
 

                                    

                       
                                                                                                                                                                                       

Jens Hugger:

Numerical Solution of
Differential Equation
Problems

2013. Edition



Numerical solution of differential equation
problems1

Jens Hugger
Institute for Mathematical Sciences

University of Copenhagen, Denmark
(E-mail: hugger@math.ku.dk)

January 2, 2013

1ISBN 87-91927-21-8



Contents

1 Differential equation problems 8
1.1 Introduction and general definitions . . . . . . . . . . . . . . . 8
1.2 A first order model problem . . . . . . . . . . . . . . . . . . . 16

2 Polynomial interpolation 19
2.1 Approximation and error . . . . . . . . . . . . . . . . . . . . . 19
2.2 The well-determined polynomial interpolation problem . . . . 31

2.2.1 The Newton form of the interpolating polynomial . . . 34
2.2.2 The Lagrange form of the interpolating polynomial . . 40
2.2.3 The Vandermonde form of the interpolating polynomial 43
2.2.4 Error in polynomial interpolation . . . . . . . . . . . . 44

2.3 Piecewise polynomial interpolation . . . . . . . . . . . . . . . 49
2.3.1 Piecewise Lagrange interpolation and Sk,1Δ ([a, b]) . . . . 50
2.3.2 Spline interpolation and Sk,kΔ ([a, b]) . . . . . . . . . . . 51

3 Numerical methods for DEP’s 59
3.1 Numerical methods of type FDM, CM and FEM for differen-

tial equation problems . . . . . . . . . . . . . . . . . . . . . . 59
3.1.1 Finite Difference Methods — FDM’s . . . . . . . . . . 60
3.1.2 Collocation Methods — CM’s . . . . . . . . . . . . . . 66
3.1.3 Finite Element Methods — FEM’s . . . . . . . . . . . 72

3.2 Construction of difference operators for FDM’s . . . . . . . . . 77
3.2.1 Taylor Series Methods . . . . . . . . . . . . . . . . . . 80
3.2.2 Taylor expansion in Maple . . . . . . . . . . . . . . . . 85
3.2.3 Polynomial Interpolation Methods . . . . . . . . . . . . 86
3.2.4 Compact Finite Difference Methods . . . . . . . . . . . 87
3.2.5 Richardson extrapolation . . . . . . . . . . . . . . . . . 88

3.3 Classification and notation for FDM’s . . . . . . . . . . . . . . 91
3.3.1 Euler, Crank-Nicolson and Heun methods for u′ =

f(x, u) – Optimal representations . . . . . . . . . . . . 97
3.4 Error analysis for FDM’s: Consistency, convergence and stability102

1



CONTENTS 2

3.4.1 Euler, Crank-Nicolson and Heun methods for u′ =
f(x, u) – Consistency . . . . . . . . . . . . . . . . . . . 106

4 FDM’s for u′ = f(x, u) 107
4.1 Convergence and stability of explicit, one step FDM’s for u′ =

f(x, u) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.2 Non asymptotic error analysis – Absolute stability for FDM’s

for u′ = λu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.3 Convergence and stability for linear, constant coefficient, multi

step FDM’s for u′ = f(x, u) . . . . . . . . . . . . . . . . . . . 115
4.3.1 Linear, constant coefficient, Homogeneous Difference

Equations of order s . . . . . . . . . . . . . . . . . . . 128
4.3.2 Linear, constant coefficient, Inhomogeneous Difference

Equations of order s . . . . . . . . . . . . . . . . . . . 133
4.3.3 Return to the linear, constant coefficient multi step

methods . . . . . . . . . . . . . . . . . . . . . . . . . . 137
4.4 Non asymptotic error analysis – Absolute stability for linear,

constant coefficient, multi step FDM’s for u′ = λu . . . . . . . 140
4.5 Convergence, stability and consistency of Runge-Kutta FDM’s

for u′ = f(t, u) . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5 Further issues for u′ = f(t, u) 148
5.1 How to solve with an implicit method – Predictor-Corrector

FDM’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.1.1 Nonlinear equation solvers . . . . . . . . . . . . . . . . 148
5.1.2 Predictor corrector methods . . . . . . . . . . . . . . . 150

5.2 Adaptive FDM’s for u′ = f(t, u) . . . . . . . . . . . . . . . . . 152
5.3 Systems u′ = f (t,u) and absolute stability. Stiff systems . . . 157

6 Second order problems 162
6.1 Linear, scalar, one dimensional, second order, boundary value

problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.2 Difference operators for FDM’s, revisited . . . . . . . . . . . . 164
6.3 Convergence for FDM’s for u′′ = f . . . . . . . . . . . . . . . 169
6.4 Convergence for CM’s for u′′ = f . . . . . . . . . . . . . . . . 173
6.5 Convergence for FEM’s for (6.1) . . . . . . . . . . . . . . . . . 178
6.6 Non asymptotic analysis of (6.1):

The Convection-Diffusion problem . . . . . . . . . . . . . . . . 187

7 Higher dimensions 194
7.1 Higher dimensions – FDM’s for Elliptic PDE’s . . . . . . . . . 194



List of exercises

• Exercise 1.3, page 10.

• Exercise 1.7, page 12.

• Exercise 1.12, page 14.

• Exercise 1.15, page 16.

• Exercise 1.19, page 17.

• Exercise 1.22, page 18.

• Exercise 2.4, page 20.

• Exercise 2.16, page 25.

• Exercise 2.22, page 28.

• Exercise 2.26, page 30.

• Exercise 2.29, page 32.

• Exercise 2.30, page 33.

• Exercise 2.35, page 35.

• Exercise 2.42, page 40.

• Exercise 2.45, page 42.

• Exercise 2.48, page 47.

• Exercise 2.55, page 51.

• Exercise 2.58, page 54.

• Exercise 2.59, page 54.

3



CONTENTS 4

• Exercise 2.63, page 57.

• Exercise 3.3, page 64.

• Exercise 3.4, page 66.

• Exercise 3.5, page 67.

• Exercise 3.6, page 67.

• Exercise 3.7, page 70.

• Exercise 3.8, page 70.

• Exercise 3.9, page 71.

• Exercise 3.10, page 71.

• Exercise 3.11, page 72.

• Exercise 3.12, page 76.

• Exercise 3.13, page 76.

• Exercise 3.14, page 76.

• Exercise 3.15, page 78.

• Exercise 3.22, page 84.

• Exercise 3.23, page 84.

• Exercise 3.27, page 88.

• Exercise 3.29, page 90.

• Exercise 3.49, page 106.

• Exercise 3.50, page 106.

• Exercise 3.51, page 106.

• Exercise 4.8, page 110.

• Exercise 4.9, page 110.

• Exercise 4.10, page 110.

• Exercise 4.17, page 115.



CONTENTS 5

• Exercise 4.21, page 121.

• Exercise 4.22, page 121.

• Exercise 4.26, page 123.

• Exercise 4.29, page 125.

• Exercise 4.30, page 125.

• Exercise 4.31, page 125.

• Exercise 4.38, page 132.

• Exercise 4.39, page 132.

• Exercise 4.44, page 137.

• Exercise 4.47, page 140.

• Exercise 4.48, page 142.

• Exercise 4.51, page 142.

• Exercise 4.52, page 142.

• Exercise 4.58, page 147.

• Exercise 4.59, page 147.

• Exercise 4.60, page 147.

• Exercise 4.61, page 147.

• Exercise 5.3, page 152.

• Exercise 5.4, page 152.

• Exercise 5.5, page 152.

• Exercise 5.8, page 157.

• Exercise 5.9, page 159.

• Exercise 5.12, page 161.

• Exercise 6.7, page 168.

• Exercise 6.9, page 169.



CONTENTS 6

• Exercise 6.12, page 170.

• Exercise 6.16, page 172.

• Exercise 6.27, page 187.



Color codes

All colors are used for graphs and other illustrative purposes as needed.
Further
Red is used for defining new words.
Blue is used for stating results.
Green is used for example stuff.
Magenta is used for sections for more advanced readers.

7



Chapter 1

Differential equation problems

1.1 Introduction and general definitions

A differential equation as for example u′(x) = cos(x) for 0 < x < 3 is
written as an equation involving some derivative of an unknown function u.
There is also a domain of the differential equation (for the example 0 < x < 3
). In reality, a differential equation is then an infinite number of equations,

one for each x in the domain. The analytic or exact solution is the func-
tional expression of u or for the example case u(x) = sin(x) + c where c is
an arbitrary constant. This can be verified using Maple and the command
dsolve(diff(u(x),x)=cos(x)); . Because of this non uniqueness which
is inherent in differential equations we typically include some additional equa-
tions. For our example case, an appropriate additional equation would be
u(1) = 2 which would allow us to determine c to be 2 − sin(1) and hence
recover the unique analytical solution u(x) = sin(x) + 2 − sin(1). Here the
appropriate Maple command is dsolve(diff(u(x),x)=cos(x),u(1)=2);
. The differential equation together with the additional equation(s) are de-
noted a differential equation problem.

Note that for our example, if the value of u(1) is changed slightly, for
example from 2 to 1.95 then also the values of u are only changing slightly in
the entire domain . This is an example of the continuous dependence on
data that we shall require: A well-posed differential equation problem con-
sists of at least one differential equation and at least one additional equation
such that the system together have one and only one solution (existence and
uniqueness) called the analytic or exact solution to distinguish it from the
approximate numerical solutions that we shall consider later on. Further,
this analytic solution must depend continuously on the data in the (vague)
sense that if the equations are changed slightly then also the solution does

8



CHAPTER 1. DIFFERENTIAL EQUATION PROBLEMS 9

not change too much.

Example 1.1 Consider the differential equation problem{
u′(x) = u(x) tan(x+ 2) for − 3 < x < 3
u(−2) = 1

(1.1)

The problem may be solved with Maple using the code

> ode:=diff(u(x),x)=u(x)*tan(x+2);

> icd:=u(-2)=1;

> sol:=dsolve({ode,icd});

> sol:=simplify(sol,trig);

> eval(u(x),sol);

> uex:=unapply(%,x);

> p1:=plot(uex(x),x=-3..3,y=0..10,color=red):

> p2:=plot(1,x=-3..3,y=0..10,color=blue):

> with(plots):

> display(p1,p2);

The solution is found to be u(x) = | sec(x + 2)| where sec(x) = 1/ cos(x).
But sec becomes infinite at ±π/2 so the solution is not valid in the points
x = −π/2 − 2 and x = π/2 − 2. Note that the domain of the differential
equation is not included in the Maple dsolve command. The result is a
function that solves the differential equation for some x-values. It is up to
the user to determine which x-values if any should be excluded.

� For advanced readers 1.2 � In example 1.1 we wanted the solution
in the interval ] − 3, 3[ but we can only use intervals not containing the
“jump” points. On the other hand, we can only use intervals containing the
additional equation point −2. Once we “cross a jump point” all information
from the additional equation is lost and we again have arbitrary constants in
our solution. Hence (1.1) can be solved only in the interval ]−π/2−2, π/2−2[,
and (1.1) may be reformulated as

Find u : u′(x) = u(x) tan(x+ 2) ∀x ∈]− π/2− 2, π/2− 2[,(1.2)

u(−2) = 1.

�



CHAPTER 1. DIFFERENTIAL EQUATION PROBLEMS 10

Exercise 1.3
Use Maple to redo the computations in example 1.1. Use ?diff, ?dsolve,
?simplify, ?unapply, ?plot and ?plots[display] to understand the func-
tionality of these commands. With ode and icd defined as in the example,
try also the command dsolve[interactive]({ode,icd});. Write a report
giving the solution and a description of the functionality of the commands
above.

Since this note is about differential equations, it is appropriate to mention
some standard notation for these:

When u and u′ are the only unknown functions in an equation, we denote
it a first order differential equation. Examples are u′(x)−3u(x) = ex, u′(x)+
sin(u(x)) = tan(x) and ecos(u

′(x)) + 4u(x) = 7x. The first is denoted a linear
first order differential equation since it is linear in both u and u′. The second
is denoted a quasilinear first order differential equation since it is linear in
u′ but not in u (quasilinear could be translated “almost linear” or “linear
in the most important part (u′)”). The last one is denoted a nonlinear
first order differential equation since it is nonlinear in u′. The fact that the
example is linear in u does not help us in the solution process and hence
is not reflected in the notation . Our general notation covering any first
order differential equation is F (x, u(x), u′(x)) = 0. For the examples above
we then have F (x, u(x), u′(x)) = u′(x) − 3u(x) − ex, F (x, u(x), u′(x)) =
u′(x) + sin(u(x)) − tan(x) and F (x, u(x), u′(x)) = ecos(u

′(x)) + 4u(x) − 7x
respectively .

If we are looking at more than one differential equation at the same time
we denote it a system of differential equations as for example u′1(x)−3u1(x) =
ex and u′2(x)+sin(u1(x)) = tan(x) . In a system of differential equations we
then have more than one unknown function. In the example above we have
2, u1 and u2 or for short u, where u is the vector with the two components u1
and u2. A system as in the example is called a coupled system of differential
equations if more than one of the unknown functions appear in at least one of
the differential equations in the system. If a system is not coupled then it is an
uncoupled system of differential equations. We use the same general notation
for systems as we used for single differential equations, i.e. F (x, u(x), u′(x)) =
0. Only for systems, both u and F are now vectors. For the example above
we then have F1(x, u1(x), u2(x), u

′
1(x), u

′
2(x)) = u′1(x)) − 3u1(x) − ex and

F2(x, u1(x), u2(x), u
′
1(x), u

′
2(x)) = u′2(x) + sin(u1(x))− tan(x) where we have

written out the components of the vectors . To separate from systems, a
single differential equation is also called a scalar differential equation.

All this notation can be used also for differential equations where both u,
u′ and u′′ appear. Only they are called second order differential equations.



CHAPTER 1. DIFFERENTIAL EQUATION PROBLEMS 11

And we can go higher yet to L’th order differential equations, for any positive
integer L. We can also generalize to x being a vector: If x is a scalar, i.e.
a vector with one component, as above, we talk about ordinary differential
equations. If instead x is a vector with at least two components, we talk about
partial differential equations. For partial differential equations derivatives
appear as partial derivatives as for example ∂u(x1,x2)

∂x2
.

� For advanced readers 1.4 � For “notation freaks” all the notation
gathered above is collected in the following definition which together with
the following example 1.6 can be skipped on a first reading. If the reader
is not a notation freak but prefer to learn by example, the definition (and
example 1.6) should be skipped all together.

Definition 1.5 A System of m Differential Equations in n unknowns, in r
dimensions and of order L (n, r being positive integers and L being a non
negative integer) is an equation of the form

F (x, u(x), Du(x), D2u(x), . . . , DLu(x)) = 0, ∀x ∈ Ω(1.3)

where the domain of definition Ω is a non degenerated subset of Rr, x ∈ Rr

is an r-vector (The reals can here and below when necessary be exchanged for
the complex numbers), u : Ω ⊆ Rr →Rn is a vector of n unknown functions
(to be recovered), F : Rr+n+rn+r2n+...+rLn → Rm is a vector of m known
functions assumed to depend non trivially on its last variable DLu. (Diu is
an array af all i’th (partial) derivatives of all component functions in u and
the 0 on the right hand side in (1.3) is in Rm).
For the special case L = 0 normally the terminology differential equations of
order 0 is replaced by Functional equations.
If F is linear in u, . . . , DLu, we call (1.3) a Linear System of Differential
Equations. If F is linear in its last variable DLu, we call (1.3) a Quasi Lin-
ear System of Differential Equations. Otherwise, we call (1.3) a Nonlinear
System of Differential Equations.
When n = m = 1, also called the Scalar Case, (1.3) is simply called a
Differential Equation instead of a system of one differential equation in 1
unknown.
When r = 1 (1.3) is called a System of Ordinary Differential Equations
(ODE’s) and when r ≥ 2 (1.3) is called a System of Partial Differential
Equations (PDE’s) in r dimensions (or an ordinary differential equation re-
spectively a partial differential equation for n = m = 1).



CHAPTER 1. DIFFERENTIAL EQUATION PROBLEMS 12

Example 1.6
We shall here concentrate on the scalar case n = m = 1, in r = 1 to 4
dimensions and with orders L = 1 or 2, i.e. on scalar ordinary and partial
differential equations (in up to 4 dimensions) of order 1 or 2, and in particular
we focus on linear equations. In one dimension (r = 1) and for L = 1 this
gives the general linear, first order, ordinary differential equation

a(x) + b(x)u(x) + c(x)ux(x) = 0.(1.4)

The corresponding general quasi linear, first order, ordinary differential equa-
tion takes the form

a(x, u(x)) + b(x, u(x))ux(x) = 0.(1.5)

In two dimensions (r = 2) and for L = 2 this gives the general linear, 2
dimensional, second order, partial differential equation

a(x, y) + b(x, y)u(x, y) + c(x, y)ux(x, y) + d(x, y)uy(x, y) +(1.6)

e(x, y)uxx(x, y) + f(x, y)uxy(x, y) + g(x, y)uyy(x, y) = 0.

In all cases above (and below) a, . . . , g are known (nonlinear) functions.
Equations of the form of (1.6) are classified into Elliptic, Parabolic and Hy-
perbolic type depending on whether e(x, y)g(x, y)− f 2(x, y) > 0, = 0 or < 0
respectively. Note that the type of an equation generally will vary with the
point (x, y). This classification of differential equations are at times extended
to cover also other types of equations (in higher dimensions etc.). The clas-
sification is based on the notion of Characteristic Curves of which there are
0, 1 and 2 families respectively. For details see for example [1].

Exercise 1.7
Write a 3-5 page essay about characteristic curves and the classification of
(1.6).

�
As seen above, to get uniqueness of the analytic solution, it is necessary

to supplement the differential equations in a differential equation problem by
additional equations.

For first order ordinary differential equations (whether scalar or systems)
we consider only functional equations (also denoted zero’th order differential
equations) like u(1) = 4 . If an additional equation involves a point at the
boundary of the domain for the differential equation (like end points of an
interval ) then the additional equation is denoted a boundary condition.



CHAPTER 1. DIFFERENTIAL EQUATION PROBLEMS 13

If one and only one point is involved in all the additional equations, then
the additional equation(s) is/are also denoted initial condition(s). (Note
that an additional equation can be both a boundary condition and an initial
condition at the same time). To give the same child yet another name, any
additional equation which is a zero’th order boundary condition is also called
a Dirichlet boundary condition.

For second order ordinary differential equations we consider zero’th and
first order differential equations for additional equations like u(1) = 4, u′(1) =
0 or u′(1) + 4u(1) = 5 . Boundary, initial and Dirichlet boundary condi-
tions are introduced the same way as for first order differential equations. A
boundary condition consisting only of the value of the first derivative, like
u′(1) = 0 above , is denoted a Neumann boundary condition. For partial
differential equations only the normal derivative, orthogonal to the boundary,
may be involved in order to “deserve” the title “Neumann boundary condi-
tion”. If both the first derivative and the function value participate, like
u′(1) + 4u(1) = 5 the additional condition is denoted a Robin boundary
condition. Again for partial differential equations only the normal deriva-
tive, orthogonal to the boundary, and the function value may be involved in
order to get this name. As an example of a more exotic boundary condi-
tion we could mention

∫ 1

0
u(x)dx = 1 where the additional equation involves

“information” from an entire interval .

� For advanced readers 1.8 � Again we give a complete definition that
can be omitted at will. The same goes for the following example 1.10.

Definition 1.9 Given a system of m differential equations in n unknowns,
in r dimensions and of order L > 0 according to definition 1.5, additional
differential equations, or functional equations (order L = 0), involving the
same unknown functions u but of order at most L − 1 and with domain of
definition in Ω′, a lower dimensional hyper plane in Ω, like for example the
boundary ∂Ω of Ω, are called Boundary conditions to the system of differential
equations. If one of the components of x, say x1, physically can be related
to something “timelike”, and if for some real number t0, only x ∈ Ω|x1=t0 is
involved in a condition, then this is often called an Initial Condition.
If the order of a boundary condition is 0, the condition is functional and is
called a Dirichlet Boundary Condition.
If the order of a boundary condition is 1, and only normal derivatives (no
tangential derivatives and no functional values) are involved, the condition
is called a Neumann Boundary Condition. If instead both normal derivatives
and functional values are involved (but still no tangential derivatives), the
condition is called a Robin Boundary Condition.



CHAPTER 1. DIFFERENTIAL EQUATION PROBLEMS 14

Example 1.10
Even though most of the additional equations met in the literature are bound-
ary conditions of Dirichlet, Neumann or Robin type, we start with an example
of a condition which is neither:∫

Ω

u(x)dx = 0,(1.7)

is an unusual but feasible additional equation for a differential equation prob-
lem with domain Ω. It is unusual since the condition involves all of Ω and
not just a subset (like a point) of Ω. Thus having considered an exception to
the rule, we shall from here on concentrate on the usual types of additional
equations:

u(x) = d(x), ∀x ∈ ∂Ω(1.8)

is an example of a Dirichlet boundary condition.

∂u(x)

∂n
+ a(x)u(x) = b(x), ∀x ∈ ∂Ω(1.9)

where ∂
∂n

stands for the normal derivative (which we shall here always take
to be the outward such) is an example of a Neumann boundary condition if
a(x) ≡ 0 and otherwise a Robin condition, and is feasible whenever the order
of the system of differential equations L is at least 2.

�

Definition 1.11 A Differential Equation Problem (DEP) consists of a sys-
tem of one or more differential equations (see definition 1.5 or the preceding
text) and one or more additional equations.
A differential equation problem where all the additional conditions are bound-
ary or initial conditions respectively (see definition 1.9 or the preceding text)
is called a Boundary Value Problem (BVP) or an Initial Value Problem (IVP)
respectively. If there are both boundary and initial conditions, and only such
conditions, also the notation Initial Boundary Value Problem (IBVP) is used.

Exercise 1.12
Write a survey, where you give examples (other than the ones given in this
note) of all the new notation, i.e. words, introduced so far in this section.

A DEP is usually only of interest if it is well-posed:



CHAPTER 1. DIFFERENTIAL EQUATION PROBLEMS 15

Definition 1.13 A Well-posed Differential equation problem is one for which

1. there exists a solution

2. the solution is unique

3. the solution depends continuously on the data for the problem

The unique solution is denoted the Analytic or Exact Solution and its func-
tional expression is called its Closed Form Expression.

Below, we shall always assume that our DEP’s are well-posed.
The third condition in definition 1.13 above requires a short explana-

tion: The Data for the DEP is for example for the ODE a(x) + b(x)u(x) +
c(x)u′(x) = 0 (see also (1.4)) the functions a, b and c and for the bound-
ary condition a + bu(0) + cu′(0) = 0 similarly the constants a, b and c. In
general for F (x, u(x), . . . , u(L)(x)) = 0 (see also (1.3)) the function F con-
stitutes the data. Continuous dependence on data then signifies that if the
data of the problem is changed a little then also the solution is changed only
a little. There is no unique definition of just how much the solution may
change when the data changes. Often terms like linear dependence on data
and exponential dependence on data are used to signify that if F is changed
to F + δF and the solution in the process is changed from u to w, then
max(w − u) ≤ Cmax(δF ) or max(w − u) ≤ Cmax(exp(δF )) respectively.
This is a very important property when numerical solution methods are in-
volved, since in this case some change of the original problem (for example
due to rounding errors when computing with a computer) will always take
place. If we could not be assured that changes in the problem, however small,
would lead to small changes in the solutions, then “why compute in the first
place?”

Note that it is a very hard problem to establish well-posedness of a gen-
eral differential equation problem. Normally it is done for one problem or
somewhat better for one (small) class of problems at a time. We shall see an
example of this in section 1.2 below. For more on the subject of this section
see for example [1], [2] and [3].

Below, we shall work with classes of DEP’s. A class of DEP’s is made
up of a DEP where part of the formulation is indeterminate data. A class of
DEP’s can then be made up for example of all the DEP’s with data satisfying
certain conditions.

Example 1.14
The class of linear, first order, ordinary differential equations with Dirichlet
boundary conditions and 3 times continuously differentiable data consists of



CHAPTER 1. DIFFERENTIAL EQUATION PROBLEMS 16

all differential equations on the form a(x)+b(x)u(x)+c(x)u′(x) = 0 (see also
(1.4)) with boundary conditions of the form u(x0) = d (see also (1.8)) and
where further a, b and c are 3 times continuously differentiable functions,
i.e. belong to C3(Ω), x0 is some point on the boundary of the domain of the
differential equation and d is some constant.

Exercise 1.15
Write a 2-5 page survey about well-posedness of DEP’s and classes of DEP’s.

1.2 A first order model problem

Among the classes of DEP’s where general well-posedness results are known
is the quasi linear, scalar, one dimensional, first order, initial value problem
(1.10):

Theorem 1.16 Let I be an open real interval whose closure Ī contains the
point x0. The initial value problem

Find u ∈ C1(Ī) : u′(x) = f(x, u(x)) ∀x ∈ I, u(x0) = u∗,(1.10)

where f : S = Ī ×R → R, f ∈ C(S) and f is globally Lipschitz continuous
in its second variable, i.e.

∃L > 0 : |f(x, u2)− f(x, u1)| ≤ L|u2 − u1| ∀x ∈ I, ∀u1, u2 ∈ R(1.11)

is well-posed.

Example 1.17
Consider the differential equation u′(x) = cos(x). With the notation of
theorem 1.16, f(x, u(x)) = cos(x) which is obviously Lipschitz continuous
in its second variable since |f(x, u2) − f(x, u1)| = | cos(x) − cos(x)| = 0 ≤
L|u2 − u1| for any positive L.

Example 1.18
Consider the differential equation u′(x) = λu(x). With the notation of the-
orem 1.16, f(x, u(x)) = λu(x) which is obviously Lipschitz continuous in its
second variable since |f(x, u2) − f(x, u1)| = |λu2 − λu1| = |λ| · |u2 − u1| ≤
L|u2 − u1| for L = λ.



CHAPTER 1. DIFFERENTIAL EQUATION PROBLEMS 17

Exercise 1.19
Consider the differential equation u′(x) = 3u(x) + a, 0 < x < 5, u(0) = b.
a) Show that this problem is well-posed.
b) Use Maple’s dsolve command to find the solution to this problem.
Obviously u(x) depends on both a and b. To emphasize this write it instead
as u(a,b)(x).
c) Now write up u(A+δ,B+κ)(x) − u(A,B)(x) and verify that for any fixed x,
u(a,b) depends linearly on the (change δ and κ in) data a and b.
d) Plot with Maple u(A+δ,B+κ)(x)−u(A,B)(x) for δ = κ = 0.0001 in the entire
domain of the DEP, i.e. 0 < x < 5 and note that a small initial perturbation
of 0.0001 in the data, giving an initial difference in the solution also of 0.0001
(show this), at x = 5 has been magnified to more than 400 (read this of the
Maple graph).

� For advanced readers 1.20 � Even for this simple class of problems,
complications easily arise as evidenced by the problem considered in exam-
ple 1.1:

Example 1.21
Returning to example 1.1 and rewriting (1.2) in the form of (1.10), the prob-
lem there can be written as

Find u ∈ C1( ]− π/2− 2, π/2− 2[ ) :(1.12)

u′(x) = u(x) tan(x+ 2) ∀x ∈]− π/2− 2, π/2− 2[,

u(−2) = 1.

With the notation of theorem 1.16 we have I =]− π/2− 2 + ε, π/2− 2− ε[,
f(x, u(x)) = u(x) tan(x+2), x0 = −2 and u∗ = 1 where we have reduced the
interval by a small non negative ε for reasons to be clear immediately: To
show well-posedness we start with the Lipschitz continuity taking the form

|u2 tan(x+ 2)− u1 tan(x+ 2)| ≤ max
x∈I
| tan(x+ 2)|︸ ︷︷ ︸

L

|u2 − u1|.(1.13)

Obviously, L is finite only for ε > 0. Also f is continuous on the slab
S = Ī ×R only for ε > 0. On the other hand any ε > 0 will do. Hence the
result from theorem 1.16 is that the problem is well-posed in any closed subset
of ]−π/2−2, π/2−2[. Since ]−π/2−2, π/2−2[= ∪ε>0[−π/2−2+ε, π/2−2−ε]
we say that the problem is well-posed in the open interval ]−π/2−2, π/2−2[.
But since L → ∞ as ε → 0 the well-posedness is not uniform and we talk
about non uniform well-posedness in the open interval ]−π/2−2, π/2−2[.



CHAPTER 1. DIFFERENTIAL EQUATION PROBLEMS 18

For a proof of theorem 1.16, see for example [3]. Here just a comment
on the continuous dependence on data which for theorem 1.16 is linear and
given the following form:

∃C > 0 : |u(t)− zε(t)| < Cε, ∀t ∈ I, ∀ε sufficiently small.(1.14)

Here zε is the solution to the following problem which is a perturbed data
version of (1.10):

Find zε ∈ C1(I) : z′ε(t) = f(t, zε(t)) + δε(t) ∀t ∈ I, zε(t0) = u∗ + δε,0.(1.15)

Here δε and δε,0 are selected so that (1.15) has existence and uniqueness of
solution for all ε sufficiently small and |δε(t)| < ε ∀t ∈ I and |δε,0| < ε.

Note that C in (1.14) must be independent of ε, δε and δε,0.
Note also that not all possible perturbations of data are taken into con-

sideration. For example, no non linear perturbations in the derivative term
like z′ε + (z′ε)

2 is taken into consideration.
Continuous dependence on the data is in this case also denoted Stability

in the sense of Liapunov or just Stability. Note that the word “stability”
is dangerous, since it is used in many connections to describe only vaguely
similar notions. For a proof that Lipschitz continuity in the second variable
of f is sufficient to guarantee continuous dependence on the data see for
example [4] §11.1 p.471-472.

We shall use (1.10) quite extensively for examples. For all examples we
shall let t0 be the left endpoint of I.

Exercise 1.22
Write up a proof of Liapunov stability for (1.10) given (1.11).

�



Chapter 2

Polynomial interpolation

It turns out that there are only very few cases where it is actually possible
to derive the closed form expression for the exact solution for a well-posed
differential equation problem. Still a theoretical approach very often can
give important information about the structure of the solution. We shall not
follow that line of thought any further here however, but instead concentrate
on Numerical Methods for Approximating the (unknown and sought for)
Exact Solution. Such a method is basically a prescription for replacing the
DEP by one (or more for nonlinear problems) systems of linear algebraic
equations that can be solved on a computer using software written in a
standard programming language. All numerical methods involve in one way
or another the notion of polynomial interpolation of functions:

� For advanced readers 2.1 � Interpolation is a special case of approx-
imation, so we start with that issue.

2.1 Approximation and error

Example 2.2
When solving a differential equation numerically we most often look for an
approximation to the value of the solution function in certain nodal points.
Sometimes it is practical to find a function approximating the nodal point
values, i.e. having more or less the same values in the nodal points. This
process is illustrated in figure 2.1.

Example 2.3
If we do not know the primitive of a function f , it can be impossible to com-
pute an integral like

∫ 3

0
f(x)dx. Instead we can approximate the integrand

19



CHAPTER 2. POLYNOMIAL INTERPOLATION 20

a) b) c)

x1 x2 x3 x4 x5 x1 x2 x3 x4 x5 x1 x2 x3 x4 x5

•
•
• •

•

•
•
• •

•

•
•
• •

•

Figure 2.1: Nodal points x1, x2, x3, x4 and x5. (a) Exact (unknown) so-
lution to some differential equation and the exact (unknown) nodal point
values •. (b) (Known) approximate nodal point values •. (c) (Known) linear
spline (piecewise linear, continuous interpolant in the nodal points) using
approximate nodal point values.

f by a polynomial p (or some other function whose primitive is known) and

then approximate the integral by the computable
∫ 3

0
p(x)dx. For example

we could approximate I =
∫ 3

0
sin(x)dx = 1.989992497 by In =

∫ 3

0
pn(x)dx

where pn is the n’th order Taylor polynomial for sin(x) around x = 0. Here
I5 = 1.125000000 while I20 = 1.989992497. In Maple the commands are
evalf(int(sin(x),x=0..3));

evalf(int(convert(taylor(sin(x),x=0,5),polynom),x=0..3));

evalf(int(convert(taylor(sin(x),x=0,20),polynom),x=0..3));

Relevant problems in connection to the examples above are:

1. How do we find a good approximation to a function, i.e. how do we find
the linear spline in example 2.2 and how do we find the polynomial p
in example 2.3? (The Taylor polynomial around 0 is not always a good
selection as is obvious from exercise 2.4

2. How big is the error, i.e. the difference between the function being
approximated and the approximated function in example 2.2 and the
correct integral and its approximation in example 2.3, and how do
we control it? The control involves many issues as for example the
following: Given 2 functions, which one is the best approximation to a
third function? Given one function, how do we select another function
which is a better approximation to a given function than the first one?

Exercise 2.4
Try to approximate

∫ 3

0
erf(x)dx with

∫ 3

0
T nx=0(erf)(x)dx where T nx=0(erf) is the

n’th order Taylor polynomial for the error function (erf) around x = 0: Use
Maple to compute the exact result and the approximations for n = 1, 5, 10, 20.



CHAPTER 2. POLYNOMIAL INTERPOLATION 21

The maple command for the error function is erf. Plot erf and T nx=0(erf)
together for n = 1, 5, 10, 20 and report what is “going wrong”. To impress
your teacher, you might plot separately for each n and make a movie out af
the plots (include some more n-values to get a smoother video. Hint: Use
the command plots[display](...,insequence=true)).

To work towards an answer to the questions above, we now define a
general approximation problem in mathematical terms. The approximation
problem has 3 parts: We want to approximate something say v with some-
thing else say ṽ and then we want to measure the error between v and ṽ.

Start considering v: We would like methods that can approximate many
different functions or data sets. All is probably too much to ask so we start
selecting a function space V (normally dimV = ∞). The idea is, that the
function that we intend to approximate belongs to V, i.e. v ∈ V.
Example 2.5
V = C∞([a, b]), −∞ < a < b < ∞. This is the space of infinitely often
differentiable functions. Data sets (sets of tuples of nodal points and nodal
point values) can be considered point values for a C∞ function.

Example 2.6
V = L2((a, b) × (c, d)), −∞ < a < b < ∞, −∞ < c < d < ∞. This is the
space of (measurable) functions of 2 variables f : (x, y) → R whose square

is integrable over the box (a, b)× (c, d), i.e.
∫ b
a

∫ d
c
f 2(x, y)dxdy <∞.

Now consider ṽ: Select a second function space Ṽ. (Normally Ṽ ⊂ V and
dimṼ < ∞). The idea is, that the function that we intend to approximate
with belongs to Ṽ , i.e. ṽ ∈ Ṽ.
Example 2.7
Ṽ = Pk([a, b]), −∞ < a < b <∞. This is the space of polynomials of degree
at most k.

Example 2.8
Ṽ = Sk,�Δ ([a, b]), −∞ < a < b < ∞. This is the space of functions in
C�−1([a, b]) i.e. of global degree of smoothness � − 1 (for � = 0 no global
smoothness is enforced) that are polynomials of degree at most k i.e. belong
to Pk in each subinterval determined by the subdivision Δ = {Δi}ni=1 of [a, b],
i.e. ∃{xi}ni=0 : a = x0 < x1 < . . . < xn = b, Δi = (xi−1, xi), i = 1, . . . , n. For
short we say that Ṽ = Sk,�Δ ([a, b]) is the space of functions that are globally
C�−1 and locally Pk. The most widely used special cases are � = k and



CHAPTER 2. POLYNOMIAL INTERPOLATION 22

� = 1: Sk,kΔ ([a, b]) is called the space of splines of degree k with respect to
the subdivision Δ and Sk,1Δ ([a, b]) is called the space of piecewise Lagrange
interpolants of degree k with respect to the subdivision Δ. For examples of
S1,1
Δ ([a, b]), S2,2

Δ ([a, b]) and S3,3
Δ ([a, b]) see figure 2.2. The spaces Sk,1Δ ([a, b])

and Sk,kΔ ([a, b]) will be discussed in details in section 2.3 below.

y

x

2

0

62

5

4

3

1

−1
840

y
2

0

x

2

5

4

3

1

−1
840 6

y

x

2

0

62

5

4

3

1

−1
840

a) b) c)

Figure 2.2: (a) Linear spline, (b) Quadratic spline and (c) Cubic spline all
using the same set of nodal points and nodal point values.

Finally consider the error between v and ṽ: We saw in example 2.3 that
the error may be something quite different from just a normal difference
between v and ṽ. Hence we need some more general way to measure the
distance between two functions v ∈ V and ṽ ∈ Ṽ. The mathematical notion
that we need is a distance measure d : V×Ṽ → R0,+ := {r ∈ R : r ≥ 0}. d is
a function that for any choice of v in V and any choice of ṽ in Ṽ returns a real,
non negative number d(v, ṽ) which is our error. Note that we do not allow
an error which is simply v − ṽ which is a function and not a real number.
If we used such an error it would be hard to compare two errors v − ṽ1 and
v − ṽ2. With our choice, the error is a real number, and we can easily find
out which of ṽ1 and ṽ2 is the best approximation to v. It is the one with the
smallest d(v, ṽ).

Example 2.9
d(v, ṽ) = |v(0) − ṽ(0)| + |v(1) − ṽ(1)|. In this case we emphasize only the
difference in the two (nodal) points 0 and 1. We do not care what so ever
about how the functions behave in other points.

Example 2.10
d(v, ṽ) = ‖v − ṽ‖ where ‖ · ‖ is a norm as for example the L∞ norm (pro-
nounced L infinity) ‖v− ṽ‖∞ = max0≤x≤1 |v(x)− ṽ(x)| or the L2 norm (pro-

nounced L two) ‖v − ṽ‖2 =
√∫ 1

0
(v − ṽ)2(x)dx. In this case we emphasize

the difference in all points in the interval [0, 1] but in different ways.



CHAPTER 2. POLYNOMIAL INTERPOLATION 23

Definition 2.11 A Norm ‖ · ‖ on a vector space V is a function V → R0,+.
Instead of the standard notation, where we would denote the function by say
n and the function value in say v by n(v), we denote the function ‖ · ‖ and
the function value in v by ‖v‖.
For a function V → R0,+ to be a norm it must satisfy the following condi-
tions:

v ∈ V \ {0} ⇒ ‖v‖ > 0(2.1)

λ ∈ R and v ∈ V ⇒ ‖λv‖ = |λ| · ‖v‖
v, w ∈ V ⇒ ‖v + w‖ ≤ ‖v‖+ ‖w‖ (triangle inequality)

For V = Rn we define (for v = (v1, . . . , vn)
T ∈ Rn)

‖v‖�1 =
n∑
j=1

|vj|, ‖v‖�2 =
√√√√ n∑

j=1

v2j , ‖v‖�∞ = max
j=1...n

|vj|.(2.2)

For V being a vector space of functions defined, measurable, integrable,
square integrable and continuous on a closed interval I, i.e. all of the following
definitions give finite numbers as results, then

‖v‖L1 =

∫
I

|v(s)|ds, ‖v‖L2 =

√∫
I

v2(s)ds, ‖v‖L∞ = max
s∈I
|v(s)|.(2.3)

It can be proven that all of the functions in (2.2) and (2.3) are indeed
norms. We shall do so only for the ‖ · ‖�1 case checking the 3 conditions in
(2.1) in order of appearance:

1. If v �= 0 then at least one of the components, say vk, is non zero. But
then |vk| > 0 and hence ‖v‖�1 =

∑n
j=1 |vj | > |vk| > 0.

2. Obviously ‖λv‖�1 =
∑n

j=1 |λvj| = |λ|
∑n

j=1 |vj| = |λ|‖v‖�1.
3. ‖v+w‖�1 =

∑n
j=1 |vj+wj| ≤

∑n
j=1(|vj|+|wj|) =

∑n
j=1 |vj |+

∑n
j=1 |wj| =

‖v‖�1 + ‖w‖�1.

Example 2.12 Let us find the distance measured in the norms defined above
between the functions f : x→ x2 and g : x→ x3 on the interval from 0 to 5.
For the �1- �2- and �∞-norms we define v = (v(0), v(1), v(2), v(3), v(4), v(5))T

where v = f−g, i.e. the vector of nodal point values of the difference between
the two functions in the nodal points 0, 1, 2, 3, 4, 5. This is easily computed
with Maple using the commands



CHAPTER 2. POLYNOMIAL INTERPOLATION 24

f:=x->x^2; g:=x->x^3; h:=x->abs(f(x)-g(x));

for i from 0 to 5 do x[i]:=i end do; i:=evaln(i);

hseq:=seq(abs(f(x[i])-g(x[i])),i=0..5);

l1:=sum(hseq[i],i=1..6);

l2:=sqrt(sum((hseq[i])^2,i=1..6));

linf:=max(hseq);

L1:=evalf(int(h(x),x=0..5));

L2:=sqrt(evalf(int(h(x)^2,x=0..5)));

Linf:=maximize(h(x),x=0..5);

and gives the results

‖f − g‖�1 = 170, ‖f − g‖�2 = 12644, ‖f − g‖�∞ = 100,

‖f − g‖L1 = 114.75, ‖f − g‖L2 = 6577.380952, ‖f − g‖L∞ = 100.

Note that the norm of a function is not at all uniquely defined. The size
depends heavily on the type of norm used.

Definition 2.13 Given function spaces V and Ṽ, a distance measure d :
V × Ṽ → R0,+ and v ∈ V, the solution ṽ to the best approximation problem

find ṽ ∈ Ṽ : d(v, ṽ) = inf
w∈Ṽ

d(v, w)(2.4)

is called the best approximation in Ṽ to v ∈ V with the distance measure d.
e = v− ṽ is called the best error function. |e| = d(v, ṽ) is called the minimal
error.

Best approximation problems with d(v, ṽ) = ‖v−ṽ‖�1 are called interpola-
tion problems (see a complete definition below) and if d(v, ṽ) = ‖v−ṽ‖�2 they
are called least squares problems. Maple can handle these and many other
best approximation problems through the CurveFitting package, containing
among other the commands PolynomialInterpolation and LeastSquares.
For example

xydata:=[[0,0],[1,1],[2,5],[3,2],[4,7],[5,0]];

with(CurveFitting):

q:=LeastSquares(xydata,x,curve=a+b*x+c*x^2+d*x^3);

q1:=plot(q,x=0..5,color=red):

p0:=plots[pointplot](xydata,symbol=diamond,color=blue):

plots[display](p0,q1);

Here we approximate the data set with a cubic curve which is termed Cubic
Least Squares.



CHAPTER 2. POLYNOMIAL INTERPOLATION 25

Example 2.14
V = C0([0, 1]), Ṽ = P1([0, 1]), d(v, ṽ) = |v(0)− ṽ(0)|+ |v(1)− ṽ(1)|.
The unique solution ṽ to the best approximation problem with this selection
of V, Ṽ and d is called the linear interpolant to v in 0 and 1. Note that
the search for a best approximation from (2.4) is simplified by the fact that
infw∈Ṽ d(v, w) = 0 so that (2.4) is replaced by the equation system

find ṽ ∈ Ṽ : d(v, ṽ) = 0.(2.5)

This is what distinguishes the interpolants in the class of approximants.

Definition 2.15 Given function spaces V and Ṽ, and a distance measure
d : V × Ṽ → R0,+ and v ∈ V, such that infw∈Ṽ d(v, w) = 0 has a unique
solution, the solution ṽ to the interpolation problem

find ṽ ∈ Ṽ : d(v, ṽ) = 0(2.6)

is called the interpolant in Ṽ to v ∈ V with the distance measure d.
e = v − ṽ is called the interpolation error function. The interpolation error
|e| = d(v, ṽ) is zero.

Exercise 2.16
a) Describe in words, the properties of the linear interpolant to a function v
in 0 and 1.
b) Find the expression for the linear interpolant to the function x→ x2 in 0
and 1.
c) The quadratic interpolant to a function v in 0, 1

2
and 1 can be described as

the unique solution to the approximation problem given by the selection V =
C∞([0, 1]), Ṽ = P2([0, 1]), d(v, ṽ) = |v(0)− ṽ(0)|+ |v(12)− ṽ(12)|+ |v(1)− ṽ(1)|.
Do (a) and (b) for the quadratic interpolant.

There is a large amount of literature on best approximation theory. We
shall not go into details here but refer to [5] for an introductory treatment.
In practice, it is often neither possible nor really required to find the best
approximation. Instead the real problem can be formulated as follows: Given
V and a positive, real valued tolerance T , find Ṽ so that |e| ≤ T . Normally,
Ṽ is restricted to be one of a sequence of function spaces {Ṽk}∞k=0 with a
corresponding sequence of best approximations {ṽk}∞k=0 such that

• Ṽ0 ⊂ Ṽ1 ⊂ . . . ⊂ V.



CHAPTER 2. POLYNOMIAL INTERPOLATION 26

• 0 < dimṼ0 < dimṼ1 < . . . < ∞. The sequence {Ṽk}∞k=0 is said to be
increasing.

• limk→∞ |ek| = limk→∞ d(v, ṽk) = 0, ∀v ∈ V. The sequence {Ṽk}∞k=0 is
said to be dense in V.

Definition 2.17 The tolerance T approximation problem:
Given a function space V, an increasing sequence of function spaces {Ṽk}∞k=0

which is dense in V, a distance measure d : V × Ṽk → R0,+ defined for
all k = 1, 2, . . . and a tolerance T ∈ R+, find the smallest integer k such
that |ek| = d(v, ṽk) ≤ T ∀v ∈ V, where {ṽk}∞k=0 is the sequence of best
approximations.

Again, finding the exact smallest integer k may be hard or impossible,
so often the goal is simply set at finding just one k (but not necessarily
the smallest such) so that |ek| ≤ T . Of course, the larger the k the more
computational work, since the sequence of spaces {Ṽk}∞k=0 is increasing with
k. An issue of general interest is thus how fast the error goes towards zero as
k increases in the tolerance T approximation problem. The speed is measured
using the following O-notation: �

Definition 2.18 O-notation and order of convergence for sequences:
Given two infinite sequences of numbers {ak}∞k=1 and {bk}∞k=1 we write

ak = Ok→∞(bk)(2.7)

and say that ak is “big oh” of bk if there exists constants k0 and C such that
|ak| ≤ C|bk| when k ≥ k0.
In mathematical analysis Ok→∞({bk}∞k=1) is defined as the collection of all
sequences {ak}∞k=1 for which there exists constants k0 and C such that |ak| ≤
C|bk| when k ≥ k0. Hence the following more elaborate notation may be used:
{ak}∞k=1 ∈ Ok→∞({bk}∞k=1). In these notes however, we shall stick to the first
(and simpler) notation.
If limk→∞ ak = limk→∞ bk = 0 and ak = Ok→∞(bqk) then we say that {ak}∞k=1

is convergent of order q with respect to {bk}∞k=1.

Example 2.19
Let ak =

k+2
k2

and bk =
1
k
, k ≥ 1. Clearly ak = Ok→∞(bk) since∣∣∣∣akbk

∣∣∣∣ =
∣∣∣∣∣
k+2
k2

1
k

∣∣∣∣∣ = k + 2

k
= 1 +

2

k
≤ 3 ∀k ≥ 1.(2.8)



CHAPTER 2. POLYNOMIAL INTERPOLATION 27

Likewise 1
k
+ e−k = Ok→∞( 1

k
) since∣∣∣∣ 1k + e−k

1
k

∣∣∣∣ = 1 + ke−k ≤ 2 ∀k ≥ 1.(2.9)

The last inequality can be verified with Maple using the Maple command
plot(k*exp(-k),k=0..10); i.e. e−k goes to zero faster than k goes to infin-
ity. It is a special case of the more general result, that an exponential beats
any polynomial, i.e. e−k goes to zero faster than kp goes to infinity for any
positive number p.

Definition 2.20 O-notation and order of convergence for functions:
Given two functions f and g defined on the same domain Ω (open set) con-
taining the point x0 we write

f = Ox→x0(g)(2.10)

and say that f is “big oh” of g in x0 if there exists constants δ and C such
that |f(x)| ≤ C|g(x)| when |x− x0| ≤ δ if |x0| <∞ or |x| ≥ δ if x0 =∞.
A more precise but also more elaborate notation would be f ∈ Ox→x0(g)
defining Ox→x0(g) as the collection of all functions f for which there exists
constants δ and C such that |f(x)| ≤ C|g(x)| when |x− x0| ≤ δ if |x0| <∞
or |x| ≥ δ if x0 =∞. In these notes however, we shall stick to the first (and
simpler) notation.
If limx→x0 f(x) = limx→x0 g(x) = 0 and f = Ox→x0(g

q) then we say that f is
convergent of order q with respect to g.

Example 2.21√
x2 + 3 = Ox→∞(x) since∣∣∣∣∣

√
x2 + 3

x

∣∣∣∣∣ =
√

1 +
3

x2
≤ 2 whenever |x| ≥ 1.(2.11)

Likewise sin x − x + x3

6
= Ox→0(x

5) which can be seen from the Taylor
expansion of sin x around x = 0 with Lagrange remainder: sin x = x −
x3

6
+ cos ξ

120
x5 for some ξ ∈]0, x[ so that | sin x − x + x3

6
| ≤ |x|5

120
. This result

will normally for clarity be written in the form sin x = x − x3

6
+ Ox→0(x

5).

Since limx→0

(
sin x− x+ x3

6

)
= limx→0 x = 0 we say that sin x − x + x3

6
is

convergent of order 5 with respect to x.



CHAPTER 2. POLYNOMIAL INTERPOLATION 28

Exercise 2.22
a) Show by Taylor expansion that ex = 1 + x+Ox→0(x

2).
b) Show also that 1

k
+ k

1+k
− 1 = Ok→∞( 1

k2
). Hint: Replace k by 1/x and use

Taylor expansion.

Other than Taylor expansion the order of convergence can also be found
in another (graphical) way. For example sin x − x + x3

6
= Ox→0(x

5) means

that sin x−x+ x3

6
= c1x

5+ c2x
6+ c3x

7+ . . . for some constants c1, c2, c3, . . .
As x approaches 0 the term c1x

5 starts dominating no matter how big c2, c3
and so on are because the terms with higher orders of x go towards zero faster
than x5. Hence asymptotically, as x→ 0 we can count on sin x−x+ x3

6
= c1x

5

as an increasingly better and better approximation. Taking the logarithm

on both sides we have ln
(
sin x− x+ x3

6

)
= ln c1 + 5 lnx. Plotting this, i.e.

plotting sin x− x+ x3

6
against x in a double logarithmic coordinate system,

we get a straight line with slope 5. In general, if f is convergent of order q
with respect to g, we plot f against g in double logarithmic scale (in Maple
there is a loglogplot command) and recover q as the slope of the resulting
line. Because of the approximations we are making (in throwing away the
terms c2x

6 + c3x
7 + . . .) the line appears to show up only for sufficiently

small values of x. The x interval where the curve is considered straight, is
called the asymptotic tail. In reality, the curve only converges to be exactly
straight as x → 0. Note, that it is generally not possible up front to know
how big the asymptotic tail is. This also depends on the tolerance the user
applies in determining whether the curve is a straight line. For an example
see figure 2.3 below, where f is denoted e(h) and g is denoted h and the
order of convergence is q = 3.

� For advanced readers 2.23 � Now we are prepared to define the speed
of convergence of the tolerance T approximation problem.

Definition 2.24 The convergence problem:
Given a function space V, an increasing sequence of function spaces {Ṽk}∞k=0

which is dense in V and a distance measure d : V × Ṽk → R0,+ defined for
all k = 1, 2, . . ., find the largest q ∈ R such that |ek| = Ok→∞(hqk), (i.e.

∃x0 ∈ R : |ek|
hqk
≤ x0∀k = 1, 2, . . . sufficiently large), ∀v ∈ V, where hk is a

“typical parameter” for the Ṽk problem and hk → 0 as k →∞.
q is called the (theoretical) order of convergence of the tolerance T approxi-
mation problem.



CHAPTER 2. POLYNOMIAL INTERPOLATION 29

Example 2.25
Typical selections for hk are hk =

1
k
or hk =

1
dimṼk

, but also other values may

be reasonable under certain circumstances. In any case, hk is selected by the
user so that it “makes sense” for the given situation.

Even though the error function ek above is only defined in terms of hk for
the discrete sequence k = 1, 2, . . ., in reality ek often can be defined for any
real value of hk. Hence it makes sense to drop the index k and consider e a
function of h. Assuming that e is smooth enough to have a Taylor expansion
of any order that we require, the condition |ek| = Ok→∞(hqk) can be changed
into |e(h)| = Oh→0(h

q) ⇔ e(h) = x0h
q + x1h

q+1 + . . . for some sequence
of (unknown) constants x0, x1, . . . where x0 �= 0. Note that no matter how
the constants are valued, the terms with lower exponent will dominate the
ones with higher exponent in absolute value for sufficiently small values of
h, as long as the coefficient of the term with lower exponent is not zero.
For sufficiently small values of h, e(h) can then be approximated well with
x0h

q+x1h
q+1+ . . .+xnh

q+n, and better the larger n. To compute q from this
expression, we need n+ 2 equations since apart from q there are n+ 1 other
unknowns x0, . . . , xn. To get these n+2 equations we use computed values of
e(h1), . . . , e(hn+2) say ẽk1, . . . , ẽkn+2 and solve the (approximating) equalities

ẽk1 = x0h
q
k1

+ x1h
q+1
k1

+ . . . + xnh
q+n
k1

, . . . , ẽkn+2 = x0h
q
kn+2

+ x1h
q+1
kn+2

+ . . . +

xnh
q+n
kn+2

. For example for n = 0 we need to solve the system ẽk1 = x0h
q
k1

and
ẽk2 = x0h

q
k2

where ẽk1 , ẽk2 , hk1 and hk2 are known values while x0 and q must
be recovered. q is recovered by dividing the first equation by the second and
taking logarithms. We get q = ln(ẽk1/ẽk2)/ ln(hk1/hk2). Note that typically,
we are not interested in a full solution, but only on the extraction of the value
of q from these equations. Hence we eliminate x0, . . . , xn and solve for q. The
q that we recover is of course not the exact theoretical order of convergence
since several approximations are involved. First of all, the computation of
the values ẽ(hki) for i = 1, . . . , n + 2 may involve imprecisions and secondly
the “cut off” of the Taylor expansion involves an error which is bigger the
smaller n we choose. To distinguish the recovered q that we shall denote
q̃k1,...,kn+2 from the theoretical order of convergence, we shall denote it the

practical order of convergence. The k1, . . . , kn+2 refer to the Ṽk1, . . . , Ṽkn+2

used in the computations. Hopefully q̃k1,...,kn+2 � q, but it is wrong to claim
that q has been found, if it is really some q̃k1,...,kn+2 that has been recovered.
In short, q comes from theoretical investigations, while q̃k1,...,kn+2 comes from
computations resulting in graphs like the one shown in figure 2.3. Note how
different the graphs in figure 2.3 look. For the human eye, it is much easier
to spot a polynomial dependence with double logarithmic axes than with
linear axes. Also note how much easier it is to spot the asymptotic tail and



CHAPTER 2. POLYNOMIAL INTERPOLATION 30

estimate the order of convergence from the double logarithmic plot, even
with the significant reduction in the extension of the linear axes.

1e-06

 

1e-07

1e-08

1e-09

.1e2
1e-10

1..1.1e-1.1e-2.1e-3

.1e5

.1e4

.1e3

.1e2

1.

.1

.1e-1

.1e-2

.1e-3

1e-05

 

0.6

20

0.4

0

-20

0.2

-40

-60
0

 

10.8

a) b)

ln h h

ln |e(h)| |e(h)|

asymptotic tail

Figure 2.3: Error function e(h) with cubic order of convergence (red, bot-
tommost curve) and for reference the function (5 + 200π)h3 (blue, topmost
curve) with (a) double logarithmic axes, (b) Linear axes.

When plotting the computed error |ẽk| as a function of hk in double log-
arithmic coordinates, so that a function x0h

q shows up as a straight line
with slope q, normally the straight line appears to show up only for suf-
ficiently small values of maxi=1,...,n hki . The h interval where the curve is
considered straight, is called the asymptotic tail of the method. In reality,
the curve only converges to be exactly straight as maxi=1,...,n+2 hki → 0. This
means that q̃k1,...,kn+2 → q only as we consider smaller and smaller values of
maxi=1,...,n+2 hki for the computation of q̃k1,...,kn+2. Note, that it is generally
not possible up front to know how big the asymptotic tail is. This also de-
pends on the tolerance the user applies in determining whether the curve is
a straight line.

Exercise 2.26
Recreate the plots in figure 2.3 using Maple and the commands plot and
loglogplot from the plots package.
Hint: The construction p1:=loglogplot(...): p2:=loglogplot(...):

display(p1,p2,...); may be used. The error function is given by ek =
5h3k + 100h2k sin(2πhk). Show that the theoretical order of convergence is
q = 3 and derive the formula to find the practical order of convergence q̃h1,h2
(n = 0 above) and the corresponding constant x0. Find the value of q̃h1,h2
for h1 = 10−1 and h2 = 2h1. Do the same for h1 = 10−i for i = 2, 3, . . . , 10.



CHAPTER 2. POLYNOMIAL INTERPOLATION 31

For the practical computations needed for q̃h1,h2 use the exact values e(h1)
and e(h2). This constitutes an ideal situation, where the error is coming only
from the fact that q̃h1,h2 is measuring the order not at h = 0 but somewhere
depending on h1 and h2, or to put it in other terms: It comes from the fact
that we are only using the first and leading term in the taylor expansion of
the error.

�

2.2 The well-determined polynomial interpo-

lation problem

We shall now study the most common examples of interpolation problems as
defined in generality in definition 2.15.

Theorem 2.27 Let x0, x1, . . . , xn be distinct real numbers (nodal points).
Then for arbitrary real values y0, y1, . . . , yn (nodal point values) there exists
a unique polynomial pn of degree at most n (∃!pn ∈ Pn) such that

pn(xi) = yi, for i = 0, 1, . . . , n.

pn is called the (Lagrange) interpolating polynomial for the data set
{(x0, y0), . . . , (xn, yn)}.

Proof:
Uniqueness: Assume that there exists two interpolating polynomials, pn and
qn.
Then (pn− qn)(xi) = 0, for i = 0, . . . , n, and deg(pn− qn) ≤ n so pn− qn ≡ 0.
(A nonzero polynomial of degree at most n may have at most n roots).
Existence: Induction over n:
n = 0: Select p0(x) = y0. Then p0 ∈ P0 and p0(x0) = y0.
Assume existence for n− 1, show existence for n: Select pn = pn−1 + cn(x−
x0) · . . . · (x− xn−1).
Then pn ∈ Pn and pn(xi) = pn−1(xi) = yi for i = 0, . . . , n − 1 (by the
assumtion on pn−1). pn(xn) = pn−1(xn) + cn

∏n−1
i=0 (xn − xi) = yn as long

as we select cn = (yn − pn−1(xn))/
∏n−1

i=0 (xn − xi). (Note that the xi’s are
distinct, so that we are not dividing by zero).

Example 2.28 Take the nodal points 0, 1, 2, 3, 4, 5 and the nodal point val-
ues 0, 1, 5, 2, 7, 0 and pass a polynomial of degree at most 5 through them.
This is easily done with Maple:



CHAPTER 2. POLYNOMIAL INTERPOLATION 32

with(CurveFitting);

xydata:=[[0,0],[1,1],[2,5],[3,2],[4,7],[5,0]];

p:=PolynomialInterpolation(xydata,x);

Note that the CurveFitting package contains many interesting approxima-
tion commands. Apart from Lagrange interpolation, there are least squares,
splines and more. To plot the data set and the interpolating polynomial

with(plots);

p1:=plot(p,x=0..5,color=red):

p0:=pointplot(xydata,symbol=diamond,color=blue):

display(p0,p1);

gives

x

431 5

7.5

−2.5

2

0.0

2.5

5.0

0

Figure 2.4: Lagrange interpolant −1
2
x5 + 145

24
x4 − 305

12
x3 + 1031

24
x2 − 265

12
x of a

data set {(0, 0), (1, 1), (2, 5), (3, 2), (4, 7), (5, 0)}.

An option to the PolynomialInterpolation command is the form of the
interpolating polynomial. The command then takes the form

PolynomialInterpolation(xydata,x,form=option);

where option is any of Newton, Lagrange, monomial or power. The signifi-
cance of this selection will be clarified in the following subsections.

Exercise 2.29
Do all the Maple computations of example 2.28 including trying all 4 options
to the PolynomialInterpolation command. What differences do you note
using the 4 options.



CHAPTER 2. POLYNOMIAL INTERPOLATION 33

Exercise 2.30
Extend example 2.14 to give the best approximation formulation of the in-
terpolation problem implied by theorem 2.27, i.e. find the function spaces
and distance measure in definition 2.13 for the best approximation problem
in the case of theorem 2.27, i.e. for the degree n interpolating polynomial.

Example 2.31
Take the nodal points x0, . . . , x7 distinct as required in theorem 2.27. Say
all nodal point values are identical, i.e. y0 = . . . = y7 = 7. Then p7(x) ≡ 7 ∈
P0 ⊂ P7. In general ∃!pn ∈ Pn, but pn may belong to P� also for some � < n.

Note that we did not require any ordering (like x0 < . . . < xn) in the-
orem 2.27. This was no mistake. Obviously, the Lagrange interpolating
polynomial is independent of the order in which we name the nodal points.
(Also for this reason, we talk about a data set and not a data vector (a set
has no ordering whereas a vector does)).

In the common case where the data set is of the form {(xi, f(xi)}ni=0 for
some function f , then we denote pn the (Lagrange) interpolating polynomial
to f in the nodal points x0, . . . , xn . Even if no function f is given a priori,
obviously it is always possible to find a function f so that f(xi) = yi for
i = 0, . . . , n. Hence, the interpolating polynomial to a function f is as
general a construction as the interpolating polynomial to a data set, and we
shall use the two constructions interchangeably as we see fit.

In Lagrange interpolation, we interpolate a function in a set of distinct
nodal points. In some cases it may be interesting to interpolate not only
function values but also values of derivatives. That this is not as easy as
theorem (2.27) is indicated by the following example:

Example 2.32
We want to interpolate a function f so that the interpolating polynomial q
satisfies q(0) = f(0) = 0, q′(1

2
) = f ′(1

2
) = 2, q(1) = f(1) = 1. We have 3

conditions so we need q ∈ P2, i.e. q(x) = a + bx + cx2. Plugging in the
conditions we get 0 = q(0) = a, 2 = q′(1

2
) = b+ c and 1 = q(1) = b+ c which

is not possible.

To get existence (and uniqueness) we restrict to Hermite interpolation
conditions: If q(k)(xi) is prescribed, then so must be q(j)(xi) for j = 0, . . . , k−
1.



CHAPTER 2. POLYNOMIAL INTERPOLATION 34

Theorem 2.33 Let x0, x1, . . . , xn be distinct real numbers (nodal points) and
let ki Hermite interpolation conditions q(j)(xi) = yji for j = 0, . . . , ki − 1 be
prescribed in xi for i = 0, . . . , n for arbitrary real values yji , j = 0, . . . , ki −
1, i = 0, . . . , n (nodal point Hermite interpolation values). Define m =
(
∑n

i=0 ki)− 1.
Then there exists a unique polynomial qm of degree at most m (∃!qm ∈ Pm)
satisfying the Hermite interpolation conditions, i.e.

q(j)m (xi) = yji , for j = 0, . . . , ki − 1, i = 0, . . . , n.

qm is called the Hermite interpolating polynomial for the data set
{(x0, y00), . . . , (x0, yk0−1

0 ), . . . , (xn, y
0
n), . . . , (xn, y

kn−1
n )}.

Proof:
The proof will not be given, but is based on the following proof idea: There
is a unique polynomial in Pm having zeros of multiplicity ki in xi, i = 0, . . . , n
since he total number of zeros counted with multiplicity is m+1. Then there
is also a unique polynomial in Pm having arbitrary values.

We shall concentrate on Lagrange interpolation below. Whenever Her-
mite interpolation is in play it will be underlined. Instead the notation
interpolation will be used exclusively for Lagrange interpolation. (Hence the
parantheses around Lagrange in theorem 2.27).

It is important to realize that the Lagrange interpolating polynomial pn
is unique. This does not stop us however from writing it down in various
forms. We shall consider here 3 ways of writing the interpolating polynomial.

2.2.1 The Newton form of the interpolating polyno-
mial

The first form of the interpolating polynomial that we shall consider here is
called the Newton form of the interpolating polynomial and comes directly
from the proof of theorem 2.27 by induction. Using the notation from theo-
rem 2.27 we start defining

ωk(x) =
k−1∏
i=0

(x− xi) ∈ Pk, k = 1, 2, . . . ω0 ≡ 1 ∈ P0.(2.12)

Theorem 2.34 There exists constants ci, i = 0, . . . , n such that the La-
grange interpolating polynomial pn for the data set {(x0, y0), . . . , (xn, yn)}



CHAPTER 2. POLYNOMIAL INTERPOLATION 35

(see theorem 2.27) can be written in the form

pn(x) =
n∑
k=0

ckωk(x), n = 0, 1, 2, . . . (Newton form)(2.13)

Proof:
Induction using the proof of theorem 2.27.

Exercise 2.35
Do the induction proof leading to (2.13).

Let us consider in more details the coefficients ci. It turns out, that the
coefficient ci, i = 0, . . . , n in the Newton form of the interpolating polyno-
mial depends on (x0, y0), . . . , (xi, yi) only and is the coefficient of xi in the
interpolating polynomial pi in this data set. This is shown as follows:

pn(x) = c0 + c1 ω1(x)︸ ︷︷ ︸
(x−x0)

+c2 ω2(x)︸ ︷︷ ︸
(x−x0)(x−x1)

+ . . .+ cn ωn(x)︸ ︷︷ ︸
(x−x0)(x−x1)...(x−xn−1)

(2.14)

Note from (2.14) that cn is the coefficient of xn in pn. By exchanging n for
i, also ci is the coefficient of xi in pi. Here ci is the (i+ 1)’st coefficient in pi
and might be different from the (i+ 1)st coefficient in pn. We shall see next
that it really is not. To get expressions for c0, . . . , cn in pn just plug in the
various nodal points in (2.14):

y0 = pn(x0) = c0(2.15)

y1 = pn(x1) = c0 + c1(x1 − x0)
...

yn = pn(xn) = c0 + c1(xn − x0) + . . .+ cn(xn − x0) . . . (xn − xn−1).

For notational reasons we rewrite (2.15) in the form of interpolation to a
function f . Recall that we do not lose any generality in doing this. For
compactness of notation we rewrite it in matrix form as follows⎡

⎢⎢⎢⎣
1
1 (x1 − x0) 0
...

...
. . .

1 (xn − x0) · · · (xn − x0) · . . . · (xn − xn−1)

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

c0
c1
...
cn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

y0 = f(x0)
y1 = f(x1)

...
yn = f(xn)

⎤
⎥⎥⎥⎦(2.16)

with a lower triangular matrix with zero entries everywhere above the diago-
nal. Such a linear system is easily solved by forward substitution where only
the upper i + 1 equations are utilized to recover ci for i = 0, . . . , n. These



CHAPTER 2. POLYNOMIAL INTERPOLATION 36

upper i+1 equations are exactly the same as we would get if considering the
equations for c0, . . . , ci in pi. The additional nodal points and nodal point
values (xi+1, yi+1), . . . , (xn, yn) play absolutely no role. Hence ci in (2.13)
depends on (x0, y0), . . . , (xi, yi) only, or on f and x0, . . . , xi, and is the same
as ci in pi. This proves our claim (in blue) above.

It turns out that the ci’s can be expressed using the following notation
clearly exposing the dependence of ci on f and x0, . . . , xi only:

Definition 2.36 Divided differences:

f [xi] = f(xi), for i = 0, 1, . . .(2.17)

f [xi, xi+1, . . . , xj ] =
f [xi+1, . . . , xj ]− f [xi, . . . , xj−1]

xj − xi ,(2.18)

for i = 0, 1, . . . , j > i.

We show in theorem 2.37 below that ci = f [x0, . . . , xi] so that (2.13) can be
rewritten

pn(x) =

n∑
k=0

f [x0, . . . , xk]ωk(x), n = 0, 1, 2, . . .(2.19)

ci is denoted the i’th divided difference.

Theorem 2.37 Let ci, i = 0, . . . , n be the divided differences given by (2.16).
Then

c0 = f [x0] = f(x0)(2.20)

c1 = f [x0, x1] =
f(x1)− f(x0)

x1 − x0
ci = f [x0, . . . , xi] =

f [x1, . . . , xi]− f [x0, . . . , xi−1]

xi − x0 for i = 1, . . . , n.

Proof:
The proof is by induction on i:
The expressions for c0 and c1 follow directly from (2.16).
Assume that the theorem holds for i − 1. For the general expression for
ci consider on top of the usual pi interpolating f in x0, . . . , xi also p̃i ∈
Pi interpolating f in x1, . . . , xi+1. Then pi = p̃i−1 +

x−xi
xi−x0 (p̃i−1 − pi−1) is

evident since rhs∈ Pi and rhs(xk) = f(xk) for k = 0, . . . , i. Now the general
expression for ci is obtained by comparing coefficients of the highest order
term in x on the left and right hand sides (ci =

c̃i−1−ci−1

xi−x0 ). Obviously c̃i−1 =



CHAPTER 2. POLYNOMIAL INTERPOLATION 37

f [x1, . . . , xi] by a simple change of notation. Plugging in, we get the required
result.

With theorem 2.37 we can now construct an arbitrary divided difference using
the following table construction where each new entry is computed from the
one in the same row and previous column and from the one in the next row
and previous column (1 back and 0 and 1 down) divided by the difference
between the “extreme” xi’s.

x0 f [x0] f [x0, x1] f [x0, x1, x2] f [x0, x1, x2, x3]
x1 f [x1] f [x1, x2] f [x1, x2, x3]
x2 f [x2] f [x2, x3]
x3 f [x3]

(2.21)

The ci’s are appearing in the top row and each new divided difference requires
adding another subdiagonal to the table as illustrated by the red entries in
the table which are needed to compute the blue entry (c3) having already
all the black entries. It is important to note, that the black entries do not
have to be recomputed just because a new nodal point (x3) is added. This
way of behavior of the coefficients in the Newton form allows a hierarchical
construction of the interpolating polynomials. Say that we have an inter-
polating polynomial pn corresponding to the data set {(x0, y0), . . . , (xn, yn)}
and then add another nodal point and nodal point value (xn+1, yn+1). Then
pn+1 = pn + cn+1ωn+1 so that only cn+1 must be found.

When pn is interpolating some function f it is natural to be interested
in the difference (f − pn)(x

∗) in a point x∗ which is not a nodal point.
We may use the procedure above to get an expression for this interpolation
error: Taking xn+1 above to be x∗ and let f be a continuous function passing
through the data set {(x0, y0), . . . , (xn, yn)}. Then letting yn+1 = f(x∗) we
have f(x∗)− pn(x∗) = cn+1ωn+1(x

∗) where as above cn+1 = f [x0, . . . , xn, x
∗]

is the coefficient of xn+1 in pn+1, the interpolating polynomial in the data set
{(x0, y0), . . . , (xn, yn), (x∗, f(x∗))}. Comparing to (2.21), we just need to add
another subdiagonal to get the interpolation error in some point.

We recapitulate 2 properties of divided differences from above and add
two new ones in the following theorem:

Theorem 2.38 Divided differences have the following properties:

1. f [x0, . . . , xn] is independent of the ordering of the nodal points {xi}ni=0.

2. If t /∈ {xi}ni=0 then the Interpolation error in t is given by
f(t)− pn(t) = f [x0, . . . , xn, t]ωn+1(t).



CHAPTER 2. POLYNOMIAL INTERPOLATION 38

3. If f ∈ Cn[a, b] and {xi}ni=0 are distinct points in [a, b] then ∃ξ ∈]a, b[:
f [x0, . . . , xn] =

1
n!
f (n)(ξ).

4. Divided differences can be defined also for Hermite interpolation: Say
that the interpolation data set {(x0, y0), . . . , (xn, yn)} is a renaming of
a set of hermite interpolation data {(z0, y00), . . . , (z0, yk0−1

0 ), . . . , (zr, y
0
r),

. . . , (zr, y
kr−1
r )} signifying that the nodal points are no longer necessarily

distinct. Then

f [x0, . . . , xi] =

⎧⎨
⎩

1
xi−x0 (f [x1, . . . , xi]− f [x0, . . . , xi−1]) if xi �= x0

1
i!
f (i)(x0) if xi = x0

Proof:
1: f [x0, . . . , xn] = cn is the coefficient of the highest order term in pn which
is independent of the ordering of the nodal points as we saw above.
2: Let p̃n+1 be interpolating polynomial for f in the nodal points x0, . . . , xn, t.
Then p̃n+1(x) = pn(x) + f [x0, . . . , xn, t]ωn+1(x). Taking x = t and using
p̃n+1(t) = f(t) we get the result.
3: By (2) we have f [x0, . . . , xn]ωn(xn) = f(xn)− pn−1(xn). In theorem 2.47
below we then show that f(xn)− pn−1(xn) =

1
n!
f (n)(ξ)ωn(xn) hence proving

our property.
4: The proof is omitted but is based on an induction over i.

Since most of what we deal with here require computer evaluation, it
is highly relevant to consider the cost of such a computer evaluation. A
detailed investigation of the cost is highly complicated since it would involve
not only the mathematical operations taking place, but also the internal data
movements taking place in the computer. To simplify matters, we define a
cost function that only takes into consideration the number of multiplications
and divisions required. This is a very coarse measure, but in practice it tends
to give a useful picture of the situation. For large computations the number
of additions and subtractions are in many cases similar to the number of
multiplications and divisions, so omitting them only amounts to omitting a
factor 2. Neglecting all the data management in the computer is in some cases
problematic, but often, if the programming is done with care, the problem is
minimal. In any case we shall stick to the following definition:

Definition 2.39 The cost function:
Given some operation M to be performed on a computer. The cost C(M) is
defined as the number of multiplications and divisions in the operation.



CHAPTER 2. POLYNOMIAL INTERPOLATION 39

Example 2.40
C(ωn) = n− 1. C(pn) = C(

∑n
k=0 ckωk) =

∑n
k=0(1 + (k − 1)) = 1

2
(n2 + n) =

On→∞(n2). (Since C(pn)/n
2 = 1

2
(1 + 1

n
)→ 1

2
as n→∞).

It turns out that if we are smart, the cost of computing pn can be reduced
significantly by using Horners algorithm for nested multiplication: Consider
(2.14) and rewrite it by putting common factors outside as follows:

pn(x)=c0+(x−x0)[c1+(x−x1)[c2+(x−x2)[c3+...+(x−xn−1)[cn]...]]].(2.22)

From this expression it is clear that we in reality can compute pn at the cost
n, i.e.

CHorner(pn) = n = On→∞(n).

On top of this of course comes the cost of computing the coefficients ci.
But they only have to be computed once and can then be reused for each
evaluation of pn with a different x. For this reason it is safe to neglect the
cost of computing the divided differences.

Now, why so much fuss about whether the cost is 1
2
(n2 + n) or n. Well

consider the following table. While, for n = 1 or n = 10 the difference is

Table 2.1: The difference in growth between O(n) and O(n2).

n 1 10 100 1000 10.000 100.000

1
2
(n2 + n) 1 55 5050 500.500 50.005.000 5.000.050.000

insignificant, instead doing 100.000 multiplications on a PC is doable whereas
doing 5 billion is impossible. (Unless you are very, very patient). Note, that
it is not implied here, that anybody should have any interest in p100.000.

The main advantage of the Newton form of the interpolating polyno-
mial lies in the fact seen above that it can be computed at linear cost, i.e.
C(pn) = On→∞(n) (when using Horners algorithm) and in the hierarchical
construction, allowing us to add points one at a time without having to redo
the previous work.

Example 2.41 Let us return to example 2.28, interpolating the data set
from there. When using the option form=Newton i.e.



CHAPTER 2. POLYNOMIAL INTERPOLATION 40

PolynomialInterpolation(xydata,x,form=Newton)

the Horner form corresponding to (2.22) is returned by Maple. In the case
of example (2.28) this gives the output

((((−1/2∗x+ 73/24)∗(x− 3)− 5/3)∗(x− 2) + 3/2)∗(x− 1) + 1)∗x.

Let us emphasize one final time, that this is the same polynomial as the one
given in figure 2.4, only it is presented in a different form.

Exercise 2.42
a) Rewrite the polynomial from example 2.41 so that it precisely mimics
(2.22), i.e. expand also the innermost term as c4 + (x− x4)c5.
b) Now read of the coefficients c0, c1, c2, c3, c4, c5.
c) Recompute the coefficients ci, i = 0, . . . , 5 using their expressions as di-
vided differences from theorem 2.37 and using definition 2.36 as basis for a
recursive procedure. Hint: You do not need the function expression for f
since all the function values that you need are stored in xydata[i,2]. All
you need to convert definition 2.36 into a working recursion is the Maple
procedure provided below. Note the +1’s in xydata caused by the fact that
xi and f(xi) are stored in xydata[i+1,1] and xydata[i+1,2] respectively.
A really cool way to print out the results is provided below the procedure:

dd:=proc(i::nonnegint,j::nonnegint)

if i=j then

xydata[i+1,2]

else

(dd(i+1,j)-dd(i,j-1))/(xydata[j+1,1]-xydata[i+1,1])

end if;

end proc:

for i from 0 to 5 do

printf("%s%d%s%a\n","c[",i,"]=",dd(0,i))

end do;

2.2.2 The Lagrange form of the interpolating polyno-
mial

The Lagrange form of the interpolating polynomial is the one preferred for
theoretical work since it is expressed using the concept af a basis.



CHAPTER 2. POLYNOMIAL INTERPOLATION 41

Definition 2.43 For k = 0, . . . , n, the k’th characteristic polynomial or the
k’th cardinal function for the distinct real nodal points x0, . . . , xn is given by

�k ∈ Pn, �k(xi) = δki, i = 0, . . . , n(2.23)

where δki is the Kronecker delta i.e takes the value 1 if k = i and 0 if k �= i.

Note that xk is normally not a maximum (neither local nor global) for
�k. See figure 2.5 and exercise 2.45).

2

x

0

-2

8

-4

6420

y

4

x

�2(x)

Figure 2.5: Example of the second cardinal function �2 for the nodal points
x0 = 0, x1 = 1, x2 = 2, x3 = 4, x4 = 5 and x5 = 8.

Theorem 2.44 For k = 0, . . . , n and for distinct real nodal points x0, . . . , xn,
the k’th cardinal function is uniquely determined and given by

�k(x) =
n∏
i=0
i �=k

x− xi
xk − xi(2.24)

=
(x− x0) · . . . · (x− xk−1)(x− xk+1) · . . . · (x− xn)

(xk − x0) · . . . · (xk − xk−1)(xk − xk+1) · . . . · (xk − xn) .

Further {�k}nk=0 is a basis for Pn and the interpolating polynomial pn (see
theorem 2.27) can be written in the Lagrange form of the interpolating poly-
nomial for the data set {(x0, y0), . . . , (xn, yn)}

pn(x) =

n∑
k=0

yk�k(x).(2.25)



CHAPTER 2. POLYNOMIAL INTERPOLATION 42

Proof:
For uniqueness just apply theorem 2.27.
For the expression for �k just check the conditions in (2.23).
For the basis claim: there are n + 1 �k’s and also dimPn = n + 1 so the
dimensions fit. Further �k ∈ Pn for k = 0, . . . , n so {�k}nk=0 span a sub-
space of Pn which must be all of Pn if only we can show that the �k’s
are linearly independent: Assume 0 ≡ ∑n

k=0 ck�k(x). This implies that
0 =

∑n
k=0 ck�k(xi) = ci, i = 0, . . . , n by the Kronecker delta property of

�k.
For the expression for pn just check the conditions (pn ∈ Pn and pn(xi) = yi
for i = 0, . . . , n).

Exercise 2.45
Using Maple, program �0, �1, �2, �3, �4 and �5, for the example of figure 2.5
and plot them.
Use this to program the Lagrange form of the interpolating polynomial with
the data values y0, y1, y2, y3, y4, y5 as input variables.
Finally compute and plot the Lagrange interpolating polynomials with the
following data values:
a) y0 = 1, y1 = 0, y2 = 0, y3 = 0, y4 = 0, y5 = 0.
b) y0 = 0, y1 = 1, y2 = 2, y3 = 4, y4 = 5, y5 = 8.
c) y0 = 1, y1 = 7, y2 = −4, y3 = 3, y4 = 0, y5 = 5.

Note the non-hierarchical approach of the Lagrange form of the inter-
polating polynomial: If another nodal point is added, all the characteristic
polynomials change, and we must start from scratch. The Lagrange form is
hierarchical in another way however. Consider the situation where we have
one set of nodal points but a number of different sets of nodal point values
(for example an experiment measuring seismic activity at various places in
a given location (like Yellowstone) but at many different times). Here the
characteristic functions remain the same since they are independent of the
nodal point values.

The cost of evaluating the Lagrange form of the interpolating polyno-
mial is 2(n − 1) multiplications and 1 division for each of the character-
istic polynomials. Then there is another multiplication by a nodal point
value yk for a total of 2n. This is done n + 1 times for a total cost of
CLagrange(pn) = 2(n2 + n) = On→∞(n2), i.e. an order more than for the

Newton form using Horners algorithm. In the case of one set of nodal points
but a number, say m, of different sets of nodal point values considered above
CLagrange(pn) = (2n − 1)(n + 1) + (n + 1)m = 2n2 + n − 1 + (n + 1)m.

Newtons form must be redone for each new set of nodal point values giving



CHAPTER 2. POLYNOMIAL INTERPOLATION 43

a total cost of nm. Hence for m > n the orders of Lagrange and Newton
become the same.

In conclusion the Lagrange form has advantages for theoretical work be-
cause of the basis concept. Further it is cost effective in a situation with
many different nodal point value sets for each nodal point set.

2.2.3 The Vandermonde form of the interpolating po-

lynomial

The Vandermonde form of the interpolating polynomial is the classical high-
school form where the polynomial is written as a linear combination of powers
of the unknown, i.e.

pn(x) =

n∑
k=0

akx
k = a0 + a1x+ . . .+ anx

n.(2.26)

To express the coefficients ai in terms of the nodal points and nodal point
values in the data set {(x0, y0), . . . , (xn, yn)} we must solve the linear equation
system

yi = pn(xi) =
n∑
k=0

akx
k
i = a0 + a1xi + . . .+ anx

n
i , i = 0, . . . , n,(2.27)

or written in matrix form⎡
⎢⎢⎢⎣

1 x0 x20 . . . xn0
1 x1 x21 . . . xn1
...

...
...

...
1 xn x2n . . . xnn

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
a0
a1
...
an

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
y0
y1
...
yn

⎤
⎥⎥⎥⎦(2.28)

The matrix in (2.28) is called a Vandermonde matrix. A matrix of this form
is often ill-conditioned for large values of n meaning that small numerical in-
accuracies may result in large inaccuracies in the coefficients ak. In practice,
the ak’s are computed by first computing the Newton form of the interpolat-
ing polynomial using Horners algorithm and then computing the ak’s from
the ck’s. This has a cost of CVandermonde(pn) = On→∞(n2) and hence is
computationally much more expensive than the Newton form itself. In con-
clusion, the vandermonde form can be recommended only for small problems
and is not used for “serious numerical work”.



CHAPTER 2. POLYNOMIAL INTERPOLATION 44

2.2.4 Error in polynomial interpolation

When it comes to passing a polynomial through the points of a data set,
polynomial interpolation by definition is flawless. Instead, when consider-
ing the interpolating polynomial as the approximation to a function f also
passing through the points of the data set, then there may be errors in the
points that are not nodal points. (We considered this situation briefly in
section 2.2.1). These errors may be significant (in the worst points) as shown
in the following classical example.

Example 2.46 Runge’s example
Take f(x) = 1

x2+1
, x ∈ [−5, 5] and consider the nodal points x0 = −5 and

xn = 5 with x1, . . . , xn−1 equidistributed between x0 and xn. f and pn are
shown in figure 2.6 for various values of n. It should be noted, that the
oscillations in pn with increasing n observed here for Lagrange interpolation
also happens with Hermite interpolation. Hermite interpolation is not a way
to avoid oscillations.

0.4

0

0.2

-2-4 4

1

0.8

2

0.6

p1n = 1 f and p1

0.4

0

0.2

-2-4 4

1

0.8

2

0.6

p2n = 2 f and p2

0.4

0

0.2

-2-4 4

1

0.8

2

0.6

p3n = 3 f and p3

Figure 2.6: Runge’s example of the function f = 1
x2+1

(blue, bellshaped
graph) and a number of its interpolating polynomials pn, n = 1, 2, 3 (red
graphs) with equidistant nodal points always including x0 = −5 and xn = 5.
The red graphs are not converging to the blue graph as n is increasing. See
continuation below.



CHAPTER 2. POLYNOMIAL INTERPOLATION 45

0-2-4

1

0.4

0.2

-0.2

2

0.8

0.6

0

-0.4

4

p4n = 4 f and p4

0-2 2-4

1

4

0.4

0.2

0.8

0

0.6

p5n = 5 f and p5

0 2-2

0.4

-4

0.8

0.6

4
0

1

0.2

p6n = 6 f and p6

0.4

0

0.2

-2-4 4

1

0.8

2

0.6

p7n = 7 f and p7

0

0.5

1

-2
0

-4

-0.5

42

-1

p8n = 8 f and p8

1

0

0.5

4

2

0
-2 2-4

1.5

p10n = 10 f and p10

-1

0

-2

1

2

-3

-2
0

-4 4

p12n = 12 f and p12

0 42

6

-2

4

-4

2

0

p14n = 14 f and p14
0-2

0

-4

-4

-12

-8

42

p16n = 16 f and p16

Figure 2.6: Runge’s example of the function f = 1
x2+1

(blue, bellshaped
graph) and a number of its interpolating polynomials pn, n = 4, 5, 6, 7, 8,
10, 12, 14, 16 (red oscillating graphs) with equidistant nodal points always
including x0 = −5 and xn = 5. The red graphs are not converging to the
blue graph as n is increasing. See the cases n = 1, 2, 3 above.



CHAPTER 2. POLYNOMIAL INTERPOLATION 46

In an attempt to understand the situation better we have the following the-
orem:

Theorem 2.47 Let f ∈ Cn+1[a, b], pn be the interpolating polynomial to f
in the distinct nodal points x0, . . . , xn where a ≤ xi ≤ b for i = 0, . . . , n and
let ωn+1 be defined by (2.12). Then

∀x ∈ [a, b] ∃ξx ∈]a, b[: f(x)− pn(x) = 1

(n+ 1)!
f (n+1)(ξx)ωn+1(x).(2.29)

Proof:
1) If x = xi for some i = 0, . . . , n then (2.29) takes the form 0 = 0 which is
true.
2) If x is distinct from xi, i = 0, . . . , n then define φ(t) = f(t) − pn(t) −
λωn+1(t) for λ = f(x)−pn(x)

ωn+1(x)
so that φ(x) = 0. But φ(xi) = 0, i = 0, . . . , n so

φ ∈ Cn+1[a, b] has at least n + 2 roots, which according to Rolle’s theorem
implies that φ′ has at least n+ 1 roots. Reapplying Rolle’s theorem n times
we see that φ(n+1) has at least 1 root. Call it ξx. Then 0 = φ(n+1)(ξx) =
f (n+1)(ξx)− λ(n+ 1)! Plug in λ and we get the required result.

Now consider the 3 terms on the right hand side in (2.29): 1
(n+1)!

is small

for large values of n which is good. f (n+1)(ξx) is somewhat out of our
control. The best we can do generally is the upper estimate f (n+1)(ξx) ≤
maxa≤x≤b |f (n+1)(x)| which of course depends heavily on the function f and
in many cases may be very big. Mn = maxa≤x≤b |ωn+1(x)| instead only de-
pends on the set of nodal points {xi}ni=0 and hence something more specific
can be said. In conclusion, theorem 2.47 then gives us the following upper
bound for the interpolation error:

∀x ∈ [a, b] |f(x)− pn(x)| ≤ 1

(n+ 1)!
max
a≤x≤b

|f (n+1)(x)| max
a≤x≤b

|ωn+1(x)|.(2.30)

Maple offers 3 ways to find the maximum of a function:

• The Maple maximize is a symbolic command finding zero’s of the
derivatives of the function, resulting in the global maximum of the
function. Unfortunately, often maximize is unable to perform the nec-
essary computations and returns unevaluated.

• The command Optimization[Maximize] is a numerical command mean-
ing that in practice it works in more cases than maximize. Unfortu-
nately Optimization[Maximize] only returns a local maximum and
hence must be wrapped in an additional layer (to be provided by the
user) which finds a starting point for Optimization[Maximize] which
is close to the global maximum.



CHAPTER 2. POLYNOMIAL INTERPOLATION 47

• The third option is the “brute force” option. Simply put a lot of points
evenly over the interval [a, b], compute the function values in each point
and find the biggest one. This method can be made more sophisticated
by iteration: Once a subinterval is found for the global maximum,
subdivide this subinterval by putting a lot of points evenly over the
subinterval and find a new smaller subinterval where the global maxi-
mum is situated. Keep on iterating until the width of the subinterval
with the global maximum is smaller than a given tolerance like 10−10

or until the difference between the function values in the endpoints of
the subinterval is below the tolerance.

Exercise 2.48
a. Check for Runge’s example the three terms on the right in (2.30) for n
from 1 to 20 and give upper bounds for the error for these values of n. (Use
maple). For the maximizations use the brute force method without iteration,
selecting the 1000 test points −5 + 5 i−1

999
, i = 1, . . . , 1000.

b. Compare your upper bounds for the error from (a) to the true errors you
can read of figure 2.6. Is your bound “tight”, i.e. are the upper bounds close
to the true errors?

Consider the following result on how small Mn can get by choosing the nodal
points optimally. We consider only one special case of [a, b] = [−1, 1]:

Theorem 2.49 If [a, b] = [−1, 1] then Mn ≥ 1
2n

and the minimal value is
attained when the set of nodal points {xi}ni=0 are the roots of the Chebyshev
polynomial Tn+1 ∈ Pn+1.

Proof:
Self study about Chebyshev polynomials.

But minimizing Mn is not nearly enough to assure convergence. We have the
following (unfortunate) result

Theorem 2.50 For any selection of nodal points {{x(n)i }ni=0}∞n=0 such that

a ≤ x
(n)
0 < x

(n)
1 < . . . < x

(n)
n ≤ b for any n = 0, 1, . . .

∃f ∈ C0([a, b]) : pn u
�−→

n→∞
f i.e. max

x∈[a,b]
|f(x)− pn(x)| �−→

n→∞0.(2.31)

Here
u
� means “does not converge uniformly to”. Uniform convergence would

mean that
∀ε > 0 ∃Nε > 0 : |f(x)− pn(x)| < ε ∀x ∈ [a, b], ∀n > Nε.



CHAPTER 2. POLYNOMIAL INTERPOLATION 48

Proof:
Omitted. The result dates back to 1914 and is not elementary.

In short, theorem 2.50 says that it is necessary that the nodal points depend
on f to get convergence as n → ∞. The following (fortunate) result says,
that it is not only necessary but it is also sufficient that the nodal points
depend on f to get convergence as n → ∞ as long as the nodal points are
selected in the right way for the given f :

Theorem 2.51 For any f ∈ C0([a, b]) there exists a selection of nodal points

{{x(n)i }ni=0}∞n=0 such that

max
x∈[a,b]

|f(x)− pn(x)| −→
n→∞ 0.(2.32)

Proof:
Omitted. The result is obtained by a combination of the Weirstrass approxi-
mation theorem and the Chebyshev alternation theorem and depends on the
notion of Bernstein polynomials. For more details see for example [5].

One reason that we omit the proof of theorem 2.51 is that the proof is not
useful for numeric work. Although the proof is constructive, actually giving
formulas for the relevant Bernstein polynomials, the convergence obtained is
so slow that it is not useful for practical purposes, only to show the conver-
gence in theory.

We finish the error section by considering how close the interpolating
polynomial is to the best approximation in the sense of definition 2.13 taking
V = C0([a, b]), Ṽ = Pn([a, b]) and d = ‖ · ‖∞ (see example 2.10). We have the
following result:

Theorem 2.52 With the notation of theorem 2.27, if f ∈ C0([a, b]) and
‖f‖∞ = maxx∈[a,b] |f(x)| we have

min
q∈Pn([a,b])

‖f − q‖∞ ≤ ‖f − pn‖∞ ≤ (1 + Λn) min
q∈Pn([a,b])

‖f − q‖∞(2.33)

where the Lebesgue constant Λn= maxx∈[a,b]
∑n

k=0 |�k(x)|. (�k is the k’th char-
acteristic polynomial given by definition 2.43 and theorem 2.44). Also

Λn >
2

π
ln(n+ 1)− C for n = 0, 1, . . . and some C > 0(2.34)

and hence

Λn −→
n→∞ ∞.



CHAPTER 2. POLYNOMIAL INTERPOLATION 49

Hence there is no guarantee that pn gets close to the the best approximation
in ‖ · ‖∞ as n increases.

Λn � 2n+1

e · n · ln(n) for equidistributed nodes (e = 2.7183 . . .)(2.35)

and hence

Λn −→
n→∞ ∞ exponentially.

Hence, equidistributed nodes are among the worst we may choose. This par-
tially explains the Runge example.

Proof:
Omitted. For more details see for example [4].

The Lebesgue constant is closely connected to the notion of stability.
Stability is used in many different contexts, but the most common usage is
the following: Given some proces P with an input i and an output P (i).
Given 2 possible inputs i1 and i2 that are close in some sense, P is said to
be stable if also P (i1) and P (i2) are close.

In the context of interpolation consider 2 functions f ∈ C0([a, b]) and g ∈
C0([a, b]) with interpolating polynomials pn ∈ Pn([a, b]) and qn ∈ Pn([a, b])
respectively in the common nodal points x0, . . . , xn all situated in the interval
[a, b]. Then for ‖f‖∞ = maxx∈[a,b] |f(x)|

‖pn − qn‖∞ = max
x∈[a,b]

|
n∑
k=0

(f(xk)− g(xk))�k(x)|(2.36)

≤ max
k=0,...,n

|f(xk)− g(xk)| · Λn,
where the middle term is the Lagrange form of the interpolating polynomials.
Hence the Lebesgue constant Λn is a condition number (stability measure)
for interpolation in the sense that small differences in all nodal point values of
the functions leads to small differences in the L∞ norm for the interpolating
polynomials if and only if the Lebesgue constant is not too big.

We conclude that Minimizing Λn gives the best stability and also an
error closest to the best possible in the L∞ norm. But because of (2.34),
minimizing Λn will not by itself give a convergence result.

2.3 Piecewise polynomial interpolation

We shall discuss two different types of piecewise polynomial interpolation,
both originating from the spaces Sk,�Δ ([a, b]) introduced in example 2.8 on
page 21.



CHAPTER 2. POLYNOMIAL INTERPOLATION 50

2.3.1 Piecewise Lagrange interpolation and Sk,1Δ ([a, b])

Recall the space of piecewise Lagrange interpolants of degree k, Sk,1Δ ([a, b])
introduced in example 2.8 as the space of globally continuous functions
(C0([a, b])) that locally are polynomials of degree at most k i.e. belong to
Pk(Δi) for i = 1, . . . , n where the Δi are the subintervals in a subdivi-
sion Δ = {Δi}ni=1 of [a, b], i.e. ∃{xi}ni=0 : a = x0 < x1 < . . . < xn = b,
Δi = (xi−1, xi), i = 1, . . . , n.

Let k ≥ 1 and select k + 1 distinct interpolation nodes {xij}kj=0 in each
subinterval Δi, i = 1, . . . , n such that xi0 = xi−1 and xik = xi, i.e. the
end points of the subintervals are always nodal points. Denote also hi =
|Δi| = xi − xi−1 for i = 1, . . . , n and h = maxi=1,...,n hi. See figure 2.7 for the
notation.

x0 x1 x2 . . . xn−1 xnΔ1 Δ2 Δn

h1 h2 hn

�
x10

�
x1k = x20

�
x2k = x30

�
x(n−1)k = xn0

�
xnk. . . . . . . . .

Figure 2.7: Notation for piecewise Lagrange interpolation.

Let {{yij}kj=0}ni=1 be nodal point values, such the yij is assigned in the nodal
point xij for i = 1, . . . , n and j = 0, . . . , k. By theorem 2.27 there exists
a unique interpolating polynomial pΔik ∈ Pk(Δi) in each subinterval Δi,
for i = 1, . . . , n. To enforce the global continuity we only need to require
yik = y(i+1)0 for i = 1, . . . , n−1, which is automatically satisfied if we consider
piecewise Lagrange interpolation of a continuous function f , i.e. yij = f(xij)
for i = 1, . . . , n and j = 0, . . . , k. The resulting unique piecewise Lagrange
interpolant of degree k is denoted sk,1Δ . We sum up this result in the following
theorem:

Theorem 2.53 Let Δ = {Δi}ni=1 be a subdivision of [a, b] such that ∃{xi}ni=0 :
a = x0 < x1 < . . . < xn = b, Δi = (xi−1, xi), i = 1, . . . , n.
Let k ≥ 1 and let {xij}kj=0 be distinct interpolation nodes in Δi, i = 1, . . . , n
such that xi0 = xi−1 and xik = xi.
Let f ∈ C0([a, b]) and let yij = f(xij) for j = 0, . . . , k and i = 1, . . . , n.

Then there exists a unique piecewise Lagrange interpolant of degree k, sk,1Δ ∈
Sk,1Δ ([a, b]) interpolating f in the data set {{(xij, yij}kj=0}ni=1.

The following result on the interpolation error for piecewise Lagrange in-
terpolants have big advantages over the results for Lagrange and Hermite
interpolants:



CHAPTER 2. POLYNOMIAL INTERPOLATION 51

Theorem 2.54 With sk,1Δ given by theorem 2.53 and f ∈ Ck+1([a, b]) we have

‖f − sk,1Δ ‖L∞(a,b) ≤ 1

(k + 1)!
‖f (k+1)‖L∞(a,b)h

k+1 −→
h→0

0,(2.37)

where ‖f‖L∞(a,b) is an alternative (more explicit) way to denote ‖f‖∞, i.e.
maxx∈(a,b) |f(x)|.
Proof:
From (2.29) we have

f(x)− sk,1Δ (x) =
1

(k + 1)!
f (k+1)(ξx) ωk+1(x)︸ ︷︷ ︸

=
∏k

j=0(x−xij)

, for x ∈ Δi

⇓

‖f(x)− sk,1Δ (x)‖L∞(Δi) ≤
1

(k + 1)!
‖f (k+1)‖L∞(Δi)max

x∈Δi

k∏
j=0

|x− xij |︸ ︷︷ ︸
≤hi︸ ︷︷ ︸

≤hk+1
i ≤hk+1

from which the result is evident.

Similar results can be obtained for other norms like the L2 norm also. So
if you insist on a predetermined distribution of the nodal points (like in
a uniform subdivision) then piecewise Lagrange interpolation will converge
as the maximal distance between nodal points converge to zero, whereas
Lagrange and Hermite interpolation is not guaranteed to do so.

Exercise 2.55
Use Maples Spline command in the CurveFitting package to redo Runges
example using piecewise linear Lagrange interpolants instead of the interpo-
lating polynomials of figure 2.6, for 1, 2, 3, . . . , 20 subintervals. Note that the
Spline command gives a piecewise Lagrange interpolant only in the linear
case. In general you need to use the PolynomialInterpolation command in
the CurveFitting package multiple times, which is more complicated. Com-
pare the results to the results with the lagrange interpolants: Is it better or
worse? Can you see the “effect” of theorem 2.54?

2.3.2 Spline interpolation and Sk,kΔ ([a, b])

Let us increase the complexity by turning to the space of splines of degree
k, Sk,kΔ ([a, b]) introduced in example 2.8 as the space of k − 1 times globally



CHAPTER 2. POLYNOMIAL INTERPOLATION 52

continuous differentiable functions (Ck−1([a, b])) that locally are polynomials
of degree at most k i.e. belong to Pk(Δi) for i = 1, . . . , n where the Δi are
the subintervals in a subdivision Δ = {Δi}ni=1 of [a, b], i.e. ∃{xi}ni=0 : a =
x0 < x1 < . . . < xn = b, Δi = (xi−1, xi), i = 1, . . . , n. We shall denote by
skΔ any function in Sk,kΔ ([a, b]) interpolating a data set {(x0, y0), . . . , (xn, yn)}
for instance based on the values of a function f ∈ C0([a, b]) in the endpoints
of the subintervals, i.e. skΔ(xi) = yi = f(xi) for i = 0, . . . , n. Here we only
consider the two most commonly used examples, namely the linear and the
cubic spline.

Example 2.56 The linear spline s1Δ
Note that the space of linear splines and the space of piecewise Lagrange
polynomials of degree 1 are both S1,1

Δ ([a, b]). Also the unique linear spline s1Δ
is identical to s1,1Δ (see theorem 2.53), i.e. the globally continuous function
(C0([a, b])) that locally is a polynomial of degree at most 1 which interpolates
in the endpoints of each subinterval of Δ. For an example see figure 2.8.

a = x0 x1 x2 x3 x4 = b

•
•

•
• •

Figure 2.8: Example of linear spline interpolation.

Example 2.57 The cubic splines s3Δ
Note the plural. s3Δ is not unique as we shall see now. s3Δ is a function which
is globally twice continuously differentiable (s3Δ ∈ C2([a, b])) and locally a
polynomial of degree at most 3 (s3Δi

:= s3Δ|Δi
∈ P3(Δi) for i = 1, . . . , n).

Finally it takes on specific values in all nodal points. In order to understand
existence and uniqueness properties we shall consider separately the condi-
tions for global smoothness (C2([a, b])) and local form P3(Δi) for i = 1, . . . , n
starting with the local form: In order for a cubic polynomial to exist and
be uniquely determined, by theorem 2.27 and 2.33 it suffices with 4 con-
ditions of either Lagrange or Hermite type in the interval. Hence we need
a total of 4 Lagrange or Hermite conditions in each of the n intervals, i.e.
4n conditions to determine uniquely the local form. Turning to the global
smoothness, since P3 ⊂ C∞ we only need to worry about the smoothness in
the internal endpoints of the subintervals i.e. in x1, . . . , xn−1 (see figure 2.7).
To have smoothness C2 in an internal end point xi (i = 1, . . . , n−1) we need
the function value and the first and second derivatives in xi to be the same



CHAPTER 2. POLYNOMIAL INTERPOLATION 53

from both left (in Δi) and from right (in Δi+1), i.e. s3Δi
(xi) = s3Δi+1

(xi),

(s3Δi
)′(xi) = (s3Δi+1

)′(xi) and (s3Δi
)′′(xi) = (s3Δi+1

)′′(xi). Finally we need s3Δ
to satisfy the interpolation conditions s3Δ(xi) = yi = f(xi) for i = 0, . . . , n.
Some of these conditions are overlapping. To get a clear picture consider
figure 2.9. Here a • indicates a function value given for s3Δ, valid for both the
left and right subinterval in the case of internal nodes. A ◦ and a© indicates
a first and second derivative respectively that must be the same both in the
left and right subinterval. Instead no value is given to the derivatives. Now

a = x0 x1 x2 x3 x4 = b

•
•

•
• •·

�

�
� ·

©

©
©

Figure 2.9: Example of cubic spline interpolation conditions.

let us count the conditions: There is one “value” condition in each of the two
end points x0 and xn. Further there are 2 value conditions in each of the n−1
internal nodes x1, . . . , xn−1 (one in the left subinterval and one in the right).
Finally there are 2 “derivative” conditions in each of the n−1 internal nodes
(one on the first derivative and one on the second). All together we have 4
conditions in each of the n − 1 internal nodal points plus the 2 end point
value conditions for a total of 4n− 2 conditions. Here there are 2 important
things to note:
1. We have 4n − 2 conditions but we need 4n conditions to determine s3Δ
uniquely. So we miss two conditions in order to make s3Δ unique. The fol-
lowing two special cases are the most common:

◦ The natural cubic spline s3,nΔ is obtained by further imposing (s3,nΔ )′′(x0)
= 0 and (s3,nΔ )′′(xn) = 0 on top of the usual cubic spline conditions.
Look at it in the following way: “How do we do the least damage in the
interpolation”. Well, the answer is, that if you do not know anything,
forcing the second derivative will be less obvious than forcing the first
derivative or even the value into some (wrong) value. We could of course
force an even higher derivative but since s3,nΔ is a cubic polynomial
locally, the third derivative is constant and can not be forced with two
conditions in one interval. Hence we loose the special case n = 1. What
value should the second derivative be forced to attain. Well, knowing
nothing we choose the value 0 for no particular reason. But at least 0
is independent of scaling.



CHAPTER 2. POLYNOMIAL INTERPOLATION 54

◦ The periodic cubic spline s3,pΔ is obtained by further imposing (s3,pΔ )′(x0)
= (s3,pΔ )′(xn) and (s3,pΔ )′′(x0) = (s3,pΔ )′′(xn) on top of the usual cu-
bic spline conditions. The periodic spline is used only when further
s3,pΔ (x0) = y0 = yn = s3,pΔ (xn) is satisfied by the data set. The periodic
spline is deviced for the situation where the underlying function f be-
ing interpolated is known (or suspected) to be periodic with the period
b− a (or some integer fraction of this like b−a

2
).

2. It is important to realize that the question of existence is not elementary.
To guarantee existence, we need 4 conditions of Lagrange or Hermite type in
each of the n subintervals. Instead we have (if we consider only the natural
or periodic cubic splines) a total of 4n conditions (which is good) but many
of them are cross interval conditions involving 2 intervals. For the natural
spline clearly the conditions in x0 and xn are not of Hermite type, since the
conditions on the first derivatives are missing. Whether the conditions in
the internal nodes are of Hermite type depends on how we can interpret the
cross interval conditions. We shall return to this issue below.

Exercise 2.58
We know that s1Δ has 0 free parameters and s3Δ has 2. Show that skΔ has
k − 1 free parameters for any k ≥ 1.

Exercise 2.59
Omitting the requirement that the spline has to attain the nodal point values
in the nodal points, but maintaining the smoothness requirement (Ck−1) and
in particular that the values in the internal nodal points are the same from
left and right, show that dimSk,kΔ = n+ k.

The natural spline sk,nΔ is defined for k odd (since by exercise 2.58 we then
have an even number of free parameters) by the additional k − 1 conditions

(sk,nΔ )(k−1)(a) = (sk,nΔ )(k−1)(b) = 0, . . . , (sk,nΔ )(
k+1
2

)(a) = (sk,nΔ )(
k+1
2

)(b) = 0.

The periodic spline sk,pΔ is defined for any k by the additional k − 1 con-
ditions

(sk,pΔ )′(a) = (sk,pΔ )′(b), . . . , (sk,pΔ )(k−1)(a) = (sk,pΔ )(k−1)(b)

and is used only when sk,pΔ (a) = y0 = yn = sk,pΔ (b).

Example 2.57 continued. The natural cubic spline s3,nΔ



CHAPTER 2. POLYNOMIAL INTERPOLATION 55

Theorem 2.60 If f ∈ C2([a, b]) then∫ b

a

(s3,nΔ )′′(x)2dx ≤
∫ b

a

f ′′(x)2dx(2.38)

i.e. The natural cubic spline has at most the same curvature as the interpo-
lated function f .

Proof:
Let g = f−s3,nΔ and note that g(xi) = 0 for i = 0, . . . , n since s3,nΔ interpolates
f in all the nodal points. Then∫ b

a

f ′′(x)2dx =

∫ b

a

(s3,nΔ )′′(x)2dx+
∫ b

a

g′′(x)2dx︸ ︷︷ ︸
≥0

+2

∫ b

a

(s3,nΔ )′′(x)g′′(x)dx︸ ︷︷ ︸
=A

where

A =

n∑
i=1

∫ xi

xi−1

(s3,nΔ )′′(x)g′′(x)dx

=
n∑
i=1

(
[(s3,nΔ )′′(x)g′(x)]xixi−1︸ ︷︷ ︸

= 0 (telescoping sum with
first and last term = 0
(natural spline property)
and s′′g′ continuous)

−
∫ xi

xi−1

(s3,nΔ )′′′(x)︸ ︷︷ ︸
=ci (const.)

g′(x)dx

︸ ︷︷ ︸
=ci[g(x)]

xi
xi−1

=0

)

proving the theorem.

Now we return to the important question of existence and uniqueness.
We shall only prove the following special case:

Theorem 2.61 The natural cubic spline exists and is unique.

Proof:
To simplify notation we shall in the proof use the notation s for s3,nΔ and si
for s3,nΔ |Δi

where i is always any integer between 1 and n when referring to a
subinterval and between 0 and n when referring to a nodal point.
The proof is constructive and starts from s′′i ∈ P1(Δi), s

′′
i (xi−1) = zi−1 and

s′′i (xi) = zi.
Here the zi are just place holders (unknowns apart from z0 = zn = 0 coming
from the natural spline conditions) that allows us an appropriate way of in-
suring s′′ ∈ C0 and the explicit expression s′′i (x) =

zi
hi
(x−xi−1)+

zi−1

hi
(xi−x).

Now integrate the expression for si twice to get si(x) = zi
6hi

(x − xi−1)
3 +

zi−1

6hi
(xi − x)3 +Ci(x− xi−1) +Di(xi − x) where the last two terms makes up



CHAPTER 2. POLYNOMIAL INTERPOLATION 56

the “arbitrary linear function” coming from the two times integration.
Enforcing the interpolation conditions si(xi−1) = yi−1 and si(xi) = yi, at the
same time insuring s ∈ C0, Ci and Di can be eliminated using the known
nodal point values yi−1 and yi. We have

yi−1 =
zi−1h

2
i

6
+Dihi, yi =

zih
2
i

6
+ Cihi ⇔ Di =

yi−1

hi
− zi−1hi

6
, Ci =

yi
hi
− zihi

6
. Now we only miss using the condition s′ ∈ C0. For this we differ-

entiate above and get
s′i(x) =

zi
2hi

(x− xi−1)
2 − zi−1

2hi
(xi − x)2 + Ci −Di ⇒ s′i(xi−1) = −zi−1hi

2
+Ci −

Di, s
′
i(xi) =

zihi
2

+ Ci −Di.
Because of the smoothness of si, continuity of s′ is equivalent to the inter-
nal nodal point conditions s′i(xi) = s′i+1(xi), for i = 1, . . . , n − 1. s′i+1(xi)
we get from the expressions above by considering s′i(xi−1) and changing i to

i+ 1. Hence s′i(xi) =
zihi
2

+ Ci −Di = s′i+1(xi) = −zihi+1

2
+ Ci+1 −Di+1, for

i = 1, . . . , n − 1. Inserting the expressions for Ci and Di from above, mul-
tiplicating by 6 and collecting coefficients of the zi’s we get hizi−1 + 2(hi +
hi+1)zi + hi+1zi+1 = 6(yi−1

hi
− yi

hi
− yi

hi+1
+ yi+1

hi+1
) =: 6vi, for i = 1, . . . , n− 1 or

in matrix form
⎡
⎢⎢⎢⎢⎢⎣

2(h1 + h2) h2 0
h2 2(h2 + h3) h3

h3 2(h3 + h4) h4
. . .

. . .
. . .

0 hn−1 2(hn−1 + hn)

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

z1
z2
z3
...

zn−1

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

6v1 − h1z0
6v2
6v3
...

6vn−1 − hnzn

⎤
⎥⎥⎥⎥⎥⎦

Note that z0 = zn = 0. They have only been included on the left for com-
pleteness.
The coefficient matrix above is symmetric, tridiagonal and diagonally dom-
inant (the absolute value of any diagonal element is bigger than the sum of
the absolute values of the off diagonal elements in the same row). The diag-
onal dominance implies (see for example [5] §4.3) that there exist unique zi’s
that can be found for example with Gaussian elimination without pivoting.
The reference also provide an algorithm for the solution for the special case
of tridiagonal matrices that we are facing here.
This proves the result.

Example 2.62 The tension spline sτΔ
As a final example we consider the so called tension spline (which is by the
way not a spline) defined as follows:

1. sτΔ ∈ C2([a, b]),
2. sτΔ(xi) = yi for i = 0, . . . , n,



CHAPTER 2. POLYNOMIAL INTERPOLATION 57

3. (sτΔ)
(4) − τ 2(sτΔ)′′ ≡ 0 on Δi for i = 1, . . . , n.

The first two conditions are consistent with a cubic spline while the third
condition is different from the condition s ∈ P3(Δi) of a cubic spline. This is
only apparent however, for the special case of the no tension tension spline
τ = 0 where the third condition turns into (sτ=0

Δi
)(4) ≡ 0⇔ sτ=0

Δ |Δi
∈ P3(Δi)

for i = 1, . . . , n. This is the missing condition of the cubic spline so that sτ=0
Δ

is a cubic spline. Turning to the very high tension tension spline τ � ∞ the
third condition becomes (approximately) (sτ
∞

Δ )′′ ≡ 0 ⇔ sτ
∞
Δ |Δi

∈ P1(Δi)
for i = 1, . . . , n. Hence sτ
∞

Δ is almost a linear spline (apart from the stricter
requirements of global smoothness.
Tension splines is a simplified example of Computer Assisted Design (CAD),
where the designer of (in the following case) a car has some predefined design
specifications like the length of the passenger cabin, the size of the trunk and
the engine room defined by a data set. By varying the tension of a tension
spline interpolating the data set he can vary the design from a “volvo like”
car to a “General Motors like” one as shown in figure 2.10. In figure 2.10
is shown a linear and a natural cubic spline fitting a given data set. To see
actual tension splines (that are indistinguishable from the ones shown here,
see [5] §6.4 where the tension splines with tensions τ = 10 and τ = 0.1 are
shown.

Exercise 2.63
Interpolation is useful also in 2 or more dimensions. Go to the library, find
some literature about higher dimensional interpolation and write an essay
about the topic.



CHAPTER 2. POLYNOMIAL INTERPOLATION 58

y

50

40

30

x

0

20

10

0
16012040 80

a)

y

50

40

30

20

10

x

0
160120400 80

b)

Figure 2.10: Example of car design using the tension spline. “From Volvo
to General Motors”: (a) Linear spline simulating a tension spline with high
tension τ � ∞. (Actually τ = 10 is sufficiently high to be indistinguishable
in the resolution shown). (b) Natural cubic spline simulating a tension spline
with low tension τ = 0. (τ = 0.1 is sufficiently small to be indistinguishable
in the resolution shown). The data set is shown with blue dots.



Chapter 3

Numerical methods for DEP’s

3.1 Numerical methods of type FDM, CM

and FEM for differential equation prob-

lems

There are basically 3 types of methods for the numerical solution of DEP’s:
Finite Difference Methods (FDM’s), Collocation Methods (CM’s) and Finite
Element Methods (FEM’s). For an elementary introduction see for exam-
ple [4] ch. 10-13. For many standard linear DEP’s, the three methods are
mathematically equivalent, in the sense that given a numerical method of one
type, there exist methods of the other two types leading to exactly the same
equation systems and hence to the same solutions (up to rounding errors).
(See for example [6], [7] and [8]). As soon as the problems become a little
bit non standard (read: real life like) the methods start showing their differ-
ences however, and hence it is important to be familiar with the strengths
and weaknesses of them all.

To avoid drowning in notation, let us consider the main ideas of the 3
methods for the following simple one dimensional BVP (assumed to be well-
posed):

Find u ∈ C2([0, 1]) : −u′′(x) = f(x) ∀x ∈]0, 1[, u(0) = u′(1) = 0,(3.1)

for some appropriate, known data function f .
To solve (3.1) we basically have to look through the infinite dimensional

space C2([0, 1]) until we find a function that satisfies the differential equation
and the boundary conditions. Since software based on the standard pro-
gramming languages like C, C++, Fortran, Pascal, Java, Lisp etc. is unable
to make complete searches in infinite dimensional environments, the job of

59



CHAPTER 3. NUMERICAL METHODS FOR DEP’S 60

any numerical method for DEP’s is to replace the infinite seach for a solution
with a finite one, which can be completed in finite time by software written in
any standard language. This replacement process is called a Discretization,
and the various types of numerical methods for DEP’s are distinguished by
the different general approaches they take to the discretization process.

Definition 3.1 A numerical method for DEP’s is a discretization of the
DEP, i.e. a process which in a finite number of operations on a computer
leads to an approximation to the solution to the DEP.
There are 3 main types of discretizations of DEP’s in practical use today,
namely finite difference methods (FDM’s), collocation methods (CM’s) and
finite element methods (FEM’s).

Let us consider the approaches for the 3 types of numerical methods for
solving DEP’s examplified by the BVP (3.1).

3.1.1 Finite Difference Methods — FDM’s

The main idea of all FDM’s is to discretize by considering the differential
equation only in a finite number of points instead of in the whole interval
(0, 1), i.e.

• consider the equations in (3.1) only for x in a finite set of Nodal Points
0 = x1 < . . . < xn = 1, i.e.

−u′′(xi) = f(xi), i = 1, . . . , n, u(x1) = u′(xn) = 0.

(The Nodal Point Instances of (3.1)).

Note that 0 and 1 are nodal points to ensure that the boundary conditions
are nodal point instances of (3.1). Note also that while we in chapter 2 used
n+1 nodal points for approximation, here we use only n nodal points in the
discretized problem. The most common example is to consider a uniform
subdivision taking xi = (i − 1)h for h = 1/(n − 1), so that the nodal point
instances become

−u′′( i− 1

n− 1
) = f(

i− 1

n− 1
), i = 1, . . . , n, u(0) = u′(1) = 0.

Since this does not really simplify the notation at this point, we shall stick
to the xi’s for now. To simplify notation, instead we shall use the short hand
notation g(xi) = gi for any nodal point xi and any function g. Hence, we can
rewrite the nodal point instances as

−u′′i = fi, i = 1, . . . , n, u1 = u′n = 0.



CHAPTER 3. NUMERICAL METHODS FOR DEP’S 61

Instead of trying to recover the solution u to (3.1) in all points x in the
domain [0, 1] we shall be satisfied finding u in the nodalpoints x1, . . . , xn, i.e.
u1, . . . , un. Hence we

• consider ui := u(xi) for i = 1, . . . , n the unknowns in the nodal point
instances of (3.1).

The mathematical definition of u′(xi) and u′′(xi) contain limit processes in-
volving points in a neighborhood of xi:

u′(xi) = lim
h→0

u(xi + h)− u(xi)
h

,

u′′(xi) = lim
h→0

u(xi − h)− 2u(xi) + u(xi + h)

h2
.

Hence u′(xi) and u′′(xi) depend on u in a neighborhood of xi, which is no
good since we allow only values u(xi) as unknowns. Instead we need to re-
place the derivatives with some approximations that only depend on the un-
knowns u1, . . . , un. The most immediate choice might be simply “stopping”
the limiting processes before h reaches zero and approximate as follows

u′(xi) � u(xi+1)− u(xi)
xi+1 − xi ,

u′′(xi) � u(xi−1)− 2u(xi) + u(xi+1)

((xi+1 − xi−1)/2)2
.

As we shall see later on, many other replacements are possible however. Any
approximation to a derivative, depending only on the nodal point values, are
denoted a difference operator and written as δ with a super script denoting
the order of the derivative being approximated (1 is typically omitted though)
and a subscript distinguishing the particular approximation. For example

δ−ui+1 =
u(xi+1)− u(xi)

xi+1 − xi ,

δ20ui =
u(xi−1)− 2u(xi) + u(xi+1)

((xi+1 − xi−1)/2)2
.

Then the next step in the finite difference method is to

• replace the derivatives in all the nodal point instances of (3.1) generated
above with difference operators, which for the examples of difference
operators given above results in

−δ20ui � fi, i = 1, . . . , n, u1 = 0, δ−un � 0.



CHAPTER 3. NUMERICAL METHODS FOR DEP’S 62

Note the “approximately equal signs” � because the difference operators are
not equal to but only approximating the derivatives. In order to get back
to equalities that we can hand over to the computer to solve, at this point
we have to give up even the recovery of the solution values in the nodal
points. Instead we shall be satisfied recovering approximations Ũ1, . . . , Ũn to
u1, . . . , un. Hence

• replace the � by = and define Ũi for i = 1, . . . , n as the solutions to
the resulting equations

−δ20Ũi = fi, i = 1, . . . , n, Ũ1 = δ−Ũn = 0.

A problem here is that the definition of −δ20Ũ0 involves the undefined Ũ0

(which should be some approximation to u in the undefined nodal point x0).
Likewise −δ20Ũn involves the undefined Ũn+1 and implicitly the undefined
nodal point xn+1. Instead all the other −δ20Ũi, for i = 2, . . . , n − 1 only
involve known Ũi’s. Undefined variables and points like these are popularly
denoted ghost values and ghost points. The finite difference method solution
to this problem is simply to

• discard all equations that involve ghost variables, resulting in

Find Ũ ∈ Rn : −δ20Ũi = fi, i = 2, . . . , n− 1, Ũ1 = 0, δ−Ũn = 0.(3.2)

The fact that we have n equations for the n unknowns Ũi, i = 1, . . . , n is
good news. Still some essential questions are left unanswered: Does (3.2)
have a unique solution? and if so are Ũi a good approximation to ui for all
i = 1, . . . , n? We shall return to these questions in detail below.

Omitting most details, the general idea in the finite difference methods
can now be summed up as follows

Definition 3.2 A finite difference method for a DEP is constructed as fol-
lows

• Consider the DEP only in a finite set of nodal points, containing in par-
ticular all points where there are defined additional conditions (bound-
ary or initial conditions).

• Replace all derivatives with finite difference operators (at the same time
replacing many = by �.
• Replace the � by = again, at the “cost” of at same time also replacing
the exact solution values in the nodal points ui by approximations Ũi.



CHAPTER 3. NUMERICAL METHODS FOR DEP’S 63

• Discard all equations containing ghost values or ghost nodes.

Defining the i’th Step Length hi = xi+1−xi and letting f(xi) = fi for i =
1, . . . , n, (3.2) can, after multiplication by ((hi + hi−1)/2)

2 for i = 2, . . . , n−1,
be written as the following n dimensional, linear equation system:

Find Ũ = (Ũ1, . . . , Ũn)
T ∈ Rn :(3.3)⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
−1 2 −1

−1 2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣ Ũ1

...

Ũn

⎤
⎥⎦=
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

((h2 + h1)/2)
2 f2

((h3 + h2)/2)
2 f3

...

((hn−1 + hn−2)/2)
2 fn−1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Here the first equation comes from the left boundary condition Ũ1 = 0 while
the last one comes from right boundary condition δ−Un = 0⇔ Ũn− Ũn−1=0.
The reason for the multiplication by ((hi + hi−1)/2)

2 is that it makes all
elements in the matrix “of the order of one”. Such a Well scaled matrix is
“good” for numerical solution methods like Gaussian elimination

Problem (3.3) (or equivalently (3.2)) defines a particular FDM. There
are many possible FDM’s for a given DEP. Various FDM’s are distinguished
mainly by which difference operators are used for the various derivatives,
but also direct changes in the differential equations may be involved in more
complicated cases. To actually use a given FDM, the step lengths {hi}n−1

i=1

must be selected. The selection of step lengths, as well as the selection of
the difference operators distinguishing the particular FDM is done in order
to obtain an acceptable Error Vector e, with components ei = |ui − Ũi|,
i = 1, . . . , n and error |e| = ‖e‖ for some vector norm ‖ · ‖ like ‖e‖1 =∑n

i=1 ei or ‖e‖2 =
√∑n

i=1 e
2
i . There will be much more about this issue

below. Here only a few introductory remarks: Generally the size of the
error measured in any reasonable vector norm will decrease with increasing
precision of the difference operators and with decreasing step lengths. Often
(generally whenever computationally feasible) a Uniform Step length h =
hi =

1
n−1

, i = 1, . . . , n − 1 is used to simplify programming and to optimize
the observed order of convergence of the method. {xi}ni=1 = {(i−1)h}ni=1 then
determines a Uniform subdivision of or Uniform Grid on the Computational



CHAPTER 3. NUMERICAL METHODS FOR DEP’S 64

Domain (0, 1), simplifying (3.3) to

Find Ũ = (Ũ1, . . . , Ũn)
T ∈ Rn :(3.4) ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
−1 2 −1

−1 2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣ Ũ1

...

Ũn

⎤
⎥⎦=
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
h2f2
h2f3
...

h2fn−1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Here is a piece of Maple code for programming and plotting (3.4) in the
special case f(x) = x:

> restart;

> with(LinearAlgebra): with(plots):

> f:=x->x;

> exsol:=x->x/2-x^3/6;

> explot:=plot(exsol(x),x=0..1,color=blue);

> FDM:=proc(n,f) local x,i,h,A,B,U,points;

x:=Vector(n);

h:=1/(n-1);

for i to n do x[i]:=(i-1)*h end do;

A:=Matrix(n);

for i from 2 to n-1 do A[i,i]:=2; A[i,i-1]:=-1; A[i,i+1]:=-1 end do;

A[1,1]:=1; A[n,n]:=1; A[n,n-1]:=-1;

# print(A);

B:=Vector(n);

for i from 2 to n-1 do B[i]:=h^2*f(x[i]) end do;

# print(B);

U:=Vector(n);

U:=LinearSolve(A,B);

points:=zip((a,b)->[a,b],x,U);

pointplot(points,symbol=point);

end proc;

> display(FDM(500,f),FDM(100,f),FDM(10,f),FDM(4,f),explot);

Exercise 3.3
Program (3.4) for general n and for uniform step lengths and with f(x) = x.
The output from the program should be a graph of the numerical solution,



CHAPTER 3. NUMERICAL METHODS FOR DEP’S 65

i.e. the points {(xi, Ũi)}ni=1 connected with line pieces (a linear spline). The
graph should also show the analytic solution u(x) = x

2
− x3

6
.

Run your program for n = 2, 4, 8, 16, . . . until you see no further progress.
(This is referred to as “convergence in the eye ball norm”).
At what uniform step length h did you decide that you had convergence in
the eye ball norm?
For all h values you have computed up to convergence in the eye ball norm,
compute the error in the discrete �∞ and �1 norms ‖e‖�∞ = maxi=1,...,n |u(xi)−
Ũi| and ‖e‖�1 =

∑n
i=1 |u(xi) − Ũi| respectively. Comment on what you see,

for example on which of the two norms are “closer” to the eye ball norm?

For more general problems in more than one dimension, the finite dif-
ference approach is entirely equivalent. Derivatives are replaced by finite
differences, with approximate solutions defined over a grid of nodal points.
To get optimal orders of the difference operators the grid should be a tensor
product of uniform subdivisions. For example in 2 space dimensions, the set
of nodal points should be of the form (ih, jk), i = 0, . . . , n, j = 0, . . . , m,
corresponding to uniform step lengths h and k in the 1st and 2nd coordinate
directions respectively . The issues of error are also similar in one and
more dimensions, only harder in more dimensions.

A general advantage of the finite difference approach to discretization
of DEP’s is that it is easy to understand since it involves no more than the
replacement of derivatives with difference operators. This advantage can also
be a pitfall, since it turns out that there is more to the notion of error than
just the precision of the difference operators and the size of the step lengths.
Once the difference operators have been selected, it is also easy to implement
an FDM either by programming the discretized problem (like (3.2)) or by
directly programming the equation system (like (3.3)).

A general disadvantage of the finite difference approach is the difficulties
arising when the computations take place over non rectangular domains in
two or more dimensions or if non uniform step lengths are required. If for
example a lot is happening to the solution to a given problem at a particular
region of time and space, then it might be beneficial to use small step lengths
there and bigger step lengths in other regions where little is happening. Un-
fortunately, this often leads to problems with the precision of the difference
operators. If the step lengths have to be as small as required by the region of
“highest demand” everywhere in the computational domain, this soon leads
to problems with excessive computation times. This difficulty in using Non
Uniform Subdivisions is probably the most serious drawback for the finite
difference technology. It is possible to remedy the problem to some extent,
but only at the expense of loosing the general advantages of ease of under-



CHAPTER 3. NUMERICAL METHODS FOR DEP’S 66

standing and implementing mentioned above. For more on FDM’s see for
example [4], [9] and [10].

Exercise 3.4
Construct an FDM for (1.10) and write out the equation system correspond-
ing to (3.3). Consider the case I = (0, 4), f(x, u(x)) = cos(x), x0 = 0 and
u∗ = 0. Program your method, solve and compare the numerical solutions
graphically to the exact solution u(t) = sin(t) like in exercise 3.3.

3.1.2 Collocation Methods — CM’s

The main idea in the CM’s is to replace the exact solution function u ∈
C2(0, 1) in (3.1) with a function Ũ from a finite dimensional space S ⊂
C2(0, 1). Then, Ũ not being the exact solution u, it is not possible for Ũ to
satisfy (3.1) in all points, but it can satisfy it in a finite number of points.
The procedure goes as follows:

• replace C2([0, 1]) in (3.1) by a Discrete Solution Space (or Trial Space)
S = span{φ1, . . . , φn} ⊂ C2([0, 1]), where S is of finite dimension n,
and φj(0) = φ′

j(1) = 0, for j = 1, . . . , n.

• replace u by Ũ =
∑n

j=1 cjφj with the n unknowns {cj}nj=1 in (3.1), i.e.

(3.5) −Ũ ′′(x) = f(x), ∀x ∈]0, 1[⇔ −
n∑
j=1

cjφ
′′
j (x) = f(x), ∀x ∈]0, 1[.

(3.5) normally has no solution since we have an infinite number of equations
(one for each x ∈]0, 1[) while we have only n unknowns. With the n unknowns
we need n equations. The solution chosen is to

• satisfy (3.5) only in a set of Nodal Points 0 ≤ x1 < . . . < xn ≤ 1, i.e.

(3.6) Find c ∈ Rn : −
n∑
j=1

cjφ
′′
j (xi) = f(xi), i = 1, . . . , n,

or in matrix form

Find c ∈ Rn : Bc = f ,(3.7)

where Bij = −φ′′
j (xi) and fi = f(xi), i, j = 1, . . . , n.



CHAPTER 3. NUMERICAL METHODS FOR DEP’S 67

The various CM’s are distinguished by how the discrete solution space S is
chosen. One possibility is to take S = P0

n+1[0, 1], the space of polynomials p of
degree at most n+1 with the super index 0 indicating that the two boundary
conditions p(0) = p′(1) = 0 are enforced, hence reducing the dimension to
n. As basis functions for P0

n+1[0, 1] can for example be used the following
Lagrange like basis functions (Hermite cardinal like functions) where we have
introduced the additional nodal point x0 = 0 and hence have x1 > 0. Also
xn = 1:

φj(x) =

(
n−1∏

k=0,k �=j

x− xk
xj − xk

)(
x− xn
xj − xn

)2

, j = 1, . . . , n− 1,(3.8)

φn(x) =

(
n−1∏
k=0

x− xk
xn − xk

)(
1−

(
n−1∏
k=0

x− xk
xn − xk

)′ ∣∣∣
x=xn

(x− xn)
)
,

This corresponds to n + 1 nodes 0 = x0 < x1 < . . . < xn = 1.

Exercise 3.5
Construct a CM for (3.1) and write out the equation system corresponding
to (3.7) in matrix form as in (3.3). Write also the expression for the solution
Ũ . Use the basis functions from (3.8), in which case the matrix system is the
hard part and the expression for Ũ the easy part.

Exercise 3.6
Program the method from exercise 3.5 for general n and for uniform step
lengths and with f(x) = x. The output from the program should be a graph
of the numerical solution, i.e. the points {(xi, Ũi)}ni=1 connected with line
pieces (a linear spline). The graph should also show the analytic solution
u(x) = x

2
− x3

6
.

Run your program for n = 2, 4, 8, 16, . . . until you see no further progress.
(This is referred to as “convergence in the eye ball norm”).
At what uniform step length h did you decide that you had convergence in
the eye ball norm?
For all h values you have computed up to convergence in the eye ball norm,
compute the error in the discrete �∞ and �1 norms ‖e‖�∞ = maxi=1,...,n |u(xi)−
Ũi| and ‖e‖�1 =

∑n
i=1 |u(xi) − Ũi| respectively. Comment on what you see,

for example on which of the two norms are “closer” to the eye ball norm?

Instead of using a polynomial space for S, the computational domain can
be divided into small pieces called Elements corresponding to the subdivision
of the FDM’s determined by the nodal points. In each element, the CM



CHAPTER 3. NUMERICAL METHODS FOR DEP’S 68

is using a local function space, normally polynomials of degree no greater
than p for some integer p which is normally 3 or 4, but in the so called
Spectral Collocation Methods (SCM’s) may be much higher (like 8 or 16).
In between the elements, the local function spaces are “glued” together by
some global smoothness/Regularity conditions (like splines). Recall that to
get S ⊂ C2(0, 1) we need a global smoothness of at least C2 which for splines
is provided only for the cubic or higher degree ones. Finally some or all of
the boundary conditions are enforced. Hence S is described by 3 properties:

• Global Smoothness. Example: v ∈ C0[0, 1] .

• Local form. Example: v|(xi,xi+1) is a linear polynomial for i = 0, . . . , n.
Note that we have added two nodes to make up for the dimensions
“lost” because of the boundary conditions below. This would normally
be accomplished by taking 0 = x0 < x1 < . . . < xn < xn+1 = 1, but it
is also possible to use a set of nodal points completely different from
the one introduced above for (3.6) .

• boundary conditions. Example: v(0) = 0, v′(1) = 0 .

Example: A Lagrange Basis for S, given by

φj ∈ S and φj(xi) = δij =

{
1 for i = j
0 else

, for i, j = 1, . . . , n(3.9)

is indicated in figure 3.1 for the example selections above . Note that this

1

0
xi−1 xi xi+1

φi

x0
= 0

x1 x2

φ1

xn−1 xn xn+1
= 1

φn

·· · ·· ·

Figure 3.1: Lagrange basis for the CM example above

example is for illustrative purposes only. In reality global smoothness C0 is
too little for S to be a subset of C2(0, 1) but instead splines of degree at least
3 could be used. Denoting by Sk,kΔ(n) the space of splines of degree k relative

to n distinct nodes, then it is well known that dim(Sk,kΔ(n)) = n+ k − 1. (See
exercise 2.59 on page 54 just replacing n by n − 1 since there are n + 1
nodal points in exercise 2.59 and only n here). Letting σk,kΔ(n) be Sk,kΔ(n) with

the two boundary conditions u(0) = 0 and u′(1) = 0 enforced, we have
dim(σk,kΔ(n)) = n+ k − 3 and hence dim(σk,kΔ(n+3−k)) = n = dim(S). Hence for

k = 3 (cubic splines) we can take as the n nodes, the nodal points x1, . . . , xn



CHAPTER 3. NUMERICAL METHODS FOR DEP’S 69

introduced above for (3.6). For k > 3 we would need only n + 3 − k < n
nodes so that the set of nodes for the spline space can not be identical to the
set of nodal points for the CM from (3.6). Taking k = 3 this leads to the
following example, which is more realistic than the one above:

• Global Smoothness. Example: v ∈ C2[0, 1] .

• Local form. Example: v|(xi,xi+1) is a cubic polynomial for i = 1, . . . , n−
1. Here we take 0 = x1 < . . . < xn = 1 in order to be able to enforce
the boundary conditions below .

• boundary conditions. Example: v(x1) = v(0) = 0, v′(xn) = v′(1) = 0
.

The basis giving the simplest form to (3.6) is the Cardinal Basis given by

φj ∈ σ3,3
Δ(n) and φ

′′
j (xi) = δij =

{
1 for i = j
0 else

, for i, j = 1, . . . , n.(3.10)

Using the cardinal basis, the matrix B in (3.7) becomes simply minus the
identity matrix. On the other hand, the construction of the cardinal basis is
somewhat complicated.

The traditional way to recover basis functions for spline spaces is to use
B-splines. For the basic theory of B-splines see for example [5]. Here we
shall only give the most central results for the special case of cubic splines
and uniform subdivisions x1, . . . , xn of (0, 1) with xi = i−1

n−1
, i = 1, . . . , n:

{B3
−3, . . . , B

3
n−2} is a basis for Sk,kΔ(n). Here B3

i is a B-spline with support in

the interval (xi+1, xi+5). Note that the support of the basis functions stretches
over the interval (x−2, xn+3). The additional points are defined with the same
formula as the regular nodal points i.e. xi =

i−1
n−1

, i = −2, . . . , n + 3. B3
i can

be computed with Maple using the commands

with(CurveFitting):

BSpline(4,x,[x_{i+1},x_{i+2},x_{i+3},x_{i+4},x_{i+5},]);

and using Maple notation a basis for Sk,kΔ(n) is then

{BSpline(4, x, [x−2, . . . , x2]), . . . ,BSpline(4, x, [xn−1, . . . , xn+3]}.
To recover a basis for σk,kΔ(n), a small investigation shows that all but the first
3 basis functions above take the value zero in 0. The first 3 basis functions
B3

−3, B
3
−2, and B3

−1 take the values B3
−3(0) =

1
6
, B3

−2(0) =
2
3
and B3

−1 = 1
6
.

Hence, the condition u(0) = 0 may be enforced by replacing B3
−3, B

3
−2, and

B3
−1 by the 2 linearly independent functions B3

−3−B3
−1 and 2(B3

−3 +B3
−1)−

B3
−2 both taking the value zero at 0. Correspondingly B3

n−3 and B3
n−4 +



CHAPTER 3. NUMERICAL METHODS FOR DEP’S 70

B3
n−2 are 2 linearly independent functions constructed from B3

n−4, B
3
n−3 and

B3
n−2 having first derivative equal 0 in 1, and all other basis functions satisfy

this property “from birth”. Hence a basis for σk,kΔ(n) is {B3
−3 − B3

−1, B
3
−3 +

B3
−1 − B3

−2, B
3
0 , . . . , B

3
n−5, B

3
n−3, B

3
n−4 + B3

n−2}. Here is a sequence of Maple
commands, which for general n (here selected to n = 4 in the third command)
define the necessary nodal points, define and plot the S3,3

Δ(n) basis functions
denoted f1, . . . , fn+2 and investigate the relevant function values in 0 and
derivatives in 1, define and plot the σ3,3

Δ(n) basis functions denoted φ1, . . . , φn
and finally compute the matrix B from (3.7):

> restart:

> with(CurveFitting):

> n:=4:

> for i from -2 to n+3 do x[i]:=(i-1)/(n-1) end do:

> for i from -3 to n-2 do

f[i+4]:=BSpline(4,x,knots=[seq(x[j],j=i+1..i+5)])

end do:

> fseq:=seq(f[i],i=1..n+2):

> plot([fseq],x=-2..3);

> for i from 1 to n+2 do funf[i]:=unapply(f[i],x) end do:

> funf[1](0);funf[2](0);funf[3](0);

> D(funf[n])(1);D(funf[n+1])(1);D(funf[n+2])(1);

> phi[1]:=funf[1]-funf[3]:phi[2]:=2*(funf[1]+funf[3])-funf[2]:

> for i from 3 to n-2 do phi[i]:=funf[i+1] end do:

> phi[n-1]:=funf[n]+funf[n+2]:phi[n]:=funf[n+1]:

> phiseq:=seq(phi[i](x),i=1..n):

> plot([phiseq],x=-2..3);

> plot([phiseq],x=0..1);

> g:=(i,j)->-(D@@2)(phi[j])(x[i]): Matrix(n,g);

Exercise 3.7
Construct a CM for (3.1) and write out the equation system corresponding
to (3.7) in matrix form as in (3.3). Write also the expression for the solution
Ũ . Use cubic splines as basis functions, in which case the matrix system is
the hard part and the expression for Ũ the easy part.

Exercise 3.8
Program the method from exercise 3.7 for general n and for uniform step
lengths and with f(x) = x. The output from the program should be a graph
of the numerical solution, i.e. the points {(xi, Ũi)}ni=1 connected with line



CHAPTER 3. NUMERICAL METHODS FOR DEP’S 71

pieces (a linear spline). The graph should also show the analytic solution
u(x) = x

2
− x3

6
.

Note that the matrix part has been done above. It only remains to copy the
commands into Maple, implement the right hand side, the matrix solution
and the plots and then try it all out.
Run your program for n = 2, 4, 8, 16, . . . until you see no further progress.
(This is referred to as “convergence in the eye ball norm”).
At what uniform step length h did you decide that you had convergence in
the eye ball norm?
For all h values you have computed up to convergence in the eye ball norm,
compute the error in the discrete �∞ and �1 norms ‖e‖�∞ = maxi=1,...,n |u(xi)−
Ũi| and ‖e‖�1 =

∑n
i=1 |u(xi) − Ũi| respectively. Comment on what you see,

for example on which of the two norms are “closer” to the eye ball norm?

Exercise 3.9
Construct a CM for (3.1) and write out the equation system corresponding
to (3.7) in matrix form as in (3.3). Write also the expression for the solution
Ũ . Use the cardinal basis from (3.10) as basis functions, in which case the
matrix system is the easy part and the expression for Ũ the hard part.

Exercise 3.10
Program the method from exercise 3.9 for general n and for uniform step
lengths and with f(x) = x. The output from the program should be a graph
of the numerical solution, i.e. the points {(xi, Ũi)}ni=1 connected with line
pieces (a linear spline). The graph should also show the analytic solution
u(x) = x

2
− x3

6
.

Run your program for n = 2, 4, 8, 16, . . . until you see no further progress.
(This is referred to as “convergence in the eye ball norm”).
At what uniform step length h did you decide that you had convergence in
the eye ball norm?
For all h values you have computed up to convergence in the eye ball norm,
compute the error in the discrete �∞ and �1 norms ‖e‖�∞ = maxi=1,...,n |u(xi)−
Ũi| and ‖e‖�1 =

∑n
i=1 |u(xi) − Ũi| respectively. Comment on what you see,

for example on which of the two norms are “closer” to the eye ball norm?

Where the error for FDM’s is the vector norm of an error vector, the
error for CM’s is the function norm of an error function e = u − Ũ , i.e.
|e| = ‖e‖ = ‖u− Ũ‖. Examples of |e| are |e| = ‖e‖1 =

∫ 1

0
|(u− Ũ)(x)|dx or

|e| = ‖e‖2 =
√∫ 1

0
(u− Ũ)2(x)dx.

Convergence is obtained in CM’s by increasing the dimension of S either
increasing the local polynomial degree p or reducing the size of the elements,



CHAPTER 3. NUMERICAL METHODS FOR DEP’S 72

i.e. increasing n (or both). Another possibility for improving results is to keep
the dimension of S fixed, but try to locate the nodes of the (spline) space
S in a more optimal way. This is often done iteratively, moving the points
around with small steps and keeping track of the error in the process. This
relocation or r-method does not lead to convergence, but if the number of
points is big enough, the error may be reduced significantly in the relocation
process so that the optimal error is below a predefined tolerance.

The general theory for collocation methods for problems posed in more
than one dimension is the same as for the one dimensional case. Only does
the finite dimensional space consist of functions defined over a multidimen-
sional domain. There is not the same requirement as for the finite difference
methods to make uniform subdivisions. As long as it is possible to construct
bases for the finite dimensional space with the selected subdivision things
are OK.

The obvious advantage of the collocation approach is the ease of adapting
the method to non rectangular domains and non uniform subdivisions.

The disadvantage of the collocation approach is that it is somewhat harder
than the finite difference approach to understand. The understanding hinges
on the understanding of function approximation, and convergence depends to
some extent on the theory of projections (considering the differential equation
only in a discrete set of points is some sort of projection). The practical
implementation of a CM is also somewhat more complicated than that of
a FDM, since it is necessary to implement the bases of the local function
spaces and their derivatives. For more on CM’s see for example [11].

Exercise 3.11
Construct a CM for (1.10) and write out the equation system corresponding
to (3.3). Consider the case I = (0, 4), f(t, u(t)) = cos(t), t0 = 0 and u∗ = 0.
Program your method, solve and compare the numerical solutions graphically
to the exact solution u(t) = sin(t) and to the numerical solutions found in
exercise 3.4. For basis use the following modification of (3.8):

φj(x) =

n∏
k=0,k �=j

x− xk
xj − xk , j = 1, . . . , n.(3.11)

Here x0 = 0 and xn = 4.

3.1.3 Finite Element Methods — FEM’s

The finite element approach is closely related to the collocation approach
described above, only is the projection different. Instead of considering the



CHAPTER 3. NUMERICAL METHODS FOR DEP’S 73

differential equation for the approximate solution Ũ in n points, the whole
equation is projected onto S with an L2-projection. The first two bullets in
the CM description at the beginning of section 3.1.2 remain unchanged, only
the third one is changed:

• replace C2([0, 1]) in (3.1) by a Discrete Solution Space (or Trial Space)
S = span{φ1, . . . , φn} ⊂ C2([0, 1]), where S is of finite dimension n,
and φj(0) = φ′

j(1) = 0, for j = 1, . . . , n.

• replace u by Ũ =
∑n

j=1 cjφj with the n unknowns {cj}nj=1 in (3.1), i.e.

(3.12) −Ũ ′′(x) = f(x), ∀x ∈]0, 1[⇔ −
n∑
j=1

cjφ
′′
j (x) = f(x), ∀x ∈]0, 1[.

(3.12) normally has no solution since we have an infinite number of equations
(one for each x ∈]0, 1[) while we have only n unknowns. With the n unknowns
we need n equations. The solution chosen is to

• satisfy only the projection of the equation onto S:

(3.13) Find c ∈ Rn : (−
n∑
j=1

cjφ
′′
j , φi) = (f, φi), i = 1, . . . , n.

Here (·, ·) is some sort of projection, normally the L2-inner product,

i.e. (f, g) =
∫ 1

0
f(x)g(x)dx.

The finite element approach can also be seen as an approximation to a so
called Variational Formulation of the DEP (3.1), derived by multiplying the
differential equation in (3.1) by a Test Function v ∈ C2(0, 1) satisfying v(0) =
0 (like u), and integrating on both sides over the domain (0, 1):

Find u ∈ C2(0, 1) :
∫ 1

0

−u′′vdx =

∫ 1

0

fvdx,(3.14)

∀v ∈ C2(0, 1), with v(0) = 0.

(This is called a variational formulation since v can vary freely in C2(0, 1)
(apart from v(0) = 0)).
Now do partial integration to obtain symmetry in the order of derivatives on
the test function v and the Solution or Trial Function u:

(3.15) Find u ∈ V :

∫ 1

0

u′v′dx =

∫ 1

0

fvdx ∀v ∈ V.



CHAPTER 3. NUMERICAL METHODS FOR DEP’S 74

([−u′v]10 = 0 since v(0) = u′(1) = 0). Also, we have replaced the space
C2(0, 1) by the bigger space V (C2(0, 1) ⊂ V ⊆ H1(0, 1)) containing square
integrable functions (in L2(0, 1)) with (weak) first derivatives existing and
lying in L2(0, 1). This is the Sobolev space H1(0, 1) in which the integrals
in (3.15) make sense as long as also f ∈ L2(0, 1). (3.15) is like (3.14) a
variational formulation, and since the bigger spaces generally make the con-
vergence results easier to recover, we shall initiate our discretization process
from there. The finite element discretization is similar to the collocation
discretization, only starting from (3.15) instead of (3.1) and not enforcing
both boundary conditions:

• Replace V in (3.15) by a finite dimensional Solution (or Trial) Space
S = span{φ1, . . . , φn} ⊂ V, where φj(0) = 0, for j = 1, . . . , n.

• Replace u by Ũ =
∑n

j=1 cjφj with the n unknowns {cj}nj=1 in (3.15)
and let v be any of the basis functions φ1, . . . , φn, i.e.

(3.16) Find c ∈ Rn :

∫ 1

0

n∑
j=1

cjφ
′
jφ

′
idx =

∫ 1

0

fφidx ∀i = 1, . . . , n,

or in matrix form

Find c ∈ Rn : Bc = q,(3.17)

where Bij =
∫ 1

0
φ′
jφ

′
idx and qi =

∫ 1

0
fφidx, i, j = 1, . . . , n.

u(0) = 0 is called an Essential or Strong boundary condition. It is enforced
explicitly in V and is hence always satisfied.
u′(1) = 0 is called an Natural or Weak boundary condition. It is only im-
plicitly part of the variational formulation, since it is used to remove the
boundary terms after the partial integration. It may or may not be satis-
fied exactly. Unlike the collocation method, the basis functions φj are not
required to satisfy φ′

j(1) = 0 for the FEM.
The discrete space S is constructed for the FEM’s as for the CM’s. Only is

the degree of global smoothness needed for V generally much lower (C0(0, 1))
than C2(0, 1). We repeat the 3 points determining the discrete space S and
a typical example here:

• Global Smoothness. Example: v ∈ C0[0, 1] .

• Local form. Example: v|(xi,xi+1) is a linear polynomial for i = 0, . . . , n−
1. Note that we have introduced n + 1 nodes and n elements to get
dim(S) = n (see figure 3.2) .



CHAPTER 3. NUMERICAL METHODS FOR DEP’S 75

• boundary conditions. Example: v(0) = 0 .

Example: A Lagrange Basis for S, given by

φj ∈ S and φj(xi) = δij =

{
1 for i = j
0 else

, for i, j = 1, . . . , n(3.18)

is indicated in figure 3.2 for the example selections above. To compute the

1

0
xi−1 xi xi+1

φi

x0
= 0

x1 x2

φ1

xn−1 xn
= 1

φn

·· · ·· ·

Figure 3.2: Lagrange basis for the FEM example above

integrals in Bij and qi in (3.17) we take advantage of the simple structure
of the φi’s: First of all, the support of φi covers at most 2 elements. Hence
also the support of φ′

iφ
′
j and of fφi covers at most 2 elements. Since φ′

i is
piecewise constant, Bij is the sum of at most 2 integrals of constants; one
for each of the intervals in the support. qi is likewise the sum of at most 2
integrals over the intervals in the support of φi. Here the integrants may be
more complex however, depending on the complexity of f . As a general rule
of thumb, Bij is easy to compute, while qi may be hard. Luckily there are
only n qi’s against n

2 Bij ’s .
Convergence is obtained in FEM’s like in CM’s by either increasing the

polynomial degree p of the local polynomial spaces over each element (the
p-version of the FEM), by reducing the size h of the elements and hence
increasing the number of elements (the h-version of the FEM), or possibly
by doing both (the hp-version of the FEM). Whether this actually does lead
to convergence depends on fairly heavy theoretical results from the area of
“Interpolation theory in Banach spaces”. As for the CM’s also relocation of
the nodes (the r-version of the FEM) is used to reduce the error below an a
priori given acceptable treshold (the Tolerance). Also for the generalization
to higher dimensional problems, obviously the comments for the collocation
methods go through also for finite element methods.

It is considered an FEM advantage (among mathematicians) that the
FEM is resting on a solid foundation of advanced mathematics like varia-
tional formulation of DEP’s, Banach and Hilbert space theory, especially in
Sobolev spaces, and interpolation theory. This allows existence, uniqueness
and convergence results to be found relatively easily, without worries about
stability and consistency like for the FDM’s (see below). Practically, the



CHAPTER 3. NUMERICAL METHODS FOR DEP’S 76

FEM’s have the same advantages as the CM’s: In contrast to the FDM’s,
the FEM’s are (theoretically) no harder to compute with in non rectangular
domains and if non uniform meshes are required than they are in rectangular
domains with uniform meshes.

The disadvantages are also the same as for the CM’s, and even more so,
since we for the FEM’s have to compute also projections involving (numer-
ical) integration. Instead, because of the lower demands for global smooth-
ness, generally the finite element bases are easier to construct and program.
For more on FEM’s see for example [12], [13], [14] and [15].

Exercise 3.12
Construct an FEM for (3.1) and write out the equation system corresponding
to (3.3). Use the Lagrange basis from (3.18).

Exercise 3.13
Program the method from exercise 3.12 for general n and for uniform step
lengths and with f(x) = x. The output from the program should be a graph
of the numerical solution, i.e. the points {(xi, Ũi)}ni=1 connected with line
pieces (a linear spline). The graph should also show the analytic solution
u(x) = x

2
− x3

6
.

Run your program for n = 2, 4, 8, 16, . . . until you see no further progress.
(This is referred to as “convergence in the eye ball norm”).
At what uniform step length h did you decide that you had convergence in
the eye ball norm?
For all h values you have computed up to convergence in the eye ball norm,
compute the error in the discrete �∞ and �1 norms ‖e‖�∞ = maxi=1,...,n |u(xi)−
Ũi| and ‖e‖�1 =

∑n
i=1 |u(xi)− Ũi| respectively and additionally in the contin-

uous L2 norm ‖e‖L2 =
√∫ 1

0
(u(x)− Ũ(x))2dx. Comment on what you see,

for example on which of the three norms are “closer” to the eye ball norm?

Exercise 3.14
Construct an FEM for (1.10) and write out the equation system correspond-
ing to (3.3). Consider the case I = (0, 4), f(t, u(t)) = cos(t), t0 = 0 and
u∗ = 0. Program your method, solve and compare the numerical solutions
graphically to the exact solution u(t) = sin(t) and to the numerical solutions
found in exercises 3.4 and 3.11. Use the Lagrange basis from exercises 3.12
and 3.13.



CHAPTER 3. NUMERICAL METHODS FOR DEP’S 77

3.2 Construction of difference operators for

FDM’s

From here on, we shall concentrate on the finite difference methods, only
bringing in the collocation and finite element methods on a few occations.
The main point distinguishing the various FDM’s is the selection of the dif-
ference operators that we use to replace the derivatives in the DEP. An
important point is how well the difference operators approximate the deriva-
tives in question. Consider the following setting:

• We want to approximate f (k)(z), the k’th derivative (for some positive
integer k) of some function f in some point z where f is sufficiently
smooth (f ∈ Ck(]z − ε, z + ε[ for some ε > 0). Example: f ′(z) .

• For the approximation we have at our disposal a set of nodal points
x1, . . . , xn, where x1 < x2 < . . . < xn and z ∈ [x1, xn]. To simplify
matters, we shall only consider uniform subdivisions where xi+1 = xi+h
for i = 1, . . . , n − 1. h is then simply denoted the step size. Our
approximation δkhf(z) = g(f1, . . . , fn) is some function (say g) of (some
of) the nodal point values of f . Example: δhf(z) =

1
h
(f(xi+h)−f(xi)),

where z ∈ [xi, xi + h] .

• We shall assume that our approximation is consistent, meaning that
limh→0 δ

k
hf(z) = f (k)(z). Example: limh→0

1
h
(f(xi+ h)− f(xi)) = f ′(z)

.

There is an important point to be made here: Until now, we have considered
{x1, . . . , xn} a fixed set of n different nodal points. The introduction of the
term limh→0 δ

k
hf(z) makes sense only when instead considering an infinite

sequence of sets of more and more nodal points designed such that the uni-
form step size h goes to 0 as the number of nodal points goes to infinity. See
for example figure 3.3. Hence let {n(k)}∞k=1 be a divergent strictly increasing
sequence of integers and select for each k = 1, 2, . . . a set of n(k) different
nodal points {x(k)1 , . . . , x

(k)
nk } and let h(k) be the corresponding uniform step

size. Obviously, such a change of notation also implies the change from for
example Ũi to Ũ

(k)
i . Here comes the point: Since these sequences are always

understood, we shall allow ourselves to simplify notation by omitting the up-
per index (k) so that we end up with the standard notation used until now.
For example this means that xi above is a different nodal point for h = 0.1
than for h = 0.001. Even worse, the definition δhf(z) =

1
h
(f(xi+h)−f(xi)),

where z ∈ [xi, xi + h] implies that also i is changing with h, since we must
take the i so that z lies in the element [xi, xi+ h]. Actually i→∞ as h→ 0



CHAPTER 3. NUMERICAL METHODS FOR DEP’S 78

x
(1)
1 x

(1)
2 x

(1)
3

h(1) z
•

x
(2)
1 x

(2)
2 x

(2)
3 x

(2)
4 x

(2)
5

h(2) z
•

x
(3)
1 x

(3)
2 x

(3)
3 x

(3)
4 x

(3)
5 x

(3)
6 x

(3)
7 x

(3)
8 x

(3)
9

h(3) z
•

· · ·

x
(k)
1 x

(k)
2 x

(k)
i−1 x

(k)
i x

(k)
i+1 x

(k)

n(k)

h(k) z
•

Figure 3.3: A sequence of subdivisions obtained by “halving”, and a sequence
of nodal points {x(k)i }∞k=1 (denoted by •’s) converging towards a point z and

picked so that z ∈ [x
(k)
i , x

(k)
i+1[.

. Fortunately this turns out to be a small problem in most cases, but
occasionally, it is necessary to use the “full” notation to clarify matters. In
any case, it is wise to keep in mind, that both xi and i itself depend on h.

Exercise 3.15
Consider the interval [3, 4] and the point π � 3.14159. Let x

(1)
1 = 3, x

(1)
2 = 3.5

and x
(1)
3 = 4 and construct a sequence of subdivisions by halving, i.e. x

(2)
1 = 3,

x
(2)
2 = 3.25, x

(2)
3 = 3.5, x

(2)
4 = 3.75 and x

(2)
5 = 4. Let Maple continue the

process. Let also Maple find x
(k)
i for k = 1, 2, . . . such that π ∈ [x

(k)
i , x

(k)
i+1[.

Compute ek = |x(k)i −π| for k = 1, 2, . . ., and find the order of convergence of

ek with respect to the step length
(
1
2

)k
. (See below exercise 2.22 on page 28).

Returning to the difference operators, the assumption of consistency also
implies that we consider the difference operator a function of h. Instead of
just being satisfied with consistency it is interesting to know how fast the
convergence is:

• We measure the “goodness” of the difference operator by the consis-
tency order q ∈ R of δkh defined by supf |f (k)(z)− δkhf(z)| = Oh→0(h

q)
where the supremum is taken over alle k times differentiable functions
f . If we only consider one particular f , we shall denote the resulting q
the observed consistency order of δkh for the instance f .



CHAPTER 3. NUMERICAL METHODS FOR DEP’S 79

Consensus:

• The bigger q the better (more precise) the method.

• The smaller n the better (less expensive) the method.

• Bigger q requires bigger n (the no free lunch concept).

Reality:

• Oh→0(h
q) means an expression which for small h takes the form Chq

i.e. for any given h, small q and small C may be better than big q and
big C.

So the consensus should be taken with a grain of salt, and only considered a
rule of thumb.

Example 3.16 How fast does it go?
Consider the standard approximation to f ′(z) namely δhf(z) = δ+hf(z) =
1
h
(f(z + h) − f(z)) for the example f(x) = (x − 1)4ex. Taking z = 1 and

noting that f ′(1) = −3 we easily compute with Maple

> Digits:=20;

> df:=(x,h)->(f(x+h)-f(x))/h:

> evalf(df(0,10^(-1)));

-2.7489736065056759337

> evalf(df(0,10^(-10)));

-2.9999999998

> evalf(df(0,10^(-11)));

-3.000000000

The computations suffer from subtractive cancellation (see example 3.24) so
Maple only shows a limited number of digits.
There are better ways than δ+ above however. Take the same z and f but
δhf(z) = δ0hf(z) =

1
2h
(f(z + h)− f(z − h)). Maple then gives

> Digits:=20;

> d0f:=(x,h)->(f(x+h)-f(x-h))/(2*h):

> evalf(d0f(0,010^(-1)));

-2.9983491219850800221

> evalf(d0f(0,10^(-6)));

-2.99999999999981

> evalf(d0f(0,10^(-7)));

-3.0000000000000



CHAPTER 3. NUMERICAL METHODS FOR DEP’S 80

Note that we may take h 1000 times bigger for the last δ having the same
tolerance.
To compare δ+h and δ0h better, we use Maple to investigate the order of
consistency of the 2 difference operators: In general we expect that for h
sufficiently small f (k)(z) = δkhf(z)+Ch

q for some constants C and q. But then
|f (k)(z) − δkhf(z)| = |C|hq ⇒ log10 |f (k)(z) − δkhf(z)| = log10 |C| + q log10 h.
Thus plotting log10 h against log10 |f (k)(z) − δkhf(z)| should for sufficiently
small h give a straight line with slope q: The following Maple commands,
building on the definitions of f , df and d0f above give the plot in figure 3.4
showing q = 1 for δ+h and q = 2 for δ0h.

> Df0:=D(f)(0):

> m:=12:

> for i from 1 to m do

h:=10^(-i):

dfh:=df(0,h):d0fh:=d0f(0,h):

q[i]:=[log10(h),evalf(log10(abs(Df0-dfh)))]:

p[i]:=[log10(h),evalf(log10(abs(Df0-d0fh)))]:

end do:

> qlist:=[seq(q[i],i=1..m)]:plist:=[seq(p[i],i=1..m)]:

> with(plots):

> qplot:=pointplot(qlist,connect=true,

scaling=constrained,color=red):

> pplot:=pointplot(plist,connect=true,

scaling=constrained,color=blue):

> display([qplot,pplot]);

3.2.1 Taylor Series Methods

The most popular method of construction for difference operators is based
on Taylor expansion and linear difference operators δkhf(z) =

∑n
j=1 cjf(xj).

We determine the cj , j = 1, . . . , n to maximize the order of consistency of
the difference operator. The methods go as follows:

(a) Let f (k)(z) be the derivative to approximate. Select the number of
nodal points n and the nodal points x1, . . . , xn themselves.

(b) Let δkhf(z) =
∑n

j=1 cjf(xj) be the finite difference approximation of

f (k)(z), where the cj’s for now are unknowns (we only consider linear
difference operators).



CHAPTER 3. NUMERICAL METHODS FOR DEP’S 81

−2.5

−4

−12.5

−5.0

−2

−7.5

−10.0

−6−8−10

log10 h

log10 |f ′(0)− δhf(0)|

Figure 3.4: Experimental orders of consistency for δ+h (slope of topmost red
curve) and δ0h (slope of bottommost blue curve) for example 3.16

(c) The goal is to determine the cj ’s so that

n∑
j=1

cjf(xj)− f (k)(z) = Oh→0(h
q)

for as big an order of consistency q as possible, where h is some typical
step length parameter, like the step size for uniform subdivisions or the
maximal step size for nonuniform subdivisions. To do this make Taylor
series expansions of f(xj) around z, ∀j = 1, . . . , n:

n∑
j=1

cj

( ∞∑
i=0

1

i!
f (i)(z)(xj − z)i

)
− f (k)(z) = Oh→0(h

q)(3.19)

In practice the Taylor series can be truncated at i = q + 1 with a
remainder term to verify the order q or even at i = q to verify the
order at least q. The problem is that q typically is not known. Often
though, the user has some idea of what value q takes. In practice
you may have to choose between including too few terms at the first
attempt and hence having to add further terms in a second attempt,
or adding too many terms in the first attempt and hence doing some
unnecessary work.

(d) Find c1, . . . , cn that makes q as big as possible (for a general f ∈ Cq+1)
and define δkhf(z) =

∑n
j=1 cjf(xj) = cT f with c = (c1, . . . , cn)

T and

f = (f(x1), . . . , f(xn))
T .

This is done by cancelling the lowest order terms: Pick cj, j = 1, . . . , n



CHAPTER 3. NUMERICAL METHODS FOR DEP’S 82

such that first of all all terms involving negative or zero powers of h
cancel out. Then cancel out terms with higher and higher powers of h
until all cj’s are determined. This is not as simple as it sounds since
the cj typically depend on h. Instead the coefficients of the lower order
derivatives of f , f(z), f ′(z), . . . , f (k)(z) can be canceled out. In this
process we do not need to take into consideration lower derivatives
multiplied with high powers of h. Those we can leave alone. This is
all somewhat confusing, but some examples below should clarify the
situation.

Theorem 3.17 The Taylor series methods result in the linear difference op-
erators with the highest possible consistency order among all linear difference
operators with the same nodal points.

Proof:
Obvious by construction.

Now let us consider some examples of this construction. The examples will
all be one dimensional. Standard procedure in higher dimensions is to com-
bine one dimensional operators, but a direct derivation can also be made
using Taylor expansion in the required number of dimensions. Until now,
we have denoted the difference operators by δkh. To simplify notation, often
the h is discarded and the dependence on h is understood without appearing
explicitly.

Example 3.18 δ+h or δ+ the First Order Forward Difference Operator of
Consistency Order One
• First Order refers to the fact that δ+f(z) will be treated as an approxima-
tion to f ′(z).
• Consistency Order One refers to the fact that q = 1 (as we shall verify
below).
• δ+f(z) is defined as the Taylor series method with n = 2, x1 = z and
x2 = z + h for some real parameter h > 0, i.e. δ+f(z) = c1f(z) + c2f(z + h)
so (3.19) takes the form

c1f(z) + c2

(
f(z) + hf ′(z) +

h2

2
f ′′(ξz)

)
− f ′(z) = Oh→0(h

q)(3.20)

�
(c1 + c2)f(z) + (c2h− 1)f ′(z) + c2

h2

2
f ′′(ξz) = Oh→0(h

q)

We stop the Taylor series at k = 2 with a remainder term. How high it is
necessary to go is to some extent up to a (qualified) guess.



CHAPTER 3. NUMERICAL METHODS FOR DEP’S 83

To maximize q first take c1 + c2 = 0 and c2 = 1
h
⇒ c1 = − 1

h
. This cancels

out the f(z) and f ′(z) terms and leaves us with no more cj ’s to determine.
The lowest order surviving term is 1

2
hf ′′(z) giving q = 1. Note that for

a particular f and z combination, it is possible that q ≥ 2 (if f ′′(z) =
0). This does not change the consistency order of δ+ but may change the
observed consistency order for the instance f(z). For example if f(x) =
sin(x) and z = π/2 then f ′′(z) = − sin(π/2) = 0 giving second order observed
consistency for this particular instance of f and z. But taking f(x) = cos(x),
f ′′(π/2) = − cos(π/2) = −1 giving only first order observed consistency for
this particular instance of f and z. To find a fixed order of consistency for
a given difference operator, we take the smallest among all f ’s by choosing
the supremum of |f ′(z) − δ+f(z)| over all differentiable f , which by Taylor
expansion as seen above is 1 . Consistency orders are verified theoretically,
while instances of observed consistency errors typically arise from numerical
experiment and should always be at least as big as the consistency orders
(but may be bigger without “destroying” the theory). In conclusion

δ+hf(z) = δ+f(z) =
1

h
(f(z + h)− f(z)) = f ′(z) +Oh→0(h).(3.21)

We shall simply state the formulas corresponding to (3.21) for 3 other
often used difference operators that may be derived using the Taylor series
method:

Example 3.19 δ− the First Order Backward Difference Operator of Con-
sistency Order One

δ−hf(z) = δ−f(z) =
1

h
(f(z)− f(z − h)) = f ′(z) +Oh→0(h).(3.22)

Example 3.20 δ0 the First Order Central Difference Operator of Consis-
tency Order Two

δ0hf(z) = δ0f(z) =
1

2h
(f(z + h)− f(z − h)) = f ′(z) +Oh→0(h

2).(3.23)

Example 3.21 δ20 the Second Order Central Difference Operator of Consis-
tency Order Two

δ20hf(z) = δ20f(z) =
1

h2
(f(z + h)− 2f(z) + f(z − h))(3.24)

= f ′′(z) +Oh→0(h
2).



CHAPTER 3. NUMERICAL METHODS FOR DEP’S 84

Exercise 3.22
Derive the consistency orders of examples 3.19, 3.20 and 3.21 above, i.e.
derive the last equality sign in each case using Taylor expansion to the ap-
propriate order.

Exercise 3.23 Non Uniform Subdivision
Consider the central difference operator of example 3.20 above. Change it to

δ∗0f(z) =
1

(1 + a)h
(f(z + h)− f(z − ah)).

Investigate the order of consistency as a function of a.

Example 3.24 Warning – Look out for subtractive cancellation
Consider a computer with 15 significant digits, h = 10−20, f(z) = 1, f(z +
h) = 1 + 10−16. Then δ+f(z) = 104 but the computer instead gets 0 as
follows:

δ+f(z) = ( 1 + 10−16︸ ︷︷ ︸
stored as 1

−1
︸ ︷︷ ︸
stored as 0

)/10−20 = 0 (0/anything=0)

Rule of thumb: h = 10−d+r where d is the number of significant digits for the
computer and r ∈ [1, d[: If f is flat, r is big to avoid subtractive cancellation.
If request for precision is low, r is big to avoid over spenditure of computer
ressources to get unnecessarily precise results.
Precision depends in practice on the step size h in the fashion sketched in
figure 3.5, so h should neither be too small nor too big.

The result of theorem 3.17 on page 82 could be improved if we did not
preselect the nodal points in item (a) of the construction process at the
beginning of this subsection, but left them to be decided, replacing the fourth
item (d) just above theorem 3.17 with

(d’) Find c1, . . . , cn and x1, . . . , xn that makes q as big as possible (for a
general f ∈ Cq+1) and define δf(z) =

∑n
j=1 cjf(xj) = cT f with c =

(c1, . . . , cn)
T and f = (f(x1), . . . , f(xn))

T .

A similar approach is used in numerical integration in the socalled Gaus-
sian quadrature formulas. Instead it is basically not used within numerical
differentiation. The reason is, that very often a certain derivative must be



CHAPTER 3. NUMERICAL METHODS FOR DEP’S 85

h
big hsmall h

error= |Df(z)− δf(z)|

low
precision

required
precision

feasible h values

high
precision

ideal h

Figure 3.5: Practically observed dependence of precision of difference opera-
tors on step size h

approximated not just in one but in several points. There is a great compu-
tational advantage in being able to reuse function evaluations from derivative
to derivative, but this requires that the function evaluations are needed in
the same points. This requires some control over the location of the nodal
points which does not exist for methods optimizing the position of the nodal
points.

3.2.2 Taylor expansion in Maple

Maple has the command taylor for computing Taylor expansions. taylor

takes 3 arguments: The function to be expanded, the point to expand around
and the order that the function should be expanded to. An example is

> taylor(x^4,x=3,3);

resulting in 81+ 108(x− 3) + 54(x− 3)2 +O ((x− 3)3). When it is required
to do further manipulations, the O-term is generally a nuisance. It can be
omitted by “converting to a polynomial”:

> convert(taylor(x^4,x=3,3),polynom);



CHAPTER 3. NUMERICAL METHODS FOR DEP’S 86

results in 81+108(x−3)+54(x−3)2 which can be used directly in a function
definition as in

> p:=unapply(convert(taylor(x^4,x=3,3),polynom),x);

resulting in p := x→ −243 + 108x+ 54(x− 3)2.
Unfortunately, reality is often slightly more complicated than this simple

example. Consider the expansion f(z+h) = f(z)+hf ′(z)+ h2

2
f ′′(z)+O(h3)

from example 3.18. The correct way to read this is “find the Taylor expansion
of the function f : x → f(x) around z and take the value of this expansion
in z + h”. The Maple command for this is

> subs(x=z+h,taylor(f(x),x=z,3));

resulting in the required expression. There are other ways to get the correct
result as for example

> taylor(f(x+h),x=z,3);

> subs(z+h=z,%);

> subs(x-z=h,%);

but these are typically harder to explain, i.e. relate to what is happening
mathematically.

If f is a scalar function of 2 variables as in f : (x, y) → f(x, y) then
in general Maple provides the mtaylor command for multivariable Taylor
expansion. For this course however, the second variable is typically depend-
ing on the first as in equation (1.10) where f is in reality a function of one
variable f : x → f(x, u(x)). In this case it is recommended to use Taylor
expansion in one variable, i.e. the Maple command taylor.

3.2.3 Polynomial Interpolation Methods

(a) Select the interpolation nodal points {xj}nj=1. This then results in the
data set {(xj, f(xj))}nj=1.

(b) By a standard interpolation result (see theorem 2.44 on page 41 and
theorem 2.47 on page 46 and change n+1 to n) f(z) =

∑n
j=1 f(xj)�j(z)+

1
n!
f (n)(ξz)ωn(z) where �j is the j’th cardinal function for the points

x1, . . . , xn and ωn(z) =
∏n

j=1(z − xj).
But then Df(z) =

∑n
j=1 f(xj)D�j(z) +

1
n!
D
(
f (n)(ξz)ωn(z)

)
.

(c) Take δf(z) =
∑n

j=1 f(xj)D�j(z) and find q so that 1
n!
D
(
f (n)(ξz)ωn(z)

)
= Oh→0(h

q) where h = maxi,j=1,...,n |xi − xj | corresponding to the sit-
uation where we make polynomial interpolation of degree n − 1 in an



CHAPTER 3. NUMERICAL METHODS FOR DEP’S 87

interval of length h. Eventually, parts of the 1
n!
D
(
f (n)(ξz)ωn(z)

)
term

can be included in δf(z) when advantageous.

Example 3.25 D = d
dx
, data set {(x1 − h, f(x1 − h)), (x1, f(x1)), (x1 +

h, f(x1 + h)}, z = x1
The Maple commands

> with(CurveFitting):

> xydata:=[[x1-h,f0],[x1,f1],[x1+h,f2]]:

> PolynomialInterpolation(xydata,x):

> diff(%,x):

> subs(x=x1,%):

> simplify(%);

results in f2−f0
2h

, i.e. the wellknown δ0 derived in example 3.20 by the Taylor
series method.

Example 3.26 D = d
dx
, z = xk for some k = 1, . . . , n

D
(
f (n)(ξz)ωn(z)

) ∣∣
z=xk

= ωn(xk)
d
dx
f (n)(ξz)|z=xk + (ωn)

′(xk)f (n)(ξxk) =

(ωn)
′(xk)f (n)(ξxk) = Oh→0(h

n−1) since ωn(xk) = 0, (ωn)
′(xk) =∑n

i=1

∏n
j=1,j �=i(xk − xj) =

∏n
j=1,j �=k(xk − xj) and |xk − xj | ≤ h.

Similar methods exist for higher derivatives.
The Taylor series and polynomial interpolation methods will in many

cases lead to the same difference operators. The main difference between the
two approaches is that for the polynomial interpolation methods the formulas
are given directly in the form of derivatives of the known cardinal functions,
whereas a system of equations must be solved for the Taylor series methods.
On the other hand the Taylor series methods provide the optimality result
of theorem 3.17 on page 82 while a similar result is not obvious for the
interpolation methods.

3.2.4 Compact Finite Difference Methods

In (d’) just below figure 3.5 on page 85 was proposed a possibility to in-
crease the consistency order of linear difference operators. The proposal
was rejected on the base of lack of possibility to reuse function evaluations
when several derivatives had to be evaluated. Another possibility lies in
the socalled Compact Finite Difference Methods which can be formulated as
follows:



CHAPTER 3. NUMERICAL METHODS FOR DEP’S 88

(a) Assume that we want to approximate a certain derivative Df in a set
of nodal points (x1, . . . , xn). Define the vectors of derivatives Df =
(Df(x1), . . . , Df(xn))

T and approximating linear difference operators
δf = (δf(x1), . . . , δf(xn))

T defined by Bδf = Cf where B and C are
constant n× n matrices and f = (f(x1), . . . , f(xn))

T .

(b) Find the n×n matrices B and C that makes the consistency order q as
big as possible where ‖B(Df − δf)‖ = Oh→0(h

q) for some vector norm
‖ · ‖.

Now the difference formulas can be recovered for all points at once, and
this turns out to give some advantages in certain cases. If B and C are
completely arbitrary matrices, the problem becomes very hard and usually
some structure is imposed on the matrices (like symmetric, tri-diagonal or
penta-diagonal) For more on this subject see for example [4] §10.10.2.
Exercise 3.27
Write a small essay on compact finite difference methods.

3.2.5 Richardson extrapolation

It is possible to derive iterative hierarchical methods that given an approx-
imation method increases the consistency order, at the cost of some addi-
tional function evaluations. Let φ(h) be the numerical method depending on
a parameter h for approximating something denoted L not depending on h.
Assume that φ(h) has consistency order 1, i.e. that

φ(h) = L+

∞∑
j=1

ajh
j(3.25)

for some sequence of constants {aj}∞j=1 not depending on h. To give an idea
we present the following example:

Example 3.28 f ∈ C∞, f ′(x) = δ+hf(x) +Oh→0(h)

f(x+ h)− f(x)
h︸ ︷︷ ︸

δ+hf(x)=φ(h)

= f ′(x)︸ ︷︷ ︸
L

+

∞∑
j=2

1

j!
f (j)(x)hj−1(3.26)

= f ′(x) +
∞∑
j=1

1

(j + 1)!
f (j+1)(x)︸ ︷︷ ︸
aj

hj .



CHAPTER 3. NUMERICAL METHODS FOR DEP’S 89

Now consider the same method φ but with a different parameter value (step
length) αh:

φ(αh) = L+
∞∑
j=1

ajα
jhj .(3.27)

Subtracting (3.27) from (3.25) we get

φ(h)− φ(αh) =
∞∑
j=1

(1− αj)ajhj.(3.28)

Note that the unknown L has disappeared, and hence that we may isolate
and recover a1h:

a1h =
φ(h)− φ(αh)

1− α −
∞∑
j=2

1− αj
1− α ajh

j .(3.29)

Inserting in (3.25) we get

L = φ(h)− φ(h)− φ(αh)
1− α −

∞∑
j=2

(
1− 1− αj

1− α
)
ajh

j(3.30)

= − α

1− αφ(h) +
1

1− αφ(αh)−
∞∑
j=2

αj − α
1− α ajh

j .

Hence Φ(h) = − α
1−αφ(h) +

1
1−αφ(αh) is our new numerical method for ap-

proximating L. Note that Φ has order of consistency 2. Note also that the
construction can be iterated, now starting from Φ instead of from φ.

How do we select α? To make sure that the new method Φ works better
than the original φ, we would like all the coefficients of the powers of h to

decrease (or at least not increase) from φ to Φ, i.e.
∣∣∣αj−α
1−α aj

∣∣∣ ≤ |aj | ⇔ ∣∣∣αj−α
1−α

∣∣∣ ≤
1 for all j = 2, 3, . . .. But it is possible to verify that

∣∣∣αj−α
1−α

∣∣∣ ≤ 1⇔ α ∈ [0, κj]

where κ2 = 1 and κj ↓ 1
2
for j →∞. This means that we should take α ≤ 1

2
.

The most common choice is α = 1
2
because this gives the highest possibility

of being able to reuse some function evaluations: Consider example 3.28: If
we need to approximate f ′(x) to second order consistency with α = 1/2, we
need to use f(x), f(x+ 1

2
h) and f(x+h). If we further need to approximate

f ′(x+ 1
2
h) then we need to use f(x+ 1

2
h), f(x+h) and f(x+ 3

2
h). Note that

only 1 new function value is needed. Taking α = 1
2
in (3.30) we get

L = 2φ(
h

2
)− φ(h) +Oh→0(h

2).(3.31)



CHAPTER 3. NUMERICAL METHODS FOR DEP’S 90

Exercise 3.29 Richardson extrapolation
Take φ(h) = δ+h sin(1) and ψ(h) = 2φ(h

2
) − φ(h). Show using Maple that

| cos(1) − φ(h)| = O(h) and that | cos(1) − ψ(h)| = O(h2). Hint: Use
many digits, for example Digits:=40 and compute | cos(1) − φ(h)|/h and

| cos(1)− ψ(h)|/h2 for h = 10−n, n = 1, 2, . . ..

Another situation often ocurring is the one where only even powers of h
appears, i.e.

ψ(h) = L+

∞∑
j=1

a2jh
2j .(3.32)

Example 3.30 f ∈ C∞, f ′(x) = δ0hf(x) +Oh→0(h
2)

f(x+ h)− f(x− h)
2h︸ ︷︷ ︸

δ0hf(x)=ψ(h)

= f ′(x)︸ ︷︷ ︸
L

+
∞∑
k=2

1

k!
f (k)(x)

hk − (−h)k
2h

(3.33)

= f ′(x) +
∞∑
j=1

1

(2j + 1)!
f (2j+1)(x)︸ ︷︷ ︸
a2j

h2j ,

where we have taken {k}∞k=2 = {2j}∞j=1 ∪ {2j + 1}∞j=1, noting that the first
part on the right hand side gives no contribution since h2j − (−h)2j = 0.

Taking h̃ = h2, ãj = a2j and φ(h̃) = φ(h2) = ψ(h), (3.32) transforms into
(3.25) (with h̃ replacing h and ãj replacing aj).

Choosing again to put the new nodes in the middle between the ones used
for the original method, this corresponds to considering for the improved
method a linear combination of ψ(h

2
) and ψ(h). But ψ(βh) = φ(β2h2) =

φ(β2h̃), so taking β = 1
2
corresponds to taking α = β2 = 1

4
in (3.30) resulting

in the method

L =
4

3
φ(
h̃

4
)− 1

3
φ(h̃) +Oh̃→0(h̃

2) =
4

3
ψ(
h

2
)− 1

3
ψ(h) +Oh→0(h

4).(3.34)

As above, also this construction may be iterated, increasing by 2 the order of
consistency with each iteration. This iteration is described in the following
theorem, where D(n, k) indicates the n’th halving of h and the k’th iteration
(each iteration increasing the order by 2).



CHAPTER 3. NUMERICAL METHODS FOR DEP’S 91

Theorem 3.31 Richardson Extrapolation
If ψ is given by (3.32) and we define

D(n, 0) = ψ(h/2n), n = 0, 1, . . .(3.35)

D(n, k) =
4k

4k − 1
D(n, k − 1)− 1

4k − 1
D(n− 1, k − 1),(3.36)

k = 1, 2, . . . , n = k, k + 1, . . .

Then there exist constants {Aj,k+1} for all the index values indicated, such
that

D(n, k) = L+
∞∑

j=k+1

Aj,k+1

(
h

2n

)2j

k = 0, 1, 2, . . . , n = k, k + 1, . . .(3.37)

Proof: (Induction over k)

k = 0 : D(n, 0) = L+
∑∞

j=1 a2j
(
h
2n

)2j
by (3.32) and (3.35). Take Aj,1 = a2j .

Then (3.37) holds.
Assume that (3.37) holds for k − 1. (3.36) and (3.37) then gives

D(n, k)

=
4k

4k − 1

(
L+

∞∑
j=k

Aj,k

(
h

2n

)2j
)
− 1

4k − 1

(
L+

∞∑
j=k

Aj,k

(
h

2n−1

)2j
)

= L+

∞∑
j=k

4k − 4j

4k − 1
Aj,k

(
h

2n

)2j

= L+

∞∑
j=k+1

Aj,k+1

(
h

2n

)2j

for Aj,k+1 =
4k−4j

4k−1
Aj,k.

Computation:
To compute the iterations, the following triangle may be useful:

O(h2) O(h4) O(h6)
h D(0, 0) ↘
h
2

D(1, 0) →↘ D(1, 1) ↘
h
4

D(2, 0) → D(2, 1) → D(2, 2)
...

...
...

...
. . .

(3.38)

3.3 Classification and notation for FDM’s

Recall from section 3.1.1 that an FDM is constructed by replacing all deriva-
tives in some equation from the DEP (either the differential equation taken in



CHAPTER 3. NUMERICAL METHODS FOR DEP’S 92

some point or a boundary condition) by difference operators. This approach
leads to the optimal representation for the FDM. If instead the equations
resulting from this replacement process are scaled, i.e. multiplied through by
something other than the constant 1, then the resulting equations are not
the optimal representation. For example

Ũ1 = u∗,
1

h
(Ũi+1 − Ũi) = f(xi, Ũi), i = 1, . . . , n− 1

is an optimal representation for the DEP

u(t0) = u∗, u′(t) = f(t, u(t)), t > t0,

replacing u′(xi) by δ+hu(xi) whereas

Ũ1 = u∗, Ũi+1 − Ũi = hf(xi, Ũi), i = 1, . . . , n− 1,

where we have multiplied all but the first equation through by h, is a non
optimal representation .

Note that scaling does not change the solution. The reason that we are
concerned with the optimal representation is that we are interested in the
error in the finite difference solution u(xi)− Ũi. It turns out, that this error
can be computed more easily through the difference between the equations
in the optimal representation of the FDM and the equations in the DEP that
these are approximations of. For simplicity of notation, we shall write DEPi−
FDMi, i = 1, . . . , n for these differences and return with more explanation
later. Obviously, for this difference it is significant which representation for
the FDM we use: For example say DEPi − FDMi = 7 then clearly DEPi −
17 · FDMi �= 7 .

Another point to be made here is that an FDM should be considered a
method working on a class of DEP’s. (Recall the discussion about classes
of DEP’s at the end of section 1.1). For example, for the FDM above, it
is a method working for all continuous functions f of 2 variables that is
Lipschitz continuous in the second variable (to make the DEP well-posed)
and for all real numbers u∗ . In the following we will distinguish between
classes of DEP’s and single DEP’s lying in such a class, that we shall denote a
representative for the class, where the data is specified (but possibly unknown
to the reader). Classes of DEP’s are primarily used when we talk theory of
FDM’s while representatives of a class is used when we compute with an
FDM.

� For advanced readers 3.32 � Optimal representative for an FDM for
a class of DEP’s Here we present some further specification of the notion of
optimal representations for FDM’s. It may be skipped at the first reading or
all together, if the reader is satisfied with the exposition above.



CHAPTER 3. NUMERICAL METHODS FOR DEP’S 93

Definition 3.33 An FDM for a class of DEP’s is a prescription (algorithm)
that given a DEP in the class, i.e. given the data, results in a sequence of val-
ues Ũ1, . . . , Ũn serving as approximations to solution values u(x1), . . . , u(xn)
for the DEP in predetermined nodal points x1, . . . , xn.
If Ũ1, . . . , Ũn are given implicitly (and uniquely) by an n dimensional system
of equations

Ψ(Ũ1, . . . , Ũn) = 0,(3.39)

where Ψ depends on the data, then such a system is called a Representation
for the FDM for the class of DEP’s.
Given a representation for an FDM for a class of DEP’s, Ψ(Ũ1, . . . , Ũn) =
0, we shall identify the FDM for the class of DEP’s with the Represen-
tation Class consisting of all non singular scalings of the representation,
diag(b1, . . . , bn)Ψ(Ũ1, . . . , Ũn) = 0, for any non zero scalars b1, . . . , bn.

As Ũi is our approximation to u(xi) for i = 1, . . . , n, for the various i,
some of the Ψi in (3.43) are approximations to the differential equation(s)
of the DEP evaluated in various points and others to approximations to the
additional (boundary) conditions. For example for (3.2) on page 62, equation
i for i = 2, . . . , n − 1 corresponds to an approximation of the differential
equation in the nodal point xi, while the first and last equation for i = 1
and i = n correspond to approximations to the boundary conditions in xi
. Below, we shall meet examples where the situation is more complicated

and where equation i is an approximation to some equation of the DEP that
is not necessarily “located” in the nodal point xi. Actually, we shall meet
equations located in points that are not even nodal points. As a matter of
fact, it may not even be clear up front at exactly what points the equations
are located. In any case however, the Ψi’s are connected to Approximation
Points zi, i = 1, . . . , n and we denote the approximated equations of the class
of DEP’s by

Fi(zi, u(zi), u
′(zi), u′′(zi), . . . , u(L)(zi)) = 0, for i = 1, . . . , n,(3.40)

where F = (F1, . . . , Fn) is denoted the data and L is the order of the high-
est derivative occurring in the DEP. Hence we have complicated our lives
by introducing a possibly unknown set of approximation points {zi}ni=1. To
complicate our lives even further, the Ψi’s are only representations for the
FDM. The complete FDM is represented by biΨi = 0, i = 1, . . . , n for arbi-
trary constants bi. Now why is this at all relevant? The answer lies in the
error:

Our measure of “goodness” of an FDM is that the errors u(xi) − Ũi
between the exact solutions to the DEP in the nodal points and the (exact)



CHAPTER 3. NUMERICAL METHODS FOR DEP’S 94

solutions to the FDM are small for all i = 1, . . . , n. This would mean that our
approximation is good, since we use Ũi as the approximation of u(xi) for i =
1, . . . , n. It turns out to be hard to evaluate these errors directly, but also that
we can compute the error in two steps, the first of which involves the error
between the DEP and the FDM. But how do we measure the error between
a differential equation problem and a finite difference method? The answer
turns out to be that the correct measure is supv |Fi(zi, v(zi), . . . , v(L)(zi)) −
biΨi(v(x1), . . . , v(xn))| for i = 1, . . . , n. This error involves the worse function
v among all functions in the solution space of the DEP, for example C2([0, 1])
for (3.1) on page 59 , which is plugged into not only the DEP (Fi) but also
the FDM (Ψi). More importantly the error could depend on the selection of
both bi and zi. The error we “need” in order to connect the error between the
DEP and the FDM to the error between the solutions to the DEP and the
FDM turns out to be the smallest possible one. Hence we need to distinguish
the zi’s and the bi’s giving the smallest error. This is done in definition 3.34
below where these optimal choices are called yi and ai respectively.

For now, and for the rest of this note, we shall only consider sufficiently
smooth classes of DEP’s where the data is so smooth that both the data and
the corresponding solutions to (3.40) belong to Cqi where qi is introduced in
the following definition. The aim of the definition is to introduce notation
allowing us to distinguish between the many representations of an FDM.

Definition 3.34 Let h be a typical (step length) parameter for an FDM
with a representation (3.39) consisting of approximations to the equations in
(3.40), let VF be the solution space for the DEP with data F , let Ψi = 0, i =
1, . . . , n be any representation in the representation class generated by (3.39)
with data F and let {zi}ni=1 be any set of approximation points for (3.40).
Let for any i ∈ {1, . . . , n}, qi(bi, zi) be the largest real numbers such that

sup
F

sup
v∈VF

|Fi(zi, v(zi), v′(zi), v′′(zi), . . . , v(L)(zi))(3.41)

− biΨi(v(x1), . . . , v(xn))| = Oh→0(h
qi(bi,zi)),

where the supremum over F is over all valid data which is so smooth that
Fi ∈ Cqi(bi,zi) and also VF ⊆ Cqi(bi,zi). Let for i = 1, . . . , n, ai and yi be selec-
tions of bi and zi, maximizing qi(bi, zi) over all real numbers bi and over all
approximation points zi and let qi(ai, yi) = qi.
Φi = aiΨi = 0, i = 1, . . . , n, i.e. (3.39) is then denoted an Optimal Rep-
resentation for the FDM for the class of DEP’s with respect to (3.40) and
y1, . . . , yn are denoted Optimal Approximation Points for (3.39) with respect
to (3.40). Finally, for i = 1, . . . , n, qi is denoted the i’th local order of consis-
tency for the FDM for the class of DEP’s and q = mini=1,...,n |qi| is denoted
the global order of consistency. (See also definition 3.40).



CHAPTER 3. NUMERICAL METHODS FOR DEP’S 95

The optimal representation

Φi(Ũ1, . . . , Ũn) = 0, for i = 1, . . . , n.(3.42)

for an FDM is important for the derivation of the theoretical properties
(most importantly consistence and convergence) of the FDM. For compu-
tations with the FDM, any representation will do, because the solution is
independent of which representation is selected.

The optimal approximation points are generally not unique but may be
chosen within O(hq)-neighborhoods of certain points where q depends on the
consistency orders of the difference operators involved. Often the optimal
approximation points yi may be chosen to be nodal points, and often the yi’s
are also repeated like y1 = x1, yi+1 = xi for i = 1, . . . , n − 1. The repeated
points will then typically correspond to one or more boundary conditions
and a differential equation. The optimal approximation points are not im-
portant in themselves. Their importance lie entirely in the role they play for
the determination of the optimal representation for the FDM for the DEP.
The representation {Φi}ni=1 most closely approximating the equations {Fi}ni=1

from the DEP is clearly optimal. Normally it is a question of selecting plus or
minus the appropriate powers of h to multiply the given representation with,
in order to transform the equations into approximations to the differential
equations. Once having found an optimal representation, qi can be recovered
from an arbitrary v, as for example the exact solution to the DEP u, as long
as “occational zero’s”, like u′′(xi) = 0, are not taken into consideration. �

We shall use the following generic form for a representation of a general
FDM corresponding to a general class of DEP’s

Ψi(Ũ1, . . . , Ũn) = 0, for i = 1, . . . , n.(3.43)

The Ψi depend on the data but may also depend on other known items as
for example the nodal points. See for example equation (3.2) on page 62
for a practical example. There Ψ1(Ũ1, . . . , Ũn) = Ũ1 = 0, Ψi(Ũ1, . . . , Ũn) =
−δ20Ũi−fi = − 1

h2
(Ũi−1−2Ũi+Ũi+1)−fi = 0, i = 2, . . . , n−1, Ψn(Ũ1, . . . , Ũn) =

δ−Ũn = 1
h
(Ũn − Ũn−1) = 0 .

Note that the n equations in an FDM are each approximations to some
equation in the class of DEP’s being approximated. For the example above
Ψ1(Ũ1, . . . , Ũn) = 0 approximates the left boundary condition u(0) = 0 while
Ψn(Ũ1, . . . , Ũn) = 0 approximates the right boundary condition u′(1) = 0.
For i = 2, . . . , n− 1, Ψi(Ũ1, . . . , Ũn) = 0 finally approximates the differential
equation in the point xi, i.e. −u′′(xi) = f(xi) . In general it is not this



CHAPTER 3. NUMERICAL METHODS FOR DEP’S 96

simple, that the i’th equation in the FDM is an approximation of an equa-
tion from the DEP in the i’th nodal point xi. In a given case, the point may
not even be a nodal point. Generally we shall denote these optimal approxi-
mation points by y1, . . . , yn and we shall write the equations from the DEP
being approximated by the equations Ψi = 0 of the FDM as

Fi(yi, u(yi), u
′(yi), u′′(yi), . . . , u(L)(yi)) = 0, for i = 1, . . . , n,(3.44)

with L being the order of the differential equation in the DEP.
The Ψi’s in (3.43) may be explicitly or implicitly given functions. So

far we have only met explicitly given functions, but in section 4.5 we shall
encounter also implicitly given Ψi’s. For example Ψ1(Ũ1, . . . , Ũn) = Ũ1 ex-
presses Ψ1 explicitly while tan(Ψ1(Ũ1, . . . , Ũn)) = 0 expresses Ψ1 implicitly,
even though it is fairly easy to make an explicit representation in this case
simply by taking the inverse tangent on both sides . If (3.43) for all valid
data can be written in the form

Ũi = ψi(Ũ1, . . . , Ũi−1), for i = 1, . . . , n,(3.45)

for explicitly given ψi’s (possibly after a renumbering of the nodal points),
then the FDM is said to be Explicit: For an explicit FDM the unknowns
{Ũi}ni=1 can be recovered one by one with only a function evaluation. Oth-
erwise the FDM is called Implicit: For an implicit FDM a system of equa-
tions must be solved in order to recover the unknowns {Ũi}ni=1. For example
Ũi = 3Ũi−1+Ũ

2
i−2 could be part of an explicit method while Ũ2

i = 3Ũi−1+Ũi−2

normally would be part of an implicit method since the recovery of Ũi requires
the solution of a nonlinear equation, although a simple one .

If (3.43) can be written in the form

Ψi(Ũji−s, . . . , Ũji) = 0, for some ji ∈ {1, . . . , n} and i = 1, . . . , n,(3.46)

(possibly after a renumbering of the nodal points), then the FDM is said
to be an s Step Method or a Multi Step Method for s ≥ 2: For an s step
method, at most s+ 1 consequtive unknowns are involved in each equation.
For example Ũ3+3Ũ4 = 3 could be part of a 1 step method while Ũ3+3Ũ5 = 3
would be part of a multi step method with at least 2 steps . Since Ũi is
our approximation to the exact solution in the nodal point xi, we simply
count how many steps we need to go from the first nodal point involved in
an equation to the last one.



CHAPTER 3. NUMERICAL METHODS FOR DEP’S 97

3.3.1 Euler, Crank-Nicolson and Heun methods for
u′ = f(x, u) – Optimal representations

In this section we give examples based on (1.10) on page 16 to clarify the
optimality issues introduced above. We shall use a Uniform Step Length for
our FDM’s meaning that the nodal points are equidistributed i.e. xi+1−xi =
h for all i = 1, . . . , n−1 and we shall take I = (x0, x0+(n−1)h) and x1 = x0.
(Here x0 is the position of the boundary condition while x1 is the first of the
nodal points for the FDM). (1.10) then takes the form

Find u ∈ C1(I) : u′(x) = f(x, u(x)) ∀x ∈ I = (x1, x1 + (n− 1)h),(3.47)

u(x1) = u∗.

We shall use the notation of § 2.1 on page 19ff and § 3.1.1 on page 60ff
except that here f is a function of 2 variables and we need to distinguish
fi = f(xi, ui) from f̃i = f(xi, Ũi).

The class of DEP’s that we shall consider is then (3.47) with any value of
u∗ and any bi-variate function f (including bi-variate functions that actually
depend on only one of the variables) that is sufficiently smooth to allow the
Taylor expansions of f and the solutions u needed to obtain the highest
possible order of consistency. (If this is too vague, just assume f to be
infinitely smooth). Let us consider some FDM’s for this class of DEP’s, that
are so much in use that they have been given names.

Example 3.35 The Forward Euler Method

The forward Euler method is constructed by replacing the first derivative u′i
in (3.47) by δ+hui:

Ũ1 = u∗, δ+hŨi−1 = f̃i−1 ⇔ Ũi = Ũi−1 + hf̃i−1, i = 2, . . . , n.(3.48)

This is obviously an explicit one step method. The optimal representation
is the first equation and the equations on the left side of the biimplication.
Instead the first equation and the equations on the right side of the biim-
plication makes up a well scaled system adapted for practical computations.

Example 3.36 The Backward Euler Method

The backward Euler method is constructed by replaceing the first derivative
u′i in (3.47) by δ−hui:

Ũ1 = u∗, δ−hŨi = f̃i ⇔ Ũi = Ũi−1 + hf̃i, i = 2, . . . , n.(3.49)



CHAPTER 3. NUMERICAL METHODS FOR DEP’S 98

This is obviously an implicit one step method unless f does not depend on
or is linear in its second variable (Ũi). The optimal representation is the first
equation and the equations on the left side of the biimplication. Instead the
first equation and the equations on the right side of the biimplication makes
up a well scaled system adapted for practical computations.

Note that FDM’s generally can be expressed in many mathematically
equivalent but notationally different ways. For example for (3.49) we have
δ−hŨi = δ+hŨi−1 and the last equation may alternatively be expressed as
Ũi+1 = Ũi + hf̃i+1, i = 1, . . . , n − 1. With the notation we have chosen, i
denotes the number of the equation in the equation system.

Example 3.37 The Crank-Nicolson Method

Ũ1 = u∗,(3.50)

1

2

(
δ+hŨi−1 + δ−hŨi

)
=

1

2

(
f̃i−1 + f̃i

)
⇔ Ũi = Ũi−1 +

h

2

(
f̃i−1 + f̃i

)
,

i = 2, . . . , n.

Being the average of the forward and backward Euler methods this is obvi-
ously an implicit one step method unless f does not depend on or is linear in
its second variable. The optimal representation is the first equation and the
equations on the left side of the biimplication. Instead the first equation and
the equations on the right side of the biimplication makes up a well scaled
system adapted for practical computations.

Example 3.38 The Heun Method

Ũ1 = u∗,(3.51)

1

2

(
δ+hŨi−1 + δ−hŨi

)
=

1

2

(
f̃i−1 + φi

)
⇔ Ũi = Ũi−1 +

h

2

(
f̃i−1 + φi

)
,

i = 2, . . . , n,

where φi = f(xi, Ũi−1+hf̃i−1). This is obviously an explicit one step method
and to understand its origin, consider it an “explicitification” of the Crank-
Nicolson method where the implicit part f̃i has been changed according
to f̃i = f(xi, Ũi) � f(xi, ui) = f(xi, ui−1 + hu′i−1 + . . .) = f(xi, ui−1 +

hf(xi−1, ui−1) + . . .) � f(xi, Ũi−1 + hf(xi−1, Ũi−1)) = φi. (Here we have
used Taylor expansion and (1.10)).
The optimal representation is the first equation and the equations on the left



CHAPTER 3. NUMERICAL METHODS FOR DEP’S 99

side of the biimplication. Instead the first equation and the equations on
the right side of the biimplication makes up a well scaled system adapted for
practical computations.

In order to handle more complex methods like the Heun method, we brush
up on differentiation and the chain rule by stating the following results, where
we shall use on several occations that u′(x) = f(x, u(x)):

f ′(x, u(x)) = ∂1f + ∂2f · u′ = ∂1f + f∂2f.(3.52)

f ′′(x, u(x)) = ∂11f + 2∂12f · u′ + ∂22f · u′ + ∂2f · u′′(3.53)

= ∂11f + 2f∂12f + f∂22f + f ′∂2f.

Also defining φx(h) = f(x + h, u(x) + hf(x, u(x)) the following derivatives
are relevant

φ′(0) = ∂1f + f∂2f = f ′(x, u(x))(3.54)

φ′′(0) = ∂11f + 2f∂12f + f 2∂22f(3.55)

= f ′′(x, u(x))− f ′(x, u(x))∂2f(x, u(x))

The details of the derivation of these equalities are left to the reader as
needed.

� For advanced readers 3.39 � Optimal representative for the Euler,
Crank-Nicolson and Heun methods. For those who have studied section 3.32
we give here some more details in the derivation of the optimal representa-
tions of the methods presented above:

The Forward Euler Method revisited
The details of the optimality according to definition 3.34 are as follows: The
first equation in (3.48) is an approximation of the boundary condition (actu-
ally it is exact) so that y1 = x1, Φ1 = Ũ1− u∗ and F1 = u(x1)− u∗ (compare
to (3.42) and (3.40)). The remaining equations are approximations of the
differential equation in various points and we have Fi = u′(yi)− f(yi, u(yi))
for i = 2, . . . , n. To find the optimal approximation points yi and the opti-

mal representation Φi, we shall take Φci,ri
i = cih

ri

(
δ+hŨi−1 − f̃i−1

)
for some

constants ci and ri, covering all representations in the representation class



CHAPTER 3. NUMERICAL METHODS FOR DEP’S 100

generated by (3.48). We then see by Taylor expansion that

Φci,rii (v(x1), . . . , v(xn))− Fi(yi, v(ui), v′(yi))(3.56)

= cih
ri

(
v(xi)− v(xi−1)

h
− f(xi−1, v(xi−1))

)
− (v′(yi)− f(yi, v(yi)))

= cih
ri−1

(
v(yi) + (xi − yi)v′(yi) + (xi − yi)2

2
v′′(yi) + . . .

−v(yi)− (xi−1 − yi)v′(yi)− (xi−1 − yi)2
2

v′′(yi)− . . .
)

−v′(yi) + f(yi, v(yi))

−cihri
(
f(yi, v(yi)) + (xi−1 − yi)

(
∂1f(yi, v(yi))

+v′(yi)∂2f(yi, v(yi))
)
+ . . .

)
= cih

ri
(
v′(yi) + (

xi + xi−1

2
− yi)v′′(yi) + . . .

)
−v′(yi) + f(yi, v(yi))

−cihri
(
f(yi, v(yi)) + (xi−1 − yi)

(
∂1f(yi, v(yi))

+v′(yi)∂2f(yi, v(yi))
)
+ . . .

)
.

We need to select ci, ri and yi so that this has the highest possible order for
all smooth v and an arbitrary f . Since v is not necessarily a solution to the
differential equation, we can not depend on −v′(yi) + f(yi, v(yi)) being zero
and hence this term is generally of order 0 (Oh→0(h

0)). We can do better
than that only by taking ci = 1 and ri = 0 resulting in

Φ1,0
i (v(x1), . . . , v(xn))− Fi(yi, v(ui), v′(yi))(3.57)

= (
xi + xi−1

2
− yi)v′′(yi)

−(xi−1 − yi)
(
∂1f(yi, v(yi)) + v′(yi)∂2f(yi, v(yi))

)
+ . . .

= Oh→0(h
q)

if yi =
xi + xi−1

2
+Oh→0(h

q) ∧ yi = xi−1 +Oh→0(h
q).

But xi+xi−1

2
= xi−1 +

h
2
= xi−1 +Oh→0(h) so that the largest obtainable q is

q = 1. In conclusion we arrive at the optimal selections Φi = δ+hŨi−1 − f̃i−1

and yi = xi−1 for i = 2, . . . , n corresponding to the left hand side of the
biimplication in (3.48). Instead the right hand side is part of a non optimal



CHAPTER 3. NUMERICAL METHODS FOR DEP’S 101

representation of the forward Euler method. Obviously all selections of yi
within Oh→0(h) neighborhoods of xi−1 would work as well, so that we might
select yi = xi or yi = xmax{n,i+5} whereas yi = xn would not be be optimal.

Having done the algebra once, it is normally easy to recognize the optimal
representation for an FDM for a DEP. We just need to select the representa-
tion giving the best approximation to the differential equations and boundary
conditions being approximated. The difference operators then eliminate the
differential operators up to the order of consistency of the difference opera-
tors.

The Backward Euler Method revisited
A short version of the details about the optimality according to definition 3.34
are as follows: The first equation in (3.49) is an approximation of the bound-
ary condition (actually it is exact) so that y1 = x1, Φ1 = Ũ1 − u∗ and
F1 = u(x1)−u∗ (compare to (3.42) and (3.40)). Also yi = xi, Φi = δ−hŨi− f̃i
and Fi = u′(xi)−f(xi, u(xi)) for i = 2, . . . , nmay be verified as above. Hence,
the left hand side of the biimplication in (3.49) together with the initial con-
dition gives an optimal representation of the backward Euler method, while
the right hand side is part of a non optimal representation. Again yi = xi is
by no means a unique choice. yi may be changed within a Oh→0(h) neigh-
borhood without losing the optimality.

The Crank-Nicolson Method revisited
A short version of the details about the optimality according to definition 3.34
are as follows: The first equation in (3.50) is an approximation of the bound-
ary condition (actually it is exact) so that y1 = x1, Φ1 = Ũ1 − u∗ and
F1 = u(x1) − u∗ (compare to (3.42) and (3.40)). Also yi = xi− 1

2
:= xi − h

2

for i = 2, . . . , n is an optimal choice. Then Φi = δ+hŨi−1 − 1
2

(
f̃i−1 + f̃i

)
and Fi = u′(xi− 1

2
) − f(xi− 1

2
, u(xi− 1

2
)) for i = 2, . . . , n. Again, the left hand

side of the biimplication in (3.50) together with the initial condition gives an
optimal representation of the Crank Nicolson method, while the right hand
side is part of a non optimal representation.

The Heun Method revisited
A short version of the details about the optimality according to defini-
tion 3.34 are as follows: The first equation in (3.51) is an approximation
of the boundary condition (actually it is exact) so that y1 = x1, Φ1 = Ũ1−u∗
and F1 = u(x1) − u∗ (compare to (3.42) and (3.40)). Treating Heun’s
method the same way as Crank-Nicolson, we take yi = xi− 1

2
:= xi − h

2
,



CHAPTER 3. NUMERICAL METHODS FOR DEP’S 102

Φi = δ+hŨi−1 − 1
2

(
f̃i−1 + φi

)
and Fi = u′(xi− 1

2
) − f(xi− 1

2
, u(xi− 1

2
)) for

i = 2, . . . , n. Again, the left hand side of the biimplication in (3.51) to-
gether with the initial condition gives an optimal representation of the Heun
method, while the right hand side is part of a non optimal representation.
�

3.4 Error analysis for FDM’s: Consistency,

convergence and stability

Obviously (see also §3.1.1), when we approximate a DEP with an FDM, we
do not get exact results, i.e. u(xi) is not necessarily the same value as Ũi. To
be able to distinguish between different FDM’s we are interested in assessing
the n-dimensional Error vector e = u − Ũ where u = (u(x1), . . . , u(xn))

T .
If we could compute e then we would also know u, i.e. the exact solution
in the nodal points. This is not possible. Instead we may compute an
approximation to e. Methods (depending on Ũ) for doing this is developed
in the A Posteriori Error Analysis which we shall not consider here. Instead
we shall concentrate on the A Priori Error Analysis where we investigate the
error based on knowledge about the DEP. We subdivide into the Aymptotic
Analysis dealing with the asymptotic behavior of the error, limh→0 ‖e‖, where
h is a typical (step length) parameter for the FDM and the Non Asymptotic
Analysis dealing with the error for finite values of h.

For the a priori error analysis, we need to introduce some concepts based
on (3.42) and (3.40):

Definition 3.40 Let

FDM(Ũ) = (Φ1(Ũ1, . . . , Ũn), . . . ,Φn(Ũ1, . . . , Ũn))
T = 0(3.58)

be an optimal representation for the n equations in an FDM and let

DEP(u) = (F1(y1, u(y1), u
′(y1), u′′(y1), . . . , u(L)(y1)), . . . ,(3.59)

Fn(yn, u(yn), u
′(yn), u′′(yn), . . . , u(L)(yn)))T = 0

be the equations in the class of DEP’s that are being approximated by the
FDM.
Define the Vector of Local Truncation Errors for the FDM wrt. the class of
DEP’s by

τ = sup
F

[
FDM(u)−DEP(u)

]
= sup

F

[
FDM(u)

]
.(3.60)



CHAPTER 3. NUMERICAL METHODS FOR DEP’S 103

Note the replacement of the approximate solution values Ũj by the exact so-
lution values u(xj) for j = 1, . . . , n in FDM.
Define the Global Truncation Error for the FDM wrt. the class of DEP’s by

τ = max
i=1,...,n

|τi| = ‖τ‖∞ = sup
F
‖FDM(u)−DEP(u)‖∞(3.61)

= sup
F
‖FDM(u)‖∞.

Define the Global Order of Consistency for the FDM wrt. the class of DEP’s
as the biggest number q such that τ = Oh→0(h

q).
We say that the FDM is Consistent with the class of DEP’s iff τ → 0 as
h→ 0 which happens in particular if q > 0. Otherwise it is inconsistent.
Define the Global Order of Convergence for the FDM towards the class of
DEP’s, measured in the �∞-norm as the biggest number p ≥ 0 such that
supF ‖e‖∞ = Oh→0(h

p), where e = u − Ũ with ui = u(xi) and Ũi = Ũi for
i = 1, . . . , n.
We say that the FDM is Convergent to the class of DEP’s in the �∞-norm
iff supF ‖e‖∞ → 0 as h → 0 (in particular if p > 0). Otherwise it is non
convergent.
Convergence is defined similarly for other measures than the �∞-norm. Note
that the order of convergence may depend on the choice of measure.

The supF occurring in various places in definition 3.40 is over all smooth
data of the class of DEP’s being considered. For example, for u′(x) =
f(x, u(x)) the right hand side function f is data, and we only consider func-
tions that are sufficiently smooth to allow the necessary Taylor expansions to
compute the order of consistency. Typically we omit the supremum from the
notation, implicitly assuming (1) that the data is sufficiently smooth that we
do not need to worry about it and (2) that f does not have any special prop-
erties apart from those expressed by the DEP (like u′(x) = f(x, u(x))). That
is, we can not make difficult terms “disappear” from our Taylor expansions
by assuming that f is selected so that they are zero.

� For advanced readers 3.41 � Local consistency and convergence. Not
only global consistency and convergence but also local consistency and con-
vergence may be defined along the lines of definition 3.40. For completeness,
we shall give the definition here, but emphasize, that the local definitions will
not be used in this note, and hence the following definition can be omitted
at the readers discretion:

For the local definitions it is important to recall the discussion in con-
nection to figure 3.3 on page 78. For example local consistency in a point



CHAPTER 3. NUMERICAL METHODS FOR DEP’S 104

z involves a sequence of local truncations errors τi where i changes (goes to
∞) as h→ 0 in order that xi → z .

Definition 3.42 Let z be any point in the domain of definition of u and let
{x(k)ik

}∞k=1 be any sequence of nodal points converging to z as k →∞.
Define the Local Order of Consistency for the FDM wrt. the class of DEP’s in
the point z as the biggest number qz ≥ 0 such that {τ (k)ik

}∞k=1 = Ok→∞((h(k))qz),

i.e. {τ (k)ik
/(h(k))qz}∞k=1 is a bounded sequence. We say that the FDM is locally

consistent with the class of DEP’s in the point z if τ
(k)
ik
→ 0 as k → ∞.

Otherwise, the FDM is locally inconsistent with the class of DEP’s in z.
Define the Local Order of Convergence for the FDM towards the class of
DEP’s, in the point z as the biggest number pz ≥ 0 such that {supF |u(z)−
Ũ

(k)
ik
|}∞k=1 = Ok→∞((h(k))pz), i.e. {supF |u(z)−Ũ (k)

ik
|/(h(k))pz}∞k=1 is a bounded

sequence. We say that the solution of the FDM is converging to the solution
of the DEP in z if |u(z) − Ũ (k)

ik
| → 0 as k → ∞. Otherwise, the solution of

the FDM is not converging to the solution of the DEP in z.

�
Note that while error and convergence measures the difference between the
exact and the approximated solution, truncation error and consistency mea-
sures the difference between the DEP and the optimal representation of the
FDM (allthough of course DEP(u) = 0 by definition). Obviously these
notions are different, but they are connected by the notion of zero stability:

Definition 3.43 Let ε be any positive real number, and δε,1, . . . , δε,n any real
numbers satisfying |δε,i| < ε, for i = 1, . . . , n. The problem

Φi(Z̃ε,1, . . . , Z̃ε,n) = δε,i, for i = 1, . . . , n,(3.62)

is called an ε-Perturbation of (3.42) or (3.58).
The representation (3.42) of the FDM is Zero Stable in the �∞ norm (with
respect to ε-perturbations) if for all ε-perturbations (3.62) (fixed ε but arbi-
trary δ’s) ∃h0 > 0, ∃C > 0 (independent of h, ε and δε,i for i = 1, . . . , n)
such that |Ũi − Z̃ε,i| < Cε ∀i = 1, . . . , n, ∀h ∈]0, h0], i.e. for sets of nodal
points, large enough to give sufficiently small step lengths.
More generally, zero stability in a sequence of distance measures {dk}∞k=1

requires dk(Ũ− Z̃) < Cε for all k sufficiently big.

Note that zero stability is nothing but continuous dependence on data for
the FDM solutions and hence the discrete version of Liapunov stability.



CHAPTER 3. NUMERICAL METHODS FOR DEP’S 105

Recalling (3.60), it is clear that the exact solution vector (u1, . . . , un)
T is

nothing but the solution to the perturbed problem (3.62), taking δε,i = τi.
This is the key to the proof af the following theorem which is the central
convergence theorem of these notes:

Theorem 3.44 The Convergence Theorem of Lax
An FDM which is consistent of order q with a class of DEP’s and has an
optimal representation which is zero stable in a sequence of distance measures
is also convergent of order q in that sequence of distance measures to the
solution to the DEP.
Or in short form as a help for memorizing:
for consistent methods, zero stability implies convergence.

Proof:
Consider a particular ε-perturbation in (3.62), taking δε,i = τi for i = 1, . . . , n
which is allowed since (3.42) is consistent and which allows ε = τ = O(hq).
But for this particular perturbation Z̃ε,i = u(xi) for i = 1, . . . , n. The zero
stability of the FDM then shows by definition 3.43 that for sufficiently small
h there exists a positive constant C such that

|u(xi)− Ũi| < Cτ = Oh→0(h
q) for i = 1, . . . , n,(3.63)

where the equality comes directly from consistency. Using this result on a
sequence of points {x(k)ik

}∞k=1 converging to any point x ∈ I we have pointwise
convergence in x.

Note that zero stability is uniform in the sense that it applies with the same
C and ε to all nodal points x

(k)
i whenever h(k) < h0 i.e. in the box I×]0, h0].

Hence in (3.63) we have also proven a sort of semi uniform convergence.
(Full uniform convergence, i.e. small error in all nodal points below a certain
h0, would also require uniform consistency. For normal convergence, the h0
will depend on the sequence of nodal points that we are following towards
convergence). The semi uniform convergence that follows from zero stability
again implies zero stability: Just note that the τ ’s can really be anything.
Renaming them to ε’s (and renaming the u(xi) to Z̃ε,i) we recover the zero
stability. Hence zero stability is not only sufficient but also necessary to
obtain (semi) uniform convergence. We shall here not get into further details
about uniform convergence. We shall settle for the non uniform convergence
defined above.

Showing consistency of an FDM is normally little more than showing con-
sistency of the difference operators replacing the differential operators. The
rest of the way to convergence is then covered by the notion of zero stability.
We postpone convergence and zero stability to the following sections and
consider here only consistency.



CHAPTER 3. NUMERICAL METHODS FOR DEP’S 106

3.4.1 Euler, Crank-Nicolson and Heun methods for
u′ = f(x, u) – Consistency

Let us consider the issue of consistency for the 4 FDM’s for (3.47) from
examples 3.35–3.38 on page 97:

Example 3.45 Forward Euler
τ = (0, {[δ+hu(xi) − f(xi, u(xi))] − [u′(xi) − f(xi, u(xi))]}n−1

i=1 )
T = Oh→0(h)

by (3.21).

Example 3.46 Backward Euler
τ = (0, {[δ−hu(xi)−f(xi, u(xi))]− [u′(xi)−f(xi, u(xi))]}ni=2)

T = Oh→0(h) by
(3.22).

Example 3.47 Crank Nicolson
τ = (0, {[δ+hui− f(xi,u(xi))+f(xi+1,u(xi+1))

2
]− [u′(xi+ 1

2
)−f(xi+ 1

2
, u(xi+ 1

2
))]}n−1

i=1 )
T

= Oh→0(h
2) by exercise 3.49.

Example 3.48 Heun’s method
τ = (0, {[δ+hui − f(xi,u(xi))+f(xi+1,u(xi)+hf(xi,u(xi)))

2
]−

[u′(xi+ 1
2
)− f(xi+ 1

2
, u(xi+ 1

2
))]}n−1

i=1 )
T = Oh→0(h

2) by exercise 3.50.

Note the importance of using optimal representations Φ(Ũ1, . . . , Ũn) = 0
for the calculation of the orders of consistency. Otherwise, considering any
representation Ψ(Ũ1, . . . , Ũn) = 0 obtained by multiplying the optimal rep-
resentation with some power of h, we could get any orders of Ψ(u1, . . . , un).

Exercise 3.49
Use Taylor expansion to prove the consistency result for the Crank Nicolson
method from example 3.47.

Exercise 3.50
Use Taylor expansion to prove the consistency result for Heun’s method from
example 3.48.

Exercise 3.51
What difference would it make for the order of consistency, to consider the
Crank Nicolson method an approximation in xi instead of xi+ 1

2
.



Chapter 4

FDM’s for u′ = f (x, u)

4.1 Convergence and stability of explicit, one

step FDM’s for u′ = f(x, u)

We shall here consider only uniform step length, explicit, one step FDM’s for
(3.47), repeated here again for reference:

Find u ∈ C1(I) : u′(x) = f(x, u(x)) ∀x ∈ I = (x1, x1 + (n− 1)h),

u(x1) = u∗.

Further, we shall consider only FDM’s that can be written in the form

Ũ1 = Ũ∗, Ũi = Ũi−1 + hφ(Ũi−1), i = 2, . . . , n,(4.1)

where the nodal points are distributed uniformly, i.e. xi = x1 + (i − 1)h,
i = 1, . . . , n and I = (x1, xn). Here, apart from Ũi, the Increment Function
φ may also depend on known factors such as f , h, x1, . . . , xn etc.

We shall assume that (4.1) is consistent of global order q. To use defini-
tion 3.40 on page 102 we first need to put (4.1) in the form of an optimal
representation, i.e. in the form of an approximation to (1.10). This is easily
done rewriting (4.1) into

Ũ1 = Ũ∗, δ+hŨi−1 = φ(Ũi−1), i = 2, . . . , n.(4.2)

The first equation is obviously an optimal approximation of the initial condi-
tion in x1. Regarding the other equations, the one with index i is an optimal
approximation of the differential equation in (3.47) in the point xi−1. Hence
consistence of global order q by definition 3.40 on page 102 turns into the

107



CHAPTER 4. FDM’S FOR U ′ = F (X,U) 108

conditions:

τ1 = (u(x1)− Ũ∗)− (u(x1)− u∗) = u∗ − Ũ∗ = Oh→0(h
q),(4.3)

τi = (δ+u(xi−1)− φ(u(xi−1)))− (u′(xi−1)− f(xi−1, u(xi−1)))

= δ+u(xi−1)− φ(u(xi−1))) = Oh→0(h
q), i = 2, . . . , n.

The observations about what equations in (4.2) corresponds to what equa-
tions in (3.47) are of course superfluous since the left hand side of the differ-
ential equation is zero in any point. This was also noted (for the advanced
readers) already in section 3.3 below definition 3.34 on page 94.

The ε-perturbation of the optimal representation (4.2) (see definition (3.43)
on page 104) is

Z̃ε,1 = Ũ∗ + δε,1, δ+hZ̃ε,i−1 = φ(Z̃ε,i−1) + δε,i, i = 2, . . . , n.(4.4)

Here |δε,i| < ε for i = 1, . . . , n.
The discrete result corresponding to theorem 1.16 on page 16 is

Theorem 4.1 If φ is globally Lipschitz continuous, say with constant Λ in-
dependent of h and x1, . . . , xn, then the optimal representation (4.2) for the
explicit, one step FDM’s for (3.47), is Zero Stable.

� For advanced readers 4.2 �
Proof:
Summing over i = 2, . . . , j where j ≤ n in (4.2) and (4.4) we get, noting the
telescoping sum on the left hand side,

1

h
(Ũj − Ũ1) =

j∑
i=2

φ(Ũi−1) and
1

h
(Z̃ε,j − Z̃ε,1) =

j∑
i=2

(
φ(Z̃ε,i−1) + δε,i

)
⇓
1

h
(Z̃ε,j − Ũj) = 1

h
δε,1 +

j∑
i=2

δε,i +

j∑
i=2

(
φ(Z̃ε,i−1)− φ(Ũi−1)

)
⇓

|Z̃ε,j − Ũj | ≤ |δε,1|+ h

j∑
i=2

|δε,i|+ hΛ

j∑
i=2

|Z̃ε,i−1 − Ũi−1|

⇓

|Z̃ε,j − Ũj | ≤ (|δε,1|+ h

j∑
i=2

|δε,i|)e(j−1)hΛ < (1 + (j − 1)h)εe(j−1)hΛ < Cε,



CHAPTER 4. FDM’S FOR U ′ = F (X,U) 109

where C = (1+ |I|)e|I|Λ and where the first inequality on the last line comes
from the Discrete Gronwall lemma in the form

φ1 ≤ |c1|, φj ≤
j∑
i=1

|ci|+
j∑
i=2

|bi|φi−1, for j ≥ 2(4.5)

⇒ φj ≤ (

j∑
i=1

|ci|)e
∑j

i=2 |bi|, for j ≥ 2,

taking φj = |Z̃ε,j − Ũj |, c1 = δε,1, ci = hδε,i, bi = hΛ, i = 2, . . . , j. (For a
proof of Gronwall, see for example [16]).

Considering zero-stability for non optimal representations, each equation in
(4.2) may be multiplicated with a different constant and power of h in the
form cih

ri. For zero-stability, the constants are irrelevant, but multiplying
with powers of h would be equivalent to multiplicating each δε,i by the in-
verse power of h in (4.4). This corresponds to the consideration in (4.4) of
perturbations of the form

δε,i = h−ri δ̂ε,i, with δ̂ε,i < ε̂ for i = 1, . . . , n.(4.6)

In the proof of theorem 4.1 we would then get

|Z̃ε,j − Ũj | < (h−r1 + |I|max{h−r2, . . . , h−rn})e|I|Λε̂(4.7)

≤ (h−r10 + |I|max{h−r20 , . . . , h−rn0 })e|I|Λε̂
≤ h

max{−r1,...,−rn}
0 (1 + |I|)e|I|Λε̂,

for any h0 > h > 0 as long as −ri ≥ 0, for all i = 1, . . . , n. Instead if any of
the ri were to become positive, like in the representation (4.1) where ri = 1
for i = 2, . . . , n, we would not have a finite bound for all h ∈]0, h0[ for any
h0 > 0 and hence not have zero-stability. Hence also for zero-stability it is
important to consider an optimal representation for the FDM. �

Theorem 4.1 can easily be extended to a convergence result:

Theorem 4.3 Consider the FDM with representation (4.1) and optimal rep-
resentation (4.2) assumed to have global order of consistency q ≥ 0.
φ globally Lipschitz continuous ⇒ (4.2) is Zero Stable ⇒ the FDM is con-
vergent of order q in all points of I.

Proof:
The first implication is simply theorem 4.1 and the second implication simply
theorem 3.44 on page 105.

Now consider the 4 FDM’s for (3.47) from examples 3.35–3.38 on page 97:



CHAPTER 4. FDM’S FOR U ′ = F (X,U) 110

Example 4.4 Forward Euler
Here φ(Ũi) = f(xi, Ũi) so that if f is Lipschits in its second variable then
forward Euler is Zero stable and hence with the consistency result of exam-
ple 3.45 on page 106 forward Euler is convergent of order 1.

Example 4.5 Backward Euler
This method is implicit and can not be treated with the method of this
section. It will be considered below when the general theory for multi step
methods is developed.

Example 4.6 Crank Nicolson
This method is implicit and can not be treated with the method of this
section. It will be considered below when the general theory for multi step
methods is developed.

Example 4.7 Heun’s method
Here φ(Ũi) = 1

2
(f(xi, Ũi) + f(xi+1, Ũi + hf(xi, Ũi)) so that if f is Lipschits

continuous in its second variable with Lipschitz constant L then φ is Lipschits
continuous with Lipschitz constant Λ = L + hL2/2 so that Heun’s method
is Zero stable and hence with the consistency result of example 3.48 on page
106 Heun’s method is convergent of order 2.

Exercise 4.8
Verify the Lipschitz constant of Heun’s method stated in example 4.7.

Exercise 4.9
Write out the Crank-Nicolson method for (1.10) in the case I = (0, 4),
f(t, u(t)) = cos(t), t0 = 0 and u∗ = 0. Program, solve and compare the
numerical solutions graphically to the exact solution u(t) = sin(t). Do you
believe that Crank-Nicolson converges?

Exercise 4.10
Repeat exercise 4.9 for

1. Forward Euler

2. Backward Euler

3. Heun

Do you believe that Backward Euler converges?



CHAPTER 4. FDM’S FOR U ′ = F (X,U) 111

4.2 Non asymptotic error analysis – Absolute

stability for FDM’s for u′ = λu

For a numerical method that has to be evaluated on a computer, “convergence
is not everything”. Convergence tells us that if we select h small enough, then
the error is small. Unfortunately, we do not get a value for when h is small
enough. Even more unfortunate, the behavior of a numerical method may
depend dramatically on the value of h. As an exampe of this, consider the
following

Example 4.11 Forward Euler for u′(t) = −5u(t), t > 0, u(0) = 1
The exact solution to the DEP is u(t) = e−5t and the forward Euler method
takes the form Ũ1 = 1, Ũi = Ũi−1−5hŨi−1 = (1−5h)Ũi−1, i = 2, 3, . . . where
the nodal points are xi = (i−1)h, i = 1, 2, . . .. The solution to this difference
equation is easily found by iteration: Ũi = (1 − 5h)Ũi−1 = (1 − 5h)2Ũi−2 =
. . . = (1− 5h)i−1Ũ1 = (1− 5h)i−1.
We note that

• Ũi oscillates with i (changes sign from i even to i odd) with increasing
amplitude for h > 2

5

• Ũi oscillates with i with constant amplitude for h = 2
5

• Ũi oscillates with i with decreasing amplitude for 1
5
< h < 2

5

• Ũi is identicaly 0 (for i ≥ 2) for h = 1
5

• Ũi goes exponentially towards 0 for h < 1
5

In figure 4.1 on page 112 is shown various plots generated with Maple code
similar to the one shown in figure 4.2 on page 113. It is clear that h ≥ 2

5
is

directly unacceptable since the general form of the numerical solution graphs
are not similar at all to the form of the exact solution graph and also the
errors are very big. For 1

5
≤ h < 2

5
the oscillations are still misleading, but if

large errors are allowed this case could be acceptable. Not until h < 1
5
can we

say that the numerical solution has found a stable form that is reminiscent of
that taken by the exact solution, and which is maintained until convergence.

To capture at least part of the situation described in the example above
we introduce yet another stability notion: Absolute stability. Since this is
normally done using complex numbers, we shall start giving a short brush
up on complex numbers and the notation used in that connection.



CHAPTER 4. FDM’S FOR U ′ = F (X,U) 112

(a)

h > 2
5

–40

–20

0

20

40

1 2 3 4 5

x

(b)

h = 2
5

–1

–0.5

0

0.5

1

1 2 3 4

x

(c)

1
5
< h < 2

5

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2 2.5 3

x

(d)

h = 1
5

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x

(e)

h < 1
5

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

x

(f)

h� 1
5

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

x

Figure 4.1: Exact (u(t)) and numerical ({Ũi}10i=1) solutions for example 4.11
with a: h = 0.5, b: h = 0.4, c: h = 0.3, d: h = 0.2, e: h = 0.1, f: h = 0.01.
(For (f), {Ũi}100i=1 are plotted)



CHAPTER 4. FDM’S FOR U ′ = F (X,U) 113

h:=0.5: n:=10:

l := [seq([i*h,(1-5*h)^i],i=0..n)]:

p1:=plot(l, x=0..n*h, style=line):

p1x:=plot(l, x=0..n*h, style=point,symbol=circle):

p2:=plot(exp(-5*x),x=0..n*h):

with(plots):

display([p1,p1x,p2]);

Figure 4.2: Maple code for plot (a) in figure 4.1

Example 4.12 Complex numbers
The space of complex numbers, C, consists of all tuples (x, y) so that x and y
are real numbers, i.e. x, y ∈ R. Hence any complex number z can be identified
with some real tuple (x, y), i.e. z = (x, y). Another popular notation for the
same is z = x+iy where i is called the Imaginary unit. In many connections i
behaves as if it was really

√−1, but of course this similarity must be treated
with care since

√−1 is not defined at all. Instead it is solid enough to define
i2 = −1.
If z = (x, y) or z = x + iy, x is denoted the real part of z or Re(z) and
y is denoted the imaginary part of z or Im(z) so that we may also write
z = (Re(z), Im(z)) or z = Re(z) + iIm(z).
Graphically complex numbers are typically plotted in the Complex plane
which is a standard (x, y) coordinate system, with the real part x on the
horisontal axis, which is then also denoted the real axis, and the imaginary
part y on the vertical axis, which is then also denoted the imaginary axis.
Interpreting the tuple (x, y) as a vector going from (0, 0) to (x, y) and having
length

√
x2 + y2 we define the length of a complex number z = (x, y) as

|z| =√x2 + y2. Below, we shall need the negative complex half plane C− =
{z ∈ C : Re(z) < 0}.
A few computational rules are convenient to know: First we introduce for
any complex number z = x + iy the complex conjugate of z denoted z̄ and
defined by z̄ = x−iy. Now |z̄| = |z| = √zz̄ and ∣∣1

z

∣∣ = 1
|z| . The first is obvious

knowing the multiplication rule (x+ iy)(a+ ib) = (xa−yb)+ i(xb+ya) while
the last requires a little computation: 1

z
= zz̄

|z|2z = z̄
|z|2 ⇒

∣∣1
z

∣∣ = ∣∣∣ z̄
|z|2
∣∣∣ = 1

|z| .

For the last equality sign we need the scaling rule |az| = |a||z| where z is any
complex number and a is any real number.
Finally define for a complex number z = x+ iy that ez = e|z|(cosx+ i sin y).



CHAPTER 4. FDM’S FOR U ′ = F (X,U) 114

Definition 4.13 A numerical method with solution Ũi(h, λ) for i = 1, 2, . . .
for the DEP u′(t) = λu(t), t > 0, u(0) = 1 (with solution u(t) = eλt)
for some growth parameter λ ∈ C and uniform step length parameter h is
Absolutely Stable iff limi→∞ |Ũi(h, λ)| = 0. (h and λ are fixed and we study
what happens as the nodal points move towards ∞).
The Region of Absolute Stability is A = {z = hλ ∈ C : limi→∞ |Ũi| = 0} and
the numerical method is called A-stable if A ⊃ C− = {z ∈ C : Re(z) < 0}.
Of practical importance is also Aλ = {h > 0 : limi→∞ |Ũi(h, λ)| = 0}.
Note that while absolute stability, for Re(λ) < 0 gives some indication of
reasonability of the numerical solution, the same is not the case forRe(λ) ≥ 0
where the exact solution is actually not converging to 0.

As examples, we consider the 4 methods from examples 3.35–3.38 on
page 97.

Example 4.11 (Continued) Forward Euler for u′(t) = λu(t), t > 0, u(0) =
1
As above, it is easily seen that Ũi = (1 + hλ)i−1, i ≥ 1, i.e. limi→∞ |Ũi| =
0 ⇔ |1 + hλ| < 1. If we start considering only real λ then |1 + hλ| < 1 ⇔
1+hλ < 1∧1+hλ > −1⇔ hλ ∈ ]−2, 0[ i.e. Re(A) = ]−2, 0[. For complex
λ we instead have |1 + hλ| < 1⇔ A = {hλ = −1 + z : |z| < 1} = B(−1,0)(1)
(the open ball of radius 1 centered in (−1, 0)). Clearly, forward Euler is not
A-stable. Instead

Aλ =
{

]0,−2Re(λ)
|λ|2 [ Re(λ) < 0

∅ Re(λ) ≥ 0

can be shown, i.e. for λ < 0, Aλ =]0,− 2
λ
[.

Example 4.14 Backward Euler for u′(t) = λu(t), t > 0, u(0) = 1

As above, it is easily seen that Ũi =
(

1
1−hλ

)i−1
, i ≥ 1, i.e. limi→∞ |Ũi| = 0⇔

|1 − hλ| > 1 ⇔ A = {hλ �= 1 + z : |z| ≤ 1} = C \ B̄(1,0)(1) (the closed ball
of radius 1 centered in (1, 0)). Clearly, backward Euler is A-stable and

Aλ =
⎧⎨
⎩

]0,∞[ Re(λ) < 0
]hmin,∞[ Re(λ) ≥ 0, |λ| > 0
∅ λ = 0

for some positive hmin depending on λ. Note that for λ > 0, Aλ =] 2
λ
,∞[

so that in this case the numerical Backward Euler solution will actually for
sufficiently large step lengths converge to zero even though the exact solution
goes to ∞.



CHAPTER 4. FDM’S FOR U ′ = F (X,U) 115

Example 4.15 Crank-Nicolson for u′(t) = λu(t), t > 0, u(0) = 1

As above, it is easily seen that Ũi =
(

1+hλ/2
1−hλ/2

)i−1

, i ≥ 1, i.e. limi→∞ |Ũi| =
0⇔ |1 + hλ/2| < |1− hλ/2| ⇔ A = C− i.e. Crank Nicolson is A-stable and

Aλ =
{

]0,∞[ Re(λ) < 0
∅ Re(λ) ≥ 0

.

Hence the numerical Crank Nicolson solution will actually converge to zero
when the exact solution does so, will converge to ∞ when the exact solution
does so and will converge to a number of unit length when the exact solution
does so.

Example 4.16 Heun’s method for u′(t) = λu(t), t > 0, u(0) = 1
As above, it is easily seen that Ũi = (1 + hλ + h2λ2/2)i−1, i ≥ 1, i.e.
limi→∞ |Ũi| = 0 ⇔ |1 + hλ + h2λ2/2| < 1 ⇔ A = D ⊂ C− where D ⊃
B(−1,0)(1) has the same restriction to the real axes as B(−1,0)(1). Clearly,
Heun’s method is not A-stable. Instead

Aλ =
{

]0, hmax[ Re(λ) < 0
∅ Re(λ) ≥ 0

for some hmax > −2Re(λ)
|λ|2 [ can be shown. For a plot of D see for example [4]

Figure 11.3.

Note, that we have only developed the notion of absolute stability for one
very particular instance of the DEP (1.10). While it turns out that parallels
can be drawn to many other cases, this should be done with the utmost
care, based on understanding and knowledge and not guesses. Also note
that absolute stability has nothing to do with convergence and zero stability.

Exercise 4.17
Verify numerically the Aλ given in examples 4.11–4.16 for λ = −5.

4.3 Convergence and stability for linear, con-

stant coefficient, multi step FDM’s for

u′ = f(x, u)

As the order of convergence q in the explicit, one step methods for (3.47) is
increased, generally the complexity of the function φ also increases making



CHAPTER 4. FDM’S FOR U ′ = F (X,U) 116

it more costly to evaluate. Still there are advantages to this approach which
we shall consider below in section 4.5 on page 143.

In this section we shall consider a different approach to increasing the
order of convergence, where the complexity of φ is kept low, requiring only
one evaluation of f for each new value of Ũ . Instead the number of previous
steps Ũi−1, Ũi−2, . . . , Ũi−s taken into consideration when evaluating the next
value Ũi is increased. The disadvantage is that it turns out that uniform step
lengths are quite essential to reach the higher order of convergence. Hence
these methods are unsuited for an adaptive approach, where the step lengths
are adapted to the situation and may differ from step to step. For situations
where adaptivity is not needed we shall then consider Uniform Step Length,
Linear, Constant Coefficient, s Step FDM’s for (3.47), repeated here again
for reference:

Find u ∈ C1(I) : u′(x) = f(x, u(x)) ∀x ∈ I = (x1, x1 + (n− 1)h),

u(x1) = u∗,

that can be written in the optimal form

Ũ1 = Ũ∗
1 , . . . , Ũs = Ũ∗

s ,
s∑
j=0

(aj
h
Ũi−j + bj f̃i−j

)
= 0, i = s+ 1, . . . , n,(4.8)

a0 = −1, (as, bs) �= (0, 0),

where the nodal points are distributed uniformly according to xi = x1 +
(i − 1)h, i = 1, . . . , n, I = (x1, xn) and s ≥ 1. Note that as above f̃i =
f(xi, Ũi). Note also that the notation Constant Coefficients is used because
the constants {aj}sj=0 and {bj}sj=0 do not depend on the nodal points {xi}ni=1.
Clearly (4.8) is explicit if b0 = 0 and otherwise implicit. Note finally that
we impose a0 �= 0 to insure existence of solution at least for the explicit case
where we then may write (4.8) in the non optimal form

Ũ1 = Ũ∗
1 , . . . , Ũs = Ũ∗

s ,(4.9)

Ũi =

s∑
j=1

(
aj
−a0 Ũi−j + h

bj
−a0 f̃i−j

)
, i = s+ 1, . . . , n.

Taking a0 = −1 is only to simplify the fractions in (4.9). For the implicit
case, existence is of course more tricky, depending on the nonlinearity of f ,
but in any case a0 �= 0 helps but could be replaced by the more general
(a0, b0) �= (0, 0). The conditions (as, bs) �= (0, 0) are simply imposed in order
to insure that the method is s step and not p step for some p < s.



CHAPTER 4. FDM’S FOR U ′ = F (X,U) 117

For example Forward and Backward Euler and Crank-Nicolson (but not
Heun’s) methods as introduced in examples 3.35–3.38 on page 97 are all
examples of linear, constant coefficient, multi step FDM’s for (3.47) with
s = 1, i.e. single step methods. Recall, that we still need to show convergence
of Backward Euler and Crank-Nicolson. This will be done in the current
section .

To be able to use (4.8) we need s initial values Ũ∗
1 , . . . Ũ

∗
s whereas (3.47)

provides only one value u∗. The rest of the values, for s > 1, must be found
by other methods: Considering for example explicit methods, with Ũ∗

1 given
(by u∗), Ũ∗

2 must be found by a method which is at most 1 step. Then Ũ∗
3 can

be found by a method which is at most 2 step since now both Ũ∗
1 and Ũ∗

2 are
given. Continuing like this eventually Ũ∗

s can be found by a method which is
at most (s−1) step. Apart from explicit methods, also implicit methods may
be used and often explicit or implicit Runge-Kutta FDM’s (see section 4.5
on page 143 below) are used for this process of Priming the Pumps. With
the notation of section 3.3 (see (3.42)) the priming process can be expressed
as

Ũ1 = Ũ∗, Φi(Ũ2, . . . , Ũs) = 0, for i = 2, . . . , s,(4.10)

for some Φi’s approximating u′(yi) − f(yi, u(yi) in various points yi, i =
2, . . . , s.

To find the local truncation error defined in definition 3.40 on page 102
by (3.60) we shall assume that the representation given by (4.8) and (4.10)
is optimal. We then introduce the “priming” operators

Ψi[v] = Φi(v(x2), . . . , v(xs)), ∀v ∈ C1(I), for i = 2, . . . , s(4.11)

and the linear differential operator

L[v(x)] =
s∑
j=0

(aj
h
v(x− jh) + bjv

′(x− jh)
)
, ∀v ∈ C1(I)(4.12)

and get

τ = (τ1, . . . , τn)
T(4.13)

= (u∗ − Ũ∗,Ψ2[u], . . . ,Ψs[u],L[u(xs+1)], . . . ,L[u(xn)])T .

It is clear from (4.13) that the priming method must be of as high an order of
consistency as the multi step method used for the rest of the recovery process,
to avoid getting truncation errors dominated by the priming process.



CHAPTER 4. FDM’S FOR U ′ = F (X,U) 118

Example 4.18 Adams methods for (3.47)
So far, we have derived FDM’s by replacing derivatives with finite differences.
For the Adams methods the approach is slightly different: We eliminate the
derivatives by integrating and then we simplify the integrals by interpolating
the integrants:

u′(x) = f(x, u)⇒ u(xi)− u(xi−1) =

∫ xi

xi−1

f(x, u(x))dx, i = 1, 2, . . . .(4.14)

For interpolating f we shall use the Lagrange form of the interpolating poly-
nomial so please recall section 2.2.2 on page 40 and in particular equations
(2.24) and (2.25). Compared to that section we need to use a more com-
plex notation here, where the dependence of the cardinal functions on the
nodal points appear explicitly. What was called �k in section 2.2.2 will here
be denoted �

{x0,...,xn}
k : Let s be a positive integer, take i ≥ s + 1 and de-

note the interpolating polynomial to f in the s nodes xi−1, xi−2, . . . , xi−s
by Πex

i,s(f) =
∑i−1

k=i−s fk�
{xi−1,...,xi−s}
k =

∑s
j=1 fi−j�

{xi−1,...,xi−s}
i−j ∈ Ps−1 with the

cardinal functions given by

�
{xi−1,...,xi−s}
i−j (x) =

s∏
k=1,k �=j

x− xi−k
xi−j − xi−k , j = 1, . . . , s, for s > 1,(4.15)

�
{xi−1}
i−1 ≡ 1, for s = 1,

satisfying the cardinal property �
{xi−1,...,xi−s}
i−j (xi−k) = δj,k for j, k = 1, . . . , s.

Let correspondingly Πim
i,s (f) =

∑s−1
j=0 fi−j�

{xi,...,xi−(s−1)}
i−j ∈ Ps−1 be the interpo-

lating polynomial to f in the s nodes xi, xi−1, . . . , xi−(s−1) with the cardinal
functions given by

�
{xi,...,xi−(s−1)}
i−j (x) =

s−1∏
k=0,k �=j

x− xi−k
xi−j − xi−k , j = 0, . . . , s− 1, for s > 1,(4.16)

�
{xi}
i ≡ 1, for s = 1,

satisfying the cardinal property �
{xi,...,xi−(s−1)}
i−j (xi−k) = δj,k for j, k = 0, . . . , s−

1.
ex stands for explicit and im for implicit (see below). Let also

Iexi,s(f) =

∫ xi

xi−1

Πex
i,s(f)(x)dx = h

s∑
j=1

bexj,sfi−j ,(4.17)

I imi,s (f) =

∫ xi

xi−1

Πim
i,s (f)(x)dx = h

s−1∑
j=0

bimj,sfi−j ,



CHAPTER 4. FDM’S FOR U ′ = F (X,U) 119

where we change coordinates according to x = x1 + (i− 1− r)h to get

bex1,1 = 1, bexj,s =
1

h

∫ xi

xi−1

s∏
k=1,k �=j

x− xi−k
xi−j − xi−k dx =

∫ 1

0

s∏
k=1,k �=j

k − r
k − j dr,(4.18)

j = 1, . . . , s, s > 1

and with the same change of coordinates

bim0,1 = 1, bimj,s =
1

h

∫ xi

xi−1

s−1∏
k=0,k �=j

x− xi−k
xi−j − xi−k dx =

∫ 1

0

s−1∏
k=0,k �=j

k − r
k − j dr,(4.19)

j = 0, . . . , s− 1, s > 1.

Note here that bexj,s and b
im
j,s are independent of the index i.

Definition 4.19 The s step Adams-Bashford method, AB(s) is defined for
s ≥ 1 by

Ũi − Ũi−1 = Iexi,s(f̃) = h
s∑
j=1

bexj,sf̃i−j , i = s+ 1, . . . , n.(4.20)

The max{s− 1, 1} step Adams-Moulton method, AM(s) is defined for s ≥ 1
by

Ũi − Ũi−1 = I imi,s (f̃) = h
s−1∑
j=0

bimj,s f̃i−j, i = max{s, 2}, . . . , n.(4.21)

Here, as always, f̃i = f(xi, Ũi) and some other method is priming the pumps
for s > 1.
(The s in AB(s) and AM(s) is the number of nodes used in the interpolation
of f . Alternatively, AB(s) is the s step explicit method and AM(s) is the
implicit method corresponding to AB(s)).

Clearly AB(s) fits in the form (4.8) with a0 = −1, a1 = 1, a2 = . . . = as = 0,
b0 = 0 and b1 = bex1,s, . . . , bs = bexs,s and hence is an explicit, linear, constant
coefficient, s step FDM for (3.47). Correspondingly AM(s) is an implicit,
linear, constant coefficient, max{s−1, 1} step FDM for (3.47) with a0 = −1,
a1 = 1, a2 = . . . = as−1 = 0, b0 = bim0,s, . . . , bs−1 = bims−1,s, bs = 0. The



CHAPTER 4. FDM’S FOR U ′ = F (X,U) 120

“missing” coefficients for the first 5 AB(s) and AM(s) methods are

Adams-Bashford AB(s)

s b1 b2 b3 b4 b5

1 1 0 0 0 0

2 3
2

−1
2

0 0 0

3 23
12

−16
12

5
12

0 0

4 55
24

−59
24

37
24

− 9
24

0

5 1901
720

−2774
720

2616
720

−1274
720

251
720

Adams-Moulton AM(s)

s b0 b1 b2 b3 b4

1 1 0 0 0 0

2 1
2

1
2

0 0 0

3 5
12

8
12
− 1

12
0 0

4 9
24

19
24
− 5

24
1
24

0

5 251
720

646
720
−264

720
106
720
− 19

720

(4.22)

For example AB(2) has the expression

a0
h
Ũi +

a1
h
Ũi−1 + b1f̃i−1 + b2f̃i−2 = 0, i = 3, . . . , n(4.23)

�
−1
h
Ũi +

1

h
Ũi−1 +

3

2
f̃i−1 +

−1
2
f̃i−2 = 0, i = 3, . . . , n

�
Ũi − Ũi−1

h
=

3

2
f̃i−1 − 1

2
f̃i−2, i = 3, . . . , n.

The AB(2) method does not have a “name”, probably since it does not
compare favorably to Heuns method. They ar both 2nd order but Heun
is one step whereas BDF(2) is 2 step. Still the complexity of the function
evaluation for Heun is not discouraging. Neither Heun nor AB(2) is A-stable.

Using interpolation and numerical integration theory it can be shown that
AM(s) and AB(s) are generally consistent of order s.

Theorem 4.20 AB(s) and AM(s) are consistent of order at least s.

Proof:
Let * indicate either ex or im. Then the i’th local truncation error τ ∗i (s) for



CHAPTER 4. FDM’S FOR U ′ = F (X,U) 121

either AB(s) or AM(s) is given by

τ ∗i (s) =
ui − ui−1

h
− 1

h

∫ xi

xi−1

I∗i,s(f)(t)dt(4.24)

=

(
u′i−1 +

h

2
u′′i−1 +

h2

6
u′′′i−1 + . . .

)
− 1

h

∫ xi

xi−1

(f +O(hs)) dt

=

(
u′i−1 +

h

2
u′′i−1 +

h2

6
u′′′i−1 + . . .

)
− 1

h
(Fi − Fi−1) +O(hs)

=

(
u′i−1 +

h

2
u′′i−1 +

h2

6
u′′′i−1 + . . .

)

−
(
F ′
i−1 +

h

2
F ′′
i−1 +

h2

6
F ′′′
i−1 + . . .

)
+O(hs)

= O(hs), i = s+ 1, . . . , n,

where Fi is the primitive of f in xi, i.e. F
′
i = fi = u′i.

In the proof of theorem 4.20 we have not taken into consideration that better
interpolation results may be obtained in special cases (compare to Newton-
Cotes integration). To get the precise order of consistency for a specific
method the following theorem 4.27 on page 123 may be applied.

Exercise 4.21
Prove that AB(1) is Forward Euler, AM(1) is Backward Euler and AM(2)
is Crank-Nicolson, i.e. verify the relevant parts of (4.22) and write up the
expression for the corresponding multi step methods.

Exercise 4.22
Derive the formulas for AB(2), AB(3), AB(4), AB(5), AM(3), AM(4) and
AM(5), i.e. verify the relevant parts of (4.22). Then write up the expression
for the corresponding multi step methods.

Example 4.23 Backward Differentiation Formula (BDF) methods for (3.47)
For the Adams methods we integrated the differential equation and ap-
proximated the right hand side integral by the integral of an interpolant.
For the BDF methods we leave the differential equation and interpolate di-
rectly the left hand side by the derivative of the interpolating polynomial

Πim
i,s+1(u) =

∑s
j=0 ui−j�

{xi,...,xi−s}
i−j ∈ Ps in the s + 1 nodes xi, xi−1, . . . , xi−s,

with the cardinal functions given by

�
{xi,...,xi−s}
i−j (x) =

s∏
k=0,k �=j

x− xi−k
xi−j − xi−k , j = 0, . . . , s, for s ≥ 1,(4.25)



CHAPTER 4. FDM’S FOR U ′ = F (X,U) 122

satisfying the cardinal property �
{xi,...,xi−s}
i−j (xi−k) = δj,k for j, k = 0, . . . , s.

Let also

aj,s = h
d

dx

(
�
{xi,...,xi−s}
i−j

)
(xi) = − d

dr

(
s∏

k=0,k �=j

k − r
k − j

) ∣∣∣∣∣
r=0

(4.26)

where we have changed coordinates acording to x = x1 + (i− r− 1)h⇒ r =
i− 1− 1

h
(x− x1) to verify that aj,s is independent of i.

Definition 4.24 The s step Backward Differentiation Formula method,
BDF(s) is defined for s ≥ 1 by

(Πim
i,s+1)(Ũ)

′(xi) =

s∑
j=0

Ũi−j
d

dx

(
�
{xi,...,xi−s}
i−j

)
(xi)(4.27)

=
s∑
j=0

aj,s
h
Ũi−j = f̃i, i = s+ 1, . . . , n.

Here, as always, f̃i = f(xi, Ũi) and some other method is priming the pumps
for s > 1, providing Ũ1, . . . , Ũs.

BDF(s) is clearly an implicit, linear, constant coefficient, s step FDM for
(1.10) with a0 = −1, a1 = −a1,s

a0,s
, . . . , as = −as,s

a0,s
, b0 = 1

a0,s
and b1 = . . . =

bs = 0. The coefficients for the first 6 BDF(s) methods are

s a1 a2 a3 a4 a5 a6 b0

1 1 0 0 0 0 0 1

2 4
3
−1

3
0 0 0 0 2

3

3 18
11
− 9

11
2
11

0 0 0 6
11

4 48
25
−36

25
16
25
− 3

25
0 0 12

25

5 300
137
−300

137
200
137
− 75

137
12
137

0 60
137

6 360
147
−450

147
400
147
−225

147
72
147
− 10

147
20
49

(4.28)

For example BDF(2) has the expression

a0
h
Ũi +

a1
h
Ũi−1 +

a2
h
Ũi−2 + b0f̃i = 0, i = 3, . . . , n(4.29)

�
−1
h
Ũi +

4

3h
Ũi−1 +

−1
3h
Ũi−2 +

2

3
f̃i = 0, i = 3, . . . , n

�
1

2h

(
3Ũi − 4Ũi−1 + Ũi−2

)
= f̃i, i = 3, . . . , n.



CHAPTER 4. FDM’S FOR U ′ = F (X,U) 123

The BDF(2) method is implicit, A-stable and second order convergent like
the Crank Nicolson method. Since BDF(2) is “harder to use” than CN since
it is a 2 step method, it is not much in use and has never been given a proper
“name”.

The consistency result for BDF is similar to theorem 4.20 for Adams
methods:

Theorem 4.25 BDF(s) is consistent of order at least s.

Proof:
The proof is similar in structure to that of theorem 4.20 for the Adams
methods relying on interpolation results. The details will not be included
here.

Comparing AM and BDF methods the typical situation is that for methods
of the same order, the error is smaller (smaller constant) for the AM methods
while the stability area is bigger for the BDF methods.

Exercise 4.26
Derive the formulas for BDF(1), BDF(2) and BDF(6), i.e. verify the relevant
parts of (4.28) and write up the expression for the corresponding multi step
methods.

After introducing the methods, we are now ready to consider the question
of convergence. As for the explicit one step methods in sections 3.4 and 4.1
we start considering consistency:

Theorem 4.27 (4.8) is consistent of order q with (3.47) iff the initial con-
ditions are consistent of order q (τ1, . . . , τs = O(hq)) and

s∑
j=0

(
(−j)kaj + (−j)k−1kbj

){ = 0, k = 0, 1, . . . , q.
�= 0, k = q + 1.

(4.30)

(Here (−0)−1 ∗ 0 = 0 and 00 = 1).

Proof:



CHAPTER 4. FDM’S FOR U ′ = F (X,U) 124

For i = s+ 1, . . . , n

τi = L[u(xi)] =
s∑
j=0

(aj
h
ui−j + bju

′
i−j
)

(4.31)

=
s∑
j=0

⎛
⎜⎜⎜⎜⎜⎝
aj
h

∞∑
k=0

(−jh)k
k!

u
(k)
i + bj

∞∑
k=0

(−jh)k
k!

u
(k+1)
i︸ ︷︷ ︸

=
∑∞

k=1
(−jh)k−1

k!
ku

(k)
i

⎞
⎟⎟⎟⎟⎟⎠

=

∞∑
k=0

s∑
j=0

u
(k)
i

hk−1

k!

(
(−j)kaj + (−j)k−1kbj

)
.

For the second line we have made a Taylor expansion around xi of all terms.
For the third line we have shiftet the summation by k = r − 1, and then
changed r to k again for the “underbrace”. Finally we have taken the con-
sensus that the coefficient (−j)k−1k to bj for k = 0 is 0.

Example 4.28 Consistency of order q then requires apart from consistency
of the initial conditions of the same order also the satisfaction of the first
q + 1 of the conditions (4.30) of which we explicitly show the first 4 here:

k = 0 :

s∑
j=0

aj = 0⇔
s∑
j=1

aj = 1(4.32)

k = 1 :
s∑
j=0

(−jaj + bj) = 0

k = 2 :

s∑
j=0

(
j2aj − 2jbj

)
= 0

k = 3 :
s∑
j=0

(−j3aj + 3j2bj
)
= 0

For example it is easily checked that the consistency orders for Forward Euler
(a0 = −1, a1 = 1, b0 = 0, b1 = 1), Backward Euler (a0 = −1, a1 = 1, b0 = 1,
b1 = 0) and for Crank-Nicolson (a0 = −1, a1 = 1, b0 = b1 = 1

2
) found in

examples 3.45–3.48 on page 106 are valid also using theorem 4.27 on page 123
.



CHAPTER 4. FDM’S FOR U ′ = F (X,U) 125

Exercise 4.29
Show that the orders of consistency for AB(s) and AM(s) for s = 1, . . . , 5
are in all cases s, under the assumption that the priming the pumps process
has this order of consistency.

Exercise 4.30
Show that the orders of consistency for BDF(s) for s = 1, . . . , 6 are in all
cases s, under the assumption that the priming the pumps process has this
order of consistency.

Exercise 4.31
Write a small essay on backward differentiation formula methods.

The ε-perturbation of (4.8) (see definition (3.43) on page 104) is

Z̃ε,1 = Ũ∗ + δε,1,(4.33)

Φi(Z̃ε,2, . . . , Z̃ε,s) = δε,i, i = 2, . . . , s,
s∑
j=0

(aj
h
Z̃ε,i−j + bj f̃ε,i−j

)
= δε,i, i = s+ 1, . . . , n.

Here |δε,i| < ε for i = 1, . . . , n and f̃ε,i−j = f(xi−j, Z̃ε,i−j).
The discrete result corresponding to theorem 4.1 on page 108 is

Theorem 4.32 If the “priming the pumps process” is zero stable, i.e. ∃h0 >
0, ∃C > 0 : |Ũi − Z̃ε,i| < Cε ∀i = 1, . . . , s, ∀h ∈]0, h0], if f is globally
Lipschitz continuous in its second variable (see (1.11)) and if the optimal
representation (4.8) for the FDM satisfies the Root Condition then the FDM
represented by (4.8) is zero stable.

To define the root condition and prove theorem 4.32 we need some prepara-
tions, and we shall postpone this until after the following convergence result
corresponding to theorem 4.3 on page 109.

Theorem 4.33 Consider the FDM represented by (4.8) which is assumed
to have global order of consistency q ≥ 0, a zero stable priming the pumps
process and an f which is Lipschitz continuous in its second variable.
The representation (4.8) satisfies the root condition⇒ The FDM represented
by (4.8) is Zero Stable ⇒ The FDM represented by (4.8) is convergent of
order q in all points of I.



CHAPTER 4. FDM’S FOR U ′ = F (X,U) 126

Proof:
The first implication is simply theorem 4.32 and the second implication sim-
ply theorem 3.44 on page 105.

Now let us return to the root condition that for the linear multi step methods
is taking the place that Lipschitz continuity had for the explicit one step
methods for (3.47).

Definition 4.34 The First and Second Characteristic Polynomials for the
linear multistep method (4.8) are

ρ(r) = −
s∑
j=0

ajr
s−j = −a0rs − a1rs−1 − a2rs−2 − . . .− as−1r − as(4.34)

and

σ(r) =

s∑
j=0

bjr
s−j = b0r

s + b1r
s−1 + b2r

s−2 + . . .+ bs−1r + bs(4.35)

respectively.
The First Characteristic Roots rk, k = 1, . . . , s′ ≤ s are the roots of the first
characteristic polynomial ρ and their multiplicities are denoted m1, . . . , ms′.
(m1 + . . .+ms′ = s for as �= 0).
(4.8) is said to satisfy the Root Condition if

|rk| ≤ 1, k = 1, . . . , s′, and if for any k, |rk| = 1, then ρ′(rk) �= 0,(4.36)

i.e. all roots lie in the complex closed unit disk, and the eventual roots on the
unit circle (the boundary) are simple roots (of multiplicity one).
(4.8) is said to satisfy the Strong Root Condition if (after possible renumber-
ing of the roots)

|rk| < 1, k = 2, . . . , s′, and if |r1| ≥ 1, then r1 = 1 and m1 = 1,(4.37)

i.e. all roots lie in the complex open unit disk, except eventually the simple
real root 1.

By theorem 4.27 on page 123 (see also (4.32)) it is evident that 1 is a first
characteristic root if (4.8) is consistent. Hence the special concern for this
case in the strong root condition.

Note in (4.34) and (4.35) that the indices on the coefficients and the ex-
ponents of r in the characteristic polynomials “go in the opposite directions”.



CHAPTER 4. FDM’S FOR U ′ = F (X,U) 127

This is somewhat inconvenient notationally, so when working with the char-
acteristic polynomials, it is common to “turn around” the indices and also
change the sign in the first characteristic polynomial defining

αj = −as−j , j = 0, . . . , s, βj = bs−j, j = 0, . . . , s,(4.38)

so that the characteristic polynomials turn into

ρ(r) = −
s∑
j=0

ajr
s−j =

s∑
j=0

αjr
j, σ(r) =

s∑
j=0

bjr
s−j =

s∑
j=0

βjr
j.(4.39)

Theorem 4.35 All Adams methods and all BDF(s) methods for 1 ≤ s ≤ 6
satisfy the root condition and the strong root condition.

Proof:
Adams methods all have the first characteristic polynomial ρ(r) = rs−rs−1 =
(r − 1)rs−1, with simple root 1 and (s− 1)-double root 0.
The BDF methods are checked one at a time using Maple and the coefficients
from (4.28). They have the following first characteristic polynomials and
roots:
BDF(1): r − 1 = 0⇒ r = 1.
BDF(2): r2 − 4

3
r + 1

3
= 0⇒ r = 1 or r = 1

3

BDF(3): r3 − 18
11
r2 + 9

11
r − 2

11
= 0⇒ r = 1 or r = 0.3181...± i ∗ 0.2838...

BDF(4): r4 − 48
25
r3 + 36

25
r2 − 16

25
r + 3

25
= 0 ⇒ r = 1 or r = 0.3814... or r =

0.2692± i ∗ 0.4920...
BDF(5): r5− 300

137
r4 + 300

137
r3− 200

137
r2 + 75

137
r− 12

137
= 0⇒ r = 1 or r = 0.2100±

i ∗ 0.6768... or r = 0.3848...± i ∗ 0.1621...
BDF(6): r6 − 360

147
r5 + 450

147
r4 − 400

147
r3 + 225

147
r2 − 72

147
r + 10

147
= 0⇒ r = 1 or r =

0.4061... or r = 0.1452...± i ∗ 0.8510... or r = 0.3761...± i ∗ 0.2884...
The BDF(s) methods for s > 6 are not zero stable and hence are not

convergent and hence are not being used for computations.
The proof of theorem 4.32 on page 125 will be reserved for advanced read-

ers. As part of the proof there is however the theory of difference equations
which is for everybody.

� For advanced readers 4.36 � We now develop the theory necessary
to complete the proof of theorem 4.32 on page 125. Subtracting the linear
multi step iterations in (4.33) from those of (4.8) and changing to “α and β



CHAPTER 4. FDM’S FOR U ′ = F (X,U) 128

notation”, we get

s∑
j=0

(aj
h
(Ũi−j − Z̃ε,i−j) + bj(f̃i−j − f̃ε,i−j)

)
+ δε,i = 0,

i = s+ 1, . . . , n (a0 = −1)
�

s∑
j=0

αs−j(Ũi−j − Z̃ε,i−j) = hδε,i + h

s∑
j=0

βs−j(f̃i−j − f̃ε,i−j),

i = s+ 1, . . . , n (αs = 1)

� (s− j → j, i− s− 1→ i)
s∑
j=0

αj(Ũi+1+j − Z̃ε,i+1+j) = hδε,i+1+s + h

s∑
j=0

βj(f̃i+1+j − f̃ε,i+1+j),

i = 0, . . . , n− 1− s (αs = 1)

�

s∑
j=0

αjWi+j = φi+s, i = 0, . . . , n− s− 1 (αs = 1), where(4.40)

Wi+j = Ũi+1+j − Z̃ε,i+1+j, j = 0, . . . , s, i = 0, . . . , n− s− 1 and

φi+s = hδε,i+1+s + h

s∑
j=0

βj(f̃i+1+j − f̃ε,i+1+j), i = 0, . . . , n− s− 1.

To prove theorem 4.32 on page 125 we need to show that |Wi| < Cε, i =
s, . . . , n− 1. For this we shall first study the general theory for solutions to
equations of the form (4.40). �

4.3.1 Linear, constant coefficient, Homogeneous Dif-

ference Equations of order s

We consider equation systems of the form

s∑
j=0

αjWi+j = 0, i = 0, 1, . . . (αs = 1, α0 �= 0)(4.41)

W0 = W̃ ∗
0 , . . . ,Ws−1 = W̃ ∗

s−1,

where W̃ ∗
0 , . . . , W̃

∗
s−1 are known constants. Such equation systems are de-

noted Linear, Constant Coefficient, Homogeneous Difference Equations of



CHAPTER 4. FDM’S FOR U ′ = F (X,U) 129

order s. The linearity is with respect to the coefficients α0, . . . , αs and the
constant coefficients refer to the fact that no αj depends on i. (4.41) is solved
iteratively, knowing the Initial Data W̃ ∗

0 , . . . , W̃
∗
s−1.

For the proof of theorem 4.32 on page 125 but also for many other sit-
uations where difference equations occur we need to express the solution in
closed form. To do this we start considering ρ(r) =

∑s
j=0 αjr

j defined in
(4.34) (see also (4.39)) and denoted the Characteristic Polynomial for (4.41)

and the s sequences {ξ(i)�(k,j)}∞i=0, j = 0, . . . , mk − 1, k = 1, . . . , s′ where

ξ
(i)
�(k,j) = ijrik denoted the s Characteristic Fundamental Solutions for (4.41).

Here �(k, j) = j+
∑k−1

k̃=1
mk̃ ∈ {0, . . . , s−1} orders the fundamental solutions

sequencially.

S = span
{
{ξ(i)� }∞i=0

}s−1

�=0
(4.42)

= span
{{rik}∞i=0, {irik}∞i=0, . . . , {imk−1rik}∞i=0

}s′
k=1

is denoted the Solution Space for (4.41). Any set of sequences spanning S is
denoted a set of Fundamental Solutions for (4.41).

Theorem 4.37 The unique solution to (4.41) belongs to the solution space
S, i.e. can for some constants γ�, � = 0, . . . , s − 1 (independent of i) be
expressed by

{Wi}∞i=0 = {
s′∑
k=1

mk−1∑
j=0

γ�(k,j)ξ
(i)
�(k,j)}∞i=0 = {

s′∑
k=1

mk−1∑
j=0

γ�(k,j)i
jrik}∞i=0,(4.43)

and when the initial data is not taken into consideration then any sequence
in S solves (4.41).

Proof:
We first show that any function in S is a solution. By the linearity of the
equation system, it is sufficient to show that all characteristic fundamental
solutions are solutions. Consider first Wi = rik, i = 0, 1, . . .. Inserting into
(4.41) gives

s∑
j=0

αjr
i+j
k = rikρ(rk) = 0, i = 0, 1, . . .(4.44)

Now consider the general case Wi = imrik, i = 0, 1, . . . where 0 ≤ m < mk



CHAPTER 4. FDM’S FOR U ′ = F (X,U) 130

and where we here and below take 00 = 1. Again inserting into (4.41) gives

s∑
j=0

αj(i+ j)mri+jk =

s∑
j=0

αj(i+ j)m−1dr
i+j
k

drk
rk(4.45)

=

s∑
j=0

αj(i+ j)m−2 d

drk

(
dri+jk

drk
rk

)
rk

= . . . =
s∑
j=0

αj
d

drk

(
. . .

d

drk

(
dri+jk

drk
rk

)
rk . . .

)
rk︸ ︷︷ ︸

m repetitions

=
d

drk

(
. . .

d

drk

(
d (rikρ(rk))

drk
rk

)
rk . . .

)
rk︸ ︷︷ ︸

m repetitions

= 0, i = 0, 1, . . . ,

where the last zero comes from the fact that rk is an mk-multiple root of ρ
and m < mk.
The uniqueness of solution comes directly from (4.41) rewritten as Wi+s =
−∑s−1

j=0 αjWi+j, i = 0, 1, . . . since W0, . . . ,Ws−1 are given initial data.
To show that the solution to (4.41) lies in S we take a constructive approach.

First we construct a basis {{ψ(i)
0 }∞i=0, . . . , {ψ(i)

s−1}∞i=0} for S such that ψ
(i)
t =

δi,t, i, t = 0, . . . , s − 1 where δi,t is the Kronecker delta. We postpone the

existence of such a basis until after noting that Wi =
∑s−1

t=0 W̃
∗
t ψ

(i)
t , i =

0, 1, . . . satisfies the initial conditions Wi = W̃ ∗
i for i = 0, . . . , s − 1 and,

{Wi}∞i=0 being a finite linear combination of basis functions for S, satisfies
also the iteration equation system, so that we have found a solution to (4.41)
in S as claimed.
We are left with the problem of showing existence of the ψ

(i)
t ’s, i.e. to show

existence of an s by smatrixG with components gk,j, k, j = 0, . . . , s−1 inde-
pendent of i such that {ψ(i)

t }∞i=0 =
∑s−1

�=0 gt,�{ξ(i)� }∞i=0 and ψ
(i)
t =

∑s−1
�=0 gt,�ξ

(i)
� =

δi,t, i, t = 0, . . . , s − 1. The latter condition is equivalent to the non singu-
larity of the matrix

F = {ξ(i)� }s−1
i,�=0(4.46)

=

⎡
⎢⎢⎢⎢⎢⎣

r01 r11 r21 · · · rs−1
1

0r01 1r11 2r21 · · · (s− 1)rs−1
1

02r01 12r11 22r21 · · · (s− 1)2rs−1
1

...
...

... · · · ...
0ms′−1r0s′ 1ms′−1r1s′ 2ms′−1r2s′ · · · (s− 1)ms′−1rs−1

s′

⎤
⎥⎥⎥⎥⎥⎦ .



CHAPTER 4. FDM’S FOR U ′ = F (X,U) 131

Non singularity of F is again equivalent to the fact that

∀b = (b0, . . . , bs−1)
T∃c = (c0, . . . , cs−1)

T : Fc = b⇔(4.47)
s−1∑
i=0

ξ
(i)
� ci = b�, � = 0, . . . , s− 1⇔

s−1∑
i=0

ijrikci = b�(k,j), j = 0, . . . , mk − 1, k = 1, . . . , s′.

Defining ρ∗(r) =
∑s−1

i=0 cir
i, (4.47) is equivalent to

∀b∃c : ρ∗(rk) = b�(k,0), (ρ
∗)′(rk)rk = b�(k,1), (((ρ

∗)′(rk)rk)′rk = b�(k,2),(4.48)

. . . , (. . . (((ρ∗)′(rk)rk)′rk)′ . . . rk)′rk︸ ︷︷ ︸
mk−1 repetitions

= b�(k,mk−1), k = 1, . . . , s′,

(compare to (4.45)), which is again, with a different c, equivalent to

∀b∃c : ρ∗(rk) = b�(k,0), (ρ
∗)′(rk) = b�(k,1), . . . ,(4.49)

(ρ∗)(mk−1)(rk) = b�(k,mk−1), k = 1, . . . , s′.

Just rewrite the left hand side (lhs) in (4.48) in the form of the lhs of (4.49).
This changes b�(k,1) to b̃�(k,1) = b�(k,1)/rk, b�(k,2) to b̃�(k,2) = (b�(k,2) − b�(k,1))/r2k
and so on. When b�(k,j) goes through all possibilities, so does b̃�(k,j) only
noting that rk �= 0 since ρ(0) =

∑s
j=0 αj0

j = α0 �= 0.
That (4.49) is true is an immediate consequence of the Hermite interpolation
theorem for polynomials of degree s− 1. (Theorem 2.33 on page 34).

(It can be remarked, that by picking b�(k,j) = −sjrsk in (4.47) or (4.48) but
not in (4.49), where c has changed, we see that ρ∗(r)+ rs has the same roots
with the same multiplicities as ρ and hence ρ∗(r) = ρ(r)− rs recalling that
αs = 1).

From theorem 4.37 comes the following method for the solution of homo-
geneous difference equations of the form (4.41):

1. Read off the order s from the difference equation system.

2. Write down the degree s characteristic polynomial.

3. Find the characteristic roots and their multiplicity.

4. Construct the s characteristic fundamental solutions ξ0, . . . , ξs−1, each

being infinite sequences: ξk = {ξ(i)k }∞i=0, k = 0, . . . , s− 1.



CHAPTER 4. FDM’S FOR U ′ = F (X,U) 132

5. Write down an arbitrary linear combination of the characteristic fun-
damental solutions a0ξ0 · . . . · as−1ξs−1.

6. Consider the equation system consisting of the s equations a0ξ
(i)
0 ·

. . . · as−1ξ
(i)
s−1 = W̃ ∗

i , i = 0, . . . , s − 1. Solve this equation system for
a0, . . . , as−1.

7. The solution to (4.41) is W = a0ξ0 · . . . · as−1ξs−1 or Wi = a0ξ
(i)
0 · . . . ·

as−1ξ
(i)
s−1, i = 0, 1, . . ..

Exercise 4.38
Express the solution to the difference equation Wi+2 −Wi = 0, i = 0, 1, . . .
in terms of the initial conditions W0 = W̃ ∗

0 and W1 = W̃ ∗
1 .

Exercise 4.39
Express the solution to the difference equationWi+3−2Wi+2−7Wi+1−4Wi =
0, i = 0, 1, . . . in terms of the initial conditions W0 = W̃ ∗

0 , W1 = W̃ ∗
1 and

W2 = W̃ ∗
2 .

Exercise 4.40
Express the solution to the difference equation Wi+2 − Wi+1 − Wi = 0,
i = 0, 1, . . . in terms of the initial conditions W0 = 0 and W1 = 1. Hint:
This is the difference equations generating the famous Fibonacci sequence

so the correct result is W =

{
1√
5

(
1+

√
5

2

)i
− 1√

5

(
1−√

5
2

)i}∞

i=0

. The first few

numbers in the sequence are 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377,
610, 987, 1597, 2584, 4181, 6765 as can be computed with the Maple proce-
dure Fib:=proc(n::nonnegint) option remember; if n<2 then n else

Fib(n-1)+Fib(n-2) end if; end proc;.

It should be noted that the results obtained above do not easily generalize
to the non constant coefficient case since there the characteristic polynomial
has coefficients and hence also roots depending on i. We shall not consider
this case here but refer to [4] section 11.4 for details. Instead we immediately
turn to the inhomogeneous case.



CHAPTER 4. FDM’S FOR U ′ = F (X,U) 133

4.3.2 Linear, constant coefficient, Inhomogeneous Dif-
ference Equations of order s

We consider equation systems of the form

s∑
j=0

αjWi+j = φi+s, i = 0, 1, . . . (αs = 1, α0 �= 0)(4.50)

W0 = W̃ ∗
0 , . . . ,Ws−1 = W̃ ∗

s−1,

where W̃ ∗
0 , . . . , W̃

∗
s−1 are known constants. The notation is differing from

that of section 4.3.1 only by the fact that the right hand sides are non trivial.
Hence the denotion non homogeneous difference equations.

The solution to an inhomogeneous difference equation can be expressed as
the sum of the solution to the corresponding homogeneous difference equation
and an addition that we shall call the inhomogeneous solution. Note that
this is not the same as constructing the solution to the difference equation
by taking any solution to the inhomogeneous difference equation, adding an
arbitrary solution to the corresponding homogeneous difference equation and
then at the end fitting the initial conditions using the arbitrary constants in
the arbitrary solution to the homogeneous difference equation. (This latter
is the standard approach for inhomogeneous differential equations, but is not
used here for difference equations).

To get the appropriate setup, we need a new basis for the space S =

Span
{
{ξ(i)� }∞i=0

}s−1

�=0
of fundamental solutions for the homogeneous difference

equation introduced in section 4.3.1, equation (4.42). It was shown in the
proof of theorem 4.37 on page 129 that there exists a Lagrange type basis
for S with basis functions {ψ(i)

� }∞i=0, � = 0, . . . , s − 1 having the properties

ψ
(i)
� = δi,� for i, � = 0, . . . , s− 1. For the practical construction of the ψ

(i)
� we

use the fact that when we have 2 bases for the same space S, then one can be
expressed as a linear combination of the other, i.e. there exist constants g�,j,

j = 0, . . . , s−1 such that {ψ(i)
� }∞i=0 =

∑s−1
j=0 g�,j{ξ(i)j }∞i=0 where the coefficients

g�,j are chosen such that ψ
(i)
� = δi,� for i, � = 0, . . . , s− 1. For example ψ

(i)
0 is

determined from the equation system
∑s−1

j=0 g0,jξ
(0)
j = 1 and

∑s−1
j=0 g0,jξ

(i)
j = 0

for i = 1, . . . , s− 1 .

Theorem 4.41 The unique solution to (4.50) is

{Wi}∞i=0 = {W hom
i }∞i=0 + {W inhom

i }∞i=0(4.51)



CHAPTER 4. FDM’S FOR U ′ = F (X,U) 134

where

{W hom
i }∞i=0 = {

s−1∑
�=0

W̃ ∗
� ψ

(i)
� }∞i=0(4.52)

and

{W inhom
i }∞i=0 = 0, . . . , 0︸ ︷︷ ︸

s times

, {
i−s∑
t=0

φt+sψ
(i−t−1)
s−1 }∞i=s,(4.53)

i.e. W inhom
i = 0 for i = 0, . . . , s − 1 and W inhom

i =
∑i−s

t=0 φt+sψ
(i−t−1)
s−1 for

i = s, s+ 1, . . ..

To allow a simplifying notation, we shall define φi+s = 0 for i < 0 and

ψ
(i)
s−1 = 0 for i < 0. We then have

W inhom
i =

i∑
t=s

φtψ
(i−t+s−1)
s−1 , for i = 0, 1, . . .(4.54)

where
∑i

t=s means t = s, s− 1, . . . , i for i ≤ s and t = s, s+1, . . . , i for i ≥ s

so that W inhom
0 = φsψ

(−1)
s−1 = 0 (i = 0) and W inhom

i = φsψ
(i−1)
s−1 = δi−1,s−1 = 0,

for i = 1, . . . , s − 1, W inhom
i =

∑i
t=s φtψ

(i−t+s−1)
s−1 =

∑i−s
t=0 φt+sψ

(i−t−1)
s−1 , for

i ≥ s.

� For advanced readers 4.42 �
Proof: of theorem 4.41
The uniqueness is clear from (4.50) when it is rewritten in the form Wi+s =
(φi+s −

∑s−1
j=0 αjWi+j)/αs, i = 0, 1, . . .. Ws is then uniquely determined from

the initial data W0, . . . ,Ws−1. Ws+1 is similarly uniquely determined from
W1, . . . ,Ws and so on.

Next we will demonstrate that Wi satisfy the initial conditions of (4.50), so

let us take i ∈ {0, . . . , s− 1}. Then Wi =
∑s−1

�=0 W̃
∗
� ψ

(i)
� +0 since W inhom

i = 0

for i = 0, . . . , s− 1. Since ψ
(i)
� = δi,�, only the term � = i survives in the first

sum and gives Wi = W̃ ∗
i as required.

Now we turn to the iteration equation system in (4.50):

Note that ψ
(i)
t =

∑s′
k=1

∑mk−1
m=0 gt,�(k,m)i

mrik for some set of coefficients gt,�(k,m),

t, � = 0, . . . , s−1 and
∑s

j=0 αj(i+ j)
mri+jk = 0, ∀i = 0, 1, . . . and the relevant

k and m-values by (4.45), so that

s∑
j=0

αjψ
(i+j)
� = 0, ∀� = 0, . . . , s− 1, ∀i = 0, 1, . . . .(4.55)



CHAPTER 4. FDM’S FOR U ′ = F (X,U) 135

Hence we have

s∑
j=0

αjWi+j =
s−1∑
�=0

W̃ ∗
�

s∑
j=0

αjψ
(i+j)
� +

s∑
j=0

i+j−s∑
t−s=0

αjφ(t−s)+sψ
(i+j−(t−s)−1)
s−1(4.56)

=
s∑
j=0

i+j−s∑
k=0

φk+sαjψ
(i+j−k−1)
s−1 since the first sum is 0 by (4.55).

We shall collect the terms in (4.56) as coefficients of the various φk+s:

k = i requires j = s so the only coefficient to φi+s is αsψ
(s−1)
s−1 = 1.

k = i + a for some a = 1, 2, . . . requires j ≥ s + a but this is impossible, so
there are no such terms.
k = i − a for some a = 1, 2, . . . requires j ≥ s − a so we get the following
coefficient to φi−a+s:

s∑
j=s−a

αjψ
(j+a−1)
s−1 =

s∑
j=0

αjψ
(j+a−1)
s−1 since ψ

(j+a−1)
s−1 = 0 for j < s− a(4.57)

= 0 by (4.55).

Putting these results together we get
∑s

j=0 αjWi+j = φi+s as required. �
Note that the solution (4.51) requires the expressions for the Lagrange type

basis functions ψ
(i)
� .

Example 4.43 Wi+3 −Wi = φi+3, i = 0, 1, . . ., Wi = W̃ ∗
i , i = 0, 1, 2

First we find the roots of the characteristic polynomial ρ(r) = r3−1. In this
case we get 3 simple roots r1, r2 and r3 so that we can write up the 3 fun-
damental solutions {ri1}∞i=0, {ri2}∞i=0 and {ri3}∞i=0. The fundamental solution
space S is then made up of all sequences {Wi}∞i=0 = {ari1 + bri2 + cri3}∞i=0 for
any arbitrary a, b and c.
The solution to the homogeneous problem (φi = 0 for all i) is uniquely de-
termined as the sequence in S satisfying Wi = W̃ ∗

i for i = 0, 1, 2. Hence a, b
and c are determined by the equation system a(x0, x1, x2)r

i
1+b(x0, x1, x2)r

i
2+

c(x0, x1, x2)r
i
3 = xi, i = 0, 1, 2 with xi = W̃ ∗

i for i = 0, 1, 2.

The 3 Lagrange type basis functions ψ
(i)
� , � = 0, 1, 2 all lie in S, i.e. ψ(i)

� =
ari1 + bri2 + cri3 for some a, b and c determined by the lagrange properties

ψ
(i)
� = δi,� for i, � = 0, 1, 2. For example ψ

(i)
0 satisfies ψ

(0)
0 = 1, ψ

(1)
0 = 0,

ψ
(2)
0 = 0. But this is nothing but the equation system a(x0, x1, x2)r

i
1 +

b(x0, x1, x2)r
i
2+ c(x0, x1, x2)r

i
3 = xi, i = 0, 1, 2 with (x0, x1, x2) = (1, 0, 0), i.e.

ψ
(i)
0 = a(1, 0, 0)ri1 + b(1, 0, 0)ri2 + c(1, 0, 0)ri3. Similarly ψ

(i)
1 = a(0, 1, 0)ri1 +

b(0, 1, 0)ri2 + c(0, 1, 0)ri3 and ψ
(i)
2 = a(0, 0, 1)ri1 + b(0, 0, 1)ri2 + c(0, 0, 1)ri3.



CHAPTER 4. FDM’S FOR U ′ = F (X,U) 136

Having recovered the lagrange basis functions, the homogeneous, inhomoge-
neous and full solutions are easily recovered. The Maple commands are given
below.

> charroots:=[solve(r^3-1=0,r)];

> for k from 0 to 2 do

eq[k]:=a*charroots[1]^k+b*charroots[2]^k

+c*charroots[3]^k=x[k]

end do;

> assign(solve([eq[0],eq[1],eq[2]],[a,b,c]));

> a:=unapply(a,x[0],x[1],x[2]);b:=unapply(b,x[0],x[1],x[2]);

c:=unapply(c,x[0],x[1],x[2]);

> Lagrangefct:=proc(i,x,y,z)

a(x,y,z)*charroots[1]^i+b(x,y,z)*charroots[2]^i

+c(x,y,z)*charroots[3]^i;

end proc:

> homsoluLagrange:=proc(i)

global W0,W1,W2;

W0*Lagrangefct(i,1,0,0)+W1*Lagrangefct(i,0,1,0)

+W2*Lagrangefct(i,0,0,1)

end proc:

> inhomsoluLagrange:=proc(i)

global p;

if i in {0,1,2} then

0

else

sum(p[t]*Lagrangefct(i-t+2,0,0,1),t=3..i)

end if

end proc:

> fullsolu:=proc(i)

homsoluLagrange(i)+inhomsoluLagrange(i)

end proc:

> for i from 0 to 8 do simplify(homsoluLagrange(i)) end do;

> for i from 0 to 8 do simplify(inhomsoluLagrange(i)) end do;

> for i from 0 to 8 do simplify(fullsolu(i)) end do;

> for i from 0 to 8 do simplify(fullsolu(i+3)-fullsolu(i))

end do;



CHAPTER 4. FDM’S FOR U ′ = F (X,U) 137

Exercise 4.44
Copy the Maple code above into a Maple worksheet. Run the code. Insert
explanatory comments in the worksheet.

4.3.3 Return to the linear, constant coefficient multi

step methods

� For advanced readers 4.45 � If α0 = . . . = αt = 0 in (4.40) we
“shift down” the indices by t (j → j − t) so that (4.40) takes the form∑s−t

j=0 αj+tWi+j+t = φi+s, i = 0, . . . , n− s− 1. Letting s∗ = s− t, α∗
j = αj+t

and W ∗
i+j = Wi+j+t (4.40) then takes the form

∑s∗
j=0 α

∗
jW

∗
i+j = φi+s, i =

0, . . . , n − s − 1 which can be treated exactly as the case α0 �= 0. Without
loss of generality we shall then only consider the case α0 �= 0 here.

Proof of theorem 4.32 on page 125:
We are now able to express the solution to our original problem (4.40) in the
form

Wi =
s−1∑
�=0

W̃ ∗
� ψ

(i)
� +

i∑
t=s

φtψ
(i−t+s−1)
s−1 , i = 0, 1, . . .(4.58)

using the notation from section 4.3.1 and 4.3.2.
To bound Wi note that if the root condition holds then all characteristic

fundamental solutions are uniformly bounded sequences: If |rk| = 1 then
mk = 1 and {|rik|}∞i=0 is uniformly bounded by 1. If alternatively |rk| < 1
then {|imrik|}∞i=0 is uniformly bounded for any m = 0, . . . , mk − 1 (|rik| goes
towards zero faster when i goes towards infinity than |imk−1| grows). Hence
also all the other fundamental solutions are uniformly bounded sequences,
so that there exists a positive real number M such that |ψ(i)

� | ≤ M , for
� = 0, . . . , s− 1 and i = 0, 1, 2, . . . and hence

|Wi| ≤M

{
s max
�=0,...,s−1

|W̃ ∗
� |+

i∑
t=s

|φt|
}
, i = s, s+ 1, . . .(4.59)

The first term is bounded by assumption (max�=0,...,s−1 |W̃ ∗
� | < Cε). To

bound the φt’s we use the definition in (4.40), the Lipschitz continuity of f



CHAPTER 4. FDM’S FOR U ′ = F (X,U) 138

(with constant L) and let β = maxj=0,...,s |βj| and ε = maxi=1,...,n |δε,i|. Then

|φt| = |hδε,t+1 + h

s∑
j=0

βj

(
f̃t+j−s+1 − f̃ε,t+j−s+1

)
|(4.60)

≤ hε+ hβL
s∑
j=0

|Wt+j−s|

and hence

|Wi| ≤M

{
sCε+ |I|ε+ hβL

i∑
t=s

s∑
j=0

|Wt+j−s|
}
, i = s, . . . , n− 1.(4.61)

Here the double sum can be expanded to

i∑
t=s

s∑
j=0

|Wt+j−s|(4.62)

= |W0|+ |W1|+ . . .+ |Ws−1|+ |Ws|
+|W1|+ |W2|+ . . .+ |Ws|+ |Ws+1|
...

+|Wi−s−1|+ |Wi−s|+ . . .+ |Wi−2|+ |Wi−1|
+|Wi−s|+ |Wi−s+1|+ . . .+ |Wi−1|+ |Wi|

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

|W0|+ 2|W1|+ 3|W2|+ . . .+ (i− s + 1)|Wi−s|+ . . .
+(i− s+ 1)|Ws|+ . . .+ 3|Wi−2|+ 2|Wi−1|+ |Wi|
for i− s ≤ s

|W0|+ 2|W1|+ 3|W2|+ . . .+ (s+ 1)|Ws|+ . . .
+(s+ 1)|Wi−s|+ . . .+ 3|Wi−2|+ 2|Wi−1|+ |Wi|
for i− s > s

≤ |W0|+ |Wi|+ (s+ 1)
i−1∑
j=1

|Wj | for i = s, . . . , n− 1.

We may pick h so small that MhβL < 1 and throw the Wi-term on the right
hand side onto the left hand side, still maintaining a positive coefficient to
get

|Wi| ≤ M

1−MhβL

{
(s+ hβL)Cε+ |I|ε+ (s+ 1)hβL

i∑
j=2

|Wj−1|
}
,(4.63)

for i = s, . . . , n− 1



CHAPTER 4. FDM’S FOR U ′ = F (X,U) 139

and by selectingM sufficiently large and h sufficiently small so that M
1−MhβL

≥
1 we also have

|Wi| ≤ Cε ≤ M

1−MhβL

{
(sC + hβLC + |I|)ε+ |I|βL

i∑
j=2

|Wj−1|
}
,(4.64)

for i = 1, . . . , s− 1.

Hence taking

φi = |Wi| for i = 1, . . . , n− 1,

c1 =
M

1−MhβL
(C + hβLC + |I|) ε,

cj =
M

1−MhβL
Cε for j = 2, . . . , s,

cj = 0 for j = s+ 1, . . . , n− 1,

bj =
M

1−MhβL
(s+ 1)hβL for j = 2, . . . , n− 1,

we finally have

φ1 ≤ |c1|, φi ≤
i∑

j=1

|cj |+
i∑

j=2

|bj |φj−1, for i = 2, . . . , n− 1(4.65)

which by the discrete Gronwall lemma (4.5) implies

φi ≤
i∑

j=1

|cj|e
∑i

j=2 |bj |, for i = 2, . . . , n− 1(4.66)

or

|Wi| ≤ M

1−MhβL
{(s+ hβL)C + |I|) εe M

1−MhβL
|I|βL(s+1),(4.67)

for i = 2, . . . , n− 1,

to obtain |Wi| < C̃ε for i = s, . . . , n − 1, hence proving theorem 4.32 on
page 125. �

There is a connection between the order of convergence q of a multi step
method and the number of steps s:

Theorem 4.46 (The First Dahlquist barrier) There are no zero stable,
s-step, linear, constant coefficient multi step methods with order of conver-
gence greater than s+ 1 if s is odd and s+ 2 if s is even.



CHAPTER 4. FDM’S FOR U ′ = F (X,U) 140

Exercise 4.47
Based on the first Dahlquist barrier, comment on the optimality of the order
of convergence of all of the following methods: AB(1), . . . , AB(4), AM(1), . . . ,
AM(5) and BDF(1), . . . , BDF(6).

4.4 Non asymptotic error analysis – Absolute

stability for linear, constant coefficient,

multi step FDM’s for u′ = λu

Definition 4.13 on page 113 of absolute and A-stability in section 4.2 applies
also to the uniform step length, linear, constant coefficient, s step FDM’s
(4.8) considered in section 4.3 when applied to the special DEP u′ = λu, t >
0, u(0) = 1.

Since f = λu �= 0 the problem is non homogeneous, but because of the
linearity of f with respect to u it can be treated as a homogeneous problem:
(4.8) takes the form

Ũ1 = Ũ∗
1 , . . . , Ũs = Ũ∗

s ,(4.68)
s∑
j=0

(aj
h
Ũi−j + bj f̃i−j

)
=

s∑
j=0

(aj
h

+ λbj

)
Ũi−j = 0,

i = s+ 1, s+ 2, . . . , a0 = −1, (as, bs) �= (0, 0),

where we do not stop i at n since we are dealing with absolute stability, i.e.
we want to investigate what happens to Ũi as i goes to infinity. To bring this
on the form of (4.41) we need some coordinate transformations:

First pick i∗ = i − (s + 1) in order to let i∗ run over the values 0, 1, . . .
appropriate for (4.41). (4.68) is then transformed into

Ũ1 = Ũ∗
1 , . . . , Ũs = Ũ∗

s ,

s∑
j=0

(aj + hλbj) Ũi∗+s+1−j = 0,(4.69)

i∗ = 0, 1, . . . , a0 = −1, (as, bs) �= (0, 0).

Since we are interested in the product hλ when dealing with absolute stability
we have also multiplied the middle equation in (4.68) by h to get to (4.69).

Second pick j∗ = s − j in order to keep j∗ summing over the values
0, . . . , s while at the same time changing the index on Ũ from i∗ − j + cst to



CHAPTER 4. FDM’S FOR U ′ = F (X,U) 141

i∗ + j∗ + cst. (4.69) is then transformed into

Ũ1 = Ũ∗
1 , . . . , Ũs = Ũ∗

s ,

s∑
j∗=0

(as−j∗ + hλbs−j∗) Ũi∗+j∗+1 = 0,(4.70)

i∗ = 0, 1, . . . , a0 = −1, (as, bs) �= (0, 0).

Third pick γj∗ = as−j∗ + hλbs−j∗ and Wi∗+j∗ = Ũi∗+j∗+1. (4.70) is then
transformed into

W0 = Ũ∗
1 , . . . ,Ws−1 = Ũ∗

s ,
s∑

j∗=0

γj∗Wi∗+j∗ = 0,(4.71)

i∗ = 0, 1, . . . , a0 = −1, (as, bs) �= (0, 0).

Finally we need to scale the system by dividing the sum-equation by
γs = −1 + hλb0 which is non zero except for at most one particular value
of h which we shall then disallow. Further we define αj∗ = γj∗/γs in order
to obtain the condition αs = 1. For the condition α0 �= 0 we have α0 =
γ0/γs =

as+hλbs
γs

which since (as, bs) �= (0, 0) is non zero apart from at most

another one particular value of h which we shall also disallow. (4.71) is then
transformed into

W0 = Ũ∗
1 , . . . ,Ws−1 = Ũ∗

s ,
s∑

j∗=0

αj∗Wi∗+j∗ = 0,(4.72)

i∗ = 0, 1, . . . , α0 = 1, αs �= 0.

(4.72) is apart from the ∗ on the i and j now in the form of (4.41) and can
be solved with the approach from section 4.3.1: The characteristic polynomial
for (4.72) is

π(r) :=
s∑
j=0

αjr
j =

1

γs

s∑
j=0

γjr
j =

1

γs

s∑
j=0

(as−j + hλbs−j) rj(4.73)

= − 1

γs
(ρ(r)− hλσ(r)) ,

where ρ and σ are respectively the first and second characteristic polynomial
for the multistep method. Denoting the roots of π by rπk (hλ), k = 1, . . . , sπ

with multiplicities mπ
1 , . . . , m

π
sπ , the solution to (4.72) takes by theorem 4.37

on page 129 the form

{Wi}∞i=0 = {
sπ∑
k=1

mπ
k−1∑
j=0

γk,j(h)i
j(rπk (hλ))

i}∞i=0,(4.74)

for some constants γk,j(h) independent of i but depending on h.



CHAPTER 4. FDM’S FOR U ′ = F (X,U) 142

Exercise 4.48
Find explicitly the solutions to AB(2), AB(3), AM(3) and AM(4) for u′ = λu,
t > 0, u(0) = 1, with λ = 5. When more data is needed for the priming the
pumps process then use the exact solution u(t) = exp(λt) in the appropriate
nodal points. To verify your solutions pick n = 100 and h = 0.01 and plot
the numerical solution points together with the exact solution in the interval
[0, 1].

From (4.74) and definition 4.13 on page 113 it is clear that

Theorem 4.49 A uniform step length, linear, constant coefficient, s step
FDM given by (4.8), applied to the special DEP u′ = λu, t > 0, u(0) = 0, is

• absolutely stable for given h and λ ⇔ |rπk (hλ)| < 1, k = 1, . . . , sπ

• A-stable ⇔ |rπk (ξ)| < 1, k = 1, . . . , sπ ∀ξ : Re(ξ) < 0

That A-stability is a fairly rare occurrence is expressed in the following result

Theorem 4.50 (The Second Dahlquist barrier)
There are no explicit, A-stable, linear, constant coefficient multi step meth-
ods.
There are no A-stable, linear, constant coefficient, multi step methods with
order of convergence greater than 2.

Exercise 4.51
Which are the A-stable Adams and BDF methods?

Exercise 4.52
Construct, using MATLAB or Maple or similar, the absolute stability regions
for AB(2), AM(3), BDF(3) and BDF(5). Is BDF(3) A-stable?

The s step Adams-Bashford AB(s) and Adams-Moulton AM(s+1) methods
have regions of absolute stability A ⊃ {hλ ∈]0,−|δ|[} where both δ and
the entire region A decreases when s increases and is smaller for AB(s)
than for AM(s + 1). Instead Backward Differentiation Formula methods
BDF(s) all have regions of absolute stability A ⊃ {hλ ∈]0,−∞[} while A
also here decreases with increasing s. For plots of regions of absolute stability
for various Adams-Bashford, Adams-Moulton and Backward Differentiation
Formula methods see for example [4] Figures 11.5 and 11.6.



CHAPTER 4. FDM’S FOR U ′ = F (X,U) 143

4.5 Convergence, stability and consistency of

Runge-Kutta FDM’s for u′ = f(t, u)

As mentioned in the beginning of section 4.3, for the multi step methods,
order of convergence is increased compared to the single step methods con-
sidered in section 4.1 by increasing the number of previous steps taken into
consideration when evaluating the next value. The advantage is cheap func-
tion evaluations and the disadvantage is the unsuitability for adaptivity.

In this section we shall consider methods that maintain the one step form
making them better suited for adaptivity, increasing order of convergence
at the price of more complex φ functions and hence more costly function
evaluations. Compared to section 4.1 we generalize by considering also im-
plicit methods, but we also specialize, considering one particular family of φ
functions.

Definition 4.53 Let A ∈ Rs×s and b ∈ Rs be given, let c ∈ Rs satisfy

cj =
s∑

k=1

ajk, j = 1, . . . , s(4.75)

and define the Butcher Array

B =
c A

bT
(4.76)

The s stage Runge-Kutta method (RK(s) for (1.10) with nodes x1, . . . , xn,
corresponding to the Butcher array B has the optimal representation

Ũi − Ũi−1

hi−1

=
s∑
j=1

bjK̃j,i−1, i = 2, . . . , n(4.77)

K̃j,i−1 = f(xi−1 + cjhi−1, Ũi−1 + hi−1

s∑
k=1

ajkK̃k,i−1),(4.78)

j = 1, . . . , s, i = 2, . . . , n,

where the i’th step length hi−1 = xi − xi−1, i = 2, . . . , n. To start up the
method Ũ1 = u∗ must be known.

Note that RK(s)-methods are one step methods since only Ũi and Ũi−1 are
involved in each step in (4.77–4.78). Also the RK-methods are generally
implicit (see (3.45)) since the K̃j,i’s must be recovered by solving the s × s



CHAPTER 4. FDM’S FOR U ′ = F (X,U) 144

equation system (4.78) before being able to insert them into (4.77). If the
matrix A can be put in lower triangular form (ajk = 0 if j < k) after
reordering of the j’s, the equation system simplifies and can be solved one
equation at the time so that the Kj,i’s can be recovered solving s single
nonlinear equations. In this case the RK is said to be Semi-Implicit. Only if
the matrix A can be put in lower triangular form with zeros on the diagonal
(ajk = 0 if j ≤ k) after reordering of the j’s, does the RK methods become
explicit.

We shall here not go into any details about the RK-methods but simply
state some results that can be found in the literature. We refer to [4] §11.8
for details and references to proofs.

The local truncation errors τi(hi−1) =
ui−ui−1

hi−1
−∑s

j=1 bjKj,i−1 (Kj,i−1 is

K̃j,i−1 with Ũi replaced by ui, i = 2, . . . , n) are generally hard to find (only
τ1 = u(t0)− u∗ is easy), but it is possible to obtain some results at least for
the special case of uniform step lengths hi = h, i = 1, . . . , n− 1:

Theorem 4.54 For uniform step length RK(s) methods

Consistency ⇔ τ(h) = max
i=1,...,n

|τi(h)| → 0 as h→ 0(4.79)

⇔ τ1(h)→ 0 as h→ 0 and

s∑
j=1

bj = 1.

Lax’ theorem: For a consistent, uniform step length RK(s) method

f Lipschitz continuous in its 2nd variable(4.80)

⇒ Zero stability ⇒ Convergence

and the order of convergence is the same as the order of consistency and is
at most s, the number of stages, for s < 5 and at most s− 1 for s ≥ 5. More
precisely the minimal number of stages to get an order from 1 to 8 is shown
here:

order 1 2 3 4 5 6 7 8

min stages 1 2 3 4 6 7 9 11
(4.81)

Example 4.55 Consistent RK(1)’s
The Butcher array for consistent, 1 stage RK methods all take the form

c A

bT
=

a a

1
(4.82)



CHAPTER 4. FDM’S FOR U ′ = F (X,U) 145

for some real constant a, giving the following expression for the RK(1) meth-
ods:

Ũ1 = u∗, Ũi = Ũi−1 + hi−1K̃1,i−1, i = 2, . . . , n(4.83)

K̃1,i−1 = f(xi−1 + ahi−1, Ũi−1 + ahi−1K̃1,i−1), i = 2, . . . , n.

In general this is a semi-implicit method. Only for a = 0 we get an ex-
plicit method denoted RKex

0 (1) which is easily seen to be the Forward Euler
method. The most common semi-implicit RK(1) method is the one with
a = 1

2
denoted RKim

1
2
(1), the implicit midpoint rule.

Example 4.56 Consistent RK(2)’s
The Butcher array for consistent, 2 stage RK methods all take the form

c A

bT
=

[
c+ e
a+ d

] [
c e
a d

]
[
1− b b

](4.84)

for some real constants a, b, c, d, e, giving the following expression for the
RK(2) methods:

Ũ1 = u∗, Ũi = Ũi−1 + hi−1

(
(1− b)K̃1,i−1 + bK̃2,i−1

)
,(4.85)

K̃1,i−1 = f
(
xi−1 + (c+ e)hi−1, Ũi−1 + hi−1

(
cK̃1,i−1 + eK̃2,i−1

))
,

K̃2,i−1 = f
(
xi−1 + (a+ d)hi−1, Ũi−1 + hi−1

(
aK̃1,i−1 + dK̃2,i−1

))
,

i = 2, . . . , n.

In general these are fully implicit methods, but for e = 0 the methods are
semi-implicit and if further c = d = 0 the methods are explicit. The 2 most
common explicit methods are the RKex

1, 1
2
(2) with a = 1 and b = 1

2
which is

Heuns method, and RKex
1
2
,1
(2) with a = 1

2
and b = 1 which is denoted the

method of Runge and takes the following form

Ũ1 = u∗, Ũi = Ũi−1 + hi−1f(xi−1 +
1

2
hi−1, Ũi−1 +

1

2
hi−1f̃i−1)),(4.86)

i = 2, . . . , n.

Of the implicit methods, probably the implicit trapezoidal rule taking a =
d = 1

2
, c = e = 0 and b = 1

2
is most common. It takes the form

Ũ1 = u∗, Ũi = Ũi−1 +
1

2
hi−1

(
f̃i−1 + K̃2,i−1

)
,(4.87)

K̃2,i−1 = f

(
xi−1 + hi−1, Ũi−1 +

1

2
hi−1

(
f̃i−1 + K̃2,i−1

))
,

i = 2, . . . , n.



CHAPTER 4. FDM’S FOR U ′ = F (X,U) 146

Example 4.57 Constructing a consistent, optimal order, explicit RK
Start RK from the exact solution ui−1 and let Ûi be the result.
Select coefficients so that as many Taylor terms as possible of ui and Ûi
coincide.
For example for the consistent, optimal order, 2 stage, explicit RK the details
are as follows:
For a 2 stage RK,

A =

[
a11 a12
a21 a22

]
, b =

[
b1
b2

]
, c =

[
c1
c2

]
.(4.88)

The method is explicit only if a11 = a12 = a22 = 0 and for simplicity we
shall then take a21 = a. Enforcing also (4.75) and the consistency condition
(4.79), for simplicity taking b1 = b, a consistent, explicit, 2 stage RK has the
Butcher array

c A

bT
=

[
0
a

] [
0 0
a 0

]
[
b 1− b ](4.89)

and hence when started in ui−1 takes the form

Ûi = ui−1 + bhK1,i−1 + (1− b)hK2,i−1,(4.90)

K1,i−1 = f(xi−1, ui−1) = fi−1,

K2,i−1 = f(xi−1 + ah, ui−1 + ahK1,i−1),

i = 2, . . . , n

�
Ûi = ui−1 + bhfi−1 + (1− b)hf(xi−1 + ah, ui−1 + ahfi−1)

= ui−1 + bhfi−1 + (1− b)h(fi−1 + ah∂1fi−1 + ahfi−1∂2fi−1

+O(h2))
= ui−1 + hfi−1 + h2a(1− b) (∂1fi−1 + fi−1∂2fi−1) +O(h3),

i = 2, . . . , n.

We know from theorem 4.54 that the order of a 2 stage RK method may be
at most 2, so we have not specified the third order term. (We could have
done that and then verified the theorem on this particular point). A Taylor



CHAPTER 4. FDM’S FOR U ′ = F (X,U) 147

expansion of ui around xi−1 gives

ui = ui−1 + hu′i−1 +
h2

2
u′′i−1 +O(h3)(4.91)

= ui−1 + hfi−1 +
h2

2
(∂1fi−1 + fi−1∂2fi−1) +O(h3),

i = 2, . . . , n.

Comparing terms of equal order in (4.90) and (4.91) we get the single con-
dition a(1 − b) = 1

2
⇔ b = 1 − 1

2a
so that there is an infinite number of

consistent, 2nd order, 2 stage explicit Runge-Kutta methods that all have a
Butcher array of the form

c A

bT
=

[
0
a

] [
0 0
a 0

]
[
1− 1

2a
1
2a

](4.92)

Exercise 4.58
Explain why the method of construction outlined in example 4.57 works,
and how the order of consistency is determined. (Hint: Start showing that

τi =
ui−Ûi

hi−1
, i = 2, . . . , n).

Exercise 4.59
Extend the computations in example 4.57 to prove that there exist no 3rd
order, 2 stage explicit Runge-Kutta methods.

Exercise 4.60
Show that the Classical Runge Kutta Method, which is the 4 stage, explicit
RK with the following Butcher array

c A

bT
=

⎡
⎢⎢⎣

0
1
2
1
2

1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

0 0 0 0
1
2

0 0 0
0 1

2
0 0

0 0 1 0

⎤
⎥⎥⎦

[
1
6

2
6

2
6

1
6

]
(4.93)

is 4th order convergent.

Exercise 4.61
Write an essay on theorem 4.54 and its proof.



Chapter 5

Further issues for u′ = f (t, u)

5.1 How to solve with an implicit method –

Predictor-Corrector FDM’s

Explicit FDM’s generally have quite small absolute stability regions, meaning
in practice that very small step lengths h must be used to avoid oscillatory
numerical solutions. Here very small is in relation to what should be expected
for a method of the given convergence order and with the chosen error toler-
ance. Implicit methods and in particular A-stable methods generally allow
larger step lengths only limited by the given convergence order and the error
tolerance chosen. Instead implicit methods generally involve the solution of
nonlinear equations while explicit methods only involve multiplications and
additions (solution of linear equations) on top of the function evaluations
needed by both types of method. This leads to the following Rule of Thumb:

• Explicit methods involve many, small, cheap steps (solving linear equa-
tions).

• Implicit methods involve few, big, expensive steps (solving nonlinear
equations).

Just how expensive the implicit steps are, determines whether the implicit
methods compare favorably to the explicit methods, so let us consider the
price of nonlinear equation solvers:

5.1.1 Nonlinear equation solvers

There are many different types of nonlinear equation solvers. To mention
just a few we have Newtons method, fixed point iteration, bisection.

148



CHAPTER 5. FURTHER ISSUES FOR U ′ = F (T, U) 149

All nonlinear equation solvers share the following general algorithm for
solving the problem f(x) = 0. They have to be started of by an initial guess
of a solution provided by the user or chosen at random by the computer, and
then they go on with a sequence of “update” steps:

x0 = initial guess
for k = 0, 1, 2, . . .

xk+1 = update of xk
end

The update of xk consists in solving a linear equation expressing xk+1 as
a function of xk. For Newtons method the update of xk is for example
given by the condition that xk+1 is the point where the tangent to f in the
point xk crosses the x-axis or f(xk) − f ′(xk)(xk+1 − xk) = 0 ⇔ xk+1 =
xk − f(xk)/f ′(xk). If the method is convergent then f(limk→∞ xk) = 0 but
in practice of course we stop after a finite number of steps, say at xm. Hence
solving a nonlinear equation on a computer in practice means providing an
initial guess and then solving a finite sequence of linear problems. Since
implicit FDM’s means solving nonlinear equations and explicit FDM’s means
solving linear equations, this by the way means that

• An implicit method is, when it comes to the computational cost, equiv-
alent to a finite sequence of two or more explicit methods.

To understand how long the sequence needs to be, i.e. how big m has to
be, in order to get sufficiently precise solutions we need to recall some basic
properties of nonlinear equation solvers:

Let us start defining that a nonlinear equation solver is convergent of
order q if |xk+1−x| ≤ C|xk−x|q for some C and k bigger than some treshold
K where x is a zero of f , i.e. f(x) = 0. With the notation of definition 2.18
on page 26 this is the same as saying that the sequence {xk+1 − x}∞k=0 is
convergent of order q with respect to the sequence {xk − x}∞k=0. Newtons
method for example can be shown to be quadratically convergent (q = 2).
Note that |xk+1−x| ≤ C|xk−x|q ⇒ |xk−x| ≤ Ck|x0−x|qk . Since for q > 1,
qk grows much faster than k we may in these situations neglect the Ck and
consider |x0 − x|qk as the upper bound for |xk − x|. If for example q = 2 as
for Newtons method and if we assume that |x0 − x| = 10−1, then the upper
bounds for |xk − x|, k = 0, 1, 2, 3, 4 become 10−1, 10−2, 10−4, 10−8, 10−16. We
see the doubling of the number of correct digits in each step which is also
observed in practice. This means that 4 steps with Newtons method is all
that anyone should ever need.

Unfortunately an important part of the convergence result is that k has to
be bigger than a treshold K, or rather only when |xk−x| is sufficiently small



CHAPTER 5. FURTHER ISSUES FOR U ′ = F (T, U) 150

do we start observing the doubling of correct digits in each step. Unless the
initial guess is very good and |x0− x| is very small, initially we tend to see a
very irratic behavior of the nonlinear equation solvers, where the updates are
almost randomly moving around on the x-axis. Once one of these “random
guesses” happens to be close enough, then we get the doubling of correct
digits in each step from then on. The interval around x where we see the
doubling of correct digits in each step is called the Asymptotic Tail for the
method.

This situation is also described as if the nonlinear equation solver is a
slow starter. To find a solution to f(x) = 0 we start from an initial guess x0.
If f(x0) is far from zero it may take the method a large number of iterations
to get close enough to a solution x for the order of convergence of the method
to be apparent (to get in the asymptotic tail for the method) at which point
the error decreases rapidly. For the quadratically convergent Newton method
for example the number of correct digits generally double for each iteration,
but only once the asymptotic tail has been reached.

5.1.2 Predictor corrector methods

For an implicit FDM we basically go from the approximating solution Ũ im
i

in xi to the approximating solution Ũ im
i+1 in xi+1 by using Ũ im

i as initial guess
for the nonlinear solver. If the step length h = xi+1 − xi is big, then this
guess may be very poor and the nonlinear solver will need a high number of
iterations to get in the asymptotic tail where the fast convergence starts.

The million dollar question then is whether there is a faster way to get
in the asymptotic tail. The best answer to this question is to use an explicit
method to improve the initial guess Ũ im

i to Ũex
i+1 and then use the implicit

method starting from Ũex
i+1 to go to Ũ im

i+1. (Of course we know that an explicit
method works well only when h is small but practice shows that when h is
big an explicit method often still works better than first step of a nonlinear
equation solver).

This idea is elaborated into the Predictor-multiEvaluator-and-Corrector
methods P (EC)mE and P (EC)m also called Predictor-Multicorrector meth-
ods or simply Predictor-Corrector methods. These methods consist of 3
parts:

• The Predictor method which is an explicit multi step method of the
form

Ũi =

sex∑
j=1

(
aexj Ũi−j + hbexj f(xi−j, Ũi−j)

)
, i = sex + 1, . . . , n.(5.1)



CHAPTER 5. FURTHER ISSUES FOR U ′ = F (T, U) 151

• The Evaluator method simply evaluating and assigning a function value

f̃
(k)
j = f(xj, Ũ

(k)
j ), j = 1, . . . , n.(5.2)

• The Corrector method which is an implicit multi step method of the
form

Ũi − hbim0 f(xi, Ũi) =

sim∑
j=1

(
aimj Ũi−j + hbimj f(xi−j , Ũi−j)

)
,(5.3)

i = sim + 1, . . . , n.

The initial data is denoted Ũ
(m)
1 , . . . , Ũ

(m)

max{sex,sim} and the i’th step in the

algorithm for the entire P (EC)mE method is

For fixed i > max{sex, sim}(5.4)

and given Ũ
(m)
1 , . . . , Ũ

(m)
i−1 and f̃

(m)
1 , . . . , f̃

(m)
i−1 do

[P ] Ũ
(0)
i =

sex∑
j=1

(
aexj Ũ

(m)
i−j + hbexj f̃

(m)
i−j
)

for k from 0 to m− 1 do

[E] f̃
(k)
i = f(xi, Ũ

(k)
i )

[C] Ũ
(k+1)
i = hbim0 f̃

(k)
i +

sim∑
j=1

(
aimj Ũ

(m)
i−j + hbimj f̃

(m)
i−j
)

end do

[E] f̃
(m)
i = f(xi, Ũ

(m)
i ).

The P (EC)m method is identical except that the last [E] step is omitted and

f̃
(m)
i−j is replaced by f̃

(m−1)
i−j in the [P] step.

Note that the implicit method is implemented by a simple update proce-
dure, m times inserting the latest guess for Ũi+1. This is completely equiva-
lent to the update part in the nonlinear equation solver in section 5.1.1.

We provide the following results without proof:

Theorem 5.1 Let the predictor [P] and the corrector [C] have order of con-
vergence qex and qim respectively.

• P (EC)mE and P (EC)m have always the same order of convergence.

• P (EC)mE has order of convergence qim if qex ≥ qim.



CHAPTER 5. FURTHER ISSUES FOR U ′ = F (T, U) 152

• P (EC)mE has order of convergence qim if qex < qim and m ≥ qim−qex.
• P (EC)mE has order of convergence qex + m < qim if qex < qim and
m < qim − qex.

Example 5.2 Adams-Bashford-Moulton ABM(q)
The predictor-corrector methods where the Adams-Bashford method of order
q, AB(q), is used as the predictor and the Adams-Moulton method of order
q, AM(q), is used as the corrector are denoted Adams-Bashford-Moulton
methods of order q, ABM(q). (For the orders of AB(s) and AM(s) see theo-
rem 4.20).

Exercise 5.3
Implement ABM(1) and test P (EC)mE and P (EC)m for m = 1, 2, 3, . . . on
the test problem u′(x) = u(x) for x > 0, u(0) = 1 with solution u(x) = ex.
Compare the results.

Exercise 5.4
Implement AB(p) and AM(q) for p, q = 1, 2, 3 for the test problem u′(x) =
u(x) for x > 0, u(0) = 1 with solution u(x) = ex. Verify numerically
theorem 5.1 for these cases.

Exercise 5.5
Write an essay on theorem 5.1 and its proof.

5.2 Adaptive FDM’s for u′ = f(t, u)

The term adaptivity has been mentioned a couple of times so far. Now it is
time to go into more details. The most general question to consider is
Q1: What is adaptivity?
If the derivative u′ of the exact solution u to (1.10) on page 16 is varying a
lot in a certain subset of the computational domain I, then we will generally
need small steplengths there to get the total error small. The Rule of Thumb
is that

• the Local Errors in each step (being the difference between the exact
solution to (1.10) on page 16 and the numerical solution after the step
presuming that we start from the exact solution and advance with the
chosen FDM) should be about the same in all steps in order to get the
smallest Total Error at the end (being the difference un − Ũn starting
with Ũ1 and advancing with the chosen FDM).



CHAPTER 5. FURTHER ISSUES FOR U ′ = F (T, U) 153

But maybe there are big subsets of I where u′ is almost constant so that we
could take large steps there and still keep the local error small. Adaptive
Methods automatically and optimally in some sense adapt the steplength
to the situation, to keep the local truncation errors almost constant in all
steps. (If the optimality is missing, the method is often denoted a Feed Back
Method).
Q2: What methods can be made adaptive?
Until now, we have always assumed constant step length h. If h is not
constant, the order of multistep methods will generally drop, since the terms
in the Taylor expansion do not cancel. See exercise 3.23 on page 84 for an
example concerning δ0, but the situation is entirely similar for δ20 as seen in
the following example:

Example 5.6 Order of consistency for δ20 with non uniform step lengths

ui+1 = ui + hiu
′
i +

h2i
2
u′′i +

h3i
6
u′′′i + . . . , for hi = xi+1 − xi(5.5)

ui−1 = ui − hi−1u
′
i +

h2i−1

2
u′′i −

h3i−1

6
u′′′i +− . . . , for hi−1 = xi − xi−1

⇓ (requiring the coeff. of u′i to be 0)

hi−1ui+1 + hiui−1 − (hi−1 + hi)ui

=

(
hi−1h

2
i

2
+
hih

2
i−1

2

)
u′′i +

(
hi−1h

3
i

6
− hih

3
i−1

6

)
u′′′(ξ)

⇔ u′′i =
2

hi−1hi(hi−1 + hi)
·

(hi−1ui+1 + hiui−1 − (hi−1 + hi)ui) +O(hi−1 − hi),
so only when hi−1 = hi (uniform step length) do we get the well known
truncation error O(h2) of order 2.
The conclusion is, that in general one step methods (like Runge-Kutta) are to
be preferred as adaptive methods since here only one step length occur in each
step. It should be emphasized, that when doing adaptivity with a one step
method, still all theoretical results about the asymptotical behavior of the
method become invalid. A method that converges of order p when uniform
step lengths are used will no longer (necessarily) have order of convergence p
when used for adaptivity with nonuniform step lengths, even though it is still
denoted a p’th order method, tacitly understanding “if the step length had
been uniform”. The important fact is that the one step method will generally
still behave as a p’th order convergent method whereas a multi step method
will degrade in performance. It should be realized, that we have only given
a weak indication of the reason for this above.



CHAPTER 5. FURTHER ISSUES FOR U ′ = F (T, U) 154

Q3: How do we do adaptivity?
We need to estimate the error e in each step. If |e| ≥ τ for some given
Tolerance τ , then the step length h is halved and the step is repeated. If
instead |e| < τ

C
, where often C = 2p+1 for a p’th order method, then the step

length h is doubled in the following step. Otherwise h is kept unchanged for
the following step.
Q4: How do we find the error?
First the bad news: In section 4.2 on page 111 we have already seen one
implication of the fact that “p’th order of convergence” is an asymptotical
property meaning that only for step lengths below a certain treshold h0
can we with some right assume e(x) � C(x)hp. (C(x) will vary over the
computational domain I). The interval ]0, h0[ where this approximation is
acceptable is called the Asymptotic Tail for the method and the notion of
absolute stability is basically concerned with recovering h0. It should be
clear from the discussion in section 4.2 that h0 will generally be unknown
except for very special and simple cases. Still, to do adaptivity we make the
assumption e(x) = C(x)hp.

� For advanced readers 5.7 � To complicate matters even further, the
e in the assumption is not the usual error e(xi) = ei = ui− Ũi with Ũi being
the solution to the FDM started at x1 with the initial value Ũ1 = u∗. Instead
we shall use e(xi) = ei = ui − Ūi with Ūi being the solution to the FDM
started at xi−1 with the unknown value ui−1. Below, after presenting the
first approach, we shall explain why this is the right approach. �

With this somewhat troublesome assumption made, the rest is easy. We
shall show two possibilities of estimating the error:

Adaptivity 1: Use a single one step, p’th order method with a number
of different step lengths and the nodal points x1, x2, . . .:

ehi := ui − Ũi = Chq (start from Ũi−1 at xi−1 and step h to x∗i )(5.6)

e2hi := ui − Ûi = C(2h)q (start from Ũi−2 at xi−2 and step 2h to x∗i )(5.7)

e3hi := ui − Ǔi = C(3h)q (start from Ũi−3 at xi−3 and step 3h to x∗i )(5.8)

Here h = xi−1 − xi−2 and x∗i = xi−1 + h is our “candidate for xi” to be
accepted or rejected according to Q3 above. Also q is the “observed order of
convergence”. If we are in the asymptotic tail of the method, then q should
be very close to the “theoretical order of convergence” p, but if not, q may
differ significantly from p. Further, the second equality in each of (5.6), (5.7)
and (5.8) is our assumption, meaning that they do not really hold exactly,
but only as approximations, and for the computations we pretend that they
hold. Finally, with this method we are only allowed to change step length



CHAPTER 5. FURTHER ISSUES FOR U ′ = F (T, U) 155

after two steps with the same step length, so that when we consider a change
of step length then xi−2 = xi−1 − h and xi−3 = xi−1 − 2h.

� For advanced readers 5.7 (Continued) We would have liked to start
in (5.6), (5.7) and (5.8) from ui−1, ui−2 and ui−3 respectively, but since this
would render Ũi, Ûi and Ǔi non computable (not knowing the value to start
from), instead we start from the best approximations Ũi−1, Ũi−2 and Ũi−3

respectively. If the e in for example (5.7) had been the usual one, we should
have started the method in x1 and run it with double step lengths all the
way. But doing this we would likely never hit xi if only for the different
step sizes from step to step. For this reason we need to adapt the different
interpretation af e for the adaptivity computation. �

Note that Ũi, Ûi and Ǔi are computable and hence can be considered

known, whereas ui, C and q are our 3 unknowns. Solving, we get Ũi−Ûi

Ũi−Ǔi
=

2q−1
3q−1

. Here

q 1 2 3 4
2q−1
3q−1

0.5 0.375 0.2692 0.1875

If 2q−1
3q−1

is very different from 2p−1
3p−1

it is a good indication that we are not yet
in the asymptotic tail so h should be halved and the computations repeated.

If a priori we are sure that we are in the asymptotic tail then we can
avoid (5.8) and the deliberations above and go straight to the evaluation of

the error based on (5.6) and (5.7) giving ui− Ũi = Chq = Ũi−Ûi

2q−1
. In this case

we can also avoid the requirement above, that we only consider changing the
step after two steps with the same step length.

Having estimated the error we now adjust the step length as explained in
the answer to Q3 above, and either repeat the step or go to the next step.

The main problem with this approach to adaptivity is that it is quite
expensive, requiring 3 or at least 2 function evaluations for each step. Adap-
tivity then at least doubles the price of the method.

Adaptivity 2: This method can not be used to investigate whether we
are in the asymptotic tail of the method or not. This must be verified in
other ways. On the other hand this method has the advantage that is is
almost free computationally. The method goes as follows: Use two different
RK methods with the same number of stages s and the same values of Kj,i

but with order p and p+ 1 respectively:
We need 2 RK methods with Butcher arrays with the same A-matrix and
c-vector but with different b-vectors giving orders of convergence p and p+1
respectively. This is not always possible, but there are cases where it is. The



CHAPTER 5. FURTHER ISSUES FOR U ′ = F (T, U) 156

most popular example is the Runge Kutta Fehlberg method RKF45 using
6 stage RK methods of order 4 (RK(4)) and 5 (RK(5)). RK(5) has the
following Butcher array:

c A

bT
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
1
4
3
8
12
13

1
1
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
1
4

0 0 0 0 0
3
32

9
32

0 0 0 0
1932
2197

−7200
2197

7296
2197

0 0 0
439
216

−8 3680
513

− 845
4104

0 0

− 8
27

2 −3544
2565

1859
4104

−11
40

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

[
16
135

0 6656
12825

28561
56430

− 9
50

2
55

]
(5.9)

RK(4) has the same c and A and a different b. Since we only need the dif-
ference between RK(5) and RK(4) for the adaptivity, we shall give bTRK(5) −
bTRK(4) =

[
1

360
0 − 128

4275
− 2197

75240
1
50

2
55

]
. Details can be found for exam-

ple in [4] §11.8 that we also referred to in section 4.5 for details about the
RK methods in general .

Assuming that we are in the asymptotic tail, (5.6) and (5.7) are now
replaced with

RK(p+1): ei := ui − Ũi = Chp+1(5.10)

(start from Ũi−1 at xi−1 and step h to xi)

RK(p): êi := ui − Ûi = Ĉhp(5.11)

(start from Ũi−1 at xi−1 and step h to xi)

� For advanced readers 5.7 (Continued) We would have liked to start
from ui−1 but since this would render Ũi and Ûi non computable (not knowing
the value to start from), instead we start from the best approximation Ũi−1.
�

Now ui − Ûi = (ui − Ũi) + (Ũi − Ûi) = Ĉhp. Since the first paranthesis
after the first equality sign is O(hp+1) and the sum of the two parantheses is
O(hp), the second paranthesis must be Ĉhp +O(hp+1) so that Êi = Ũi − Ûi
can serve as our estimate of the error. Then for the (i − 1)’st step we first
compute the relevant K̃j,i−1 (depending on Ũi−1) and then we compute Ũi
using RK(p+1):

Ũi = Ũi−1 + hi−1

s∑
j=1

b
RK(p+1)
j K̃j,i−1.



CHAPTER 5. FURTHER ISSUES FOR U ′ = F (T, U) 157

Then to compute the error, note that Ûi is computed using RK(p) but start-
ing in Ũi−1 computed with RK(p+1):

Ûi = Ũi−1 + hi−1

s∑
j=1

b
RK(p)
j K̃j,i−1.

Subtracting the two our approximation to the error is simply

Êi = Ũi − Ûi = hi−1

s∑
j=1

(b
RK(p+1)
j − bRK(p)

j )K̃j,i−1.

Note that Êi is an approximation to êi, the error in the p’th order method. So
in reality we should accept or reject Ûi when Êi < τ or Êi > τ respectively.
But we know that Ũi is more accurate than Ûi, so why not accept or reject
this one instead. (We may reject some Ũi’s that are really good enough, but
the price of computing an approximation to ei is much bigger (requiring a
p+ 2 order method, so we accept this situation).

Note finally that no additional function evaluations are needed when using
adaptivity method 2, only some extra algebra. Hence this implementation of
adaptivity is very inexpensive, although it implicates a certain overhead in
programming effort.

Exercise 5.8
Implement RKF45 and test it on the test problem u′(x) = u(x) for x > 0,
u(0) = 1 with solution u(x) = ex. Start in x = 0 with step length h = 1.0
and use tolerance T = 0.0001. Double the step length if |e| < T/16 and halve
the step length if |e| ≥ T . Step until you reach x = 5 or 100 steps, whatever
comes first. Plot the exact and the numerical solution together.

5.3 Systems u′ = f (t,u) and absolute stabil-

ity. Stiff systems

All the theory presented above for the scalar ODE (1.10) can be repeated for
systems of ODE’s of the form

u′ = f(t,u), t > t0, u(t0) = u0,(5.12)

which is well-posed if f is Lipschitz continuous in its second (vector) argu-
ment. A little bit of “flexibility” may be required at times as we demonstrate
here: Consider the following system of linear ODE’s with constant coefficients

u′(t) = Au(t), t > t0, u(t0) = u0,(5.13)



CHAPTER 5. FURTHER ISSUES FOR U ′ = F (T, U) 158

where u ∈ Rn and where we shall assume that A ∈ Rn×n has n distinct
eigenvalues λ1, . . . , λn. As a consequence A also has n linearly independent
eigenvectors q1, . . . , qn (see for instance [17], Chapter 6, Lemma 3.1, p.276).

In the scalar case n = 1, (5.13) has the solution

u(t) = eA(t−t0)u0(5.14)

and the natural generalisation would then be to expect a solution to the
general case in the form

u(t) = eA(t−t0)u0.(5.15)

For the right hand side to even make sense, we need to define the exponen-
tial of a matrix. We will do this below, and also show that (5.15) actually
is the solution. Note that in the scalar case eA(t−t0)u0 = u0e

A(t−t0). This
commutability does not hold in general in the matrix case.

In the following we shall identify an n-vector with a one column matrix
and its transpose with a one row matrix. For example u ∈ Rn = Rn×1 and
uT ∈ Rn = R1×n. Then we have

Aqj = λjqj , for j = 1, . . . , n and Q = [q1, . . . , qn] is invertible

⇓

AQ = QΛ, where Λ =

⎡
⎢⎣ λ1 0

. . .

0 λn

⎤
⎥⎦

⇓
A = AQQ−1 = QΛQ−1.(5.16)

Let z(t) = Q−1u(t) so that

z′(t) = Q−1u′(t) = Q−1Au(t) = ΛQ−1u(t) = Λz(t), for t > t0 and

z(t0) = Q−1u(t0) = Q−1u0

�
z′j(t) = λjzj(t), for t > t0, zj(t0) = (Q−1u0)j, j = 1, . . . , n

�
zj(t) = eλj(t−t0)(Q−1u0)j

�

z(t) = D(t)Q−1u0 where D(t) =

⎡
⎢⎣ eλ1(t−t0) 0

. . .

0 eλn(t−t0)

⎤
⎥⎦

�
u(t) = Qz(t) = QD(t)Q−1u0.(5.17)



CHAPTER 5. FURTHER ISSUES FOR U ′ = F (T, U) 159

To investigate the connection between (5.15) and (5.17) we define the
exponential of a matrix by generalizing the series expansion holding for the
scalar case to the matrix case, i.e.

eA =

∞∑
k=0

Ak

k!
.(5.18)

Then by (5.16)

eA(t−t0) =
∞∑
k=0

Ak(t− t0)k
k!

(5.19)

=

∞∑
k=0

QΛQ−1 ·QΛQ−1 · . . . ·QΛQ−1(t− t0)k
k!

=
∞∑
k=0

QΛkQ−1(t− t0)k
k!

= Q

( ∞∑
k=0

Λk(t− t0)k
k!

)
Q−1

= Q

⎡
⎢⎣
∑∞

k=0
(λ1(t−t0))k

k!
0

. . .

0
∑∞

k=0
(λn(t−t0))k

k!

⎤
⎥⎦Q−1

= QD(t)Q−1.

(5.17) and (5.19) now verifies (5.15).
Let us conclude this subject with a few comments on the matrix expo-

nential: To compute the exponential of a matrix we have the series definition
(5.18). A more convenient expression comes from (5.19) when the eigenvalues
and eigenvectors are known. Then

eA =
∞∑
k=0

Ak

k!
= QD0Q

−1 where D0 =

⎡
⎢⎣ eλ1 0

. . .

0 eλn

⎤
⎥⎦ .(5.20)

The matrix exponential has some but not all of the properties of the scalar
exponential function. We leave some of these properties to the reader in the
following exercise.

Exercise 5.9
Show the following properties of the exponential of a matrix for appropriate
matrices A and B and scalars s and t:



CHAPTER 5. FURTHER ISSUES FOR U ′ = F (T, U) 160

1. esAetA = e(s+t)A

2. eAe−A = e0A = I

3. (eA)k = ekA for k = {0,±1,±2, . . .}
4. AB = BA⇒ eA+B = eAeB .

For the theory presented above for the scalar ODE (1.10) only when
generalizing the notion of absolute stability some care must be taken:

Example 5.10 Absolute stability for systems of ODE’s

u′ = Au, t > 0, u(0) = 1,(5.21)

where A ∈ Rn×n has n distinct eigenvalues λ1, . . . , λn i.e. ∃Q : Λ = Q−1AQ
where Λ = diag(λ1, . . . , λn). Let z = Q−1u so that z′(t) = Λz(t), i.e.
z(t) =

∑n
j=1 cje

λjtej where the j’th unit vector ej is an eigenvector for Λ
corresponding to λj . Hence z → 0 as t → ∞ iff Re(λj) < 0, j = 1, . . . , n.
(Re(z) is the real part of z).

The general idea is to diagonalize and hence split the system of dependent
ODE’s into a system of independent ODE’s and then treat each independent
scalar ODE by the methods introduced above.

Example 5.11 Stiff systems of ODE’s

u′ = Au+ g(t), t > 0, u(0) = 1,(5.22)

with the same A as in example 5.10 having Re(λj) < 0, j = 1, . . . , n. The
soluton to (5.22) can be written in the following form

u(t) =

n∑
j=1

Cje
λjtqj +G(t)→ G(∞) as t→∞(5.23)

where qj = Qej is an eigenvector for A corresponding to λj and G is an
arbitrary solution to the ODE without considering the boundary conditions.∑n

j=1Cje
λjtqj is called the Transient Solution since it dies out as t→∞. G

is called the Steady State Solution since it may stay on as t→∞.
If the region of absolute stability is bounded, there will be a condition on h
uniformly for all t, since absolute stability is about what happens as t→∞
with h fixed, making h smaller the larger the biggest absolute eigenvalue



CHAPTER 5. FURTHER ISSUES FOR U ′ = F (T, U) 161

|λmax| is. But the bigger |λmax| is, the faster the transient dies out. Hence
a fast dying transient initially forces a small step length which must be
maintained at all times, also when the transient is long time gone. The
system of ODE’s is said to be Stiff when in this way small step lengths are
necessary also in regions where the solution is very smooth. The solution to
the problem is generally to use implicit methods with unbounded regions of
absolute stability.

Note that we have given only a very rudimentary and incomplete intro-
duction to the notion of stiff systems of ODE’s. A thorough treatment would
require an entire course all by itself.

Exercise 5.12
Write an essay on stiff problems and implement some methods for the solution
of test cases.



Chapter 6

Second order problems

6.1 Linear, scalar, one dimensional, second

order, boundary value problem

So far, we have been considering the first order quasi linear DEP (1.10). In
this and the following sections we change focus to second order DEP’s. Since
these are somewhat more complicated than the first order DEP’s we restrict
to the linear case. As we have done until now, we still consider only one
dimensional equations, i.e. ODE’s. In general second order ODE’s require
two additional conditions in order to have uniqueness of solution. The main
theoretical result corresponding to theorem 1.16 on page 16 is the following:

Definition 6.1 The general expression for a Linear, Scalar, One Dimen-
sional, Second Order, Boundary Value Problem can be written as

Find u ∈ C2(Ī) : a(t)u′′(t) + b(t)u′(t) + c(t)u(t) + d(t) = 0 ∀t ∈ I,(6.1)

b1u
′(t1) + c1u(t1) + d1 = 0 and b2u

′(t2) + c2u(t2) + d2 = 0,

where a, b, c and d are known functions, b1, b2, c1, c2, d1 and d2 are known
constants and I is a known real interval containing the two points t1 and t2.
t1 and t2 may or may not be identical. If t1 �= t2 we denote (6.1) a Two
Point Boundary Value Problem. If instead t1 = t2 (6.1) is an Initial Value
Problem or a One Point Boundary Value Problem. In any case the generic
name Boundary Value Problem is used for all situations.

Theorem 6.2 If in (6.1) a, b, c, d ∈ C0(Ī), a(t) �= 0, ∀t ∈ I, if (c1, c2) �=
(0, 0) and if, when in the special case t1 = t2, then the two boundary condi-
tions are consistent and independent i.e. can be transformed into equivalent
conditions u(t1) = d̃1 and u′(t1) = d̃2 then (6.1) is well-posed.

162



CHAPTER 6. SECOND ORDER PROBLEMS 163

For a proof, see for example [3] ch. 2 and 6. The relevant Lipschitz condition
is automatically satisfied by the linearity of the system. IVP’s are generally
transformed into systems of first order ODE’s and solved with the methods
discussed up until now, so we shall concentrate on two point BVP’s without
completely dismissing the IVP’s. Here we shall consider only two special
cases, which are also examples that we shall follow through this and the next
couple of sections:

Example 6.3 The Poisson problem in 1 dimension
Consider the special case of (6.1) which takes the form

Find u ∈ C2([0, 1]) : −u′′(t) = f(t) ∀t ∈]0, 1[, u(0) = u(1) = 0,(6.2)

for a known function f ∈ C0([0, 1]). Note that we have met this problem
before in (3.1) on page 59 except for the different boundary conditions. By
the fundamental theorem of calculus, we may integrate the ODE in (6.2)
twice. Taking F (s) =

∫ s
0
f(t)dt this results in u(t) = αt+ β − ∫ t

0
F (s)ds for

two arbitrary constants α and β which can be determined by the boundary
conditions u(0) = u(1) = 0 to be β = 0 and α =

∫ 1

0
F (s)ds. Integrating

by parts
∫ t
0
F (s)ds = [sF (s)]t0 −

∫ t
0
sf(s)ds =

∫ t
0
(t− s)f(s)ds so that u(t) =

t
∫ 1

0
(1− s)f(s)ds− ∫ t

0
(t− s)f(s)ds i.e.

u(t) =

∫ 1

0

G(t, s)f(s)ds, G(t, s) =

{
s(1− t) if 0 ≤ s ≤ t,
t(1− s) if t ≤ s ≤ 1.

(6.3)

G is called the Greens Function for (6.2) and various plots of G are shown in
figure 6.1 below. With (6.3) we have existence and uniqueness of solution for
the Poisson problem (6.2) but (6.3) also imply other important properties:
Since G(t, s) ≥ 0 it is clear that we have the following

Monotonicity Property: f(t) ≥ 0 ∀t ∈ [0, 1]⇒ u(t) ≥ 0 ∀t ∈ [0, 1].(6.4)

Also |u(t)| ≤ ‖f‖∞
∫ 1

0
G(t, s)ds = 1

2
t(1 − t)‖f‖∞ ≤ 1

8
‖f‖∞ so we have the

following

Maximum Principle: ‖u‖∞ ≤ 1

8
‖f‖∞.(6.5)

Note, that the maximum principle is just continuous dependence on the data
so that we have well-posedness with respect to perturbations in f .

The second special case example that is met many places in real life problems
(and in the literature), is the following:



CHAPTER 6. SECOND ORDER PROBLEMS 164

(a)

0

0.2

0.4

0.6

0.8

1

t

0
0.2

0.4
0.6

0.8
1

s

0

0.05

0.1

0.15

0.2

0.25

G

(b)

0

0.2

0.4

0.6

0.8

1

t

0
0.2

0.4
0.6

0.8
1

s

0

0.05

0.1

0.15

0.2

0.25

G

(c)

0

0.05

0.1

0.15

0.2

0.25

G
(t

*,
s)

0.2 0.4 0.6 0.8 1

s

Figure 6.1: Greens function G(t, s) for the Poisson problem in one dimension:
(a) 3D-plot of G(t, s), (b) 3D plots of G(t, s) and G(0.25, s) and (c) 2D-plot of
G(0.25, s) (red, leftmost curve) G(0.5, s) (green, center curve) and G(0.75, s)
(blue, rightmost curve).

Example 6.4 The Divergence or self adjoint form problem in 1 dimension
Here we consider the special case of (6.1) where b = a′. Without loss of
generality we restrict to I =]0, 1[, and for simplicity we also take t1 = 0,
t2 = 1:

Find u ∈ C2([0, 1]) : −(a(t)u′(t))′ − c(t)u(t) = d(t) ∀t ∈]0, 1[,(6.6)

b1u
′(0) + c1u(0) + d1 = 0 and b2u

′(1) + c2u(1) + d2 = 0.

We shall not discuss this example in details but just mention, that many
practical problems are naturally formulated in this way.

6.2 Difference operators for FDM’s, revisited

In section 3.2 starting on page 77 we presented the Taylor series methods
for construction of difference operators, and used them to construct a few
standard difference operators. These were sufficient until now, but when
considering second order ODE’s we need a somewhat deeper knowledge.

For the first order ODE’s considered so far, we have presented both first
and second order consistent methods. Instead for second derivatives we have



CHAPTER 6. SECOND ORDER PROBLEMS 165

only proposed the second order difference approximation δ20 in example 3.21
on page 83. We start answering the question about why exactly this difference
operator was presented as the standard for approximating second derivatives.

Example 6.5 What consistency order to use for second order ODE’s
δ20f uses 3 nodal points, so let us try to obtain a first order consistent method
with just 2 points, which we without loss of generality can take to be z + h
and z + c. Using the Taylor series method (with c1, c2 and c depending on
h) we have

c1f(z + h) + c2f(z + c) = f ′′(z) +O(h)⇔(6.7)

c1(f(z) + hf ′(z) +
h2

2
f ′′(z) + . . .) + c2(f(z) + cf ′(z)

+
c2

2
f ′′(z) + . . .)− f ′′(z) = O(h)

from which it is clear that we need to take c1 + c2 = O(h), c1h+ c2c = O(h)
and c1

h2

2
+ c2

c2

2
− 1 = O(h) to get rid of the f(z), the f ′(z) and the f ′′(z)-

term respectively To simplify the solution process, we shall settle for linear
approximations to these equations in the form c1 + c2 = αh, c1h + c2c =
βh and c1

h2

2
+ c2

c2

2
− 1 = γh. Eliminating c2 from the last two equations

using the first, leads to c1(h − c) = −αhc + βh and 1
2
c1(h − c)(h + c) =

−αh c2
2
+ 1 + γh. Now eliminating c1 from the last equation using the first

leads to c = 2(1+γh)
βh−αh2 = O(h−1). Plugging this into the first equation gives

c1 = βh−αhc
h−c =

αh+(αγ−β2

2
)h2+αβ

2
h3

1+γh−β
2
h2+α

2
h3

= O(h) and finally c2 = −c1 + αh =

β2

2
h2+α2

2
h4

1+γh−β
2
h2+α

2
h3

= O(h2). Hence we get the formula

1

1 + γh− β
2
h2 + α

2
h3

{(
αh+ (αγ − β2

2
)h2 +

αβ

2
h3
)
f(z + h)(6.8)

+

(
β2

2
h2 +

α2

2
h4
)
f(z +

2(1 + γh)

βh− αh2 )
}

= f ′′(z) +O(h).

This formula has many disadvantages: First of all it is unsymmetric and fur-
ther the second nodal point is ackwardly moving away towards ±∞ (depend-
ing on the sign of β) as h → 0. Generally, no reuse of function evaluations
will be possible with this type of formula. For this reason, 2 point formulas
are almost never used for approximating second derivatives, and while first
order 3 point formulas can be constructed like for example

c1f(z − h)− 2

h2
f(z) +

(
2

h2
− c1

)
f(z + h) = f ′′(z) +O(h)(6.9)



CHAPTER 6. SECOND ORDER PROBLEMS 166

this approach makes little sense since we already know that taking c1 = 1
h2

we obtain the symmetric second order δ20f . Hence we really have to bend
over to get first order approximations to second derivatives and such are
basically never used. For this reason and to limit the number of function
evaluations, we shall concentrate on second order approximations to second
order derivatives.

To avoid degradation of the truncation errors for (6.1) we shall then
also for lower order derivatives and for boundary conditions (see below in
example 6.8 on page 168) be using second order difference operators. This
can be done at no extra cost as long as the nodes z − h, z and z + h can be
used as for example in δ0f .

Note that the choice of (at least) second order consistent, (a least) 3 point
difference approximations to the second derivative in (6.1) has as a conse-
quence that the FDM’s for (6.1) become (at least) 2 step with the problems
this implies for adaptivity (see section 5.2 on page 152 and in particular
the subsection “Q2”). Also, since there will be (at least) 3 unknown Ũ val-
ues in each equation for the FDM (typically Ũi−1, Ũi and Ũi+1), except for
the boundary conditions, in general the FDM’s for two point BVP’s will be
implicit. The only way to make explicit methods would be to have what
corresponds to a “priming the pumps” process as described in section 4.3 on
page 115 for the multistep methods, i.e. to start out with Ũ1 and Ũ2 given.
This is exactly what happens for initial value problems like

Find u ∈ C2([0, 1]) : −u′′(t) = f(t) ∀t ∈]0, 1[, u(0) = u′(0) = 0,(6.10)

for which a typical FDM would be

−δ20Ũi = −
Ũi−1 − 2Ũi + Ũi+1

h2
= fi, i = 2, . . . , n− 1, Ũ1 = Ũ2 = 0,(6.11)

where Ũ2 = 0 comes from the (only first order) approximation δ+Ũ1 = 0 of
the initial condition u′(0) = 0 (and using also Ũ1 = 0). Ũ3 is then recovered
from Ũ1 and Ũ2, Ũ4 from Ũ2 and Ũ3 and so on, following the arrow of time
as was done for all the explicit and implicit first order DEP’s met so far.

For the corresponding two point BVP with u(0) = u(1) = 0, instead we
have Ũ1 = Ũn = 0 and the situation changes:
Taking i = 2, we get an equation involving Ũ1, Ũ2 and Ũ3 of which only Ũ1 is
known. We can hence not recover Ũ2 and follow the arrow of time. Instead



CHAPTER 6. SECOND ORDER PROBLEMS 167

we may write all the equations in matrix form as⎡
⎢⎢⎢⎢⎢⎣

2 −1 0
−1 2 −1

. . .
. . .

. . .

−1 2 −1
0 −1 2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

Ũ2

Ũ3
...

Ũn−2

Ũn−1

⎤
⎥⎥⎥⎥⎥⎦ = h2

⎡
⎢⎢⎢⎢⎢⎣

f2
f3
...

fn−2

fn−1

⎤
⎥⎥⎥⎥⎥⎦ .(6.12)

When this equation system is solved, all of the Ũi are recovered at the same
time, so instead of following the arrow of time, where Ũi depends only on Ũj
for j < i, in the present case of two point BVP’s, all the Ũi’s are depending
on each other. To distinguish from the implicit methods following the arrow
of time, we may refer to those as Locally Implicit methods while the methods
for the two point BVP’s may be called Globally Implicit methods.
The divergence form (6.6) presents yet another problem:

Example 6.6 How to approximate terms like (a(z)u′(z))′

The simple minded solution is to expand the derivative and do

(a(z)u′(z))′ = a′(z)u′(z) + a(z)u′′(z)(6.13)

= δ0a(z)δ0u(z) + a(z)δ20u(z) +O(h2)
=
a(z + h)− a(z − h)

2h

u(z + h)− u(z − h)
2h

+ a(z)
u(z + h)− 2u(z) + u(z − h)

h2
+O(h2).

Instead it turns out that we may get a much simpler solution by using
the “half points” first introduced for the Crank-Nicolson method for (1.10)
in example 3.37 on page 98. Defining the First Order Central Half Point
Difference Operator of Consistency Order Two by

δ0, 1
2
f(z) =

f(z + h
2
)− f(z − h

2
)

h
= f ′(z) +O(h2)(6.14)

with the order easily verifiable by Taylor expansion, we get

δ0, 1
2

(
a(z)δ0, 1

2
u(z)

)
= δ0, 1

2

(
a(z)

u(z + h
2
)− u(z − h

2
)

h

)
(6.15)

=
a(z + h

2
)u(z+h)−u(z)

h
− a(z − h

2
)u(z)−u(z−h)

h

h

=
a(z + h

2
)u(z + h)− (a(z + h

2
) + a(z − h

2
))u(z) + a(z − h

2
)u(z − h)

h2

= (a(z)u(z)′)′ +O(h2)



CHAPTER 6. SECOND ORDER PROBLEMS 168

where the last equality comes from the usual Taylor expansions. Note that
the function u is still only evaluated in the “usual” nodal points (which is
what we want), while only a is evaluated in the half points, and one of the
values can be reused if also (a(z + h)u(z + h)′)′ needs to be evaluated.

Exercise 6.7
Verify the order of consistency in (6.14) and (6.15).

Finally there is the question about how to evaluate boundary conditions in-
volving derivatives. We shall consider only one example explaining a general
approach:

Example 6.8 How to approximate boundary conditions like a(1)u′(1)
The problem with boundary conditions is that the symmetric second order
formulas that we are using will reach outside the domain. The simple minded
approach would be to use the Taylor method to construct a method based
on the points 1, 1− h and 1 − 2h. (Since we can not use symmetric points,
it is not possible to construct a second order approximation based on just 2
points). We easily arrive at

a(1)
3u(1)− 4u(1− h) + u(1− 2h)

2h
= a(1)u′(1) +O(h2).(6.16)

Again as in example 6.6 it is possible to achieve a simpler result using a more
involved approach. The first step in this approach is to use a symmetric half
point formula in the form of an average, forming

1

2

(
a(1− h

2
)δ0, 1

2
(u(1− h

2
)) + a(1 +

h

2
)δ0, 1

2
(u(1 +

h

2
))

)
(6.17)

= a(1)u′(1) +O(h2),

where the right hand is easily verified by Taylor expansion of the left hand
side and using (6.14). The problem is that the left hand side involves the
Ghost Nodes 1+ h

2
and 1+h that lie outside the computational domain [0, 1].

Now if the ODE inside the domain is the divergence form problem from (6.6),
i.e. (a(t)u′(t))′ + c(t)u(t) + d(t) = 0, then we have by (6.15) (extending also
the ODE outside the domain) that

1

h

(
a(1 +

h

2
)δ0, 1

2
(u(1 +

h

2
))− a(1− h

2
)δ0, 1

2
(u(1− h

2
))

)
(6.18)

+ c(1)u(1) + d(1) = O(h2).



CHAPTER 6. SECOND ORDER PROBLEMS 169

Eliminating the ghost nodes in (6.17) using (6.18) we arrive at

a(1− h

2
)δ0, 1

2
(u(1− h

2
))− h

2
(c(1)u(1) + d(1))(6.19)

= a(1)u′(1) +O(h2).

Exercise 6.9
Verify the order of consistency in (6.17), (6.18) and (6.19).

6.3 Convergence for FDM’s for u′′ = f

FDM’s for (6.1) (or for (6.2) or (6.6)) can be constructed in the usual way as
described in section 3.1.1 on page 60: Just replace all derivatives with finite
differences, taking care to use difference operators with the same order of
consistency everywhere (or being aware that otherwise, the lowest order is
determinating for the error), and using the simplifying methods of section 6.2
or similar or more advanced methods when necessary.

Example 6.10 Second order consistent FDM for (6.2)
The standard FDM for the 1 dimensional Poisson problem is the following
globally implicit, 2 step method:

−δ20Ũi = −
Ũi−1 − 2Ũi + Ũi+1

h2
= fi, i = 2, . . . , n− 1, Ũ1 = Ũn = 0,(6.20)

for n ≥ 2 uniformly distributed nodes xi = (i − 1)h, i = 1, . . . , n where
h = 1

n−1
and with fi = f(xi), ∀i = 1, . . . , n.

Theorem 6.11 (6.20) is well-posed and has the unique solution

Ũi =

n∑
j=1

Gj(xi)f(xj), ∀i = 1, . . . , n.(6.21)

where the Discrete Greens Function is given by

Gj(t) = hG(t, xj), j = 1, . . . , n(6.22)

with G being the Greens function introduced in (6.3).



CHAPTER 6. SECOND ORDER PROBLEMS 170

Proof
First we show continuous dependence on the data f and existence and unique-
ness of solution:
(6.20) can also be written in the form of the tridiagonal equation system
A∗Ũ∗ = h2f∗ where A∗ = tridiag(−1, 2,−1) ∈ R(n−2)×(n−2),
Ũ∗ = (Ũ2, . . . , Ũn−1)

T and f∗ = (f2, . . . , fn−1)
T (see (6.12)). Solving this

equation system only Ũ2, . . . , Ũn−1 are recovered, while Ũ1 = Ũn = 0 is un-
derstood.
A∗ is Diagonally Dominant since 2 ≥ | − 1|+ | − 1|.
A∗ is also Positive Definite since for any v∗ = (v2, . . . , vn−1)

T �= 0 we have
v∗TA∗v∗ = v22 + v2n−1 +

∑n−2
i=2 (vi+1 − vi)2 > 0.

Hence A∗ is nonsingular and we have a unique solution U1, . . . , Un to (6.20)
depending continuously on f since Ũ∗ = h2A∗−1f∗.
Secondly we verify that (6.21) defines a solution to (6.20):
Recall from (6.3) and figure 6.1c that G(t, xj) is piecewise linear, with peak
in xj . Then

−δ20Gj(xi) = −1

h
(G(xi−1, xj)− 2G(xi, xj) +G(xi+1, xj))(6.23)

=

⎧⎨
⎩

0 for i = 2, . . . , j − 1, j + 1, . . . , n− 1
since here G is a line

1 for i = j by (6.3)

= δi,j, i = 2, . . . , n− 1, j = 1, . . . , n

where δi,j is the Kronecker delta. Here the 1 in the braces comes from
the following algebra: G(xi−1, xi)− 2G(xi, xi) +G(xi+1, xi) = xi−1(1− xi)−
2xi(1−xi)+xi(1−xi+1) = (xi−h)(1−xi)−2xi(1−xi)+xi(1−xi−h) = −h.
From (6.23) we get −δ20

(∑n
j=1Gj(xi)f(xj)

)
= f(xi), ∀i = 2, . . . , n− 1, and

since G(0, s) = G(1, s) = 0, for all s ∈ [0, 1] we finally have
∑n

j=1Gj(x1)f(xj)
= 0 and

∑n
j=1Gj(xn)f(xj) = 0.

Exercise 6.12
Verify that the matrix A∗ in the proof of theorem 6.11 is positive definite as
claimed.

Theorem 6.13 For f ∈ C2(0, 1), (6.20) is second order consistent with (6.2)



CHAPTER 6. SECOND ORDER PROBLEMS 171

and

τ1 = τn = 0,(6.24)

|τi| =
∣∣∣∣−
(
ui−1 − 2ui + ui+1

h2
+ fi

)∣∣∣∣ ≤ h2

12
‖f ′′‖∞ = O(h2),

i = 2, . . . , n− 1,

⇒ τ = O(h2).

Proof
Taylor expansion.

To show convergence, we first introduce a notion that turns out to be the
zero stability that we need.

Theorem 6.14 Let Ũ = (Ũ1, . . . , Ũn)
T and f = (f1, . . . , fn)

T be the solution
and right hand sides in (6.20) respectively and define the Discrete L∞-norm
by

‖f‖h,∞ = max
i=1,...,n

|fi| ∀f = (f1, . . . , fn)
T .(6.25)

Then the following Discrete Maximum Principle holds:

‖Ũ‖h,∞ ≤ 1

8
‖f‖h,∞(6.26)

Proof
By (6.21) we have |Ũi| ≤ h

∑n
j=1G(xi, xj)|f(xj)| ≤ ‖f‖h,∞h

∑n
j=1G(xi, xj) ≤

1
8
‖f‖h,∞, ∀i = 1, . . . , n. The proof of the last inequality is left as exercise 6.16

below.

Theorem 6.15 For f ∈ C2(0, 1), the solution Ũ = (Ũ1, . . . , Ũn)
T to (6.20) is

second order convergent towards the exact solution vector u = (u1, . . . , un)
T

to (6.2) and

|ui − Ũi| ≤ ‖u− Ũ‖h,∞ ≤ h2

96
‖f ′′‖∞ = O(h2), i = 1, . . . , n.(6.27)

Proof
(6.26) implies zero stability of (6.20) with respect to ε-perturbations (see
definition (3.43) on page 104) of the form

−δ20Z̃ε,i = fi + δε,i, |δε,i| < ε, i = 2, . . . , n− 1,(6.28)

Z̃ε,1 = Z̃ε,n = 0, (δε,1 = δε,n = 0),



CHAPTER 6. SECOND ORDER PROBLEMS 172

since by linearity and (6.26)

|Ũi − Z̃ε,i| ≤ 1

8
ε, i = 1, . . . , n.(6.29)

By the convergence theorem of Lax (theorem 3.44 on page 105) taking δε,i =
τi and using also (6.24) we get (6.27).

Exercise 6.16
Fill in the details of the following verification of h

∑n
j=1G(xi, xj) ≤ 1

8
:

h

n∑
j=1

G(xi, xj)(6.30)

= h

(
i∑

j=1

xj(1− xi) +
n∑

j=i+1

xi(1− xj)
)

= h3

(
i∑

j=1

(j − 1)(n− i) +
n∑

j=i+1

(i− 1)(n− j)
)

=
1

2
h3 ((n− i)i(i− 1) + (i− 1)(n− i)(n− i− 1))

=
1

2(n− 1)3
(−(n− 1)i2 + (n2 − 1)i− (n2 − n))

≤ 1

2(n− 1)3

(
−(n− 1)

(
n+ 1

2

)2

+ (n2 − 1)
n + 1

2
− (n2 − n)

)

=
1

8

For the inequality, take the derivative with respect to i and see that it is zero
at i = n+1

2
and note that this determines a maximum because of the negative

coefficient of i2. The last equality just requires a little algebra.

The key to the convergence result in theorem 6.15 is the discrete maximum
principle, which again hinges on knowledge of the discrete Greens function.
For the general problem (6.1) it is hard to find the discrete Greens function,
and the approach hence becomes more difficult. An approach which does
not depend directly on the discrete Greens function is to note that since the
DEP is linear and hence can be formulated as

AŨ = f and Au = f + τ ⇒ Ae = τ ,(6.31)



CHAPTER 6. SECOND ORDER PROBLEMS 173

for some n × n matrix A and some n vector f , where Ũ = (Ũ1, . . . , Ũn)
T ,

u = (u1, . . . , un)
T , e = (u1 − Ũ1, . . . , un − Ũn)T and τ= (τ1, . . . , τn)

T . From
(6.31) we get 0-stability and also convergence (given consistency) if only we
can prove that A is non singular with an inverse that is uniformly bounded
in the step length h (as h → 0). Often it is possible to make some progress
for specific examples either with the Greens function approach or with the
matrix approach. Just as often though, the preferred solution is to transform
the finite difference problem into an equivalent collocation or finite element
problem (having the same identical system of equations) and use the ap-
proaches described in sections 6.4 and 6.5 below for those methods.

6.4 Convergence for CM’s for u′′ = f

Example 6.17 Convergence of CM’s for the one dimensional Poisson prob-
lem (6.2)
In section 3.1.2 on page 66 we described how to construct collocation meth-
ods to find numerical approximations Ũ =

∑n
j=1 cjφj ∈ S ⊂ C2(0, 1) to the

exact solution u to (6.2) of the form

Find (c1, . . . , cn)
T ∈ Rn : −

n∑
j=1

cjφ
′′
j (xi) = f(xi), i = 1, . . . , n.(6.32)

Here we shall concentrate on convergence results for such methods. We shall
restrict to the case of S = P0

n+1[0, 1] (polynomials p of degree at most n+ 1
with the boundary conditions p(0) = p(1) = 0 enforced) with dimension n.
As basis functions for P0

n+1[0, 1] will be used the following Lagrange basis
functions (cardinal functions)

φj(t) =
n+1∏

k=0,k �=j

t− xk
xj − xk , j = 1, . . . , n,(6.33)

using the n + 2 Gauss-Lobatto nodes satisfying 0 = x0 < x1 < . . . < xn <
xn+1 = 1 and having been selected such that there exist non zero Gauss-
Lobatto weights w0, . . . , wn+1 such that

∫ 1

0
p(t)dt =

∑n+1
j=0 wjp(xj), ∀p ∈

P2n+1(0, 1). Incidentally, taking p ≡ 1, we see that
∑n

j=1wj = 1. Note also

that φj(xi) = δi,j so that Ũi = Ũ(xi) = ci, i = 1, . . . , n.

Theorem 6.18 Let Ũ and f be the solution generated from and right hand
sides in (6.32) respectively and let ‖ · ‖p denote the Lp norm over the interval
(0, 1). Then the following Maximum Principle holds:

∃C > 0 : ‖Ũ‖2 ≤ C‖f‖∞(6.34)



CHAPTER 6. SECOND ORDER PROBLEMS 174

Proof
For any i = 1, . . . , n we have

−wiŨ ′′(xi) = −
n+1∑
j=0

wjŨ
′′(xj)φi(xj) (since φi(xj) = δij)(6.35)

= −
∫ 1

0

Ũ ′′(t)φi(t)dt (since Ũ ′′ ∈ Pn−1(0, 1))

=

∫ 1

0

Ũ ′(t)φ′
i(t)dt (since φi(0) = φi(1) = 0).

It can be shown that Poincaré’s inequality holds, saying that

∃Cp > 0 : ‖v‖2 ≤ Cp‖v′‖2,(6.36)

∀v ∈ {v ∈ L2(0, 1) : v′ ∈ L2(0, 1) and v(0) = v(1) = 0}.

Then using (6.36), (6.35) and (6.32) in that order we get

1

C2
p

‖Ũ‖22 ≤ ‖Ũ ′‖22 =
n∑
i=1

Ũi

∫ 1

0

Ũ ′(t)φ′
i(t)dt =

n∑
i=1

Ũi(−wiŨ ′′(xi))(6.37)

=

n∑
i=1

Ũi(wif(xi)) =

n∑
j=1

wjf(xj)Ũ(xj) =

n+1∑
j=0

wjf(xj)Ũ(xj)

since Ũ(x0) = Ũ(xn) = 0.

Using again the Gauss-Lobatto property
∑n+1

j=0 wjŨ(xj) =
∫ 1

0
Ũdt ≤ ∫ 1

0
|Ũ |dt

= ‖Ũ‖1 and the equivalence of norms on finite dimensional spaces (Ũ ∈
P0
n+1(0, 1) with dimension n <∞) that we shall take for granted, we get

n+1∑
j=0

wjf(xj)Ũ(xj) ≤ C‖f‖∞‖Ũ‖1 ≤ C‖f‖∞‖Ũ‖2.(6.38)

Putting (6.37) and (6.38) together, we get (6.34).
In section 3.4 on page 102 we defined the notions of truncation errors,

consistency, convergence, ε-perturbation and zero stability for finite difference
methods. For collocation methods we shall use the same notions but with
the definitions slightly adjusted to fit the framework of collocation methods.
Starting with the local truncation errors, for FDM’s we replaced in the FDM
equations the unknowns Ũi approximating the exact solution in the nodal
points u(xi) by the exact values. For the CM’s we similarly replace the
unknowns cj, that are approximations to the exact nodal point solution values



CHAPTER 6. SECOND ORDER PROBLEMS 175

u(xi) as long as we use the Lagrange basis, by u(xi) which corresponds to
replacing the function Ũ by Iu, the interpolant of u in the nodal points. For
the other notions, the main difference lies in the fact that we for the CM’s
are recovering functions, while we for the FDM’s recovered vectors. Hence
norms for CM’s will generally be function norms where for the FDM’s they
were vector norms:

Definition 6.19 The Local Truncation Errors for the CM (6.32) for the
Poisson DEP (6.2) are defined by

τi = (−(Iu)′′(xi)− f(xi))− (−u′′(xi)− f(xi))(6.39)

= −(Iu)′′(xi)− f(xi), i = 1, . . . , n,

where Iu ∈ P0
n+1[0, 1] is the interpolant of the exact solution u in the Gauss-

Lobatto nodal points x0, . . . , xn+1.
The Global Truncation Error for the CM (6.32) for the DEP (6.2) is defined
by

τ = max{|τ1|, . . . , |τn|}(6.40)

= max{|(Iu− u)′′(x1)|, . . . , |(Iu− u)′′(xn)|}.

Consistency and Convergence is defined for CM’s as for FDM’s (see defini-
tion 3.40 on page 102, only do we normally use function norms (of Lp-type)
for the CM’s where we mainly used vector norms (of �p-type) for the FDM’s.
Let ε be any positive real number, and δε ∈ C[0, 1] any continuous function
satisfying ‖δε‖∞ < ε. Let as usual δε,i = δε(xi), i = 1, . . . , n so that also
|δε,i| < ε, for i = 1, . . . , n. The problem

Find Z̃ε =

n∑
j=1

Zε,jφj ∈ P0
n+1[0, 1] :(6.41)

−
n∑
j=1

Zε,jφ
′′
j (xi) = f(xi) + δε,i, i = 1, . . . , n,

is called an ε-Perturbation of (6.32).
The CM (6.32) is Zero Stable (in the norm ‖ · ‖ and with respect to ε-
perturbations) if for all ε-perturbations (6.41) (fixed ε but arbitrary δ’s) ∃h0 >
0, ∃C > 0 (independent of h, ε and δε,i for i = 1, . . . , n) such that ‖Ũ−Z̃ε‖ <
Cε ∀h ∈]0, h0], i.e. for sets of nodal point, large enough to give sufficiently
small step lengths.



CHAPTER 6. SECOND ORDER PROBLEMS 176

Theorem 6.20 For f ∈ C[0, 1], the solution Ũ to (6.32) is convergent in L2

norm towards the exact solution u to (6.2).
Let Hs(0, 1) = {v ∈ Cs−1(0, 1) : v(s) ∈ L2(0, 1)} be the Sobolev space of order
s with functions with weak derivatives up to order s in L2(0, 1). Let ‖ · ‖Hs

be the norm on Hs(0, 1).
If f ∈ Hs(0, 1) then

‖u′ − Ũ ′‖2 ≤ C

(
1

n

)s
(‖f‖Hs + ‖u‖Hs+1) .(6.42)

Proof
We start proving the convergence for continuous f :
The maximum principle (6.34) implies zero stability of (6.32) in the ‖ · ‖2
norm and with respect to ε-perturbations according to definition 6.19, since
by linearity and (6.34)

‖Ũ − Z̃ε‖2 ≤ Cε.(6.43)

Taking δε,i = τi, i = 1, . . . , n and using (6.39) we get Z̃ε = Iu so that
‖Ũ − Iu‖2 ≤ Cτ ≤ C‖(Iu− u)′′‖∞ and

‖Ũ − u‖2 ≤ ‖Ũ − Iu‖2 + ‖Iu− u‖2(6.44)

≤ C‖(Iu− u)′′‖∞ + ‖Iu− u‖2 → 0 for n→∞.

From standard interpolation results, the convergence would be expected to
be of order n−s if u ∈ Cs+1[0, 1].
The proof of (6.42) is somewhat more technical:
We start recalling (3.15) obtained by multiplying the ODE by a test function
v, doing partial integration and using in this case v(0) = v(1) = 0 to eliminate
the boundary terms. Using also (6.37) with constants ci different from the
Ũi’s, corresponding to a generic v =

∑n
i=1 ciφi ∈ P0

n+1[0, 1] we get

∫ 1

0

u′(t)v′(t)dt =
∫ 1

0

f(t)v(t)dt,

∫ 1

0

Ũ ′(t)v′(t)dt =
n∑
j=1

wjf(xj)v(xj)(6.45)

⇓∫ 1

0

(u− Ũ)′(t)v′(t)dt =
∫ 1

0

f(t)v(t)dt−
n∑
j=1

wjf(xj)v(xj)(6.46)

≤ C

(
1

n

)s
‖f‖Hs‖v‖2,



CHAPTER 6. SECOND ORDER PROBLEMS 177

where the last inequality is a standard interpolation result which can be
found for example in [4] §10.4 equation (10.36). Now we have∫ 1

0

((u− Ũ)′(t))2dt(6.47)

=

∫ 1

0

(u− Ũ)′(t)(u− Iu)′(t)dt+
∫ 1

0

(u− Ũ)′(t)(Iu− Ũ)′(t)dt.

For the first integral on the right hand side we shall need the inequality

ab ≤ δa2 +
1

4δ
b2, ∀δ > 0.(6.48)

The proof is elementary: 0 ≤ (
√
2δa − 1√

2δ
b)2 = −2ab + 2δa2 + 1

2δ
b2. Then

taking δ = 1∫ 1

0

(u− Ũ)′(t)(u− Iu)′(t)dt ≤ 1

4
‖(u− Ũ)′‖22 + ‖(u− Iu)′‖22.(6.49)

The last integral on the right hand side of (6.47) we handle with (6.46),
recalling from definition 6.19 on page 175 that Iu ∈ P0

n+1[0, 1] is the inter-
polant of the exact solution u and hence can be used as v. We also use the
triangle inequality, the Poincaré inequality (6.36) and (6.48) with δ = 1

2
and

1 for the two terms respectively:∫ 1

0

(u− Ũ)′(t)(Iu− Ũ)′(t)dt ≤ C

(
1

n

)s
‖f‖Hs‖Iu− Ũ‖2.(6.50)

≤ C

(
1

n

)s
‖f‖Hs‖Iu− u‖2 + C

(
1

n

)s
‖f‖Hs‖u− Ũ‖2.

≤ C

(
1

n

)s
‖f‖Hs‖Iu− u‖2 + CCp

(
1

n

)s
‖f‖Hs‖(u− Ũ)′‖2.

≤ 1

2
C2

(
1

n

)2s

‖f‖2Hs +
1

2
‖Iu− u‖22 + C2C2

p

(
1

n

)2s

‖f‖2Hs

+
1

4
‖(u− Ũ)′‖22.

Collecting terms from (6.47), (6.49) and (6.50) we get

‖(u− Ũ)′‖22(6.51)

≤ C2(1 + 2C2
p)

(
1

n

)2s

‖f‖2Hs + 2‖(Iu− u)′‖22 + ‖Iu− u‖22.



CHAPTER 6. SECOND ORDER PROBLEMS 178

Here the last two term are handled by standard interpolation results (see for
example [4] §10.3 equation (10.22)) giving

2‖(Iu− u)′‖22 + ‖Iu− u‖22(6.52)

≤ C1

(
1

n

)2s

‖u‖2Hs+1 + C2

(
1

n

)2s+2

‖u‖2Hs+1 ≤ C3

(
1

n

)2s

‖u‖2Hs+1.

Hence we have

‖(u− Ũ)′‖2 ≤ C

(
1

n

)s√
‖f‖2Hs + ‖u‖2Hs+1.(6.53)

To get (6.42) we only need to use another algebraic inequality in the same
family as (6.48)

√
a2 + b2 ≤ |a|+ |b|.(6.54)

The proof is again simple:
√
a2 + b2 ≤ |a|+ |b| ⇔ a2+b2 ≤ a2+b2+2|a||b| ⇔

0 ≤ 2|a||b|.
The first part of the previous proof is interesting since it uses the same
approach to convergence that we have used for FDM’s. Instead in the second
part of the proof we rely heavily on Banach space theory using Cauchy-
Schwartz, the triangle inequality and not the least Poincaré’s inequality.

6.5 Convergence for FEM’s for (6.1)

In the convergence proof for (6.42) (see theorem 6.20 on page 176) we used a
variational form of the DEP obtained by multiplying the differential equation
with a test function and doing partial integration to balance the number of
derivatives on the trial and test functions. The boundary term arising in
this partial integration was [u′(x)v(x)]x=1

x=0 = 0. It was a significant practical
advantage that this boundary term vanished because of the boundary con-
ditions on u and v. This advantage becomes even greater for finite element
methods where the variational formulation is used not only for the conver-
gence proofs but also for the construction of the numerical solution itself.
For problem (6.1) one variational formulation (after partial integration but
before eliminating boundary terms) is∫

I

(−a(t)u′(t)v′(t) + (b(t)− a′(t))u′(t)v(t) + c(t)u(t)v(t) + d(t)v(t)) dt(6.55)

+ [a(t)u′(t)v(t)]I = 0,

b1u
′(t1) + c1u(t1) + d1 = 0 and b2u

′(t2) + c2u(t2) + d2 = 0.



CHAPTER 6. SECOND ORDER PROBLEMS 179

In order to make the boundary term vanish, we need first of all t1 �= t2, i.e.
boundary terms in two different points and I = (t1, t2). Also Robin boundary
conditions are problematic whereas Dirichlet and Neumann conditions are
fine. We shall then assume that we have one boundary condition of the form
u(t1) = e1 and another one of the form u(t2) = e2 or u′(t2) = e2 where t1 is
either t1 or t2 and t2 is the other one (t2 ∈ {t1, t2}, t2 �= t1). Since the test
function v satisfies the same boundary conditions as the trial function u, the
boundary term in (6.55) disappears if e1 = e2 = 0. This does not mean that
we can handle only homogeneous boundary conditions with the finite element
method, but it means that we need to insert another step in the finite element
method. Before constructing the variational form we start Homogenizing the
Boundary Conditions: In general we homogenize by “guessing” a function û
so that w = u − û has homogeneous boundary conditions. Then if L is the
differential operator in question, i.e. Lu = 0 is the differential equation, then
Lw = Lu− Lû = −Lû = d̃. Let us consider two practical examples:

Example 6.21 Homogenizing the boundary conditions of (6.1)
for the case I = (t1, t2), u(t1) = e1, u(t2) = e2
Let

w(t) = u(t)− e1 t2 − t
t2 − t1 − e2

t− t1
t2 − t1 .(6.56)

Then

w(t1) = w(t2) = 0(6.57)

and

a(t)w′′(t) + b(t)w′(t) + c(t)w(t) + d(t)(6.58)

= a(t)u′′(t) + b(t)u′(t) + c(t)u(t) + d(t) + d̃(t) = d̃(t),

where

d̃(t) = b(t)e1
1

t2 − t1 − c(t)e1
t2 − t
t2 − t1 − b(t)e2

1

t2 − t1 − c(t)e2
t− t1
t2 − t1 .(6.59)

Hence, we have homogenized the problem at the expense of replacing the
function d with the function d− d̃.
The idea is now to work with the w-problem, find a finite element approx-
imation W̃ and transform back to an approximation to u only at the very
end defining

Ũ(t) = W̃ (t) + e1
t2 − t
t2 − t1 + e2

t− t1
t2 − t1 .(6.60)



CHAPTER 6. SECOND ORDER PROBLEMS 180

Example 6.22 Homogenizing the boundary conditions of (6.1)
for the case I = (t1, t2), u(t1) = e1, u

′(t2) = e2
The Neumann condition is handled the same way as above. Let

w(t) = u(t)− e1 − e2(t− t1).(6.61)

Then

w(t1) = w′(t2) = 0(6.62)

and

a(t)w′′(t) + b(t)w′(t) + c(t)w(t) + d(t)− d̃(t) = 0,(6.63)

where

d̃(t) = −b(t)e2 − c(t)e1 − c(t)e2(t− t1).(6.64)

Hence, we have again homogenized the problem at the expense of replacing
the function d with the function d− d̃.
The idea is now again to work with the w-problem, find a finite element
approximation W̃ and transform back to u only at the very end defining

Ũ(t) = W̃ (t) + e1 + e2(t− t1).(6.65)

Returning to the boundary terms in (6.55) with the homogenized w replac-
ing the original trial function u, i.e. a(t2)w

′(t2)v(t2) − a(t1)w
′(t1)v(t1), we

eliminate these terms by first using any homogeneous Neumann boundary
condition on the trial function w. Dirichlet boundary conditions for w in-
stead can not be used and must be enforced at some other place. Since
there is at most one Neumann condition on w we still have one or two terms
left corresponding exactly to the points where there are Dirichlet boundary
conditions on the trial function. This or these terms we kill by enforcing
homogeneous Dirichlet boundary conditions on the test function v. All ho-
mogeneous Dirichlet boundary conditions on the trial functions are hence
countered with homogeneous Dirichlet boundary conditions also on the test
functions, whereas Neumann boundary conditions on the trial functions are
not countered by any conditions on the test functions.



CHAPTER 6. SECOND ORDER PROBLEMS 181

After homogenisation we shall consider the following variational problem

Find w ∈ V :(6.66) ∫ t2

t1

(
− a(t)w′(t)v′(t) + (b(t)− a′(t))w′(t)v(t)

+ c(t)w(t)v(t) + (d(t)− d̃(t))v(t)
)
dt = 0 ∀v ∈ V,

where V is the subspace of the Sobolev space H1(t1, t2), which is a Hilbert
space so that also V is a Hilbert space, where the homogeneous Dirichlet
conditions in t1 and/or t2 are enforced both on the trial and test functions.
The eventual Neumann condition is not enforced on V. It has already been
used to eliminate the boundary term from the partial integration, and this
Weak Enforcement turns out to be enough. Instead, the weak enforcement
of the Dirichlet boundary conditions on the test functions turns out to be
insufficient, and these must additionally be Strongly Enforced on V like the
Dirichlet boundary conditions on the trial functions. (Recall that these have
not been used to eliminate the boundary term from the partial integration).
It is not obvious why this is so, but we can give some idea here:
Basically, we want (6.66) to be a Generalization of (6.1). By the derivation
of (6.66) (and since V ⊃ C2(0, 1)) we know that if u satisfies (6.1) then the
homogenized w = u − û satisfies (6.66), so if (6.1) has a solution, so does
(6.66).
Instead, the opposite is generally not true, that is, if (6.66) has a solution,
then (6.1) does not necessarily possess one.
The best we can hope for is that if w satisfies (6.66) and if w happens to be in
C2, then u = w+ û satisfies (6.1) (as long as û has been chosen in C2. Before
indicating the proof of this, note that the terminology “generalization” is
used because there still may be solutions to (6.66) in V but outside C2, so
even if (6.1) does not have a solution, (6.66) may have one.
Returning to the proof, we start with a partial integration in (6.66) which is
possible since w ∈ C2 and results in∫ t2

t1

(
a(t)w′′(t) + b(t)w′(t) + c(t)w(t) + (d(t)− d̃(t))

)
v(t)dt(6.67)

= [aw′v]t2t1 ∀v ∈ V
�∫ t2

t1

(
a(t)w′′(t) + b(t)w′(t) + c(t)w(t) + (d(t)− d̃(t))

)
v(t)dt

= 0 ∀v ∈ V0,



CHAPTER 6. SECOND ORDER PROBLEMS 182

where V0 = {V : v(t1) = v(t2) = 0}. Now there is only left to establish
that there are “enough” functions in V0 to ensure, that the expression in
the big parantheses under the integral in the last line of (6.67) must be zero
almost everywhere. (To show this requires a good knowledge of Banach space
theory, and we shall omit the details here). Continuity then implies that it
is zero everywhere and adding û we recover the differential equation in (6.1).
To recover the boundary conditions we shall for simplicity (but without losing
generality) just consider the case w(t1) = a(t2)w

′(t2) = 0.
First take v ≡ t − t1 ∈ V in the first line in (6.67). Then since we have
already established that the differential equation in (6.1) is satisfied and the
right hand side in the first line in (6.67) hence is zero for any v ∈ V, we get

[aw′(t− t1)]t2t1 = 0⇔ a(t2)w
′(t2) = 0,(6.68)

hence recovering the second boundary condition.
Finally for the first boundary condition, w(t1) = 0 is strongly enforced in V
and hence is true.
Note that if we had enforced two homogeneous boundary conditions strongly
in V, then we would not have been able to take v ≡ t − t1 and recover the
second boundary condition. Hence it is important to follow the rules about
boundary conditions on V given above.

Now we introduce the following bilinear and linear forms:

B(u, v) =

∫ t2

t1

(−a(t)u′(t)v′(t) + (b(t)− a′(t))u′(t)v(t) + c(t)u(t)v(t)) dt(6.69)

L(v) =

∫ t2

t1

(d̃(t)− d(t))v(t)dt

so that (6.66) can be rewritten in the shorter form

Find u ∈ V : B(u, v) = L(v) ∀v ∈ V.(6.70)

Selecting the finite element space S as a finite dimensional subspace of V,
the discrete problem can be written simply as

Find Ũ ∈ S : B(Ũ , v) = L(v) ∀v ∈ S.(6.71)

Let us at this point note the important Galerkin Orthogonality obtained by
subtracting (6.71) from (6.70) taking test functions only in S:

B(u− Ũ , v) = 0 ∀v ∈ S.(6.72)

Galerkin orthogonality implies that the finite element error is orthogonal
(measured with the bilinear form B) to S.



CHAPTER 6. SECOND ORDER PROBLEMS 183

Below we shall see that conditions for well-posedness and convergence
hinges on (or at least are facilitated by) conditions of boundedness and el-
lipticity of the bilinear form B and boundedness of the linear form L.

Definition 6.23 Let B and L be given by (6.69) and let ‖ · ‖ be a norm on
V from (6.70).
B is said to be Bounded if

∃C > 0 : B(u, v) ≤ C‖u‖‖v‖, ∀u, v ∈ V.(6.73)

B is said to be Elliptic if

∃C > 0 : B(u, u) > C‖u‖2, ∀u ∈ V \ {0}.(6.74)

L is said to be Bounded if

∃C > 0 : L(v) ≤ C‖v‖, ∀v ∈ V.(6.75)

We have the following result:

Theorem 6.24 Let B and L be given by (6.69).

• B is bounded if a, b− a′ and c ∈ L∞(t1, t2).

• L is bounded if d̃− d ∈ L2(t1, t2).

• B is elliptic if −a(t) ≥ a0 > 0, c(t) ≥ c0 > 0 and b(t) − a′(t) = 0
∀t ∈ [t1, t2].
If u(t1) = u(t2) = 0 then the last two conditions can be replaced by
−1

2
(b(t)− a′(t))′ + c(t) ≥ 0 ∀t ∈ [t1, t2] without losing ellipticity.

Proof:
The proofs of all but the last statement are simple once knowing the Sobolev
norms. A norm on H1 and hence on V is ‖ · ‖H1 defined by ‖v‖H1 =√‖v′‖22 + ‖v‖22, where ‖ · ‖2 is the L2-norm.
For the boundedness of B we use (6.69), the Cauchy-Schwarz inequality and
the definition of ‖ · ‖H1 to get

B(u, v) ≤ ‖a‖∞‖u′‖2‖v′‖2 + ‖b− a′‖∞‖u′‖2‖v‖2 + ‖c‖∞‖u‖2‖v‖2(6.76)

≤ {‖a‖∞ + ‖b− a′‖∞ + ‖c‖∞}‖u‖H1‖v‖H1.

For the boundedness of L we again use (6.69), the Cauchy-Schwarz inequality
and the definition of ‖ · ‖H1 to get

L(v) ≤ ‖d̃− d‖2‖v‖2 ≤ ‖d̃− d‖2‖v‖H1.(6.77)



CHAPTER 6. SECOND ORDER PROBLEMS 184

For the ellipticity of B in the first case we use (6.69) and the definition of
‖ · ‖H1 to get

B(u, u) ≥ min{a0, c0}‖u‖2H1.(6.78)

For the ellipticity of B in the second case we use (6.69) and the fact that
u′u = 1

2
(u2)′ to get

B(u, u) =

∫ t2

t1

(
−au′2 + (b− a′)1

2
(u2)′ + cu2

)
dt(6.79)

=

∫ t2

t1

(
−au′2 + (c− 1

2
(b− a′)′)u2

)
dt+ [

1

2
(b− a′)u2]t2t1

≥ a0‖u′‖22 ≥ C‖u‖2H1.

Here the first inequality comes from the fact that the boundary term dis-
appears since u(t1) = u(t2) = 0. The second inequality is an application of

the Poincaré inequality (6.36), giving a0‖u′‖22 = a0
C2

p+1
‖u′‖22 + C2

pa0
C2

p+1
‖u′‖22 ≥

a0
C2

p+1
‖u′‖22 + a0

C2
p+1
‖u‖22 = a0

C2
p+1
‖u‖2H1.

Theorem 6.25 Let V and S be Hilbert spaces, or just reflexive Banach
spaces, let B be a bilinear, bounded (constant C), elliptic (constant C) form
and let L be a linear, bounded form.
Then (6.70) and (6.71) are well-posed (Lax-Milgram Lemma), stable (‖u‖ <
‖L‖
C

and ‖Ũ‖ < ‖L‖
C
) and the solution to (6.71) converges towards the solution

to (6.70) as S → V since ‖u− Ũ‖ ≤ C
C
minw∈S ‖u− w‖ (Céa’s Lemma).

For the Order of Convergence, if u ∈ Hs, r ≤ s and S is the space of globally
continuous, piecewise polynomials of degree at most k, with two homogeneous
Dirichlet boundary conditions enforced and with uniform subdivisions with el-
ement length h, then

‖u− Ũ‖Hr ≤ Ch�−r‖u‖H�,(6.80)

where � = min{k, s} is the Regularity Treshold.

Proof:
The proof of existence and uniqueness in the Hilbert space case is a fairly
simple consequence of the Riesz representation theorem and the contrac-
tion mapping theorem. The extension to reflexive Banach spaces is more
technical. The continuous dependence on data is realized as follows: Let
Bε(uε, v) = Lε(v), ∀v ∈ V be a perturbation of (6.70) with ‖B−Bε‖ < ε and
‖L−Lε‖ < ε. Then C‖u−uε‖2 < B(u−uε, u−uε) = (L−Lε)(u−uε)+(Bε−



CHAPTER 6. SECOND ORDER PROBLEMS 185

B)(uε, u−uε) ≤ ‖L−Lε‖‖u−uε‖+‖B−Bε‖‖uε‖‖u−uε‖ ⇒ ‖u−uε‖ < 1+‖uε‖
C

ε

and similarly for (6.71).
The stability result is obtained as the continuous dependence on data using
C‖u‖2 < B(u, u) = L(u) ≤ ‖L‖‖u‖ and similarly for (6.71).
Céa’s lemma follows from Galerkin orthogonality as follows: C‖u − Ũ‖2 <
B(u−Ũ , u−Ũ) = B(u−Ũ , u−w), ∀w ∈ S because Galerkin orthogonality im-
plies B(u−Ũ, Ũ) = B(u−Ũ , w) = 0. But B(u−Ũ , u−w) ≤ C‖u−Ũ‖‖u−w‖.
We shall not prove the regularity treshold but only note that the implication
is that the order of convergence increases with the polynomial degree k un-
til we reach the point where the exact solution is no longer smooth enough
(u �∈ Hk). After this point an increase in k will have no influence on the
order of convergence.

For the finite element method, we have avoided any discussion of consis-
tency, ε-perturbations and zero stability. It is possible (but not necessary,
and never used in practice) to introduce these notions as follows:
The Local Truncation Errors for the FEM (6.71) are defined by

B(Iu, φi) = L(φi) + τi

∫ t2

t1

φi(t)dt, i = 1, . . . , n,(6.81)

where Iu is the S-interpolant of u.
The ε-perturbations of (6.71) would then be

B(Z̃ε, φi) = L(φi) + δε,i

∫ t2

t1

φi(t)dt, i = 1, . . . , n,(6.82)

where δε,i < ε for i = 1, . . . , n.
Letting Ũ − Z̃ε =

∑n
i=1 diφi we then have

C2‖Ũ − Z̃ε‖2H1 < B(Ũ − Z̃ε, Ũ − Z̃ε) = −
∫ t2
t1

∑n
i=1 δε,idiφi(t)dt ≤ ε‖1‖2‖Ũ −

Z̃ε‖H1,
giving the Zero Stability

‖Ũ − Z̃ε‖H1 <

√
t2 − t1
C2 ε.(6.83)

Then we would get convergence as for the collocation methods, taking δε,i = τi
so that Z̃ε = Iu. The problem is that it is hard to get an expression for the
order of consistency in this setting since the truncation errors are hard to
handle. Hence this approach is not used in practice.

Let us end up with some comments on the numerical problem: Let S =
span{φ1, . . . , φn} and denote the matrix form of (6.71) (see (3.16) and (3.17))

Ac = q, where Aij = B(φj, φi), qi = L(φi), i, j = 1, . . . , n.(6.84)



CHAPTER 6. SECOND ORDER PROBLEMS 186

A is denoted the Stiffness matrix and q the Load Vector. The notation comes
from the origins of the finite element method as a method for computing
stresses and strains in airplane wings and makes often little sense for the
wide range of problems being solved with FEM’s today.

Theorem 6.26 Let B be the bilinear, elliptic form of (6.71) and A the
matrix of (6.84). Then

• A is positive definite.

• A is symmetric ⇔ B is symmetric.

Proof:
That A is positive definite is clear from the following argument:

vTAv =

n∑
i=1

n∑
j=1

viAijvj =

n∑
i=1

n∑
j=1

viB(φj, φi)vj(6.85)

= B(
n∑
j=1

vjφj,
n∑
i=1

viφi) = B(v, v) > C‖v‖2 ≥ 0,

with equality only if ‖v‖ = 0⇔ v = 0.
A symmetric ⇔ Aij = Aji ⇔ B(φj, φi) = B(φi, φj) ⇔ B symmetric.

Note that a symmetric, positive definite matrix problem can be solved with
Gaussian elimination without pivoting.

Finally a note on the construction of basis functions: Considering the
basis functions of figure 3.2 on page 75 they are normally implemented with
linear mappings from reference basis functions

ψ1 =

{
1− y for 0 < y < 1

0 else
, ψ2 =

{
y for 0 < y < 1
0 else

.(6.86)

This is a general principle used whenever possible. This way it turns out,
that all integrals in (6.84) can be expressed as linear mappings of integrals
of products of the reference basis functions over (0, 1).

When going to polynomial degrees k > 1, two types of basis functions
are in use: The Lagrange Bases satisfying φ

(k)
i (xj) = δij and the Hierarchical

Bases where {φ(k)
i }nk

i=1 is constructed by adding new Bubble Basis Functions

to {φ(k−1)
i }nk−1

i=1 . For example, the reference Lagrange basis for k = 2 consists
of ψ1(y) = 2(y − 1

2
)(y − 1), ψ2(y) = −4y(y − 1) and ψ3(y) = −2y(y − 1

2
)

while the reference hierarchical basis for k = 2 consists of ψ1(y) = 1 − y,
ψ2(y) = −4y(y − 1) and ψ3(y) = y .



CHAPTER 6. SECOND ORDER PROBLEMS 187

Exercise 6.27
Plot the reference Lagrange and Hierarchical bases given just above.
Construct cubic reference Lagrange and Hierarchical bases (k = 3).

6.6 Non asymptotic analysis of (6.1):

The Convection-Diffusion problem

Let us reconsider the general problem (6.1) only put in divergence form like in
(6.6) (but without taking b = a′) or like in the construction of the variational
form (6.55) and with a particular selection of boundary conditions:

(a(t)u′(t))′︸ ︷︷ ︸
1

+ (b(t)− a′(t))u′(t)︸ ︷︷ ︸
2

+ c(t)u(t)︸ ︷︷ ︸
3

+d(t) = 0, 0 < t < 1,(6.87)

u(0) = 0, u(1) = 1.

The first term (1) is denoted the Diffusion or Viscosity Term, the second
term (2) the Convection, Advection or Transport Term and the third term
(3) the Absorbtion or Reaction Term. The notation comes from physics and
may hold little significance for particular applications. In order to expose the
non asymptotic problems for (6.1) we focus on the convection and diffusion
terms and consider the following simple example:

Example 6.28 −εu′′ + βu′ = 0, u(0) = 0, u(1) = 1
We consider the problem

−εu′′(t) + βu′(t) = 0, 0 < t < 1, u(0) = 0, u(1) = 1, ε > 0, β ≥ 0.(6.88)

We have taken β ≥ 0 only in order to simplify notation. The following
works fine also for negative β’s. Homogenizing by taking w(t) = u(t) − t
so that −εw′′(t) + βw′(t) = −β, w(0) = w(1) = 0 and using theorem 6.25
on page 184, definition 6.23 on page 183 and theorem 6.24 on page 183 we
easily verify that this is a well-posed problem with convergent finite element
approximations as the approximation space S converges to the “variational”
space V. Actually, the problem is so simple that we can find the exact
solution

u(t) =
e

βt
ε − 1

e
β
ε − 1

∈ C∞[0, 1], for ε, β > 0, u(t) = t, for ε > 0, β = 0.(6.89)



CHAPTER 6. SECOND ORDER PROBLEMS 188

The solution is plotted in figure 6.2 for various values of ε and β. Fixing
ε > 0 we see that limβ→0 u(t) = t, and that u(t) = t is also the solution to
(6.88) for β = 0 so that there is a continuous behavior in this limit. More
specifically

ε β ⇒ u(t) = t +O(β
ε
t2). (Verified with Taylor expansion).(6.90)

Fixing instead β we see that

ε� β ⇒ u(t) �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e
βt
ε

e
β
ε

= e
β
ε
(t−1) for t “ �= ”0

(t not very close to 0)

e
βt
ε −1

e
β
ε

� 0 for t “= ”0

(t very close to 0)

(6.91)

� 0 for t “ �= ”1 (t not very close to 1) while u(1) = 1,

and limε→0 u(t) =

{
0 for t < 1
1 for t = 1

, which is not a solution to (6.88) for ε = 0

since it is not a C2[0, 1]-function. Actually, (6.88) has no solution (in the
classical sense, i.e. in C2[0, 1]) for ε = 0. Instead for ε > 0 but very small,
the exponential growth towards t = 1 is clear also from figure 6.2. Without
making a clear definition, we say that in a small region of size δt at the
boundary of the computational domain where there is a big change (relative
to δt) in the solution values or some functional or derivative of these there
is a Boundary Layer of Width δt. If the layer is situated in the interior
of the computational domain, we talk about an Internal Layer of width δt.
Since “small” regions and “big” changes are relative notions, often the width
of the layer is given as O(δt), focusing on the manner in which the size of
the layer decreases with relevant problem parameters. If the “activity” in
the layer is “focused” around a certain point t∗, we may say that there is
a Layer at t∗. In our case, for ε � β we have a boundary layer at t = 1.

To determine its width, note that for e
β
ε
(t−1) to decrease from the value 1 at

t = 1 to some small positive value δ < 1, t must decrease to 1 − δt where
δt = | ln(δ)| ε

β
. Hence we say that the width of the boundary layer at t = 1

is O (ε/β). In practice, layers are often observed in numerical solutions in
the form of oscillations which do not decrease with decreasing step lengths
fast enough to show the expected rate of convergence. The oscillations can
be avoided by selecting very small step lengths or subdivisions h. This is
called Resolving the Layer, but in practice it may be problematic if ε/β is
very small. A ratio of just 10−6 would require 1 million steps, and values
much less than this is not unrealistic in practical situations. Hence we are in



CHAPTER 6. SECOND ORDER PROBLEMS 189

0

0.2

0.4

0.6

0.8

1

u(t)

0.2 0.4 0.6 0.8 1

t

Figure 6.2: Solution to convection-diffusion problem (6.88) for ε > 0, β = 0
(black, top curve—), ε = 1, β = 1 (red, second from the top curve—), ε = 0.1,
β = 1 (blue, third from the top curve—) and ε = 0.01, β = 1 (green, bottom
curve—).

a situation where the non asymptotical behavior of the solution is far from
the asymptotical behavior where we know that we have convergence. To
understand the reason for the oscillations in the numerical solutions and how
to avoid them (apart from the unrealistic possibility of resolving the layer)
we first study how a couple of standard methods work on (6.88).
Solving (6.88) with linear finite elements:
We shall use the following variational formulation as basis for our FEM:

Find u ∈ S1∗ :
∫ 1

0

(εu′(t)v′(t) + βu′(t)v(t))dt = 0, ∀v ∈ S1∗,(6.92)

where S1∗ is the space of continuous, piecewise linear functions p with p(0) =
0 and p(1) = 1 relative to a uniform subdivision 0 = x0 < x1 < . . . , xn <
xn+1 = 1, where h = xi+1−xi for all i = 0, . . . , n. To simplify the exposition,
we add also the ghost node xn+2 = 1+h. We take the usual basis {φj}n+1

j=1 for
S1∗ shown in figure 3.2 on page 75, except that we have added one node with
respect to that figure, so that Ũ =

∑n+1
i=1 Ũiφi where Ũn+1 = 1 is given by the

right boundary condition and v can be taken to be any of φj for j = 1, . . . , n.
We also let Ũ0 = 0 be given by the left boundary condition.

To evaluate (6.92) it is important to realize a fact that simplifies matters
significantly. Note that

φi(t) =

⎧⎪⎨
⎪⎩

1
h
(t− xi−1) for t ∈ [xi−1, xi]

1
h
(xi+1 − t) for t ∈ [xi, xi+1]

0 else

for i = 1, . . . , n+ 1,(6.93)



CHAPTER 6. SECOND ORDER PROBLEMS 190

and

φ′
i(t) =

⎧⎪⎨
⎪⎩

1
h

for t ∈ [xi−1, xi]

− 1
h

for t ∈ [xi, xi+1]

0 else

for i = 1, . . . , n+ 1,(6.94)

have support in only two elements each. This means that major parts of
the integral over (0, 1) in (6.92) is void. This fact simplifies the practical
computations significantly and must be utilized when programming finite
element methods. Also∫ 1

0

(φ′
i(t))

2dt =
2

h
,

∫ 1

0

φ′
i(t)φ

′
i±1(t)dt = −

1

h
,

∫ 1

0

φi(t)φ
′
i(t)dt = 0,(6.95) ∫ 1

0

φi(t)φ
′
i±1(t)dt = ±

1

2
, for i = 1, . . . , n.

Returning to (6.92) it takes the form

For i = 1, . . . , n :(6.96)

0 =

∫ 1

0

n+1∑
j=1

Ũjφ
′
j(t)(εφ

′
i(t) + βφi(t))dt

=

∫ 1

0

(Ũi−1φ
′
i−1(t) + Ũiφ

′
i(t) + Ũi+1φ

′
i+1(t))(εφ

′
i(t) + βφi(t))dt

= ε

(
−1

h
Ũi−1 +

2

h
Ũi − 1

h
Ũi+1

)
+ β

(
−1
2
Ũi−1 +

1

2
Ũi+1

)
⇔ (multiplying with −h

ε
)

0 = (1 + Pe)Ũi−1 − 2Ũi + (1− Pe)Ũi+1,(6.97)

where we have defined the Local Pechlet Number Pe = βh
2ε
. Shifting the index

from i to i− 1, extending towards ∞ and enforcing the boundary conditions
we end up with the following linear homogeneous difference equation,

1 + Pe

1− PeŨi −
2

1− PeŨi+1 + Ũi+2 = 0, for i = 0, 1, 2, . . . ,(6.98)

Ũ0 = 0, Ũn+1 = 1,

that we can solve with the method of section 4.3.1. The characteristic poly-
nomial is

ρ(r) =
1 + Pe

1− Pe −
2

1− Per + r2 = (r − 1)

(
r − 1 + Pe

1− Pe
)
,(6.99)



CHAPTER 6. SECOND ORDER PROBLEMS 191

and hence the solution to (6.98) is of the form

Ũi = C1 + C2

(
1 + Pe

1− Pe
)i
, i = 0, . . . , n+ 1,(6.100)

where Ũ0 = 0 and Ũn+1 = 1 determines C1 and C2 to be

C2 =
1(

1+Pe
1−Pe

)n+1 − 1
= −C1,(6.101)

so that

Ũi =

(
1+Pe
1−Pe

)i − 1(
1+Pe
1−Pe

)n+1 − 1
, i = 0, . . . , n+ 1.(6.102)

It is clear from (6.102) and figure 6.3a that Ũi changes sign (oscillates) with i if
Pe > 1 and that the amplitude is increasing with i. Instead it turns out that
the amplitude is strictly decreasing with Pe. This is indicated in figure 6.3b
where we show the exact solution u(t) given by (6.89) with the Global Pechlet
Number Pegl =

β
2ε

= 50 together with numerical solutions with 10, 20, 30
and 40 elements in the subdivisions. Note that Pe = hPegl < 1⇔ h < 1

Pegl
.

The numerical solutions for more than 40 elements begin resembling the
exact solution a lot in the scale chosen in figure 6.3b. Only do we see small
oscillations (and negative solution values) for less that 50 elements, while
more than 50 (Pe < 1) give no oscillations and no negative solution values
.

Solving (6.88) with centered finite differences:
Note that (6.96) (after multiplying with 1

h
) is exactly the 2nd order centered

difference sceme for (6.88) which hence has the same identical behavior as
the linear finite element solution. The only difference is that the lines joining
the oscillating points are part of the finite element solution while they are
not part of the finite difference solution. Hence the oscillation problem is
not something inherent in the finite element method but occurs also in the
finite difference method and actually in all numerical methods for (6.88) if
no special care is taken .
Remedy for the oscillatory numerical solutions to (6.88) with finite differ-
ences:
We shall show how to avoid the oscillations based in the finite difference
formulation since it is somewhat simpler here, even though the approach is
entirely equivalent for the finite element (and collocation) methods.

For the example shown in figure 6.3b we only needed 50 elements to
resolve the boundary layer at t = 1. If Pegl = 106 we need 1.000.000 which is



CHAPTER 6. SECOND ORDER PROBLEMS 192

(a)

–10

–8

–6

–4

–2

0

2

4

6

8

10

(1
+

P
e)

/(
1-

P
e)

1 2 3 4 5

Pe

(b)

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

t

Figure 6.3: (a) Plot of 1+Pe
1−Pe as a function of Pe. (b) Plot of u(t) (red, non

oscillating curve—) and Ũ(t) as a function of t for Pegl = 50 and Pe = 5
i.e. h = 1

n+1
= 1

10
= 0.1 (green, most oscillating curve—), Pe = 2.5 i.e.

h = 1
n+1

= 1
20

= 0.05 (blue, second most oscillating curve—), Pe = 1.67

i.e. h = 1
n+1

= 1
30

= 0.025 (magenta, third most oscillating curve—) and

Pe = 1.25 i.e. h = 1
n+1

= 1
40

= 0.0125 (black, fourth most oscillating curve—
). (In the latter two plots, the last line up to 1 has been omitted to avoid
cluttering the graph close to t = 1.

too much for casual use. So the solution we are seeking is not that of resolving
the layer. Instead in (6.96) we simply replace δ0 by δ− when approximating
the first derivative. (If β < 0 we would have taken δ+ instead). This approach
is called Upwinding and the resulting method is called the Upwinding Finite
Difference Sceme:

For i = 1, . . . , n :(6.103)

0 = −εÛi−1 − 2Ûi + Ûi+1

h2
+ β

Ûi − Ûi−1

h

= −
(
ε+

βh

2

)
Ûi−1 − 2Ûi + Ûi+1

h2
+ β

Ûi+1 − Ûi−1

2h

= −ε (1 + Pe) δ20Ûi + βδ0Ûi.

The latter form is the 2nd order centered finite difference sceme for the
differential equation −ε (1 + Pe)u′′ + βu′ = 0, where the diffusion has been
augmented by −εPe with respect to (6.88) and for this reason the upwinding
method is also denoted the Artificial Diffusion or Numerical Viscosity Sceme.
Taking Û0 = 0 and Ûn+1 = 1, the solution to (6.103) is still in the form of



CHAPTER 6. SECOND ORDER PROBLEMS 193

(6.102) only with a new Pechlet number Pe = βh

2(ε+βh
2 )

Ûi =

(
1+Pe
1−Pe

)i
− 1(

1+Pe
1−Pe

)n+1

− 1
=

(
1 + βh

ε

)i − 1(
1 + βh

ε

)n+1 − 1
, i = 0, . . . , n+ 1.(6.104)

It is clear from (6.104) and the plots in figure 6.4 that Û does not oscillate.
After enjoying the lack of oscillations in Û, it might be noted that the clut-

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

t

Figure 6.4: Plot of u(t) (red, rightmost curve—) and Û(t) as a function of t
for Pegl = 50 and Pe = 5 i.e. h = 1

n+1
= 1

10
= 0.1 (green, leftmost curve—

), Pe = 2.5 i.e. h = 1
n+1

= 1
20

= 0.05 (blue, second rightmost curve—),

Pe = 1.67 i.e. h = 1
n+1

= 1
30

= 0.025 (magenta, third rightmost curve—) and

Pe = 1.25 i.e. h = 1
n+1

= 1
40

= 0.0125 (black, fourth rightmost curve—).

tering near t = 1 is not quite as bad for the artificial diffusion method shown
in figure 6.4 as for the simple method shown in figure 6.3b. For example,
it has been possible for the artificial diffusion method to show all graphs all
the way to 1, whereas we omitted the last line for the last two graphs for
the simple method. This situation is explained by the fact that the simple
method is second order convergent, whereas the artificial viscosity method is
only linearly convergent since −ε (1 + Pe) δ20ui = u′′i +O(h) (or alternatively
δ−ui = u′i +O(h)). There are ways to improve the rate of convergence while
still avoiding the oscillations by adding smaller amounts of artificial diffusion
than −βh

2
, but we shall not get into the matter here .

Remedy for the oscillatory numerical solutions to (6.88) with finite elements:
In direct analogy with the difference approach, the oscillations can be avoided
in the finite element method simply by replacing ε by ε(1 + βh

2
) .



Chapter 7

Higher dimensions

7.1 Higher dimensions – FDM’s for Elliptic

PDE’s

The general rule of thumb for finite difference methods for higher dimensional
problems is: Just add indices! Instead of having a one dimensional computa-
tional domain we now have a multi dimensional domain and we need one new
index for each new dimension. Most of the novelties are apparent already in
two dimensions. The jump to even higher dimensions gives problems with
for example geometrical representation and imagination of the constructions.
Further, higher dimensions give practical problems with the computing time,
which is expressed in various ways like the term Dimensional Death: To com-
pute with for example 100 nodal points in each direction a one dimensional
implicit method will give a system of 100 equations with 100 unknowns to
solve, which is a piece of cake, while a similar 2 dimensional problem will give
10.000 equations, a 3 dimensional 1.000.000 and a 4 dimensional 100.000.000
equations with the same number of unknowns which is out of reach even for
super computers.

All this means that in more than two dimensions, one must be more
careful to avoid errors from “not fully comprehending geometrically what one
is doing” and more thorough to get everything optimized for fast computing
times. Otherwise there are no major difficulties arising with respect to what
is found in 2 dimensions. In order to simplify the presentation, we shall
hence restrict ourselves to the 2 dimensional case when doing examples in
more than one dimension.

In one dimension, we used t for a generic point in the computational do-
main I and for the FDM’s we defined a set of nodal points x1, . . . , xn ∈ I.
In two dimensions we shall use (x, y) for a generic point in the computa-

194



CHAPTER 7. HIGHER DIMENSIONS 195

tional domain Ω and for the FDM’s a two dimensional set of nodal points
(x1, y1), . . . , (xN , yN). Like we in one dimension mainly considered uniform
subdivisions where xi = x1+(i−1)h, i = 1, . . . , n, we shall in two dimensions
generally restrict to Uniform, Cartesian Subdivisions {(xi, yj)}i=1,...,nx,j=1,...,ny

where xi = x1+(i−1)hx, i = 1, . . . , nx and yj = y1+(j−1)hy, j = 1, . . . , ny,
i.e. N = nxny. Often, we shall even be able to take hx = hy and use Uni-
form, Square Subdivisions as indicated in figure 7.1. Obviously, with uniform

x
x1 x2 x3 x4 x5 x6 x7

y

y1

y2

y3

y4

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

(x1, y1)

(x7, y4)

Figure 7.1: A uniform Cartesian subdivision

Cartesian subdivisions, the computational domain Ω had better be rectan-
gular. When this is not the case, it spells problems. It is possible to do
something, but it falls outside the scope of this text to consider the details.
Instead we can refer to section 3.1.3 on finite element methods, where it is
noted that the problems with non rectangular domains are greatly dimin-
ished.

We start considering the prototypical 2 dimensional elliptic PDE (see
(1.6) on page 12).

Example 7.1 The Poisson problem in 2 dimensions

Find u ∈ C2(Ω̄) : −Δu(x, y) = f(x, y) ∀(x, y) ∈ Ω, u = 0 on ∂Ω,(7.1)

where

Δu(x, y) = uxx(x, y) + uyy(x, y) =
∂2u

∂x2
(x, y) +

∂2u

∂y2
(x, y)(7.2)

and Ω is some 2 dimensional, rectangular domain. The standard finite dif-
ference method for this problem is based on the central second order finite



CHAPTER 7. HIGHER DIMENSIONS 196

difference operators:

δ20,xŨi,j =
1

h2x

(
Ũi−1,j − 2Ũi,j + Ũi+1,j

)
,(7.3)

δ20,yŨi,j =
1

h2y

(
Ũi,j−1 − 2Ũi,j + Ũi,j+1

)
.

Here Ũi,j serves as our approximation to ui,j = u(xi, yj) and we take fi,j =
f(xi, yj), i = 1, . . . , nx, j = 1, . . . , ny. We then approximate (7.1) by

−(δ20,x + δ20,y)Ũi,j = fi,j, i = 2, . . . , nx − 1, j = 2, . . . , ny − 1,(7.4)

Ũ1,j = Ũnx,j = Ũi,1 = Ũi,ny = 0, i = 1, . . . , nx, j = 1, . . . , ny.

The geometrical picture of the index combination participating in the
numerical approximation of the PDE in a generic point (xi, yj) is denoted
the stencil of the numerical method. For example the stencil of the central
second order finite difference approximation to the Poisson problem described
in example 7.1 above is shown in figure 7.2.

x
xi−1 xi xi+1

y

yj−1

yj

yj+1

•

• • •

•
(i,j) (i+1,j)(i−1,j)

(i,j+1)

(i,j−1)

Figure 7.2: The 5 point stencil for the standard 2nd order central FDM for
the poisson problem in 2D.

To be continued . . .



Bibliography

[1] Fritz John. Partial Differential Equations, 4th ed. Springer, Applied
Mathematical Sciences Vol. 1, 1982.

[2] Jeffery M. Cooper. Introduction to partial differential equations with
MATLAB. Birkhäuser, 1998.

[3] Garrett Birkhoff and Gian-Carlo Rota. Ordinary differential equations.
Blaisdell Publishing Company, 1969.

[4] Alfio Quarteroni, Riccardo Sacco, and Fausto Saleri. Numerical Mathe-
matics. Springer, TAM 37, 2000.

[5] David Kincaid and Ward Cheney. Numerical Analysis, 2nd (3rd) ed.
Brooks/Cole, 1996 (2002).

[6] Ivo Babuska. The connection between the finite difference like methods
and the methods based on initial value problems for ode. In A. K. Aziz,
editor, Numerical Solution of Boundary Value Problems for ODE’s,
pages 149–176. Academic Press, 1975.

[7] Ivo Babuska and V. Majer. The factorization method for two point
boundary value problems for ode’s and its relation to the finite ele-
ment method. In Anthony Miller, editor, Proceedings of the Centre for
Mathematical Analysis, Australian National University. Contributions
of Mathematical Analysis to the Numerical Solution of Partial Differen-
tial Equations, pages 71–92, 1984.

[8] Marinela Lentini, Michael R. Osborne, and Robert D. Russell. The close
relationships between methods for solving two-point boundary value
problems. SIAM Journal of Numerical Analysis, 22(2):280–309, April
1985.

[9] J. W. Thomas. Numerical Partial Differential Equations. TAM 22 and
33. Springer, 1995 and 1999.

197



BIBLIOGRAPHY 198

[10] J. D. Lambert. Numerical methods for ordinary differential systems.
Wiley, 1991.

[11] Daniele Funaro. Spectral elements for transport-dominated equations.
Springer, Lecture Notes in Computational Science and Engineering 1,
1997.

[12] Claes Johnson. Numerical Solutions of partial differential equations by
the finite element method. Cambridge University Press, 1987.

[13] Philippe G. Ciarlet. The Finite Element Method for Elliptic Problems.
North Holland, 1980.

[14] Susanne C. Brenner and L. Ridgway Scott. The Mathematical Theory
of Finite Element Methods, 2nd ed. Springer, TAM 15, 2002.

[15] P. G. Ciarlet and J. L. Lions (Editors). Handbook of numerical analysis,
Volume II, Finite element methods (Part 1). North Holland, 1991.

[16] A. Quarteroni and A. Valli. Numerical approximation of partial differ-
ential equations. Springer, 1994.

[17] G. W. Stewart. Introduction to Matrix Computations. Academic Press,
1973.



Index

a posteriori error analysis, 100
a priori error analysis, 100
AB method, 116
ABM method, 142
absolute stability, multistep methods,

135
absolute stability, systems of ODE’s,

150
absolutely stable, 111
absorbtion term, 177
Adams methods, 115
Adams-Bashford method, 116
Adams-Bashford-Moulton meth., 142
Adams-Moulton method, 116
adaptive FDM’s, 143
adaptive method, 143
advection term, 177
Aλ, 111
AM method, 116
analytic solution, 15
analytic solution, 8
approximation points for an FDM, 92
approximation problem, 21
artificial diffusion sceme, 182
A-stable method, 111
asymptotic error analysis, 100
asymptotic tail, 28, 30
asymptotic tail for a method, 141
asymptotic tail for an FDM, 145

B-splines, 67
backward difference operator of first

order, 81
backward differentiation formula, 117

backward Euler: Absolute stability,
111

backward Euler: Consistency, 103
backward Euler: Convergence, 108
backward Euler: Optimality, 95, 99
BDF method, 117
best approximation, 24
best approximation problem, 24
best error, 24
boundary condition, 13, 66, 67, 73
boundary layer, 178
boundary value problem, 14, 152
bounded bilinear form, 173
bounded linear form, 173
bubble basis functions for FEM’s, 176
Butcher array, 136
BVP, 14

cardinal basis, 67
cardinal function, 41
Céa’s Lemma, 174
central difference operator of second

order, 82
characterictic polynomials, first and

second, 121
characteristic curves, 12
characteristic fundamental solutions,

difference equation, 124
characteristic polynomial, 41
characteristic polynomial, difference

equation, 124
characteristic roots, first, 121
classes of DEP’s, 15
classical Runge-Kutta, 139

199



INDEX 200

classification and notation for FDM’s,
90

closed form expression, 15
CM, 64
CM’s for second order problems, 163
CM’s, consistency, 165
CM’s, convergence, 165
CM’s, ε-perturbation, 165
CM’s, global truncation error, 165
CM’s, local truncation error, 165
CM’s, zero stability, 165
Collocation Method, 64
compact finite difference methods, 86
comparison between explicit and im-

plicit methods, 140
computational domain, 63
computer evaluation, 38
condition number, 49
consistency order, 77, 101
consistency order, observed, 77
consistency, AB and AM, 117
consistency, CM, 165
consistency, multi step method, 119
consistency, non uniform step length,

144
consistent difference operator, 75
constant coefficient multi step FDM,

113
continuous dependence on data, 15
continuous dependence on data, 8, 18
convection term, 177
convection-diffusion problem, 177
convergence order, 101
convergence problem, 28
convergence theorem of Lax, 102
convergence, explicit 1 step FDM, 107
convergence, CM, 165
convergence, FEM, 174
convergence, multi step method, 121
convergence, predictor corrector, 142
convergence, Runge-Kutta, 137

converging, 102
corrector method, 141
cost, 38
cost function, 38
Crank Nicolson: Absolute stability,

112
Crank Nicolson: Consistency, 104
Crank Nicolson: Convergence, 108
Crank-Nicolson: Optimality, 96, 99
Cubic Least Squares, 24
cubic splines, 52
curvature, 54

Dahlquist, first barrier, 133
Dahlquist, second barrier, 135
data for a DEP, 15, 92
data set, 21
δ+, 80
δ−, 81
δ0, 82
δ20, 82
δ0, 1

2
, 157

dense, 26
DEP, 14
diagonally dominant matrix, 160
difference equation, homogen., 124
difference equation, inhomogeneous,

127
difference equation, 123
difference equation, solution to inho-

mogeneous, 127
difference operator, 60
difference operator, half point, cen-

tral, 157
differential equation problem, 14
differential equation, 8, 11
differential equation problem, 8
diffusion term, 177
dimensional death, 184
Dirichlet boundary condition, 13
discrete maximum principle, 161



INDEX 201

discrete Greens function, 159
discrete Gronwall lemma, 107
discrete solution space, 64, 71
discretization, 59
distance measure, 22
divergence form problem in 1 dimen-

sion, 154
divided difference, 36

element, 66
elliptic, 12
elliptic bilinear form, 173
ε-perturbation for CM’s, 165
ε-perturbation, 102
error, 20, 22, 62
error in polynomial interpolation, 43
error function, 70
error in interpolation, 37
error vector, 62, 100
essential boundary condition, 72
evaluator method, 141
exact solution, 8, 15
explicit FDM, 94
explicit multi step method, 113
exponential dependence on data, 15
exponential of a matrix, 148
eye ball norm, 63, 65, 69, 74

FDM, 59
FDM consistent with a DEP, 101
FDM convergent to a DEP, 101
FDM for a class of DEP’s, 91
FDM for second order problems, 159
FDM in more than one dimension, 63
FDM non convergent to a DEP, 101
FDM’s, CM’s and FEM’s, 58
feed back method, 143
FEM, 71
FEM for second order problems, 168
FEM, bubble basis functions, 176
FEM, convergence, 174

FEM, hierarchical bases, 176
FEM, Lagrange bases, 176
FEM, local truncation error, 175
FEM, zero stability, 175
fi, f̃i, 95
Finite Difference Method, 59
finite difference operator, a(1)u′(1),

158
finite difference operator, (au′)′, 157
finite difference operator, consistency

order, 155
Finite Element Method, 71
first characteristic roots, 121
first characteristic polynomial, 121
first Dahlquist barrier, 133
first order backward difference oper-

ator of consistency order one,
81

first order central difference operator
of consistency order two, 82

first order forward difference operator
of consistency order one, 80

forward difference operator of first or-
der, 80

forward Euler method: Absolute sta-
bility, 109

forward Euler method: Consistency,
103

forward Euler method: Convergence,
108

forward Euler method: Optimality,
95, 97

forward substitution, 35
functional equations, 11
fundamental solution for a difference

equation, 124

Galerkin orthogonality, 172
Gauss-Lobatto nodes, 163
Gauss-Lobatto weights, 163
generalization of a DEP, 171



INDEX 202

ghost nodes, 158
ghost point, 61
ghost value, 61
global Pechlet number, 181
global degree of smoothness, 21
global order of consistency, 101
global order of convergence, 101
global smoothness, 66, 67, 73
global truncation error, 101
global truncation error for CM’s, 165
globally implicit methods, 157
good approximation, 20
Greens function, 153
Greens function, discrete, 159

h-version of FEM, 73
half point central difference operator,

157
Hermite interpolating polynomial, 34
Hermite interpolation conditions, 33
Heun method: Absolute stability, 112
Heun method: Consistency, 104
Heun method: Convergence, 108
Heun method: Optimality, 96, 99
hierarchical construction of Lagrange

form of interpolating polyno-
mial, 42

hierarchical bases for FEM’s, 176
hierarchical construction of Newton

form of interpolating polyno-
mial, 37

homogeneous difference equation, 124
homogenization, bdr conditions, 169
Horners algorithm, 39
hp-version of FEM, 73
hyperbolic, 12

IBVP, 14
implicit multi step method, 113
implicit FDM, 94
implicit methods, globally, 157

implicit methods, locally, 157
increasing, 26
increment function, 105
inhomogeneous difference eqn, 127
initial boundary value problem, 14
initial condition, 13
initial value problem, 14, 152
internal layer, 178
interpolant, 25
interpolating polynomial, 31
interpolation error, 25, 37
interpolation error function, 25
interpolation problem, 25
IVP, 14

Kronecker delta, 41

L1 norm, 23
�1 norm, 23
L2 norm, 23
�2 norm, 23
L2 projection, 71
L∞ norm, 23
�∞ norm, 23
Lagrange bases for FEM’s, 176
Lagrange basis, 66, 73
Lagrange form of interpolating poly-

nomial, 40
Lagrange interpolant, 22
(Lagrange) interpolating polynomial,

31, 33
Lax Milgram lemma, 174
Lax’ theorem on convergence, 102
least squares problems, 24
Lebesgue constant, 48
Liapunov stability, 18
linear dependence on data, 15
linear difference operator, 78
linear interpolant, 25
linear spline, 52
linear system of DE’s, 11



INDEX 203

linear, cst coeff, non hom difference
eqn, 123

Lipschitz continuous, 16
load vector, 176
local error for FDM’s, 143
local form, 66, 67, 73
local order of consistency, 101
local order of convergence, 101
local Pechlet number, 180
local truncation error for CM’s, 165
local truncation error for FEM’s, 175
locally consistent, 101
locally implicit methods, 157
locally inconsistent, 101
lower triangular matrix, 35

matrix exponential, 148
maximum principle, 153, 163
minimal error, 24
monotonicity property, 153
multi step FDM, 94
multi step methods, 113
multistep method, absolute stability,

135

natural boundary condition, 72
natural cubic spline, 53
natural spline, 54
nested multiplication, 39
Neumann boundary condition, 13
Newton form of interpolating polyno-

mial, 34
nodal point, 19, 31, 59, 65
nodal point instance, 59
nodal point value, 19, 31
non asymptotic error analysis, 100
non uniform subdivision for FDM, 64
non uniform well-posedness, 17
nonlinear system of DE’s, 11
norm, 23
not converging, 102

numerical viscosity sceme, 182

O notation, 28
O-notation, 26, 27
ODE, 11
one point boundary value problem,

152
optimal approximation points for an

FDM, 93
optimal representation for an FDM

for a class of DEP’s, 93
order of convergence, 26–28
ordinary differential equation, 11

p-version of FEM, 73
parabolic, 12
partial differential equation, 11
PDE, 11
Pechlet number, local, 180
Pechlet number, global, 181
P (EC)mE, P (EC)m, 141
periodic cubic spline, 53
periodic spline, 54
perturbed data version, 18
piecewise Lagrange interpolant, 22
piecewise Lagrange interpolation, 49
Poincaré’s inequality, 164
Poisson problem in 1 dimension, 153
Poisson problem in 2 dimensions, 185
Polynomial interpolation methods for

difference operators, 85
positive definite matrix, 160
practical order of convergence, 29
predictor corrector method, 141
predictor method, 141
predictor multi evaluator and correc-

tor method, 141
predictor multicorrector method, 141
priming the pumps process, 114

quadratic interpolant, 25
quasi linear system of DE’s, 11



INDEX 204

r-method, 70
r-version of FEM, 73
reaction term, 177
region of absolute stability, 111
regularity, 66
regularity treshold, 174
relocation, 70
Representation for an FDM for a class

of DEP’s, 91
representative for a class of DEP’s, 91
resolving a layer, 178
Richardson extrapolation, 86
RK method, 136
RKF45 method, 146
Robin boundary condition, 13
root condition, 121
Root condition, Adams and BDF, 122
Runge Kutta, semi-implicit, 137
Runge’s example, 44
Runge-Kutta, convergence, 137
Runge-Kutta, s stage, 136
Runge-Kutta, classical, 139
Runge-Kutta-Fehlberg, 146

s step FDM, 94
scalar DE, 11
scaling, 90
SCM, 66
second characteristic polynomial, 121
second dahlquist barrier, 135
second order bdr value problem, 152
second order central difference oper-

ator of consistency order two,
82

self adjoint form problem in 1 dimen-
sion, 154

semi-implicit RK, 137
Sobolev space, 166
solution space, 72
solution function, 72

solution space for a homogeneous dif-
ference equation, 124

solution to inhomogeneous difference
equation, 127

Spectral Collocation Method, 66
spline, 22
spline interpolation, 51
stability, 18
stability region, absolute, 111
stability measure, 49
stable, 48
steady state solution for systems of

ODE’s, 150
stencil of a numerical method, 186
step length, 62
step size, 75
stiff systems of ODE’s, 150
stiffness matrix, 176
strong boundary condition, 72
strong enforcement of boundary con-

dition, 171
strong root condition, 122
subdivision, 21
subtractive cancellation, 82
sufficiently smooth classes of DEP’s,

92
system of DE’s, 11
systems of ODE’s, absolute stability,

150
systems of ODE’s, steady state solu-

tion, 150
systems of ODE’s, stiffness, 150
systems of ODE’s, transient solution,

150

Taylor expansion in Maple, 84
Taylor series method, difference oper-

ators, 79
tension spline, 56
test function, 71



INDEX 205

the FDM is inconsistent with the class
of DEP’s, 101

theoretical order of convergence, 28
tolerance, 25, 73
tolerance T approximation problem,

26
total error for FDM’s, 143
transient solution, systems of ODE’s,

150
transport term, 177
trial function, 72
trial space, 64, 71, 72
triangle inequality, 23
two point boundary value problem,

152

uniform Cartesian subdivision, 185
uniform grid, 62
uniform square subdivision, 185
uniform step length, 62
uniform step length for an FDM, 94
uniform subdivision, 59, 62
upwinding, 182
upwinding finite difference sceme, 182

Vandermonde form of interpolating
polynomial, 43

Vandermonde matrix, 43
variational formulation, 71
viscosity term, 177

weak boundary condition, 72
weak enforcements of boundary con-

dition, 171
well scaled matrix, 62
well-posed, 8, 15

zero stability for multi step method,
121

zero stability for CM, 165
zero stability for explicit 1 step FDM,

106

zero stability for FEM, 175
zero stable, 102


	A4lecnote-forside2013.pdf
	A4lecnote.pdf

