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2 MOGENS ESROM LARSEN

CHAPTER 1. An Interesting Case

Assume we have invested a kapital, K, in a bank obtaining a fixed interest
of r% per year. If we denote the amount of the capital in the end of year n by kn,
then this means that we have

(1.1) Δkn = kn+1 − kn = r · kn

This is the simplest case of a difference equation, we may imagine.
Well, we shall rewrite it as

(1.2) kn+1 = (1 + r)kn

with the solution

(1.3) kn = K · (1 + r)n

Now, we realize that our solutions allows a definition of the size of the capital
to be calculated for real time – opposite to integral numbers of years – as the
function of the real variable, t,

(1.4) k(t) = K · (1 + r)t = K · etln(1+r)

We may consider this function as an interpolation between the known values for
the integral values of the variable, t.

This solution (1.4) is differentiable with derivative

(1.5) k′(t) = K · ln(1 + r) · etln(1+r) = ln(1 + r) · k(t)

So, our interpolation satisfies the differential equation

(1.6) k′(t) = ln(1 + r) · k(t)

The difference equation (1.1) is replaced by a similar differential equation (1.6),
with a solution interpolating the solution to the difference equation.

Savings and mortgages requires handling sums. Now, sums are particularly
easy to handle, if the are telescoping. Consider

(1.7) gn = Δkn = kn+1 − kn

Then we find

(1.8)
m∑
n=0

gn =
m∑
n=0

kn+1 −
m∑
n=0

kn = km+1 − k0
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1. An Interesting Case 3

We express this simplicity by saying that kn is an indefinite sum of gn, rewriting
(1.7) as

(1.9)
∑

gnδn = kn

The difference equation (1.1) may be rewritten as

(1.10)
∑

knδn =
1
r
kn

Now, if we pay an amount of a every year to be increased by the interest, r, then
the capital obtained after the nth payment is

(1.11)
n−1∑
k=0

a · (1 + r)k =
a

r
((1 + r)n − 1)

In real life the capital, the payment and the time are agreed leaving the
interest as the unknown. So, we are interested in solving the equation in r,

(1.12) A · r = (1 + r)n − 1

where A is the ratio between the capital and the payment.
We want to find a zero of the polynomial

(1.13) f(r) = (1 + r)n − Ar − 1

The fastest way to do so, the socalled Newton method, takes an approximation,
rk, and draw the tangent to the function, f in that point and finds the cut with
the r–axes as rk+1.

This method works as finding the fixpoint of the function

(1.14) g(r) = r − f(r)
f ′(r)

by iteration g from a neighboring point to the solution. Let r∗ be the fixpoint,
then we have

(1.15) |g(r)− r∗| = |g(r) − g (r∗)| = |g′(r̂)| · |r − r∗| =
|f(r̂)f”(r̂)|
f ′(r̂)2

· |r − r∗|

for some intermediate point r̂. If f is a polynomial, and the zero is not a zero for
the derivative, then this fraction is small in a neighborhood of the wanted root.
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4 2. Stability

CHAPTER 2. Stability

The material in this chapter is taken from [8, 7].
To be stable means to have the ability to recover from a disturbance. To

define this concept of stability precisely, one must specify both the kind of distur-
bance and the criterion for an adequate recovery.

In the following, we study a motion as a real function of time, ϕ(t) and
a disturbed motion, ψ(t). Then the stability means that, in the long run, ϕ(t)
and ψ(t) are “equivalent” in some adequate sense that must be made precise
in terms of a formal criterion. We present seven criteria for stability, each one
containing the predecessors being contained in the successors. Hence, the criteria
represent a succession from higher to lower degrees of stability. Usage differs among
mathematicians, engineers and economists.

The stability of a motion against a disturbance will be called

1. Asymptotic if ϕ(t) = const. and ψ(t) − ϕ(t) → 0 for t→ ∞ .

2. Strong absolute if ψ(t) − ϕ(t) → 0 for t→ ∞ .

3. Weak absolute if |ψ(t)− ϕ(t)| < k <∞ for all t .

4. Strong relative if lnψ(t) − lnϕ(t) → 0 for t→ ∞ .

5. Weak relative if |lnψ(t) − lnϕ(t)| < k <∞ for all t .

6. Strong logarithmic if lnlnψ(t) − lnlnϕ(t) → 0 for t→ ∞ .

7. Weak logarithmic if |lnlnψ(t) − lnlnϕ(t)| < k <∞ for all t .

Remark. The criterion 4 reflects the requirement

ψ(t)/ϕ(t) → 1 for t→ ∞ or (ψ(t)− ϕ(t))/ϕ(t) → 0 for t→ ∞ ,

which justifies the name “relative stability”.
Similarly, criterion 6 reflects the requirement

lnψ(t)/lnϕ(t) → 1 for t→ ∞ .

The notion of causality refers in this context to systems of motions, where
time paths of the variables depend only upon the initial conditions and the time
elapsed since the establishment of such initial conditions, that is to say, the specifi-
cation of similar given initial conditions at a later period would result in a similar
evolution of the system, except at a constantly later time period. Thus, as used
here, a system is said to be causal if, from an initial configuration, it determines
its own behavior over time.

We now restrict ourselves to the study of a causal system in one variable.
Furthermore, the variable will here – in a growth context – be required to increase
monotonously in time.
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2. Stability 5

Consider an increasing, differentiable function of time, y = ϕ(t), moving in
a range

−∞ ≤ a < ϕ(t) < b ≤ +∞ .

Then such a motion will be stable against delay, if there exists a transformation
between the pair of functions ϕ(t) and ϕ(t + h) for any given value of h. This
problem of stability of a motion against delay can always be transformed to the
corresponding problem of stability with respect to the initial position of the set of
solutions to a first-order autonomous differential equation.

Such correspondence is due to the fact that the family of functions
{ϕ(t + h)|h ∈ R} is a set of solutions to the equation ẏ = f(y), (· = d/dt),
with the function f defined by

f(x) = ϕ′(ϕ−1(x)), a < x < b .

Hence, it is sufficient to study the stability of sets of solutions to the differential
equations with respect to the disturbance of the initial position.

Lemma 1. Any solution ϕ(t) to the equation ẏ = f(y), with f(x) > 0 everywhere,
is increasing and unbounded,

(i) ϕ′(t) > 0 (ii) ϕ(t) → ∞ for t→ ∞.

Proof. Let ϕ(t) be a solution. Because ϕ′(t) = f(ϕ(t)) > 0, the function ϕ must
be increasing.

Suppose ϕ(t) is bounded. Then ϕ(t) → c for t→ ∞. Now

lim
t→∞ϕ′(t) = lim

t→∞ f(ϕ(t)) = f(c) > 0 .

Hence, ϕ′(t) > ε > 0 for all values of t, and therefore

ϕ(t) > k + εt

contradicting the limit of ϕ. Conclusion: The function ϕ must be unbounded.

Lemma 2. Suppose the function f(x) is positive and continuously differentiable
everywhere. If ϕ(t) is any solution to the equation ẏ = f(y), then any other
solution to this equation must take the form, ϕ(t+ h), for some constant h.

Proof. Let ψ(t) and ϕ(t) be two solutions. Consider the time t = 0 and suppose
ψ(0) > ϕ(0). Now, as ϕ(t) → ∞ for t → ∞, according to Lemma 1, there exists
h > 0 such that ψ(0) = ϕ(h).

Since the function f is continuously differentiable, it satisfies the Lipschitz
condition and, hence, the solution to the initial value problem is unique, i.e.,
ψ(t) = ϕ(t+ h) everywhere.
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6 2. Stability

Corollary to Lemma 2. Let ϕ(t) be a bijective, twice continuously differentiable
function satisfying ϕ′(t) > 0 for all t. Then the family {ϕ(t + h)|h ∈ R} is equal
to the whole set of solutions to the equation ẏ = f(y), where

f(x) = ϕ′(ϕ−1(x)) .

Proof. The function f(x) is continuously differentiable and positive, so Lemma 2
applies. It is obvious (see above) that ϕ(t) solves the equation.

Now we discuss the stability of the set of solutions to a differential equation
of the form

(2.1) ẏ = f(y) .

We relate the different criteria of stability mentioned above to the particular pro-
perties which must be satisfied by the function f .

Assumption (2.1). The function f is continuously differentiable everywhere.

Theorem 1. The set of solutions to Equation (2.1) has asymptotic stability aro-
und the constant solution y = c, if and only if

(i) f(c) = 0 ,
(ii) f(x) > 0 for x < c ,
(iii) f(x) < 0 for x > c .

Proof. If. Let ϕ(t) be a solution. If ϕ(t) < c, then ϕ′(t) = f(ϕ(t)) > 0, and,
hence, ϕ is increasing. Now, ϕ(t) < c for all t, due to the theorem of uniqueness
of solutions to differential equations. Hence, ϕ(t) → d ≤ c for t → ∞. Now, for
t→ ∞:

f(d) = f(limϕ(t)) = lim f(ϕ(t)) = limϕ′(t) ≥ 0 .

If f(d) > 0, then ϕ′(t) > ε > 0 for all t and, hence, ϕ(t) → ∞ for t → ∞. So
f(d) = 0. Because c is the only zero for f , it must be equal to d. Conclusion:
ϕ(t) → c for t→ ∞.

Only if. Clearly f(c) = 0 (because y = c is supposed to be a solution), and f has
no other zero d (since then y = d would be a solution not tending to c).

If the function f has a zero, then Theorem 1 applies. If the function f has
no zero, then following theorems shall prove useful. Hence, we shall from now on
assume

Assumption (2.2). f(x) > 0 everywhere.

This assumption implies that the solution must be unbounded, a fact we need
in the proofs below. For each of the six criteria of stability 2–7 defined above, we
shall state for the governing function f some simple sufficient conditions that
ensure the set of solutions to be either stable or unstable. The sufficient stability
conditions below are also almost necessary.
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2. Stability 7

Theorem 2. The set of solutions to Equation (2.1) has strong absolute stability,
if

(2.2+) f(x) → 0 for x→ ∞
and cannot have strong absolute stability, if

(2.2−) f(x) > ε > 0 everywhere .

Proof. Let ϕ(t) be a solution. From Lemma 1 follows that ϕ(t) is increasing and
unbounded. From Lemma 2 follows that any pair of solutions can be of the form

ϕ(t) and ψ(t) = ϕ(t+ h), for some constant, h > 0 .

So we have for some τ = τ(t), with t < τ < t+ h

ψ(t) − ϕ(t) = ϕ(t+ h) − ϕ(t) = ϕ′(τ)h = f(ϕ(τ))h .

Hence, under the condition (2+), we get

ψ(t) − ϕ(t) → 0 for t→ ∞ ,

because with t both τ = τ(t) and ϕ(τ) goes to infinity.
Similarly, under the condition (2−), we get

|ψ(t)− ϕ(t)| = f(ϕ(τ))|h| > ε|h| .

Theorem 3. The set of solutions to Equation (2.1) has weak absolute stability,
if

(2.3+) 0 < f(x) < k everywhere ,

and cannot have weak absolute stability, if

(2.3−) f(x) → ∞ for x→ ∞ .

Proof. According to Lemma 2, we can assume two solutions to be

ϕ(t) and ϕ(t+ h) with h > 0 ,

and according to Lemma 1, they are both increasing and unbounded.
Then for t < τ < t+ h, we have

0 < ϕ(t+ h) − ϕ(t) = ϕ′(τ)h = f(ϕ(τ))h < kh

under the condition (3+). This proves the weak absolute stability.
In the second case, let K be any number. We can find c, such that

f(x) > K for x > c ,

according to (3−). Lemma 1 says that we can find tc, such that for t > tc, we
have ϕ(t) > c and hence

ϕ(t+ h) − ϕ(t) = ϕ′(τ)h = f(ϕ(τ))h > Kh

because τ > t > tc and ϕ(τ) > ϕ(t) > c and, hence, f(ϕ(τ)) > K. Because K was
arbitrary, we cannot have weak absolute stability.
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8 2. Stability

Theorem 4. The set of solutions to Equation (2.1) has strong relative stability,
if

(2.4+) f(x)/x→ 0 for x→ ∞

and cannot have strong relative stability, if

(2.4−) f(x)/x > ε > 0 for x > 0 .

Proof. Let ϕ(t) be a solution. Consider the function

ω(t) = lnϕ(t) .

We shall prove that ω(t) solves the equation

ẏ = g(y) with g(y) = f(ey)/ey .

This follows from the straightforward computation below.

ω′(t) = ϕ′(t)/ϕ(t) = f(ϕ(t))/ϕ(t) = f
(
eω(t)

)
/eω(t) = g(ω(t)) .

The condition (4+) and (4−) for f imply that g satisfies, respectively, the condi-
tions (2+) and (2−) of Theorem 2. Hence, the pair ω(t) and ω(t+ h) either have
or cannot have strong absolute stability according to Theorem 2.

But strong absolute stability for ω(t) = lnϕ(t) and ω(t+h) = lnϕ(t+h) is by
the definitions 2 and 4 strong relative stability for ϕ(t) and ϕ(t+ h). This proves
Theorem 4.

Theorem 5. The set of solutions to Equation (2.1) has weak relative stability, if

(2.5+) 0 < f(x)/x < k for x > 0

and cannot have weak relative stability, if

(2.5−) f(x)/x→ ∞ for x→ ∞ .

Proof. As in the proof of Theorem 4, this theorem is easily derived from Theorem
3.

Theorem 6. The set of solutions to Equation (2.1) has strong logarithmic stabi-
lity, if

(2.6+)
f(x)
xlnx

→ 0 for x→ ∞ (x > 1)

8



2. Stability 9

and cannot have strong logarithmic stability, if

(2.6−)
f(x)
xlnx

> ε > 0 for x > 1 .

Proof. Let ϕ(t) be a solution. Then ω(t) = lnϕ(t) solves the equation

ẏ = g(y), with g(y) = f(ey)/ey .

Now the function g satisfies the conditions of Theorem 4, as

g(x)
x

=
f(ex)
xex

→ 0 for x→ ∞ (from 6+)

g(x)
x

=
f(ex)
xex

> ε > 0 for x > 0 (from 6−)

Hence, Theorem 6 follows from Theorem 4.

Table I. Typical different equations and stability properties

Stability Differential Solution Theorem
criteria equation No.

1. Asymptotic ẏ = −y

(
0

e−t
1

2. Strong absolute ẏ = y−1 (2t)1/2 2

3. Weak absolute ẏ = 1 t 3
4. Strong relative ẏ = 2(y)1/2 t2 4

5. Weak relative ẏ = y et 5

6. Strong logarithmic ẏ = y(lny)1/2 exp(t2) 6
7. Weak logarithmic ẏ = ylny exp(exp(t)) 7

Theorem 7. The set of solutions to Equation (2.1) has weak logarithmic stability,
if

(2.7+)
f(x)
xlnx

< k for x > 1

and cannot have weak logarithmic stability, if

(2.7−)
f(x)
xlnx

→ ∞ for x→ ∞ (x > 1) .

Proof. As Theorem 6, the theorem is easily derived from Theorem 5.

We have characterized the stability properties of the solutions to (1) in terms
of appropriate conditions upon the governing function, f . Typical differential
equations of the form (2.1), with their explicit solutions having stability according
to these theorems, are given in Table I.
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10 3. Rapidity of Growth

CHAPTER 3. Rapidity of Growth

The material in this chapter is taken from [8, 7].
The growth of a function is properly measures by its derivative – assuming

the derivative to exist. The greater the derivative is, the faster is the growth. To
distinguish different speeds of growth, we shall use the following terminology. The
growth will be called

I. Bounded if ϕ′(t) > 0 and ϕ(τ) < c everywhere .

II. Unbounded if ϕ′(t) > 0 everywhere and ϕ(t) → ∞ for t→ ∞ .

III. Linear if ϕ′(t) > ε > 0 everywhere .

IV. Polynomial if ϕ′(t) → ∞ for t→ ∞ .

V. Exponential if ϕ′(t)/ϕ(t) > ε > 0 everywhere .

VI. Hyper-exponential if ϕ′(t)/ϕ(t) → ∞ for t→ ∞ .

VII. Double-exponential if ϕ′(t)/(ϕ(t)lnϕ(t)) > ε > 0 everywhere .

Remark. Of course, growth can be more rapid than here considered, e.g., explo-
sive growth means that there is a finite escape time, a, i.e.

ϕ(t) → ∞ for t→ a (a <∞) .

As examples of explosive growth, the equations ẏ = y2 , ẏ = y2 + 1 have the
respective solutions, ϕ(t) = 1/(a− t) , ϕ(t) = tan(t).

One of the main purposes of this paper is to underline how growth prevents
stability. The more rapid is the growth, the less is the degree of stability, and
conversely. We prove that as the speed of growth ascends from bounded to double-
exponential, the degree of stability descends from asymptotic to weak logarithmic.

Suppose we have a growing function ϕ(t) and want to know the stability with
respect to changes of the initial conditions or, equivalently, the stability against
time delays, i.e. the stability of the pair ϕ(t+h) and ϕ(t). For each of the situations,
we have the following complementarity (J, j) = (II, 2), . . . , (VII, 7).

Theorem 1. If the growing function ϕ(t) has growth property J ∈ {II, . . . ,VII},
then any two functions ϕ(t + h) and ϕ(t) for h �= 0, cannot have a degree of
stability stronger than j.

Proof. The conditions, II–VII, imply the applicability of the corollary to Lemma
2 and Theorems, 1–6 in chapter 11, as follows:

J = II. The unbounded growth of ϕ(t) gives f(x) = ϕ′(ϕ−1(x)) = ϕ′(t) > 0
everywhere, preventing asymptotic stability by Theorem 1, (only if).

J = III. The linear growth of ϕ(t) gives f(x) = ϕ′(ϕ−1(x)) = ϕ′(t) > ε > 0
everywhere, preventing strong absolute stability by Theorem 2, (2−).
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3. Rapidity of Growth 11

J = IV. The polynomial growth of ϕ(t) gives f(x) = ϕ′(ϕ−1(x)) = ϕ′(t) →
∞ for x→ ∞, preventing weak absolute stability by Theorem 3, (3−).

J = V. The exponential growth of ϕ(t) gives

f(x)/x = ϕ′(ϕ−1(x))/x = ϕ′(t)/ϕ(t) > ε > 0 everywhere ,

preventing strong relative stability by Theorem 4, (4−).
J = VI. The hyper-exponential growth of ϕ(t) gives

f(x)/x = ϕ′(ϕ−1(x))/x = ϕ′(t)/ϕ(t) → ∞ for x→ ∞ ,

preventing weak relative stability by Theorem 5, (5−).
J = VII. The double-exponential growth of ϕ(t) gives

f(x)/xlnx = ϕ′(ϕ−1(x))/xlnx = ϕ′(t)/ϕ(t)lnϕ(t) > ε > 0

everywhere, preventing strong logarithmic stability by Theorem 6, (6−).

Table II. Growth versus stability

Differential Solution Growth Instability Stability

equation

ẏ = −y −e−t bounded asymptotic

ẏ = y−1 (2t)1/2 unbounded not asymptotic strong abs.
ẏ = 1 t linear not strong abs. weak abs.

ẏ = 2(y)1/2 t2 polynomial not weak abs. strong rel.
ẏ = y exp(t) exponential not strong rel. weak rel.

ẏ = y(lny)1/2 exp(t2) hyperexp. not weak rel. strong log.

ẏ = ylny exp(exp(t)) doubleexp. not strong log. weak log.

ẏ = y2 −t−1 explosive not weak log. none

Remark. If the growing function ϕ(t) shows explosive growth, then the functions
ϕ(t) and ϕ(t+ h) cannot have any type of stability for h �= 0, because ϕ(t) → ∞
for t→ a and ϕ(t+ h) → ∞ for t→ a− h.

Using the examples and results from Table 1, we can give a table of behavior
(Table II).
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12 4. Differential equations

CHAPTER 4. Differential equations

The solution to a differential equation

(4.1) y′ = f(x, y)

is a differentiable function

(4.2) y = ϕ(x)

satisfying

(4.3) ϕ′(x) = f(x, ϕ(x)) .

Definition 1. The differential equation is called autonomous, if the function, f ,
of (4.1) is independent of x, i.e. the equation is

(4.4) y′ = f(y) .

In dynamics we consider x to be the time, so an equation is autonomous if
it describes a behavior dependent of the state of the system, but not of exterior
forces. The development is then assumed to be similar from a certain initial state,
in dependent of the time when this situation emerges.

The solution of equations of form (4.4) is the following: Let A be the set of
zeros of f ,

(4.5) A = {α | f(α) = 0} .

This gives rise to a set of constant solutions, if α ∈ A, then

(4.6) ϕ(x) = α

solves (4.4).
If f is continuous and α, β ∈ A are consecutive roots of f , then we have f(y)

of the same sign for all α < y < β. We may then write (4.4) as

(4.7)
y′

f(y)
= 1 for α < y < β .

Integration of (4.7) yields

(4.8)
∫

y′

f(y)
dx =

∫
dx

12



4. Differential equations 13

or, rather for some constant c:

(4.9) F (y) :=
∫

dy

f(y)
= x+ c ,

and hence the solution

(4.10) y = F−1(x+ c)

which exists, because F ′(y) = 1
f(y)

has the same sign in the interval ]α, β [ so that
F is monotonic.

Example.

(4.11) y′ = sin y .

We find A = {α | sinα = 0} = {p · π | p ∈ Z}. We choose two consecutive
zeros, e.g. 0 and π. Now, for 0 < y < π we have sin y > 0. Then we shall find

F (y) =
∫

dy

sin y
.

We substitute y = 2t and get

F (2t) =
∫

dt

sin t cos t
=
∫

cos2 t+ sin2 t

sin t cos t
dt

=
∫

cos t
sin t

dt+
∫

sin t
cos t

dt

=
∫
d sin t
sin t

−
∫
d cos t
cos t

= ln(sin t) − ln(cos t)
= ln tan t

hence

F (y) = ln tan
(
y

2

)
.

The solution to (4.11) then is

y = F−1(x+ c) , y = 2 Arctan(ex+c) .

The problem of solving (4.4) consists of one integration and one inversion.
If the function f is a rational function of y, then the integration is always

possible. Suppose we have

f(y) =
q(y)
p(y)

13



14 4. Differential equations

then we shall integrate a rational function,

F (y) =
∫
p(y)
q(y)

dy .

If we divide p by q, we can write

p(y)
q(y)

= r(y) +
s(y)
q(y)

with r, s polynomials, the degree of s smaller than the degree of q. We can always
integrate r. From the appendix we can write s

q
as a sum of terms of the form

β

(y − α)m
.

And these are easily integrated.

Remark. If the polynomials are real, then the complex roots appear in conjugated
pairs. E.g., we may have the terms

β

y − α
+

β̄

y − ᾱ
=
βy − βᾱ+ β̄y − β̄α

y2 − (α+ ᾱ)y + αᾱ

=
(β + β̄)y − (βᾱ+ β̄α)
y2 − (α+ ᾱ)y + αᾱ

.

In this expression all terms are real. The integral of such a real rational function
takes two steps:∫

by + c

y2 − ay + d
dy =

b

2

∫
d(y2 − ay + d)
y2 − ay + d

+
b

2

∫ 2c
b + a

y2 − ay + d

=
b

2
ln
∣∣y2 − ay + d

∣∣+ 1
2

∫
2c+ ab

y2 − ay + d
dy .

We have the logarithm and need to find(
c+

ab

2

)∫
dy

y2 − ay + d

omitting the factor we substitute y = t+ a
2 to get∫

dy

y2 − ay + d
=
∫

dt

t2 + d− a2

4

=
∫

dt

t2 + δ
.

Now we are done, if δ = 0. Otherwise we substitute t =
√|δ| s to get

∫ √|δ|ds
δ(s2 + σ(δ))

=
σ(δ)√|δ|

∫
ds

s2 + σ(δ)
,

14



4. Differential equations 15

where σ(δ) is the sign of δ. And we have∫
ds

s2 + 1
= Arctan s∫

ds

s2 − 1
=

1
2

∫
ds

s− 1
− 1

2

∫
ds

s+ 1

=
1
2
ln|s− 1| − 1

2
ln|s+ 1|

= ln

√∣∣∣∣s− 1
s+ 1

∣∣∣∣ .
The last term is not necessary, because it will only appear for real roots in q(y).

Appendix on partial fractions.

Given a rational function with the denominator of higher degree than the
numerator, then it is always possible to write it as a sum of rational functions
with numerator of degree zero (i.e. a constant), and denominator a power of a first
degree polynomial. To be precise:

Theorem 1. If q(x) and p(x) = (x− α1)ν1 . . . (x− αm)νm are polynomials, such
that q have smaller degree then p, p and q sharing no roots, than the rational

function q(x)
p(x) is equal to a sum as follows:

(4.12)
q(x)
p(x)

=
m∑
μ=1

νμ∑
j=1

βμ,j
(x− αμ)j

.

Definition 1. The terms of the double sum in (4.12) are called the partial frac-
tions of the rational function q

p
.

Proof. We want to find β such that

q(x)
(x− α)νp(x)

− β

(x− α)ν
=

q̂(x)
(x− α)ν−1p(x)

with q̂(x) of smaller degree than the denominator. Now, the difference equals

q(x) − βp(x)
(x− α)νp(x)

.

If we choose β = q(α)
p(α)

, then we may write

q(x) − βp(x) = (x− α)q̂(x) .

This q̂(x) solves the problem.

15



16 5. Linear differential equations

CHAPTER 5. Linear differential equations

The material in this chapter is taken from [9, 12, 7].
We want to analyze an initial value problem: a couple of linear first-order dif-

ferential equations with constant real coefficients in order to find the real solutions.
The system is

ẋ1 = ax1 + bx2(5.1)

ẋ2 = cx1 + dx2(5.2)

where a, b, c, d ∈ R, and x1, x2 are functions with initial values

x1(0) = x0
1(5.3)

x2(0) = x0
2(5.4)

with x0
1, x

0
2 ∈ R. We shall prefer to write it in matrix form. We define vectors

x =
(
x1

x2

)
x0 =

(
x0

1

x0
2

)
and coefficient matrix

(5.5) A =
(
a b
c d

)
Then we may replace (5.1), (5.2) by (5.6) and (5.3), (5.4) by (5.7):

ẋ = Ax(5.6)

x(0) = x0(5.7)

Motivation. In the traditional search for solutions we argue along the following
lines: If A should happen to be a diagonal matrix, i.e., b = c = 0, then the system
consists of two independent equations, namely

ẋ1 = ax1, ẋ2 = dx2,

with independent initial values

x1(0) = x0
1, x2(0) = x0

2.

If A is not of the wanted form, we look for a coordinate transformation

x = Sy

which changes the equation to

(5.8) ẏ = S−1ASy.

If the new matrix
B = S−1AS

happens to be diagonal, then we are through. Unfortunately, we might need to ex-
tend the problem into the complex domain in order to obtain this diagonalization,
and even so, as the matrix (

a 1
0 a

)
shows, not all matrices can be diagonalized. In spite of the large amount of algebra
employed we have hardly succeeded in finding the real solutions.

16



5. Linear differential equations 17

Alternative Analysis. The idea to be explained below is to argue slightly diffe-
rently: If A2 should happen to be diagonal, then the system is easy to solve, even
as an initial value problem. If A2 is not diagonal, then we are able to transform
the problem, such that the new one has a coefficient matrix with diagonal square.
As a matter of fact, neither of the above features needs complex numbers, and
further, there are no exceptions to the procedure or even to the formulas for the
solutions of the initial value problem.

The Solution with Trace Zero. If A is not already a diagonal matrix, then
A2 is diagonal, if and only if the trace of A is zero. As we shall see, we can always
transform the problem to the case where the trace of the new coefficient matrix is
zero, even when A is diagonal. Hence we shall restrict our analysis to the case of
trace zero.

Theorem 1. If A has trace zero, then −A2 is the determinant of A times the
unit matrix, i.e. A2 = ΔE with Δ = a2 + bc.

Theorem 2. If A2 is diagonal, then either A is diagonal or the trace of A is zero.

Proofs. Elementary.

Under this assumption we shall analyze the solution of (5.6) and (5.7). Let
x be a solution of (5.6)–(5.7). Then by Theorem 1:

(5.9) ẍ = ΔEx.

Let δ be the solution of the initial value problem

δ̈ = Δδ;(5.10)

δ(0) = 0, δ̇(0) = 1.(5.11)

Note that δ̇ solves (5.10), but not (5.11). Then δ̇ is not proportional to δ and
hence the couple (δ, δ̇) constitutes a basis for the solutions of (5.10). Because x
solves (5.9), it must take the form

(5.12) x = δ̇v + δw

where v and w are vectors in R
2. As x satisfies (5.6), we have

ẋ = δ̈v + δ̇w = Ax = δ̇Av + δAw.

Using (5.10) we get the equation

δ̇w + δΔv = δ̇Av + δAw.

At t = 0 we have, because of (5.11),

(5.13) w = Av.

17



18 5. Linear differential equations

Substitution of (5.13) in (5.12) yields

x = (δ̇E + δA)v.

As x satisfies (5.7), we have

(5.14) x0 = x(0) = (1E + 0A)v = v.

Hence the solution of (5.6) and (5.7) is of the form

(5.15) x = (δ̇E + δA)x0.

This ends the analysis.
Now we can substitute (5.15) in (5.6) and (5.7) for verification. In the latter

case we get (5.14), and in the former using (5.10)

ẋ = (δ̈E + δ̇A)x0 = (δΔE + δ̇A)x0

while using Theorem 1 yields

Ax = A(δ̇E + δA)x0 = (δ̇A + δA2)x0 = (δ̇A + δΔE)x0.

The General Case. Without any assumptions about A we shall transform the
equations (5.6) and (5.7) to the case of zero trace. This proves much easier than
the transformation (5.8). Let Θ ∈ R be a constant, and θ the solution of the initial
value problem

(5.16) θ̇ = Θθ; θ(0) = 1

(i.e. the exponential function θ(t) = eΘt).
We consider the coordinate transformation

x = θξξξ.

Now (5.6) and (5.7) for x imply certain equations for ξξξ. (5.7) is simple:

x0 = x(0) = θ(0)ξξξ(0) = ξξξ(0)

by (5.16). (5.6) is nicer:

ẋ = θξ̇ξξ + θ̇ξξξ = Ax = θAξξξ.

Using (5.16) we get
θξ̇ξξ + Θθξξξ = θAξξξ.

18



5. Linear differential equations 19

Because θ �= 0, we can divide by it, hence

ξ̇ξξ = (A− ΘE)ξξξ.

Now, if we choose Θ correctly, the new matrix will have trace zero. We define Θ
as

Θ =
a+ d

2
,

half of the trace of A. Then the system gets the matrix

B = (A − ΘE) =
(
a−d
2 b

c d−a
2

)
so ξξξ solves the initial value problem:

(5.17) ξ̇ξξ = Bξξξ; ξξξ(0) = x0

of the type of trace zero. (5.17) is then solved by (5.15), where δ solves (5.10),
(5.11) with

Δ =
(
a− d

2

)2

+ bc.

Conclusion. We can write down the solution of (5.6) and (5.7) explicitly. Let
the half-trace Θ and the discriminant Δ of the matrix A be defined as

Θ =
a+ d

2
,(5.18)

Δ =
(
a− d

2

)2

+ bc.(5.19)

Let θ be the solution of the initial value problem

θ̇ = Θθ; θ(0) = 1.

Let δ be the solution of the initial value problem

δ̈ = Δδ; δ(0) = 0; δ̇(0) = 1.

Then the solution of (5.6) and (5.7) is:

(5.20) x = θ(δ̇E + δ(A− ΘE))x0.

In coordinates this becomes

x1 = θ

(
x0

1δ̇ +
(
a− d

2
x0

1 + bx0
2

)
δ

)
,

x2 = θ

(
x0

2δ̇ +
(
d− a

2
x0

2 + cx0
1

)
δ

)
.

The functions θ and δ can be explicitly written down. They are

(5.21)

θ(t) = eΘt = e
a+d

2 t;

δ(t) =

⎧⎪⎨
⎪⎩

1√
Δ

sinh(
√

Δt) for Δ > 0,

t for Δ = 0,
1√−Δ

sin(
√−Δt) for Δ < 0.
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20 5. Linear differential equations

Afterthought. From a higher point of view, the methods applied here are exam-
ples of more sophisticated analytic methods in algebraic disguise, to be compared
with the standard sophisticated algebra. If Sophus Lie could have asked Jean B.
J. Fourier to solve the equations, he would have done so as follows:

The system (5.1)–(5.2) should be transformed into one equation of second
order, i.e.,

ẍ− (a+ d)ẋ+ (ad− bc) = 0.

Fourier, of course, would have transformed the operator to a polynomial,

ξ2 − (a+ d)ξ + (ad− bc);

then he would have translated this by the distance Θ (from (5.18)) , say

(5.22) η = ξ − Θ,

and hence obtained
η2 − Θ2 + (ad− bc) = η2 − Δ

with Δ defined by (5.19).
By the inverse Fourier transformation, η is transformed into y, satisfying

ÿ = Δy

and related to x by the transform of (5.22), i.e.,

y = x · e−Θt.

Further, he would have formulated the results of his efforts in the form of
(5.20). For then Sophus Lie could have extracted the matrix

C(t) = θ(t)(δ̇(t)E + δ(t)(A− ΘE)),

which is a handy representation of the Lie group of the flow of solutions of (5.1)–
(5.4).

Hence C(t) must satisfy the relation

(5.23) C(t+ s) = C(t)C(s)

We know this relation from the theory of Lie groups, but I shall leave the veri-
fication by the elementary trigonometric formulas for addition and their analogues
as an exercise.

Relation to difference equations. If we consider the equation (5.23) for t =
n ∈ N, we may deduce the formula

(5.24) C(n) = C(1)n

proving that the solutions for integral values of the argument satisfies the difference
equation

(5.25) x(n+ 1) = C(1)x(n)

20



5. Linear differential equations 21

Definition. This fact together with the functional equation (5.23) motivates the
definition of the exponential function of a matrix:

(5.26) C(1) = exp(A)

A system of differential equations allows the derivation of a system of dif-
ference equations with essential the same solutions. Exactly, the solutions to the
latter belongs to the solutions to the former.

Nevertheless, difference equations are in a sense more general, because we
may not take any logarithm to find the matrix A when we know C(1). The
exponential will always have positive determinant, so for the most matrices is it a
fact, that they are not exponential function values of any other matrix.

We shall analyze the stability of the solutions to difference equations in chap-
ter 12. But we shall make an analysis here too, because of the fact that the soluti-
ons to the differential equations only corresponds to a simple part of the solutions
to the difference equations.

Classification. It is obvious from (5.21) that the behavior of the solution vary
with the signs of the trace, θ, and the discriminant, Δ. The third powerful criteria
is the determinant,

(5.27) D = ad− bc .

The three classifiers are related. We may notice, that

(5.28) Δ = Θ2 −D .

Proof.

Δ =
(
a− d

2

)2

+ bc =
(
a+ d

2

)2

− ad+ bc = Θ2 −D .

The forms of the solutions (5.21) shows, that for Δ < 0 we see spirals,
outgoing for θ > 0 and ingoing for θ < 0.

If Δ > 0 we may expect asymptotic behavior. A natural question is, if there
are solutions with trajectories as straight lines, such that the other solutions are
attracted to or repelled from those ?

To show this more clearly, we assume b and c to be fixed. Then we consider
the behavior as dependent of a and d, to be described in an (a, d)–plane. There
are two essentially different pictures, 1) for bc > 0, e.g. b and c both positive, and
2) for bc < 0, e.g. b > 0 > c. In the diagrams the plane is divided into regions of
similar behavior, which is drawn as examples in an (x1, x2)–plane.

In order to recognize possible straight line attractors we consider the ratio
between the coordinates:

(5.29) r =
x2

x1
.
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22 5. Linear differential equations

If the trajectory is a straight line, it means that this ratio is constant, i.e.

r(t) = α

or, equivalently,

(5.30) ṙ = 0 .

Now, we may find this derivative:

(5.31) ṙ =
x1ẋ2 − x2ẋ1

x2
1

= h(r) = c+ (d− a)r − br2

using (5.1) and (5.2).
Hence for Δ > 0 we have

ṙ = 0 ⇐⇒ r =
d− a±√

4Δ
2b

= α±

giving two constant solutions.
The solutions must satisfy for b �= 0

α+α− = −c
b

so, if b and c have the same sign, then the roots have opposite signs and vice versa.
A solution on one of these lines is easy to find. From (5.1) and (5.29) we get

(5.32) ẋ1 = a x1 + bα x1 = (a+ bα)x1

with solutions

(5.33) x1 = β e(a+bα)t , β ∈ R .

These exponentials must increase or decline according to the sign of (a+bα).
I.e.

(5.34)
a+ bα = a+

d− a

2
±

√
Δ =

a+ d

2
±

√
Δ

= Θ ±
√

Δ .

Hence, they have opposite signs for (using (5.28))

(5.35) Θ2 ≤ Δ ⇐⇒ D < 0 .
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5. Linear differential equations 23

a

d

x1x1

x1

x2x2

x2

D = 0

D = 0

Θ = 0

Θ < 0

Θ > 0

D < 0

D > 0

D > 0

b > 0, c > 0

Stability of solutions
The trajectories may be found from (5.1) and (5.31) for b �= 0 by

(5.36)
ẋ1

x1
=
a+ br

h(r)
ṙ

which may be integrated as

(5.37) ln|x1| = −1
2
ln|h(r)| + Θ

∫
dr

h(r)

or, equivalently

(5.38) ln|cx2
1 + (d− a)x1x2 − bx2

2| = (a+ d)
∫

dr

h(r)
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24 5. Linear differential equations

a

d

x1

x1

x1

x1

x1

x1

x1

x1

x2

x2

x2

x2

x2

x2

x2

x2

b > 0 > c

D < 0

D < 0

Δ < 0

Δ > 0

Δ > 0

D > 0
Θ < 0

Θ > 0

Θ = 0

Δ = 0

D = 0

D = 0

Stability of solutions
The integral depends on the sign of Δ.
If Δ > 0 we may write

(5.39) h(r) = −b(r − α+)(r − α−)

yielding the integral, cf. chapter 10,

(5.40)
∫

dr

h(r)
=

1
Δ

ln
∣∣∣∣r − α−
r − α+

∣∣∣∣
Substitution of (5.39) and (5.40) in (5.38) yields

(5.41) |x2 − α+x1|a+bα+ = β |x2 − α−x1|a+bα−

The exponents may be expressed as

(5.42) a+ bα± = Θ ±
√

Δ
2
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5. Linear differential equations 25

If b, c > 0 we have always Δ > 0, the two straight line trajectories have slopes of
different signs, and the behavior of the solution depends on the signs of D and Θ.

If b > 0 > c, the straight line trajectories have slopes of the same sign, both
positive or both negative depending on the sign of a − d. The behavior around
them depends on the signs of D and Θ. In this case it is possible to have Δ < 0,
in which case there are no straight line trajectories. In this case the solutions will
spiral, outwards or inwards depending on the sign of Θ.

It is interesting to consider the limitcases between the possible typical beha-
viours. What is the interface between a spiral and a knot, or between an ellipse,
a knot and a saddle? Four of these funny cases are depicted in the figure below.

x1

x2

D = 0
Θ < 0
d > a

x1

x2

Δ < 0

Θ = 0

x1

x2

Δ = 0
Θ < 0
d > a

x1

x2

D = 0
Θ = 0
Δ = 0
d > a

Limitcases

Summary. The behavior of the solutions changes each time we pass one of the
sets where Δ = 0, D = 0 or Θ = 0. If Δ > 0, we have two straight lines of
solutions, and if Δ < 0 the solutions spiral around. If D > 0, the solutions on the
lines run in the same direction in the case of D > 0, and if D < 0 they run in
opposite directions. And if Θ > 0, the solutions are repelled from the origin, and
if Θ < 0 they are attracted to the origin.
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26 6. Economical examples of differential equations

CHAPTER 6. Economical examples of differential equations

Example 1. Taken from [3]. Suppose that the demand, D(t), and the supply,
S(t), both depend on the current price, p(t), but in different ways. The demand
depends directly of the price now,

(6.1) D(t) = a+ b p(t)

while the supply is governed by the expected price in the near future

(6.2) p̂(t) = p(t) + c p′(t) .

Hence the supply depends on the price and its trend

(6.3) S(t) = a1 + b1 p̂(t) = a1 + b1 p(t) + b1 cp
′(t) .

Next, the assumption that the market forces equality between supply and
demand

(6.4) D(t) = S(t)

gives rise to the differential equation for the price,

(6.5) p′(t) =
1
b1 c

((b− b1)p(t) + a− a1) .

This equation may be interpreted as follows. The market remains in equili-
brium, if D, S and p are constant over time, and hence the derivative p′(t) = 0. If
this is not the case, the three quantities vary over time, the price solves (6.5) and
hence D(t) = S(t) as these are derived from p(t) by the use of (6.1) and (6.3).

If this variation over time converges towards the equilibrium value, we shall
call it a stable equilibrium.

From the general theory of differential equations we know that this is the
case iff

(6.6)
b− b1
b1 c

< 0 .

Under normal circumstances we may assume b < 0 and b1 > 0, so that (6.6)
is fulfilled.

Example 2. Taken from [14]. W. Leontief considers the mutual demand and
supply of several goods. Let us consider the output of two goods, Xi , i = 1, 2.
Each output requires the input of the goods to a certain extend,

(6.7) Xi = ai1X1 + ai2X2 + bi1Ẋ1 + bi2Ẋ2 + Yi .
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6. Economical examples of differential equations 27

The a’s represent the current use of the good, while the b’s represents the future
supply decision in analogy with (6.3). The quantity Yi represents the consume of
the good.

In matrix form the linear differential equation (6.7) looks as

(6.8) Ẋ = B−1 (E −A)X +B−1 Y .

If we let D be the determinant of B, i.e.

(6.9) D = b11b22 − b12b21

then the inverse matrix of B is

(6.10) B−1 =
1
D

(
b22 −b12
−b21 b11

)

To determine the behavior and stability of the solutions to (6.8), we need
the trace and determinant of the matrix

(6.11) B−1 (E −A) =
1
D

(
b22(1 − a11) + b12a21 −b22a12 − b12(1 − a22)
−b21(1 − a11) − b11a21 b21a12 + b11(1 − a22)

)

The trace is

(6.12) Θ =
1
D

(b22 + b11 − a11b22 − a22b11 + b12a21 + b21a12)

and the determinant is

Det = Det(B−1(E −A)) =
det(E − A)

detB
=

(1 − a11)(1 − a22) − a21a12

D

=
1 − Θ(A) + Det(A)

D
(6.13)

Now we may find the discriminant by the formula (5.28) from chapter 5,

(6.14) Δ =
1
4
Θ2 − Det .

For a reasonable system we assume that

1 − Θ(A) > 0(6.15)

Det(A) > 0(6.16)

while we do no assumptions about the sign of D.
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28 6. Economical examples of differential equations

The non–diagonal elements are

”b” =
1
D

(−b12 − b22a12 + b12a22)(6.17)

”c” =
1
D

(−b21 + b21a11 − b11a21)(6.18)

both having the opposite sign of D. Hence we know from chapter 5, that Δ > 0.

We consider the two cases:

1) D < 0. Now “b” and “c” are both positive, and the determinant (6.13) is
negative. So, according to the summary of chapter 5, the solutions form a saddle
point of equilibrium.

2) D > 0. Now the two are both negative and the determinant is positive.
Then the equilibrium is a knot. Now, the trace (6.12) is also positive, so the
equilibrium is a repeller.

Example 3. Taken from [17]. Y. Shinkai has formulated a two sector growth
model. The labor force, N , grows with a constant rate, n, i.e., it satisfies the
equation

(6.19) N ′ = nN .

The labor force splits into two sectors,

(6.20) N = N1 +N2 .

The capital, K, grows with a rate, K ′, proportional to the labor force in the capital
good sector, (no. 1), and as the capital depends on the size of the labor force, i.e.

(6.21) K = a1N1 + a2N2

we get the equation

(6.22) a1N
′
1 + a2N

′
2 = K ′ = mN1 .

Now, the two equations (6.19) and (6.22) form a system of linear differential equ-
ations of the form

(6.23)
(
a1 a2

1 1

)(
N1

N2

)′
=
(
m 0
n n

)(
N1

N2

)

or,

(6.24) AN ′ = BN ⇐⇒ N ′ = A−1BN .
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6. Economical examples of differential equations 29

Now, we need the three criteria-functions from A−1B. First we find A−1:

(6.25) A−1 =
1

a1 − a2

(
1 −a2

−1 a1

)

And A−1B:

(6.26) A−1B =
1

a1 − a2

(
m− na2 −na2

−m+ na1 na1

)

with the trace

(6.27) Θ =
m+ n(a1 − a2)

a1 − a2
=

m

a1 − a2
+ n

and determinant

(6.28) D =
mn

a1 − a2
.

(The eigenvalues for the matrix are then obviously m
a1−a2

and n, having the
right sum and product.)

The discriminant is always positive

(6.29) Δ =
1
4
(
Θ2 − 4D

)
=

1
4

(
m

a1 − a2
− n

)2

> 0 .

If we assume a1 < a2, then the determinant a1 − a2 becomes negative. The off
diagonal element, −na2

a1−a2
becomes positive, while the other one

(6.30)
−m + n a1

a1 − a2

becomes positive for n a1 < m and negative for n a1 > m. In both cases the
negative determinant and the positive discriminant gives rise to a saddle point of
equilibrium.

The two asymptotes have slopes m−na1
na2

and −1, the fraction having the sign
of (6.30). The solution is increasing on the first asymptote and decreasing on the
second. The speeds of the solutions will be, respectively, 2n

a2−a1
and 2m

a1−a2
.
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CHAPTER 7. Homogeneous Autonomous Dynamical Systems

The material in this chapter is taken from [10, 7].
Consider an autonomous dynamic system in the normal (explicit) form

ẋ = dx/dt = F (x, y), (x, y) ∈ R
2(7.1.1)

ẏ = dy/dt = G(x, y), (x, y) ∈ R
2(7.1.2)

We shall throughout make use of the assumption, that F and G are homogeneous
functions of the same degree, m ∈ R, with continuous partial derivatives.

Now, introducing the ratio variable

(7.2) r = y/x, x �= 0

we have from the homogeneity

ẋ = x|x|m−1F (1, r), x �= 0(7.3.1)

ẏ = x|x|m−1G(1, r), x �= 0(7.3.2)

or, in simplified notation on the same domain

ẋ = x|x|m−1f(r); x �= 0(7.4.1)

ẏ = x|x|m−1g(r); x �= 0(7.4.2)

where

(7.5) f(r) = F (1, r), g(r) = G(1, r)

Then the ratio of the individual coordinate solutions,

(7.6) r = ρ(t) = ϕ2(t)/ϕ1(t)

has the derivative, cf. (7.2), (7.1),

ṙ = dr/dt = d(y/x)/dt = (xẏ − yẋ)/x2

= |x|m−1g(r)− |x|m−1rf(r)

= |x|m−1h(r)

(7.7)

where

(7.8) h(r) = g(r) − rf(r),

The director root set, A, of h(r) = 0, (7.8), gives a partition of R = A ∪ �A, i.e.,

(7.9) A = {α ∈ R |h(α) = 0}; A = A ∪ {±∞}; �A = {α ∈ R |h(α) �= 0}
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7. Homogeneous Autonomous Dynamical Systems 31

where A is its closure (in the extended real line, R
∗ = R ∪ {±∞}) and �A its

complement. The complement is open; hence �A is the disjoint union of an at
most countable set of open intervals of R, and each interval may be characterized
as a maximal interval of �A, or, equivalently, an open interval, ]α, α[⊆ �A, which
has endpoints, α, α ∈ A.

Definition. The set A gives a division of the punctuated plane, R
2 \ {(0, 0)} into

the rays, Rα = {(x, y)|y = αx}, for α ∈ A, and the cones, Cα,α = {(x, y)|αx <
y < αx}, where α, α ∈ A, ]α, α[∈ �A.

Solutions remain on these rays and in these cones.

Definition. On a maximal interval, ]α, α[⊆ �A, we define a function, H, by

(7.10) dH/dr = H ′(r) = f(r) /h(r) , r ∈]α, α[⊆ �A,

H(r) cannot be extended continuously to points of A.

Lemma 1. LetH(r) be defined on the maximal interval ]α, α[ by (7.10). If f(α) �=
0 (f(α) �= 0), then H(r) is unbounded in the neighborhood of α (α). Precisely, if
h(r) and f(α) (f(α)) have the same sign, then H(r) → ∞ as r → α (α), otherwise
H(r) → −∞ as r → α (α).

Proof. Let h(r) > 0 and f(α) > 0. Then for some r0 and all r, r0 ≤ r < α, we
have for some positive constant k,

f(r)
h(r)

>
k

α− r

Hence,

H(r) = H(r0) +
∫ r

r0

f(r)
h(r)

dr > H(r0) +
∫ r

r0

k

α− r
dr

= H(r0) + k log(α− r0) − log(α− r) → ∞ as r → α

(7.11)

The general behavior of the dynamic system (7.1) - apart from boundary ray
behavior, is given by the following theorem.

Theorem 1. For any solution φ(t) = (φ1(t), φ2(t)), to (7.1), with initial data
(x0, y0) in a cone, every ratio solution ρ(t) = φ2(t)/φ1(t), (7.6) must solve the
fundamental autonomous differential equation

(7.12) ṙ = Q(r) = K0 · e(m−1)H(r)h(r)

with the constant K0 depending on (x0, y0), precisely,

(7.13) K0 = xm−1
0 e−(m−1)H(r0), r0 = y0/x0.
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The individual coordinate solutions are

x = φ1(t) = k0e
H(ρ(t))(7.14)

y = φ2(t) = ρ(t)φ1(t)(7.15)

where the constant k0 is

(7.16) k0 = x0e
−H(r0), r0 = y0/x0.

The trajectory is given implicitly by the equation

(7.17) x = k0e
H(y/x)

Proof. Without loss of generality we may assume x0, y0 ∈ R+. By (7.4.1), we have

(7.18) ẋ/x = xm−1f(r)

Eliminating xm−1 from (7.18) and (7.7), we get

(7.19)
ẋ

x
=
f(r)ṙ
h(r)

Integration of (7.19) with respect to time gives

(7.20)
∫
ẋdt

x
=
∫
f(r)ṙdt
h(r)

or equivalently, cf. (7.10)

(7.21)
∫
dx

x
=
∫
f(r)dr
h(r)

=
∫
H ′(r)dr

and so

(7.22) log x = H(r) + k

where the constant of integration k has to satisfy the initial condition

(7.23) k = log xo −H(r0).

Thus, we can express x as a function of r

(7.25) x = x0e
−H(r0)eH(r),

and further

(7.26) xm−1 = xm−1
0 e−(m−1)H(r0)e(m−1)H(r)

Substituting this expression for xm−1 into (7.7) establishes (7.12) and (7.13).
Inserting the ratio solution ρ(t), obtained from (7.12), (7.13) into (7.25) establishes
(7.14)–(7.16).
Finally, the equation (7.17) follows by substitution of (7.2) in (7.14).
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Corollary 1.1. In a maximal interval, ]α, α[, (7.7), any ratio solution ρ(t) of
(7.12) monotonously increases/decreases towards, respectively, α and α, according
to the sign of h(r). The trajectories of all solutions φ(t) in Cα,α are attracted by
the same boundary ray and repulsed by the other boundary ray.

Proof. It is seen by the definition of a maximal interval that the governing func-
tion Q(r), (7.12), cannot change sign in ]α, α[. It must remain either positive or
negative and the corollary follows.

For different initial values (x0, y0), it is clear from (7.12), (7.13) that the
governing function of the ratio solutions are the same function, except for the
value of the positive constant K0. To compare the set of ratio solutions in ]α, α[,
we need the following lemma.

Lemma 2. Consider two autonomous differential equations with a positive pro-
portionality factor

(i) u̇ = Q(u), (ii) v̇ = βQ(v); β > 0

Let u(t) and v(t) be, respectively, a solution of (i) and (ii). Then there always
exists a constant τ such that u(t) and v(t) are related by

(7.27) v(t) = u(βt+ τ)

Proof. The lemma is confirmed most easily by differentiation of the solutions,
(7.27), i.e.,

v̇ = βu̇(βt+ τ) = βQ[u(βt+ τ)] = βQ(v).

Corollary 1.2. In ]α, α[, any pair of ratio solutions,

(7.28) ρ1(t) = φ2(t)/φ1(t), ρ2(t) = ψ2(t)/ψ1(t)

are related by an affine transformation of the argument

(7.29) ρ2(t) = ρ1(βt+ τ), β > 0.

Proof. Lemma 1 applied to (7.12), (7.13).

On the boundary rays, the solutions of the system (7.1) can be expressed
explicitly.
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34 7. Homogeneous Autonomous Dynamical Systems

Theorem 2. For any solution φ(t) = (φ1(t), φ2(t)), to (7.1) with initial data
(x0, y0) �= (0, 0) on a ray with the slope α, given by h(α) = 0, (7.8), every ratio
solution is the constant solution

(7.30) ρ(t) = α = y0/x0.

The trajectory of any φ(t) remains on the α–ray, y = αx,

(7.31) φ2(t) = αφ1(t)

where the coordinate solution φ1(t) may take the forms

Case 1. f(α) = 0 : φ1(t) = x0(7.32)

Case 2. f(α) �= 0, f(α) > 0 or f(α) < 0 :

(i), m = 1 : φ1(t) grows/declines exponentially(7.33)

x = φ1(t) =x0e
f(α)t

(ii), m < 1 : φ1(t) grows/declines polynomially(7.34)

(of degree 1/(1-m))

x = φ1(t) =[x1−m
0 + (1 −m)f(α)t]1/(1−m)

(iii), m > 1 : φ1(t) grows/declines explosively(7.35)

x = φ1(t) =1/[x1−m
0 − (m− 1)f(α)t]1/(m−1)

Proof. Without loss of generality we may assume x0, y0 ∈ R+. By r0 = y0/x0 = α
and h(α) = 0, equation (7.7) becomes ṙ = 0, hence ρ(t) = constant = φ2(t)/φ1(t),
which with the initial condition give (7.30), (7.31).

Since a solution φ(t) = (φ1(t), φ2(t)) must here always satisfy the differential
equation, ṙ = 0, the trajectory of any φ(t) must then remain on the (initial) ray
y = αx. Next, we get from (7.4) that

(7.36) ẋ = xmf(α).

Case 1, with f(α) = 0, gives ẋ = 0, hence (7.32).
In case 2, with f(α) �= 0, we see that (7.36) can be solved by separation of

variables

(7.37)
∫
x−mdx =

∫
f(α)dt

For m = 1, (7.37) gives

log x = f(α)t+ k, k = log x0

which establishes (7.33).
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For m �= 1, (7.37) gives

(7.38) x1−m/(1 −m) = f(α)t+ k, k = x1−m
0 /(1 −m)

Thus, (7.38) establishes (7.34), (7.35) for respectively, m < 1 and m > 1. An
explosive solution means that the coordinates become infinite in finite time (the
escape time)

Definition. We shall call the magnitude

(7.39) f(α)

the directrix value for the directrix, y = αx.

Example. Although the primary use of theorem 1 was intended for the qualitative
study of homogeneous dynamics, the basic idea of deriving the system solutions
indirectly through the ratio solutions may also be useful as a technical method for
explicitly solving the differential equations.

Obviously, the integral, H(r), cf. (7.11) can seldom be written in closed
form. Nevertheless, our procedure might work successfully in obtaining the explicit
solutions. Consider the simple homogeneous system of degree m = 2, cf. (7.1):

ẋ = xy,(7.40)

ẏ = x2.(7.41)

The trajectories in the phase plane are easily, cf. (7.17), derived from, ẏ/ẋ =
dy/dx = y/x, as

(7.42) y2 − x2 = c,

i.e. rectangular hyperbolas (c �= 0, c = 0: two straight lines (nodal rays), y/x =
±1 and the origin. As to the evolution in time and the speed of motion, however,
we need the integral curves. By (7.40)–(7.41), our function h(r) becomes

(7.43) h(r) = g(r)− rf(r) = 1 − r2

which has the root values, r = ±1. Next, we have that

(7.44) H ′(r) =
f(r)
h(r)

=
r

1 − r2
, r �= ±1.

The integral of (7.44) is easily found to be

(7.45) H(r) =
∫
H ′(r)dr = − log

√
|1 − r2| + k, r �= ±1
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with the constant of integration satisfying the initial condition

(7.46) k = H(r0) + log
√
|1 − r20|, r0 �= 1.

Hence, the governing function Q(r) of the ratio solutions is, with m = 2, obtained
from (7.12), (7.13), (7.45), as

ṙ = Q(r) = x0e
−H(r0)eH(r)h(r), r0 �= 1(7.47)

= x0e
log

√
|1−r20|−ke− log

√
|1−r2|+k (1 − r2

)
= x0

(|1 − r20|
)1/2 (|1 − r2|)−1/2 (

1 − r2
)

= ±x0

√
|1 − r20|

√
|1 − r2| = ±A

√
|1 − r2|, A > 0,(7.48)

or else

ṙ = A
√

1 − r2, r < 1,(7.49)

ṙ = A
√
r2 − 1, r > 1.(7.50)

For (7.49), let the initial values at t = 0 be, (x0, y0) = (1, 0), implying r0 = 0,
A = 1 and thereby

(7.51) ṙ =
√

1 − r2, r < 1.

which gives the ratio solution

(7.52) ρ(t) = sin(t), 0 < t < π/2.

For (7.50), let the initial values at t = −∞ be (x−∞, y−∞) = (0, 1), implying
A = −1, and thereby

(7.53) ṙ = −
√
r2 − 1, r > 1,

which gives the ratio solution

(7.54) ρ(t) = cosh(t), t < 0.

The components of the coordinate solution φ(t) – corresponding to (7.52) and
x0 = 1, r0 = 0 – become cf. (7.14), (7.16), (7.45)

φ1(t) = x0e
−H(r0)eH(ρ(t)), r0 < 1(7.55)

= 1 · e− log
√

1−ρ2(t)

=
(
1 − ρ2(t)

)−1/2
= 1/ cos t, 0 < t <

π

2
,(7.56)

φ2(t) = ρ(t)φ1(t) = sin(t)/ cos(t) = tan t, 0 < t <
π

2
.(7.57)
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The components of the coordinate solution ψ(t) – corresponding to (7.54) and,
A = −1, become cf. (7.45), (7.55)

ψ1(t) = x0e
log

√
r20−1e− log

√
ρ2(t)−1, r0 > 1,

(7.58)

= x0

√
r20 − 1

(
ρ2(t) − 1

)−1/2
=
√
y2
0 − x2

0

(
ρ2(t) − 1

)−1/2

= − (ρ2(t) − 1
)−1/2

= −1/ sinh t, t < 0,(7.59)

= ψ2(t) = ρ(t)ψ1(t) = cosh(t)/(− sinh(t)) = − coth t, t < 0(7.60)

Thus, the explicit coordinate solutions along the trajectories (7.45) with a = 1,
are cf. (7.56)–(7.57), (7.59)–(7.60)

φ(t) = (1/ cos t, tan t), 0 < t <
π

2
,(7.61)

ψ(t) = (−1/ sinh t,− coth t), t < 0.(7.62)

The complete set of ratio solutions are obtained from (7.49)–(7.50), (7.52)–(7.53),
using corollary 1.2, (7.29), i.e.

ρ(t) = sin(At− t0),(7.63)

ρ(t) = − cosh(At− t0).(7.64)

Hence, by (7.63)–(7.64), (7.44), (7.14), (7.16), the complete set of coordinate solu-
tions are given by the family pair

φ(t) = (A/ cos(At+ t0), A tan(At+ t0)),(7.65)

ψ(t) = (−A/ sinh(At+ t0), −A coth(At+ t0)),(7.66)

where B = A = x0|1 − r20|−1/2.
It follows from (7.49), (7.42), (7.40) and theorem 4 that the root α = +1

represent the attractive nodal ray – upon which the coordinate solutions

(7.67) φ(t) = [(x−1
0 − t)−1, (x−1

0 − t)−1]

are growing explosively, as f(1) = 1 > 0 and m = 2, cf. (7.35).
The integral curves (7.61), (7.62) and the corresponding trajectories (A = 1)

are depicted.
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Appendix on l’Hospital.

Theorem of l’Hospital. Let f and g be differentiable functions of a real variable
in some interval I =]β, α[ with g′(x) �= 0 for x ∈ I. Suppose limx→α f(x) = ∞
and limx→α g(x) = ∞ and that

lim
x→α

f ′(x)
g′(x)

= k

Then we have

lim
x→α

f(x)
g(x)

= k

Proof. As g′(x) > 0 for some x ∈ I, we have g′(x) > 0 for all x ∈ I. Suppose now
k′ < k. Then we have

k′ <
f ′(x)
g′(x)

for x close to α. This means that f ′(x) − k′g′(x) > 0 such that the function
f(x) − k′g(x) is increasing. For any ε > 0 the function εg(x) → ∞ for x → α, so
that

f(x) − k′g(x) + εg(x) → ∞ for x→ α

hence, we have
f(x) − k′g(x) + εg(x) > 0

for x close to α, or equivalently

k′ − ε <
f(x)
g(x)

Similarly is shown that
f(x)
g(x)

< k′′ + ε

Hence the theorem follows.
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CHAPTER 8. Stability for Homogeneous Dynamical Systems

The material in this chapter is taken from [10, 7].
We shall consider the behavior of solutions in the neighborhood of an isola-

ted boundary ray with increasing solutions. Such a ray will play the role of an
asymptote for the vicinity solutions.

Theorem 1. Suppose α is an isolated zero for h(r), h, defined by (7.8), decreasing
through α, and that f(α) > 0, f defined by (7.5). Then the solutions around will
satisfy

(8.1) x(r) → ∞ for r → α.

Proof. According to lemma 1 of Chapter 7we have

(8.2) H(r) → +∞ for r → α− .

By (7.25) we have
x(t) = B · eH(ρ(t)),

from which (8.1) follows.

If the degree of homogeneity is at most one, then this behavior exhibits for
time going to infinity. Precisely we have:

Theorem 2. Suppose α is an isolated zero for h(r), h defined by (7.8), and thus
f(α) > 0, f defined by (7.5). If further m ≤ 1, then the solutions from the cone
below y = αx must satisfy

x(t) → ∞ for t→ ∞
ρ(t) → α for t→ ∞

with a speed not greater than

ρ(t) ≤ α−K · e−A·kt

for some fixed K and A depending on the point of start, while k is just an upper
bound for h′(ρ).

Proof. The solution–ratio ρ(t) satisfies (7.12):

ρ̇ = A · e(m−1)H(ρ)h(ρ).

With m ≤ 1 the exponential is limited according to theorem 1. The mean value
theorem says, that

h(ρ) = h′(θ) · (ρ− α) ≤ k · (α− ρ),
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8. Stability for Homogeneous Dynamical Systems 41

if k is an upper bound for h′.
Hence

ρ̇ ≤ A · k · (α− ρ),

and
ρ̇

α− ρ
≤ A · k

So ∫ t

0

ρ̇

α− ρ
≤
∫ t

0

A · kdt
or

− log(α− ρ) + log(α− ρ(0)) ≤ A · k · t
From this follows with K = α− ρ(0) > 0

K

α− ρ
≤ eA·kt

or
ρ(t) ≤ α−Ke−A·kt.

In case of m > 1 it is expected, that

x(t) → ∞ and ρ(t) → α for t→ T <∞.

We look at (7.12) again. From (8.2) we have

H(ρ) ≥ L−K log(α− ρ)

and hence

e(m−1)H(ρ) ≥ e(m−1)L ·
(

1
α− ρ

)(m−1)·K
.

Now, suppose that h(ρ) ≥ (α− ρ)p for some p ≥ 1. Then (7.1) gives

ρ̇ = A · e(m−1)H(ρ)h(ρ) ≥ A · e(m−1)L · (α− ρ)p−(m−1)K .

As soon as
m > 1 +

p− 1
K

we must have ρ(t) → α for t→ T <∞.
Remark. The normal case is of course p = 1 reducing the inequality to m > 1.

We shall now discuss the different types of stability of the coordinate solutions
that are associated with the global asymptotic ratio stability conditions.

To start with, we observe a simple fact as stated in Lemma 3.
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42 8. Stability for Homogeneous Dynamical Systems

Lemma 1. The sets of the individual coordinate solutions ϕ1(t) and ϕ2(t) to
(7.1) will – under the conditions of global asymptotic ratio stability, h′(α) < 0,
and with a director root α �= 0 – always have the same stability properties.

Proof. By theorem 1, we have for all the solutions of (7.12) that ρ(t) → α for
t→ ∞. Hence, as t→ ∞, ϕ1(t) and ϕ2(t) evolve proportionally by (7.6), and the
lemma follows.

Consider any pair of coordinate solutions to (7.1),

(8.3) ϕ(t) = [ϕ1(t), ϕ2(t)] and ψ(t) = [ψ1(t), ψ2(t)]

Theorem 3. The family of coordinate solutions to (7.1) has – with lemma 1
and a negative or zero directrix value, (7.39), – respectively, asymptotic and weak
absolute stability

f(α) < 0 : ϕi(t) = 0, ψi(t) → 0 as t→ t̄i ≤ ∞, i = 1, 2(8.4)

f(α) = 0 : |ψi(t) − ϕi(t)| < k <∞, ∀t, i = 1, 2(8.5)

Proof. By a change of variables, ξ = 1
x and η = 1

y , the theorem follows from the
corresponding theorem with f(α) ≥ 0 and degree of homogeneity equal to 2 −m.

The actual value of the degree of homogeneity will play a crucial role in
various stability conditions that refer to classification of families of coordinate
solutions which ultimately increase towards infinity.

Theorem 4. The family of non–stationary coordinate solutions to (7.1) has –
with h decreasing through α and a positive directrix value (7.39) and either m < 1
or m = 1 – respectively, strong relative and strong logarithmic stability, i.e.,

f(α) > 0, m = 1 : logψi(t)/ logϕi(t) → 1 as t→ ∞, i = 1, 2(8.6)

f(α) > 0, m < 1 : ψi(t)/ϕi(t) → 1 as t→ ∞, i = 1, 2(8.7)

Proof. To prove (8.6–8.7), it suffices to examine two solutions, referred to in (8.3),
a directrix solution ϕ(t) of the form (7.33) or (7.34) and a non–directrix solution
ψ(t) of the form (7.14). Furthermore, by lemma 1, it is enough to compare their
first coordinate solutions.

ad m = 1. From (7.33) and (7.14), we have

(8.8)
logψ1(t)
logϕ1(t)

=
log(k0e

H[ρ(t)])
log(x̂0ef(α)t)

=
log |k0| +H[ρ(t)]
log |x̂0| + f(α)t
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Due to lemma 1 of ch. 7 and theorem 1, the rule of l’Hospital can be used to
evaluate the limit of (8.8), i.e.,

lim
t→∞

logψ1(t)
logϕ1(t)

= lim
t→∞

d logψ1(t)/dt
d logϕ1(t)/dt

= lim
t→∞

H ′[ρ(t)]ρ̇(t)
f(α)

=

lim
t→∞

(f [ρ(t)]/h[ρ(t)])h[ρ(t)]
f(α)

= lim
t→∞

f [ρ(t)]
f(α)

=
f(α)
f(α)

= 1

(8.9)

using (7.10), (7.12) and m = 1. Thus, (8.9) establishes the strong logarithmic
stability property of the family of coordinate solutions ϕ(t), (8.6).

ad m < 1. From (7.34) and (7.14), we have

(8.10)
ψ1(t)
ϕ1(t)

=
k0e

H[ρ(t)]

[x̂1−m
0 + (1 −m)f(α)t]

1
1−m

=
k0e

H[ρ(t)]

[(1 −m)f(α)(t+ t0)]
1

1−m

Due to lemma 1, we may also use the rule of l’Hospital to evaluate the limit of
(8.10). Thus, one gets, cf. (7.10), (7.12)

lim
t→∞

ψ1(t)
ϕ1(t)

= lim
t→∞

ψ̇1(t)
ϕ̇1(t)

= lim
t→∞

k0e
H[ρ(t)]H ′[ρ(t)]ρ̇(t)

[(1 −m)f(α)(t+ t0)]
m

1−m f(α)
=

lim
t→∞

k0e
H[ρ(t)] (f [ρ(t)]/h[ρ(t)]) |k0e

H[ρ(t)]|m−1h[ρ(t)]

[(1 −m)f(α)(t+ t0)]
m

1−m f(α)
=

lim
t→∞

[
|k0e

H[ρ(t)]|m
[(1 −m)f(α)(t+ t0)]

m
1−m

] [
f [ρ(t)]
f(α)

]
=

lim
t→∞

[ |k0|m
[(1 −m)f(α)]

m
1−m

] [
e(1−m)H[ρ(t)]

t+ t0

] m
1−m

[
f [ρ(t)]
f(α)

]

(8.11)

In (8.11), both the numerator (cf. lemma 1 of ch. 7. and theorem 1) and the
denominator of the middle fraction go to infinity for t → ∞, so we apply the
l’Hospital rule once more. Thus, using again (7.10), (7.12), we obtain

lim
t→∞

e(1−m)H[ρ(t)]

t+ t0
= lim
t→∞ e(1−m)H[ρ(t)][(1 −m)H ′[ρ(t)]ρ̇(t) =

lim
t→∞ e(1−m)H[ρ(t)](1 −m)(f [ρ(t)]/h[ρ(t)])|k0e

H[ρ(t)]|m−1h[ρ(t)] =

lim
t→∞(1 −m)|k0|m−1f [ρ(t)] = (1 −m)|k0|m−1f(α)

(8.12)

as the last results follows from the assumption, ρ(t) → α for t → ∞. Finally, the
standard theorem on composite limits is applied to (8.11–8.12), i.e.,
(8.13)

lim
t→∞

ψ1(t)
ϕ1(t)

=
[ |k0|m
[(1 −m)f(α)]

m
1−m

] [
(1 −m)|k0|m−1f(α)

] m
1−m

[
f(α)
f(α)

]
= 1

43



44 8. Stability for Homogeneous Dynamical Systems

which establishes the strong relative stability property of the family of coordinate
solutions, (8.7).

Theorem 4 is the most general and powerful stability result bringing – in
regard to the values of m – the stability properties for families of increasing (but
non–explosive) solutions to the general homogeneous dynamic system (7.1), under
a simple, all–embracing rule.
However, it is possible – for m = 1, m = 0 and m < 0 – to sharpen theorem 4 by
adding a very mild assumptions to the conditions in (8.6.–8.7).

Theorem 5. The family of non–stationary coordinate solutions to (7.1) has –
with h′(α) < 0, a positive directrix value, (7.39), and m = 1 – weak relative
stability, i.e.,

(8.14) f(α) > 0, m = 1, h′(α) < 0 : ψi(t)/ϕi(t) < k <∞, ∀t, i = 1, 2

Proof. From (7.33), (7.14) and lemma 1, we have

(8.15)
ψ1(t)
ϕ1(t)

=
k0e

H[ρ(t)]

x̂0ef(α)t
=
k0

x̂0
eH[ρ(t)]−f(α)t

We consider the difference

(8.16) χ(t) = H[ρ(t)]− f(α)t

and next, by (7.10), (7.12), m = 1 and the mean value theorem on f

|χ̇(t)| = |H ′[ρ(t)]ρ̇(t) − f(α)| = |f [ρ(t)]− f(α)| = f ′(ξ)|ρ(t)− α|
< B1|ρ(t) − α|

(8.17)

where the constant B1 is an upper bound for |f ′(r)|, i.e., B1 > f ′(ξ), ∀ξ.
By h′(α) < 0 and the mean value theorem on h, there exists a constant

B2 > 0, being a lower bound for −h′(r) in a neighborhood N(α) of α, such that
for r, ξ ∈ N(α),

(8.18) |h(r)| = |h′(ξ)(r − α)| ≥ B2|r − α|

Hence, by (7.12), m = 1, r = ρ(t) and (8.18), we get

(8.19) |ρ̇(t)| = |h[ρ(t)]| ≥ B2|ρ(t) − α|

Integrating (8.19) by separation of variables yields

(8.20) log |r0 − α| − log |ρ(t) − α| ≥ B2t ⇔ |ρ(t) − α| ≤ |r0 − α|e−B2t

44



8. Stability for Homogeneous Dynamical Systems 45

Substituting (8.20) in (8.17) and integrating gives, cf. (8.16)

|χ(t)| ≤ |χ(0)| +
∫ t

0

|χ̇(t)|dt ≤ H(r0) +B1

∫ t

0

|r0 − α|e−B2tdt

= H(r0) +B1|r0 − α|
[
1 − e−B2t

B2

]t
0

≤ H(r0) +B1|r0 − α|/B2

(8.21)

Finally, by (8.15–8.16) and (8.21), we obtain

ψ1(t)
ϕ1(t)

=
k0

x̂0
eH[ρ(t)]−f(α)t ≤ k0

x̂0
eH(r0)+B1|r0−α|/B2 <∞(8.22)

which establishes the weak relative stability property (8.14).

Corollary 5. The ratio ψ1(t)
ϕ1(t)

converges towards a limit for t→ ∞.

Proof. The ratio is limited according to theorem 5. And from (8.16) follows, that
it is monotonic, because

χ̇(t) = f(ρ(t))− f(α) � 1
n!
f (n)(α)(ρ(t) − α)n

does not change sign, provided f is analytic.

Theorem 6. The family of non–stationary coordinate solutions to (7.1) has – with
h′(α) < 0, a positive directrix value (7.39), and the assumption, g′(α)−αf ′(α) < 0
– for m = 0 and m < 0, – weak and strong absolute stability, i.e.,

f(α) > 0, m = 0, h′(α) < 0 : |ψi(t) − φi(t)| < k <∞, ∀t, i = 1, 2(8.23)

f(α) > 0, m < 0, h′(α) < 0 : ψi(t) − φi(t) → 0 as t→ ∞, i = 1, 2(8.24)

Proof. From (7.34), (7.14) and lemma 1, we have

(8.25) ψ1(t) − ϕ1(t) = x0e
H(ρ)−H(r0) − [x̂1−m

0 + (1 −m)f(α)t]
1

1−m

And from (7.10) we approximate

(8.26) H ′(r) =
f(r)
h(r)

≈ f(α)
h′(α)(r − α)

Integrating (8.26) yields

H(ρ) −H(r0) ≈
∫ ρ

r0

f(α)
h′(α)

· 1
|ρ− α|dρ

=
f(α)
h′(α)

[log |ρ− α| − log |r0 − α|]

=
f(α)
h′(α)

log
∣∣∣∣ ρ− α

r0 − α

∣∣∣∣

(8.27)
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By (7.12) we have

ρ̇ = xm−1
0 e(m−1)(H(ρ)−H(r0))h(ρ)

≈ xm−1
0

∣∣∣∣ ρ− α

r0 − α

∣∣∣∣
(m−1)

f(α)
h′(α)

h′(α)(ρ− α)

(8.28)

Since the ratio solution ρ(t) have asymptotic stability, our approximation, (8.28),
is useful only for h′(α) < 0.

Integration by separation of variables yields

(8.29)

⎡
⎣ |ρ− α|(1−m)

f(α)
h′(α)

(1 −m) f(α)
h′(α)

⎤
⎦
ρ

r0

= xm−1
0 |r0 − α|(1−m)

f(α)
h′(α)h′(α)t

or, equivalently

(8.30)
∣∣∣∣ ρ− α

r0 − α

∣∣∣∣
f(α)
h′(α)

= x−1
0

(
x1−m

0 + (1 −m)f(α)t
) 1

1−m

By (7.14), (8.27) and (8.30), we obtain

ψ1(t) = x0e
H(ρ)−H(r0)

≈ (x1−m
0 + (1 −m)f(α)t

) 1
1−m

(8.31)

ad m = 0. We have by (8.25), (8.31), m = 0 and together with
lim
t→∞ρ(t) = α due to h′(α) < 0,

(8.32) lim
t→∞[ψ1(t) − ϕ1(t)] = x0 − x̂0

which establishes the weak absolute stability property of the coordinate solutions,
(8.23).

ad m < 0. We have by (8.25), (8.31), m < 0 and together with
lim
t→∞ρ(t) = α due to h′(α) < 0,

(8.33) lim
t→∞[ψ1(t) − ϕ1(t)] = 0

which establishes the strong absolute stability property of the coordinate solutions,
(8.24).
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CHAPTER 9. Economical examples of differential equations

R. M. Solow [18, 19, 20] refines the model of Shinkai, [17], in the following
way:

We assume the labor force, L, to grow with a rate, n, as in Chapter 12, (25)

(9.1) L′ = nL .

But the capital grows with a speed of

(9.2) K ′ = G(L,K)

where G is some homogeneous function of L and K of degree 1, but not necessarily
linear.

One assumption due to Solow, is that G takes the form

(9.3) G(L,K) = s (Lp + aKp)
1
p

with 0 < a, 0 < p < 1, and 0 < s < 1.
Another assumption due to C. W. Cobb and P. H. Douglas, is that G takes

the form

(9.4) G(L,K) = sKαL1−α

for some 0 < s < 1 and 0 < α < 1.
Then we define our functions as in Chapter 7, (7.5), (7.6) and (7.8):

k =
K

L
(9.5)

f(k) = n(9.6)

g(k) = G(1, k)(9.7)

h(k) = g(k) − nk .(9.8)

In the examples we get for Solow

g(k) = s(1 + akp)
1
p(9.9)

h(k) = s(1 + akp)
1
p − nk(9.10)

and for Cobb–Douglas

g(k) = skα(9.11)

h(k) = skα − nk .(9.12)

The first question is, whether h has a root? Hence we shall solve for Solow

(9.13) s(1 + akp)
1
p = nk .
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48 9. Economical examples of differential equations

This equation has a solution, if

(9.14) a <

(
n

s

)p

and then the solution is

(9.15) k0 =
1

(
(
n
s

)p − a)
1
p

.

For Cobb–Douglas the solution is

(9.16) k0 =
(
s

n

) 1
1−α

.

It is obvious that h is decreasing through k0, because from (9.10) we have
h(0) = s > 0, and from (9.12) we have h(k) = kα(s− nk1−α) > 0 for 0 < k < k0.

In both cases we get

(9.17) f(k0) = n > 0 ,

and further in case of Solow

(9.18) h′(k) =
1
p
(1 + akp)

1
p−1 · apkp−1 − n ,

and using (9.15) and (9.14) we find

(9.19) h′(k0) = aspn1−p − n < 0 ,

while in the case of Cobb–Douglas

(9.20) h′(k) = sαkα−1 − n ,

and using (9.16) we find

(9.21) h′(k0) = sα

(
s

n

) 1
1−α ·(α−1)

− n = n(α− 1) < 0 .

Hence we may apply theorem 5 to conclude, that the solutions satisfy the
weak relative stability, (8.14) of Chapter 8.

Even the corollary 5 of Chapter 8 applies, telling that the ratio between two
different solutions for L or K will converge towards a finite non–zero constant.
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10. The calculus of finite sums and differences 49

CHAPTER 10. The calculus of finite sums and differences

In analogy to the operators of differentiation and integration, we shall intro-
duce the operators of differences and sums. We shall see how far the analogy shall
reach with respect to theorems. The results of this chapter are mainly stolen from
[5], but the terminology is different.

Definition 1. The difference operator, Δ, is defined by the equation

(10.1) Δf(x) = f(x+ 1) − f(x)

This means that a new function, Δf , is defined in analogy to the derivative,
Df = f ′, of the function, f .

This operator may be iterated, e.g.

(10.2) Δ2f(x) = Δ(f(x+ 1) − f(x)) = f(x+ 2) − 2f(x+ 1) + f(x) .

The difference operator is not in harmony with the powers as the derivative
is. E.g.

(10.3) Δx3 = (x+ 1)3 − x3 = 3x2 + 3x+ 1 .

Rather than using the powers or monomials as the bases for the space of
polynomials, we shall introduce the (descending) factorials, [x]n = x(x−1) · · · (x−
n+ 1), with n factors. It is convenient to define them for negative length as well.

Definition 2. The descending factorial of length n ∈ Z is

(10.4) [x]n =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

n−1∏
j=0

(x− j) n ∈ N

1 n = 0
−n∏
j=1

1
x+ j

−n ∈ N

.

The factorials [x]n for n ∈ N0 constitute a base for the polynomials.
There are a series of rules of calculation for the factorials. The most impor-

tant are

[x]n = [−x+ (n− 1)]n(−1)n(10.5)

[x]n = [x]m[x−m]n−m(10.6)

[x]n = 1/[x− n]−n(10.7)

[x]n = [x− 1]n + n[x− 1]n−1(10.8)
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50 10. The calculus of finite sums and differences

Together with the difference operator it obeys

(10.9) Δ[x]n = n[x]n−1 .

To show (10.9), use (10.8) on [x+ 1]n and (10.1).
Rather than defining a sum by addition we shall define an indefinite sum or

anti–difference in analogy to the indefinite integral or anti–derivative in ordinary
calculus.

Definition 3.

(10.10) g(x) = Δf(x) ⇔ f(x) =
∑

g(x)δx .

remark. If g is given, f(x) is only uniquely determined up to a periodic function
C(x) with period 1. But if g(x) is a polynomial, then f(x) is uniquely determi-
ned as a polynomial up to a constant, because the constant is the only periodic
polynomial.

The definite sum shall be

Definition 4. For b− a ∈ N0 we define

(10.11)

∑b

a
g(x)δx = f(b) − f(a), where

f(x) =
∑

g(x)δx .

remark. This definition is unique, because it is independent of the periodic
function C(x).

Now, this sum may be computed by some additions in analogy to the deter-
mination of the definite integral as some area.

Theorem 1. The definite sum is

(10.12)
∑b

a
g(x)δx =

b−1∑
k=a

g(k) .

Proof. Induction after b− a. For b− a = 0 we have

∑a

a
g(x)δx = f(a) − f(a) = 0 =

a−1∑
k=a

g(k) .

For b− a = 1 we have

∑a+1

a
g(x)δx = f(a+ 1) − f(a) = Δf(a) = g(a) =

a∑
k=a

g(k) .
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10. The calculus of finite sums and differences 51

The general step is∑b+1

a
g(x)δx =

∑b

a
g(x)δx+

∑b+1

b
g(x)δx =

b−1∑
k=a

g(k) + g(b) =
b∑

k=a

g(k) .

example: Use (10.10) on (10.9):

[x]n =
∑

n[x]n−1δx .

Then (10.12) and (10.11) yield

[m]n − [0]n =
∑m

0
n[x]n−1δx = n

m−1∑
k=0

[k]n−1 .

Or, rather

(10.13)
m∑
k=0

[k]n =
[m+ 1]n+1

n+ 1
.

For n = 1 we have
m∑
k=0

k =
[m+ 1]2

2
=
m(m+ 1)

2

and as we may write k2 = [k]2 + [k]1, we deduce
m∑
k=0

k2 =
m∑
k=0

[k]2 +
m∑
k=0

[k]1 =

[m+ 1]3
3

+
[m+ 1]2

2
=

2(m− 1)[m+ 1]2 + 3[m+ 1]2
6

=

m(m+ 1)(2m+ 1)
6

.

another example: Let x ∈ Z, then we define

f(x) =
[a]x

[b]x−1
.

Now

Δf(x) = (a− b− 1)
[a]x
[b]x

.

So that

(10.14)
n∑

k=m

[a]k
[b]k

=
∑n+1

m

[a]x
[b]x

δx =
1

a− b− 1

(
[a]n+1

[b]n
− [a]m

[b]m−1

)
.

In order to establish the analogy to the integration by parts we shall need the
trivial operation of a shift.
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52 10. The calculus of finite sums and differences

Definition 5. The shift operator, E, is defined by

(10.15) E f(x) = f(x+ 1) = Δf(x) + f(x) .

This allows a simple formulation of the difference of a product.

Theorem 2. For any functions u(x) and v(x) we have

(10.16) Δ(uv) = uΔv + EvΔu

or, symmetric in u and v

(10.17) Δ(uv) = uΔv + vΔu+ ΔuΔv .

Proof. Obvious.

Now we are able to state the Abelian summation formulas:

Theorem 3. For any functions u and v we have

(10.18)
∑

u(x)Δv(x)δx = u(x)v(x) −
∑

Ev(x)Δu(x)δx

and

(10.19)
∑b

a
u(x)Δv(x)δx = u(b)v(b) − u(a)v(a) −

∑b

a
v(x+ 1)Δu(x)δx .

Proof. Follows immediately from (10.16).

example: Δ2x = 2x+1 − 2x = 2x(2 − 1) = 2x. Hence∑
x2xδx = x2x −

∑
2x+1Δxδx

= x2x −
∑

2x+1δx

= x2x − 2x+1

such that – using (10.12) and (10.11) –

n∑
k=0

k2k = (n+ 1)2n+1 − 2n+2 + 2 = (n− 1)2n+1 + 2

or
n∑
k=2

k2k = (n− 1)2n+1 .

In the formula (10.13) we have assumed n �= −1. In analogy to the natural
logarithms we introduce harmonic numbers as partial sums of the harmonic series.
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Definition 6. The harmonic number Hx is for x ∈ N

(10.20) Hx =
x∑

n=1

1
n
.

Then we have ΔHx = 1
x+1 = [x]−1, such that

(10.21)
∑b

a
[x]−1δx = Hb −Ha .

example: From (10.9) with n = 2 we get

∑
xHxδx =

[x]2
2
Hx −

∑ [x+ 1]2[x]−1

2
δx

=
1
2
[x]2Hx − 1

2

∑
[x]1δx

by using (10.6). Furthermore,

∑
[x]1δx =

[x]2
2

so we obtain ∑
xHxδx =

1
4
[x]2(2Hx − 1) .

The most important rule from differential calculus, the rule of substitution,
does not carry over. Unless f(x) or g(x) are linear, the function

(10.22) Δf(g(x)) = f(g(x+ 1)) − f(g(x))

is not related to neither Δf nor Δg. Hence non-linear difference equations are in
general much harder to solve than the corresponding differential equations.

The simplest difference equations are solved similarly to the corresponding
differential equations. We may introduce an exponential function, f(x) = cx for
c �= 1, and remark that

(10.23) Δf(x) = cx+1 − cx = (c− 1)cx .

Hence, the difference equation for a �= 0

(10.24) Δf(x) = a · f(x)

has the solutions with C arbitrary

(10.25) f(x) = C · (1 + a)x .
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54 11. Linear difference equations

CHAPTER 11. Linear difference equations

The treatment of this subject is mainly taken from [5].
A linear difference equation with unknown solution f(x) and known data

g(x) is often given in the form

(11.1) f(x+ 1) − af(x) = g(x)

rather than in the difference operator form

(11.2) Δf(x) − (a− 1)f(x) = g(x) .

We have seen that the corresponding homogeneous equations

(11.3) f(x+ 1) − af(x) = 0

has the general solution

(11.4) f(x) = k · ax .

To solve (11.1) or (11.2) we apply the same method, to guess a function of
the form

(11.5) f(x) = ϕ(x)ax

and then look for restrictions on the function ϕ(x). Substitution of (11.5) in (11.2)
gives the equation

Δ(ϕax) − (a− 1)ϕax = g(x) .

Now we apply straightforward computation to get

(Δax)ϕ+ (Eax)Δϕ− (Δax)ϕ = g(x)

Δϕ = a−1−xg(x),

(11.6)

from which by (11.10) we get ϕ(x)

(11.7) ϕ(x) =
∑

a−x−1g(x)δx

and finally

(11.8) f(x) = axϕ(x) = ax
∑

a−x−1g(x)δx .

Example 1. The equation

f(x+ 1) − 2f(x) = 2x
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11. Linear difference equations 55

has a = 2 and g(x) = 2x, so

f(x) = 2x
∑

2−x−12xδx = 2x
∑ 1

2
δx =

= 2x−1(x+ k) .

Example 2. The equation

f(x+ 1) − 2f(x) = 2xx3

has a = 2 and g(x) = 2xx3, so by the definition of the Bernoulli polynomials,
(18.11), and their table, (18.20), we get

f(x) = 2x
∑

2−x−12xx3δx = 2x
1
2

∑
x3δx =

= 2x−1B4(x) −B4

4
= 2x−3 (B4(x) −B4) =

= 2x−3
(
x4 − 2x3 + x2

)
.

Suppose a first order difference operator, Ai, has the form

(11.9) Aif(x) = f(x+ 1) − αif(x) .

If we iterate two operators of the form (11.9), we get

(11.10) AiAjf(x) = f(x+ 2) − (αi + αj)f(x+ 1) + αiαjf(x) .

Given a second order operator, B

(11.11) Bf(x) = f(x+ 2) − af(x+ 1) + bf(x)

we may find B as a composite

(11.12) B = A1A2

with Ai defined by (11.9) and α1, α2 roots in the polynomial

(11.13) ξ2 − aξ + b .

Theorem 1. A linear operator, B, of the form

(11.14) Bf(x) = f(x+ n) + an−1f(x+ n− 1) + · · · + a0f(x)

can be written as the composition of n operators of first order,

(11.15) B = A1A2 . . .An

with Ai defined by (11.9) and α1, . . . , αn the roots of the polynomial

(11.16) p(ξ) = ξn + an−1ξ
n−1 + · · ·+ a0 .

Proof. The fundamental theorem of algebra.
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56 11. Linear difference equations

Definition 1. The polynomial (11.16) is called the characteristic polynomial of
the operator (11.14).

Application. An equation in f for given g

(11.17) Bf(x) = g(x)

is solved by repeated application of (11.8), i.e.

(11.18) f(x) = αx1
∑

α−x−1
1 αx2

∑
α−x−1

2 · · ·
∑

α−x−1
n g(x)δx .

Example. Consider the pattern in Figure 1.

Figure 1
This problem is taken from [13]. We may ask how many triangles there are

in this figure ? To simplify matters we shall restrict ourselves to triangles, which
are right-way-up, and to compensate for this simplification we shall ask for the
formula for f(n), the number of triangles in a triangle of size n. Then we have
f(1) = 1, f(2) = 4, etc .

First solution. We ask for a function, g(n), such that

Δf(n) = g(n) .
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11. Linear difference equations 57

Figure 2
We take a look at figure 2, and decide that Δf(n) counts exactly those

triangles which have their basis on the basis of the big triangle. And their number
is the number of points in the big triangle of size n, i.e.

g(n) =
n+1∑
k=1

k =
(
n+ 2

2

)
.

Hence f(n) =
∑
g(n)δn =

∑ [n+2]2
2 δn = [n+2]3

6 + c. Since f(1) = 1, we find c = 0,
such that

f(n) =
[n+ 2]3

6
=
(
n+ 2

3

)
.

Second solution. We ask for an operator, B, such that for some constant, k,

Bf(n) = k .
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58 11. Linear difference equations

Figure 3
We take a look at figure 3. The triangle, Tn, of size n, contains three triangles,

T jn−1, of size n − 1. The intersections of two of these is a triangle of size n −
2, T ijn−2 = T in−1 ∩ T jn−1. There are three such intersections, and the intersection
of all six triangles is a triangle of size n− 3, Tn−3. Their relations are illustrated
in diagram 1.

Tn

T 1
n−1 T 2

n−1 T 3
n−1

T 12
n−2 T 13

n−2 T 23
n−2

Tn−3

Diagram 1.
The function f(n) must satisfy the difference equation

(11.19) f(n) = 1 + 3f(n− 1) − 3f(n− 2) + f(n− 3) .

The interpretation is as follows: We count the big triangle Tn only in f(n). The
rest of the triangles counted in f(n) will appear in at least one of the triangles
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11. Linear difference equations 59

T jn−1. A triangle in T in−1 ∩ T jn−1, is counted at least twice. Hence we subtract the
number of triangles in T ijn−2. Now, in the counting 3f(n− 1)− 3f(n− 2) we have
counted every triangle in Tn−3, 3 − 3 = 0 times. Therefore we must add f(n− 3)
to get the result correct.

So, with the operator

(11.20) Bf(x) = f(x+ 3) − 3f(x+ 2) + 3f(x+ 1) − f(x)

we must solve the difference equation equivalent to (11.19)

(11.21) Bf(x) = 1 .

The characteristic polynomial for B is

(11.22) p(ξ) = ξ3 − 3ξ2 + 3ξ − 1 = (ξ − 1)3

hence, the operator may be written as

(11.23) B = Δ3

and the difference equation (11.21) is

(11.24) Δ3f(x) = 1 .

The solution, (11.18), is

(11.25)

f(x) =
∑∑∑

δx =
∑∑

(x+ k1)δx

=
∑( [x]2

2
+ k1x+ k2

)
δx

=
[x]3
6

+ k1
[x]2
2

+ k2x+ k3 .

From f(0) = 0, f(1) = 1 and f(2) = 4 we get k3 = 0, k2 = 1 and k1 = 2.
Consequently, the solution is

(11.26) f(x) =
[x]3
6

+ [x]2 + x =
[x+ 2]3

6
=
(
x+ 2

3

)
.

Theorem 2. The homogeneous difference equation

(11.27) f(x+ n) + an−1f(x+ n− 1) + · · · + a0f(x) = 0

with characteristic polynomial

(11.28) p(ξ) = ξn + an−1ξ
n−1 + · · ·+ a0
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and eigenvalues α1, . . . , αm such that

(11.29) p(ξ) = (ξ − α1)ν1 . . . (ξ − αm)νm

has the complete solution

(11.30) f(x) =
m∑
j=1

pj(x)αxj

where pj(x) is any polynomial of degree νj − 1 and c an arbitrary constant.

Proof by induction after n. For n = 1 (11.30) follows from (11.4).

Suppose the theorem is true, and that we shall prove it for (ξ−α)p(ξ). This
means that we shall solve the difference equation

ABf(x) = 0

where Af(x) = f(x+1)−αf(x) and B is the operator in (11.27). Now, AB = BA,
so we must solve

B(Af(x)) = 0

or

Af(x) =
m∑
j=1

pj(x)αxj .

Because f(x) is uniquely determined up to a solution to the homogeneous equation,
Af(x) = 0, i.e. a function of the form kαx, it is enough to solve each of the
equations

Af(x) = [x]kαxj
for k = 0, 1, . . . , νj − 1.

We treat the two cases: 1) α = αj 2) α �= αj .

1). By (11.8) we have

f(x) = αx
∑

α−x−1[x]kαxδx = αx−1
∑

[x]kδx = αx−1 [x]k+1

k + 1
which is af function of the right form.

2). We use induction after k. Try with f(x) = [x]kαxj . Then by (1.8) we get

Af(x) = [x+ 1]kαx+1
j − α[x]kαxj =

= ([x]k + k[x]k−1)αjαxj − α[x]kαxj =

= (αj − α)[x]kαxj + kαj [x]k−1α
x
j

so that
1

αj − α
[x]kαxj

reduces the problem to k − 1, and solves the problem for k = 0.
Theorem 2 allows the solution of (11.17) by guesssing. It is sometimes pos-

sible to guess just one solution to (11.17). Then the complete solution is obtained
by adding the set of solutions to (11.27).
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CHAPTER 12. Systems of linear difference equations

A system of n first order difference equations in the n unknown functions
f1, . . . , fn, consists of n equations

(12.1)

f1(x+ 1) = a11f1(x) + · · · + a1nfn(x) + g1(x)
...

fn(x+ 1) = an1f1(x) + · · · + annfn(x) + gn(x)

where the functions g1, . . . , gn are given. Of course, this equation is equivalent to
the vector equation

(12.2) f(x+ 1) = Af(x) + g(x)

with A an n× n-matrix and f, g vector valued functions of x.

A simple example. Let f satisfy an n’th order equation

(12.3) f(x+ n) = α1f(x+ n− 1) + · · · + αnf(x) .

If we define

(12.4) fi(x) = f(x+ i− 1) i = 1, . . . , n

then the vector function (f1, . . . , fn) satisfies the system

(12.5)

f1(x+ 1) = f2(x)
...

fn−1(x+ 1) = fn(x)

fn(x+ 1) = αnf1(x) + · · ·+ α1fn(x) ,

or, in matrix form

(12.6) f(x+ 1) =

⎛
⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...
αn αn−1 α1

⎞
⎟⎟⎠ f(x) .

The solution to (12.2) takes two steps. For g(x) = 0, the homogeneous
equation

(12.7) f(x+ 1) = Af(x)

has the general solution

(12.8) f(x) = Ax · k
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62 12. Systems of linear difference equations

with k an arbitrary constant vector. To solve (12.2) we try with an arbitrary
vector valued function ϕ(x)

(12.9) f(x) = Axϕ(x)

which must satisfy (12.2), i.e.

Ax+1ϕ(x+ 1) −AAxϕ(x) = g(x)

or, if A is regular,
ϕ(x+ 1) − ϕ(x) = A−x−1g(x)

with solution
ϕ(x) =

∑
A−x−1g(x)δx

to be substituted in (12.9) to give

(12.10) f(x) = Ax
∑

A−x−1g(x)δx .

We might enjoy other methods to find the inconvenient solution, Ax, to
(12.7). In fact, we may apply the transfer to a higher order system. In order to
do so we need to remember a small, but beautifyl piece of linear algebra.

Let A be any n × n–matrix, A = (aij). Then the determinant may be
computed by the development after a column or row, e.g.,

detA =
n∑
j=1

aij(−1)i+j detA(i,j)

where A(i,j) is the (i, j)–th complement, i.e., the matrix obtained by omitting the
i–th row and the j–th column from the matrix, A. This means, that if we define
a matrix, B = (bjk), as

bjk = (−1)k+j detA(k,j)

then we have traced the inverse of the matrix, A, provided it exists. At least we
may write

n∑
j=1

aijbjk = δik detA

or, in matrix form,

(12.11) AB = (detA)E

We have derived the values in the diagonal above, but the zeros are coming from
the fact, that if i �= k then it corresponds to the replacement of the k–th row with
the i–th row, in which case the matrix becomes singular and the determinant zero.

(In the case of a regular matrix A, we have derived the inverse by dividing
by detA.)

In the formula (12.11) we shall enjoy that the elements of the matrix, B, are
obtained as products of the elements from A.

Now we are able to state and prove
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The Cayley–Hamilton theorem. If

p(ξ) = det (ξE − A) = ξn + an−1ξ
n−1 + · · · + a0

is the characteristic polynomial for the matrix A, then the matrix p (A) satisfies

p (A) = An + an−1A
n−1 + · · ·+ a0E = 0

Proof. We shall apply (12.11) to the matrix λE − A to get

(12.12) p(λ)E = (λE −A)B(λ)

where B(λ) = (bij(λ)) is a matrix of polynomials in λ, defined as the (j, i)–th
complement of the matrix λE − A. Hence we may write

B(λ) = λn−1Bn−1 + · · ·+ λB1 +B0

as a polynomial in λ with coefficients which are matrices independent of λ.
For any k ≥ 1 we may write

Ak − λkE = (A− λE)
(
Ak−1 + λAk−2 + · · · + λk−1E

)
Hence we can write

p (A) − p(λ)E = An − λnE + an−1

(
An−1 − λn−1E

)
+ · · · + a1

(
A1 − λ1E

)
= (A− λE)C(λ) = (A− λE)

(
λn−1E + λn−2Cn−2 + · · ·+ C0

)
(12.13)

where C(λ) is a polynomial in λ with coefficients which are matrices independent
of λ.

Adding (12.12) and (12.13) we get

p (A) = (A− λE) (C(λ) −B(λ))

= (A− λE)
(
λn−1 (E −Bn−1) + · · ·+ λ (C1 −B1) + C0 −B0

)
= λk+1 (Ck −Bk) + λk (C · · ·

where k is the degree of the second factor to the right.
But this polynomial in λ can only be constant, i.e., independent of λ, if the

second factor is zero. But in that case it is all zero, or p (A) = 0.
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Theorem 1. Let pA(ξ) be the characteristic polynomial for A,

pA(ξ) = ξn + α1ξ
n−1 + · · ·+ αn

Then each component f1(x), . . . , fn(x) of the solution f(x) to (12.7) satisfies

(12.14) fi(x+ n) + α1fi(x+ n− 1) + · · ·+ αnfi(x) = 0 .

Proof. The Cayley–Hamilton theorem states that

pA(A) = An + α1A
n−1 + · · ·+ αnE = 0 .

Hence
Anf(x) + α1A

n−1f(x) + · · ·+ αnf(x) = 0 ,

or
f(x+ n) + α1f(x+ n− 1) + · · ·+ αnf(x) = 0

by (12.7). This gives (12.14).

The conclusion is that in principle systems and higher order equations are
essentially the same.

If we solve (12.14) and find solutions hi(x), then this function does not
immediately give a solution (12.10). But it may be convenient, if we are able
to guess a solution to (12.2), because all other solutions must differ from this with
a solution to (12.7).
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CHAPTER 13. Stability for linear difference equations

One of the main questions is how will different solutions to (5.1) differ in the
long run ?

As the difference between two solutions to (5.1) is a solution to (5.7), we are
concerned with the general problem, will solutions to (5.7) vanish, stay bounded
or diverge unbounded for x→ ∞ ?

Theorem 1 of Ch. 12 tells us that we shall apply the roots of the characteristic
polynomial of A, also called the eigenvalues of A. The eigenvalues are the clues to
the stability.

Theorem 1. The solutions will all vanish if and only if each eigenvalue, α, satisfies
|α| < 1. If one eigenvalue, α, satisfies |α| > 1, there is a solution, which diverges
unbounded.

Proof. For each eigenvalue, α, αx is a solution to (12.7), so for |α| > 1 it diverges.

The general solution (10.30) is

f(x) =
∑
j

pj(x)αxj

these functions approach zero for x→ ∞, if and only if |αi| < 1.

Remark. If the eigenvalues α with |α| = 1 all have multiplicity 1 and all ei-
genvalues satisfy |α| ≤ 1, then the solutions remain bounded, but if there is one
eigenvalue, α, with |α| = 1 and multiplicity at least 2, then there is a solution
diverging towards infinity.

Example 1. For which coefficients a, b ∈ R will the solutions to the second order
equation

(13.1) f(x+ 2) + af(x+ 1) + bf(x) = 0

approach zero for x→ ∞ ?
The characteristic equation is

(13.2) ξ2 + aξ + b = 0 .

Now, if the discriminant

(13.3) Δ = a2 − 4b

is negative, the roots are λ, λ, such that for each root, |λ|2 = λλ = b. Hence, it is
necessary and sufficient, that |b| < 1 or b < 1. Otherwise, the roots are

α

β

}
=

−a±√
Δ

2
.
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66 13. Stability for linear difference equations

The conditions are then
−1 ≤ −a

2
± 1

2

√
Δ ≤ 1

or
a− 2 ≤ ±

√
Δ ≤ a+ 2

or
a2 − 4b ≤ a2 ± 4a+ 4

or
|a| ≤ 1 + b

(−2, 1) (2, 1)

(0,−1)

a

b

Oscillations

Oscillations

Stability

Monotony

The triangle of stability
The stable area is a triangle in the (a, b)–plane, characterized by the inequa-

lities

(13.5) |a| − 1 ≤ b ≤ 1 .

The discriminant (13.3) changes sign on a parabola, which means that the
solutions are oscillating above this parabola. Below it they are either monotonic
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or alternating, depending on whether both of the roots are positive or not. If both
roots are positive, so are their sum, −a, and their product, b. Hence the solutions
behave monotonic, iff

(13.6) a ≤ 0 ≤ b ≤
(a

2

)2

Example 2. For which coefficients a, b, c, d ∈ R will the solutions to a system of
two equations,

(13.7)
f1(x+ 1) = af1(x) + bf2(x)

f2(x+ 1) = cf1(x) + df2(x)

be stable?
The characteristic equation is

(13.8) ξ2 − 2Θξ +D = 0

where Θ and D are respectively the half trace,

(13.9) Θ =
a+ d

2

and the determinant,

(13.10) D = ad− bc .

In order to recognize the possible complex solutions to (13.8), we shall define
the discriminant to observe its sign,

(13.11) Δ = Θ2 −D

So, the stability of the system requires from (13.5)

(13.12) |2Θ| − 1 ≤ D ≤ 1

or

(13.13) |a+ d| − 1 ≤ ad− bc ≤ 1 .

while the solutions are monotonic, according to (13.6), iff

(13.14) −2Θ ≤ 0 ≤ D ≤ Θ2

or

(13.15) −a− d ≤ 0 ≤ ad− bc ≤
(
a+ d

2

)2
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68 13. Stability for linear difference equations

a

d

Monotony

Monotony domain for 1 < bc outside arc
The inequalities (13.13) and (13.15) are slightly inconvenient. For bc fixed,

we may describe the stable area in the (a, d)-plane. We may rewrite (13.13) for
a+d ≥ 0 as (a−1)(d−1) ≥ bc and ad ≤ 1+ bc, giving the stable area on the right
side of some hyperbolas depending on the sign and size of bc. Further, we may
rewrite (13.15) as a+d ≥ 0, bc ≤ ad and −bc ≤ (a−d2

)2
, giving the monotonic area

on the upper–right side of the main diagonal, on the right side of some hyperbolas
depending on the sign and size of bc and on the outside of a pair of straight lines
in the case of bc < 0.

The figures depend on the size of bc. If bc > 1, then there is no stable area,
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and the monotonic area appears outside one single branch of a hyperbola.
But for 0 < bc < 1 the stable area lies between two hyperbolas. In this case

the monotonic area appears outside one single branch of a hyperbola too. For
0 < bc < 1

4
the two do not intersect, but for 1

4
< bc < 1 they do.

a

d

Monotony

Stability

&

Stability & monotony domains for 0 < bc < 1
4 between arcs

If −1 < bc < 0 the stability appears inside a hexagon with sides of six hyper-
bolas. In this case oscillating solutions appear in a stripe between the dotted lines
on the figure, corresponding to the inequality Δ < 0. The monotonic area divides
in two symmetric parts, both between the dotted lines and two half branches of
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one hyperbola.

a

d

Stability Monotony

&

Oscillations

&

M

Stability & monotony domains for −1 < bc < 0 between arcs and lines
When bc < −1, the area of stability divides in two symmetric parts, each a

triangles of hyperbolas. The solutions will still be oscillating between the dotted
lines on the figure. The monotonic area divides in two symmetric parts, both
betwwen the dotted lines and two half branches of one hyperbola.

In the case of a system of two equations, we may also consider the question
of stability of the ratio–solutions. It means that for a couple of solutions to (13.7)
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we shall study the behavior of the ratio,

(13.16) rn =
f2(n)
f1(n)

We ask, if there are solutions, such that the ratio remains constant, i.e., solutions
remaining on a straight line or ray. A possible ray is characterized by the ratio
being constant

(13.17) rn = α

This means that rn+1 = rn, but we may compute rn+1 by means of rn

(13.18) rn+1 =
f2(n+ 1)
f1(n+ 1)

=
cf1(n) + df2(n)
af1(n) + bf2(n)

=
c+ drn
a+ brn

which is equal to rn, if and only if

(13.19) −br2n + (d− a)rn + c = 0

in which case, the constant value becomes

(13.20) rn = α± =
1
b

⎛
⎝d− a

2
±
√(

d− a

2

)2

+ bc

⎞
⎠ =

1
b

(
d− a

2
±

√
Δ
)

a

d

M

S

M

S
Oscillations
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Stability and monotony domains for bc < −1 between arcs and lines
The question, what the solutions look like on the rays is also easy to answer,

from (13.7) we get

(13.21) f1(n+ 1) = (a+ bα±) f1(n) =
(
a+ d

2
±
√

Δ
)
f1(n) =

(
Θ ±

√
Δ
)
f1(n)

with the solutions

f1(n) = λnf1(0) for λ = λ±(13.22)

f2(n) = αλnf2(0) for α and λ corresponding.(13.23)

with

(13.24) λ± = Θ ±
√

Δ

Following [3] we substitute sn = a + brn in (13.18) and obtain the simple
form

sn+1 = a+ brn+1 = a+ b
c+ drn
a+ brn

= a+ b
c+ d

(
1
b (sn − a)

)
sn

=

= a+
bc− ad+ dsn

sn
= a+ d− ad− bc

sn
= 2Θ − D

sn

(13.25)

where we have used the notation from (13.9–13.10). The ratio–solution rn is an
affine transformation of the sequence sn, which is obtained from the iteration of
the function

(13.26) y = f(x) = 2Θ − D

x

The natural questions are, if there are fixpoints, and eventually, will the derivative
in some of them be numerically less than one?

A fixpoint is a solution to the equation

(13.27) x2 − 2Θx+D = 0

with discriminant Θ2 −D = Δ using (13.11). So, the condition for fixpoints is the
usual, Δ ≥ 0. Suppose this is the case.

Then the roots are as usual λ± = Θ ±√
Δ cf. (13.24).
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x

y

2Θ

s0

s1

s2

Δ > 0
D > 0
Θ > 0

λ+

λ−

Attraction of the ratios by iteration of y = 2Θ − D
x

The derivative of the hyperbola is

(13.28) f ′(x) =
dy

dx
=
D

x2

Hence the derivatives in the fixpoints are

(13.29) f ′(λ±) =
D

λ2±
=

Θ2 − Δ(
Θ ±√

Δ
)2 =

Θ ∓√
Δ

Θ ±√
Δ

with product equal to 1. So, one is smaller than one, the other is bigger. Hence
one is an attractor, the other is a repeller. Which one is which depends simply on
the signs of D and Θ.

In the case of Δ > 0 and D > 0 there are two positive fixpoints, and if
further Θ > 0, the bigger fixpoint is the attractor.

In the case of D < 0, we must have Δ > 0, and the two fixpoints have
different signs. If further Θ > 0, the bigger fixpoint is the attractor.
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x

y

2Θ

s0

s1

s2
s3

D < 0
Θ > 0

λ+

λ−

Attraction of the ratios by iteration of y = 2Θ − D
x

With the discriminant, Δ < 0, the equation (13.19) has no solutions, there
are no fixpoints, and we have no lines available. But we shall nevertheless be able
to solve the equations.

From chapter 5, theorem 1, we obtain

(13.30) f1(n+ 2) − (a+ d)f1(n+ 1) + (ad− bc)f1(n) = 0

equivalent to the equation (using (13.9–13.10))

(13.31) f1(n+ 2) − 2Θf1(n+ 1) +Df1(n) = 0

In this equation we shall substitute

(13.32) f1(n) =
(√

D
)n

ξn

What is allowed, because from (13.11) we know that

(13.33) Δ < 0 ⇒ 0 ≤ Θ2 < D
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From (13.31) we get

(13.34)
(√

D
)n+2

ξn+2 − 2Θ
(√

D
)n+1

ξn+1 +
(√

D
)n+2

ξn = 0

or rather,

(13.35) ξn+2 − 2
Θ√
D
ξn+1 + ξn = 0

From (13.33) we get

(13.36)
|Θ|√
D
< 1

Let φ and β be disposable. We shall define

(13.37) ξn := sin(nφ+ β)

Then we have the following easy computation:

ξn+2 + ξn = sin(nφ+ β + 2φ) + sin(nφ+ β)

= sin(nφ+ β) cos(2φ) + cos(nφ+ β) sin(2φ) + sin(nφ+ β)

= sin(nφ+ β)
(
2 cos2 φ− 1 + 1

)
+ 2 sinφ cosφ cos(nφ+ β)

= 2 cosφ (cos(nφ+ β) sinφ+ sin(nφ+ β) cosφ)

= 2 cosφ sin((n+ 1)φ+ β)
= 2 cosφ ξn+1

(13.38)

hence, ξn defined by (13.37) solves (13.35) if and only if

(13.39) cosφ =
Θ√
D

and this equation has always infinitely many solutions, φ, due to (13.36).
With this choice of φ, we get the solutions from (13.32),

f1(n) =
(√

D
)n

(v1 cos(nφ) + w1 sin(nφ))(13.40)

f2(n) =
(√

D
)n

(v2 cos(nφ) + w2 sin(nφ))(13.41)

Now, choosing n = 0 we get

f1(0) = v1

f2(0) = v2
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or

(13.42)
v1 = x0

v2 = y0

and with the remark that

sinφ = ±
√

1 − cos2 φ = ±
√

1 − Θ2

D
= ±

√
D − Θ2

D
= ±

√−Δ√
D

we get from (13.40–13.41) with n = 1

(13.43)
(
w1

w2

)
= ± 1√−Δ

(A − ΘE)
(
x0

y0

)

Substitution of (13.42–13.43) in (13.40–13.41) yields

(13.44)
(
f1(n)
f2(n)

)
=
(√

D
)n(

cos(nφ)E± sin(nφ)√−Δ
(A− ΘE)

)(
f1(0)
f2(0)

)

This explicit solution proves that the question of stability for these solutions
is equivalent to the question of the size of D. The solutions shall go to zero if and
only if D < 1. This corresponds to the conclusion (13.12) above.

In the case of Δ ≥ 0 we shall try to find the solutions similarly.
Let us define the difference operator,

(13.45) ΔΘxn := xn+1 − Θxn

For a given value of the discriminant, Δ, we consider the second order equation,
with initial conditions:

Δ2
Θδn = Δδn(13.46)

δ0 = 0 ; ΔΘδ0 = 1(13.47)

The solution must be

(13.48) δn =

{
(Θ+

√
Δ)n−(Θ−√

Δ)n

2
√

Δ
for Δ > 0

nΘn−1 for Δ = 0

Hence we get

(13.49) ΔΘδn =

{
(Θ+

√
Δ)n+(Θ−√

Δ)n

2 for Δ > 0
Θn for Δ = 0
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The system (13.7) is written

(13.50)
(
f1(n+ 1)
f2(n+ 1)

)
= A

(
f1(n)
f2(n)

) (
f1(0)
f2(0)

)
=
(
x0

y0

)

and then transformed to

(13.51) ΔΘ

(
f1(n)
f2(n)

)
= (A − ΘE)

(
f1(n)
f2(n)

) (
f1(0)
f2(0)

)
=
(
x0

y0

)

but here the matrix A − ΘE has trace zero, so by iterating (13.51) we obtain

(13.52) Δ2
Θ

(
f1(n)
f2(n)

)
= (A − ΘE)2

(
f1(n)
f2(n)

)
= ΔE

(
f1(n)
f2(n)

)

The equations splits in two of form (13.46) and may therefore be solved by
(13.48–13.49), i.e.

(13.53)
(
f1(n)
f2(n)

)
= ΔΘδnv + δnw

(
f1(0)
f2(0)

)
=
(
x0

y0

)

Trying n = 0 we see that v =
(
x0

y0

)
, and letting then n = 1, we see, that

w = (A − ΘE)
(
x0

y0

)
. Hence, (13.53) can be written precisely as

(13.54)
(
f1(n)
f2(n)

)
= (ΔΘδnE + δn (A− ΘE))

(
x0

y0

)

From (13.44) we get the idea, to be applied only when D > 0, to try to write

(13.55) δn =

⎧⎨
⎩
(√

D
)n

1√
Δ

“
Θ+

√
Δ√

D

”n−
“

Θ−√
Δ√

D

”n

2
for Δ > 0

nΘn−1 = Θn · nΘ for Δ = 0

In the case of Δ > 0 we have obtained that the product

Θ +
√

Δ√
D

× Θ −√
Δ√

D
=

Θ2 − Δ
D

= 1

according to (13.11).
This means that if we furthermore assume that Θ > 0, we may introduce

(13.56) α = log

(
Θ +

√
Δ√

D

)
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78 13. Stability for linear difference equations

and obtain the formula for δn,

(13.57) δn =

⎧⎨
⎩
(√

D
)n

1√
Δ
eαn−e−αn

2 = e
log D

2 n 1√
Δ

sinh(αn) for Δ > 0

Θn · n
Θ

=
(√

D
)n

· n
Θ

= e
log D

2 n · n
Θ

for Δ = 0

Now in the case of Δ > 0 we may rewrite (13.54) in a convenient form, as

(13.58)
(
f1(n)
f2(n)

)
= e

log D
2 n

(
cosh(αn)E +

sinh(αn)√
Δ

(A − ΘE)
)(

x0

y0

)

In the case of Δ = 0 we may write

(13.59)
(
f1(n)
f2(n)

)
= e

log D
2 n

(
E + n

(
1
Θ

A − E
))(

x0

y0

)
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CHAPTER 14. The generalized logarithm of a matrix

In chapter 13 we found the solutions to the difference equations (13.7) on the
forms (13.44) and (13.54), the last to be rewritten for D > 0, Θ > 0 and Δ ≥ 0 in
the forms (13.58–59).

These last forms, (13.44) and (13.58–59), allowed immediatly for a contin-
ously differentiable interpolation of the solutions to the difference equation. The
question to be asked is, do these interpolating functions satisfy some differential
equations of the form (5.1)?

If we rewrite the equations in the forms

xn+1 = axn + byn x0 = x0(14.1)

yn+1 = cxn + dyn y0 = y0(14.2)

we may rewrite the solution (13.44) as

(14.3)
(
xn
yn

)
= e(

log D
2 )n

(
cos(nφ)E +

sin(nφ)
φ

(
φ√−Δ

(A − ΘE)
))(

x0

y0

)

reminding us of the solution (5.20) to some differential equation.
Now, the matrix A−ΘE has trace zero and discriminant equal to Δ. Hence

the discriminant of φ√−Δ
(A − ΘE) becomes equal to

(
φ√−Δ

)2

Δ = −φ2, as wan-
ted.

Now it is quite easy to write down a useful matrix, we just have to correct
the trace. It becomes

(14.4)

(
φ√−Δ

a−d
2

+ logD
2

φb√−Δ
φc√−Δ

φ√−Δ
d−a

2
+ logD

2

)

This matrix represent in a sense the logarithm of the matrix A, and if we take the
exponential of it, as defined by (5.26), we obtain A.

Similarly, (13.58) may be rewritten as

(14.5)
(
xn
yn

)
= e

log D
2 n

(
cosh(αn)E +

sinh(αn)
α

(
α√
Δ

(A − ΘE)
))(

x0

y0

)

again having the right discriminant.
The matrix for the differential equation is obtained by correcting the trace,

it becomes

(14.6)

(
α√
Δ
a−d

2
+ logD

2
αb√
Δ

αc√
Δ

α√
Δ
d−a

2
+ logD

2

)
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80 14. The generalized logarithm of a matrix

This matrix represents the logarithm of the matrix A in the special case of Δ > 0,
D > 0 and Θ > 0.

In the case of Δ = 0 we may rewrite the solution (13.59) as

(14.7)
(
xn
yn

)
= e

log D
2 n

(
E + n

(
1
Θ

A− E
))(

x0

y0

)

This time the discriminant is already zero, so the matrix for the differential
equation is obtained by correcting the trace. It becomes

(14.8)
( a−d
a+d + logD

2
2b
a+d

2c
a+d

d−a
a+d

+ logD
2

)

This matrix represents the logarithm of the matrix A in the special case of
Δ = 0, D > 0 and Θ > 0.

If Θ or D are negative, the solutions (13.48–49) will be disturbed by a factor
(−1)n somewhere. This leads to the idea to look at every second term of the
solution to (14.1), treating the even numbers as (14.1) with stepsize 2, and the
odd numbers similar, but with initial values

(
x1

y1

)
= A

(
x0

y0

)

Both of these corresponds to the use of the coefficient matrix, A2, why we shall
consider this matrix closer. It is simple to compute,

(14.9) A2 =
(
a2 + bc b(a+ d)
c(a+ d) d2 + bc

)

But from the Cayley–Hamilton theorem in chapter 5 we have the formula,

(14.10) (A − ΘE)2 = ΔE

which may be rewritten by using (13.11) as

(14.11) A2 = 2ΘA + (Δ − Θ2)E = 2ΘA −DE

Hence, the half trace of A2, Θ̂, becomes

(14.12) Θ̂ = 2Θ2 −D = Θ2 + Δ = D + 2Δ

and the discriminant, Δ̂, which is independent of the term DE, therefore must be

(14.13) Δ̂ = (2Θ)2Δ
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14. The generalized logarithm of a matrix 81

Hence we can deduce the value of the determinant, D̂, by (13.11)

(14.14) D̂ = Θ̂2 − Δ̂ = (Θ2 + Δ)2 − 4Θ2Δ = (Θ2 − Δ)2 = D2

a formula, familiar to some students.

We remark, that for Δ > 0 it is obvious, that Θ̂ > 0 and D̂ > 0. So, we are
now able to apply the formula for the logarithm, (13). We just have to compute
the value of α̂, according to (13.56), i.e.

α̂ = log

(
Θ̂ +

√
Δ̂√

D̂

)
= log

(
Θ2 + Δ +

√
4ΔΘ2

√
D2

)
=

= log

(
Θ2 + Δ + 2|Θ|√Δ

|D|

)
= 2 log

(
|Θ| + √

Δ√|D|

)
(14.15)

We are lead to want to generalize the definition of α, (13.56), to

(14.16) α = log

(
|Θ| + √

Δ√|D|

)

Now we are prepared to write down the logarithm of A2 according to (14.6):

(
2α√
4Θ2Δ

a2−d2
2 + logD2

2
2α2Θb√
4Θ2Δ

2α2Θc√
4Θ2Δ

2α√
4Θ2Δ

d2−a2

2 + logD2

2

)
=

=

(
2α

2|Θ|√Δ

2Θ(a−d)
2

+ log |D| 2α2Θb
2|Θ|√Δ

2α2Θc
2|Θ|√Δ

2α
2|Θ|√Δ

2Θ(d−a)
2

+ log |D|

)
=

=2

(
Θ
|Θ|

α√
Δ
a−d
2

+ log |D|
2

Θ
|Θ|

αb√
Δ

Θ
|Θ|

αc√
Δ

Θ
|Θ|

α√
Δ
d−a

2 + log |D|
2

)

=2
Θ
|Θ|

α√
Δ

(A − ΘE) + log |D|E

(14.17)

We are now able to define a general logarithm to a 2 × 2–matrix. We shall
define the value, α, by

(14.18) α =

⎧⎪⎨
⎪⎩

arccos
(

Θ√
D

)
for Δ < 0

log
(

|Θ|+√
Δ√

|D|

)
for Δ > 0

with this definition of α we may define the general logarithm of a 2 × 2–matrix,
A, as

(14.19) logA =
(

|Θ|α√
|Δ|

)
1
Θ (A− ΘE) + log |D|

2 E

where the first parenthesis shall be omitted in the case of Δ = 0, in which case we
have α = 0 and D > 0.
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82 15. Economical examples of difference equations

CHAPTER 15. Economical examples of difference equations

Example 1. This example is taken from [3]. Let us assume that the demand,
Dt, and the supply, St, depend on the price pt in such a way that the demand
is a decreasing function of the price while the supply is an increasing function of
the price. For simplicity, we shall assume the dependence to be linear functions.
Furthermore, we shall assume the production to cause some delay, which means
that the supply depends not on the actual price, but on yesterday’s price, pt−1.
In formulas

Dt = a+ bpt with b < 0(15.1)

St = c+ dpt−1 with d > 0(15.2)

If we introduce the assumption that the free market forces the price to change
such that demand and supply become equal,

(15.3) Dt = St

these three equations give rise to a dynamics of prices. We get obviously the
difference equation

(15.4) pt − d

b
pt−1 =

c− a

b

with the solutions

(15.5) pt = k
(d
b

)t
+
c− a

b− d
.

The constant term is interpreted as the equilibrium price, and it is stable, if
and only if |d| < |b|.
Example 2. This example is taken from [11]. In a Keynesian model of national
economics, we shall consider our consumptions from two sides: 1) We can afford
to consume, Ct, corresponding to our production, Yt, except the savings or in-
vestments, It. 2) We consume most of last years production. So, we have the
equations

(15.6) Yt − It = Ct = a+ b Yt−1

with a ≥ 0 and 0 < b < 1.
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p0

p1

p2

−1 < d
b < 0

p

q
q = p

q = d
b p+ c−a

b

The demand–supply cycle
Under the additional assumptions, that the investment, It, is constant for

a series of years, but then may be autonomously changed, we shall compare two
situations,

It = I0 ,(15.7)

It = I0 + ΔI .(15.8)

The solutions are for I = I0 (+ΔI)

(15.9) Yt = k bt +
a+ I

1 − b

stable and converging towards the equilibrium, because 0 < b < 1.
This model is interpreted as follows: After many years we are in the equili-

brium state of

(15.10) Yt =
a+ I0
1 − b

.

Then we change to (15.9) with I = I0 + ΔI and hence, – starting a new counting
of years – k = −ΔI/(1 − b).

83



84 15. Economical examples of difference equations

Y0

Y1

Y2

Y3

0 < b < 1

I

I + ΔI

Change of investments in a Keynesian model

Example 3. This example is taken from [7]. In Harrod’s model we introduce
s = 1− b as the propensity to save, and the idea, that the investment is governed
by the increase in national income,

(15.11) It = kΔYt−1 = k(Yt − Yt−1)

such that the national income obeys the dynamics

(15.12) sYt−1 = k(Yt − Yt−1)

or

(15.13) Yt − k + s

k
Yt−1 = 0

with the solutions

(15.14) Yt = c
(k + s

k

)t

growing towards infinity rather than an equilibrium.
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15. Economical examples of difference equations 85

Example 4. This example is taken from [18]. Paul Samuelson suggests that the
investment be divided into two parts, one autonomous part, I ′′t = G, constant for
some time, and another induced part, I ′t. These assumptions lead to the model

Ct = b Yt−1 0 < b < 1(15.15)

It = I ′t + I ′′t(15.16)

I ′′t = G(15.17)

I ′t = k(Ct − Ct−1)(15.18)

Yt = Ct + It(15.19)

We get this time a second order equation in Yt, namely

(15.20) Yt − b(1 + k)Yt−1 + bk Yt−2 = G

with the equilibrium solution

(15.21) Ye =
G

1 − b
.

The question is, whether this solution is stable or not. A secondary question
may be, whether the solutions are monotonic or oscillating.

We just have to apply the theory in Ch. 13. The conditions of stability is
(15.5), i.e.

(15.22) |b(1 + k)| − 1 < bk < 1 .

And the condition for oscillations is

(15.23) b2(1 + k)2 < 4bk .

In the b–k–plane we get the forms of (15.22)

(15.24) b < 1 ∧ b <
1
k

and of (15.23)

(15.25) b <
4k

(1 + k)2

We have stability in the areas A and B, with oscillations in B, while insta-
bility occurs in the areas C and D, oscillating in C.
Example 5. Let π be salary and Y the national income. Then we assume the
following two dynamic equations derived by the supply and demand, respectively,

πt = πt−1 + λ(Yt − Y ∗)(15.26)

πt = m− 1
φ

(Yt − Yt−1)(15.27)
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86 15. Economical examples of difference equations

k

b

A

B C

D

Stability of Samuelson’s model
This means that the development has an equilibrium in the point (πt, Yt) =

(m, Y ∗). These equations is conveniently rewritten in the form ignoring the equ-
ilibrium:

Yt =
1

1 + λφ
Yt−1 − φ

1 + λφ
πt−1(15.28)

πt =
λ

1 + λφ
Yt−1 +

1
1 + λφ

πt−1(15.29)

To figure out the behavior we just need to compute the product of the mixed
coefficients, i.e.,

(15.30) −1 < − λφ

(1 + λφ)2
< 0

And the look at the figure in chapter 13, to find the point

(15.31)
(

1
1 + λφ

,
1

1 + λφ

)

a point of alternating, but damped oscillations.
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CHAPTER 16. Non–linear difference equations

A simple example of a non–linear difference equation is the following

(16.1) f(n+ 1) = λ f(n)2 .

This is perhaps the only one we may solve explicitly, the solution is

(16.2) f(n) =
1
λ
a2n

with a = λf(0) .

Already the complication of an added constant, c �= 0, e.g.

(16.3) f(n+ 1) = f(n)2 + c

makes the equation unsolvable in explicit form for almost all values of c.
A simulation of the solution to (16.3) is obtained by successive computations

of f(1), f(2), etc. We may consider the process as iteration of the function

(16.4) y = x2 + c

from different start points x0 = f(0). This is the simplest example of iteration of
a non-linear function, depending on a parameter, c0. In the general form is given
a function

(16.5) y = Fc(x)

and we consider the behavior of the sequences

(16.6) xn+1 = Fc(xn) , x0 = a ,

for different choices of a and c.
We shall consider the special case

(16.7) Fc(x) = x2 + c

in full detail.
If c > 1

4
, then the parabola (16.4) does not cut the diagonal y = x, hence

the iteration (16.6) has no fix point, a, with

(16.8) a = Fc(a) .
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x0

x1

x2

x3

x4

Iteration of x2 + c c > 1
4

Actually, every sequence, (16.6), diverges towards +∞ in this case.
But for −3

4
< c < 1

4
the parabola cuts the diagonal twice:
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x0

x1

x2

x3

Iteration of x2 + c, −3
4
< c < 1

4

The fix points solves the equation

(16.9) x2 + c = x

hence they are

(16.10) α =
1
2
±
√

1
4
− c .

Furthermore, the tangents to the parabola in these points have the slopes

(16.11) 2α = 1 ±√
1 − 4c > −1
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making one of them attractive and the other repulsive, cf. Chapters 5–6.
But for c < −3

4
, both slopes are numerically greater than 1, making both fix

points repulsive. Where do the iterations then go?

x0

x1

Iteration of x2 + c c < −3
4

At least some of them will converge towards an attractor, consisting of a pair
of points giving rise to a cycle of length 2. The iteration jumps back and forth,
never going to rest.

This behavior is not so difficult to analyze. A point of period 2 will be a
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fixed point for the iterated function

(16.12)
y = F 2

c (x) = Fc(x2 + c) = (x2 + c)2 + c =

= x4 + 2c x2 + c2 + c .

To find a fix point for (16.12) is easier than one might expect. We shall solve

(16.13) x4 + 2c x2 − x+ c2 + c = 0

but this equation already has the zeros (16.10), hence we may write (16.13) as

(16.14) (x2 − x+ c)(x2 + x+ c+ 1) = 0 .

The two new roots are simply

(16.15) β = −1
2
±
√

1
4
− c− 1 =

1
2
· (−1 ±√−4c− 3

)
.

Note that they are complex for −3
4
< c, but appear in the real world for c < −3

4
.

The next question is, if these points of period 2 make an attractive cycle or
a repelling one ? This question is the same as to ask, if the fix points (16.15) are
attractors or repellers for F 2

c ? And this is a question, whether

(16.16)
∣∣(F 2

c )′(β)
∣∣ < 1

or not.
Now, differentiating (16.12) yields

(16.17)
(
F 2
c

)′
(x) = 4(x2 + c)x .

Because β satisfies the equation

(16.18) x2 + x+ c+ 1 = 0

we find

(16.19)

(
F 2
c

)′
(β) = 4(−1 − β)β = −4(β + β2) =

= −4(−c− 1) = 4(c+ 1) .

Hence (16.16) is satisfied if and only if

(16.20) −5
4
< c < −3

4
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x0

x1

x2

Graph of (x2 + c)2 + c

In particular, this means that as soon as c becomes smaller than −5
4
, then

the attractors β become repellers and F 2
c gets an attracting cycle of length 2. This

behavior is very similar to the behavior of Fc as c passed through −3
4
.
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x2 − 3
4 and ((x2 − 5

4)2 − 5
4

Looking at the graph of F 2
c it is not so surprising; locally F 2

c looks very much
like Fc.

The process goes on, as c declines new periods of higher orders will appear,
making the previous attractors into repellers. When c becomes smaller than ca.
−1.5616 a point of period 3 appears. The dynamics becomes more and more
“chaotic”.

The case of c = −2 is of particular interest, but we shall postpone the
discussion until later, in order to look at it from the other side, i.e. the behavior
in the case of c < −2.

If we iterate

(16.21) F2(x) = x2 − 2

then for each x, |x| ≤ 2, we have

(16.22) |x| ≤ 2 ⇒ |F2(x)| ≤ 2 .

Hence, F2 maps the interval I = [−2, 2] into itself. But for c < −2, we may
consider the iterated sequence starting from 0, i.e.

(16.23) 0 , Fc(0) = c , Fc(c) = c2 + c

and note that for c < −2 we have

(16.24) c2 + c > −c
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I0 I1

x2 + c, c < −2
such that the sequence diverges towards infinity. This divergence also emer-
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ges from the neighborhood of 0.
This means that the interval

(16.25) I =
[
−1

2
(1 +

√
1 − 4c) ,

1
2
(1 +

√
1 − 4c)

]

is divided in three, of which the middle one around 0 diverges. But as is obvious
from the figure, also the middle part of each of the two other intervals must
eventually diverge.

We shall define the set of not diverging points of start,

(16.26) Λ = {x ∈ I | F kc (x) ∈ I , k = 0, 1, . . .} .

(This set is not empty, because it contains all points of finite period.)
We divided I in 3 subintervals,

I0 =
[
−1

2
(1 +

√
1 − 4c), −√−c− 2

]
(16.27)

I1 =
[√−c− 2,

1
2
(1 +

√
1 − 4c)

]
(16.28)

M =
]−√−c− 2 ,

√−c− 2
[

(16.29)

Now,

(16.30) Fc(M) ∩ I = ∅

and points outside I shall never return to I by iteration of Fc. But

(16.31) Fc(I0) = Fc(I1) = I .
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x2 + c, c < −2
Hence there are fractal similarity between the intervals I0, I1. We construct
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Λ by omitting the middle intervals successively
M0 = I0 ∩ F−1

c (M)(16.32)

M1 = I1 ∩ F−1
c (M)(16.33)

etc. The set Λ left over is a Cantor set. For x ∈ Λ we define a sequence of 0 and 1
(16.34) s(x) = s0s1s2 . . .

by the definition

(16.35) sj(x) =
{

0 if F jc (x) ∈ I0

1 if F jc (x) ∈ I1

which is an orbit description of the sequence
(
F jc (x)

)
.

The set Λ is closed, because the complement is open. All endpoints of the
intervals belong to Λ and are characterized by the sequences ending with 111 . . . .
These points are dense in Λ, so every sequence defines a point in Λ.

If we consider the sequences as binary numbers representing the interval [0, 1],
then we may interpret Fc in a useful way. We have
(16.36) Fc(s0s1 . . . ) = s1s2 . . .

This function is multiplication with 2 and subtracting s0, i.e.
g(x) = 2x mod 1

This way of describing the dynamics is most convenient. If we iterate the
function g, it is obvious, that the number of fixed points for gn is 2n. This is the
number of points of period n for g, counting those points which period is a divisor
in n.
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2x mod 1 med følgen fra a = 1
5

It is obvious that all these points are repelling, having slopes steeper than
one. This function (16.37) is the typical chaos.

Now, let us return to c = −2. The function

(16.38) f(x) = x2 − 2

may be considered as a transformation of

(16.39) g(θ) = 2θ mod 1

by the transform

(16.40) x = c(θ) = 2 cos(θ2π) .

Actually we get

f(c(θ)) = f(x) = 4 cos2 θ2π − 2(16.41)
= 2 cos 2θ2π

= 2 cos(g(θ)2π)

= c(g(θ))

Hence f exhibits exactly the same chaos as g does.
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2(2x mod 1) mod 1

2(2x mod 1) mod 1
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CHAPTER 17. Complex dynamics

We consider the function

(17.1) F (z) = z2 + c

almost as before, except that this time z and c are allowed to be complex numbers.
This difference makes the orbit a sequence of points in the plane.

In the simple case of c = 0 we shall see three types of behavior

|z| < 1 : Fn(z) → 0

|z| = 1 : |Fn(z)| = 1(17.2)

|z| > 1 : |Fn(z)| → ∞ .

This behavior is easy to describe; let z = reiθ, then F (z) = z2 = r2ei2θ and
hence

(17.3) Fn(z) = r2
n

ei2
nθ .

If r = 1, then it is crucial whether θ = pπ
2m for p ∈ Z, m ∈ N0 or not. Hence

the behavior is chaotic.
Let us further consider the transform

(17.4) H(z) = z + 1
z .

This transform changes the map above

(17.5) z → z2

into the map

(17.6) z + 1
z
→ z2 + 1

z2
= (z + 1

z
)2 − 2 .

Hence, the map

(17.7) z → z2 − 2

is dynamically similar to (17.5).

Definition. For a function F (z) we define the filled-in Julia set as

(17.8) K = {z | Fn(z) �→ ∞}

and the Julia set as its boundary

(17.9) J = ∂K .
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Examples. For F (z) = z2 we have

K = {z | |z| ≤ 1}(17.10)

J = ∂K = {z | |z| = 1}(17.11)

and for F (z) = z2 − 2 we have

(17.11) K = J = [−2, 2] .

(If zn → 0 then H(zn) → ∞).
Suppose |c| > 2. If we start in a point z with |z| ≥ |c|, then Fn(z) → ∞.

Actually
|z2 + c| ≥ |z|2 − |c|

≥ |z|2 − |z|
= |z|(|z| − 1)

≥ (|c| − 1)|z|
where |c| − 1 > 1. Hence

Fn(z) ≥ (|c| − 1)n|z| → ∞ .

Conclusion.

(17.12) K ⊆ D(0, |c|) .

In order to find K, we must ask, which points in D(0, |c|) are mapped outside
the disc by F ?

So, we ask, what is F−1 of the circle ?

(17.13) w = z2 + c ⇐⇒ z = ±√
w − c .

What is the curve of z, as w = |c|eiθ ? Now, if c = |c|eiγ , then we get

z = ±
√

|c| ·
√
eiθ − eiγ

= ±
√

|c| ·
√
ei(θ−γ) − 1 · ei γ

2 .

This gives a shape like the number “8” with 0 in the center and turned the angle
γ
2 . The diameter is 2

√
2|c| < 2|c|, so it is inside the disc.

This means, that K belongs to the interior of this “number”, 8. Repetition
of the process, divides K in two in each step making K a complex Counter set.
On K the dynamics is chaotic.
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±2
√
eiφ − 1, φ ∈ [0, 2π]

The structure of K depends on the value c. For c ∈ R, −2 ≤ c ≤ 1
4 , the set

K is connected. This is related to the question, how behaves the orbit of 0 ? The
fact is that iff the orbit of 0 is bounded then the Julia set is connected.

102



17. Complex dynamics 103

Hence it is interesting to ask, what is

(17.15) M = {c | orbit of 0 by z2 + c is bounded} .

Definition. The set M of (17.15) is called the Mandelbrot set.
An interesting question to ask is, whether the function F has an attracting

fix point ? We know this to be the case for c ∈ R, −3
4 < c < 1

4 .
So, in general, a fix point solves

(17.16) z2 + c = z .

And it is attractive if the derivative of F , i.e. 2z, is numerically less than 1. So,
we must have

(17.17) c = 1
2 (2z) − 1

4(2z)2 , |2z| < 1 .

This means that c lies inside a cardioid.
The next question is whether F has an attractive 2-cycle, as we know it has

for c ∈ R, −5
4
< c < −3

4
. This time z solves

(17.18) (z2 + c)2 + c = z

and again, |F ′(z)| = |4z(z2 + c)| < 1.
This is the case, if z solves (17.18) but not (17.16), and therefore solves

(17.19) z2 + z + c+ 1 = 0

which gives

(17.20) |F ′(z)| = |4z(−1 − z)| = |4(c+ 1)| < 1

or, c belongs to the disc

c ∈ D
(−1, 1

4

)
.
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12

Cardioid and circel, the beginning of the Mandelbrot set
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CHAPTER 18. Economical examples of non–linear equations

These examples are taken from [4].
Example 1. Consider the example 1 of Chapter 6. Suppose that one of the two
equations is quadratic, e.g., that the equations are

Dt = a+ bpt with b < 0(18.1)

St = c+ dpt−1 + ep2
t−1 with d > 0, e < 0(18.2)

Then the equality of demand and supply establishes the iteration

(18.3) pt =
c− a

b
+
d

b
pt−1 +

e

b
p2
t−1

which solution may approach limit cycles or be chaotic depending on the parame-
ters, a, b, c, d, e.

Example 2. Rößler suggests a model for three variables, v, the rate of emplo-
yment, measured in deviations from 90%, u, the unit labor cost, and z, the public
net income generating expenditure. The model is formulated in differential equa-
tions as

(18.4)

u̇ = 0.5v
v̇ = −0.5u+ 0.15v − 0.3z

ż = 0.01 + 85z(v − 0.05)

The behavior of this may be considered as a mutual wave of u and v, disturbed
by some slow changes in the size of z. We may consider the two first equations as
approximately linear,

(18.5)
u̇ = 0.5v

v̇ = −0.5(u+ 0.6z) + 0.15v

The matrix of coefficients a is

(18.6) A =
(

0 .5
−0.5 0.15

)

Of type b > 0 > c and the point (0, 0.15) inside the strip of negative discriminant,
but with positive half trace, giving rise to a growing oscillation. During this
process, the center of spiral will move with z.
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CHAPTER 19. Difference equations for polynomials

In principle, the formula (1.9) allows the solution to all equations of the form

(19.1) Δf(x) = g(x)

with g(x) a polynomial in x. The polynomial solutions f(x) are uniquely deter-
mined up to a constant. In order to use this formula, we must be able to write an
arbitrary polynomial in terms of the basic polynomials, the factorials, rather than
the usual monomials.

This is nothing but a change of basis, to be done with the appropriate matrix.
We have simply:

(19.2)

⎛
⎜⎜⎜⎜⎜⎝

x
x2

x3

x4

x5

x6

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
1 1 0 0 0 0
1 3 1 0 0 0
1 7 6 1 0 0
1 15 25 10 1 0
1 31 90 65 15 1

⎞
⎟⎟⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎜⎜⎝

[x]1
[x]2
[x]3
[x]4
[x]5
[x]6

⎞
⎟⎟⎟⎟⎟⎠

This matrix can be extended infinitely, see. [1]. It simply says that e.g.,

x5 = 1 × [x]1 + 15 × [x]2 + 25 × [x]3 + 10 × [x]4 + 0 × [x]5

Definition 1. The entries in the matrix in (19.2) are called Stirling numbers of
the second kind, and are denoted as S

(k)
n when they appear as coefficients in the

formula:

(19.3) xn =
n∑
k=1

S(k)
n [x]k

From (19.3) we get by multiplying with x,

xn+1 =
n∑
k=1

S(k)
n x[x]k

=
n∑
k=1

S(k)
n (x− k + k)[x]k

=
n∑
k=1

S(k)
n [x]k+1 +

n∑
k=1

S(k)
n k[x]k

=
n+1∑
k=1

S(k−1)
n [x]k +

n∑
k=1

S(k)
n k[x]k

=
n+1∑
k=1

(
S(k−1)
n + kS(k)

n

)
[x]k

From this we derive the recurrence formula:

(19.4) S
(k)
n+1 = S(k−1)

n + kS(k)
n
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Definition 2. The Stirling numbers of the first kind are the solutions to the
inverse problem, i.e., the coefficients to the expressions of the factorials, [x]n, in
terms of the monomials, xk, i.e.

(19.5) [x]n =
n∑
k=1

S(k)
n xk

They may conveniently be arranged in a matrix too:

(19.6)

⎛
⎜⎜⎜⎜⎜⎝

[x]1
[x]2
[x]3
[x]4
[x]5
[x]6

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
−1 1 0 0 0 0
2 −3 1 0 0 0
−6 11 −6 1 0 0
24 −50 35 −10 1 0

−120 274 −225 85 −15 1

⎞
⎟⎟⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎜⎜⎝

x
x2

x3

x4

x5

x6

⎞
⎟⎟⎟⎟⎟⎠ =

This matrix just states, that e.g.,

(19.7) [x]5 = x5 − 10x4 + 35x3 − 50x4 + 24x

The matrix is simply the inverse of the matrix in (19.2). These numbers may be
found in [1] too.

If we multiply (19.5) with x− n, we obtain

[x]n+1 =
n∑
k=1

S(k)
n (x− n)xk

=
n∑
k=1

S(k)
n xk+1 −

n∑
k=1

S(k)
n nxk

=
n+1∑
k=1

(
S(k−1)
n − nS(k)

n

)
xk

(19.8)

From this we derive the recurrence formula:

(19.9) S
(k)
n+1 = S(k−1)

n − nS(k)
n

However, it is a cumbersome task to solve (19.1) with the help of these trans-
formations. Hence, it is tempting to ask for the basic solutions to the equations
of form (19.1) with monomials on the right side. It proves convenient to choose
them as: g(x) = nxn−1.

The polynomial solutions to the equations,

(19.10) Δfn(x) = nxn−1, n ∈ N

are uniquely determined up to the constant term. Differentiation of (19.10) with
respect to x yields

(19.11) Δf ′
n(x) = n(n− 1)xn−2

proving that 1
nf

′
n(x) solves (19.10) for n− 1, hence that

(19.12)
1
n
f ′
n(x) − fn−1(x)

is a constant.
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Definition 3. The choice of polynomial solutions to (19.10) for which the constant
term in (19.12) is zero, are called the Bernoulli polynomials and are denoted as
Bn(x).

Suppose we have written the Bernoulli polynomials on the form

(19.13) Bn(x) =
n∑
k=0

(
n

k

)
Bnn−kx

k

for suitable constants Bnn−k. The index is chosen to have Bn0 as coefficient to the
leading term, xn, and Bnn as the constant term.

Differentiation of Bn yields

B′
n(x) =

n∑
k=1

(
n

k

)
Bnn−kkx

k−1

=
n∑
k=1

n

(
n− 1
k − 1

)
Bnn−kx

k−1

= n

n−1∑
k=0

(
n−
k

)
Bnn−1−kx

k

From (19.12) this is known to be equal to

nBn−1(x) = n

n−1∑
k=0

(
n− 1
k

)
Bn−1
n−1−kx

k

The conclusion from comparing the coefficients is, that

(19.14) Bnn−1−k = Bn−1
n−1−k, for k = 0, 1, · · · , n− 1

Definition 4. The common value in (19.14) is called the Bernoulli numbers, and
are denoted as Bn−1−k, omitting the superflous superscript.

Hence we may rewrite (19.13) as

(19.15) Bn(x) =
n∑
k=0

(
n

k

)
Bn−kxk

such that the Bernoulli numbers take their appropriate part of the description
of the Bernoulli polynomials. The fact that they satisfy (19.10) may lead to a
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computation of their coefficients. We compute

ΔBn(x) =
n∑
k=0

(
n

k

)
Bn−k((x+ 1)k − xk)

=
n∑
k=0

(
n

k

)
Bn−k

k−1∑
j=0

(
k

j

)
xj

=
n−1∑
j=0

xj
n∑

k=j+1

(
n

k

)(
k

j

)
Bn−k

=
n−1∑
j=0

xj
n∑

k=j+1

(
n

j

)(
n− j

k − j

)
Bn−k

=
n−1∑
j=0

(
n

j

)
xj

n∑
k=j+1

(
n− j

k − j

)
Bn−k

=
n−1∑
j=0

(
n

j

)
xj

n−j∑
k=1

(
n− j

k

)
Bn−j−k

=
n∑
i=1

(
n

i

)
xn − i

i∑
k=1

(
i

k

)
Bi−k

=
n∑
i=1

(
n

i

)
xn − i

i−1∑
j=0

(
i

j

)
Bj

(19.16)

where we have applied the formula

(19.17)
(
x

n

)(
n

m

)
=
(
x

m

)(
x−m

n−m

)
n,m ∈ N0

and reversed summationvariables, e.g., i = n− j and j = i− k.
Now we know from (19.10) that this final polynomial equals nxn−1. This

means that the coefficients are n for i = 1 and 0 else. This gives the formulas for
the Bernoulli numbers:

(19.18)

B0 = 1
i−1∑
j=0

(
i

j

)
Bj = 0 for i > 1

Sometimes people like to confuse the reader by adding the number Bi to the last
sum to get the “implicit” recursion formula

(19.19)
i∑

j=0

(
i

j

)
Bj = Bi
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maybe it looks nicer.
The formulas (19.18) or (19.19) allows the computing of the Bernoulli num-

bers, we get for the first few (the odd inedexed are 0 from 3 on)

B0 = 1, B1 = −1
2
, B2 =

1
6
, B4 = − 1

30
, B6 =

1
42

B8 = − 1
30
, B10 =

5
66
, B12 = − 691

2730

(19.20)

As soon as we have the numbers, we get the polynomials straightaway

(19.21)

B0 = 1

B1 = x− 1
2

B2 = x2 − x+
1
6

B3 = x(x− 1)
(
x− 1

2

)

B4 = x4 − 2x3 + x2 − 1
30

B5 = x(x− 1)
(
x− 1

2

)(
x2 − x− 1

3

)

The first four of them look like the following graphs:
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0.2 0.4 0.6 0.8 1.0

-1

0

1

B1(x)
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-1

0

1

B2(x)
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0.2 0.4 0.6 0.8 1.0

-1

0

1

B3(x)

0.2 0.4 0.6 0.8 1.0

-1

0

1

B4(x)
Actually, all odd Bernoulli polynomials look like ±B3 and the even ones look

like ±B4.
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