)
$$

we have

$$
\gamma^{\prime}(t)=(-a \sin t, b \cos t), \quad \gamma^{\prime \prime}(t)=(-a \cos t,-b \sin t)
$$

and

$$
\kappa(t)=\frac{a b}{\left(a^{2} \sin ^{2} t+b^{2} \cos ^{2} t\right)^{3 / 2}}
$$

Say for example that $a>b$. Then κ attains its maximal value $\frac{a}{b^{2}}$ when $\sin t=0$ (where the denominator is minimal), and it attains its minimal value $\frac{b}{a^{2}}$ when $\cos t=0$ (where the denominator is maximal).

Example 4.1.4 Let $\gamma(t)=(t, h(t))$ be the graph of a smooth function h, defined on an open interval $I \subset \mathbb{R}$. Then $\gamma^{\prime}(t)=\left(1, h^{\prime}(t)\right)$ and $\gamma^{\prime \prime}(t)=$ $\left(0, h^{\prime \prime}(t)\right)$, and we obtain

$$
\kappa(t)=\frac{h^{\prime \prime}(t)}{\left(1+h^{\prime}(t)^{2}\right)^{3 / 2}} .
$$

In particular if $h^{\prime}(t)=0$ then $\kappa(t)=h^{\prime \prime}(t)$.

Theorem 4.1. The curvature of a plane curve is unchanged under a direc-tion-preserving reparametrisation, and it is multiplied by -1 under a direc-tion-reversing reparametrization.

Proof. Let $\beta(u)=\gamma(\phi(u))$ denote the reparametrization, and let $\epsilon= \pm 1$ denote the sign of ϕ^{\prime}. Then

$$
\begin{equation*}
\beta^{\prime}(u)=\phi^{\prime}(u) \gamma^{\prime}(\phi(u)) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\beta^{\prime \prime}(u)=\phi^{\prime \prime}(u) \gamma^{\prime}(\phi(u))+\phi^{\prime}(u)^{2} \gamma^{\prime \prime}(\phi(u)) . \tag{3}
\end{equation*}
$$

Hence

$$
\operatorname{det}\left[\beta^{\prime}(u) \beta^{\prime \prime}(u)\right]=\phi^{\prime}(u)^{3} \operatorname{det}\left[\gamma^{\prime}(\phi(u)) \gamma^{\prime \prime}(\phi(u))\right]
$$

and

$$
\left\|\beta^{\prime}(u)\right\|=\left|\phi^{\prime}(u)\right|\left\|\gamma^{\prime}(\phi(u))\right\| .
$$

By insertion in the definition (1), applied to the curve β, we see that the curvature of β at u is $\epsilon \kappa(\phi(u))$.

Notice that the power 3 in the denominator of (1) was crucial in the preceding proof.

4.2 Curvature of unit speed curves

For a unit speed curve the expression (1) for the curvature becomes simpler. Notice that unit speed is not a serious limitation because of Theorems 3.3 and 4.1.

Let $\gamma: I \rightarrow \mathbb{R}^{2}$ be a unit speed curve. As usual, the variable is then denoted by s. Let $\widehat{\gamma^{\prime}}(s)$ denote the normal vector of $\gamma^{\prime}(s)$ (see Appendix C), which is the unit vector perpendicular to $\gamma^{\prime}(s)$ and pointing to the left.

Theorem 4.2. For a curve with unit speed

$$
\begin{equation*}
\gamma^{\prime \prime}=\kappa \widehat{\gamma^{\prime}} \tag{4}
\end{equation*}
$$

In particular, it follows that $\kappa= \pm\left\|\gamma^{\prime \prime}\right\|$, where the sign is + if $\gamma^{\prime \prime}$ and $\widehat{\gamma^{\prime}}$ have the same direction, and - if they have opposite directions.

Proof. According to the lemma below $\gamma^{\prime \prime}(s)$ is perpendicular to $\gamma^{\prime}(s)$, hence a scalar multiple of $\widehat{\gamma^{\prime}}(s)$. The scalar is given by

$$
\widehat{\gamma^{\prime}} \cdot \gamma^{\prime \prime}=\operatorname{det}\left[\gamma^{\prime} \gamma^{\prime \prime}\right]=\kappa .
$$

This proves (4).

Notice that if $\kappa>0$ then $\gamma^{\prime \prime}$ and $\widehat{\gamma^{\prime}}$ have the same direction and the curve turns towards the left, and if $\kappa<0$ they have opposite direction and the curve turns to the right.

Lemma 4.2. Let $F(t) \in \mathbb{R}^{n}$ be a smooth function of $t \in I \subset \mathbb{R}$ with $\|F(t)\|=$ 1 for all t. Then $F(t) \cdot F^{\prime}(t)=0$ for all t.

Proof. We shall differentiate the expression

$$
F(t) \cdot F(t)=1
$$

Observe that the ordinary rule for differentiation of products also holds for the differentiation of a dot product, that is, if f and g are differentiable maps $I \rightarrow \mathbb{R}^{n}$, then

$$
(f \cdot g)^{\prime}=f^{\prime} \cdot g+f \cdot g^{\prime}
$$

Applying this rule we obtain $F^{\prime} \cdot F+F \cdot F^{\prime}=0$ and hence $F \cdot F^{\prime}=0$ as claimed.

Notice that Theorem 4.2 suggests a way to determine a plane unit speed curve from its curvature function $\kappa(s)$. With $\gamma(s)=(x(s), y(s))$, equation (4) is equivalent with the system of differential equations $x^{\prime \prime}=-\kappa y^{\prime}$ and $y^{\prime \prime}=\kappa x^{\prime}$. By solving this system we can determine x^{\prime} and y^{\prime} (up to some constants), and after an integration we obtain x and y (up to further constants). A simple example of this procedure is given in the following proof.

Corollary 4.2. A regular parametrized curve is part of a line if and only if its curvature is zero everywhere.

Proof. We may assume that the curve has unit speed. Assume that $\kappa(s)=0$ for all s, then $\gamma^{\prime \prime}(s)=0$ by (4). Integrating twice we obtain $\gamma(s)=p+s q$ where p and q are constant vectors.

The statement 'only if' was seen in Example 4.1.1.

4.3 The tangent angle

Any unit vector $w \in \mathbb{R}^{2}$ can be written in the form $w=(\cos \theta, \sin \theta)$, where the angle $\theta \in \mathbb{R}$ is determined up to addition of integral multiples of 2π. In particular, if w is the tangent direction $\gamma^{\prime}(t) /\left\|\gamma^{\prime}(t)\right\|$ of a regular plane curve, we call θ a tangent angle at t. Viewed as a function of t, we call θ a tangent angle function.

Example 4.3.1 The parametrized circle $\gamma(t)=(r \cos t, r \sin t)$ has tangent angle function $\theta(t)=t+\frac{\pi}{2}$, because

$$
\gamma^{\prime}(t) /\left\|\gamma^{\prime}(t)\right\|=(-\sin t, \cos t)=\left(\cos \left(t+\frac{\pi}{2}\right), \sin \left(t+\frac{\pi}{2}\right)\right)
$$

Example 4.3.2 Consider the curve $\gamma(t)=\left(t, t^{2}\right)$, where $t \in \mathbb{R}$. It has the tangent vector $\gamma^{\prime}(t)=(1,2 t)$. Since the first coordinate is positive, we can determine a tangent angle as $\theta(t)=\tan ^{-1}(2 t)$.

Because of the ambiguity in the choice of θ, it is not obvious that a tangent angle can be chosen which depends smoothly on t. The following lemma, when applied to $w(t)=\gamma^{\prime}(t) /\left\|\gamma^{\prime}(t)\right\|$, shows however that this can indeed is possible.

Lemma 4.3. Let $I \ni t \mapsto w(t)=(x(t), y(t))$ be a smooth function into \mathbb{R}^{2} which takes values in S^{1} and is defined in an open interval $I \subset \mathbb{R}$. Then there exists a smooth map $\theta: I \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
w(t)=(\cos \theta(t), \sin \theta(t)) \tag{5}
\end{equation*}
$$

for all $t \in I$.
Proof. Write $x(t)=\cos \theta(t)$ and $y(t)=\sin \theta(t)$ which is possible since $\forall t$: $x(t)^{2}+y(t)^{2}=1$. Suppose that (5) is valid for some differentiable function θ. Then $\left(x^{\prime}=-\theta^{\prime} \sin \theta\right.$ and $y^{\prime}=\theta^{\prime} \cos \theta$. Hence $x y^{\prime}-y x^{\prime}=\theta^{\prime}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=$ θ^{\prime}.

With this in mind, choose an arbitrary initial value $t_{0} \in I$, and an angle θ_{0} such that $w\left(t_{0}\right)=\left(\cos \theta_{0}, \sin \theta_{0}\right)$. Define a smooth function by

$$
\theta(t)=\theta_{0}+\int_{t_{0}}^{t} x y^{\prime}-y x^{\prime} d t
$$

then $\theta\left(t_{0}\right)=\theta_{0}$ and $\theta^{\prime}=x y^{\prime}-y x^{\prime}$. We claim that this function satisfies (5). In order to show this identity of unit vectors in \mathbb{R}^{2}, it suffices to show that $w \cdot(\cos \theta, \sin \theta)=1$, since otherwise the dot product would be strictly smaller (see (A.1)).

From the identity $x^{2}+y^{2}=1$ we obtain $x x^{\prime}+y y^{\prime}=0$. By simple computations we then derive

$$
\begin{aligned}
(x \cos \theta)^{\prime} & =x^{\prime} \cos \theta-x\left(x y^{\prime}-y x^{\prime}\right) \sin \theta=x^{\prime} \cos \theta-y^{\prime} \sin \theta \\
(v \sin \theta)^{\prime} & =y^{\prime} \sin \theta+y\left(x y^{\prime}-y x^{\prime}\right) \cos \theta=y^{\prime} \sin \theta-x^{\prime} \cos \theta .
\end{aligned}
$$

It follows that $(x \cos \theta+y \sin \theta)^{\prime}=0$, hence the expression in the bracket is constant. At $t=t_{0}$ its value is 1 . Hence $w \cdot(\cos \theta, \sin \theta)=1$ as desired.

Theorem 4.3.1. Assume that $\theta(s)$ is a smooth tangent angle for a plane curve $\gamma(s)$ with unit speed. Then the curvature of γ at s is given by

$$
\kappa(s)=\theta^{\prime}(s)
$$

Proof. From $\gamma^{\prime}(s)=(\cos \theta(s), \sin \theta(s))$ we derive

$$
\gamma^{\prime \prime}(s)=\left(-\theta^{\prime}(s) \sin \theta(s), \theta^{\prime}(s) \cos \theta(s)\right)
$$

and $\kappa(s)=\operatorname{det}\left[\gamma^{\prime}(s) \gamma^{\prime \prime}(s)\right]=\theta^{\prime}(s)$.
Thus the curvature is the rate of change of the tangent angle. In Example 4.3.1 with $r=1$ (so that there is unit speed), we have $\theta^{\prime}(t)=1$, which matches with the curvature 1 of the circle.

Suppose that the regular plane curve γ is defined on all of \mathbb{R} and satisfies that there exists a real number $L>0$ such that

$$
\forall t \in \mathbb{R}: \gamma(t+L)=\gamma(t)
$$

We will say that " γ runs smoothly into itself after the time L ". We also assume that L is minimal with this property.
Definition 4.3.1. A regular curve $\gamma: \mathbb{R} \mapsto \mathbb{R}^{2}$ with the above property is called a closed plane curve.

A smooth tangent angle function θ of a closed plane curve must necessarily have the property that

$$
\theta(L)-\theta(0)=2 \pi I_{\gamma}
$$

for some $I_{\gamma} \in \mathbb{Z}$.
Definition 4.3.2. The integer I_{γ} is called the Rotation Index of γ. Notice that if γ is a unit speed curve, then it is given by

$$
2 \pi I_{\gamma}=\int_{0}^{L} \kappa(s) d s
$$

Definition 4.3.3. A regular curve $\gamma: \mathbb{R} \mapsto \mathbb{R}^{2}$ is a closed simple curve if
(1) $\exists L>0: \forall t: \gamma(t+L)=\gamma(t)$
(2) $\forall 0 \leq t_{1}<t_{2}<L: \gamma\left(t_{1}\right) \neq \gamma\left(t_{2}\right)$.

Theorem 4.3.2. [The Theorem of the Turning Tangents] The rotation index of a closed simple curve is ± 1.

We shall not prove this. It may seem almost "obvious" but we hasten to say that it may fail on other surfaces than \mathbb{R}^{2}. It is related to the Jordan Curve Theorem which we will not prove either (and which holds even for just continuous curves.

Theorem 4.3.3. [The Jordan Curve Theorem] Let \mathcal{C} be the trace of a simple closed curve in \mathbb{R}^{2}. Then $\mathbb{R}^{2} \backslash \mathcal{C}$ is the disjoint union of two open connected sets.

These sets may be characterized by the so-called winding number which generalizes the rotation index.

4.4 Curvature of space curves

Let $\gamma: I \rightarrow \mathbb{R}^{3}$ be a regular parametrized curve.
Definition 4.4. The non-negative number

$$
\kappa(t)=\frac{\left\|\gamma^{\prime}(t) \times \gamma^{\prime \prime}(t)\right\|}{\left\|\gamma^{\prime}(t)\right\|^{3}}
$$

is called the curvature of γ at t. For a unit speed curve it is

$$
\begin{equation*}
\kappa(s)=\left\|\gamma^{\prime \prime}(s)\right\| . \tag{6}
\end{equation*}
$$

The simpler expression for a curve with unit speed is derived from the fact that in this case $\gamma^{\prime \prime}(s)$ is perpendicular to the unit vector $\gamma^{\prime}(s)$ (by Lemma 4.2) and hence

$$
\left\|\gamma^{\prime} \times \gamma^{\prime \prime}\right\|=\left\|\gamma^{\prime \prime}\right\| .
$$

Note that $\left\|\gamma^{\prime}(t) \times \gamma^{\prime \prime}(t)\right\|$ is easily computed by means of Appendix C (iii).
The motivation is similar to the one given in Section 4.1 for plane curves. It will be shown below that the curvature κ is unchanged by reparametrisation. For a unit speed curve (6) shows that κ describes the rate of change of the direction of the curve. Notice that the conclusions of Example 4.1.1 and Corollary 4.2 are valid for space curves as well, with similar proofs.

Notice however that in contrast with the situation for plane curves in Section 4.1, the curvature of a space curve is always ≥ 0. This is related to the fact that the curvature for a space curve does not contain information about the direction to which the curve is turning. For a plane curve there are only two possibilities, left and right, which can be determined by the sign of the curvature, but for a space curve there are infinitely many possibilities, and it would be impossible to distinguish them just by a sign.

In connection with this, it should be remarked that if we apply the present definition to a plane curve, viewed as a space curve in the $x y$-plane, we obtain the absolute value of the previous definition. Indeed, if $\gamma(t)=(x(t), y(t), 0)$ then

$$
\gamma^{\prime} \times \gamma^{\prime \prime}=\left(x^{\prime}, y^{\prime}, 0\right) \times\left(x^{\prime \prime}, y^{\prime \prime}, 0\right)=\left(0,0, \operatorname{det}\left(\begin{array}{ll}
x^{\prime} & x^{\prime \prime} \\
y^{\prime} & y^{\prime \prime}
\end{array}\right)\right)
$$

and hence $\left\|\gamma^{\prime} \times \gamma^{\prime \prime}\right\|=\left|\operatorname{det}\left(\begin{array}{ll}x^{\prime} & x^{\prime \prime} \\ y^{\prime} & y^{\prime \prime}\end{array}\right)\right|$.
The notion of curvature for space curves is thus more primitive than that for plane curves. This is also reflected when the following theorem is compared with Theorem 4.1.

Theorem 4.4. The curvature of a space curve is unchanged under reparametrisation.

Proof. We use the notation in the proof of Theorem 4.1 (but now applied to a space curve). It follows from (2) and (3) that

$$
\begin{equation*}
\beta^{\prime}(u) \times \beta^{\prime \prime}(u)=\phi^{\prime}(u)^{3} \gamma^{\prime}(\phi(u)) \times \gamma^{\prime \prime}(\phi(u)) . \tag{7}
\end{equation*}
$$

This equation together with (2) implies the theorem.
Example 4.4.1 Let

$$
\gamma(t)=(\lambda t, r \cos (\omega t), r \sin (\omega t))
$$

be a helix, as in Example 3.1.3. We find

$$
\begin{aligned}
\gamma^{\prime}(t) & =(\lambda,-r \omega \sin (\omega t), r \omega \cos (\omega t)) \\
\gamma^{\prime \prime}(t) & =\left(0,-r \omega^{2} \cos (\omega t),-r \omega^{2} \sin (\omega t)\right)
\end{aligned}
$$

with $\left\|\gamma^{\prime}(t)\right\|=\sqrt{\lambda^{2}+r^{2} \omega^{2}}$. Furthermore

$$
\gamma^{\prime}(t) \times \gamma^{\prime \prime}(t)=\left(r^{2} \omega^{3}, \lambda r \omega^{2} \sin (\omega t),-\lambda r \omega^{2} \cos (\omega t)\right)
$$

with $\left\|\gamma^{\prime}(t) \times \gamma^{\prime \prime}(t)\right\|=r \omega^{2} \sqrt{r^{2} \omega^{2}+\lambda^{2}}$. Hence

$$
\kappa(t)=\frac{r \omega^{2}}{r^{2} \omega^{2}+\lambda^{2}} .
$$

Notice that the curvature is constant, which is reasonable from a geometric point of view, because the helix has the same shape everywhere.

4.5 Torsion

For space curves with non-zero curvature it is possible to define a 'higher curvature' called torsion, which is associated with the third derivative $\gamma^{\prime \prime \prime}$. It describes the 'twisting' of the curve. For a plane curve, regarded as a curve in \mathbb{R}^{3}, the torsion is 0 .

Let $\gamma: I \rightarrow \mathbb{R}^{3}$ be a regular parametrized curve with curvature $\kappa(t)$.
Definition 4.5. Let $t \in I$ and assume that $\kappa(t) \neq 0$. The number

$$
\tau(t)=\frac{\operatorname{det}\left[\gamma^{\prime}(t) \gamma^{\prime \prime}(t) \gamma^{\prime \prime \prime}(t)\right]}{\left\|\gamma^{\prime}(t) \times \gamma^{\prime \prime}(t)\right\|^{2}}
$$

is called the torsion of γ at t.
Notice the resemblance of this formula with (1). The denominator is $\kappa(t)^{2}\left\|\gamma^{\prime}(t)\right\|^{6}$, which is non-zero by assumption. Motivation for the definition will be given in the following section.

Example 4.5.1 For a curve which is contained in a fixed plane in \mathbb{R}^{3}, the three vectors $\gamma^{\prime}(t), \gamma^{\prime \prime}(t)$ and $\gamma^{\prime \prime \prime}(t)$ will all be parallel to this plane. Hence they are linearly dependent and their determinant is zero. Therefore $\tau=0$ (if it is defined).

Example 4.5.2 For the helix of Example 4.4.1 we find

$$
\gamma^{\prime \prime \prime}(t)=\left(0, r \omega^{3} \sin (\omega t),-r \omega^{3} \cos (\omega t)\right)
$$

and hence the determinant $\operatorname{det}\left[\gamma^{\prime} \gamma^{\prime \prime} \gamma^{\prime \prime \prime}\right]$ is

$$
\operatorname{det}\left(\begin{array}{ccc}
\lambda & 0 & 0 \\
-r \omega \sin (\omega t) & -r \omega^{2} \cos (\omega t) & r \omega^{3} \sin (\omega t) \\
r \omega \cos (\omega t) & -r \omega^{2} \sin (\omega t) & -r \omega^{3} \cos (\omega t)
\end{array}\right)=\lambda r^{2} \omega^{5} .
$$

Hence

$$
\tau=\frac{\lambda \omega}{r^{2} \omega^{2}+\lambda^{2}}
$$

Again we obtain a constant, which is reasonable by the same argument as in Example 4.4.1.

Theorem 4.5. The torsion of a space curve is unchanged under a reparametrisation.

Proof. It follows by differentiation of equation (3) in the proof of Theorem 4.1 that

$$
\begin{equation*}
\beta^{\prime \prime \prime}(u)=\phi^{\prime \prime \prime}(u) \gamma^{\prime}(\phi(u))+3 \phi^{\prime \prime}(u) \phi^{\prime}(u) \gamma^{\prime \prime}(\phi(u))+\phi^{\prime}(u)^{3} \gamma^{\prime \prime \prime}(\phi(u)) . \tag{8}
\end{equation*}
$$

From (2), (3) and (8) we see that

$$
\operatorname{det}\left[\beta^{\prime}(u) \beta^{\prime \prime}(u) \beta^{\prime \prime \prime}(u)\right]=\phi^{\prime}(u)^{6} \operatorname{det}\left[\gamma^{\prime}(\phi(u)) \gamma^{\prime \prime}(\phi(u)) \gamma^{\prime \prime \prime}(\phi(u))\right] .
$$

The theorem follows from this, combined with (7).
Notice that the torsion of a curve is unchanged also when the direction of the curve is reversed. The sign of the torsion allows us to separate space curves with non-zero curvature and torsion in two kinds, 'right' and 'left'. For example, a helix for which λ and ω have the same sign is called a right helix (compare the thread of a conventional screw) and a helix for which they have opposite signs is called a left helix.

4.6 The osculating plane and the binormal vector

The geometric significance of the torsion will now be explained. As before, let $\gamma: I \rightarrow \mathbb{R}^{3}$ be a regular parametrized curve with non-zero curvature $\kappa(t)$. Then $\gamma^{\prime}(t)$ and $\gamma^{\prime \prime}(t)$ are linearly independent vectors in \mathbb{R}^{3}. The plane through $\gamma(t)$ with directions spanned by these two vectors is called the osculating plane. It can be viewed as the plane in \mathbb{R}^{3} to which the curve comes closest in the vicinity of $\gamma(t)$ (osculare in Latin means to kiss), because of the Taylor approximation of order two

$$
\gamma(t+\Delta t) \simeq \gamma(t)+\Delta t \gamma^{\prime}(t)+\frac{1}{2}(\Delta t)^{2} \gamma^{\prime \prime}(t)
$$

where the right hand side belongs to the osculating plane for all Δt. We will show that the torsion describes the rate of change of the osculating plane.

It follows from equations (2) and (3) that the osculating plane is unchanged if the curve is reparametrized. Because of Theorem 4.5, we may therefore assume that the given curve has unit speed. We introduce the notation $\mathbf{t}(s)=$ $\gamma^{\prime}(s)$ for the unit tangent vector. Keeping the assumption that $\kappa(s) \neq 0$, let

$$
\mathbf{n}(s)=\frac{\gamma^{\prime \prime}(s)}{\left\|\gamma^{\prime \prime}(s)\right\|}
$$

This unit vector, called the principal normal, is orthogonal to $\mathbf{t}(s)$ by Lemma 4.2. The unit vector

$$
\mathbf{b}(s)=\mathbf{t}(s) \times \mathbf{n}(s),
$$

which is called the binormal of the curve, is orthogonal to $\mathbf{t}(s)$ as well.
Notice that the vectors $\mathbf{t}(s)$ and $\mathbf{n}(s)$ span the directions of the osculating plane, and that the binormal $\mathbf{b}(s)$ is normal to the osculating plane. It follows that the rate of change of the osculating plane is expressed by the size of the derivative $\mathbf{b}^{\prime}(s)$. The following result shows that this is exactly what the torsion τ measures.

Theorem 4.6. For a curve in \mathbb{R}^{3} with unit speed and non-zero curvature we have

$$
\mathbf{b}^{\prime}=-\tau \mathbf{n}
$$

In particular, $\tau= \pm\left\|\mathbf{b}^{\prime}\right\|$.
Proof. We first show that \mathbf{b}^{\prime} is proportional to \mathbf{n}. For this it suffices to show that it is orthogonal to \mathbf{t} and \mathbf{b}. That $\mathbf{b}^{\prime} \perp \mathbf{b}$ is immediate from Lemma 4.2. By differentiation of the equation $\mathbf{b} \cdot \mathbf{t}=0$ we obtain that $\mathbf{b}^{\prime} \cdot \mathbf{t}+\mathbf{b} \cdot \mathbf{t}^{\prime}=0$. Hence $\mathbf{b}^{\prime} \perp \mathbf{t}$ if and only if $\mathbf{b} \perp \mathbf{t}^{\prime}$. By the definition of \mathbf{n} we have $\mathbf{t}^{\prime}=\kappa \mathbf{n}$, hence $\mathbf{b} \perp \mathbf{t}^{\prime}$ follows from $\mathbf{b} \perp \mathbf{n}$.

We thus conclude that $\mathbf{b}^{\prime}=c \mathbf{n}$ for some constant c, which we now claim is $-\tau$. Since $\gamma^{\prime \prime}=\kappa \mathbf{n}$ we have $\gamma^{\prime \prime \prime}=(\kappa \mathbf{n})^{\prime}=\kappa^{\prime} \mathbf{n}+\kappa \mathbf{n}^{\prime}$. Then

$$
\operatorname{det}\left[\gamma^{\prime} \gamma^{\prime \prime} \gamma^{\prime \prime \prime}\right]=\left(\gamma^{\prime} \times \gamma^{\prime \prime}\right) \cdot \gamma^{\prime \prime \prime}=(\mathbf{t} \times \kappa \mathbf{n}) \cdot\left(\kappa^{\prime} \mathbf{n}+\kappa \mathbf{n}^{\prime}\right)=\kappa^{2}(\mathbf{t} \times \mathbf{n}) \cdot \mathbf{n}^{\prime}
$$

It follows that

$$
\begin{equation*}
\tau=(\mathbf{t} \times \mathbf{n}) \cdot \mathbf{n}^{\prime}=\mathbf{b} \cdot \mathbf{n}^{\prime} \tag{9}
\end{equation*}
$$

From $\mathbf{b} \cdot \mathbf{n}=0$ we obtain by differentiation that $\mathbf{b}^{\prime} \cdot \mathbf{n}+\mathbf{b} \cdot \mathbf{n}^{\prime}=0$, hence $\mathbf{b} \cdot \mathbf{n}^{\prime}=-\mathbf{b}^{\prime} \cdot \mathbf{n}=-c \mathbf{n} \cdot \mathbf{n}=-c$, and the proof is finished.

We read from Theorem 4.6 that the absolute size of $\tau(s)$ measures the rate of change of the osculating plane. Moreover, the sign determines the direction to which the osculating plane is turning, according to the following rule. Follow the curve with your right hand such that the index finger is in the tangent direction \mathbf{t} and the thumb is in the normal direction \mathbf{n}, then if $\tau>0$, the hand will be turning as a right screw (the middle finger, pointing in direction $-\mathbf{b}$, turns towards the thumb \mathbf{n}).

Corollary 4.6. A regular space curve with $\kappa \neq 0$ is contained in a fixed plane if and only if $\tau=0$ everywhere.

Proof. Assume $\tau=0$. From the preceding theorem we have $\mathbf{b}^{\prime}(s)=0$, hence b is a constant vector. Since $\mathbf{t}(s) \perp \mathbf{b}$ we have $\gamma^{\prime}(s) \cdot \mathbf{b}=0$ for all s. Since $(\gamma \cdot \mathbf{b})^{\prime}=\gamma^{\prime} \cdot \mathbf{b}$ we conclude that $\gamma \cdot \mathbf{b}$ is a constant c. Hence $\gamma(s)$ belongs to the plane $\left\{\xi \in \mathbb{R}^{3} \mid \xi \cdot \mathbf{b}=c\right\}$ for all s. The converse implication was seen in Example 4.5.1.

4.7 The Frenet formulas

The three vectors $\mathbf{t}(s), \mathbf{n}(s), \mathbf{b}(s)$ constitute a positively ordered orthonormal basis for \mathbb{R}^{3} (depending on s), which is called the moving frame of Frenet for the curve. We have seen that $\mathbf{t}^{\prime}=\kappa \mathbf{n}$ and $\mathbf{b}^{\prime}=-\tau \mathbf{n}$. It is of interest also to determine \mathbf{n}^{\prime}. We collect all three formulas in a single theorem.

Theorem 4.7. For a curve with unit speed and non-zero curvature

$$
\begin{aligned}
\mathbf{t}^{\prime} & =\kappa \mathbf{n} \\
\mathbf{n}^{\prime} & =-\kappa \mathbf{t}+\tau \mathbf{b} \\
\mathbf{b}^{\prime} & =-\tau \mathbf{n}
\end{aligned}
$$

Proof. Since $\mathbf{t}, \mathbf{n}, \mathbf{b}$ is an orthonormal basis for \mathbb{R}^{3} we have

$$
\mathbf{n}^{\prime}=\left(\mathbf{n}^{\prime} \cdot \mathbf{t}\right) \mathbf{t}+\left(\mathbf{n}^{\prime} \cdot \mathbf{n}\right) \mathbf{n}+\left(\mathbf{n}^{\prime} \cdot \mathbf{b}\right) \mathbf{b} .
$$

By Lemma 4.2, $\mathbf{n}^{\prime} \cdot \mathbf{n}=0$, and in (9) we saw that $\mathbf{b} \cdot \mathbf{n}^{\prime}=\tau$. Finally, from $\mathbf{n} \cdot \mathbf{t}=0$ we derive by differentiation that

$$
\mathbf{n}^{\prime} \cdot \mathbf{t}=-\mathbf{n} \cdot \mathbf{t}^{\prime}=-\mathbf{n} \cdot \kappa \mathbf{n}=-\kappa .
$$

The formulas in this theorem are called the formulas of Frenet (or of Frenet-Serret). Since each of the functions \mathbf{t}, \mathbf{n} and \mathbf{b} have three coordinates, this is essentially a linear system of 9 first order differential equations in these coordinates. By solving this system one can (at least in principle) determine a curve from its curvature $\kappa(s)$ and torsion $\tau(s)$, up to integration constants.

4.8 Curvature of curves on a surface

We will now study some refined notions of curvature for curves which are contained in a given surface. Let $\sigma(U) \subseteq \mathbb{R}^{3}$ be a regular parametrized surface, and let $\gamma: I \rightarrow \mathbb{R}^{3}$ be a parametrized curve on σ. This means (see Section 2.11) that $\gamma=\sigma \circ \mu$ where $\mu: I \rightarrow U$ is a plane curve. Assume that γ is regular for all $t \in I$. We denote by

$$
\mathbf{N}^{\sigma}(q)=\mathbf{N}(p)=\frac{\sigma_{u}^{\prime} \times \sigma_{v}^{\prime}}{\left\|\sigma_{u}^{\prime} \times \sigma_{v}^{\prime}\right\|}
$$

the unit normal vector of $\sigma(U)$ (see Section 2.8), and put

$$
\mathbf{m}(t)=\mathbf{N}(\mu(t))=\mathbf{N}^{\sigma}(\gamma(t)),
$$

the unit normal vector of $\sigma(U)$ along γ.
Definition 4.8. The numbers

$$
\kappa_{g}(t)=\frac{\operatorname{det}\left[\gamma^{\prime}(t) \gamma^{\prime \prime}(t) \mathbf{m}(t)\right]}{\left\|\gamma^{\prime}(t)\right\|^{3}} \quad \text { and } \quad \kappa_{n}(t)=\frac{\gamma^{\prime \prime}(t) \cdot \mathbf{m}(t)}{\left\|\gamma^{\prime}(t)\right\|^{2}}
$$

are called, respectively, the geodesic (or tangential) curvature and the normal curvature of γ at t with respect to $\sigma(U)$. For a unit speed curve, they are

$$
\begin{equation*}
\kappa_{g}(s)=\gamma^{\prime \prime}(s) \cdot \mathbf{u}(s) \quad \text { and } \quad \kappa_{n}(s)=\gamma^{\prime \prime}(s) \cdot \mathbf{m}(s), \tag{10}
\end{equation*}
$$

where $\mathbf{u}(s)=\mathbf{m}(s) \times \mathbf{t}(s)$ with $\mathbf{t}(s)=\gamma^{\prime}(s)$. The vector $\mathbf{u}(s)$ is called the tangent normal of γ with respect to $\sigma(U)$.

The formulas (10) for unit speed curves are easily obtained from the general definitions. For a unit speed curve on $\sigma(U)$, the three vectors

$$
\mathbf{t}(s), \mathbf{u}(s), \mathbf{m}(s)
$$

again consitute a positively ordered orthonormal basis for \mathbb{R}^{3}, this is called the moving frame of Darboux. The first two basis vectors span the tangent space $T_{\gamma(s)} \sigma(U)$. Since in this case $\gamma^{\prime \prime}(s)$ is orthogonal to $\mathbf{t}(s)=\gamma^{\prime}(s)$, it follows from (10) that the decomposition of $\gamma^{\prime \prime}(s)$ according to this basis reads

$$
\begin{equation*}
\gamma^{\prime \prime}(s)=\kappa_{g}(s) \mathbf{u}(s)+\kappa_{n}(s) \mathbf{m}(s) \tag{11}
\end{equation*}
$$

Since $\kappa_{g}(s) \mathbf{u}(s) \in T_{\gamma(s)} \sigma(U)$ and $\kappa_{n}(s) \mathbf{m}(s) \perp T_{\gamma(s)} \sigma(U)$, this explains the reason behind the terms 'tangential' and 'normal' curvature for κ_{g} and κ_{n}.

Theorem 4.8. The geodesic curvature κ_{g} is unchanged under a directionpreserving reparametrisation of γ, and multiplied by -1 under a directionreversing reparametrization. The normal curvature κ_{n} is unchanged in both cases.

Both κ_{g} and κ_{n} are unchanged under orientation-preserving reparametrisations of σ, and multiplied by -1 under orientation-reversing reparametrizations.

Proof. The statements concerning reparametrization of γ are easily seen from (2) and (3), and the statements concerning reparametrization of σ are straightforward, since σ is only represented in the definitions through the presence of \mathbf{N}^{σ} (see Section 2.8 for the notion of orientation).

Corollary 4.8. The curvature, the geodesic curvature and the normal curvature of γ satisfy

$$
\begin{equation*}
\kappa^{2}=\kappa_{g}^{2}+\kappa_{n}^{2} . \tag{12}
\end{equation*}
$$

Proof. We may assume the curve has unit speed by the preceding theorem. The equation then follows from (11) by the theorem of Pythagoras.

Example 4.8.1 A plane curve regarded as a space curve $\gamma(t)=(x(t), y(t), 0)$ (as in Section 4.3) is a curve on the surface $\sigma(u, v)=(u, v, 0)$ (the $x y$-plane). The normal vector of this surface is $\mathbf{N}=(0,0,1)$. It is easily seen that the definition of κ_{g} in this case is identical with the original definition of curvature of plane curves in Section 4.1, and $\kappa_{n}=0$.

Example 4.8.2 We will compute the curvatures κ_{g} and κ_{n} of a circle on a sphere of radius 1 . Such a curve is the intersection of the sphere and a plane. It is called a great circle if the plane passes through the center of the sphere, otherwise a small circle. For simplicity we assume that the plane is horizontal (this is not a serious restriction, as it can be arranged by a spatial rotation around the center of the sphere).

With standard spherical coordinates the circle can be parametrized by

$$
t \mapsto \gamma(t)=\sigma(u, t)=(\cos u \cos t, \cos u \sin t, \sin u)
$$

with a fixed latitude u. The radius of the circle is $\cos u$, hence it has curvature $\kappa=\frac{1}{\cos u}$ (see Example 4.1.2). We find

$$
\gamma^{\prime}(t)=(-\cos u \sin t, \cos u \cos t, 0), \quad \gamma^{\prime \prime}(t)=(-\cos u \cos t,-\cos u \sin t, 0),
$$

and from Example 2.8.1 we have

$$
\mathbf{m}(t)=-\sigma(u, t) .
$$

Hence

$$
\begin{aligned}
& \operatorname{det}\left[\gamma^{\prime}(t) \gamma^{\prime \prime}(t) \mathbf{m}(t)\right] \\
& =\operatorname{det}\left(\begin{array}{ccc}
-\cos u \sin t & -\cos u \cos t & -\cos u \cos t \\
\cos u \cos t & -\cos u \sin t & -\cos u \sin t \\
0 & 0 & -\sin u
\end{array}\right)=-\cos ^{2} u \sin u
\end{aligned}
$$

and

$$
\gamma^{\prime \prime}(t) \cdot \mathbf{m}(t)=\cos ^{2} u
$$

We conclude that

$$
\kappa_{g}(t)=-\tan u \quad \text { and } \quad \kappa_{n}(t)=1
$$

We can verify $\kappa^{2}=\kappa_{g}^{2}+\kappa_{n}^{2}$ by the formula $\frac{1}{\cos ^{2} u}=\tan ^{2} u+1$.

4.9 Interpretation of normal curvature

A curve which is required to be on a given surface has to follow the shape of the surface, and is therefore forced to some amount of curvature. The interpretation of the normal curvature κ_{n} is exactly, that it is this part of κ (in the decomposition (12)) which the curve is forced to have by being on σ. This interpretation is supported by the following theorem.
Theorem 4.9. Given a point $q \in \sigma(U) ; p=\left(u_{0}, v_{0}\right) \in U$ and a non-zero vector $w_{0} \in T_{q} \sigma(U)$. All parametrized curves $\gamma=\sigma \circ \mu$ on $\sigma(U)$ with $\gamma\left(t_{0}\right)=q$ and $\gamma^{\prime}\left(t_{0}\right)=w_{0}$ have the same normal curvature $\kappa_{n}\left(t_{0}\right)$.

Notice that by (12) this common value of κ_{n} is then a lower bound for the curvature κ for all such curves.

Part of the proof of the theorem is separated in the following lemma.
Lemma 4.9. Let $\gamma=\sigma \circ \mu$ be a parametrized curve on $\sigma(U)$ and let $\mathbf{m}(t)=$ $\mathbf{N}(\mu(t))$ for $t \in I$. Let $t \in I$ be given, and let $p=\mu(t) \in U$ and $(a, b)=$ $\mu^{\prime}(t) \in \mathbb{R}^{2}$. Then

$$
\begin{align*}
\gamma^{\prime}(t) & =a \sigma_{u}^{\prime}(p)+b \sigma_{v}^{\prime}(p) \tag{13}\\
\mathbf{m}^{\prime}(t) & =a \mathbf{N}_{u}^{\prime}(p)+b \mathbf{N}_{v}^{\prime}(p) \tag{14}
\end{align*}
$$

Proof of the lemma. Equation (13) was established by means of the chain rule in Lemma 2.11, and Equation (14) is obtained in exactly the same manner.

Proof of the theorem. Since $\gamma^{\prime}(t)$ belongs to the tangent space at $\mu(t)$, we have $\gamma^{\prime}(t) \cdot \mathbf{m}(t)=0$ for all t. By differentiation $\gamma^{\prime \prime}(t) \cdot \mathbf{m}(t)+\gamma^{\prime}(t) \cdot \mathbf{m}^{\prime}(t)=0$, from which it follows that

$$
\begin{equation*}
\kappa_{n}(t)=\frac{\gamma^{\prime \prime}(t) \cdot \mathbf{m}(t)}{\left\|\gamma^{\prime}(t)\right\|^{2}}=-\frac{\gamma^{\prime}(t) \cdot \mathbf{m}^{\prime}(t)}{\left\|\gamma^{\prime}(t)\right\|^{2}} . \tag{15}
\end{equation*}
$$

From (13) we see that the coordinates a and b are the same for all curves with tangent vector $\gamma^{\prime}\left(t_{0}\right)=w_{0}$, and from (14) we then see that $\mathbf{m}^{\prime}\left(t_{0}\right)$ is the same for all such curves. It then follows from (15) that $\kappa_{n}\left(t_{0}\right)$ is the same for all such curves.

Example 4.9.1 For circles on the unit sphere we found in Example 4.8.2 that $\kappa_{n}=1$. Since every tangent direction w_{0} in every point is the tangent direction of some circle on the sphere (in fact, of a unique great circle), we conclude from the preceding theorem that $\kappa_{n}=1$ at all points on all curves on the sphere.

It follows from Theorem 4.9 that the normal curvature is a property of the surface rather than of the curve γ, and the following definition makes sense.

Definition 4.9. Let p and w_{0} be as in Theorem 4.9. The normal curvature of σ in p with direction w_{0} is the normal curvature $\kappa_{n}\left(t_{0}\right)$ of any parametrized curve $\gamma=\sigma \circ \mu$ on σ with $\mu\left(t_{0}\right)=p$ and $\gamma^{\prime}\left(t_{0}\right)=w_{0}$.

It follows from Theorem 4.8 that the normal curvature of σ is unchanged under reparametrizations, except for the sign which changes if orientation is reversed.

4.10 Geodesics

Definition 4.10. A geodesic on a surface is a parametrized curve γ on the surface for which $\gamma^{\prime \prime}(t)$ is normal to $T_{\gamma(t)} \sigma(U)$ for all t.

Notice that γ is not assumed to be regular. The reason is that it is useful to view constant curves as geodesics.

Example 4.10.1 It follows from Corollary 4.2 that the geodesics on the $x y$ plane by this definition precisely are the straight lines contained in the plane. Thus, one can say that the geodesics on a surface are "generalizations of straight lines to curved spaces". Furthermore, by (12) together with Theorem 4.9, a geodesic on a surface is a curve which in each point is as straight as possible, in the sense that it has the least possible curvature of a curve on the surface in that point and with that direction.

Theorem 4.10. Let $\gamma=\sigma \circ \mu$ be a regular parametrized curve on $\sigma(U)$. Then κ_{g} vanishes and γ has constant speed if and only if $\gamma^{\prime \prime}(t)$ is normal to $T_{\gamma(t)} \sigma(U)$ for all t.

Proof. If γ has constant speed, a unit speed reparametrization is obtained by multiplying t with a constant. The second derivative of γ is proportional to the second derivative of the reparametrized curve. Hence if the geodesic curvature is zero, it follows from (11) that $\gamma^{\prime \prime}(t)$ is normal to the surface.

Conversely, if $\gamma^{\prime \prime}(t)$ is normal to $T_{\gamma(t)} \sigma(U)$ for all t, then $\gamma^{\prime \prime}(t) \cdot \gamma^{\prime}(t)=0$, and hence $\frac{d}{d t}\left\|\gamma^{\prime}(t)\right\|^{2}=0$, from which we conclude there is constant speed. After reparametrization to unit speed we conclude from (11) that $\kappa_{g}=0$.

According to this theorem, a particle which moves on the surface with no acceleration in the tangent directions of the surface, follows a geodesic. The only acceleration is that which is necessary to keep the particle on the surface, and it is normal to the surface.

The property of having vanishing geodesic curvature is unchanged under reparametrizations of γ as well as σ, also those which revert direction or orientation (since $\kappa_{g}=0$ if and only if $-\kappa_{g}=0$).

Example 4.10.2 It follows from Example 4.8.2 that great circles on the unit sphere $\mathcal{S}=S^{2}$ are geodesics, and that small circles are not. In fact, the great circles are the only geodesics on the sphere (up to reparametrization and restriction to subsets). This can be verified as follows. Assume $\gamma(s)$ is a unit speed geodesic on \mathcal{S}. From Example 2.8.1 we have $\mathbf{m}(s)=-\gamma(s)$. Since $\kappa_{g}=0$ for a geodesic and $\kappa_{n}=1$ for all curves on a sphere (see Example 4.9.1) we conclude from (11) that $\gamma^{\prime \prime}(s)=-\gamma(s)$ for all s. Hence $\gamma^{\prime \prime \prime}=-\gamma^{\prime}$ and it follows that $\operatorname{det}\left[\gamma^{\prime} \gamma^{\prime \prime} \gamma^{\prime \prime \prime}\right]=0$. Hence the torsion τ is zero, and by Corollary 4.6 the curve is contained in a fixed plane. Being in the intersection of a plane and the sphere, the curve is contained in a great circle or a small circle. However, the latter possibility was already excluded.

4.11 Exercises

1 Determine the curvature of the following curves in \mathbb{R}^{2} :
a. $\gamma(t)=\left(2 t, t^{2}\right)$,
b. $\gamma(t)=\left(e^{t} \cos t, e^{t} \sin t\right)$, (see page 60).

2 Let $\gamma(s)$ be a unit speed curve in \mathbb{R}^{2}, about which it is assumed that the curvature κ is a non-zero constant. Prove that the curve β defined by

$$
\beta(s)=\gamma(s)+\frac{1}{\kappa} \widehat{\gamma^{\prime}(s)}
$$

is a constant curve, that is, a point p. Conclude that the trace of γ is contained in a circle centered in p.
3 Let $\gamma(s)$ be a unit speed curve in \mathbb{R}^{2}, and assume that the curvature κ is non-zero at $s=0$. Let $k=\kappa(0)$ and put

$$
C=\gamma(0)+\frac{1}{k} \widehat{\gamma^{\prime}(0)}
$$

Prove that the circle parametrized by

$$
\beta(s)=C+\frac{1}{k}\left(-\cos (k s) \widehat{\gamma^{\prime}(0)}+\sin (k s) \gamma^{\prime}(0)\right)
$$

satisfies $\beta(0)=\gamma(0), \beta^{\prime}(0)=\gamma^{\prime}(0), \beta^{\prime \prime}(0)=\gamma^{\prime \prime}(0)$. Its trace, which has radius $1 /|k|$, is called the osculating circle. The center C is called the center of curvature of γ at $t=0$. See the following figure.

4 Let $\gamma: I \rightarrow \mathbb{R}^{2}$ be a regular parametrized curve, and assume that $\|\gamma(t)\|$ has a local maximum in a given value $t_{0} \in I$. Prove that $\left|\kappa\left(t_{0}\right)\right| \geq 1 /\left\|\gamma\left(t_{0}\right)\right\|$. Hint: Assume unit speed. The condition on γ implies that the second derivative of $t \mapsto\|\gamma(t)\|^{2}$ is ≤ 0 at t_{0}. Conclude that $\gamma\left(t_{0}\right) \cdot \gamma^{\prime \prime}\left(t_{0}\right) \leq-1$ and employ the Cauchy-Schwarz inequality (see Appendix A)

5 Let $\gamma(s)=\left(\sinh ^{-1}(s), \sqrt{1+s^{2}}\right)$. Determine $\gamma^{\prime}(s)$ and show that the curve has unit speed. Determine $\gamma^{\prime \prime}(s)$ and the curvature $\kappa(s)$. Determine a tangent angle $\theta(s)$, and verify Theorem 4.3.1 for this curve.
The following formula for the inverse function $\sinh ^{-1}: \mathbb{R} \rightarrow \mathbb{R}$ can be used

$$
\frac{d}{d y} \sinh ^{-1} y=\frac{1}{\sqrt{1+y^{2}}}
$$

6 Let $\alpha: I \rightarrow \mathbb{R}^{2}$ and $\beta: I \rightarrow \mathbb{R}^{2}$ be two unit speed curves with a common interval of definition I, and with smooth tangent angles $\theta: I \rightarrow \mathbb{R}$ and $\varphi: I \rightarrow \mathbb{R}$. Assume that they have equal curvature $\kappa(s)$ for all $s \in I$, and that there exists some value $s_{0} \in I$ for which $\alpha\left(s_{0}\right)=\beta\left(s_{0}\right)$ and $\alpha^{\prime}\left(s_{0}\right)=\beta^{\prime}\left(s_{0}\right)$. Prove that then $\alpha(s)=\beta(s)$ for all $s \in I$.

7 Determine the arc length $s(t)$, the curvature $\kappa(t)$ and the torsion $\tau(t)$ for the curve $\gamma(t)=\left(3 t, 3 t^{2}, 2 t^{3}\right)$.

8 The curve $\gamma(t)=(t, \cosh t, \sinh t)$ is called a hyperbolic helix. Determine its curvature and torsion.

9 Let $\gamma(s)=\left(3 \sin \frac{s}{5}, 4 \sin \frac{s}{5}, 5 \cos \frac{s}{5}\right)$. Find \mathbf{t}, \mathbf{n} and \mathbf{b} for this curve. Find also the curvature and torsion, and show that the curve is contained in a fixed plane. Give a normal vector for this plane.

10 Let $\gamma: I \rightarrow \mathbb{R}^{3}$ be a regular parametrized curve on a regular parametrized surface $\sigma(U) \subseteq \mathbb{R}^{3}$. Assume the image of γ is a (segment of) a straight line. Prove that γ is a geodesic on $\sigma(U)$.

11 Consider the cylinder of radius 1 (Example 1.2.3) and let

$$
\sigma(u, v)=(\cos v, \sin v, u)
$$

a. Let $\gamma(t)=\sigma(a \cos t, t)$ for $t \in \mathbb{R}$, where $a \in \mathbb{R}$ is constant. Determine κ_{n} and κ_{g} for γ. For which value of a is this a geodesic on the cylinder?
b. Instead, let $\gamma(t)=\sigma(a t+b, \omega t)$ for $t \in \mathbb{R}$, where a, b and ω are constants. Describe the curve and show it is a geodesic on the cylinder.
c. Determine two geodesic curves on σ which both have end points $(1,0,0)$ and $(1,0,1)$, but which have different trace in between these two points. Are there other geodesics between the same two points?

12 Let S_{γ} be a surface of revolution, and let

$$
\sigma(u, v)=(f(u) \cos v, f(u) \sin v, g(u))
$$

(see pages 38 and 61).
a. Show that the meridians $t \mapsto \sigma(t, v)$ are geodesics.
b. Verify that for the parallel curve $t \mapsto \sigma(u, t)$

$$
\kappa_{g}(t)=\frac{f^{\prime}(u)}{f(u)\left(f^{\prime}(u)^{2}+g^{\prime}(u)^{2}\right)^{1 / 2}}, \quad \kappa_{n}(t)=\frac{g^{\prime}(u)}{f(u)\left(f^{\prime}(u)^{2}+g^{\prime}(u)^{2}\right)^{1 / 2}} .
$$

Give a necessary and sufficient condition for it to be a geodesic.
13 Let $\gamma=\sigma \circ \mu: I \rightarrow \mathbb{R}^{3}$ be a regular parametrized curve on a regular parametrized surface $\sigma(U)$. Assume that there exists a fixed plane Π in \mathbb{R}^{3} containing the image of γ. If for some $t_{0} \in I$ the plane Π is orthogonal to the tangent plane $T_{\gamma\left(t_{0}\right)} \sigma(U)$ of $\sigma(U)$ at $\gamma\left(t_{0}\right)$, we call γ a normal section of $\sigma(U)$ at this point (two planes in \mathbb{R}^{3} are orthogonal if their normal vectors are orthogonal). For example, a great circle on a sphere is a normal section at each of its points, because it belongs to a plane that intersects orthogonally with the tangent spaces.
a. Show that a normal section at t_{0} has $\kappa_{g}\left(t_{0}\right)=0$.
b. Use part a to verify Exercise 12a, that the meridians of a surface of revolution are geodesics. Verify also the geodesics found in Exercise 12b.
14 Let $\gamma: I \rightarrow \mathbb{R}^{3}$ be a unit speed curve with curvature $\kappa(t) \neq 0$ for all t. Let $\mathbf{b}(t)$ be the binormal of the curve at t. Put $\sigma(u, v)=\gamma(v)+u \mathbf{b}(v)$ for $(u, v) \in \mathbb{R} \times I$.
a. Show that σ is a regular parametrized surface. It is called the binormal surface of the curve.
b. Show that γ is a geodesic on the binormal surface.

15 Consider a cone (Example 1.2.4). A sphere of radius 1 is inserted in the cone such that it exactly touches (like a scoop of ice cream in a cone).
a. Determine the center of the sphere, and parametrize the intersection of the surfaces as a smooth curve.
b. Give an argument, showing that this curve has the same geodesic curvature κ_{g} and the same normal curvature κ_{n} with respect to the two surfaces (the sphere is assumed oriented with its normal pointing towards the center). Determine $\left|\kappa_{g}\right|$ and κ_{n}.

Chapter 5

The second fundamental form

We shall now extend the notion of curvature from curves to surfaces. However the description is considerably more complicated, and the curvature of a surface in a given point p will not be completely described by a single number. The description of curvature will be based on the concept of normal curvature (see Definition 4.9), which associates infinitely many numbers to each point p, namely one for each unit tangent vector at p, describing the curvature of the surface in that direction. One of the central goals of this chapter will be to organize these numbers in an efficient way.

5.1 The shape operator

In order to treat the notion of curvature efficiently, we will use some concepts from linear algebra. The main object that describes the curvature at p will be a linear map W from the tangent space at q to itself. The map W is called the shape operator, or the Weingarten map. It will be explained in Section 5.2 how W relates to the normal curvature of Definition 4.9.

For a plane unit speed curve the description of its curvature is embodied in the formula $\mathbf{t}^{\prime}=\kappa \hat{\mathbf{t}}$ (see Theorem 4.2), which expresses that the curvature is given by the rate of change of the direction \mathbf{t} of the tangent line. For surfaces we will take a similar view, and our definition of W at q will reflect the rate of change of the tangent space at q.

Let $\sigma(U) \subseteq \mathbb{R}^{3}$ be a regular parametrized surface, and let $q \in \sigma(U), q=$ $\sigma(p)$ with $p=\left(u_{0}, v_{0}\right) \in U$ be given. The position of the tangent space $T_{q} \sigma(U)$ in \mathbb{R}^{3} is completely determined by the unit normal vector

$$
\mathbf{N}=\frac{\sigma_{u}^{\prime} \times \sigma_{v}^{\prime}}{\left\|\sigma_{u}^{\prime} \times \sigma_{v}^{\prime}\right\|}
$$

computed at p. Let us denote by \mathbf{N}^{σ} the normal considered as a function on $\sigma(U)$ and by \mathbf{N} when it is considered at a function on U (so that $\mathbf{N}^{\sigma}(q)=$ $\mathbf{N}\left(\sigma^{-1}(q)\right)$. We will regard the derivative of \mathbf{N} as a measure for the curvature of the surface.

In fact, it will be more convenient to use the negative of the derivative of \mathbf{N}. That this is actually in accordance with the description of the curvature of a plane curve will be explained below in Example 5.1.3.

However, since \mathbf{N} is a function of the two variables u and v, both partial derivatives $-\mathbf{N}_{u}^{\prime}$ and $-\mathbf{N}_{v}^{\prime}$ have to be taken into account. This could be
done by considering the Jacobian matrix for $-\mathbf{N}: U \rightarrow \mathbb{R}^{3}$, whose columns are exactly the two vectors $-\mathbf{N}_{u}^{\prime}$ and $-\mathbf{N}_{v}^{\prime}$, but for reasons to be explained, we prefer to proceed somewhat differently.

Observe that it follows from Lemma 4.2 that $-\mathbf{N}_{u}^{\prime}$ and $-\mathbf{N}_{v}^{\prime}$ are perpendicular to \mathbf{N}, hence they both belong to the tangent space $T_{q} \sigma(U)$.

Definition 5.1. Let $p=\left(u_{0}, v_{0}\right) \in U$ and $q=\sigma(p)$. The linear map

$$
W=W_{q}: T_{q} \sigma(U) \rightarrow T_{q} \sigma(U),
$$

defined by $W\left(\sigma_{u}^{\prime}\right)=-\mathbf{N}_{u}^{\prime}$ and $W\left(\sigma_{v}^{\prime}\right)=-\mathbf{N}_{v}^{\prime}$, and hence

$$
\begin{equation*}
W\left(a \sigma_{u}^{\prime}+b \sigma_{v}^{\prime}\right)=-a \mathbf{N}_{u}^{\prime}-b \mathbf{N}_{v}^{\prime} \tag{1}
\end{equation*}
$$

for all $a, b \in \mathbb{R}$, is called the shape operator of the surface at q (the derivatives $\sigma_{u}^{\prime}, \sigma_{v}^{\prime}, \mathbf{N}_{u}^{\prime}$ and \mathbf{N}_{v}^{\prime} are all evaluated in p).

It follows from the fact that the pair $\left(\sigma_{u}^{\prime}, \sigma_{v}^{\prime}\right)$ is a basis for $T_{q} \sigma(U)$, that W is a well defined linear map $T_{q} \sigma(U) \rightarrow T_{q} \sigma(U)$. The motivation for studying this map rather than just the vectors $\mathbf{N}_{u}^{\prime}, \mathbf{N}_{v}^{\prime}$ is to obtain a notion which behaves nicely under reparametrizations. The idea is that a reparametrization will change \mathbf{N}_{u}^{\prime} and \mathbf{N}_{v}^{\prime}, but also σ_{u}^{\prime} and σ_{v}^{\prime}, and it turns out that these changes are always so related that the map remains essentially the same. This will be seen in the theorem below, and the conclusion is that the shape operator is more directly related to a geometric property of the surface than the vectors \mathbf{N}_{u}^{\prime} and \mathbf{N}_{v}^{\prime}.

Example 5.1.1 Let $\sigma(u, v)=p+u q_{1}+v q_{2}$ be the plane through p spanned by two linearly independent vectors $q_{1}, q_{2} \in \mathbb{R}^{3}$. Then $\mathbf{N}=\frac{q_{1} \times q_{2}}{\left\|q_{1} \times q_{2}\right\|}$ is constant, and the shape operator W is the zero operator.

Example 5.1.2 For the unit sphere with standard spherical coordinates $\sigma(u, v)$ we have seen in Example 2.8.1 that $N^{\sigma}(q)=-q$ i.e. that $\mathbf{N}(u, v)=$ $-\sigma(u, v)$. Hence $\mathbf{N}_{u}^{\prime}=-\sigma_{u}^{\prime}$ and $\mathbf{N}_{v}^{\prime}=-\sigma_{v}^{\prime}$, and it follows that the shape operator W_{p} is the identity operator on $T_{p} \sigma$ for all p.

Example 5.1.3 Let $\gamma: I \rightarrow \mathbb{R}^{2}$ be a plane curve with unit speed and tangent vector $\mathbf{t}(s)=\gamma^{\prime}(s)$. Since $(\hat{\mathbf{t}})^{\prime}=\widehat{\mathbf{t}^{\prime}}$ it follows from Theorem 4.2 that

$$
(\hat{\mathbf{t}})^{\prime}=\widehat{\mathbf{t}^{\prime}}=\widehat{\kappa \hat{\mathbf{t}}}=\kappa \hat{\hat{\mathbf{t}}}=-\kappa \mathbf{t},
$$

where we used that $\hat{\mathbf{t}}=-\mathbf{t}$. Thus it is the negative of the derivative of the normal vector $\hat{\mathbf{t}}$ which describes the curvature κ.

If we view \mathbf{N} and $\hat{\mathbf{t}}$ as analogues of each other, the derivatives of \mathbf{N} are analogous to $(\hat{\mathbf{t}})^{\prime}$. The analogue of the map W defined by (1) is therefore the
linear map $a \gamma^{\prime} \mapsto-a(\hat{\mathbf{t}})^{\prime}$ (where $a \in \mathbb{R}$ is arbitrary) of the 1-dimensional tangent space to itself. By the equation found above this map is multiplication by κ. In this sense W is a higher dimensional version of κ.

Even more can be said: The map $\sigma(U) \mapsto N^{\sigma}(q)$ can be viewed as a map from $\sigma(U)$ to S^{2}. For a curve γ on $\sigma(U)$ we then get a curve $N^{\sigma} \circ \gamma$ on S^{2}. The tangent planes of $\sigma(U)$ at q and of S^{2} at $N^{\sigma}(q)$ are parallel, hence we can define the Weingarten map as a map from $T_{q} \sigma(U)$ into itself.

In this connection, recall from Section 2.11 that a parametrized curve γ on $\sigma(U)$ by definition is a curve of the form $\gamma=\sigma \circ \mu$ where $\mu: I \rightarrow U$ is a parametrized plane curve.

Lemma 5.1. Let $\gamma=\sigma \circ \mu$ be a parametrized curve on $\sigma(U)$ with $\mu\left(t_{0}\right)=p$. Then

$$
\begin{equation*}
W\left(\gamma^{\prime}\left(t_{0}\right)\right)=-\left(N^{\sigma} \circ \gamma\right)^{\prime}\left(t_{0}\right) \tag{2}
\end{equation*}
$$

Proof. Observe that $\left(N^{\sigma}(\gamma)\right)^{\prime}\left(t_{0}\right)=-\mathbf{m}^{\prime}\left(t_{0}\right)$, where $\mathbf{m}=\mathbf{N} \circ \mu$ is the surface normal along the curve. Hence this is immediate from (1) and the two expressions in Lemma 4.9.

In other words, the shape operator associates to a tangent vector w the derivative of $-\mathbf{N}^{\sigma}$ along any curve on the surface which has w as its tangent.

Theorem 5.1. The shape operator W is unchanged under reparametrizations which preserve orientation, and it changes to $-W$ under reparametrizations which reverse orientation.

Proof. Let $\tau(V) \subseteq \mathbb{R}^{3}$ denote a reparametrization of $\sigma(U)$ implemented by the diffeomorphism $\phi: V \rightarrow U$. We denote the shape operator of σ by W^{σ}, and the corresponding map for τ by W^{τ}. The claim is that $W^{\tau}= \pm W^{\sigma}$.

According to Theorem 2.11 each tangent vector $w \in T_{q} \sigma(U)$ is of the form $w=\gamma^{\prime}\left(t_{0}\right)$ for some parametrized curve $\gamma=\sigma \circ \mu$ on $\sigma(U)$. We can then use the formula (2) to determine W^{σ} :

$$
W^{\sigma}\left(\gamma^{\prime}\left(t_{0}\right)\right)=-\left(\mathbf{N}^{\sigma} \circ \gamma\right)^{\prime}\left(t_{0}\right)
$$

The curve $\gamma=\sigma \circ \mu$ can also be written as $\gamma=\tau \circ \nu$, where $\nu=\phi^{-1} \circ \mu: I \rightarrow$ V (see the figure below). Hence γ may be considered as a parametrized curve on $\tau(V)$ as well.

Hence we can use (2) to determine also W^{τ} :

$$
W^{\tau}\left(\gamma^{\prime}\left(t_{0}\right)\right)=-\left(\mathbf{N}^{\tau} \circ \gamma\right)^{\prime}\left(t_{0}\right)
$$

The unit normals for σ and τ are related by $\mathbf{N}^{\tau}= \pm \mathbf{N}^{\sigma}$ with sign + if and only if ϕ preserves orientation (see Section 2.8). Hence

$$
-\left(\mathbf{N}^{\tau} \circ \gamma\right)^{\prime}\left(t_{0}\right)= \pm\left(-\mathbf{N}^{\sigma} \circ \gamma\right)^{\prime}\left(t_{0}\right)
$$

The theorem follows immediately.

5.2 The second fundamental form

We shall now introduce another fundamental object through which we wish to describe the curvature of a surface in a given point. It is closely related to the shape operator W, and it serves to relate this map to the normal curvature which was defined in Section 4.9. Let $\sigma(U) \subseteq \mathbb{R}^{3}$ be a regular parametrized surface, and let $q \in \sigma(U)$ be given.
Definition 5.2. The map $w \in T_{q} \sigma(U) \mapsto I_{p}(w)=w \cdot W(w) \in \mathbb{R}$ is called the second fundamental form of $\sigma(U)$ in q.

It follows from Theorem 5.1 that the second fundamental form does not change under reparametrizations, except by a sign if the orientation is reversed.

Let a tangent vector $w_{0} \in T_{q} \sigma(U)$ be given, $w_{0} \neq 0$. Recall from Definition 4.9 that the normal curvature κ_{n} of σ in q with direction w_{0} is the normal curvature of any curve on $\sigma(U)$ through q with that tangent vector.
Theorem 5.2. The normal curvature in direction w_{0}, is

$$
\begin{equation*}
\kappa_{n}=\frac{I I_{p}\left(w_{0}\right)}{\left\|w_{0}\right\|^{2}} \tag{3}
\end{equation*}
$$

Proof. Let $\gamma=\sigma \circ \mu$ be a curve on $\sigma(U)$ with $\mu\left(t_{0}\right)=p$ and $\gamma^{\prime}\left(t_{0}\right)=w_{0}$. It follows from Section 4.9, equation (15), that $\kappa_{n}=-\gamma^{\prime}\left(t_{0}\right) \cdot \mathbf{m}^{\prime}\left(t_{0}\right) /\left\|\gamma^{\prime}\left(t_{0}\right)\right\|^{2}$. Hence $\kappa_{n}=w_{0} \cdot W_{p}\left(w_{0}\right) /\left\|w_{0}\right\|^{2}$ follows from (2).

Thus, if we assume $\left\|w_{0}\right\|=1$, then $I_{q}\left(w_{0}\right)$ is the normal curvature at q of any curve on $\sigma(U)$, which has the tangent vector w_{0} in this point. The relation (3) describes the geometric content of the second fundamental form.

5.3 Coordinate expressions for the second fundamental form.

In the following theorem we give an explicit expression by which the second fundamental form can be computed for a given parametrization.

Theorem 5.3. The second fundamental form is given by

$$
\begin{equation*}
I_{p}\left(a \sigma_{u}^{\prime}+b \sigma_{v}^{\prime}\right)=L a^{2}+2 M a b+N b^{2}, \quad a, b \in \mathbb{R}, \tag{4}
\end{equation*}
$$

with respect to the basis $\sigma_{u}^{\prime}, \sigma_{v}^{\prime}$. Here

$$
\begin{align*}
& L=\mathbf{N} \cdot \sigma_{u u}^{\prime \prime}=\frac{\operatorname{det}\left[\sigma_{u}^{\prime} \sigma_{v}^{\prime} \sigma_{u u}^{\prime \prime}\right]}{\left\|\sigma_{u}^{\prime} \times \sigma_{v}^{\prime}\right\|} \\
& M=\mathbf{N} \cdot \sigma_{u v}^{\prime \prime}=\frac{\operatorname{det}\left[\sigma_{u}^{\prime} \sigma_{v}^{\prime} \sigma_{u v}^{\prime \prime}\right]}{\left\|\sigma_{u}^{\prime} \times \sigma_{v}^{\prime}\right\|} \tag{5}\\
& N=\mathbf{N} \cdot \sigma_{v v}^{\prime \prime}=\frac{\operatorname{det}\left[\sigma_{u}^{\prime} \sigma_{v}^{\prime} \sigma_{v v}^{\prime \prime}\right]}{\left\|\sigma_{u}^{\prime} \times \sigma_{v}^{\prime}\right\|}
\end{align*}
$$

where all the terms are evaluated in the given point $p \in U$.
Recall the analogous expression $I_{p}\left(a \sigma_{u}^{\prime}+b \sigma_{v}^{\prime}\right)=E a^{2}+2 F a b+G b^{2}$ for the first fundamental form. The two fundamental forms are quadratic forms on the tangent space (see page 48)

Proof. We shall derive the following expression for all $a, b, \tilde{a}, \tilde{b} \in \mathbb{R}$,

$$
\begin{equation*}
\left(a \sigma_{u}^{\prime}+b \sigma_{v}^{\prime}\right) \cdot W\left(\tilde{a} \sigma_{u}^{\prime}+\tilde{b} \sigma_{v}^{\prime}\right)=L a \tilde{a}+M(a \tilde{b}+b \tilde{a})+N b \tilde{b} . \tag{6}
\end{equation*}
$$

Taking $a=\tilde{a}, b=\tilde{b}$ we then obtain (4).
By linearity of W the left side of (6) equals

$$
a \tilde{a} \sigma_{u}^{\prime} \cdot W\left(\sigma_{u}^{\prime}\right)+a \tilde{b} \sigma_{u}^{\prime} \cdot W\left(\sigma_{v}^{\prime}\right)+b \tilde{a} \sigma_{v}^{\prime} \cdot W\left(\sigma_{u}^{\prime}\right)+b \tilde{b} \sigma_{v}^{\prime} \cdot W\left(\sigma_{v}^{\prime}\right)
$$

The expression (6) follows if we prove

$$
\begin{array}{ll}
\sigma_{u}^{\prime} \cdot W\left(\sigma_{u}^{\prime}\right)=L, & \sigma_{u}^{\prime} \cdot W\left(\sigma_{v}^{\prime}\right)=M \\
\sigma_{v}^{\prime} \cdot W\left(\sigma_{u}^{\prime}\right)=M, & \sigma_{v}^{\prime} \cdot W\left(\sigma_{v}^{\prime}\right)=N
\end{array}
$$

with L, M and N defined by (5). By definition of W (see (1)),

$$
\begin{align*}
\sigma_{u}^{\prime} \cdot W\left(\sigma_{u}^{\prime}\right)=-\sigma_{u}^{\prime} \cdot \mathbf{N}_{u}^{\prime}, & \sigma_{u}^{\prime} \cdot W\left(\sigma_{v}^{\prime}\right)=-\sigma_{u}^{\prime} \cdot \mathbf{N}_{v}^{\prime} \\
\sigma_{v}^{\prime} \cdot W\left(\sigma_{u}^{\prime}\right)=-\sigma_{v}^{\prime} \cdot \mathbf{N}_{u}^{\prime}, & \sigma_{v}^{\prime} \cdot W\left(\sigma_{v}^{\prime}\right)=-\sigma_{v}^{\prime} \cdot \mathbf{N}_{v}^{\prime} \tag{8}
\end{align*}
$$

From $\sigma_{u}^{\prime} \cdot \mathbf{N}=0$ we derive by differentiation with respect to u and v that

$$
\begin{equation*}
\sigma_{u u}^{\prime \prime} \cdot \mathbf{N}+\sigma_{u}^{\prime} \cdot \mathbf{N}_{u}^{\prime}=0 \quad \text { and } \quad \sigma_{u v}^{\prime \prime} \cdot \mathbf{N}+\sigma_{u}^{\prime} \cdot \mathbf{N}_{v}^{\prime}=0 \tag{9}
\end{equation*}
$$

and from $\sigma_{v}^{\prime} \cdot \mathbf{N}=0$ we derive similarly that

$$
\begin{equation*}
\sigma_{v u}^{\prime \prime} \cdot \mathbf{N}+\sigma_{v}^{\prime} \cdot \mathbf{N}_{u}^{\prime}=0 \quad \text { and } \quad \sigma_{v v}^{\prime \prime} \cdot \mathbf{N}+\sigma_{v}^{\prime} \cdot \mathbf{N}_{v}^{\prime}=0 \tag{10}
\end{equation*}
$$

The expressions in (7) then follow from (8) and (5) (since $\left.\sigma_{u v}^{\prime \prime}=\sigma_{v u}^{\prime \prime}\right)$.
The coefficients L, M and N are conveniently arranged as the entries of a symmetric matrix

$$
\left(\begin{array}{cc}
L & M \\
M & N
\end{array}\right)
$$

so that the formula for the second fundamental form can be put in matrix form

$$
I I_{q}\left(a \sigma_{u}^{\prime}+b \sigma_{v}^{\prime}\right)=\binom{a}{b}^{t}\left(\begin{array}{cc}
L & M \\
M & N
\end{array}\right)\binom{a}{b}
$$

Example 5.3 Let $\sigma(u, v)=(r \cos u \cos v, r \cos u \sin v, r \sin u)$ be the standard parametrization of a sphere with radius $r>0$. A straightforward computation shows that the first fundamental form has coefficients $E=r^{2}$, $F=0$ and $G=r^{2} \cos ^{2} u$. Moreover, $\mathbf{N}=-(\cos u \cos v, \cos u \sin v, \sin u)$ and

$$
L=\mathbf{N} \cdot \sigma_{u u}^{\prime \prime}=r, \quad M=\mathbf{N} \cdot \sigma_{u v}^{\prime \prime}=0, \quad N=\mathbf{N} \cdot \sigma_{v v}^{\prime \prime}=r \cos ^{2} u
$$

Hence the second fundamental form at $p=(u, v)$ is the map

$$
a \sigma_{u}^{\prime}+b \sigma_{v}^{\prime} \mapsto r\left(a^{2}+b^{2} \cos ^{2} u\right)
$$

5.4 A formula for the shape operator

With the aid of the coefficients L, M and N we can establish a formula by which the shape operator can be computed in a given parametrization.

Theorem 5.4. The matrix for the shape operator $W_{q}: T_{q} \sigma(U) \rightarrow T_{q} \sigma(U)$ with respect to the basis $\left(\sigma_{u}^{\prime}, \sigma_{v}^{\prime}\right)$ is

$$
\left(\begin{array}{cc}
E & F \\
F & G
\end{array}\right)^{-1}\left(\begin{array}{cc}
L & M \\
M & N
\end{array}\right)
$$

Recall that for a 2×2 matrix,

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

Proof. We express $W\left(\sigma_{u}^{\prime}\right)$ and $W\left(\sigma_{v}^{\prime}\right)$ as linear combinations

$$
W\left(\sigma_{u}^{\prime}\right)=h \sigma_{u}^{\prime}+j \sigma_{v}^{\prime}, \quad W\left(\sigma_{v}^{\prime}\right)=i \sigma_{u}^{\prime}+k \sigma_{v}^{\prime}
$$

with coefficients i, j, k, l to be determined. The matrix for W_{p} will then be

$$
\left(\begin{array}{cc}
h & i \\
j & k
\end{array}\right)
$$

From (7) we obtain

$$
\begin{aligned}
\left(\begin{array}{cc}
L & M \\
M & N
\end{array}\right) & =\left(\begin{array}{ll}
\sigma_{u}^{\prime} \cdot\left(h \sigma_{u}^{\prime}+j \sigma_{v}^{\prime}\right) & \sigma_{u}^{\prime} \cdot\left(i \sigma_{u}^{\prime}+k \sigma_{v}^{\prime}\right) \\
\sigma_{v}^{\prime} \cdot\left(h \sigma_{u}^{\prime}+j \sigma_{v}^{\prime}\right) & \sigma_{v}^{\prime} \cdot\left(i \sigma_{u}^{\prime}+k \sigma_{v}^{\prime}\right)
\end{array}\right) \\
& =\left(\begin{array}{cc}
E h+F j & E i+F k \\
F h+G j & F i+G k
\end{array}\right) \\
& =\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right)\left(\begin{array}{cc}
h & i \\
j & k
\end{array}\right) .
\end{aligned}
$$

Hence

$$
\left(\begin{array}{cc}
h & i \\
j & k
\end{array}\right)=\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right)^{-1}\left(\begin{array}{cc}
L & M \\
M & N
\end{array}\right)
$$

Notice that it does not follow that W_{q} is represented by a symmetric matrix (the product of two symmetric matrices need not be symmetric). In fact, this will not be the case in general.

Example 5.4 For the sphere with radius r we obtain from Example 5.3 that the matrix for W with respect to σ_{u}^{\prime} and σ_{v}^{\prime} is

$$
\left(\begin{array}{cc}
r^{2} & 0 \\
0 & r^{2} \cos ^{2} u
\end{array}\right)^{-1}\left(\begin{array}{cc}
r & 0 \\
0 & r \cos ^{2} u
\end{array}\right)=\left(\begin{array}{cc}
1 / r & 0 \\
0 & 1 / r
\end{array}\right) .
$$

5.5 Diagonalization of the second fundamental form

We shall now introduce a general method by which one can deduce from the operator W (and its matrix expression) some detailed information about the shape of a surface. The information is obtained through diagonalization of W (see Appendix D).

Definition 5.5. An eigenvector for the shape operator W_{q} is called a principal vector in $T_{q} \sigma(U)$, and the corresponding eigenvalue is called the corresponding principal curvature at q.

Notice that if $w \in T_{q} \sigma(U)$ is a principal vector with unit length and corresponding principal curvature λ, then by Theorem 5.2 the normal curvature at q in direction w is

$$
\kappa_{n}=I_{q}(w)=w \cdot W_{q}(w)=w \cdot \lambda w=\lambda .
$$

This explains why λ is called a 'curvature'.
It follows from Theorem 5.1 that the notion of a principal vector is unchanged under a reparametrization, and that the corresponding principal curvatures are unchanged in absolute value, but with the opposite sign if the orientation is reversed.

We see from (6) that the shape operator $W: T_{q} \sigma(U) \rightarrow T_{q} \sigma(U)$ is symmetric with respect to the dot product, that is

$$
\begin{equation*}
w_{1} \cdot W\left(w_{2}\right)=W\left(w_{1}\right) \cdot w_{2} \tag{11}
\end{equation*}
$$

for all $w_{1}, w_{2} \in T_{p} \sigma$.
Theorem 5.5. There exists for each $q \in \sigma(U)$ an orthonormal basis w_{1}, w_{2} for $T_{q} \sigma(U)$ consisting of principal vectors with corresponding principal curvatures $\kappa_{1}, \kappa_{2} \in \mathbb{R}$.

With respect to this basis the second fundamental form is given by

$$
\begin{equation*}
I_{q}\left(a w_{1}+b w_{2}\right)=\kappa_{1} a^{2}+\kappa_{2} b^{2} \tag{12}
\end{equation*}
$$

for all $a, b \in \mathbb{R}$.
Proof. The first statement follows immediately from Corollary D. 1 in Appendix D with $Z=T_{q} \sigma(U) \subset \mathbb{R}^{3}$.

The expression (12) now follows by evaluation of $w \cdot W(w)$ with $w=$ $a w_{1}+b w_{2}$.

Corollary 5.5.1. Let w_{1}, w_{2} and κ_{1}, κ_{2} be as above, and let $\theta \in \mathbb{R}$. The normal curvature in direction

$$
w_{0}=\cos \theta w_{1}+\sin \theta w_{2}
$$

is

$$
\begin{equation*}
\kappa_{n}=\kappa_{1} \cos ^{2} \theta+\kappa_{2} \sin ^{2} \theta \tag{13}
\end{equation*}
$$

In particular, κ_{n} belongs to the interval between κ_{1} and κ_{2}, which are the extremal values of κ_{n}.
Proof. It follows from Theorem 5.2 that $\kappa_{n}=I I_{p}\left(w_{0}\right)$. Then (13) is obtained from (12). Furthermore, if for example $\kappa_{1} \leq \kappa_{2}$, then from (13)

$$
\kappa_{n}=\kappa_{1} \cos ^{2} \theta+\kappa_{2} \sin ^{2} \theta \leq \kappa_{2} \cos ^{2} \theta+\kappa_{2} \sin ^{2} \theta=\kappa_{2}
$$

and similarly $\kappa_{n} \geq \kappa_{1}$.
The principal curvatures and directions can be explicitly determined by means of the matrix for W. We summarize the conclusion:
Corollary 5.5.2. The principal curvatures κ_{1}, κ_{2} are the roots κ of the equation

$$
\operatorname{det}\left(\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right)^{-1}\left(\begin{array}{cc}
L & M \\
M & N
\end{array}\right)-\kappa\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right)=0
$$

The corresponding principal vectors are $a \sigma_{u}^{\prime}+b \sigma_{v}^{\prime}$ where $\binom{a}{b}$ is non-zero and solves

$$
\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right)^{-1}\left(\begin{array}{cc}
L & M \\
M & N
\end{array}\right)\binom{a}{b}=\kappa_{i}\binom{a}{b} .
$$

Proof. This follows from the fact that the shape operator is represented by the matrix $\left(\begin{array}{cc}E & F \\ F & G\end{array}\right)^{-1}\left(\begin{array}{cc}L & M \\ M & N\end{array}\right)$ according to Theorem 5.4.

Example 5.5.1 Let $\sigma(u, v)=(\cos v, \sin v, u)$, then σ parametrizes a cylinder (Example 1.2.3). We will determine the principal curvatures and principal vectors at the point $\sigma(u, v)$. We find

$$
\sigma_{u}^{\prime}=(0,0,1), \quad \sigma_{v}^{\prime}=(-\sin v, \cos v, 0)
$$

and hence $E=G=1, F=0$, and $\mathbf{N}=(-\cos v,-\sin v, 0)$. Furthermore

$$
\sigma_{u u}^{\prime \prime}=\sigma_{u v}^{\prime \prime}=0, \quad \sigma_{v v}^{\prime \prime}=(-\cos v,-\sin v, 0)
$$

and hence

$$
L=M=0, \quad N=1 .
$$

The matrix of the shape operator with respect to $\sigma_{u}^{\prime}, \sigma_{v}^{\prime}$ is therefore

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)^{-1}\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

The principal curvatures are the eigenvalues of this matrix, $\kappa_{1}=0$ and $\kappa_{2}=1$. Principal vectors are σ_{u}^{\prime} and σ_{v}^{\prime} since the matrix is already diagonal. The normal curvature in direction σ_{u}^{\prime} (vertical) is zero, and the normal curvature in direction σ_{v}^{\prime} (horizontal) is 1 .

5.6 The graph of a quadratic form

In order to illustrate the theory of the previous section, we will study the surface formed by the graph of a particularly simple function.

A quadratic form on \mathbb{R}^{2} is a function $q: \mathbb{R}^{2} \rightarrow \mathbb{R}$ of the form

$$
\begin{equation*}
q(x, y)=a x^{2}+2 b x y+c y^{2} \tag{14}
\end{equation*}
$$

for some constants $a, b, c \in \mathbb{R}$. It is convenient to write the formula for q in matrix form

$$
q(x, y)=\binom{x}{y}^{t}\left(\begin{array}{ll}
a & b \tag{15}\\
b & c
\end{array}\right)\binom{x}{y}
$$

where t denotes transposition. As in the previous section, the key to the analysis is the diagonalization known from linear algebra. Recall that every symmetric matrix A is orthogonally diagonalizable, that is, there exists an orthogonal 2×2 matrix C such that

$$
D=C^{-1} A C
$$

is a diagonal matrix with real entries (see Appendix D).
We apply the diagonalization to the matrix A of our quadratic form (15). As explained in Appendix D, the columns of C are chosen as an orthonormal basis of eigenvectors for A. Let $w=\binom{x}{y} \in \mathbb{R}^{2}$ be given. The coordinates of w, with respect to the basis given by the columns of C, are denoted $\binom{x^{\prime}}{y^{\prime}}$. Then

$$
w=C\binom{x^{\prime}}{y^{\prime}} .
$$

Write $w^{\prime}=\binom{x^{\prime}}{y^{\prime}}$, then $w=C w^{\prime}$ and we obtain from (15) that

$$
q(w)=w^{t} A w=\left(C w^{\prime}\right)^{t} A\left(C w^{\prime}\right)=w^{\prime t} C^{t} A C w^{\prime}=w^{\prime t} D w^{\prime}
$$

since $C^{t}=C^{-1}$ and $C^{-1} A C=D$. Let λ_{1}, λ_{2} be the eigenvalues in the diagonal of D. It follows from the preceding calculation that

$$
q(w)=\lambda_{1} x^{\prime 2}+\lambda_{2} y^{\prime 2}
$$

Thus the change of variables from (x, y) to $\left(x^{\prime}, y^{\prime}\right)$ results in a simplification of the expression for q, where the product term $x y$ disappears.

Notice that $\operatorname{det} C= \pm 1$, and by changing the sign on one of the columns, if necessary, we can arrange that $\operatorname{det} C=1$ (the columns will still be an orthonormal set of eigenvectors). Then C has the form

$$
C=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

for some $\theta \in \mathbb{R}$, and it corresponds to a counterclockwise rotation by the angle θ. The basis vectors in the columns of C are obtained from the standard basis vectors e_{i} exactly by this rotation, and the new coordinates x^{\prime} and y^{\prime} are the coordinates of w with respect to the rotated basis.

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\binom{x}{y}
$$

We have established the following theorem.
Theorem 5.6. Let $q(w)=w^{t} A w$ be a quadratic form on \mathbb{R}^{2} with symmetric 2×2 matrix A. There exists a rotation of \mathbb{R}^{2} such that in the rotated $x^{\prime} y^{\prime}$ coordinates

$$
q(w)=\lambda_{1}{x^{\prime}}^{2}+\lambda_{2} y^{\prime 2},
$$

where λ_{1}, λ_{2} are the eigenvalues of A.
In these rotated coordinates we can easily describe the graph of q. Notice that the vertical cross section of the graph, obtained by taking the intersection with one of the two vertical coordinate planes ($x^{\prime} z$-plane and $y^{\prime} z$-plane respectively), is a parabola ($z=\lambda_{1}{x^{\prime}}^{2}$ and $z=\lambda_{2} y^{\prime 2}$, respectively). Therefore the surface is called a paraboloid.

The shape of the horizontal cross sections of the graph depend very much on the eigenvalues λ_{1} and λ_{2}. If the eigenvalues are both positive or both negative, then each horizontal cross section of the graph is an ellipse, and the graph is called an elliptic paraboloid. The graph is shown below in the positive case (the negative case is similar, but upside down).

elliptic paraboloid

If λ_{1} and λ_{2} are both non-zero but have different signs, then the graph is called a hyperbolic paraboloid, because each horizontal cross section of the
graph is a hyperbola. In this case the graph has the shape of a 'saddle', see below.

If one of the eigenvalues is zero, but not the other one, then the graph is called a parabolic cylinder (it is a 'cylinder' in which the cross section is a parabola instead of a circle). Finally, if $\lambda_{1}=\lambda_{2}=0$ then q is the zero function and the graph is a plane.

The relation to the theory in Section 5.5 is as follows. In the rotated coordinates we obtain a graph of the form $\sigma(u, v)=\left(u, v, \lambda_{1} u^{2}+\lambda_{2} v^{2}\right)$. A simple calculation shows that at $(u, v)=(0,0)$ we have

$$
\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad\left(\begin{array}{cc}
L & M \\
M & N
\end{array}\right)=\left(\begin{array}{cc}
2 \lambda_{1} & 0 \\
0 & 2 \lambda_{2}
\end{array}\right) .
$$

We see that the rotation of coordinates exactly has the effect that the shape operator is diagonalized. The principal curvatures are $2 \lambda_{1}$ and $2 \lambda_{2}$, and principal vectors are along the two horizontal axes.

Example 5.6.1 To the quadratic form $q(x, y)=x^{2}+x y+y^{2}$ corresponds the symmetric matrix

$$
\left(\begin{array}{cc}
1 & \frac{1}{2} \\
\frac{1}{2} & 1
\end{array}\right)
$$

which is diagonalized in Example D.1. The diagonalized matrix is

$$
D=C^{-1} A C=\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & \frac{3}{2}
\end{array}\right)
$$

where

$$
C=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right) .
$$

The quadratic form $x^{2}+x y+y^{2}$ thus becomes $\frac{1}{2} x^{\prime 2}+\frac{3}{2} y^{2}$ in rotated coordinates. The graph is an elliptic paraboloid. Its axes are rotated from the x and y axes by the angle θ determined from $\cos \theta=\frac{1}{\sqrt{2}}, \sin \theta=-\frac{1}{\sqrt{2}}$, that is, clockwise by 45 degrees.

5.7 The type of a point on a surface

The principal curvatures and vectors can be explained geometrically as follows. For simplicity we assume that the given point $\sigma(p)$ on the surface is the origin, and that the tangent plane in this point is exactly the $x y$-coordinate plane. This can always be arranged by a suitable translation followed by a suitable rotation of \mathbb{R}^{3}, and it can be shown that such a transformation does not alter κ_{1} and κ_{2}. Furthermore, it follows from Theorem 2.10 (and its proof) that σ allows an orientation preserving reparametrization as a graph over the $x y$-plane. Observe that the principal curvatures are unchanged also by such a reparametrization. We therefore assume that σ is already of this form, that is

$$
\sigma(u, v)=(u, v, h(u, v))
$$

where $h(u, v)$ is smooth, defined on an open subset U in \mathbb{R}^{2} with $(0,0) \in U$.
Since $\sigma(p)=(0,0,0)$ we have $p=(0,0)$ and $h(0,0)=0$. Now

$$
\sigma_{u}^{\prime}=\left(1,0, h_{u}^{\prime}\right), \quad \sigma_{v}^{\prime}=\left(0,1, h_{v}^{\prime}\right)
$$

and since $T_{q} \sigma(U)$ is the $x y$-plane we conclude that $h_{u}^{\prime}(0,0)=h_{v}^{\prime}(0,0)=0$. In particular, we see that the first fundamental form has

$$
E=G=1, \quad F=0
$$

in p. The unit normal vector is $\mathbf{N}=(0,0,1)$, and since

$$
\sigma_{u u}^{\prime \prime}=\left(0,0, h_{u u}^{\prime \prime}\right), \quad \sigma_{u v}^{\prime \prime}=\left(0,0, h_{u v}^{\prime \prime}\right), \quad \sigma_{v v}^{\prime \prime}=\left(0,0, h_{v v}^{\prime \prime}\right)
$$

we obtain from Theorem 5.3 that at p

$$
L=h_{u u}^{\prime \prime}(0,0), \quad M=h_{u v}^{\prime \prime}(0,0), \quad N=h_{v v}^{\prime \prime}(0,0)
$$

The Taylor expansion to order two of σ now reads (see Appendix B)

$$
\begin{aligned}
& \sigma(u, v) \simeq \sigma(0,0) \\
&+u \sigma_{u}^{\prime}(0,0)+v \sigma_{v}^{\prime}(0,0) \\
&+\frac{1}{2}\left(u^{2} \sigma_{u u}^{\prime \prime}(0,0)+2 u v \sigma_{u v}^{\prime \prime}+v^{2} \sigma_{v v}^{\prime \prime}(0,0)\right) \\
&=\left(u, v, \frac{1}{2}\left(u^{2} L+2 u v M+v^{2} N\right)\right)=\left(u, v, \frac{1}{2} I I_{p}\left(u \sigma_{u}^{\prime}+v \sigma_{v}^{\prime}\right)\right)
\end{aligned}
$$

We thus see that $\sigma(U)$ is approximated near q by the graph of $\frac{1}{2} I_{p}$, and we can read off the shape of $\sigma(U)$ from the shape of this graph. Since I_{q}
is a quadratic form, its shape was described in Section 5.6. The conclusion is that after a suitable rotation of the $x y$-plane, which brings the principal vectors in the direction of the axes, the surface will have an appearance like one of the figures in Section 5.6, depending on the signatures of the numbers κ_{1}, κ_{2}.
Definition 5.7. The type of a point $q \in \sigma(U)$ is defined as follows. It is called an elliptic point of the surface if the principal curvatures κ_{1}, κ_{2} at q are non-zero and have the same sign, and a hyperbolic point if they are non-zero with opposite signs. If one of the principal curvatures is zero, but the other not, the point is called parabolic, and finally if $\kappa_{1}=\kappa_{2}=0$ the point is called planar.

Notice that the type of a point does not change by reparametrization, since the principal curvatures are either unchanged or both change sign.

5.8 Exercises

1 Consider the helicoid with $\sigma(u, v)=(u \cos v, u \sin v, v)$.
a. Determine κ_{g} and κ_{n} for the helix $\gamma(t)=(a \cos t, a \sin t, t)$ on σ. Here $a \in \mathbb{R}$ is a constant (in the degenerate case $a=0$, the helix is a line).
b. Determine $W\left(\gamma^{\prime}(t)\right)$, where W is the shape operator for σ at $p=(a, t)$.
c. Answer the same questions for the curve $\beta(t)=(t \cos b, t \sin b, b)$ on the helicod. with $b \in \mathbb{R}$ a constant.
d. Which of the mentioned curves are geodesics on the helicoid?

2 For the helicoid with $\sigma(u, v)=(u \cos v, u \sin v, a v)$, where $a \neq 0$ is a constant, the first fundamental form was determined in Exercise 10, page 61. Determine the coefficients L, M and N of the second fundamental form.

3 For a surface of revolution with $\sigma(u, v)=(f(u) \cos v, f(u) \sin v, g(u))$ the first fundamental form was determined in Exercise 12, page 61. Verify the following expressions for the second fundamental form:

$$
L=\frac{f^{\prime} g^{\prime \prime}-f^{\prime \prime} g^{\prime}}{\sqrt{\left(f^{\prime}\right)^{2}+\left(g^{\prime}\right)^{2}}}, \quad M=0, \quad N=\frac{f g^{\prime}}{\sqrt{\left(f^{\prime}\right)^{2}+\left(g^{\prime}\right)^{2}}}
$$

4 Let $\sigma(U) \subseteq \mathbb{R}^{3}$ be a regular parametrized surface. Show that if $\sigma(U)$ is contained in a fixed plane $\left\{x \in \mathbb{R}^{3} \mid n \cdot x=c\right\}$, where $n \in \mathbb{R}^{3}$ is a unit vector and $c \in \mathbb{R}$, then $L=M=N=0$.
Prove also the following converse. Assume that U is a rectangle $] a, b[\times] c, d[$ and that the second fundamental form is identically 0 . Then $\sigma(U)$ is contained in a plane. (Hint: Use (9)-(10) to prove that \mathbf{N} is constant. Prove next that $(u, v) \mapsto \mathbf{N}(u, v) \cdot \sigma(u, v)$ is constant).

5 Let $\sigma(U)$ be a regular parametrized surface for which the image is contained in a fixed sphere $\left\{x \in \mathbb{R}^{3} \mid\|x-a\|=r\right\}$ where $a \in \mathbb{R}^{3}$ and $r>0$. Show that then $\pm r \mathbf{N}(u, v)=\sigma(u, v)-a$ for all $(u, v) \in U$, and prove that the fundamental forms are proportional: $\mp(r L, r M, r N)=(E, F, G)$.
Prove also the following converse. Assume that U is a rectangle $] a, b[\times] c, d[$ and that there exists a constant $r \neq 0$ such that $(r L, r M, r N)=(E, F, G)$. Then $a=\sigma+r \mathbf{N}$ is constant and $\sigma(U)$ is contained in the sphere with this center and radius $|r|$.
6 Consider the regular parametrized surface with $\sigma(u, v)=\left(u-v, u+v, u^{2}+\right.$ $\left.v^{2}\right)$ for $(u, v) \in \mathbb{R}^{2}$.
a. Determine the coefficients E, F and G.
b. Let $q=\sigma(p)=\sigma\left(\frac{1}{2}, \frac{1}{2}\right)$. Show that the vectors $e_{1}=(1,0,0)$ and $e_{2}+e_{3}=(0,1,1)$ belong to $T_{q} \sigma(U)$, and determine their coordinates with respect to $\sigma_{u}^{\prime}(p), \sigma_{v}^{\prime}(p)$.
c. Determine L, M and N at the given q.
d. Show that e_{1} and $e_{2}+e_{3}$ are principal vectors at q, and determine the corresponding principal curvatures κ_{1} and κ_{2}.
e. Let $\gamma(t)=\left(\frac{1}{\sqrt{2}}(\cos t-\sin t), \frac{1}{\sqrt{2}}(\cos t+\sin t), \frac{1}{2}\right)$ for $t \in \mathbb{R}$. Show that γ can be realized as a curve on $\sigma(U)$, and determine the curvatures κ_{n} and κ_{g} at $t=\frac{\pi}{4}$. One of them coincides with κ_{1}. Explain why.
7 Let $\sigma(u, v)=(u, v, u v)$ for $(u, v) \in \mathbb{R}^{2}$ and consider the point $q=\sigma(1,0)$ and set $p=(1,0)$. Compute E, F, G, L, M and N for $\sigma(U)$ at p, and determine the normal curvature of $\sigma(U)$ in the direction $w_{0}=\left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right) \in$ $T_{q} \sigma(U)$.
Determine the principal curvatures and principal vectors for $\sigma(U)$ at q.
8 Let $\sigma(U)$ be a regular parametrized surface. Assume at a given point $\left(u_{0}, v_{0}\right) \in U$ that $F\left(u_{0}, v_{0}\right)=M\left(u_{0}, v_{0}\right)=0$. Show that then σ_{u}^{\prime} and σ_{v}^{\prime} are principal vectors at $\sigma\left(u_{0}, v_{0}\right)$ with corresponding principal curvatures $\kappa_{1}=\frac{L}{E}$ and $\kappa_{2}=\frac{N}{G}$.
In the converse direction, show also that if $\sigma_{u}^{\prime}\left(u_{0}, v_{0}\right)$ and $\sigma_{v}^{\prime}\left(u_{0}, v_{0}\right)$ are principal vectors with corresponding curvatures κ_{1}, κ_{2}, which are different, then $F=M=0$ at this point. Give finally an example which shows that this converse conclusion cannot be reached if $\kappa_{1}=\kappa_{2}$.
9 Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a map of the form $F(x)=A x+b$, where A is an orthogonal 3×3-matrix with $\operatorname{det} A=1$, and $b \in \mathbb{R}^{3}$ a constant vector (such a map is called a rigid motion).
Prove that if $\sigma(U) \subset \mathbb{R}^{3}$ is a regular parametrized surface, then so is $\tau(U)=(F \circ \sigma)(U)$ (use Exercise C2 in Appendix C). Verify furthermore that the coefficients E, F, G, L, M, N are equal for σ and τ. Verify that if $w \in \mathbb{R}^{3}$ is a principal vector for $\sigma(U)$, then $A w$ is a principal vector for $\tau(U)$ with the same principal curvature κ.

10 Let $q(x, y)=2 x^{2}+4 x y+5 y^{2}$. Determine a rotation of \mathbb{R}^{2} which brings q in the form of Theorem 5.6. Of which type is the graph of q ? Describe the level set $q(x, y)=1$?
Answer the same questions for $q(x, y)=a x^{2}+24 x y+(a+7) y^{2}$, for all possible values of $a \in \mathbb{R}$.

11 Suppose a quadratic form $q(x, y)=a x^{2}+3 x y+b y^{2}$ can be brought to the form $4\left(x^{\prime}\right)^{2}-\left(y^{\prime}\right)^{2}$ by a rotation of \mathbb{R}^{2}. Determine the possible values of a and b.

12 Consider the graph \mathcal{G}_{h} of $h(u, v)=u v-\cos u-\cos v$, where $\left.u, v \in\right]-\pi, \pi[$. Show that each point $(u, v) \neq(0,0)$ is hyperbolic, and that $(u, v)=(0,0)$ is parabolic.

13 The graph \mathcal{G}_{h} of $h(u, v)=u^{3}-3 u v^{2}$ is called the monkey saddle because the point $(0,0,0)$ is a saddle point with slopes for both two legs and a tail.

Determine E, F, G and L, M, N at $(u, v)=(0,0)$. Determine also the principal curvatures κ_{1}, κ_{2} in this point. Which is the type of the point $(0,0,0)$ on the monkey saddle?

14 Let $\sigma(u, v)=\left(u+v, v, \frac{1}{2} u^{2}+u v+2 v^{2}\right)$. Compute E, F, G, L, M, N and the principal curvatures κ_{1}, κ_{2} of $\sigma\left(\mathbb{R}^{2}\right)$ at $(u, v)=(0,0)$. Determine also the corresponding principal vectors and the type of the point $\sigma(0,0)$.

15 Find a function $h(u, v)$ of the form $h(u, v)=a u+b v+c u^{2}+d u v+e v^{2}$, for which the graph \mathcal{G}_{h} has

$$
E=5 / 4, F=1 / 2, G=2, L=3 / 4, M=-3 / 2, N=3
$$

at $(u, v)=(0,0)$. Determine the principal curvatures, corresponding principal vectors, and the type of the point $(0,0,0)$ on the graph.

16 Let $\sigma(U) \subseteq \mathbb{R}^{3}$ be a regular parametrized surface. Let $\gamma=\sigma \circ \mu: I \rightarrow \mathbb{R}^{3}$ be a regular parametrized curve on $\sigma(U)$, and assume the image of γ is contained in a straight line. Let κ_{1} and κ_{2} be the principal curvatures for $\sigma(U)$ at some point on the curve, say $\gamma\left(t_{0}\right)$ where $t_{0} \in I$. Prove that $\kappa_{1} \leq 0 \leq \kappa_{2}$ or $\kappa_{2} \leq 0 \leq \kappa_{1}$.

Chapter 6

Teorema egregium

In the investigation of the geometry of surfaces one of the central issues is to determine which geometric quantities of the surface can be determined solely on the basis of computations involving measurements of arc lengths on the surface. Such a quantity is called intrinsic. The point of the notion is that an intrinsic quantity is an 'internal' property of the surface, independent of the surrounding space. For example, the distance between two opposite poles on a sphere of radius 1 is 2 , but the shortest distance that can be measured on the surface is π, along a great circle. The distance measured through the surrounding space is not intrinsic.

In this chapter we will investigate some of the geometric notions we have introduced from this perspective. Most importantly, we shall prove a famous theorem of Gauss, which asserts that a particular measure for the curvature, called the Gaussian curvature, is intrinsic.

6.1 The Gaussian curvature

In the preceding chapter we have described the curvature of a surface in a given point either by means of a linear map or by means of a quadratic form, both being rather complicated objects. It would be tempting to try to reduce to a description by means of a single number. One such number is the following measure of curvature, which was introduced by Gauss.

Recall, that if $U \subset \mathbb{R}^{n}$ is an m-dimensional linear space and $L: U \rightarrow U$ a linear map, the determinant of L, denoted by $\operatorname{det} L$, is defined as the determinant of the $m \times m$ matrix that represents L in some basis for U. It is a theorem of linear algebra that the determinant is independent of the chosen basis (the matrix will be different in another basis, but the determinant will remain the same).

Definition 6.1. The Gaussian curvature (or total curvature) $K^{\sigma}(q)=K(p)$ of $\sigma(U)$ at $q=\sigma(p)$ is the determinant of the map W. That is (compare Theorem 5.4)

$$
K^{\sigma}(q)=K(p)=\operatorname{det}\left(\left(\begin{array}{cc}
E & F \\
F & G
\end{array}\right)^{-1}\left(\begin{array}{cc}
L & M \\
M & N
\end{array}\right)\right)=\frac{L N-M^{2}}{E G-F^{2}} .
$$

Notice that the determinant $K(p)$ does not depend on the use of the basis $\left(\sigma_{u}^{\prime}, \sigma_{v}^{\prime}\right)$ for $T_{q} \sigma(U)$, which is used in the above expression. It follows that
$K^{\sigma}(q)$ is unchanged by reparametrizations, since by Theorem 5.1 the shape operator W is unchanged or changes to $-W$ (the latter change does not alter the determinant).

It will be seen in the examples below that there exist surfaces with quite different shapes, which have the same Gaussian curvature everywhere. Therefore, the Gaussian curvature does not hold complete information about the shape of the surface.

Example 6.1.1 For the plane we saw in Example 5.1.1 that W is the zero operator. Hence its Gaussian curvature is $K=0$. For the unit sphere we determined W to be the identity operator (see Example 5.1.2), and we conclude that the Gaussian curvature is $K=1$. More generally, it follows from Example 5.4 that the Gaussian curvature of a sphere of radius r is $K=1 / r^{2}$.

Example 6.1.2 Consider again the cylinder $\sigma(u, v)=(\cos v, \sin v, u)$ from Example 5.5.1. We will determine the Gauss curvature in the point $\sigma(u, v)$. We saw that $E=G=1, F=0$, and $L=M=0, N=1$. It follows that the Gaussian curvature is $K=0$. Notice that the cylinder and the plane thus have the same Gaussian curvature, although they have different shapes.

The sign of the Gaussian curvature has a particular geometric significance, which is explained in the following result.

Theorem 6.1. The Gauss curvature of $\sigma(U)$ at $q=\sigma(p)$ is the product

$$
K^{\sigma}(q)=K(p)=\kappa_{1} \kappa_{2} .
$$

In particular, $\sigma(U)$ is elliptic at q if and only if $K^{\sigma}(q)>0$, it is hyperbolic at q if and only if $K^{\sigma}(q)<0$, and it is parabolic or planar at q if and only if $K^{\sigma}(q)=0$.

Proof. With respect to a basis of eigenvectors, the matrix of W is diagonal with κ_{1}, κ_{2} in the diagonal. The determinant is then the product of these entries.

We see that although the Gauss curvature $K(p)$ does not give the complete picture, it holds sufficient information to determine the type of the surface, except that it does not permit distinction between parabolic and planar points.

6.2 Intrinsic geometry

We shall now make the considerations in the introduction to this chapter more precise.

We can determine lengths of tangent vectors as follows. Let a tangent vector $w \in T_{q} \sigma(U)$ be given. Choose a curve $\gamma(t)$ on $\sigma(U)$ with w as tangent
vector $\gamma^{\prime}\left(t_{0}\right)=w$. Let $\ell(t)$ denote the arc length of γ from t_{0} to t, then this function is determined by measurements of arc lengths. Since

$$
\|w\|=\ell^{\prime}\left(t_{0}\right)
$$

we conclude that the length of w is intrinsic.
In particular, the coefficients $E=\left\|\sigma_{u}^{\prime}\right\|^{2}$ and $G=\left\|\sigma_{v}^{\prime}\right\|^{2}$ of the first fundamental form can thus be determined by measuring the arc lengths of the curves $t \mapsto \sigma(t, v)$ and $t \mapsto \sigma(u, t)$, to which σ_{u}^{\prime} and σ_{v}^{\prime} are the tangent vectors. By measuring arc lengths along $t \mapsto \sigma(t, t)$, whose tangent vector is $\sigma_{u}^{\prime}+\sigma_{v}^{\prime}$, we can determine $\left\|\sigma_{u}^{\prime}+\sigma_{v}^{\prime}\right\|$, and since $\left\|\sigma_{u}^{\prime}+\sigma_{v}^{\prime}\right\|^{2}=E+G+2 F$ we can thus determine F as well. Therefore, any quantity that can be expressed in terms of E, F and G, can also be expressed in terms of lengths of curves. Conversely, the arc length of a parametrized curve on σ was expressed by means of E, F and G, in Theorem 3.4. The property of being expressible in terms of arc lengths is therefore equivalent with the property of being expressible in terms of the first fundamental form.

The following definition is a more concise version of what was explained above.

Definition 6.2. A quantity or property of a regular parametrized surface $\sigma(U)$, which can be expressed purely in terms of the coefficient functions E, F and G of the first fundamental form for σ, is called intrinsic. If in addition it is invariant under reparametrizations of $\sigma(U)$, it is called intrinsic invariant.

As discussed above, the arc length of a parametrized curve on σ is intrinsic invariant. Other examples are the angle between tangent vectors (see Section 3.4, eq. (5)) and the area of a subset (see Definition 3.9).

The coefficients E, F and G are intrinsic but not invariant, because they change when the surface is reparametrized. On the other hand, the coordinates in \mathbb{R}^{3} of $\sigma(u, v)$ are not intrinsic since they cannot be determined from E, F and G alone. To see this, it suffices to notice that a translation of the surface will change these coordinates without changing E, F and G.

The coefficients L, M and N of the second fundamental form are not intrinsic either. For example, we have seen that the plane and the cylinder can both be parametrized such that $E=G=1$ and $F=0$, but the second fundamental forms do not agree.

The shape operator W and the principal curvatures κ_{1} and κ_{2} are invariant under reparametrization (up to \pm), but the same example of the plane and the cylinder shows that they are not intrinsic.

We thus see that being intrinsic invariant is a quite rare property for the quantities we have introduced to describe surfaces. This is not surprising, if we compare with the analogue for curves. The corresponding definition of 'intrinsic invariant' for a quantity related to a curve, say in \mathbb{R}^{2}, requires that the quantity can be determined only from the measurement of lengths
along the curve. However, we know from Theorem 2.4 that all curves can be reparametrized to unit arc length, and hence no curves at all can be distinguished from each other by means of intrinsic invariants. Remarkably, we shall see in the following sections that the situation is less hopeless for surfaces.

6.3 Christoffel symbols

We have earlier mentioned that the coefficient functions E, F and G are the analogs for a parametrized surface of the function $t \mapsto\left\|\gamma^{\prime}(t)\right\|^{2}$ for a parametrized curve. From the latter function one can easily determine the dot product $\gamma^{\prime \prime}(t) \cdot \gamma^{\prime}(t)$, since

$$
\begin{equation*}
\gamma^{\prime \prime}(t) \cdot \gamma^{\prime}(t)=\frac{1}{2} \frac{d}{d t} \gamma^{\prime}(t) \cdot \gamma^{\prime}(t)=\frac{1}{2} \frac{d}{d t}\left\|\gamma^{\prime}(t)\right\|^{2} . \tag{1}
\end{equation*}
$$

We will now derive the analog for surfaces of this observation.
In order to express coefficients in an efficient way, it is convenient to change notation and use indices. We number the coordinates u and v by 1 and 2 , thus

$$
\sigma_{1}^{\prime}=\sigma_{u}^{\prime}, \quad \sigma_{2}^{\prime}=\sigma_{v}^{\prime}
$$

and

$$
\sigma_{11}^{\prime \prime}=\sigma_{u u}^{\prime \prime}, \quad \sigma_{12}^{\prime \prime}=\sigma_{u v}^{\prime \prime}, \quad \text { etc. }
$$

The matrices of components of the two fundamental forms are denoted

$$
\left(\begin{array}{ll}
g_{11} & g_{12} \\
g_{21} & g_{22}
\end{array}\right)=\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right), \quad\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right)=\left(\begin{array}{cc}
L & M \\
M & N
\end{array}\right),
$$

that is,

$$
\begin{equation*}
g_{i j}=\sigma_{i}^{\prime} \cdot \sigma_{j}^{\prime}, \quad b_{i j}=\sigma_{i j}^{\prime \prime} \cdot \mathbf{N} \tag{2}
\end{equation*}
$$

The analog of (1) is
Lemma 6.3. The expression $\sigma_{i j}^{\prime \prime} \cdot \sigma_{k}^{\prime}$ is intrinsic. It can be determined from the coefficients of the first fundamental form by means of the following formulas

$$
\begin{equation*}
\sigma_{i j}^{\prime \prime} \cdot \sigma_{k}^{\prime}=\frac{1}{2}\left(\frac{\partial g_{i k}}{\partial u_{j}}+\frac{\partial g_{j k}}{\partial u_{i}}-\frac{\partial g_{i j}}{\partial u_{k}}\right), \quad(i, j, k=1,2) \tag{3}
\end{equation*}
$$

Proof. By differentiation of $g_{i k}=\sigma_{i}^{\prime} \cdot \sigma_{k}^{\prime}$ we obtain

$$
\frac{\partial g_{i k}}{\partial u_{j}}=\sigma_{i j}^{\prime \prime} \cdot \sigma_{k}^{\prime}+\sigma_{k j}^{\prime \prime} \cdot \sigma_{i}^{\prime}
$$

We insert this expression in the right side of (3), with proper permutations of the symbols. The equality with the left side of (3) is obtained by simplification with the symmetry rule $\sigma_{i j}^{\prime \prime}=\sigma_{j i}^{\prime \prime}$.

In the following it will be convenient to work with some quantities which are closely related to the $\sigma_{i j}^{\prime \prime} \cdot \sigma_{k}^{\prime}$. These are the so-called Christoffel symbols.
Definition 6.3. The Christoffel symbols associated with σ are the functions $\Gamma_{i j}^{k}: U \rightarrow \mathbb{R}$ defined for $i, j, k=1,2$ by

$$
\binom{\Gamma_{i j}^{1}}{\Gamma_{i j}^{2}}=\left(\begin{array}{ll}
g_{11} & g_{12} \tag{4}\\
g_{21} & g_{22}
\end{array}\right)^{-1}\binom{\sigma_{i j}^{\prime \prime} \cdot \sigma_{1}^{\prime}}{\sigma_{i j}^{\prime \prime} \cdot \sigma_{2}^{\prime}}
$$

At any given point $p \in U$ the three vectors

$$
\begin{equation*}
\sigma_{u}^{\prime}, \sigma_{v}^{\prime}, \mathbf{N} \tag{5}
\end{equation*}
$$

constitute a basis for \mathbb{R}^{3}, which can be seen as analogous to the moving frame $(\mathbf{t}, \mathbf{n}, \mathbf{b})$ of a curve (see Section 4.7), although in general (5) is not orthonormal. The motivation for the symbols $\Gamma_{i j}^{k}$ is that together with the coefficients $b_{i j}$ of the second fundamental form they appear in the representation of $\sigma_{i j}^{\prime \prime}$ with respect to the basis (5).

Theorem 6.3. Let coefficients $\Gamma_{i j}^{k}$ for $i, j, k=1,2$ be defined as above. Then

$$
\begin{equation*}
\sigma_{i j}^{\prime \prime}=\Gamma_{i j}^{1} \sigma_{1}^{\prime}+\Gamma_{i j}^{2} \sigma_{2}^{\prime}+b_{i j} \mathbf{N} \tag{6}
\end{equation*}
$$

Proof. It follows from definition (4) that

$$
\begin{aligned}
g_{11} \Gamma_{i j}^{1}+g_{12} \Gamma_{i j}^{2} & =\sigma_{i j}^{\prime \prime} \cdot \sigma_{1}^{\prime} \\
g_{21} \Gamma_{i j}^{1}+g_{22} \Gamma_{i j}^{2} & =\sigma_{i j}^{\prime \prime} \cdot \sigma_{2}^{\prime} .
\end{aligned}
$$

Since $\sigma_{l}^{\prime} \cdot \sigma_{k}^{\prime}=g_{l k}$ we then obtain

$$
\left(\Gamma_{i j}^{1} \sigma_{1}^{\prime}+\Gamma_{i j}^{2} \sigma_{2}^{\prime}+b_{i j} \mathbf{N}\right) \cdot \sigma_{k}^{\prime}=g_{k 1} \Gamma_{i j}^{1}+g_{k 2} \Gamma_{i j}^{2}=\sigma_{i j}^{\prime \prime} \cdot \sigma_{k}^{\prime}
$$

On the other hand since \mathbf{N} is a unit vector

$$
\left(\Gamma_{i j}^{1} \sigma_{1}^{\prime}+\Gamma_{i j}^{2} \sigma_{2}^{\prime}+b_{i j} \mathbf{N}\right) \cdot \mathbf{N}=b_{i j}=\sigma_{i j}^{\prime \prime} \cdot \mathbf{N}
$$

Thus the vectors on each side of (6) have equal dot products with all elements of a basis. This implies that they are equal.

The following corollary expresses that the Christoffel symbols can be determined from E, F and G. However, they are not intrinsic invariants, since in general they change when the surface is reparametrized (see Example 6.3.2).

Corollary 6.3. The Christoffel symbols $\Gamma_{i j}^{k}$ are intrinsic. They can be expressed by a formula which involves only the coefficients of the first fundamental form and their (first order) derivatives with respect to u and v.

Proof. Immediate from (3) and (4).
The actual formula for $\Gamma_{i j}^{k}$ is somewhat complicated, and the fact that it exists is more important than its detailed appearance. Let the inverse matrix of $g_{i j}$ be denoted by $g^{i j}$, with superscript indices, then it follows from equations (3) and (4) that

$$
\begin{equation*}
\Gamma_{i j}^{k}=\frac{1}{2} \sum_{l} g^{k l}\left(\frac{\partial g_{i l}}{\partial u_{j}}+\frac{\partial g_{j l}}{\partial u_{i}}-\frac{\partial g_{i j}}{\partial u_{l}}\right) . \tag{7}
\end{equation*}
$$

If we insert this formula (7) into (6), we obtain an expression for $\sigma_{i j}^{\prime \prime}$ which is called the formula of Gauss.

Consider in particular the case where we have an orthogonal parametrization, that is, where $F=0$. In this case the formulas (3) and (7) become considerably simpler and can be expressed in our original notation of E, F and G as follows:

$$
\begin{aligned}
\sigma_{11}^{\prime \prime} \cdot \sigma_{1}^{\prime} & =\frac{1}{2} E_{u}^{\prime}, & \sigma_{12}^{\prime \prime} \cdot \sigma_{1}^{\prime}=\frac{1}{2} E_{v}^{\prime}, & \sigma_{22}^{\prime \prime} \cdot \sigma_{1}^{\prime}=-\frac{1}{2} G_{u}^{\prime}, \\
\sigma_{11}^{\prime \prime} \cdot \sigma_{2}^{\prime} & =-\frac{1}{2} E_{v}^{\prime}, & \sigma_{12}^{\prime \prime} \cdot \sigma_{2}^{\prime}=\frac{1}{2} G_{u}^{\prime}, & \sigma_{22}^{\prime \prime} \cdot \sigma_{2}^{\prime}=\frac{1}{2} G_{v}^{\prime},
\end{aligned}
$$

and

$$
\begin{array}{lll}
\Gamma_{11}^{1}=\frac{1}{2 E} E_{u}^{\prime}, & \Gamma_{12}^{1}=\Gamma_{21}^{1}=\frac{1}{2 E} E_{v}^{\prime}, & \Gamma_{22}^{1}=-\frac{1}{2 E} G_{u}^{\prime}, \\
\Gamma_{11}^{2}=-\frac{1}{2 G} E_{v}^{\prime}, & \Gamma_{12}^{2}=\Gamma_{21}^{2}=\frac{1}{2 G} G_{u}^{\prime}, & \Gamma_{22}^{2}=\frac{1}{2 G} G_{v}^{\prime} .
\end{array}
$$

Example 6.3.1 It follows from the definition in (4) that the Christoffel symbols for a plane $\sigma(u, v)=p+u q_{1}+v q_{2}$ are all zero, since all the second derivatives $\sigma_{i j}^{\prime \prime}$ vanish. This can be seen as well from the formulas above, since $E=G=1$ and $F=0$ in this case.

Example 6.3.2 Consider the $x y$-plane with polar coordinates $\sigma(u, v)=$ $(u \cos v, u \sin v, 0)$. Here $\sigma_{u}^{\prime}=(\cos v, \sin v, 0)$ and $\sigma_{v}^{\prime}=(-u \sin v, u \cos v, 0)$, and hence $E=1, F=0$ and $G=u^{2}$. By insertion in the formulas above we see that the Christoffel symbols are $\Gamma_{11}^{1}=\Gamma_{12}^{1}=\Gamma_{11}^{2}=\Gamma_{22}^{2}=0, \Gamma_{22}^{1}=-u$ and $\Gamma_{12}^{2}=\frac{1}{u}$. In particular, they differ from those of the preceding example.

6.4 The remarkable theorem of Gauss

The following theorem was found by Gauss in 1827, who described it (in latin) as 'egregium', most remarkable. Since then it has become customary to call it 'teorema egregium'.
Theorem 6.4. The Gauss curvature K is an intrinsic invariant.
Proof. More precisely, we will show that a formula can be given, which expresses the value of K in a given point by means of the values of E, F and G and their derivatives (with respect to u and v) up to order 2 in this point. Since we have already seen (below Definition 6.1) that K is invariant under reparametrization, the theorem then follows.

We use the notation from the preceding section. Since

$$
\begin{equation*}
K=\frac{\operatorname{det}\left(b_{i j}\right)}{\operatorname{det}\left(g_{i j}\right)} \tag{8}
\end{equation*}
$$

it suffices to show that the determinant of the matrix $\left(b_{i j}\right)$ can be expressed in terms of the component functions $g_{i j}$ and their derivatives.

From the expression (see Theorem 6.3)

$$
\sigma_{i j}^{\prime \prime}=\sum_{m=1}^{2} \Gamma_{i j}^{m} \sigma_{m}^{\prime}+b_{i j} \mathbf{N}
$$

we obtain by differentiation with respect to u_{k}

$$
\sigma_{i j k}^{\prime \prime \prime}=\sum_{m=1}^{2}\left(\frac{\partial \Gamma_{i j}^{m}}{\partial u_{k}} \sigma_{m}^{\prime}+\Gamma_{i j}^{m} \sigma_{m k}^{\prime \prime}\right)+\frac{\partial b_{i j}}{\partial u_{k}} \mathbf{N}+b_{i j} \mathbf{N}_{k}^{\prime}
$$

It follows that

$$
\sigma_{i j k}^{\prime \prime \prime} \cdot \sigma_{l}^{\prime}=\sum_{m=1}^{2}\left(\frac{\partial \Gamma_{i j}^{m}}{\partial u_{k}} g_{m l}+\Gamma_{i j}^{m} \sigma_{m k}^{\prime \prime} \cdot \sigma_{l}^{\prime}\right)+b_{i j} \mathbf{N}_{k}^{\prime} \cdot \sigma_{l}^{\prime}
$$

and since

$$
\mathbf{N}_{k}^{\prime} \cdot \sigma_{l}^{\prime}=-\mathbf{N} \cdot \sigma_{l k}^{\prime \prime}=-b_{l k}
$$

(see Section 5.3, (9)-(10)) we obtain

$$
\sigma_{i j k}^{\prime \prime \prime} \cdot \sigma_{l}^{\prime}=\sum_{m=1}^{2}\left(\frac{\partial \Gamma_{i j}^{m}}{\partial u_{k}} g_{m l}+\Gamma_{i j}^{m} \sigma_{m k}^{\prime \prime} \cdot \sigma_{l}^{\prime}\right)-b_{i j} b_{l k}
$$

We introduce the abbreviation $R_{j k i l}$, called the Riemann symbol, for the difference

$$
\begin{equation*}
R_{j k i l}=\sum_{m=1}^{2}\left(\frac{\partial \Gamma_{i j}^{m}}{\partial u_{k}} g_{m l}+\Gamma_{i j}^{m} \sigma_{m k}^{\prime \prime} \cdot \sigma_{l}^{\prime}\right)-\sum_{m=1}^{2}\left(\frac{\partial \Gamma_{i k}^{m}}{\partial u_{j}} g_{m l}+\Gamma_{i k}^{m} \sigma_{m j}^{\prime \prime} \cdot \sigma_{l}^{\prime}\right) \tag{9}
\end{equation*}
$$

where the two sums only differ by j and k being interchanged.
Then since $\sigma_{i j k}^{\prime \prime \prime}=\sigma_{i k j}^{\prime \prime \prime}$ we conclude that

$$
R_{j k i l}-b_{i j} b_{l k}+b_{i k} b_{l j}=\sigma_{i j k}^{\prime \prime \prime} \cdot \sigma_{l}^{\prime}-\sigma_{i k j}^{\prime \prime \prime} \cdot \sigma_{l}^{\prime}=0
$$

hence

$$
R_{j k i l}=b_{i j} b_{l k}-b_{i k} b_{l j} .
$$

In particular,

$$
\begin{equation*}
R_{1212}=\operatorname{det}\left(b_{i j}\right) \tag{10}
\end{equation*}
$$

The Riemann symbol R was introduced as an abbreviation for an expression involving the quantities $\Gamma_{i j}^{m}, g_{i j}$ and $\sigma_{i j}^{\prime \prime} \cdot \sigma_{k}^{\prime}$ (with various indices $i, j, k, m)$. Hence it follows from Lemma 6.3 and Corollary 6.3 that R can be expressed by means of the $g_{i j}$. An inspection shows that derivatives up to order 2 are involved. According to (10) this implies the statement of the theorem.

From the equation (10) one can derive an explicit, but quite complicated, expression for the Gauss curvature in terms of the coefficients of the first fundamental form. If $F=0$ it becomes considerably simpler, and reads

$$
\begin{equation*}
K=-\frac{1}{2 \sqrt{E G}}\left(\left(\frac{G_{u}^{\prime}}{\sqrt{E G}}\right)_{u}^{\prime}+\left(\frac{E_{v}^{\prime}}{\sqrt{E G}}\right)_{v}^{\prime}\right) \tag{11}
\end{equation*}
$$

The verification of this formula is a long but straightforward computation based on (8), (9), (10) and the formulas given in the end of Section 6.3.

6.5 Isometries

A useful interpretation of the notion of intrinsic geometry is obtained from the concept of isometries of surfaces. Basically, an isometry from one surface to another is a distance-preserving map. The definition is simplest for parametrized surfaces that have a common domain U, so we shall start by considering this situation.
Definition 6.5.1. Let $\sigma(U)$ and $\rho(U)$ be regular parametrized surfaces in \mathbb{R}^{3}, defined on a common open set $U \subset \mathbb{R}^{2}$. Then $\sigma(U)$ is said to be isometric to $\rho(U)$ if their first fundamental forms are equal, that is if

$$
E_{\sigma}=E_{\rho}, \quad F_{\sigma}=F_{\rho}, \quad G_{\sigma}=G_{\rho}
$$

The intuition behind this is as follows: We can define a map

$$
\Psi: \sigma(U) \rightarrow \rho(V), \quad \Psi(q)=\rho\left(\sigma^{-1}(q)\right), \quad(q \in \sigma(U)
$$

When the surfaces are isometric, this map preserves areas and angles. For this reason it is said to be a bending of one surface to the other. The deformation (without stretching) of a piece of paper, provides an example.

Example 6.5.1 Let $\sigma(u, v)=(u, v, 0)$ and $\rho(u, v)=(\cos v, \sin v, u)$ be the plane and the cylinder, both defined on $U=\mathbb{R}^{2}$. Then σ and ρ both have $E=G=1, F=0$, hence they are isometric. In this case the bending $\Psi: \sigma(U) \rightarrow \rho(U)$ corresponds to the folding of a cylinder from a plane piece of paper.

We now turn to the more general situation of regular parametrized surfaces defined on different domains, say $\sigma(U) \subseteq \mathbb{R}^{3}$ and $\rho(V) \subseteq \mathbb{R}^{3}$.

Definition 6.5.2. We say that the regular parametrized surface $\sigma(U)$ is isometric to the regular parametrized surface $\rho(V)$ if there is a reparametrization of $\rho(V)$ given as $(\rho \circ \psi)(U)$, implemented by a diffeomorphism $\psi: U \mapsto V$, and such that, furthermore, $\sigma(U)$ is isometric to $(\rho \circ \psi)(U)$ according to the previous definition. Specifically, if

$$
\begin{equation*}
E_{\sigma}=E_{\rho \circ \psi}, \quad F_{\sigma}=F_{\rho \circ \psi}, \quad G_{\sigma}=G_{\rho \circ \psi} . \tag{12}
\end{equation*}
$$

It is important to stress that the condition expressed in (12) is that σ should have the same first fundamental form as ρ, but after the reparametrization by ψ.

We can again consider a map

$$
\begin{equation*}
\Psi: \sigma(U) \rightarrow \rho(V), \quad \Psi(q)=\rho\left(\psi\left(\sigma^{-1}\right)\right), \quad(q \in \sigma(U) \tag{13}
\end{equation*}
$$

which is well-defined. Intuitively it is this bending which is the isometry.

Definition 6.5.3. Let S_{1} and S_{2} be regular embedded surfaces is \mathbb{R}^{3} with atlases $\mathcal{A}_{1}=\left\{\left(\sigma_{i}, U_{i}\right)\right\}$ and $\mathcal{A}_{2}=\left\{\left(\rho_{j}, V_{i}\right)\right\}$. We say that S_{1} and S_{2} are locally isometric if

$$
\begin{aligned}
& \forall q_{1} \in S_{2} \text { and } \forall q_{2} \in S_{2} \exists(\sigma, U) \in \mathcal{A}_{1}, \exists(\rho, V) \in \mathcal{A}_{2}: \\
& q_{1} \in \sigma(U), q_{2} \in \rho(V) \text { and } \sigma(U), \rho(V) \text { are isometric. }
\end{aligned}
$$

If ψ is a diffeomorphism from S_{1} to S_{2}, we say that it is an isometry, and that in this case, S_{1} and S_{2} are isometric, if

$$
\forall\left(\sigma_{i}, U_{i}\right) \in \mathcal{A}_{1}: \sigma_{i}\left(U_{i}\right) \text { and }\left(\psi \circ \sigma_{i}\right)\left(U_{i}\right) \text { are isometric. }
$$

In the latter case, the terminology "globally isometric" and "global isometry" are soemtimes used. Global isometries are in some sense rare, but see Problem 6 on page 118.

Example 6.5.2 Let $\sigma(U)$ and $\rho(V)$ both be regular parametrized surfaces that are subsets of the sphere of radius 1 , both parametrized by spherical coordinates as in Example 1.2.2, with domains

$$
U=\{(u, v) \mid-\pi / 2<u<\pi / 2,-\pi<v<\pi\}
$$

for σ and

$$
V=\{(s, t) \mid-\pi / 2<s<\pi / 2,-\pi+\alpha<t<\pi+\alpha\}
$$

for ρ. Here $\alpha \in \mathbb{R}$ is some constant. The map $U \rightarrow V$ defined by $\psi(u, v)=$ $(u, v+\alpha)$ implements a reparametrization such that $\sigma(U)$ is isometric to $\rho(V)$. This follows from the fact that E, F and G are independent of v (see Example 3.4.3). This gives a recipe for proving that the rotation of the sphere around the z-axis by the angle α is a (local) isometry. But the North and South poles demand special attention; see Exercise 9.

It can be shown (see Exercise 8), that if $\sigma(U)$ is isometric to $\rho(V)$ according to Definition 6.5.2 (or 6.5.1) then $\rho(V)$ is also isometric to $\sigma(U)$. For this reason we will often say that, in this situation, the two regular parametrized surfaces are isometric. Moreover, if in addition a third parametrized surface $\tau(W) \subseteq \mathbb{R}^{3}$ is given, and if $\rho(V)$ is isometric to $\tau(W)$, then $\sigma(U)$ is also isometric to $\tau(W)$.

The most important observation in connection with the concept of isometry is that the agreement of the first fundamental forms, as expressed by (12), ensures that all intrinsic quantities are preserved. In particular, this explains the term 'isometry', since length is intrinsic. The fact that length is preserved is expressed more precisely in the following lemma.

Let $\gamma=\sigma \circ \mu: I \rightarrow \mathbb{R}^{3}$ be a parametrized curve on $\sigma(U)$, and assume ψ : $U \mapsto V$ implements a reparametrization of $\rho(V)$ such that $\sigma(U)$ is isometric to $(\rho \circ \psi)(U)$, as above. By $\delta=\Psi \circ \gamma: I \rightarrow \mathbb{R}^{3}$ we define a parametrized curve on $\rho(V)$, said to be the image of γ by Ψ (see the figure below).

Lemma 6.5. When the Ψ in (13) corresponds to an isometry between $\sigma(U)$ and $\rho(V)$, the arc lengths of γ and δ are equal. That is, let $t_{1}, t_{2} \in I$ then the arc length of γ from t_{1} to t_{2} is equal to the arc length of δ from t_{1} to t_{2}.

Proof. Let $\mu(t)=(u(t), v(t))=\sigma^{-1}(\gamma(t))$ denote the coordinate curve of $\gamma(t)$. The arc length of γ is expressed in Theorem 3.4 by means of the functions $u(t)$ and $v(t)$ together with $E_{\sigma}, F_{\sigma}, G_{\sigma}$.

Writing $\delta=(\rho \circ \psi) \circ \mu$ we can regard δ as a parametrized curve on $\rho \circ \psi(U)=\rho(V)$. When we regard δ in this fashion, its coordinate curve is also $(u(t), v(t))$, that is, they are the same as before. Applying Theorem 3.4 once more, but this time to δ on $\rho \circ \psi$, we obtain an expression for the arc length of δ by means of $u(t)$ and $v(t)$ together with the coefficients $E_{\rho \circ \psi}$, $F_{\rho \circ \psi}, G_{\rho \circ \psi}$ of the first fundamental form of $\rho \circ \psi$. Hence if ψ induces an isometry, the expression is exactly the same as before, and the arc lengths on γ and δ agree.
Theorem 6.5. Assume that $\Psi: \sigma(U) \rightarrow \rho(V)$ is as in (13) and the two regular parametrized surfaces are isometric. Let $q \in \sigma(U)$ such that $q=\sigma(p)$ with $p \in U$. Then the Gauss curvature of $\sigma(U)$ in q is equal to the Gauss curvature of $\rho(V)$ in $\Psi(q)$, for all $q \in \sigma(U)$.

We say that the Gauss curvature is invariant under isometries.

Proof. By Theorem 6.4 the Gauss curvature in q can be expressed by means of the functions E, F and G and their derivatives in p. Hence the Gauss curvatures K^{σ} and $K^{\rho \circ \psi}$ for $\sigma(U)$ and $\rho \circ \psi(U)$ come from identical functions on U,

$$
K^{\sigma}(q)=K^{\rho \circ \psi}(\Psi(q)), \quad q=\sigma(p) \text { with } p \in U
$$

It was observed in Section 6.1 that the Gauss curvature is unchanged by reparametrizations, hence

$$
K(p)=K(\psi(p)) .
$$

Example 6.5.3 Let $\sigma: U=\{(u, v) \mid u>0\} \rightarrow \mathbb{R}^{3}$ be the parametrization

$$
\sigma(u, v)=(u \cos v, u \sin v, \lambda u)
$$

of a cone (see Example 1.2.4) and let $\rho: V=\{(r, \theta) \mid r>0\} \rightarrow \mathbb{R}^{3}$ be the parametrization by polar coordinates

$$
\rho(r, \theta)=(r \cos \theta, r \sin \theta, 0)
$$

of the $x y$-plane (without $(0,0,0)$).
For each constant $k>0$ the map $\psi(u, v)=(k u, v / k)$ is a diffeomorphism of U to V, since it is smooth and bijective with the smooth inverse $(r, \theta) \mapsto$ $(u, v)=(r / k, k \theta)$.

The component functions of the first fundamental form for σ are $E=$ $1+\lambda^{2}, F=0$ and $G=u^{2}$. The reparametrization

$$
\rho \circ \psi(u, v)=(k u \cos (v / k), k u \sin (v / k), 0)
$$

of ρ has components $\widetilde{E}=k^{2}, \widetilde{F}=0$ and $\widetilde{G}=u^{2}$. Therefore, ψ induces an isometry of σ to ρ if and only if $k^{2}=1+\lambda^{2}$.

The conclusion from the theorem above is then that if $k^{2}=1+\lambda^{2}$ then the cone and the plane have the same Gaussian curvature in points $\sigma(u, v)$ and $\rho(k u, v / k)$ (in fact, both Gaussian curvatures are zero, as we knew already).

Notice that the comparison of component functions took place between those of σ and those of $\rho \circ \psi$, whereas those of ρ itself played no role.

The map $\psi:(u, v) \mapsto(r, \theta)=(k u, v / k)$ between parameter values is 'lifted' to the map

$$
\Psi: \sigma(u, v) \mapsto \rho(k u, v / k)
$$

from cone to plane. However, Ψ is well defined only if we restrict v to an open interval of length $\leq 2 \pi$, since we have $\sigma(u, v+2 \pi)=\sigma(u, v)$ but in general $\rho(\psi(u, v+2 \pi)) \neq \rho(\psi(u, v))$. The map Ψ can be described as the 'unfolding' of the cone.

Example 6.5.4 Since the sphere has Gauss curvature different from zero in all points, we can conclude from the Gauss theorem that no portion of a sphere can be mapped isometrically into a plane. In other words, it is impossible to draw a map of a portion of the globe, which preserves all lengths (in appropriate units). Such a map is called an ideal map, and its non-existence is a theorem originally due to Euler.

Example 6.5.5 Let $\sigma(u, v)=(a \cosh u \cos v, a \cosh u \sin v, a u)$ for $(u, v) \in$ $U=\mathbb{R}^{2}$, where $a>0$ is a constant. The resulting surface is called a catenoid (it is a surface of revolution, see page 38).

For the second surface let $\rho(s, t)=\left(s \cos t, s \sin t\right.$,at) where $(s, t) \in V=\mathbb{R}^{2}$. This surface is called a helicoid (see page 61). We shall verify that the map $\psi(u, v)=(a \sinh u, v)$ induces an isometry from σ to ρ. It is a diffeomorphism since $\sinh : \mathbb{R} \rightarrow \mathbb{R}$ is bijective with a smooth inverse (by Theorem 2.4). An elementary computation shows that the first fundamental forms for σ and for $\rho \circ \psi$ are given by $E=G=a^{2} \cosh ^{2} u$ and $F=0$ in both cases. Hence ψ induces an isometry.

Notice that the catenoid parametrization is not injective. If we restrict to the subset $\{(u, v) \mid-\pi<v<\pi\}$ of U, then σ is injective. The image by ψ of this set corresponds to one winding of the helicoid.

6.6 Exercises

1 Verify the following formula for the Gauss curvature of a surface of revolution

$$
K=\frac{\left(f^{\prime} g^{\prime \prime}-f^{\prime \prime} g^{\prime}\right) g^{\prime}}{\left(f^{\prime 2}+g^{\prime 2}\right)^{2} f}
$$

Show that if the profile curve has unit speed, then $K=-\frac{f^{\prime \prime}}{f}$.
2 The plane curve $\gamma(t)=\left(\sin t, \cos t+\ln \tan \frac{t}{2}\right)$, where $0<t<\pi$ is called the tractrix.

Show that the curve is regular for $t \neq \frac{\pi}{2}$. The surface of revolution

$$
\sigma(u, v)=\left(\sin u \cos v, \sin u \sin v, \cos u+\ln \tan \frac{u}{2}\right), \quad 0<u<\pi, v \in \mathbb{R}
$$

is called a pseudosphere. Verify that $K=-1$ everywhere, except at $u=\frac{\pi}{2}$, (so that σ resembles a sphere of radius 1 , which has constant $K=1$).

3 Compute the coefficients L, M and N for the catenoid and helicoid in Example 6.5.5 (see also Exercises 2 and 3, page 98), and use these to determine their Gauss curvatures. Verify the Teorema Egregium for these surfaces.

4 Show that the surface of revolution corresponding to

$$
\tau(s, t)=(s \cos t, s \sin t, a \ln t)
$$

where $(s, t) \in U=\{(s, t) \mid t>0\}$ and $a>0$ is constant, has the same Gauss curvature $K(s, t)$ as the helicoid ρ in Exercise 3, restricted to U. Nevertheless, the first fundamental form of τ is different. Does this contradict the Teorema Egregium?
5 a. Let three numbers $e, f, g \in \mathbb{R}$ with $e g>f^{2}$ and $e, g>0$ be given. Prove that there exists a regular parametrized surface $\sigma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$, the image of which is the $x y$-plane, such that $E(u, v)=e, F(u, v)=f$ and $G(u, v)=g$ for all $(u, v) \in \mathbb{R}^{2}$. Hint: Try a linear map $\sigma: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$.
b. Let next $\sigma(U) \subseteq \mathbb{R}^{3}$ be an arbitrary regular parametrized surface for which E, F and G are constant. Prove that there exists an isometry from $\sigma(U)$ to a parametrized surface which is contained in the $x y$-plane.

6 Prove that the map F_{θ} in Exercise 3 on page 38 is an isometry.
7 a. Let $0<a<1$ and let

$$
f(s)=a \cos s \quad \text { and } \quad g(s)=\int_{0}^{s} \sqrt{1-a^{2} \sin ^{2} r} d r
$$

Verify that the curve $\gamma(s)=(f(s), g(s))$ has unit speed.
b. Let $\rho(s, t)=(f(s) \cos t, f(s) \sin t, g(s))$, be the surface of revolution with profile curve γ, where

$$
(s, t) \in V=\left\{(s, t) \left\lvert\,-\frac{\pi}{2}<s<\frac{\pi}{2}\right.,-\pi<t<\pi\right\} .
$$

Furthermore, let $\sigma(u, v)$ denote the part of a unit sphere with standard spherical coordinates (Example 1.2.2), for which the domain of definition is reduced to $U=\left\{(u, v) \left\lvert\,-\frac{\pi}{2}<u<\frac{\pi}{2}\right.,-a \pi<v<a \pi\right\}$, that is, a segment on the back has been removed.

Show that the map $\psi: U \rightarrow V$ given by $\psi(u, v)=(u, v / a)$ yields an isometry between $\sigma(U)$ and $\rho \circ \psi(U)$ (for $a=\frac{1}{2}$ one can visualize ψ by the bending of a half sphere, for example the peel of half an orange). What can one conclude about the curvature of $\rho(V)$?

8 Let $\psi(u, v)=\left(u, v+\frac{c}{u}\right)$ for $(u, v) \in U=\left\{(u, v) \in \mathbb{R}^{2} \mid u>0\right\}$, where $c \in \mathbb{R}$ is a constant.
a. Let $\sigma(U) \subseteq \mathbb{R}^{3}$ be a parametrized smooth surface, and let $\tau=\sigma \circ \psi$. Verify

$$
\tau_{u}^{\prime}(u, v)=\sigma_{u}^{\prime}(\psi(u, v))-\frac{c}{u^{2}} \sigma_{v}^{\prime}(\psi(u, v))
$$

and determine a similar expression for $\tau_{v}^{\prime}(u, v)$.
b. Assume that the first fundamental form for $\sigma(U)$ is given by

$$
E=1+v^{2}, \quad F=u v, \quad G=u^{2}
$$

for $(u, v) \in U$. Show that ψ implements a reparametrization which gives an isometry from $\sigma(U)$ to itself (that is, take $V=U$ and $\rho=\sigma$ in Definition 6.5.2).
c. Without explicitly computing the Gauss curvature $K(u, v)$ of $\sigma(U)$ at $p=(u, v)$, show that it does not depend on v (hint: use that c was arbitrary).

9 Prove the following statements (see page 112) by applying the chain rule and the identity (3) in Section 3.4:
a. If $\sigma(U)$ is isometric to $\rho(V)$ according to Definition 6.5.2 (or 6.5.1) then $\rho(V)$ is also isometric to $\sigma(U)$. For this reason we will often say that, in this situation, the two regular parametrized surfaces are isometric.
b. If in addition a third parametrized surface $\tau(W) \subseteq \mathbb{R}^{3}$ is given, and if $\rho(V)$ is isometric to $\tau(W)$, then $\sigma(U)$ is also isometric to it.

10 Complete the proof of the fact that a rotation of a sphere around the z-axis is a (local) isometry by using graph parametrizations $z=h(x, y)$.

Chapter 7

Geodesics

In this chapter we investigate some properties of geodesics. Recall from Definition 4.10, that a geodesic on a surface is a curve with zero geodesic curvature. We shall see that the property of a curve, that it is geodesic, is intrinsic. Furthermore we introduce the notion of geodesic coordinates on a surface, and we use these to give a geometric interpretation of the theorem of Gauss. Some of the results presented in this chapter require more advanced analytic tools than we have presupposed in the rest of the notes, and we shall be content with stating them without proof.

7.1 The geodesic equations

We aim to show that the absolute value $\left|\kappa_{g}(t)\right|$ of geodesic curvature is an intrinsic property of a curve on a surface. It is invariant under reparametrizations by Theorem 4.8 (but notice the necessity of taking the absolute value).

Theorem 7.1. Let $\gamma=\sigma \circ \mu$ be a regular parametrized curve on σ. The geodesic curvature $\kappa_{g}(t)$ satisfies

$$
\kappa_{g}=\left\|\gamma^{\prime}\right\|^{-3} \operatorname{det}\left(g_{i j}\right)^{1 / 2}\left(\left(u_{1}\right)^{\prime} \Lambda_{2}-\left(u_{2}\right)^{\prime} \Lambda_{1}\right)
$$

where $g_{i j}$ is the first fundamental form of σ at $\mu(t), u_{1}, u_{2}$ are the coordinates of $\mu(t)$ and $\left(u_{1}\right)^{\prime},\left(u_{2}\right)^{\prime}$ are their derivatives with respect to t, and where Λ_{i} denotes the function

$$
\Lambda_{i}(t)=\left(u_{i}\right)^{\prime \prime}(t)+\sum_{j, k=1}^{2} \Gamma_{j k}^{i}(\mu(t))\left(u_{j}\right)^{\prime}(t)\left(u_{k}\right)^{\prime}(t), \quad i=1,2,
$$

for $i=1,2$, in terms of the Christoffel symbols $\Gamma_{j k}^{i}$.
In view of Corollary 6.3, we see that the expressions Λ_{i} can be determined from E, F and G. Hence it follows from the equation above for κ_{g}, that it too can be determined. Hence the absolute value $\left|\kappa_{g}\right|$ is intrinsic. In particular, it follows that the property of being a geodesic curve is intrinsic.

The proof invokes two lemmas, which are stated and proved on the following page.

Proof. By definition $\kappa_{g}=\left\|\gamma^{\prime}(t)\right\|^{-3} \operatorname{det}\left[\gamma^{\prime} \gamma^{\prime \prime} \mathbf{m}\right]$. Recall from Lemma 2.11 that

$$
\begin{equation*}
\gamma^{\prime}(t)=u^{\prime}(t) \sigma_{u}^{\prime}+v^{\prime}(t) \sigma_{v}^{\prime} \tag{1}
\end{equation*}
$$

where the tangent vectors σ_{u}^{\prime} and σ_{v}^{\prime} are evaluated in $(u(t), v(t))$. The second derivative $\gamma^{\prime \prime}$ is determined in Lemma 7.1.1 below, and the determinant can then be computed by means of Lemma 7.1.2, where we take $w^{\prime}=u_{1}^{\prime} \sigma_{1}^{\prime}+u_{2}^{\prime} \sigma_{2}^{\prime}$ and $w^{\prime \prime}=\Lambda_{1} \sigma_{1}^{\prime}+\Lambda_{2} \sigma_{2}^{\prime}$ (since a multiple of \mathbf{m} in $\gamma^{\prime \prime}$ does not contribute to the determinant). The equation for κ_{g} follows.
Lemma 7.1.1. Let γ and Λ_{1}, Λ_{2} be as above. Then $\gamma^{\prime \prime}$ equals $\Lambda_{1} \sigma_{1}^{\prime}+\Lambda_{2} \sigma_{2}^{\prime}$ plus a multiple cm of \mathbf{m}.

The factor is $c=\sum b_{j k}\left(u_{j}\right)^{\prime}\left(u_{k}\right)^{\prime}$ but we do not need this formula.
Lemma 7.1.2. Let γ be as above and let two vectors $w^{\prime}, w^{\prime \prime} \in T_{\gamma(t)}$ be given. If $w^{\prime}=a_{1} \sigma_{1}^{\prime}+a_{2} \sigma_{2}^{\prime}$ and $w^{\prime \prime}=b_{1} \sigma_{1}^{\prime}+b_{2} \sigma_{2}^{\prime}$ then

$$
\operatorname{det}\left[w^{\prime} w^{\prime \prime} \mathbf{m}\right]=\operatorname{det}\left(g_{i j}\right)^{1 / 2}\left(a_{1} b_{2}-b_{1} a_{2}\right)
$$

Proof of Lemma 7.1.1. In order to determine $\gamma^{\prime \prime}(t)$ we differentiate (1). For this we need to differentiate σ_{u}^{\prime} and σ_{v}^{\prime} with respect to t.

We apply the chain rule to the function $t \mapsto \sigma_{u}^{\prime}(u(t), v(t))$. It follows that

$$
\frac{d}{d t} \sigma_{u}^{\prime}(u(t), v(t))=u^{\prime}(t) \sigma_{u u}^{\prime \prime}+v^{\prime}(t) \sigma_{u v}^{\prime \prime}
$$

Similarly

$$
\frac{d}{d t} \sigma_{v}^{\prime}(u(t), v(t))=u^{\prime}(t) \sigma_{v u}^{\prime \prime}+v^{\prime}(t) \sigma_{v v}^{\prime \prime}
$$

Hence

$$
\begin{aligned}
\gamma^{\prime \prime}(t)= & u^{\prime \prime}(t) \sigma_{u}^{\prime}+u^{\prime}(t) \frac{d}{d t} \sigma_{u}^{\prime}+v^{\prime \prime}(t) \sigma_{v}^{\prime}+v^{\prime}(t) \frac{d}{d t} \sigma_{v}^{\prime} \\
= & u^{\prime \prime}(t) \sigma_{u}^{\prime}+u^{\prime}(t)\left(u^{\prime}(t) \sigma_{u u}^{\prime \prime}+v^{\prime}(t) \sigma_{u v}^{\prime \prime}\right) \\
& \quad+v^{\prime \prime}(t) \sigma_{v}^{\prime}+v^{\prime}(t)\left(u^{\prime}(t) \sigma_{v u}^{\prime \prime}+v^{\prime}(t) \sigma_{v v}^{\prime \prime}\right) \\
= & \sum_{i} u_{i}^{\prime \prime} \sigma_{i}^{\prime}+\sum_{j k} u_{j}^{\prime} u_{k}^{\prime} \sigma_{j k}^{\prime \prime}
\end{aligned}
$$

We use the expression (6) from Theorem 6.3 and insert it for $\sigma_{j k}^{\prime \prime}$. It follows that $\gamma^{\prime \prime}=\sum_{i} \Lambda_{i} \sigma_{i}^{\prime}+c \mathbf{m}$ for the number c mentioned below the lemma.
Proof of Lemma 7.1.2. By a straightforward computation

$$
\operatorname{det}\left[w^{\prime} w^{\prime \prime} \mathbf{m}\right]=\left(w^{\prime} \times w^{\prime \prime}\right) \cdot \mathbf{m}=\left(a_{1} b_{2}-b_{1} a_{2}\right)\left(\sigma_{1}^{\prime} \times \sigma_{2}^{\prime}\right) \cdot \mathbf{m}
$$

The lemma follows since by (9) page 57

$$
\sigma_{1}^{\prime} \times \sigma_{2}^{\prime}=\left\|\sigma_{1}^{\prime} \times \sigma_{2}^{\prime}\right\| \mathbf{m}=\left(E G-F^{2}\right)^{1 / 2} \mathbf{m}
$$

Corollary 7.1. Let $\gamma(s)=\sigma\left(u_{1}(s), u_{2}(s)\right)$ be a parametrized smooth curve on σ. Then γ is a geodesic if and only if the coordinate functions u_{1} and u_{2} satisfy the following system of second order differential equations

$$
\begin{equation*}
\left(u_{i}\right)^{\prime \prime}+\sum_{j, k=1}^{2} \Gamma_{j k}^{i}\left(u_{j}\right)^{\prime}\left(u_{k}\right)^{\prime}=0, \quad i=1,2 . \tag{2}
\end{equation*}
$$

with coefficients $\Gamma_{j k}^{i}$ evaluated at $\mu(t)$.
Notice that γ is not assumed to be regular.
Proof. The system of equations (2) is written $\Lambda_{1}=\Lambda_{2}=0$ in the notation of the preceding theorem. It follows from Lemma 7.1.1 that this condition holds exactly when $\gamma^{\prime \prime}(t)$ is proportional to \mathbf{m} for all t. The corollary now follows from Theorem 4.10.

The differential equations (2) are called the geodesic equations. By Corollary 7.1 the determination of the geodesics on a given surface is a matter of solving these equations. However, for a general surface they are quite complicated non-linear differential equations which are not easy to solve.

As mentioned, the property of a curve of being a geodesic is intrinsic. It follows that an isometry will carry geodesic curves to geodesic curves.

Example 7.1.1. Consider again the isometry ψ in Example 6.5.3 from cone to plane. The geodesics on the plane are the straight line segments, hence we conclude that a curve on the cone is a geodesic if and only if its image by ψ is a line segment in V.

For example, the plane unit speed line $\delta(s)=(1, s, 0)$ is in polar coordinates $\rho(r, \theta)=(r \cos \theta, r \sin \theta, 0)$ given by

$$
\left.\delta(s)=\rho(r(s), \theta(s))=\rho\left(\sqrt{1+s^{2}}, \tan ^{-1} s\right)\right) .
$$

The image by ψ^{-1} is then

$$
\gamma(s)=\sigma\left(\psi^{-1}(r(s), \theta(s))\right)=\sigma\left(k^{-1} \sqrt{1+s^{2}}, k \tan ^{-1} s\right) .
$$

Recall that $\sigma(u, v)=(u \cos v, u \sin v, \lambda u)$. We obtain that

$$
\begin{aligned}
& \gamma(s) \\
& \quad=\left(k^{-1} \sqrt{1+s^{2}} \cos \left(k \tan ^{-1} s\right), k^{-1} \sqrt{1+s^{2}} \sin \left(k \tan ^{-1} s\right), \lambda k^{-1} \sqrt{1+s^{2}}\right)
\end{aligned}
$$

is a geodesic on the cone when $k^{2}=1+\lambda^{2}$. An idea of the shape of the curve can be obtained by folding a cone out of a piece of paper with a straight line drawn on it (see the following figure).

7.2 Existence of geodesics

A further analysis of geodesics on a surface can be based on the differential equations (2). This requires the use of the fundamental theorem of existence and uniqueness of solutions of ordinary differential equations. Without going into details, we cite the following important consequence.

Theorem 7.2. Through every point of a regular parametrized surface passes a unique geodesic curve in each direction.

More precisely, let $p \in U$ and $w \in T_{p} \sigma \backslash\{0\}$ be given. There exists a geodesic curve $\gamma=\sigma \circ \mu: I \rightarrow \mathbb{R}^{3}$ on σ with

$$
\begin{equation*}
p=\mu\left(t_{0}\right) \quad \text { and } \quad w=\gamma^{\prime}\left(t_{0}\right) \tag{3}
\end{equation*}
$$

for some $t_{0} \in I$. Moreover, if two unit speed geodesics defined on intervals I, J both satisfy (3) for some common $t_{0} \in I \cap J$, then they agree on $I \cap J$.

Proof. Omitted.
This property is of course well known for lines on a plane.
Example 7.2.1 Through every point on a sphere passes a unique great circle in each direction, namely the great circle obtained as the intersection of the sphere with the unique plane through the center of the sphere which contains the given point and the given direction vector.

7.3 Geodesic coordinates

We shall now describe a particularly useful type of parametrization of a surface.

Definition 7.3. Let $\gamma: J \rightarrow \mathbb{R}^{3}$ be a unit speed curve. The chart (σ, U) of a regular parametrized surface $\sigma(U) \subseteq \mathbb{R}^{3}$ is called a geodesic coordinate system transversal to γ if $U=I \times J$ for some interval I and
(i) there exists $u_{0} \in I$ such that $\gamma(v)=\sigma\left(u_{0}, v\right)$ for all v, and this curve is a geodesic on $\sigma(U)$,
(ii) all the coordinate curves $I \ni u \mapsto \sigma(u, v)$ are unit speed geodesics on $\sigma(U)$, which intersect orthogonally with γ (that is, the tangent vector $\sigma_{u}^{\prime}\left(u_{0}, v\right)$ is orthogonal to $\gamma^{\prime}(v)=\sigma_{v}^{\prime}\left(u_{0}, v\right)$ for all $\left.v \in J\right)$.

Notice that while we are requiring $\sigma(u, v)$ to be geodesic as a function of u for all fixed v, we are only requiring it to be geodesic as a function of v for the fixed value u_{0} of u, where it produces the original curve γ.

Example 7.3.1 The standard coordinates (x, y) on the $x y$-plane are geodesic coordinates. Perhaps more interestingly, the spherical coordinates $\sigma(u, v)$ on the unit sphere is a geodesic coordinate system. Indeed, the curve $\gamma(v)=$ $\sigma(0, v)$, the 'equator', is geodesic, and the meridians $u \mapsto \sigma(u, v)$ are geodesics that intersect orthogonally with γ. Notice that in this case the curves $v \mapsto$ $\sigma(u, v)$ are small circles if $u \neq 0$, hence not geodesics.

Theorem 7.3(Existence of geodesic coordinates). Let $\sigma(U) \subseteq \mathbb{R}^{3}$ be a regular parametrized surface, and let a point $p \in U$ and a unit speed geodesic $\gamma=\sigma \circ \mu$ on $\sigma(U)$ be given with $\mu(0)=p$. There exists an open rectangle $W=I \times J$ around $(0,0)$ in \mathbb{R}^{2} and a diffeomorphism ϕ of W onto an open neighborhood $U^{\prime} \subset U$ of p such that $\phi(0,0)=p$ and such that the pair (τ, W) with

$$
\tau(s, t)=\sigma(\phi(s, t))
$$

is a geodesic coordinate system on $\sigma\left(U^{\prime}\right)$ transversal to $\left.\gamma\right|_{J}$.
Proof. The proof which relies on Theorem 7.2 is omitted.

7.4 The first fundamental form of a geodesic coordinate system

Let $\sigma(U) \subseteq \mathbb{R}^{3}$ be a regular surface, defined on a set $U \subset \mathbb{R}^{2}$ of the form $U=I \times J$ with open intervals $I, J \subset \mathbb{R}$. Let $u_{0} \in I$ be fixed, and let $\gamma: J \rightarrow \mathbb{R}^{3}$ denote the curve $t \mapsto \sigma\left(u_{0}, t\right)$ on σ.

Theorem 7.4. The surface σ is a geodesic coordinate system transversal to γ if and only if the following condition hold.

The coefficients of the first fundamental form satisfy

$$
E(u, v)=1, \quad F(u, v)=0
$$

for all $(u, v) \in U$ and

$$
G\left(u_{0}, v\right)=1, \quad G_{u}^{\prime}\left(u_{0}, v\right)=0
$$

for all $v \in J$.
Proof. The proof is based on the lemma below, from which we conclude that $u \mapsto \sigma(u, v)$ is geodesic if and only if

$$
\begin{equation*}
E(u, v)=1 \quad \text { and } \quad E_{v}^{\prime}(u, v)-2 F_{u}^{\prime}(u, v)=0 \tag{4}
\end{equation*}
$$

for all u, and (by interchanging u and v in the lemma) $v \mapsto \sigma\left(u_{0}, v\right)$ is geodesic if and only if

$$
\begin{equation*}
G\left(u_{0}, v\right)=1 \quad \text { and } \quad G_{u}^{\prime}\left(u_{0}, v\right)-2 F_{v}^{\prime}\left(u_{0}, v\right)=0 \tag{5}
\end{equation*}
$$

for all v.
Assume σ is a geodesic coordinate system. Then (4) and (5) hold for all (u, v). In particular, $E(u, v)=1$ and $G\left(u_{0}, v\right)=1$.

From $E=1$ we conclude that $E_{u}^{\prime}=E_{v}^{\prime}=0$, hence (4) implies that $F_{u}^{\prime}(u, v)=0$, from which we infer that $u \mapsto F(u, v)$ is constant for each v. In fact this constant is 0 because the assumption that the coordinate curves intersect orthogonally with γ implies that $F\left(u_{0}, v\right)=0$. Finally, since $F=0$ the second condition in (5) implies $G_{u}^{\prime}\left(u_{0}, v\right)=0$.

The statement 'if' is seen similarly.
Lemma 7.4. Let $\sigma(U) \subseteq \mathbb{R}^{3}$ be a regular parametrized surface. The coordinate curve $u \mapsto \sigma\left(u, v_{0}\right)$ is a unit speed geodesic if and only if $E=1$ and $E_{v}^{\prime}-2 F_{u}^{\prime}=0$ in all points of the curve.
Proof. Unit speed is equivalent with $E=1$. The second derivative of $u \mapsto$ $\sigma\left(u, v_{0}\right)$ is $\sigma_{11}^{\prime \prime}=\sigma_{u u}^{\prime \prime}$, hence it follows from Theorem 4.10 that the curve is a geodesic if and only if

$$
\sigma_{11}^{\prime \prime} \cdot \sigma_{k}^{\prime}=0 \quad \text { for } k=1,2
$$

By (3) in Lemma 6.3 this condition is equivalent with

$$
2 \frac{\partial g_{1 k}}{\partial u_{1}}-\frac{\partial g_{11}}{\partial u_{k}}=0 \quad \text { for } k=1,2
$$

For $k=1$ this equation reads $\frac{\partial g_{11}}{\partial u_{1}}=0$, which is already a consequence of the unit speed condition $E=1$, and for $k=2$ it reads $2 \frac{\partial g_{12}}{\partial u_{1}}-\frac{\partial g_{11}}{\partial u_{2}}=0$, which is exactly the last condition of the lemma.

7.5 Interpretation of the Gauss theorem

Let (σ, U) be a geodesic coordinate system transversal to $\gamma=\sigma \circ \mu$. For simplicity we assume that $u_{0}=0$ so that $\gamma(v)=\sigma(0, v)$. It follows from Theorem 7.4 and the formula (11) in Chapter 6 , that Gauss' formula for K in terms of the first fundamental form is

$$
K=-\frac{1}{2 \sqrt{G}}\left(\frac{G_{u}^{\prime}}{\sqrt{G}}\right)_{u}^{\prime}
$$

Since $(\sqrt{G})_{u}^{\prime}=\frac{G_{u}^{\prime}}{2 \sqrt{G}}$ we can rewrite the formula as

$$
\begin{equation*}
K=-\frac{1}{\sqrt{G}}(\sqrt{G})_{u u}^{\prime \prime} \tag{6}
\end{equation*}
$$

We shall now give a geometric interpretation of this formula.
Let $p=(0,0)=\mu(0) \in U$. For $\epsilon>0$ let D_{ϵ} denote the square

$$
D_{\epsilon}=[-\epsilon, \epsilon] \times[-\epsilon, \epsilon]
$$

about $(0,0)$ in \mathbb{R}^{2}. It has area $A\left(D_{\epsilon}\right)=(2 \epsilon)^{2}$. In the following we assume that ϵ is sufficiently small so that $D_{\epsilon} \subset U$. The set

$$
\sigma\left(D_{\epsilon}\right)
$$

is called a square about p on σ. Its area is denoted $A\left(\sigma\left(D_{\epsilon}\right)\right)$ (see Section 3.9).

Theorem 7.5. Let (σ, U) be a geodesic coordinate system around $p=(0,0)$. The Gauss curvature K of $\sigma(U)$ in $\sigma(p)$ is given by

$$
\begin{equation*}
K=-\frac{3}{2} \lim _{\epsilon \rightarrow 0} \epsilon^{-4}\left(A\left(\sigma\left(D_{\epsilon}\right)\right)-A\left(D_{\epsilon}\right)\right) . \tag{7}
\end{equation*}
$$

The interpretation of $K(p)$ is thus that it is a measure for the difference between the area of a small square about p and the corresponding area of a
plane square. Since areas are intrinsic properties, and since the properties that went into the definition of a square (geodesics and right angles) are also intrinsic, Gauss' Teorema Egregium is certainly a consequence of this theorem. However, this serves as a geometric explanation rather than a new proof of the theorem, since the proof given below of (7) uses Gauss' formula for K, of which the Teorema is already an immediate consequence.

In particular we notice the minus in the limit formula for K. Thus, in an elliptic point, the area of $\sigma\left(D_{\epsilon}\right)$ will be smaller than that of D_{ϵ}, for ϵ sufficiently small, and in a hyperbolic point it will be larger.
Proof. We shall use the Taylor approximation formula for the smooth function $f(u, v)=\sqrt{G(u, v)}$, see Appendix B. With $\left(u_{0}, v_{0}\right)=(0,0)$ it reads

$$
\begin{aligned}
f(u, v)=f(0,0) & +f_{u}^{\prime}(0,0) u+f_{v}^{\prime}(0,0) v \\
& +\frac{1}{2}\left(f_{u u}^{\prime \prime}(0,0) u^{2}+2 f_{u v}^{\prime \prime}(0,0) u v+f_{v v}^{\prime \prime}(0,0) v^{2}\right)+R(u, v)
\end{aligned}
$$

where the remainder $R(u, v)$ satisfies $|R(u, v)| \leq C\|(u, v)\|^{3}$ in a neighborhood of $(0,0)$ for a constant C.

By Theorem 7.4 we have $G(0, v)=1$ and $G_{u}^{\prime}(0, v)=G_{v}^{\prime}(0, v)=0$. Hence

$$
f(0, v)=1 \quad \text { and } \quad f_{u}^{\prime}(0, v)=f_{v}^{\prime}(0, v)=0
$$

and by differentiation with respect to v,

$$
f_{u v}^{\prime \prime}(0, v)=f_{v v}^{\prime \prime}(0, v)=0 .
$$

Finally, by the Gauss formula (6), $f_{u u}^{\prime \prime}(0,0)=-K$. The Taylor formula is thus

$$
\sqrt{G(u, v)}=1-\frac{1}{2} K u^{2}+R(u, v) .
$$

Since $E G-F^{2}=G$, the area of $\sigma\left(D_{\epsilon}\right)$ is by definition

$$
A\left(\sigma, D_{\epsilon}\right)=\int_{D_{\epsilon}} \sqrt{G} d A
$$

and hence

$$
\begin{aligned}
A\left(\sigma, D_{\epsilon}\right)-A\left(D_{\epsilon}\right) & =\int_{D_{\epsilon}} \sqrt{G(u, v)}-1 d A \\
& =\int_{-\epsilon}^{\epsilon} \int_{-\epsilon}^{\epsilon}-\frac{1}{2} K u^{2}+R(u, v) d u d v \\
& =-\frac{2}{3} \epsilon^{4} K+\int_{-\epsilon}^{\epsilon} \int_{-\epsilon}^{\epsilon} R(u, v) d u d v
\end{aligned}
$$

Since $|R(u, v)|$ is bounded by a constant times ϵ^{3}, its integral over D_{ϵ} is bounded by a constant times ϵ^{5}. The limit formula for K follows immediately.

7.6 Exercises

1 Let $U=\{(u, v) \mid v>1\}$ and suppose $\sigma(U) \subseteq \mathbb{R}^{3}$ is a regular parametrized surface with $E=G=v^{-2}$ and $F=0$.
a. Determine the Gauss curvature K, as a function of (u, v).
b. Compute the Christoffel symbols for $\sigma(U)$.
c. Verify that the curve $\sigma \circ \mu$, where

$$
\mu(s)=\left(a, e^{s}\right) \quad \text { or } \quad \mu(s)=\left(a+r \tanh s, r \frac{1}{\cosh s}\right),
$$

has unit speed, and show that it is a geodesic. Here $a \in \mathbb{R}$ and $r>0$ are constants, and s is assumed to belong in an interval for which $\mu(s) \in U$. Make a sketch of each curve μ in the (u, v)-plane, say with $a=r=1$ (Hint: Notice that $\tanh ^{2} s+\left(\frac{1}{\cosh s}\right)^{2}=1$).
d. Suppose in addition that the mentioned surface has coefficients $M=0$ and $N=v^{-2}\left(v^{2}-1\right)^{\frac{1}{2}}$ in the second fundamental form. Determine L and the principal curvatures κ_{1}, κ_{2}.
2 Let $U=\mathbb{R}^{2}$, and let $\sigma(U) \subseteq \mathbb{R}^{3}$ be a regular parametrized surface for which $E=1, F=0$ and $G=1+u^{2}$ (see for example Exercise 3.10).
a. Determine the Christoffel symbols.
b. Show that $t \mapsto \sigma(t, v)$ is a geodesic for all v.
c. Find the geodesic curvature of the curve $t \mapsto \sigma(u, t)$ for $u \in \mathbb{R}$.
d. Verify that (σ, U) is a geodesic coordinate system, and determine the Gauss curvature by means of equation (6).

3 Let (σ, U) be a geodesic coordinate system for which the Gaussian curvature is constant, $K=0$. Show that $G=1$ and that σ is isometric to a part of a plane (Hint: Conclude from (6) that $G=(a u+b)^{2}$ where a and b are functions of v. Determine a and b from Theorem 7.4).

4 Let (σ, U) with $U=I \times J$ be a geodesic coordinate system transversal to the curve $\gamma(t)=\sigma(0, t)$. Assume that the Gaussian curvature is constant, $K=1$. Show that $G=\cos ^{2} u$ and that $\sigma(U)$ is isometric to a part of the unit sphere (Hint: Conclude from (6) that $G=(a \cos u+b \sin u)^{2}$ where a and b are functions of v. Determine a and b from Theorem 7.4).

Chapter 8

Gauss-Bonnet

In this final chapter we prove a local version of the Gauss-Bonnet Theorem and state and prove a special case of the global version of this celebrated theorem.

8.1 Vector fields along curves

Let $\gamma: I \mapsto S$ be a smooth curve on the regular embedded surface S.
Definition 8.1.1. A smooth vector field W along γ is a map $W: I \mapsto \mathbb{R}^{3}$ such that $\forall t \in I: W(t) \in T_{\gamma(t)} S$. Notice that W is defined on the same open interval I as γ. Likewise, a smooth field of unit normal vectors $N(t)$ along γ is a differentiable map $N: I \mapsto \mathbb{R}^{3}$ such that $\forall t \in I: N(t) \perp T_{\gamma(t)} S$ and $\|N(t)\|=1$.

We will in the following assume that everything takes place inside a single coordinate chart $\sigma(U)$. That is, we assume that we are given a parametrized regular surface $\sigma(U)$ and we let, for $q=\sigma(u, v)$,

$$
\mathbf{N}^{\sigma}(q)=\frac{\sigma_{u} \times \sigma_{v}}{\left\|\sigma_{u} \times \sigma_{v}\right\|}(u, v)
$$

We assume that $N(t)=\mathbf{N}^{\sigma}(\gamma(t))$.
By assumption, $W(t)=a(t) \sigma_{u}(u(t), v(t))+b(t) \sigma_{v}(u(t), v(t))$ and a, b are smooth functions. Thus,

$$
\begin{aligned}
W^{\prime}(t)= & a(t)^{\prime} \sigma_{u}(u(t), v(t))+b^{\prime}(t) \sigma_{v}(u(t), v(t)) \\
& +a(t)\left(u^{\prime} \sigma_{u u}+v^{\prime} \sigma_{u v}\right)+b(t)\left(u^{\prime} \sigma_{v u}+v^{\prime} \sigma_{v v}\right) .
\end{aligned}
$$

Proposition 8.1.1. Under the above assumptions, the quantity

$$
\nabla_{\gamma(t)} W(t)=W^{\prime}(t)-\left(W(t)^{\prime} \cdot N(t)\right) N(t) .
$$

is a smooth vector field along γ.
Proof:. By the above, $\left(\nabla_{\gamma(t)} W(t)\right) \cdot N(t)=0$.
Definition 8.1.2. $\quad \nabla_{\gamma(t)} W(t)$ is the covariant derivative of W at $\gamma(t)$.
Using Theorem 6.3, it follows easily that

$$
\begin{aligned}
\nabla_{\gamma(t)} W(t) & =\left[\left(a^{\prime}+\Gamma_{11}^{1} a u^{\prime}+\Gamma_{12}^{1} a v^{\prime}+\Gamma_{12}^{1} b u^{\prime}+\Gamma_{22}^{1} b v^{\prime}\right) \sigma_{u}\right](u(t), v(t)) \\
& +\left[\left(b^{\prime}+\Gamma_{11}^{2} a u^{\prime}+\Gamma_{12}^{2} a v^{\prime}+\Gamma_{12}^{2} b u^{\prime}+\Gamma_{22}^{2} b v^{\prime}\right) \sigma_{v}\right](u(t), v(t)) .
\end{aligned}
$$

Definition 8.1.3. The vector field W along γ is said to parallel if $\forall t$: $\nabla_{\gamma(t)} W(t)=0$.

Proposition 8.1.2. Let W, V be parallel vector fields along γ. Then

$$
t \mapsto\langle V(t), W(t)\rangle
$$

is constant. In particular, $\|V(t)\|$ and $\|W(t)\|$ are constant, and so is the angle between $V(t)$ and $W(t)$.

Proof:. If W is parallel, then $\forall t: W^{\prime}(t) \perp T_{\gamma(t)} S$. In particular, $W^{\prime}(t) \perp$ $V(t)$. Of course, we also get $\left\langle V^{\prime}(t), W(t)\right\rangle=0$. But then

$$
\langle W, V\rangle^{\prime}=\left\langle W^{\prime}, V\right\rangle+\left\langle W, V^{\prime}\right\rangle=0
$$

Proposition 8.1.3. Let W be a field of unit vectors along γ. The covariant derivative of W at $\gamma(t)$ is proportional to $N(t) \times W(t)$. Specifically

$$
\nabla_{\gamma(t)} W(t)=\left[\nabla_{\gamma(t)} W(t)\right](N \times W)(t)
$$

and $\left[\nabla_{\gamma(t)} W(t)\right]=\left\langle W^{\prime}(t), N(t) \times W(t)\right\rangle$.
Proof: By definition, $\nabla_{\gamma(t)} W(t) \perp N(t)$. Furthermore since, $\|W(t)\| \equiv 1$ we have that $W^{\prime}(t) \perp W(t)$ and hence, $\nabla_{\gamma(t)} W(t) \perp W(t)$.

Definition 8.1.4. Let γ be a smooth curve in the regular surface S. Let $p=\gamma\left(t_{1}\right)$, let $W_{1} \in T_{q} S$, and let $q=\gamma\left(t_{2}\right)$. If W is a parallel vector field along γ with $W_{1}=W\left(t_{1}\right)$ then the vector $W_{2}=W\left(t_{2}\right) \in T_{p}(S)$ is called the parallel transport of W_{1} along γ. We denote it by $P_{p, q}^{\gamma}\left(W_{1}\right)$.

This definition assumes that there is at most one parallel field along γ with the value W_{1} at $\gamma\left(t_{1}\right)$. We shall see a little later that this is indeed so and also that there is a parallel field for any W_{1} so that we may define a map $P_{p, q}^{\gamma}: T_{p} S \mapsto T_{q} S$

At the moment, though, we need to analyze some of the finer details of the covariant derivative. For this purpose we introduce
Definition 8.1.5. The quantity $\left[\nabla_{\gamma(t)} W(t)\right]$ is called the algebraic value of the covariant derivative. Notice that it is only defined for vector fields of unit vectors along γ.

Corollary 8.1. If γ parametrized by arc length then we recover the geodesic curvature k_{g}^{γ} of γ by the formula

$$
k_{g}^{\gamma}(s)=\left[\nabla_{\gamma(s)} \gamma^{\prime}(s)\right] .
$$

Proposition 8.1.4. Let V, W be two vector fields of unit vectors along γ. Then $\left[\nabla_{\gamma(t)} W(t)\right]-\left[\nabla_{\gamma(t)} V(t)\right]=\frac{d \phi}{d t}$, where ϕ is a smooth determination of the angle from V to W.

Proof:. Let $V^{\perp}(t)=N(t) \times V(t)$. Then $W(t)=a(t) V(t)+b(t) V^{\perp}(t)$ and a, b are smooth with $a^{2}+b^{2}=1$. By Lemma 4.3 we can then write

$$
\begin{equation*}
W(t)=\cos \phi(t) V(t)+\sin \phi(t) V^{\perp}(t) \tag{1}
\end{equation*}
$$

with ϕ differentiable. Similarly,

$$
W^{\perp}(t)=N(t) \times W(t)=-\sin \phi(t) V(t)+\cos \phi(t) V^{\perp}(t) .
$$

Evidently,

$$
\left[\nabla_{\gamma(t)} W(t)\right]=\left\langle\nabla_{\gamma(t)} W(t), W^{\perp}(t)\right\rangle=\left\langle W^{\prime}(t), W^{\perp}(t)\right\rangle .
$$

Similarly, $\left[\nabla_{\gamma(t)} V(t)\right]=\left\langle V^{\prime}(t), V^{\perp}(t)\right\rangle$. We then differentiate (1) and take the inner product with W^{\perp} :

$$
\begin{aligned}
& \left\langle W^{\prime}, W^{\perp}\right\rangle= \\
& \begin{array}{l}
\left\langle-\phi^{\prime}(\sin \phi) V+(\cos \phi) V^{\prime}+\phi^{\prime}(\cos \phi) V^{\perp}+(\sin \phi)\left(V^{\perp}\right)^{\prime},\right.
\end{array} \\
& \left.\quad \quad-(\sin \phi) V+(\cos \phi) V^{\perp}\right\rangle= \\
& \left.\phi^{\prime}\left(\sin ^{2} \phi\right)-(\cos \phi \sin \phi)\left\langle V^{\prime}, V\right\rangle-\left(\sin ^{2} \phi\right)\left\langle V^{\perp}\right)^{\prime}, V\right\rangle+ \\
& \left.\left(\cos ^{2} \phi\right)\left\langle V^{\prime}, V^{\perp}\right\rangle+\phi^{\prime}\left(\cos ^{2} \phi\right)+(\sin \phi \cos \phi)\left\langle V^{\perp}\right)^{\prime}, V^{\perp}\right\rangle= \\
& \phi^{\prime}\left(\sin ^{2} \phi+\cos ^{2} \phi\right)+\left(\sin ^{2} \phi+\cos ^{2} \phi\right)\left\langle V^{\prime}, V^{\perp}\right\rangle=\phi^{\prime}+\left\langle V^{\prime}, V^{\perp}\right\rangle .
\end{aligned}
$$

8.2 The finer details of parallel transport

Proposition 8.2.1. In an orthogonally parametrized regular parametrized surface $\sigma(U)$, if W is a vector field of unit vectors along a curve γ in $\sigma(U)$, we have

$$
\begin{equation*}
\left[\nabla_{\gamma(t)} W(t)\right]=\frac{1}{2 \sqrt{E G}}\left(G_{u} \frac{d v}{d t}-E_{v} \frac{d u}{d t}\right)+\frac{d \psi}{d t} \tag{2}
\end{equation*}
$$

where ψ is the angle from σ_{u} to $W(t)$.
Proof:. Set $E_{1}(t)=\frac{\sigma_{u}(u(t), v(t)}{\sqrt{E(\gamma(t)}}$ and $E_{2}(t)=\frac{\sigma_{v}(u(t), v(t))}{\sqrt{G(\gamma(t)}}$. Then $\left\langle E_{1}^{\prime}, E_{1}^{\perp}\right\rangle$ can be computed from the formula right after Definition 8.1.3 above, with $b=0$ and $a=\frac{1}{\sqrt{E}}$:

$$
\left[\nabla_{\gamma(t)} E_{1}(t)\right]=\left(\Gamma_{11}^{2} u^{\prime}+\Gamma_{12}^{2} v^{\prime}\right) \frac{\sqrt{G}}{\sqrt{E}}
$$

The claim now follows easily from Proposition 8.1.10 when the values of Γ_{11}^{2} and Γ_{12}^{2} as given on page 108 are inserted.

Proposition 8.2.2. Let γ be a smooth curve in S, and let $q_{1}=\gamma\left(t_{1}\right)$, $q_{2}=\gamma\left(t_{2}\right)$ be two points on γ. Let $W_{1} \in T_{q_{1}} S$. Then there exists a unique parallel field W along γ such that $W\left(t_{1}\right)=W_{1}$. Accordingly, there is a map $P_{q_{1}, q_{2}}^{\gamma}$ from $T_{q_{1}} S$ to $T_{q_{2}} S$ defined by $P_{q_{1}, q_{2}}^{\gamma}\left(W_{1}\right)=W\left(t_{2}\right)$. This map is a linear bijection which is, furthermore, an isometry.
Proof:. We will assume that everything takes place inside an orthogonal coordinate chart $\sigma(U)$ and that, as before, $\gamma(t)=\sigma(u(t), v(t))$. Let

$$
P(t)=\frac{1}{2 \sqrt{E G}}\left(G_{u} \frac{d v}{d t}-E_{v} \frac{d u}{d t}\right)
$$

This is a smooth function given in terms of σ and γ. Equation (2) above can then be written

$$
\left[\nabla_{\gamma(t)} W(t)\right]=P(t)+\frac{d \psi}{d t}
$$

Let the notation be as above and set $E_{1}=E_{1}\left(t_{1}\right)$ and $E_{2}=E_{2}\left(t_{1}\right)$. If W_{1} is a given unit vector in $T_{q_{1}} S$ then

$$
W_{1}=\cos \psi_{0} E_{1}+\sin \psi_{0} E_{2}
$$

for some angle $\psi_{0} \in[0,2 \pi[$. If W is a smooth field of unit vectors along γ then

$$
W(t)=\cos \psi(t) E_{1}(t)+\sin \psi(t) E_{2}(t)
$$

for some smooth function ψ. Furthermore, $\psi\left(t_{1}\right)=\psi_{0}+2 \pi n$ for some integer n. We may, and shall, set $n=0$. Then this field is parallel if and only if

$$
\forall t: P(t)+\frac{d \psi}{d t}(t)=0 \text { and } \psi\left(t_{1}\right)=\psi_{0}
$$

which is equivalent to

$$
\psi(t)=\psi_{0}-\int_{t_{1}}^{t} P(t) d t
$$

This establishes both the existence and uniqueness, though at the moment only for fields of unit vectors. However, this restriction is easily lifted: Any vector $W_{1} \in T_{q_{1}} S$ can be written as $r W_{1}^{u}$ for some unit vector W_{1}^{u} and nonnegative $r \in \mathbb{R}$. Furthermore, if W is a parallel field along γ then so is $r W$. The isometry part of the proposition then follows from Proposition 8.1.5. The linearity part is left as an exercise.

Definition 8.2. The map $P_{q_{1}, q_{2}}^{\gamma}$ is called Parallel Transport along γ from q_{1} to q_{2}.

8.3 Geodesics and the Gauss curvature

In the following definition, we consider smooth curves defined on closed intervals. That is, $\alpha:[a, b] \rightarrow \mathbb{R}^{2}$, where $-\infty<a<b<\infty$. By this we will mean that α is smooth on (a, b) and that α and all its derivatives have continuous extensions to $[a, b]$ (that is, they have limits for $t \rightarrow a$ from the right and for $t \rightarrow b$ from the left). If there exists $\epsilon>0$ such that α is the restriction to $[a, b]$ of a smooth curve $\tilde{\alpha}$ defined on $] A-\epsilon, b+\epsilon[$ then, of course, α is smooth on $[a, b]$ according to this definition.
Definition 8.3.1. By a simple N-gon D_{N} in \mathbb{R}^{2} we mean a subset $D_{N} \subset \mathbb{R}^{2}$ such that
(1) D_{N} is closed and bounded (compact).
(2) The boundary ∂D_{N} consists of N pieces $\alpha_{i}\left(\left[a_{i}, b_{i}\right]\right), i=1, \ldots, N$, each of which is the trace of a smooth regular curve $\alpha_{i}=\left(u_{i}, v_{i}\right)$ defined on a closed interval. Call these pieces the boundary arcs.
(3) With the exception of N points $\tilde{v}_{1}, \tilde{v}_{2}, \ldots, \tilde{v}_{N} \in \partial D_{N}$, each point $p \in \partial D_{N}$ belongs to exactly one boundary arc.
(4) The exceptional points $\tilde{v}_{1}, \tilde{v}_{2}, \cdots, \tilde{v}_{N}$, henceforth called vertices, belong to exactly 2 boundary arcs.
(5) ∂D_{N} is a connected set (in fact the trace of a simple closed curve).

The last condition is perhaps a little mysterious, but it guarantees that D_{N} has got no holes. An equivalent formulation is that ∂D_{N} is the trace of a piecewise smooth simple curve.

Definition 8.3.2. By a simple N-gon \triangle_{N} in a parametrized regular surface $\sigma(U)$ we mean the image $\triangle_{N}=\sigma\left(D_{N}\right)$ of a regular N-gon D_{N} in \mathbb{R}^{2}. The boundary curves are defined as $\gamma_{i}=\sigma \circ \alpha_{i}$. In case all boundary curves are geodesics, we say that \triangle_{N} is a geodesic N-gon. If $N=3$ we call a 3 -gon a triangle and a 4-gon is called a quadrangle or a tetragon. From then on we only speak Greek: pentagon, hexagon, heptagon, octagon, ...

In the following we are going to consider the integral of the Gauss curvature. To this purpose we cite without proof

Theorem 8.3.1. [Green's Theorem in the plane] Assume that D_{N} is a regular N-gon in \mathbb{R}^{2}, assume that the boundary curve α_{i} is defined on $\left[s_{i}, s_{i+1}\right]$, $i=1, \ldots, N$, with $s_{1}=0<s_{2}<\cdots<s_{N+1}=L$, and that $\mathbf{W}=\left(W_{1}, W_{2}\right)$ is a smooth function defined on an open set containing D_{N}.

$$
\begin{aligned}
\int_{D_{N}}\left(\frac{\partial W_{2}}{\partial x}-\frac{\partial W_{1}}{\partial y}\right) d x d y & =\sum_{i=1}^{N} \int_{\left[s_{i}, s_{i+1}\right]} \alpha_{i}^{\prime} \cdot \mathbf{W} d s \\
& =\sum_{i=1}^{N} \int_{\left[s_{i}, s_{i+1}\right]}\left(W_{1} u_{i}^{\prime}+W_{2} v_{i}^{\prime}\right) d s .
\end{aligned}
$$

Now to the integral of the Gauss curvature: As mentioned previously (p. 110) we have that in an orthogonal parametrization (σ, U),

$$
K(\sigma(u, v))=\frac{-1}{2 \sqrt{E G}}\left[\left(\frac{E_{v}}{\sqrt{E G}}\right)_{v}+\left(\frac{G_{u}}{\sqrt{E G}}\right)_{u}\right]
$$

Then, by Green, we have that the integral of the Gauss curvature over a simple N-gon \triangle_{N} is given by

$$
\begin{aligned}
\int_{\triangle_{N}} K d \sigma & =\int_{D_{N}} K(\sigma(u, v) \sqrt{E G} d u d v \\
& =\int_{D_{N}}\left[\left(\frac{-E_{v}}{2 \sqrt{E G}}\right)_{v}+\left(\frac{-G_{u}}{2 \sqrt{E G}}\right)_{u}\right] d u d v \\
& =\sum_{i=1}^{N} \int_{\left[s_{i}, s_{i+1}\right]}\left(\frac{E_{v}}{2 \sqrt{E G}} u^{\prime}-\frac{G_{u}}{2 \sqrt{E G}} v^{\prime}\right) d s .
\end{aligned}
$$

We assume that the boundary arcs γ_{i} in \triangle_{n} are parametrized by arc length. Then, inserting $W(t)=\gamma^{\prime}(t)$ into (2) while using Corollary 8.1.9, we get

Proposition 8.3.

$$
\begin{equation*}
\int_{\triangle_{N}} K d \sigma=\sum_{i=1}^{N} \int_{\left[s_{i}, s_{i+1}\right]}\left(-k_{g}^{\gamma_{i}}+\frac{d \psi_{i}}{d s}\right) d s \tag{3}
\end{equation*}
$$

Here ψ_{i} measures the angle from σ_{u} to γ_{i}^{\prime}.
Consider $\gamma_{i}:\left[s_{i}, s_{i+1}\right] \mapsto S$ and $\gamma_{i+1}:\left[s_{i+1}, s_{i+2}\right] \mapsto S$. At the vertex $v_{i+1}=\gamma_{i}\left(s_{i+1}\right)=\gamma_{i+1}\left(s_{i+1}\right)$ we will now define the exterior angle θ_{i+1} as follows: Recall that we have chosen an orientation. Then, θ_{i+1} is defined as the oriented angle from $\gamma_{i}^{\prime}\left(s_{i+1}\right)$ to $\gamma_{i+1}^{\prime}\left(s_{i+1}\right)$. Provided they are not parallel and in opposite directions - and we make the assumption now that they are not - we choose $\left.\theta_{i+1} \in\right]-\pi, \pi[$. In the exceptional parallel case, one can use continuity to pick the right angle π or $-\pi$. So θ_{i+1} is the amount we must turn the tangent vector at the vertex v_{i+1} in the positive orientation. The vertex v_{1} is handled in a similar fashion.

We define the inner angle $\phi_{i}=\pi-\theta_{i}$. Observe that this may exceed π.

We claim without proof

Theorem 8.3.2. [The Theorem of the Turning Tangents, general] For a simple closed curve in \mathbb{R}^{2} with N vertices,

$$
\sum_{i=1}^{N} \int_{\left[s_{i}, s_{i+1}\right]} \frac{d \psi_{i}}{d s} d s+\sum_{i=1}^{N} \theta_{i}=2 \pi
$$

Rearranging in (3), we get
Theorem 8.3.3. [The Gauss-Bonnet Theorem (local version)]

$$
\int_{\sigma\left(D_{N}\right)} K d \sigma+\sum_{i=1}^{N} \int_{\left[s_{i}, s_{i+1}\right]} k_{g}^{\gamma_{i}} d s+\sum_{i=1}^{N} \theta_{i}=2 \pi
$$

Corollary 8.3. Let T be a geodesic triangle with interior angles ϕ_{1}, ϕ_{2}, and ϕ_{3}. Then

$$
\phi_{1}+\phi_{2}+\phi_{3}=\pi+\int_{T} K d \sigma .
$$

8.4 Gauss and Euler

We briefly define the structures needed for the global version of GaussBonnet. We will here look at general regular embedded surfaces S and we have to assume the existence of a continuous map $N: S \mapsto S^{2}$ for which $\forall q \in S: N(q) \perp T_{q}(S)$. We say that S is orientable in this case. All compact regular embedded surfaces are orientable.

Definition 8.4.1. Let S be a regular surface and \mathcal{T} a finite family of triangles in $S ; \mathcal{T}=\left\{T_{1}, T_{2}, \ldots, T_{F}\right\}$. We say that \mathcal{T} is the set of triangles of a triangulation provided

If, for $i \neq j: T_{i} \cap T_{j} \neq \emptyset$, then $T_{i} \cap T_{j}$ is a common side or a common vertex.
Furthermore, if we set $R=\cup_{i=1}^{F} T_{i}$, and if
(1) R is connected
(2) ∂R is the disjoint union of simple closed curves,
we say that \mathcal{T} is a triangulation of R.
We make a few additional observations: It is possible to have different triangulations of the same set R. Furthermore, it is possible to have a triangulation of a set R such that $\partial R=\emptyset$. We call this a compact surface (without boundary). The last phenomenon can be seen for instance for $R=S^{2}, R$ being a torus (a sphere with a handle) or, quite generally, R being a a sphere with any number of handles.

A triangulation of a cylinder. The top and bottoms are not included.
Though of course the circles in the two ends are included
$F=4, E=8, V=4, \chi=0$.

If one glues another cylinder on top of the first and then bends the structure to glue the top of the secont onto the bottom of the first (from the "empty side" on), one gets a triangulation of the torus.

A triangulation of a sphere (!) The top and bottoms are included.

$$
F=8, E=12, V=6, \chi=2 .
$$

A more conventional triangulation of the sphere. $F=8, E=12, V=6$.

Definition 8.4.2. Let \mathcal{T} be a triangulation of R with F triangles. Let E be the number of sides (common sides are only counted once), and let V be the number of vertices (again only counted once). The number

$$
\chi(T)=F-E+V
$$

is called the Euler characteristic of \mathcal{T}.
The most striking version of the global Gauss-Bonnet theorem is probably the following:

Theorem 8.4. [Gauss-Bonnet, global version] Let S be a compact surface and \mathcal{T} a triangulation of S. Then

$$
\int_{S} K d \sigma=2 \pi \chi(T)=2 \pi \chi(S) .
$$

The last equality states that by the first equality, the Euler Characteristic is the same for all triangulations of the same S, and hence only depends on S.
Proof. We will use Theorem 8.3.3 on each of the F triangles and sum up. The first crucial observation is that we can ignore the integrals of the geodesic curvatures. Indeed, each side is a common side of two triangles and will thus yield two contributions to the integrals of the geodesic curvatures corresponding to the side being viewed as a boundary curve of each of the two triangles. But the two curves are clearly traversed in opposite directions and hence the geodesic curvatures have opposite signs and hence the integrals cancel each other. This means that we may use the formula in Corollary 8.3.1 for each triangle since the errors we make in doing this cancel out. Thus we get

$$
\sum_{i=1}^{F} \sum_{j=1}^{3} \phi_{j}^{i}=F \pi+\sum_{i=1}^{F} \int_{T_{i}} K d \sigma
$$

or, equivalently,

$$
\phi_{1}^{1}+\phi_{2}^{1}+\phi_{3}^{1}+\phi_{1}^{2}+\phi_{2}^{2}+\phi_{3}^{2}+\cdots+\phi_{1}^{F}+\phi_{2}^{F}+\phi_{3}^{F}=\pi F+\int_{S} K d \sigma
$$

Here, $\int_{S} K d \sigma=\sum_{i=1}^{F} \int_{T_{i}} K d \sigma$ is a definition. If we rearrange the angles of the left hand side so that the angles belonging to the same vertex are grouped together we get that the left hand side is equal to $2 \pi V$. The reason is that the angles around a single vertex must add up to 2π. We conclude that

$$
2 \pi\left(V-\frac{1}{2} F\right)=\int_{S} K d \sigma
$$

For this to agree with the requested formula in Theorem 8.4, we must have $\frac{3}{2} F=E$. While this is not true for arbitrary triangulations, it is in our situation! A triangle has 3 sides so if we count all triangles we get $3 F$ sides, but in this way each side is counted twice. Hence we must divide by 2 .

8.5 Exercises

1 Prove the linearity mentioned in Proposition 8.2.2.
2 Use the figure on page 138 (or any other method) to compute χ for a torus.

3 In general, one defines

$$
g=\frac{2-\chi}{2}
$$

as the genus of a compact surface. Determine the genus for a 'handlebody' (a sphere with many handles so that a torus is a sphere with 1 handle).

Appendices

Appendix A. Euclidean spaces

The set \mathbb{R}^{n} is called Euclidean n-space. It is a vector space with the standard addition and scalar multiplication. In this appendix we recall some elementary notions for this space. The dot product of two vectors $v, w \in \mathbb{R}^{n}$ is the real number defined by

$$
v \cdot w=v_{1} w_{1}+\cdots+v_{n} w_{n}=\langle w, v\rangle .
$$

The norm of $v \in \mathbb{R}^{n}$ is given by

$$
\|v\|=(v \cdot v)^{1 / 2}=\left(v_{1}^{2}+\cdots+v_{n}^{2}\right)^{1 / 2}
$$

and the Euclidean distance between $v, w \in \mathbb{R}^{n}$ is then defined as the norm $\|v-w\|$ of their difference. The angle between v and w is defined to be the number $\theta \in[0, \pi]$ for which

$$
\begin{equation*}
\cos \theta=\frac{v \cdot w}{\|v\|\|w\|} \tag{A.1}
\end{equation*}
$$

provided the vectors are non-zero. It follows from the Cauchy-Schwarz inequality

$$
|v \cdot w| \leq\|v\|\|w\|
$$

that the right hand side of (A.1) belongs to $[-1,1]$, so that the angle θ is well defined.

The vectors v and w are said to be orthogonal if

$$
v \cdot w=0 \Leftrightarrow v \perp w,
$$

or equivalently, if the angle between them is $\frac{\pi}{2}$, and they are said to be orthonormal if in addition they both have length 1. An orthonormal basis for \mathbb{R}^{n} (or for a subspace) is a basis whose members are pairwise orthonormal, as for example the standard basis e_{1}, e_{2}, e_{3} for \mathbb{R}^{3}.

If U is any non-empty subset of \mathbb{R}^{n} we set

$$
U^{\perp}=\left\{x \in \mathbb{R}^{n} \mid \forall u \in U: x \cdot v=0\right\} .
$$

This is always a subspace, even when U is not.
We shall occasionally use the following:

Lemma A.1. Let $V \subset \mathbb{R}^{3}$ be a 2-dimensional subspace and let N be a nonzero vector such that

$$
N \perp V
$$

Then:

$$
w \perp N \Rightarrow w \in V
$$

More generally, if V is any subspace of any \mathbb{R}^{n}, then $V^{\perp \perp}=V$, where, by definition, $V^{\perp \perp}=\left(V^{\perp}\right)^{\perp}$.

For $r>0$ and $p \in \mathbb{R}^{n}$ the set

$$
B_{r}(p)=\{x \mid\|x-p\|<r\}
$$

is called the open ball around p of radius r. A neighborhood of p is a set $U \subset \mathbb{R}^{n}$ which contains the open ball $B_{r}(p)$ for some $r>0$. A set $U \subset \mathbb{R}^{n}$ is called open if it is a neighborhood of each of its points, that is, if for every $p \in U$ there exists $r>0$ such that all $x \in \mathbb{R}^{n}$ with $\|x-p\|<r$ belong to U.

For instance, a set in \mathbb{R}^{2} of the form $\left.U=\right] a, b[\times] c, d[$, with open intervals $] a, b[$ and $] c, d[$, is open.

The interior of an arbitrary set $A \subset \mathbb{R}^{n}$ is the set of points $p \in A$ for which A is a neighborhood. This set is often denoted A°, and it is an open set. It is the largest open set contained in A. In particular, the interior of an open set is the set itself.

The boundary of $A \subset \mathbb{R}^{n}$ is the set of points $p \in \mathbb{R}^{n}$ (not necessarily in $A)$ for which every open ball around p contains at least one point of A and at least one point of the complement $\mathbb{R}^{n} \backslash A$. It is often denoted ∂A. A set $A \subset \mathbb{R}^{n}$ is called closed if $\partial A \subset A$.

For example, the boundary of $U=] a, b[\times] c, d[$ consists of the four line segments that connect the corners of U.

A set $A \subset \mathbb{R}^{n}$ is called bounded if there exists $R>0$ such that $\|x\| \leq R$ for all $x \in A$.

We recall that a function $f: A \rightarrow \mathbb{R}$, where $A \subset \mathbb{R}^{n}$, is called continuous if for each $p \in A$ and each $\epsilon>0$ there exists $\delta>0$ such that if $\|x-p\|<\delta$ then $|f(x)-f(p)|<\epsilon$. A function $f: A \rightarrow \mathbb{R}^{m}$ is continuous if the components $f_{1}, \ldots, f_{m}: A \rightarrow \mathbb{R}$ defined by $f(x)=\left(f_{1}(x), \ldots, f_{m}(x)\right)$, are continuous.

Exercises

A. 1 Determine the angle between $(1,1,1,1)$ and $(1,1,1,0)$ in \mathbb{R}^{4}.
A. 2 Let $\gamma(t)=\left(3 t, 3 t^{2}, 2 t^{3}\right)$. Show that the angle between the tangent vector of γ and the line given by $y=0, z=x$, is a constant.
A. 3 Verify that $u=\left(\frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right)$ and $v=\left(\frac{1}{3},-\frac{2}{3}, \frac{2}{3}\right)$ are orthonormal vectors. Find a third vector $w \in \mathbb{R}^{3}$, such that u, v, w is orthonormal basis. Determine the coordinates for $a=(1,1,1)$ with respect to this basis.
A. 4 Prove that the set $\left\{(u, v) \in \mathbb{R}^{2} \mid u, v>0\right\}$ is open in \mathbb{R}^{2}, and that $\left\{(u, v) \in \mathbb{R}^{2} \mid u, v \geq 0\right\}$ is not open.
A. 5 Assume that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuous. Prove that $\left\{x \in \mathbb{R}^{n} \mid f(x)<c\right\}$ is an open set for every constant $c \in \mathbb{R}$.
A. 6 Verify that the open ball $B_{r}(p)$ really is open.

Appendix B. Differentiable functions of several variables

Differentiability

Let $\Omega \subset \mathbb{R}^{n}$ be open, and let $f: \Omega \rightarrow \mathbb{R}$. A partial derivative of f is defined as the derivative of f with respect to one of the variables x_{1}, \ldots, x_{n}, the others being treated as constants. For example the first partial derivative $f_{x_{1}}^{\prime}=\frac{\partial f}{\partial x_{1}}$ at $a \in \Omega$ is the derivative at a_{1} of

$$
t \mapsto f\left(t, a_{2}, \ldots, a_{n}\right)
$$

The partial derivative at a is defined when this function of t is differentiable at a_{1}. If this is the case for all $i=1, \ldots, n$, we say that f has partial derivatives at a. If f has partial derivatives at all $a \in \Omega$, and if these partial derivatives are continuous functions of a, then we say that f is continuously differentiable or a C^{1}-function on Ω. The set of such functions on Ω is denoted $C^{1}(\Omega)$.

Let $F: \Omega \rightarrow \mathbb{R}^{m}$ be a vector function, and let $F_{1}, \ldots, F_{m}: \Omega \rightarrow \mathbb{R}$ denote the components. The partial derivatives (if they exist) of these components functions are conveniently arranged in the Jacobi matrix

$$
D F(a)=\left(\begin{array}{ccc}
\frac{\partial F_{1}}{\partial x_{1}}(a) & \ldots & \frac{\partial F_{1}}{\partial x_{n}}(a) \\
\vdots & & \vdots \\
\frac{\partial F_{m}}{\partial x_{1}}(a) & \ldots & \frac{\partial F_{m}}{\partial x_{n}}(a)
\end{array}\right) .
$$

Notice that $D F$ is a map that associates a matrix to each point $a \in \Omega$. If $n=1$ we identify the single column matrix $D F(a)$ with a vector in \mathbb{R}^{m}. The vector function $D F: \mathbb{R} \rightarrow \mathbb{R}^{m}$ is in this case denoted F^{\prime} and called the derivative of F. The Jacobi matrix is the analogue for functions of several variables of this derivative.

Example B. 1 A linear map $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is represented by an $m \times n$ matrix $A=\left(a_{i j}\right)$ as follows:

$$
L(x)=A x=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & & \vdots \\
a_{m 1} & \ldots & a_{m n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
a_{11} x_{1}+\cdots+a_{1 n} x_{n} \\
\vdots \\
a_{m 1} x_{1}+\cdots+a_{m n} x_{n}
\end{array}\right) .
$$

It is easily seen that the Jacobian of this map is exactly the matrix A, that is, $D L(x)=A$ for all $x \in \mathbb{R}^{n}$.

We call F continuously differentiable if each coordinate function F_{j} is continuously differentiable, or in other words, if each entry in the Jacobi matrix exists and depends continuously on a. Recall the following fundamental theorem, which asserts that $x \mapsto F(a)+D F(a)(x-a)$ approximates F near a.
Theorem B.1. Let $F: \Omega \rightarrow \mathbb{R}^{m}$ be continuously differentiable and let $a \in \Omega$. Then

$$
\begin{equation*}
\frac{\|F(x)-[F(a)+D F(a)(x-a)]\|}{\|x-a\|} \rightarrow 0 \quad \text { for } x \rightarrow a \tag{B.1}
\end{equation*}
$$

that is, the vector difference $F(x)-[F(a)+D F(a)(x-a)]$ tends to 0 even after division by $\|x-a\|$.

A function F which satisfies (B.1) is called differentiable at a, and the theorem simply asserts that 'continuously differentiable' implies 'differentiable'.

Composition

The differentiation of composed maps is governed by the chain rule. For functions of one variable it is the well known rule

$$
(g \circ f)^{\prime}(a)=g^{\prime}(f(a)) f^{\prime}(a),
$$

and for functions of several variables it takes the following form.
Theorem B. 2 (Chain rule). Let $\Omega \subset \mathbb{R}^{n}$ and $\Omega^{\prime} \subset \mathbb{R}^{m}$ be open, and let

$$
F: \Omega \rightarrow \Omega^{\prime} \quad \text { and } \quad G: \Omega^{\prime} \rightarrow \mathbb{R}^{l}
$$

be continuously differentiable. Then

$$
G \circ F: \Omega \rightarrow \mathbb{R}^{l}
$$

is continuously differentiable and has the Jacobi matrix

$$
D(G \circ F)(a)=D G(F(a)) D F(a)
$$

for all $a \in \Omega$, where the product on the right is given by ordinary matrix multiplication.

In particular, if $n=1$ we can write the chain rule in the following form

$$
\begin{equation*}
(G \circ F)^{\prime}(a)=D G(F(a)) F^{\prime}(a) \tag{B.2}
\end{equation*}
$$

Example B.2 Let $F: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be given by $F(t)=\left(t^{2}, t+1\right)$ and let $G: \mathbb{R}^{2} \rightarrow$ \mathbb{R} be given by $G\left(y_{1}, y_{2}\right)=y_{1} y_{2}^{2}-y_{1}^{2}$. Then

$$
F^{\prime}(t)=\binom{2 t}{1}, \quad \text { and } \quad D G(y)=\left(\begin{array}{ll}
y_{2}^{2}-2 y_{1} & 2 y_{1} y_{2}
\end{array}\right)
$$

Hence $G \circ F: \mathbb{R} \rightarrow \mathbb{R}$ has the derivative

$$
\begin{aligned}
(G \circ F)^{\prime}(t) & =D G(F(t)) F^{\prime}(t) \\
& =\left(\begin{array}{ll}
(t+1)^{2}-2 t^{2} & 2 t^{2}(t+1)
\end{array}\right)\binom{2 t}{1} \\
& =\left(-t^{2}+2 t+1\right) 2 t+\left(2 t^{3}+2 t^{2}\right) 1=6 t^{2}+2 t .
\end{aligned}
$$

Notice that we could also first have determined the expression $G \circ F(t)=$ $t^{2}(t+1)^{2}-t^{4}=2 t^{3}+t^{2}$ and then differentiated $(G \circ F)^{\prime}=6 t^{2}+2 t$. For the purpose of computing $(G \circ F)^{\prime}$, this would clearly be much faster. The importance of the chain rule is more theoretical, it gives a general expression for the derivative.

One version of the chain rule is of particular use:
Theorem B.2' (Chain rule, special). Let $I \subset \mathbb{R}$ and $\Omega \subset \mathbb{R}^{3}$ be open, and let

$$
\gamma: I \rightarrow \Omega \quad \text { be a smooth curve and } \quad F: \Omega \rightarrow \mathbb{R}
$$

smooth. Write $\gamma(t)=(x(t), y(t), z(t))$ Then

$$
\begin{gathered}
\frac{d}{d t}(F(x(t), y(t), z(t)))= \\
x^{\prime}(t) F_{x}^{\prime}(x(t), y(t), z(t))+y^{\prime}(t) F_{y}^{\prime}(x(t), y(t), z(t))+z^{\prime}(t) F_{z}^{\prime}(x(t), y(t), z(t))
\end{gathered}
$$

Symmetry of mixed partials

A function $f: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is called a C^{2}-function if it is C^{1} and all the first order partial derivatives are also C^{1}-functions. The partial derivatives of the partial derivatives, that is, the functions

$$
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}=\frac{\partial \frac{\partial f}{\partial x_{j}}}{\partial x_{i}}
$$

are called higher or mixed partial derivatives.
Theorem B.3. Let $f: \Omega \rightarrow \mathbb{R}$ be C^{2}. Then

$$
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}=\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}
$$

for all i and j.
Similarly, we can consider derivatives of order higher than 2 . If f has partial derivatives up to order k, and if these are continuous, then f is called
a C^{k}-function. From the theorem above we can derive similar statements about symmetry of these higher derivatives, for example

$$
\frac{\partial^{3} f}{\partial x_{1}^{2} \partial x_{2}}=\frac{\partial^{3} f}{\partial x_{1} \partial x_{2} \partial x_{1}}=\frac{\partial^{3} f}{\partial x_{2} \partial x_{1}^{2}}
$$

when f is a C^{3}-function. In short, the conclusion is that differentiations with respect to x_{1}, \ldots, x_{n} commute with each other (when applied to functions which are continuously differentiable up to sufficient order).

A function which is C^{k} for all k is called C^{∞} or smooth. The set of such functions on Ω is denoted $C^{\infty}(\Omega)$. This is the class of functions that is mainly used in differential geometry.

Taylor's theorem

Taylor's theorem allows us to approximate a smooth function by a polynomial of any given order, in the vicinity of a given point.

For a smooth function $f: \Omega \rightarrow \mathbb{R}$, where $\Omega \subset \mathbb{R}^{2}$, it reads to the order one

$$
f\left(u_{0}+h, v_{0}+k\right) \simeq f\left(u_{0}, v_{0}\right)+f_{u}^{\prime}\left(u_{0}, v_{0}\right) h+f_{v}^{\prime}\left(u_{0}, v_{0}\right) k
$$

and to the order two

$$
\begin{aligned}
f\left(u_{0}+h, v_{0}+k\right) \simeq & f\left(u_{0}, v_{0}\right)+f_{u}^{\prime}\left(u_{0}, v_{0}\right) h+f_{v}^{\prime}\left(u_{0}, v_{0}\right) k \\
& +\frac{1}{2} f_{u u}^{\prime \prime}\left(u_{0}, v_{0}\right) h^{2}+f_{u v}^{\prime \prime}\left(u_{0}, v_{0}\right) h k+\frac{1}{2} f_{v v}^{\prime \prime}\left(u_{0}, v_{0}\right) k^{2} .
\end{aligned}
$$

These statements are qualitative, because the 'approximation' \simeq is not a well defined relation.

There are more precise versions, where the remainder, which by definition is the difference between the two sides of \simeq, is estimated. To the order one

$$
f\left(u_{0}+h, v_{0}+k\right)=f\left(u_{0}, v_{0}\right)+f_{u}^{\prime}\left(u_{0}, v_{0}\right) h+f_{v}^{\prime}\left(u_{0}, v_{0}\right) k+R_{1}(h, k),
$$

and the estimate, which is valid for a C^{2}-function $f: \Omega \rightarrow \mathbb{R}$, is as follows. For a given point $\left(u_{0}, v_{0}\right) \in \Omega$ there exist constants $\epsilon>0$ and $C>0$ such that

$$
\left|R_{1}(h, k)\right| \leq C\|(h, k)\|^{2}
$$

for all $(h, k) \in \mathbb{R}^{2}$ with $\|(h, k)\|<\epsilon$.
Likewise, to the order two,

$$
\begin{aligned}
& f\left(u_{0}+h, v_{0}+k\right)=f\left(u_{0}, v_{0}\right)+f_{u}^{\prime}\left(u_{0}, v_{0}\right) h+f_{v}^{\prime}\left(u_{0}, v_{0}\right) k \\
& \quad+\frac{1}{2} f_{u u}^{\prime \prime}\left(u_{0}, v_{0}\right) h^{2}+f_{u v}^{\prime \prime}\left(u_{0}, v_{0}\right) h k+\frac{1}{2} f_{v v}^{\prime \prime}\left(u_{0}, v_{0}\right) k^{2}+R_{2}(h, k)
\end{aligned}
$$

with the following estimate valid for a C^{3}-function f. For a given point $\left(u_{0}, v_{0}\right) \in \Omega$ there exist constants $\epsilon>0$ and $C>0$ such that

$$
\left|R_{2}(h, k)\right| \leq C\|(h, k)\|^{3}
$$

for all $(h, k) \in \mathbb{R}^{2}$ with $\|(h, k)\|<\epsilon$.

Exercises

B. 1 Find f_{u}^{\prime} and f_{v}^{\prime} for each of the functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$:

1) $f(u, v)=u^{2}+v^{2}+3 u v-u-4 v$,
2) $f(u, v)=e^{2 u-v+1}$
B. 2 Determine the Jacobi matrix at $(1,1)$ for $f:\{(u, v) \mid u, v>0\} \rightarrow \mathbb{R}^{2}$, given by $f(u, v)=\left(u^{2} v, 2 \sqrt{u v}\right)$.
B. 3 Let f be a differentiable map $\mathbb{R}^{3} \rightarrow \mathbb{R}$. Determine the derivative of $t \mapsto f\left(t, t^{2}, e^{t}\right)$.
B. 4 Let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by $g(x, y)=x y$, and let $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by $\varphi(x, y)=(x+y, x-y)$. Determine the Jacobi matrices for g, φ, and for the inverse map $f(u, v)=\varphi^{-1}(u, v)$. Determine the Jacobi matrix for $g \circ f$ in each of the following two ways:
3) By using the chain rule.
4) Through explicit computation of $g \circ f(u, v)$.
B. 5 Let φ be an arbitrary differentiable function $\mathbb{R} \rightarrow \mathbb{R}$, and let $F(x, y)=$ $x y-\varphi(y / x)$ for $(x, y) \in \mathbb{R}^{2}$ with $x \neq 0$. Show that $x \frac{\partial F}{\partial x}+y \frac{\partial F}{\partial y}=2 x y$.
B. 6 Prove the rule

$$
(f \cdot g)^{\prime}=f^{\prime} \cdot g+f \cdot g^{\prime}
$$

for $f, g: \mathbb{R} \rightarrow \mathbb{R}^{n}$ (see page 68).
B. 7 Let $\gamma: I \rightarrow \mathbb{R}^{n}$ be smooth with $\gamma(t) \neq 0$ for all t. Show that $t \mapsto\|\gamma(t)\|$ is differentiable and has the derivative

$$
\frac{\gamma^{\prime}(t) \cdot \gamma(t)}{\|\gamma(t)\|}
$$

Appendix C. Normal vectors and cross products

In this appendix the construction of normal vectors in \mathbb{R}^{2} and cross products in \mathbb{R}^{3} is briefly presented. These notions appear naturally in many geometrical constructions. For example the geometry of planes in \mathbb{R}^{3} is often expressed by means of cross products. Cross products also play a prominent role in mechanics and electromagnetic theory.

The common background for the definitions in this appendix for \mathbb{R}^{2} and \mathbb{R}^{3} is a choice of orientation, which we will first explain generally for \mathbb{R}^{n}. For an ordered set of n vectors $a_{1}, a_{2}, \ldots, a_{n}$ in \mathbb{R}^{n} we denote by $\left[a_{1} a_{2} \ldots a_{n}\right]$ the $n \times n$ matrix which has a_{1}, a_{2} etc as its columns (in that order). We divide the bases for \mathbb{R}^{n} in two classes, depending on whether the determinant of $\left[a_{1} a_{2} \ldots a_{n}\right]$ is positive or negative (the determinant is non-zero since the vectors are linearly independent). An orientation of \mathbb{R}^{n} is a choice of one of the two classes. The standard choice is the class of bases which have positive determinant. Such a basis is then called positively ordered.

Having made this standard choice we thus say that two basis vectors a and b in \mathbb{R}^{2} are positively ordered if $\operatorname{det}[a b]>0$ and we say that three basis vectors a, b and c in \mathbb{R}^{3} are positively ordered if $\operatorname{det}[a b c]>0$. For example, the standard basis vectors $e_{1}=(1,0)$ and $e_{2}=(0,1)$ for \mathbb{R}^{2} and $e_{1}=(1,0,0)$, $e_{2}=(0,1,0)$ and $e_{3}=(0,0,1)$ for \mathbb{R}^{3} are positively ordered.

In \mathbb{R}^{2} this choice of orientation means that a, b is a positively ordered basis if and only if the direction of b can be reached from the direction of a by a counter clockwise rotation of an angle between 0 and π, and in \mathbb{R}^{3} it means that a, b, c is positively ordered if and only if the vectors form a right-handed triple.

Let $a=\left(a_{1}, a_{2}\right) \in \mathbb{R}^{2}$. We define the normal vector by $\hat{a}=\left(-a_{2}, a_{1}\right)$. It is the vector obtained by rotating a the angle $\frac{\pi}{2}$ in counter clockwise direction (which is the positive direction according to our chosen orientation). Notice that

$$
\begin{equation*}
\operatorname{det}[a b]=a_{1} b_{2}-a_{2} b_{1}=\hat{a} \cdot b \tag{C.1}
\end{equation*}
$$

for all $b \in \mathbb{R}^{2}$, where the dot denotes the standard dot product (see Appendix A). The map $a \mapsto \hat{a}$ is linear.

The construction of \hat{a} is particular for \mathbb{R}^{2}. In \mathbb{R}^{3} there is no way to distinguish a normal vector to a given vector, since there are infinitely many normal vectors. Instead, the analog of the construction points out a normal vector to two given vectors.

For two vectors $a=\left(a_{1}, a_{2}, a_{3}\right)$ and $b=\left(b_{1}, b_{2}, b_{3}\right)$ in \mathbb{R}^{3} we define the cross product, which is again a vector in \mathbb{R}^{3}, by

$$
a \times b=\left(\left|\begin{array}{ll}
a_{2} & b_{2} \\
a_{3} & b_{3}
\end{array}\right|,-\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{3} & b_{3}
\end{array}\right|,\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|\right) .
$$

It follows from the determinant identity

$$
\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|=c_{1}\left|\begin{array}{ll}
a_{2} & b_{2} \\
a_{3} & b_{3}
\end{array}\right|-c_{2}\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{3} & b_{3}
\end{array}\right|+c_{3}\left|\begin{array}{ll}
a_{1} & b_{1} \\
a_{2} & b_{2}
\end{array}\right|
$$

that $a \times b$ is uniquely characterized by the property that

$$
\begin{equation*}
\operatorname{det}[a b c]=(a \times b) \cdot c \tag{C.2}
\end{equation*}
$$

for all $c \in \mathbb{R}^{3}$. Equation (C.2) is the 3-dimensional analogue of (C.1), the expression on the right is called the triple product of a, b and c. It follows from this characterization that $a \times b$ depends linearly on both a and b (since the determinant depends linearly on each of its columns).

The following properties of $a \times b$ are easily verified
(i) $a \times b$ is perpendicular to both a and b
(ii) $b \times a=-a \times b$
(iii) $\|a \times b\|^{2}=\|a\|^{2}\|b\|^{2}-(a \cdot b)^{2}$
(iv) $\|a \times b\|$ is the area of the parallelogram spanned by a and b
(v) a and b are linearly independent if and only if $a \times b \neq 0$
(vi) if $a \times b \neq 0$ then a, b, and $a \times b$ is a right handed triple.
(x) if $a \times b \neq 0$ and if $c \perp a, c \perp b$ then $c=\lambda(a \times b)$ with $\lambda \in \mathbb{R}$.

The property (vi) in this list reflects our chosen orientation of \mathbb{R}^{3}. Notice that properties $(i),(i v)$ and (vi) together determine $a \times b$ uniquely in geometric terms.

Exercises

C. 1 Prove that if three vectors $u, v, w \in \mathbb{R}^{3}$ satisfy $u+v+w=0$, then $u \times v=v \times w=w \times u$.
C. 2 Let A be an orthogonal 3×3-matrix with $\operatorname{det} A=1$. Prove

$$
A\left(w_{1} \times w_{2}\right)=A w_{1} \times A w_{2}
$$

for all $w_{1}, w_{2} \in \mathbb{R}^{3}$ (Hint: Use the characterization by (C.2) of the cross product, together with the equation (D.1)).

Appendix D. Diagonalization of symmetric matrices

Let A be an $n \times n$ matrix. By definition, a diagonalization of A is accomplished by an invertible matrix C, if the matrix $D=C^{-1} A C$ is diagonal (that is, all entries outside the diagonal are 0). Diagonalization plays a very important role in linear algebra, basically because it is a means to simplify expressions involving A. It is not possible to diagonalize all matrices A, certain conditions have to be imposed. The main result of this appendix, which is stated in the theorem below, gives one such condition (but not the most general one).

The theory of diagonalization is closely connected with the theory of eigenvectors and eigenvalues. Recall that an eigenvalue for the matrix A is a number λ for which there exists a non-zero vector $w \in \mathbb{R}^{n}$ such that

$$
A w=\lambda w
$$

The vector w is called a corresponding eigenvector.
It is a fact known from linear algebra that a number λ is an eigenvalue if and only if it is a root in the characteristic polynomial

$$
\lambda \mapsto \operatorname{det}(A-\lambda I) .
$$

The corresponding eigenvectors are the nonzero solutions w to $(A-\lambda I) w=0$.
Recall that the matrix A is called symmetric if it equals its transposed matrix A^{t}, that is, if its elements satisfy $a_{i j}=a_{j i}$ for all i, j. Recall also that an orthogonal matrix is a square matrix C with real entries for which the transposed matrix C^{t} is inverse to C, that is, $C^{t} C=I$. Equivalently, it is a matrix whose columns form an orthonormal set.

Theorem D.1. Let A be a symmetric $n \times n$ matrix. There exists an orthogonal $n \times n$ matrix C such that $D=C^{-1} A C$ is a diagonal matrix with these roots as its entries. The columns of C are eigenvectors for A, and the eigenvalues are the diagonal elements of D (in the corresponding order).
Proof. For simplicity we shall assume $n=2$ in the proof. This is not a serious restriction for the present notes, where all the applications have $n=2$. In order to pinpoint where the assumption is critically used, we will keep n arbitrary in the beginning of the proof.

We regard vectors in \mathbb{R}^{n} as matrices with a single column, and note that the dot product $v \cdot w=v_{1} w_{1}+\ldots v_{n} w_{n}$ can be written by means of matrix multiplication as $v \cdot w=v^{t} w$. For any $n \times n$ matrix A we have

$$
\begin{equation*}
A v \cdot w=(A v)^{t} w=v^{t} A^{t} w=v \cdot A^{t} w \tag{D.1}
\end{equation*}
$$

and if A is symmetric we thus obtain

$$
\begin{equation*}
A v \cdot w=v \cdot A w \tag{D.2}
\end{equation*}
$$

for all $v, w \in \mathbb{R}^{n}$.
We first prove that eigenvectors corresponding to different eigenvalues are orthogonal, that is, if $v, w \in \mathbb{R}^{n} \backslash\{0\}$ and $A v=\lambda v, A w=\mu w$ with $\lambda \neq \mu$, then $v \cdot w=0$. By (D.2) we have

$$
\lambda v \cdot w=(A v) \cdot w=v \cdot(A w)=\mu v \cdot w,
$$

and since $\lambda \neq \mu$ we must indeed have $v \cdot w=0$.
We next observe that if $w_{1}, \ldots, w_{n} \in \mathbb{R}^{n}$ is an orthonormal set of eigenvectors for A, then the matrix $C=\left[w_{1} \ldots w_{n}\right]$ with these columns is orthogonal. Since the columns of the matrix product $A C$ are obtained by multiplication of A with the columns of C, we see that

$$
A C=\left[A w_{1} \ldots A w_{n}\right]=\left[\lambda_{1} w_{1} \ldots \lambda_{n} w_{n}\right]=C D
$$

where D is the diagonal matrix with the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ as entries. It follows that $C^{-1} A C=D$, so that C diagonalizes A.

It remains to be shown that there exist such an orthonormal set of eigenvectors. For this last step we assume $n=2$. Let

$$
A=\left(\begin{array}{ll}
a & b \\
b & d
\end{array}\right)
$$

We may assume $b \neq 0$, since otherwise A is already diagonal and we can take $w_{1}=e_{1}, w_{2}=e_{2}$. The characteristic polynomial is $\lambda^{2}-(a+d) \lambda+a d-b^{2}$, and its roots are given by

$$
\lambda=\frac{a+d \pm \sqrt{(a+d)^{2}-4\left(a d-b^{2}\right)}}{2}=\frac{a+d \pm \sqrt{(a-d)^{2}+4 b^{2}}}{2} .
$$

Since $b \neq 0$ the expression inside the square root is positive, and thus there are two different real roots λ_{1}, λ_{2}. As mentioned above each root in the characteristic polynomial is an eigenvalue, let $w_{1}, w_{2} \in \mathbb{R}^{2}$ be normalised eigenvectors. Then $w_{1} \perp w_{2}$ by what was shown above, and hence they form an orthonormal set.

Example D. 1 The eigenvalues of the symmetric matrix

$$
\left(\begin{array}{ll}
1 & \frac{1}{2} \\
\frac{1}{2} & 1
\end{array}\right)
$$

are determined as the roots $\frac{1}{2}$ and $\frac{3}{2}$ of

$$
\operatorname{det}\left(\begin{array}{cc}
1-\lambda & \frac{1}{2} \\
\frac{1}{2} & 1-\lambda
\end{array}\right)=\lambda^{2}-2 \lambda+\frac{3}{4} .
$$

An eigenvector corresponding to $\lambda=\frac{1}{2}$ is determined by solution of

$$
\left(\begin{array}{ll}
1 & \frac{1}{2} \\
\frac{1}{2} & 1
\end{array}\right)\binom{x}{y}=\frac{1}{2}\binom{x}{y}
$$

which leads to, for example

$$
\binom{x}{y}=\binom{1}{-1} .
$$

An eigenvector for $\lambda=\frac{3}{2}$ is then found as

$$
\binom{x}{y}=\widehat{\binom{1}{-1}}=\binom{1}{1} .
$$

The corresponding matrix C has normalisations of these eigenvectors as its columns

$$
C=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right),
$$

and the diagonalized matrix is

$$
D=\left(\begin{array}{cc}
\frac{1}{2} & 0 \\
0 & \frac{3}{2}
\end{array}\right) .
$$

It is useful to express the preceding theorem as a result about linear maps, rather than matrices. This is done in the following corollary.

Corollary D.1. Let $Z \subset \mathbb{R}^{m}$ be a linear subspace, and let $L: Z \rightarrow Z$ be a linear map which is symmetric, that is

$$
\begin{equation*}
L\left(u_{1}\right) \cdot u_{2}=u_{1} \cdot L\left(u_{2}\right), \quad u_{1}, u_{2} \in Z \tag{D.3}
\end{equation*}
$$

Then there exists an orthonormal basis for Z consisting of eigenvectors for L.
Proof. Let $\eta_{1}, \ldots, \eta_{n}$ be an arbitrary orthonormal basis for Z, and let A denote the $n \times n$ matrix which represents L with respect to this basis, that is,

$$
\begin{equation*}
L \eta_{j}=\sum_{i=1}^{n} a_{i j} \eta_{i}, \quad(j=1, \ldots, n) \tag{D.4}
\end{equation*}
$$

The proof is based on the following two observations, which are well known from linear algebra. A vector $u=x_{1} \eta_{1}+\cdots+x_{n} \eta_{n} \in U$ is an eigenvector for L with eigenvalue λ,

$$
L u=\lambda u,
$$

if and only if the column of its coordinates

$$
x=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \in \mathbb{R}^{n}
$$

is an eigenvector for A,

$$
A x=\lambda x
$$

with the same eigenvalue. The second observation is that the dot product of two vectors $u, v \in Z$ is computed as the dot product of their coordinates:

$$
\left(x_{1} \eta_{1}+\cdots+x_{n} \eta_{n}\right) \cdot\left(y_{1} \eta_{1}+\cdots+y_{n} \eta_{n}\right)=x_{1} y_{1}+\cdots+x_{n} y_{n}
$$

Since the basis is orthonormal, it follows from (D.4) that

$$
a_{i j}=L\left(\eta_{j}\right) \cdot \eta_{i}
$$

and hence it follows from the symmetry of L, that A is a symmetric matrix. By Theorem D. 1 there exists an orthogonal $n \times n$ matrix C whose columns are eigenvectors for A. Let v_{1}, \ldots, v_{n} be the vectors in U whose coordinates with respect to $\eta_{1}, \ldots, \eta_{n}$ are the columns of C, that is

$$
v_{i}=c_{1 i} \eta_{1}+\cdots+c_{n i} \eta_{n} \in Z, \quad(i=1, \ldots, n)
$$

The first observation made above implies that v_{1}, \ldots, v_{n} are eigenvectors for L, and the second observation implies that they form an orthonormal set. Since the dimension of Z is n, they form a basis for Z.

Exercises

D. 1 Let $w=(3,4) \in \mathbb{R}^{2}$, and let

$$
A=\left(\begin{array}{cc}
a & 12 \\
12 & a+7
\end{array}\right) .
$$

Show that w and \hat{w} are eigenvectors for A, and determine their eigenvalues.
D. 2 Let

$$
A=\left(\begin{array}{ll}
2 & 2 \\
2 & 5
\end{array}\right)
$$

Determine an orthogonal matrix C and a diagonal matrix D, such that $D=C^{-1} A C$. How many pairs of 2×2-matrices (C, D) satisfy these requirements?
D. 3 Let A be an $n \times n$-matrix. Show that if there exists an orthogonal matrix diagonalizing A, then A is symmetric.

Appendix E. Hyperbolic functions

The hyperbolic cosine and hyperbolic sine functions are defined by

$$
\begin{equation*}
\cosh t=\frac{e^{t}+e^{-t}}{2}, \quad \sinh t=\frac{e^{t}-e^{-t}}{2} \tag{E.1}
\end{equation*}
$$

for $t \in \mathbb{R}$. The equation

$$
\cosh ^{2} t-\sinh ^{2} t=1
$$

which resembles the well-known $\cos ^{2} t+\sin ^{2} t=1$, is easily derived from (E.1). It follows that the point $(\cosh t, \sinh t)$ lies on a hyperbola (see Example 1.1.3), and because of this the functions are viewed as hyperbolic counterparts to the trigonometric functions cos and sin. The graphs of the two functions are shown below.

Notice that cosh is even and sinh is odd. In analogy with the definitions of the tangent and cotangent one defines

$$
\tanh x=\frac{\sinh x}{\cosh x}, \quad \operatorname{coth} x=\frac{\cosh x}{\sinh x} .
$$

It is easily seen that the derivatives of these functions are

$$
\begin{aligned}
\frac{d}{d x} \cosh x & =\sinh x, & \frac{d}{d x} \sinh x & =\cosh x \\
\frac{d}{d x} \tanh x & =\frac{1}{\cosh ^{2} x}, & \frac{d}{d x} \operatorname{coth} x & =-\frac{1}{\sinh ^{2} x} .
\end{aligned}
$$

Notational Index

$\langle w, v\rangle$: inner product, 141
A : area, 57
b(s): binormal, 74
$b_{i j}$: component matrix of $I_{p}, 106$
\mathcal{C} : level set, 9
D : Jacobi matrix, 143
E : component of $I_{p}, 47$
F : component of $I_{p}, 47$
G : component of $I_{p}, 47$
$g_{i j}$: component matrix of $I_{p}, 106$
I_{p} : first fundamental form, 47
I_{p} : second fundamental form, 88
K : Gaussian curvature, 103
L : component of $I_{p}, 88$
M : component of $\Pi_{p}, 88$
$\mathbf{m}(s)$: normal along curve, 76
N : component of $I_{p}, 88$
$\mathbf{N}, \mathbf{N}^{\sigma}$: unit normal, 30
$\mathbf{n}(s)$: principal normal, 74
$\nabla_{\gamma} W$, Covariant derivative, 131
$\left[\nabla_{\gamma} W\right]$, Algebrais value of the covariant derivative, 131
$R_{j k i l}$: Riemann symbol, 109
\mathcal{S} : level set, 14
$T_{p} \sigma$: tangent space, 26
$\mathbf{t}(s)$: unit tangent, 74
$\mathbf{u}(s)$: tangent normal, 77
W_{p} : shape operator, 86,91
$\Gamma_{i j}^{k}$: Christoffel symbol, 107
γ : a parametrized curve, 1
$\theta(t)$: tangent angle function, 69
\triangle_{N} : Simple N-gon, 135,
κ : curvature, 65, 71
κ_{g} : geodesic curvature, 77
κ_{n} : normal curvature, 77
κ_{1}, κ_{2} : principal curvatures, 92
$\mu(t)$: plane coordinates of curve, 36
σ : a parametrized surface, 3
$\sigma_{u}^{\prime}, \sigma_{v}^{\prime}$: partial derivatives, 24
τ : torsion, 73
ϕ : a diffeomorphism, 28
$\int d A$: plane integral, 52
∂ : boundary, 142
\times : cross product, 148
θ_{i} : exterior angle, 136
\hat{a} : normal vector of $a, 148$

Index

angle,
in Euclidean space, 141
on surface, 49
Archimedes' spiral, 60
arc-length, 43
function, 44
area,
of block-set, 51
of elementary domain, 52
of rectangle, 50
of surface, 57
atlas, 37
basis, positively ordered, 147
bending, 111
binormal, 74
block-set, 51
Bonnet, see Gauss-Bonnet
boundary, 142
C^{1}-function, 143
cardioid, 38
catenoid, 115
Cauchy-Schwarz inequality, 141
center of curvature, 82
chain rule, 144
characteristic polynomial, 149
chart (local), 4, localchartss
Christoffel symbols, 107
circle, 1
great, on sphere 78
osculating, 82
small, on sphere 78
cissoid, 19
closed curve, 70
components, 142
component functions, 47
cone, 7
continuous function, 3,142
coordinate curve, 36
coordinate chart, 4coordinates, 4
spherical, 5
local, indexloccor
cosh, 153
coth, 154
covariant derivative, 131
critical point, 9
cross product, 25,148
curvature,
center of, 82
Gaussian, 103
geodesic, 77
normal, 77, 79
normal, of surface, 80
of plane curve, 65
of space curve, 71
tangential, 77
curve,
constant, 2, 21
closed, 70
on surface, 36
parametrized, 1
by arc-length, 46
regular, 21
simple, 70,135
singular, 21
smooth, 2
cycloid, 19
cylinder, 6
derivative, partial 143
diagonalization, 149
diffeomorphism, 28
direction, 28
distance, Euclidean, 141
domain, elementary, 52
dot product, 141
eigenvalue, 149
eigenvector, 149
elementary domain, 52
ellipse, 2
elliptic point, 98
embedded surface, regular, 37
Euclidean space, 141
Euler characteristic, 139
exterior angle, 136
first fundamental form, 47

Frenet formula, 76
form,
first fundamental, 47
quadratic, 48
second fundamental, 88, 89
Gauss
curvature, 103, 104
formula, 108
theorem, 109
Gauss-Bonnet Theorem (The), 131
local, 137
global, 139
geodesic, 80
coordinates, 124
equations, 123
graph, 7, 22
Green's Theorem, 135
helicoid, 61
first fundamental form, 61
isometry with catenoid, 115
second fundamental form, 98
helix, 3 ,
arclength, 44
curvature, 72
hyperbolic, 82
torsion, 73
hyperbola, 2
hyperbolic
functions, 153
helix, 82
point, 98
ideal map, 115
implemented by $\psi, 29,111$
integral,
double, 55
over rectangle, 50
plane, 52
transformation of, 57
interior, 142
interior angle, 136
intrinsic, 105
invariant, 30
isometric, 110
isometric, locally 112
isometry, 110
Jacobi matrix, 143
Jordan Curve Theorem (The), 71
level set, 9
latitude, 5
line, 1
segment, 45
local chart, 4, indexlocalchartss
locally isometrix, 112
logarithmic spiral, 60
longitude, 5
matrix,
orthogonal, 149
symmetric, 149
meridian, 61
motion, rigid, 99
moving frame, 75
N-gon, 135,
neighborhood, 142
norm, 141
normal,
principal, 74
unit, 30
vector, 148
null set, 53
orientation, 31, 147
orthogonal, 141
parametrization, 50
orthonormal, 141
osculating circle, 82
plane, 74
parametrization, indexpar,
parabolic
cylinder, 96
point, 98
paraboloid, 95
elliptic, 95
hyperbolic, 95
parallel curve, 61
parallel field, 131
parallel transport, 132, 134
partial derivative, 143
partition, of block-set, 51
Peano's curve, 2
planar point, 98
plane, 4
osculating, 74
preserve
direction, 28
orientation, 31
principal
curvature, 92, 93
normal, 74
vector, 92,93
pseudosphere, 117
rectangle, 50
reparametrization, 27,29
reverse
direction, 28
orientation, 31
revolution, surface of, 38
first fundamental form, 61
Gauss curvature, 117
geodesics, 83
second fundamental form, 98
Riemann symbol, 109
rigid motion, 99
Rotation Index, 70
second fundamental form, 88
coordinate expression, 89
self-intersection, 1
set
bounded, 142
closed, 142
open, 142
shape operator, 86, 91
simple curve (closed), 70, 135sinh, 153
smooth function, 146
speed, 43
sphere, 5
spherical coordinates, 5
spiral,
logarithmic, 60
of Archimedes, 60
surface,
regular embedded, 37
of revolution, 38
parametrized, 3
regular, 24
singular, 25
tangent
angle, 69
line, 22
plane, 26
space, 26,37
vector, 22
tanh, 154
Taylor's theorem, 146
teorema egregium, 109
theorem,
Gauss, 109
implicit function, $10,14,16$
inverse function, 27, 33
Taylor, 146
torsion, 73
torus, 63
trace, 1
tractrix, 117
type, of surface, 98
unit
normal, 30
speed, 46
Weingarten map, 85

[^0]: ${ }^{1}$ Danish: Kurvelængde.

