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Preface

The purpose of this monograph is to present a detailed introduction to selected fundamentals

of modern probability theory. The focus is in particular on discrete-time and continuous-time

processes, including the law of large numbers, Lindeberg’s central limit theorem, martingales,

the martingale convergence theorem and the martingale central limit theorem, as well as

basic results on Brownian motion. The reader is assumed to have a reasonable grasp of basic

analysis and measure theory, as can be obtained through Hansen (2009), Carothers (2000)

or Ash (1972), for example.

We have endeavoured throughout to present the material in a logical fashion, with detailed

proofs allowing the reader to perceive not only the big picture of the theory, but also to

understand the finer elements of the methods of proof used. Exercises are given at the

end of each chapter, with hints for the exercises given in the appendix. The exercises form

an important part of the monograph. We strongly recommend that any reader wishing to

acquire a sound understanding of the theory spends considerable time solving the exercises.

While we share the responsibility for the ultimate content of the monograph and in partic-

ular any mistakes therein, much of the material is based on books and lecture notes from

other individuals, in particular “Videreg̊aende sandsynlighedsregning” by Martin Jacobsen,

the lecture notes on weak convergence by Søren Tolver Jensen, “Sandsynlighedsregning p̊a

Målteoretisk Grundlag” by Ernst Hansen as well as supplementary notes by Ernst Hansen,

in particular a note on the martingale central limit theorem. We are also indebted to Ketil

Biering Tvermosegaard, who diligently translated the lecture notes by Martin Jacobsen and

thus eased the migration of their contents to their present form in this monograph.

We would like to express our gratitude to our own teachers, particularly Ernst Hansen, Martin

Jacobsen and Søren Tolver Jensen, who taught us measure theory and probability theory.
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Also, many warm thanks go to Henrik Nygaard Jensen, who meticulously read large parts of

the manuscript and gave many useful comments.

Alexander Sokol

Anders Rønn-Nielsen

København, August 2012

Since the previous edition of the book, a number of misprints and errors have been cor-

rected, and various other minor amendments have been made. We are grateful to the many

students who have contributed to the monograph by identifying mistakes and suggesting

improvements.

Alexander Sokol

Anders Rønn-Nielsen

København, June 2013



Chapter 1

Sequences of random variables

In this chapter, we will consider sequences of random variables and the basic results on such

sequences, in particular the strong law of large numbers, which formalizes the intuitive notion

that averages of independent and identically distributed events tend to the common mean.

We begin in Section 1.1 by reviewing the measure-theoretic preliminaries for our later results.

In Section 1.2, we discuss modes of convergence for sequences of random variables. The results

given in this section are fundamental to much of the remainder of this monograph, as well

as modern probability in general. In Section 1.3, we discuss the concept of independence

for families of σ-algebras, and as an application, we prove the Kolmogorov zero-one law,

which shows that for sequences of independent variables, events which, colloquially speaking,

depend only on the tail of the sequence either have probability zero or one. In Section 1.4,

we apply the results of the previous sections to prove criteria for the convergence of sums

of independent variables. Finally, in Section 1.5, we prove the strong law of large numbers,

arguably the most important result of this chapter.

1.1 Measure-theoretic preliminaries

As noted in the introduction, we assume given a level of familiarity with basic real analysis

and measure theory. Some of the main results assumed to be well-known in the following

are reviewed in Appendix A. In this section, we give an independent review of some basic
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results, and review particular notation related to probability theory.

We begin by recalling some basic definitions. Let Ω be some set. A σ-algebra F on Ω is a

set of subsets of Ω with the following three properties: Ω ∈ F , if F ∈ F then F c ∈ F as

well, and if (Fn)n≥1 is a sequence of sets with Fn ∈ F for n ≥ 1, then ∪∞n=1Fn ∈ F as well.

We refer to the second condition as F being stable under complements, and we refer to the

third condition as F being stable under countable unions. From these stability properties,

it also follows that if (Fn)n≥1 is a sequence of sets in F , ∩∞n=1Fn ∈ F as well. We refer

to the pair (Ω,F) as a measurable space, and we refer to the elements of F as events. A

probability measure P on (Ω,F) is a mapping P : F → [0, 1] such that P (∅) = 0, P (Ω) = 1

and whenever (Fn) is a sequence of disjoint sets in F , it holds that
∑∞
n=1 P (Fn) is convergent

and P (∪∞n=1Fn) =
∑∞
n=1 P (Fn). We refer to the latter property as the σ-additivity of the

probability measure P . We refer to the triple (Ω,F , P ) as a probability space.

Next, assume given a measure space (Ω,F), and let H be a set of subsets of Ω. We may then

form the set A of all σ-algebras on Ω containing H, this is a subset of the power set of the

power set of Ω. We may then define σ(H) = ∩F∈AF , the intersection of all σ-algebras in A,

that is, the intersection of all σ-algebras containing H. This is a σ-algebra as well, and it is

the smallest σ-algebra on Ω containing H in the sense that for any σ-algebra G containing

H, we have G ∈ A and therefore σ(H) = ∩F∈AF ⊆ G. We refer to σ(H) as the σ-algebra

generated by H, and we say that H is a generating family for σ(H).

Using this construction, we may define a particular σ-algebra on the Euclidean spaces: The

Borel σ-algebra Bd on Rd for d ≥ 1 is the smallest σ-algebra containing all open sets in Rd.
We denote the Borel σ-algebra on R by B.

Next, let (Fn)n≥1 be a sequence of sets in F . If Fn ⊆ Fn+1 for all n ≥ 1, we say that (Fn)n≥1

is increasing. If Fn ⊇ Fn+1 for all n ≥ 1, we say that (Fn)n≥1 is decreasing. Assume that

D is a set of subsets of Ω such that the following holds: Ω ∈ D, if F,G ∈ D with F ⊆ G

then G \ F ∈ D and if (Fn)n≥1 is an increasing sequence of sets in D then ∪∞n=1Fn ∈ D.

If this is the case, we say that D is a Dynkin class. Furthermore, if H is a set of subsets

of Ω such that whenever F,G ∈ H then F ∩ G ∈ H, then we say that H is stable under

finite intersections. These two concepts combine in the following useful manner, known as

Dynkin’s lemma: Let D be a Dynkin class on Ω, and H be a set of subsets of Ω which is

stable under finite intersections. If H ⊆ D, then σ(H) ⊆ D.

Dynkin’s lemma is useful when we desire to show that some property holds for all sets F ∈ F .

A consequence of Dynkin’s lemma is that if P and Q are two probability measures on F which
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are equal on a generating family for F which is stable under finite intersections, then P and

Q are equal on all of F .

Assume given a probability space (Ω,F , P ). The probability measure satisfies that for any

pair of events F,G ∈ F with F ⊆ G, P (G \F ) = P (G)−P (F ). Also, if (Fn) is an increasing

sequence in F , then P (∪∞n=1Fn) = limn→∞ P (Fn), and if (Fn) is a decreasing sequence in

F , then P (∩∞n=1Fn) = limn→∞ P (Fn). These two properties are known as the upwards and

downwards continuity of probability measures, respectively.

Given a mapping X : Ω → R, we say that X is F-B measurable if it holds for all A ∈ B
that X−1(B) ∈ F , where we use the notation X−1(B) = {ω ∈ Ω | X(ω) ∈ B}. Letting

the σ-algebras involved be implicit, we may simply say that X is measurable. A measurable

mapping X : Ω → R is referred to as a random variable. For convenience, we also write

(X ∈ B) instead of X−1(B) when B ⊆ R. Measurability of X ensures that whenever B ∈ B,

the subset (X ∈ B) of Ω is F measurable, such that P (X ∈ B) is well-defined. Furthermore,

the integral
∫
|X|dP is well-defined. In the case where it is finite, we say that X is integrable,

and the integral
∫
X dP is then well-defined and finite. We refer to this as the mean of X

and write EX =
∫
X dP . In the case where |X|p is integrable for some p > 0, we say that

X has p’th moment and write EXp =
∫
Xp dP .

Also, if (Xi)i∈I is a family of variables, we denote by σ((Xi)i∈I) the σ-algebra generated

by (Xi)i∈I , meaning the smallest σ-algebra on Ω making Xi measurable for all i ∈ I, or

equivalently, the smallest σ-algebra containing H, where H is the class of subsets (Xi ∈ B)

for i ∈ I and B ∈ B. Also, for families of variables, we write (Xi)i∈I and (Xi) interchangably,

understanding that the index set is implicit in the latter case.

1.2 Convergence of sequences of random variables

We are now ready to introduce sequences of random variables and consider their modes of

convergence. For the remainder of the chapter, we work within the context of a probability

space (Ω,F , P ).

Definition 1.2.1. A sequence of random variables (Xn)n≥1 is a sequence of mappings from

Ω to R such that each Xn is a random variable.

If (Xn)n≥1 is a sequence of random variables, we also refer to (Xn)n≥1 as a discrete-time
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stochastic process, or simply a stochastic process. These names are interchangeable. For

brevity, we also write (Xn) instead of (Xn)n≥1. In Definition 1.2.1, all variables are assumed

to take values in R, in particular ruling out mappings taking the values∞ or −∞ and ruling

out variables with values in Rd. This distinction is made solely for convenience, and if need

be, we will also refer to sequences of random variables with values in Rd or other measure

spaces as sequences of random variables.

A natural first question is when sequences of random variables exist with particular distri-

butions. For example, does there exists a sequence of variables (Xn) such that (X1, . . . , Xn)

are independent for all n ≥ 1 and such that for each n ≥ 1, Xn has some particular given

distribution? Such questions are important, and will be relevant for our later construction of

examples and counterexamples, but are not our main concern here. For completeness, results

which will be sufficient for our needs are given in Appendix A.3.

The following fundamental definition outlines the various modes of convergence of random

variables to be considered in the following.

Definition 1.2.2. Let (Xn) be a sequence of random variables, and let X be some other

random variable.

(1). Xn converges in probability to X if for all ε > 0, limn→∞ P (|Xn −X| ≥ ε) = 0.

(2). Xn converges almost surely to X if P (limn→∞Xn = X) = 1.

(3). Xn converges in Lp to X for some p ≥ 1 if limn→∞E|Xn −X|p = 0.

(4). Xn converges in distribution to X if for all bounded, continuous mappings f : R→ R,

limn→∞Ef(Xn) = Ef(X).

In the affirmative, we write Xn
P−→ X, Xn

a.s.−→ X, Xn
Lp−→ X and Xn

D−→ X, respectively.

Definition 1.2.2 defines four modes of convergence: Convergence in probability, almost sure

convergence, convergence in Lp and convergence in distribution. Convergence in distribution

of random variables is also known as convergence in law. Note that convergence in Lp as

given in Definition 1.2.2 is equivalent to convergence in ‖ · ‖p in the seminormed vector

space Lp(Ω,F , P ), see Section A.2. In the remainder of this section, we will investigate

the connections between these modes of convergence. A first question regards almost sure

convergence. The statement that P (limn→∞Xn = X) = 1 is to be understood as that the

set {ω ∈ Ω | Xn(ω) converges to X(ω)} has probability one. For this to make sense, it is
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necessary that this set is measurable. The following lemma ensures that this is always the

case. For the proof of the lemma, we recall that for any family (Fi)i∈I of subsets of Ω, it

holds that

∩i∈IFi = {ω ∈ Ω | ∀ i ∈ I : ω ∈ Fi} (1.1)

∪i∈IFi = {ω ∈ Ω | ∃i ∈ I : ω ∈ Fi}, (1.2)

demonstrating the connection between set intersection and the universal quantifier and the

connection between set union and the existential quantifier.

Lemma 1.2.3. Let (Xn) be a sequence of random variables, and let X be some other variable.

The subset F of Ω given by F = {ω ∈ Ω | Xn(ω) converges to X(ω)} is F measurable. In

particular, it holds that

F = ∩∞m=1 ∪∞n=1 ∩∞k=n(|Xk −X| ≤ 1
m ). (1.3)

Proof. We first prove the equality (1.3), and to this end, we first show that for any sequence

(xn) of real numbers and any real x, it holds that xn converges to x if and only if

∀ m ∈ N ∃ n ∈ N ∀ k ≥ n : |xk − x| ≤ 1
m . (1.4)

To this end, recall that xn converges to x if and only if

∀ ε > 0 ∃ n ∈ N ∀ k ≥ n : |xk − x| ≤ ε. (1.5)

It is immediate that (1.5) implies (1.4). We prove the converse implication. Therefore,

assume that (1.4) holds. Let ε > 0 be given. Pick a natural m ≥ 1 so large that 1
m ≤ ε.

Using (1.4), take a natural n ≥ 1 such that for all k ≥ n, |xk − x| ≤ 1
m . It then also holds

that for k ≥ n, |xk − x| ≤ ε. Therefore, (1.5) holds, and so (1.5) and (1.4) are equivalent.

We proceed to prove (1.3). Using what we already have shown, we obtain

F = {ω ∈ Ω | Xn(ω) converges to X(ω)}

= {ω ∈ Ω | ∀ ε > 0 ∃ n ∈ N ∀ k ≥ n : |Xn(ω)−X(ω)| ≤ ε}

= {ω ∈ Ω | ∀ m ∈ N ∃ n ∈ N ∀ k ≥ n : |Xn(ω)−X(ω)| ≤ 1
m},

and applying (1.1) and (1.2), this yields

F = ∩∞m=1{ω ∈ Ω | ∃ n ∈ N ∀ k ≥ n : |Xn(ω)−X(ω)| ≤ 1
m}

= ∩∞m=1 ∪∞n=1 {ω ∈ Ω | ∀ k ≥ n : |Xn(ω)−X(ω)| ≤ 1
m}

= ∩∞m=1 ∪∞n=1 ∩∞k=n{ω ∈ Ω | |Xn(ω)−X(ω)| ≤ 1
m}

= ∩∞m=1 ∪∞n=1 ∩∞k=n(|Xk −X| ≤ 1
m ),
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as desired. We have now proved (1.3). Next, as Xk and X both are F measurable mappings,

|Xk − X| is F measurable as well, so set (|Xk − X| ≤ 1
m ) is in F . As a consequence, we

obtain that ∩∞m=1 ∪∞n=1 ∩∞k=n(|Xk −X| ≤ 1
m ) is an element of F . We conclude that F ∈ F ,

as desired.

Lemma 1.2.3 ensures that the definition of almost sure convergence given in Definition 1.2.2

is well-formed. A second immediate question regards convergence in probability: Does it

matter whether we consider the limit of P (|Xn−X| ≥ ε) or P (|Xn−X| > ε)? The following

lemma shows that this is not the case.

Lemma 1.2.4. Let (Xn) be a sequence of random variables, and let X be some other variable.

It holds that Xn converges in probability to X if and only if it holds that for each ε > 0,

limn→∞ P (|Xn −X| > ε) = 0.

Proof. First assume that for each ε > 0, limn→∞ P (|Xn−X| > ε) = 0. We need to show that

Xn converges in probability to X, meaning that for each ε > 0, limn→∞ P (|Xn−X| ≥ ε) = 0.

To prove this, first fix ε > 0. We then obtain

lim sup
n→∞

P (|Xn −X| ≥ ε) ≤ lim sup
n→∞

P (|Xn −X| > ε
2 ) = 0,

so limn→∞ P (|Xn − X| ≥ ε) = 0, as desired. Conversely, if it holds for all ε > 0 that

limn→∞ P (|Xn −X| ≥ ε) = 0, we find for any ε > 0 that

lim sup
n→∞

P (|Xn −X| > ε) ≤ lim sup
n→∞

P (|Xn −X| ≥ ε) = 0,

which proves the other implication.

Also, we show that limits for three of the modes of convergence considered are almost surely

unique.

Lemma 1.2.5. Let (Xn) be a sequence of random variables and let X and Y be two other

variables. Assume that Xn converges both to X and to Y in probability, almost surely or in

Lp for some p ≥ 1. Then X and Y are almost surely equal.

Proof. First assume that Xn
P−→ X and Xn

P−→ Y . Fix ε > 0. Note that if |X −Xn| ≤ ε/2
and |Xn − Y | ≤ ε/2, we have |X − Y | ≤ ε. Therefore, we also find that |X − Y | > ε implies
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that either |X −Xn| > ε/2 or |Xn − Y | > ε/2. Hence, we obtain

P (|X − Y | ≥ ε) ≤ P (|X −Xn|+ |Xn − Y | ≥ ε)

≤ P ((|X −Xn| ≥ ε
2 ) ∪ (|Xn − Y | ≥ ε

2 ))

≤ P (|X −Xn| ≥ ε
2 ) + P (|Xn − Y | ≥ ε

2 ),

so that P (|X − Y | ≥ ε) ≤ lim supn→∞ P (|X − Xn| ≥ ε
2 ) + P (|Xn − Y | ≥ ε

2 ) = 0. As

(|X−Y | > 0) = ∪∞n=1(|X−Y | ≥ 1
n ) and a union of null sets again is a null sets, we conclude

that (|X − Y | > 0) is a null set, such that X and Y are almost surely equal.

In the case where Xn
a.s.−→ X and Xn

a.s.−→ Y , the result follows since limits in R are unique. If

Xn
Lp−→ X and Xn

Lp−→ Y , we obtain ‖X − Y ‖p ≤ lim supn→∞ ‖X −Xn‖p + ‖Xn − Y ‖p = 0,

so E|X − Y |p = 0, yielding that X and Y are almost surely equal. Here, ‖ · ‖p denotes the

seminorm on Lp(Ω,F , P ).

Having settled these preliminary questions, we next consider the question of whether some

of the modes of convergence imply another mode of convergence. Before proving our basic

theorem on this, we show a few lemmas of independent interest. In the following lemma,

f(X) denotes the random variable defined by f(X)(ω) = f(X(ω)).

Lemma 1.2.6. Let (Xn) be a sequence of random variables, and let X be some other variable.

Let f : R → R be a continuous function. If Xn converges almost surely to X, then f(Xn)

converges almost surely to f(X). If Xn converges in probability to X, then f(Xn) converges

in probability to f(X).

Proof. We first consider the case of almost sure convergence. Assume that Xn converges

almost surely to X. As f is continuous, we find for each ω that if Xn(ω) converges to X(ω),

f(Xn(ω)) converges to f(X(ω)) as well. Therefore,

P (f(Xn) converges to f(X)) ≥ P (Xn converges to X) = 1,

proving the result. Next, we turn to the more difficult case of convergence in probability.

Assume that Xn converges in probability to X, we need to prove that f(Xn) converges in

probability to f(X). Let ε > 0, we thus need to show limn→∞ P (|f(Xn) − f(X)| > ε) = 0.

To this end, let m ≥ 1. As [−(m + 1),m + 1] is compact, f is uniformly continuous on this

set. Choose δ > 0 such that δ parries ε for this uniform continuity of f . We may assume

without loss of generality that δ ≤ 1. We then have that for x and y in [−(m + 1),m + 1],

|x− y| ≤ δ implies |f(x)− f(y)| ≤ ε. Now assume that |f(x)− f(y)| > ε. If |x− y| ≤ δ and

|x| ≤ m, we obtain x, y ∈ [−(m+ 1),m+ 1] and thus a contradiction with |f(x)− f(y)| > ε.
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Therefore, when |f(x) − f(y)| > ε, it must either hold that |x − y| > δ or |x| > m. This

yields

P (|f(Xn)− f(X)| > ε) ≤ P ((|Xn −X| > δ) ∪ (|X| > m))

≤ P (|Xn −X| > δ) + P (|X| > m).

Note that while δ depends on m, neither δ nor m depends on n. Therefore, as Xn converges

in probability to X, the above estimate allows us to conclude

lim sup
n→∞

P (|f(Xn)− f(X)| > ε) ≤ lim sup
n→∞

P (|Xn −X| > δ) + P (|X| > m) = P (|X| > m).

As m was arbitrary, we then finally obtain

lim sup
n→∞

P (|f(Xn)− f(X)| > ε) ≤ lim
m→∞

P (|X| > m) = 0,

by downwards continuity. This shows that f(Xn) converges in probability to f(X).

Lemma 1.2.7. Let X be a random variable, let p > 0 and let ε > 0. It then holds that

P (|X| ≥ ε) ≤ ε−pE|X|p.

Proof. We simply note that P (|X| ≥ ε) = E1(|X|≥ε) ≤ ε−pE|X|p1(|X|≥ε) ≤ ε−pE|X|p, which

yields the result.

Theorem 1.2.8. Let (Xn) be a sequence of random variables, and let X be some other

variable. If Xn converges in Lp to X for some p ≥ 1, or if Xn converges almost surely to

X, then Xn also converges in probability to X. If Xn converges in probability to X, then Xn

also converges in distribution to X.

Proof. We need to prove three implications. First assume that Xn converges in Lp to X for

some p ≥ 1, we want to show that Xn converges in probability to X. By Lemma 1.2.7, it

holds for any ε > 0 that

lim sup
n→∞

P (|Xn −X| ≥ ε) ≤ lim sup
n→∞

ε−pE|Xn −X|p = 0,

so P (|Xn − X| ≥ ε) converges as n tends to infinity, and the limit is zero. Therefore,

Xn converges in probability to X. Next, assume that Xn converges almost surely to X.

Again, we wish to show that Xn converges in probability to X. Fix ε > 0. Using that
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(|Xn −X| ≥ ε) ⊆ ∪∞k=n(|Xk −X| ≥ ε) and that the sequence (∪∞k=n(|Xk −X| ≥ ε))n≥1 is

decreasing, we find

lim sup
n→∞

P (|Xn −X| ≥ ε) ≤ lim
n→∞

P (∪∞k=n|Xk −X| ≥ ε)

= P (∩∞n=1 ∪∞k=n |Xk −X| ≥ ε)

≤ P (Xn does not converge to X) = 0,

so Xn converges in probability to X, as desired. Finally, we need to show that if Xn converges

in probability to X, then Xn also converges in distribution to X. Assume that Xn converges

in probability to X, and let f : R → R be bounded and continuous. Let c ≥ 0 be such that

|f(x)| ≤ c for all x. Applying the triangle inequality, |f(Xn)−f(X)| ≤ |f(Xn)|+|f(X)| ≤ 2c,

and so we obtain for any ε > 0 that

|Ef(Xn)− Ef(X)| ≤ E|f(Xn)− f(X)|

= E|f(Xn)− f(X)|1(|f(Xn)−f(X)|>ε) + E|f(Xn)− f(X)|1(|f(Xn)−f(X)|≤ε)

≤ 2cP (|f(Xn)− f(X)| > ε) + ε. (1.6)

By Lemma 1.2.6, f(Xn) converges in probability to f(X). Therefore, (1.6) shows that

lim supn→∞ |Ef(Xn) − Ef(X)| ≤ ε. As ε > 0 was arbitrary, this allows us to conclude

lim supn→∞ |Ef(Xn)−Ef(X)| = 0, and as a consequence, limn→∞Ef(Xn) = Ef(X). This

proves the desired convergence in distribution of Xn to X.

Theorem 1.2.8 shows that among the four modes of convergence defined in Definition 1.2.2,

convergence in Lp and almost sure convergence are the strongest, convergence in probability

is weaker than both, and convergence in distribution is weaker still. There is no general

simple relationship between convergence in Lp and almost sure convergence. Note also an

essential difference between convergence in distribution and the other three modes of conver-

gence: While both convergence in Lp, almost sure convergence and convergence in probability

depend on the multivariate distribution of (Xn, X), convergence in distribution merely de-

pends on the marginal laws of Xn and X. For this reason, the theory for convergence in

distribution is somewhat different than the theory for the other three modes of convergence.

In the remainder of this chapter and the next, we only consider the other three modes of

convergence.

Example 1.2.9. Let ξ ∈ R, let σ > 0 and let (Xn) be a sequence of random variables

such that for all n ≥ 1, Xn is normally distributed with mean ξ and variance σ2. Assume

furthermore that X1, . . . , Xn are independent for all n ≥ 1. Put ξ̂n = 1
n

∑n
k=1Xk. We claim

that ξ̂n converges in Lp to ξ for all p ≥ 1.
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To prove this, note that by the properties of normal distributions, 1
n

∑n
k=1Xk is normally

distributed with mean ξ and variance 1
nσ

2. Therefore,
√
nσ−1(ξ − 1

n

∑n
k=1Xk) is standard

normally distributed. With mp denoting the p’th absolute moment of the standard normal

distribution, we thus obtain

E|ξ − ξ̂n|p = E

∣∣∣∣∣ξ − 1

n

n∑
k=1

Xk

∣∣∣∣∣
p

=
σp

np/2
E

∣∣∣∣∣√nσ−1

(
ξ − 1

n

n∑
k=1

Xk

)∣∣∣∣∣
p

=
σpmp

np/2
,

which converges to zero, proving that 1
n

∑n
k=1Xk

Lp−→ ξ for all p ≥ 1. ◦

The following lemma shows that almost sure convergence and convergence in probability

enjoy strong stability properties.

Lemma 1.2.10. Let (Xn) and (Yn) be sequences of random variables, and let X and Y

be two other random variables. If Xn converges in probability to X and Yn converges in

probability to Y , then Xn + Yn converges in probability to X + Y , and XnYn converges in

probability to XY . Also, if Xn converges almost surely to X and Yn converges almost surely

to Y , then Xn + Yn converges almost surely to X + Y , and XnYn converges almost surely to

XY .

Proof. We first show the claims for almost sure convergence. Assume that Xn converges

almost surely to X and that Yn converges almost surely to Y . Note that as addition is

continuous, we have that whenever Xn(ω) converges to X(ω) and Yn(ω) converges to Y (ω),

it also holds that Xn(ω) + Yn(ω) converges to X(ω) + Y (ω). Therefore,

P (Xn + Yn converges to X + Y ) ≥ P ((Xn converges to X) ∩ (Yn converges to Y )) = 1,

and by a similar argument, we find

P (XnYn converges to XY ) ≥ P ((Xn converges to X) ∩ (Yn converges to Y )) = 1,

since the intersection of two almost sure sets also is an almost sure set. This proves the

claims on almost sure convergence. Next, assume that Xn converges in probability to X and

that Yn converges in probability to Y . We first show that Xn + Yn converges in probability

to X + Y . Let ε > 0 be given. We then obtain

lim sup
n→∞

P (|Xn + Yn − (X + Y )| ≥ ε) ≤ lim sup
n→∞

P ((|Xn −X| ≥ ε
2 ) ∪ (|Yn − Y | ≥ ε

2 ))

≤ lim sup
n→∞

P (|Xn −X| ≥ ε
2 ) + P (|Yn − Y | ≥ ε

2 ) = 0,

proving the claim. Finally, we show that XnYn converges in probability to XY . This will

follow if we show that XnYn−XY converges in probability to zero. To this end, we note the
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relationship XnYn −XY = (Xn −X)(Yn − Y ) + (Xn −X)Y + (Yn − Y )X, so by what we

already have shown, it suffices to show that each of these three terms converge in probability

to zero. For the first term, recall that for all x, y ∈ R, x2 +2xy+y2 ≥ 0 and x2−2xy+y2 ≥ 0,

so that |xy| ≤ 1
2x

2 + 1
2y

2. Therefore, we obtain for all ε > 0 that

P (|(Xn −X)(Yn − Y )| ≥ ε) ≤ P ( 1
2 (Xn −X)2 + 1

2 (Yn − Y )2 ≥ ε)

≤ P ( 1
2 (Xn −X)2 ≥ 1

2ε) + P ( 1
2 (Yn − Y )2 ≥ 1

2ε)

= P (|Xn −X| ≥
√
ε) + P (|Yn − Y | ≥

√
ε).

Taking the limes superior, we conclude limn→∞ P (|(Xn − X)(Yn − Y )| ≥ ε) = 0, and thus

(Xn−X)(Yn−Y ) converges in probability to zero. Next, we show that (Xn−X)Y converges

in probability to zero. Again, let ε > 0. Consider also some m ≥ 1. We then obtain

P (|(Xn −X)Y | ≥ ε)

= P ((|(Xn −X)Y | ≥ ε) ∩ (|Y | ≤ m)) + P ((|(Xn −X)Y | ≥ ε) ∩ (|Y | > m))

≤ P (m|Xn −X| ≥ ε) + P (|Y | > m) = P (|Xn −X| ≥ 1
mε) + P (|Y | > m).

Therefore, we obtain lim supn→∞ P (|(Xn − X)Y | ≥ ε) ≤ P (|Y | > m) for all m ≥ 1, from

which we conclude lim supn→∞ P (|(Xn −X)Y | ≥ ε) ≤ limm→∞ P (|Y | > m) = 0, by down-

wards continuity. This shows that (Xn −X)Y converges in probability to zero. By a similar

argument, we also conclude that (Yn−Y )X converges in probability to zero. Combining our

results, we conclude that XnYn converges in probability to XY , as desired.

Lemma 1.2.10 could also have been proven using a multidimensional version of Lemma 1.2.6

and the continuity of addition and multiplication. Our next goal is to prove another con-

nection between two of the modes of convergence, namely that convergence in probability

implies almost sure convergence along a subsequence, and use this to show completeness

properties of each of our three modes of convergence, in the sense that we wish to argue that

Cauchy sequences are convergent for both convergence in Lp, almost sure convergence and

convergence in probability.

We begin by showing the Borel-Cantelli lemma, a general result which will be useful in several

contexts. Let (Fn) be a sequence of events. We then define

(Fn i.o.) = {ω ∈ Ω | ω ∈ Fn infinitely often }

(Fn evt.) = {ω ∈ Ω | ω ∈ Fn eventually }

Note that ω ∈ Fn for infinitely many n if and only if for each n ≥ 1, there exists k ≥ n

such that ω ∈ Fk. Likewise, it holds that ω ∈ Fn eventually if and only if there exists n ≥ 1



12 Sequences of random variables

such that for all k ≥ n, ω ∈ Fk. Therefore, we also have (Fn i.o.) = ∩∞n=1 ∪∞k=n Fk and

(Fn evt.) = ∪∞n=1 ∩∞k=n Fk. This shows in particular that the sets (Fn i.o.) and (Fn evt.) are

measurable. Also, we obtain the equality (Fn i.o.)c = (F cn evt.). It is customary also to write

lim supn→∞ Fn for (Fn i.o.) and lim infn→∞ Fn for (Fn evt.), although this is not a notation

which we will be using. The main useful result about events occurring infinitely often is the

following.

Lemma 1.2.11 (Borel-Cantelli). Let (Fn) be a sequence of events. If
∑∞
n=1 P (Fn) is finite,

then P (Fn i.o.) = 0.

Proof. As the sequence of sets (∪∞k=nFk)n≥1 is decreasing, we obtain by the downward con-

tinuity of probability measures that

P (Fn i.o.) = P (∩∞n=1 ∪∞k=n Fk) = lim
n→∞

P (∪∞k=nFk) ≤ lim
n→∞

∞∑
k=n

P (Fk) = 0,

with the final equality holding since the tail sum of a convergent series always tends to

zero.

Lemma 1.2.12. Let (Xn) be a sequence of random variables, and let X be some other

variable. Assume that for all ε > 0,
∑∞
n=1 P (|Xn − X| ≥ ε) is finite. Then Xn converges

almost surely to X.

Proof. Recalling (1.3), it suffices to show that

P (∩∞m=1 ∪∞n=1 ∩∞k=n(|Xk −X| ≤ 1
m )) = 1.

Fix ε > 0. By Lemma 1.2.11, we find that the set (|Xn −X| ≥ ε i.o.) has probability zero.

As (|Xn − X| < ε evt.)c = (|Xn − X| ≥ ε i.o.), we obtain P (|Xn − X| < ε evt.) = 1. As

ε > 0 was arbitrary, we in particular obtain P (|Xn−X| ≤ 1
m evt.) = 1 for all m ≥ 1. As the

intersection of a countable family of almost sure events again is an almost sure event, this

yields

P (∩∞m=1 ∪∞n=1 ∩∞k=n(|Xk −X| ≤ 1
m )) = P (∩∞m=1(|Xk −X| ≤ 1

m evt.)) = 1,

as desired.

Lemma 1.2.13. Let (Xn) be a sequence of random variables, and let X be some other

variable. Assume that Xn converges in probability to X. There is a subsequence (Xnk)

converging almost surely to X.
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Proof. Let (εk)k≥1 be a sequence of positive numbers decreasing to zero. For each k, it holds

that limn→∞ P (|Xn − X| ≥ εk) = 0. In particular, for any k, n∗ ≥ 1, we may always pick

n > n∗ such that P (|Xn −X| ≥ εk) ≤ 2−k. Therefore, we may recursively define a strictly

increasing sequence of indicies (nk)k≥1 such that for each k, P (|Xnk −X| ≥ εk) ≤ 2−k. We

claim that the sequence (Xnk)k≥1 satisfies the criterion of Lemma 1.2.12. To see this, let

ε > 0. As (εk)k≥1 decreases to zero, there is m such that for k ≥ m, εk ≤ ε. We then obtain

∞∑
k=m

P (|Xnk −X| ≥ ε) ≤
∞∑
k=m

P (|Xnk −X| ≥ εk) ≤
∞∑
k=m

2−k,

which is finite. Hence,
∑∞
k=1 P (|Xnk −X| ≥ ε) is also finite, and Lemma 1.2.12 then shows

that Xnk converges almost surely to X.

We are now almost ready to introduce the concept of being Cauchy with respect to each of

our three modes of convergence and show that being Cauchy implies convergence.

Lemma 1.2.14. Let (Xn) be a sequence of random variables. It then holds that

(Xn is Cauchy) = ∩∞m=1 ∪∞n=1 ∩∞k=n(|Xn −Xk| ≤ 1
m ), (1.7)

and in particular, (Xn is Cauchy) is measurable.

Proof. Recall that a sequence (xn) in R is Cauchy if and only if

∀ ε > 0 ∃ n ∈ N ∀ k, i ≥ n : |xk − xi| ≤ ε (1.8)

We will first argue that this is equivalent to

∀ m ∈ N ∃ n ∈ N ∀ k ≥ n : |xk − xn| ≤ 1
m . (1.9)

To this end, first assume that (1.8) holds. Let m ∈ N be given and choose ε > 0 so small

that ε ≤ 1
m . Using (1.8), take n ∈ N so that |xk−xi| ≤ ε whenever k, i ≥ n. Then it holds in

particular that |xk − xn| ≤ 1
m . Thus, (1.9) holds. To prove the converse implication, assume

that (1.9) holds. Let ε > 0 be given and take m ∈ N so large that 1
m ≤ ε/2. Using (1.9),

take n ∈ N so that for all k ≥ n, |xk−xn| ≤ 1
m . We then obtain that for all k, i ≥ n, it holds

that |xk − xi| ≤ |xk − xn|+ |xi − xn| ≤ 2
m ≤ ε. We conclude that (1.8) holds. We have now

shown that (1.8) and (1.9) are equivalent.

Using this result, we obtain

(Xn is Cauchy) = {ω ∈ Ω | ∀ ε > 0 ∃ n ∈ N ∀ k, i ≥ n : |Xk(ω)−Xn(ω)| ≤ ε}

= {ω ∈ Ω | ∀ m ∈ N ∃ n ∈ N ∀ k ≥ n : |Xk(ω)−Xn(ω)| ≤ 1
m}

= ∩∞m=1 ∪∞n=1 ∩∞k=n(|Xn −Xk| ≤ 1
m ),
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as desired. As a consequence, the set (Xn is Cauchy) is F measurable.

We are now ready to define what it means to be Cauchy with respect to each of our modes

of convergence. In the definition, we use the convention that a double sequence (xnm)n,m≥1

converges to x as n and m tend to infinity if it holds that for all ε > 0, there is k ≥ 1 such

that |xnm − x| ≤ ε whenever n,m ≥ k. In particular, a sequence (xn)n≥1 is Cauchy if and

only if |xn − xm| tends to zero as n and m tend to infinity.

Definition 1.2.15. Let (Xn) be a sequence of random variables. We say that Xn is Cauchy

in probability if it holds for any ε > 0 that P (|Xn −Xm| ≥ ε) tends to zero as m and n tend

to infinity. We say that Xn is almost surely Cauchy if P ((Xn) is Cauchy) = 1. Finally, we

say that Xn is Cauchy in Lp for some p ≥ 1 if E|Xn −Xm|p tends to zero as m and n tend

to infinity.

Note that Lemma 1.2.14 ensures that the definition of being almost surely Cauchy is well-

formed, since (Xn is Cauchy) is measurable.

Theorem 1.2.16. Let (Xn) be a sequence of random variables. If Xn is Cauchy in proba-

bility, there exists a random variable X such that Xn converges in probability to X. If Xn is

almost surely Cauchy, there exists a random variable X such that Xn converges almost surely

to X. If (Xn) is a sequence in Lp which is Cauchy in Lp, there exists a random variable X

in Lp such that Xn converges to X in Lp.

Proof. The result on sequences which are Cauchy in Lp is immediate from Fischer’s com-

pleteness theorem, so we merely need to show the results for being Cauchy in probability and

being almost surely Cauchy.

Consider the case where Xn is almost surely Cauchy. As R equipped with the Euclidean

metric is complete, (Xn is convergent) = (Xn is Cauchy), so in particular, by Lemma 1.2.14,

the former is a measurable almost sure set. Define X by letting X = limn→∞Xn when the

limit exists and zero otherwise. Then X is measurable, and we have

P ( lim
n→∞

Xn = X) = P (Xn is Cauchy) = 1,

so Xn converges almost surely to X, proving the result for being almost surely Cauchy.

Finally, assume that Xn is Cauchy in probability. For each k, P (|Xn − Xm| ≥ 2−k) tends

to zero as m and n tend to infinity. In particular, we find that for each k, there is n∗
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such that for n,m ≥ n∗, it holds that P (|Xn − Xm| ≥ 2−k) ≤ 2−k. Therefore, we may

pick a sequence of strictly increasing indicies (nk) such that P (|Xn − Xm| ≥ 2−k) ≤ 2−k

for n,m ≥ nk. We then obtain in particular that P (|Xnk+1
− Xnk | ≥ 2−k) ≤ 2−k for all

k ≥ 1. From this, we find that
∑∞
k=1 P (|Xnk+1

−Xnk | ≥ 2−k) is finite, so by Lemma 1.2.11,

P (|Xnk+1
−Xnk | ≥ 2−k i.o.) = 0, leading to P (|Xnk+1

−Xnk | < 2−k evt.) = 1. In particular,

it holds almost surely that
∑∞
k=1 |Xnk+1

−Xnk | is finite. For any k > i ≥ 1, we have

|Xnk −Xni | ≤
k−1∑
j=i

|Xnj+1
−Xnj | ≤

∞∑
j=i

|Xnj+1
−Xnj |.

Now, as the tail sums of convergent sums tend to zero, the above shows that on the almost

sure set where
∑∞
k=1 |Xnk+1

− Xnk | is finite, (Xnk)k≥1 is Cauchy. In particular, (Xnk)k≥1

is almost surely Cauchy, so by what was already shown, there exists a variable X such that

Xnk converges almost surely to X. In order to complete the proof, we will argue that (Xn)

converges in probability to X. To this end, fix ε > 0. Let δ > 0. As (Xn) is Cauchy in

probability, there is n∗ such that for m,n ≥ n∗, P (|Xn − Xm| ≥ ε
2 ) ≤ δ. And as Xnk

converges almost surely to X, Xnk also converges in probability to X by Theorem 1.2.8.

Therefore, for k large enough, P (|Xnk −X| ≥ ε
2 ) ≤ δ. Let k be so large that this holds and

simultaneously so large that nk ≥ n∗. We then obtain for n ≥ n∗ that

P (|Xn −X| ≥ ε) ≤ P (|Xn −Xnk |+ |Xnk −X| ≥ ε)

≤ P (|Xn −Xnk | ≥ ε
2 ) + P (|Xnk −X| ≥ ε

2 ) ≤ 2δ.

Thus, for n large enough, P (|Xn − X| ≥ ε) ≤ 2δ. As δ was arbitrary, we conclude that

limn→∞ P (|Xn−X| ≥ ε) = 0, showing that Xn converges in probability to X. This concludes

the proof.

This concludes our preliminary investigation of convergence of sequences of random variables.

1.3 Independence and Kolmogorov’s zero-one law

In this section, we generalize the classical notion of independence of random variables and

events to a notion of independence of σ-algebras. This general notion of independence en-

compasses all types of independence which will be relevant to us.

Definition 1.3.1. Let I be some set and let (Fi)i∈I be a family of σ-algebras. We say that

the family of σ-algebras is independent if it holds for any finite sequence of distinct indicies
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i1, . . . , in ∈ I and any F1 ∈ Fi1 , . . . , Fn ∈ Fin that

P (∩nk=1Fk) =

n∏
k=1

P (Fk). (1.10)

The abstract definition in Definition 1.3.1 will allow us considerable convenience as regards

matters of independence. The following lemma shows that when we wish to prove indepen-

dence, it suffices to prove the equality (1.10) for generating families which are stable under

finite intersections.

Lemma 1.3.2. Let I be some set and let (Fi)i∈I be a family of σ-algebras. Assume that for

each i, Fi = σ(Hi), where Hi is a set family which is stable under finite intersections. If it

holds for any finite sequence of distinct indicies i1, . . . , in ∈ I that P (∩nk=1Fk) =
∏n
k=1 P (Fk),

where F1 ∈ Hi1 , . . . , Fn ∈ Hin , then (Fi)i∈I is independent.

Proof. We apply Dynkin’s lemma and an induction proof. We wish to show that for each n,

it holds for all sequences of n distinct indicies i1, . . . , in ∈ I and all finite sequences of sets

F1 ∈ Fi1 , . . . , Fn ∈ Fin that P (∩nk=1Fk) =
∏n
k=1 P (Fk). The induction start is trivial, so it

suffices to show the induction step. Assume that the result holds for n, we wish to prove it

for n + 1. Fix a finite sequence of n + 1 distinct indicies i1, . . . , in+1 ∈ I. We wish to show

that

P (∩n+1
k=1Fk) =

n+1∏
k=1

P (Fk) (1.11)

for F1 ∈ Fi1 , . . . , Fn+1 ∈ Fin+1 . To this end, let k ≤ n+ 1, and let Fj ∈ Fij for j 6= k. Define

D =

Fk ∈ Fik
∣∣∣∣∣∣ P (∩n+1

j=1Fj) =

n+1∏
j=1

P (Fj)

 . (1.12)

We claim that D is a Dynkin class. To see this, we need to prove that Ω ∈ D, that B \A ∈ D
whenever A ⊆ B and A,B ∈ D, and that whenever (An) is an increasing sequence in D,

∪∞n=1An ∈ D as well. By our induction assumption, Ω ∈ D. Let A,B ∈ D with A ⊆ B. We

then obtain

P ((B \A) ∩ ∩j 6=kFj) = P (B ∩Ac ∩ ∩j 6=kFj) = P ((B ∩ ∩j 6=kFj) ∩Ac)

= P ((B ∩ ∩j 6=kFj) ∩ (A ∩ ∩j 6=kFj)c)

= P (B ∩ ∩j 6=kFj)− P (A ∩ ∩j 6=kFj)

= P (B)
∏
j 6=k

P (Fj)− P (A)
∏
j 6=k

P (Fj) = P (B \A)
∏
j 6=k

P (Fj),
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so that B \A ∈ D. Finally, let (An) be an increasing sequence of sets in D. We then obtain

P ((∪∞n=1An) ∩ ∩j 6=kFj) = P (∪∞n=1An ∩ ∩j 6=kFj) = lim
n→∞

P (An ∩ ∩j 6=kFj)

= lim
n→∞

P (An)
∏
j 6=k

P (Fj) = P (∪∞n=1An)
∏
j 6=k

P (Fj),

so ∪∞n=1An ∈ D. This shows that D is a Dynkin class.

We are now ready to argue that (1.11) holds. Note that by our assumption, we know that

(1.11) holds for F1 ∈ Hi1 , . . . , Fn+1 ∈ Hin+1
. Consider F2 ∈ Hi2 , . . . , Fn+1 ∈ Hin+1

. The

family D as defined in (1.12) then contains Hi1 , and so Dynkin’s lemma yields Fi1 = σ(Hi1) ⊆
D. This shows that (1.11) holds when F1 ∈ Fi1 and F2 ∈ Hi2 , . . . , Fn+1 ∈ Hin+1 . Next, let

F1 ∈ Fi1 and consider a finite sequence of sets F3 ∈ Hi3 , . . . , Fn+1 ∈ Hin+1 . Then D as defined

in (1.12) contains Hi2 , and therefore by Dynkin’s lemma contains σ(Hi2) = Fi2 , proving that

(1.11) holds when F1 ∈ Fi1 , F2 ∈ Fi2 and F3 ∈ Hi3 , . . . , Fn+1 ∈ Hin+1
. By a finite induction

argument, we conclude that (1.11) in fact holds when F1 ∈ Fi1 , . . . , Fn+1 ∈ Fin+1
, as desired.

This proves the induction step and thus concludes the proof.

The following definition shows how we may define independence between families of variables

and families of events from Definition 1.3.1.

Definition 1.3.3. Let I be some set and let (Xi)i∈I be a family of random variables. We

say that the family is independent when the family of σ-algebras (σ(Xi))i∈I is independent.

Also, if (Fi)i∈I is a family of events, we say that the family is independent when the family

of σ-algebras (σ(1Fi))i∈I is independent.

Next, we show that Definition 1.3.3 agrees with our usual definitions of independence.

Lemma 1.3.4. Let I be some set and let (Xi)i∈I be a family of random variables. The family

is independent if and only if it holds for any finite sequence of distinct indicies i1, . . . , in ∈ I
and any A1, . . . , An ∈ B that P (∩nk=1(Xik ∈ Ak)) =

∏n
k=1 P (Xik ∈ Ak).

Proof. From Definition 1.3.3, we have that (Xi)i∈I is independent if and only if (σ(Xi))i∈I is

independent, which by Definition 1.3.1 is the case if and only if for any finite sequence

of distinct indicies i1, . . . , in ∈ I and any F1 ∈ σ(Xi1), . . . , Fn ∈ σ(Xin) it holds that

P (∩nk=1Fk) =
∏n
k=1 P (Fk). However, we have σ(Xi) = {(Xi ∈ A) | A ∈ B} for all i ∈ I, so

the condition is equivalent to requiring that P (∩nk=1(Xik ∈ Ak)) =
∏n
k=1 P (Xik ∈ Ak) for

any finite sequence of distinct indicies i1, . . . , in ∈ I and any A1, . . . , An ∈ B. This proves

the claim.
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Lemma 1.3.5. Let I be some set and let (Fi)i∈I be a family of events. The family is

independent if and only if it holds for any finite sequence of distinct indicies i1, . . . , in ∈ I
that P (∩nk=1Fik) =

∏n
k=1 P (Fik).

Proof. From Definition 1.3.3, (Fi)i∈I is independent if and only if (σ(1Fi))i∈I is independent.

Note that for all i ∈ I, σ(1Fi) = {Ω, ∅, Fi, F ci }, so σ(1Fi) is generated by {Fi}. Therefore,

Lemma 1.3.2 yields the conclusion.

We will also have need of the following properties of independence.

Lemma 1.3.6. Let I be some set and let (Fi)i∈I be a family of σ-algebras. Let (Gi)i∈I be

another family of σ-algebras, and assume that Gi ⊆ Fi for all i ∈ I. If (Fi)i∈I is independent,

so is (Gi)i∈I .

Proof. This follows immediately from Definition 1.3.1.

Lemma 1.3.7. Let I be some set and let (Xi)i∈I be a family of independent variables. For

each i, let ψi : R→ R be some measurable mapping. Then (ψi(Xi))i∈I is also independent.

Proof. As σ(ψi(Xi)) ⊆ σ(Xi), this follows from Lemma 1.3.6.

Lemma 1.3.8. Let I be some set and let (Fi)i∈I be an independent family of σ-algebras.

Let J, J ′ ⊆ I and assume that J and J ′ are disjoint. Then, the σ-algebras σ((Fi)i∈J) and

σ((Fi)i∈J′) are independent.

Proof. Let G = σ((Fi)i∈J) and G′ = σ((Fi)i∈J′). We define

H = {∩nk=1Fk | n ≥ 1, i1, . . . , in ∈ J and F1 ∈ Fi1 , . . . , Fn ∈ Fin}

H′ = {∩n
′

k=1Gk | n′ ≥ 1, i′1, . . . , i
′
n ∈ J ′ and G1 ∈ Fi′1 , . . . , Gn ∈ Fi′n}.

Then H and H′ are generating families for G and G′, respectively, stable under finite in-

tersections. Now let F ∈ H and G ∈ H′. Then, there exists n, n′ ≥ 1, i1, . . . , in ∈ J

and i′1, . . . , i
′
n ∈ J ′ and F1 ∈ Fi1 , . . . , Fn ∈ Fin and G1 ∈ Fi′1 , . . . , Gn ∈ Fi′n′ such that

F = ∩nk=1Fk and G = ∩n′k=1Gk. Since J and J ′ are disjoint, the sequence i1, . . . , in, i
′
1, . . . , i

′
n′

consists of distinct indicies. As (Fi)i∈I is independent, we then obtain

P (F ∩G) = P ((∩nk=1Fk) ∩ (∩n
′

k=1Gk)) =

(
n∏
k=1

P (Fk)

) n′∏
k=1

P (Gk)

 = P (F )P (G).
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Therefore, Lemma 1.3.2 shows that G and G′ are independent, as desired.

Before ending the section, we show some useful results where independence is involved.

Definition 1.3.9. Let (Xn) be a sequence of random variables. The tail σ-algebra of (Xn)

is defined as the σ-algebra ∩∞n=1σ(Xn, Xn+1, . . .).

Colloquially speaking, the tail σ-algebra of (Xn) consists of events which only depend on the

tail properties of (Xn). For example, as we will see shortly, the set where (Xn) is convergent

is an element in the tail σ-algebra.

Theorem 1.3.10 (Kolmogorov’s zero-one law). Let (Xn) be a sequence of independent vari-

ables. Let J be the tail σ-algebra of (Xn). For each F ∈ J , it holds that either P (F ) = 0 or

P (F ) = 1.

Proof. Let F ∈ J and define D = {G ∈ F | P (G∩F ) = P (G)P (F )}, the family of sets in F
independent of F . We claim that D contains σ(X1, X2, . . .). To prove this, we use Dynkin’s

Lemma. We first show that D is a Dynkin class. Clearly, Ω ∈ D. If A,B ∈ D with A ⊆ B,

we obtain

P ((B \A) ∩ F ) = P (B ∩Ac ∩ F ) = P ((B ∩ F ) ∩ (A ∩ F )c)

= P (B ∩ F )− P (A ∩ F ) = P (B)P (F )− P (A)P (F ) = P (B \A)P (F ),

so B \A ∈ D as well. And if (Bn) is an increasing sequence in D, we obtain

P ((∪∞n=1Bn) ∩ F ) = P (∪∞n=1Bn ∩ F ) = lim
n→∞

P (Bn ∩ F )

= lim
n→∞

P (Bn)P (F ) = P (∪∞n=1Bn)P (F ),

proving that ∪∞n=1Bn ∈ D. We have now shown that D is a Dynkin class. Now fix n ≥ 2.

As F ∈ J , it holds that F ∈ σ(Xn, Xn+1, . . .). Since the sequence (Xn) is independent,

Lemma 1.3.8 shows that σ(Xn, Xn+1, . . .) is independent of σ(X1, . . . , Xn−1). Therefore,

σ(X1, . . . , Xn−1) ∈ D for all n ≥ 2. As the family ∪∞n=1σ(X1, . . . , Xn) is a generating family

for σ(X1, X2, . . .) which is stable under finite intersections, Dynkin’s lemma allows us to

conclude σ(X1, X2, . . .) ⊆ D. From this, we obtain J ⊆ D, so F ∈ D. Thus, for any F ∈ J ,

it holds that P (F ) = P (F ∩ F ) = P (F )2, yielding that P (F ) = 0 or P (F ) = 1.

Example 1.3.11. Let (Xn) be a sequence of independent variables. Recalling Lemma 1.2.14,
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we have for any k ≥ 1 that

((Xn)n≥1 is convergent) = ((Xn)n≥1 is Cauchy) = ((Xn)n≥k is Cauchy)

= ∩∞m=1 ∪∞n=1 ∩∞i=n(|Xk+n−1 −Xk+i−1| ≤ 1
m ),

which is in σ(Xk, Xk+1, . . .). As k was arbitrary, we find that ((Xn)n≥1 is convergent) is in

the tail σ-algebra of (Xn). Thus, Theorem 1.3.10 allows us to conclude that the probability

of (Xn) being convergent is either zero or one. ◦

Combining Theorem 1.3.10 and Lemma 1.2.11, we obtain the following useful result.

Lemma 1.3.12 (Second Borel-Cantelli). Let (Fn) be a sequence of independent events. Then

P (Fn i.o.) is either zero or one, and the probability is zero if and only if
∑∞
n=1 P (Fn) is finite.

Proof. Let J be the tail-σ-algebra of the sequence (1Fn) of variables, Theorem 1.3.10 then

shows that J only contains sets of probability zero or one. Note that for any m ≥ 1, we

have (Fn i.o.) = ∩∞n=1 ∪∞k=n Fk = ∩∞n=m ∪∞k=n Fk, so (Fn i.o.) is in J . Hence, Theorem 1.3.10

shows that P (Fn i.o.) is either zero or one.

As regards the criterion for the probability to be zero, note that from Lemma 1.2.11, we

know that if
∑∞
n=1 P (Fn) is finite, then P (Fn i.o.) = 0. We need to show the converse,

namely that if P (Fn i.o.) = 0, then
∑∞
n=1 P (Fn) is finite. This is equivalent to showing that

if
∑∞
n=1 P (Fn) is infinite, then P (Fn i.o.) 6= 0. And to prove this, it suffices to show that if∑∞

n=1 P (Fn) is infinite, then P (Fn i.o.) = 1.

Assume that
∑∞
n=1 P (Fn) is infinite. As it holds that (Fn i.o.)c = (F cn evt.), it suffices to

show P (F cn evt.) = 0. To do so, we note that since the sequence (Fn) is independent, Lemma

1.3.7 shows that the sequence (F cn) is independent as well. Therefore,

P (F cn evt.) = P (∪∞n=1 ∩∞k=n F
c
k ) = lim

n→∞
P (∩∞k=nF

c
k )

= lim
n→∞

lim
i→∞

P (∩ik=nF
c
k ) = lim

n→∞
lim
i→∞

i∏
k=n

P (F ck ) = lim
n→∞

∞∏
k=n

P (F ck ),

since the sequence (∩ik=nF
c
k )i≥1 is decreasing. Next, note that for x ≥ 0, we have

−x =

∫ x

0

(−1) dy ≤
∫ x

0

(− exp(−y)) dy =

∫ x

0

d

dy
exp(−y) dy = exp(−x)− 1,
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which implies 1− x ≤ exp(−x). This allows us to conclude

lim
n→∞

∞∏
k=n

P (F ck ) = lim
n→∞

∞∏
k=n

(1− P (Fk)) ≤ lim
n→∞

∞∏
k=n

exp(−P (Fk))

= lim
n→∞

exp

(
−
∞∑
k=n

P (Fk)

)
= 0,

finally yielding P (F cn evt.) = 0 and so P (Fn i.o.) = 1, as desired.

1.4 Convergence of sums of independent variables

In this section, we consider a sequence of independent variables (Xn) and investigate when

the sum
∑n
k=1Xk converges as n tends to infinity. During the course of this section, we will

encounter sequences (xn) such that
∑n
k=1 xk converges, while

∑n
k=1 |xk| may not converge,

that is, series which are convergent but not absolutely convergent. In such cases,
∑∞
k=1 xk

is not always well-defined. However, for notational convenience, we will apply the following

convention: For a sequence (xn), we say that
∑∞
k=1 xk converges when limn→∞

∑n
k=1 xk

exists, and say that
∑∞
k=1 xk diverges when limn→∞

∑n
k=1 xk does not exist, and in the

latter case,
∑∞
k=1 xk is undefined. With these conventions, we can say that we in this section

seek to understand when
∑∞
n=1Xn converges for a sequence (Xn) of independent variables.

Our first result is an example of a maximal inequality, that is, an inequality which yields

bounds on the distribution of a maximum of random variables. We will use this result to

prove a sufficient criteria for a sum of variables to converge almost surely and in L2. Note

that in the following, just as we write EX for the expectation of a random variable X, we

write V X for the variance of X.

Theorem 1.4.1 (Kolmogorov’s maximal inequality). Let (Xk)1≤k≤n be a finite sequence of

independent random variables with mean zero and finite variance. It then holds that

P

(
max

1≤k≤n

∣∣∣∣∣
k∑
i=1

Xi

∣∣∣∣∣ ≥ ε
)
≤ 1

ε2
V

n∑
k=1

Xk.

Proof. Define Sk =
∑k
i=1Xi, we may then state the desired inequality as

P ( max
1≤k≤n

|Sk| ≥ ε) ≤ ε−2V Sn. (1.13)
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Let T = min{1 ≤ k ≤ n | |Sk| ≥ ε}, with the convention that the minimum of the empty

set is ∞. Colloquially speaking, T is the first time where the sequence (Sk)1≤k≤n takes an

absolute value equal to or greater than ε. Note that T takes its values in {1, . . . , n} ∪ {∞}.
And for each k ≤ n, it holds that (T ≤ k) = ∪ki=1(|Si| ≥ ε), so in particular T is measurable.

Now, (max1≤k≤n |Sk| ≥ ε) = ∪nk=1(|Sk| ≥ ε) = (T ≤ n). Also, whenever T is finite, it holds

that |ST | ≥ ε, so that 1 ≤ ε−2S2
T . Therefore, we obtain

P ( max
1≤k≤n

|Sk| ≥ ε) = P (T ≤ n) = E1(T≤n) ≤ ε−2ES2
T 1(T≤n)

= ε−2ES2
T∧n1(T≤n) ≤ ε−2ES2

T∧n = ε−2E

(
n∑
k=1

Xk1(T≥k)

)2

. (1.14)

Expanding the square, we obtain

E

(
n∑
k=1

Xk1(T≥k)

)2

=

n∑
k=1

EX2
k1(T≥k) + 2

n−1∑
k=1

n∑
i=k+1

EXkXi1(T≥k)1(T≥i)

≤
n∑
k=1

EX2
k + 2

n−1∑
k=1

n∑
i=k+1

EXkXi1(T≥k)1(T≥i). (1.15)

Now, as (T ≥ k) = (T > k − 1) = (T ≤ k − 1)c = ∩k−1
i=1 (|Si| ≥ ε)c for any 2 ≤ k ≤ n,

we find that (T ≥ k) is σ(X1, . . . , Xk−1) measurable. In particular, for 1 ≤ k ≤ n − 1 and

k + 1 ≤ i ≤ n, we obtain that Xk, (T ≥ k) and (T ≥ i) all are σ(X1, . . . , Xi−1) measurable.

As σ(X1, . . . , Xi−1) is independent of σ(Xi), this allows us to conclude

EXkXi1(T≥k)1(T≥i) = E(Xi)EXk1(T≥k)1(T≥i) = 0, (1.16)

since Xi has mean zero. Collecting our conclusions from (1.14), (1.15) and (1.16), we obtain

P (max1≤k≤n |Sk| ≥ ε) ≤ ε−2
∑n
k=1EX

2
k = ε−2

∑n
k=1 V Xk = ε−2V Sn, as desired.

Theorem 1.4.2 (Khinchin-Kolmogorov convergence theorem). Let (Xn) be a sequence of

independent variables with mean zero and finite variances. If it holds that
∑∞
n=1 V Xn is

finite, then
∑∞
n=1Xn converges almost surely and in L2.

Proof. For any sequence (xn) in R, it holds that (xn) is Cauchy if and only if for each m ≥ 1,

there is n ≥ 1 such that whenever k ≥ n+1, it holds that |xk−xn| < 1
m . Put Sn =

∑n
k=1Xk.

We show that Sn is almost surely convergent. We have

P (Sn is convergent) = P (Sn is Cauchy)

= P (∩∞m=1 ∪∞n=1 ∩∞k=n+1(|Sk − Sn| ≤ 1
m ))

= P (∩∞m=1 ∪∞n=1 (supk≥n+1|Sk − Sn| ≤ 1
m )).
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As the intersection of a countable family of almost sure sets again is an almost sure set,

we find that in order to show almost sure convergence of Sn, it suffices to show that for

each m ≥ 1, ∪∞n=1(supk≥n+1 |Sk − Sn| ≤ 1
m ) is an almost sure set. However, we have

P (∪∞n=1(supk≥n+1 |Sk − Sn| ≤ 1
m )) ≥ P (supk≥i+1 |Sk − Si| ≤ 1

m ) for all i ≥ 1, yielding

P (∪∞n=1(supk≥n+1 |Sk − Sn| ≤ 1
m )) ≥ lim infn→∞ P (supk≥n+1 |Sk − Sn| ≤ 1

m ). Combining

our conclusions, we find that in order to show the desired almost sure convergence of Sn, it

suffices to show limn→∞ P (supk≥n+1 |Sk − Sn| ≤ 1
m ) = 1 for all m ≥ 1, which is equivalent

to showing

lim
n→∞

P (supk≥n+1|Sk − Sn| > 1
m ) = 0 (1.17)

for all m ≥ 1. We wish to apply Theorem 1.4.1 to show (1.17). To do so, we first note that

P (supk≥n+1|Sk − Sn| > 1
m ) = P (∪∞k=n+1(maxn+1≤i≤k|Si − Sn| > 1

m ))

= lim
k→∞

P (maxn+1≤i≤k|Si − Sn| > 1
m ), (1.18)

since the sequence (maxn+1≤i≤k |Si − Sn| > 1
m )k≥n+1 is increasing in k. Applying Theorem

1.4.1 to the independent variables Xn+1, . . . , Xk with mean zero, we find, for k ≥ n+ 1,

P (maxn+1≤i≤k|Si − Sn| > 1
m ) = P

 max
n+1≤i≤k

∣∣∣∣∣∣
i∑

j=n+1

Xj

∣∣∣∣∣∣ > 1

m

 ≤ (1/m)−2V

k∑
i=n+1

Xi.

Therefore, recalling (1.18) and using independence, we conclude

P (supk≥n+1|Sk − Sn| > 1
m ) ≤ lim

k→∞
(1/m)−2V

k∑
i=n+1

Xi

= lim
k→∞

(1/m)−2
k∑

i=n+1

V Xi = (1/m)−2
∞∑

i=n+1

V Xi.

As the series
∑∞
n=1 V Xn is assumed convergent, the tail sums converge to zero and we finally

obtain limn→∞ P (supk≥n+1|Sk − Sn| > 1
m ) = 0, which is precisely (1.17). Thus, by our

previous deliberations, we may now conclude that Sn is almost surely convergent. It remains

to prove convergence in L2. Let S∞ be the almost sure limit of Sn, we will show that Sn

also converges in L2 to S∞. By an application of Fatou’s lemma, we get

E(Sn − S∞)2 = E lim inf
k→∞

(Sn − Sk)2

≤ lim inf
k→∞

E(Sn − Sk)2 = lim inf
k→∞

E

(
k∑

i=n+1

Xi

)2

. (1.19)
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Recalling that the sequence (Xn) consists of independent variables with mean zero, we obtain

E

(
k∑

i=n+1

Xi

)2

= E

k∑
i=n+1

k∑
j=n+1

XiXj =

k∑
i=n+1

EX2
i =

k∑
i=n+1

V X2
i . (1.20)

Combining (1.19) and (1.20), we get E(Sn − S∞)2 ≤
∑∞
i=n+1 V X

2
i . As the series is conver-

gent, the tail sums converge to zero, so we conclude limn→∞E(Sn − S∞)2 = 0. This proves

convergence in L2 and so completes the proof.

Theorem 1.4.3 (Kolmogorov’s three-series theorem). Let (Xn) be a sequence of independent

variables. Let ε > 0. Then
∑∞
n=1Xn converges almost surely if the following three series are

convergent:

∞∑
n=1

P (|Xn| > ε),

∞∑
n=1

EXn1(|Xn|≤ε) and

∞∑
n=1

V Xn1(|Xn|≤ε).

Proof. First note that as
∑∞
n=1 P (|Xn| > ε) is finite, we have P (|Xn| > ε i.o.) = 0 by Lemma

1.2.11, which allows us to conclude P (Xn ≤ ε evt.) = P ((Xn > ε i.o.)c) = 1. Thus, almost

surely, the sequences (Xn) and (Xn1(|Xn|≤ε)) are equal from a point onwards. Therefore,∑n
k=1Xk converges almost surely if and only if

∑n
k=1Xn1(|Xn|≤ε) converges almost surely,

so in order to prove the theorem, it suffices to show that
∑n
k=1Xn1(|Xn|≤ε) converges almost

surely. To this end, define Yn = Xn1(|Xn|≤ε) − E(Xn1(|Xn|≤ε)). As the sequence (Xn) is

independent, so is the sequence (Yn). Also, Yn has mean zero and finite variance, and by

our assumptions,
∑∞
n=1 V Yn is finite. Therefore, by Theorem 1.4.2, it holds that

∑n
k=1 Yn

converges almost surely as n tends to infinity. Thus,
∑n
k=1Xn1(|Xn|≤ε)−E(Xn1(|Xn|≤ε)) and∑n

k=1EXk1(|Xk|≤ε) converge almost surely, allowing us to conclude that
∑n
k=1Xn1(|Xn|≤ε)

converges almost surely. This completes the proof.

1.5 The strong law of large numbers

In this section, we prove the strong law of large numbers, a key result in modern probability

theory. Let (Xn) be a sequence of independent, identically distributed integrable variables

with mean µ. Intuitively speaking, we would expect that 1
n

∑n
k=1Xk in some sense converges

to µ. The strong law of large numbers shows that this is indeed the case, and that the

convergence is almost sure. In order to demonstrate the result, we first show two lemmas

which will help us to prove the general statement by proving a simpler statement. Both
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lemmas consider the case of nonnegative variables. Lemma 1.5.1 establishes that in order to

prove 1
n

∑n
k=1Xk

a.s.−→ µ, it suffices to prove 1
n

∑n
k=1Xk1(Xk≤k)

a.s.−→ µ, reducing to the case of

bounded variables. Lemma 1.5.2 establishes that in order to prove 1
n

∑n
k=1Xk1(Xk≤k)

a.s.−→ µ,

it suffices to prove limk→∞
1
nk

∑nk
i=1(Xi1(Xi≤i)−EXi1(Xi≤i)) = 0 for particular subsequences

(nk)k≥1, reducing to a subsequence, and allowing us to focus our attention on bounded

variables with mean zero.

Lemma 1.5.1. Let (Xn) be a sequence of independent, identically distributed variables with

common mean µ. Assume that Xn ≥ 0 for all n ≥ 1. Then 1
n

∑n
k=1Xk converges almost

surely if and only if 1
n

∑n
k=1Xk1(Xk≤k) converges almost surely, and in the affirmative, the

limits are the same.

Proof. Let ν denote the common distribution of the Xn. Applying Tonelli’s theorem, we find

∞∑
n=1

P (Xn 6= Xn1(Xn≤n)) =

∞∑
n=1

P (Xn > n) =

∞∑
n=1

∫
1(x>n) dν(x)

=

∞∑
n=1

∞∑
k=n

∫
1(k<x≤k+1) dν(x) =

∞∑
k=1

k∑
n=1

∫
1(k<x≤k+1) dν(x)

=

∞∑
k=1

∫
k1(k<x≤k+1) dν(x) ≤

∞∑
k=1

∫
x1(k<x≤k+1) dν(x)

≤
∫ ∞

0

xdν(x) = µ. (1.21)

Thus,
∑∞
n=1 P (Xn 6= Xn1(Xn≤n)) is finite, and so Lemma 1.2.11 allows us to conclude that

P (Xn 6= Xn1(Xn≤n) i.o.) = 0, which then implies that P (Xn = Xn1(Xn≤n) evt.) = 1. Hence,

almost surely, Xn and Xn1(Xn≤n) are equal from a point N onwards, where N is stochastic.

For n ≥ N , we therefore have

1

n

n∑
k=1

(Xk −Xk1(Xk≤k)) =
1

n

N∑
k=1

(Xk −Xk1(Xk≤k)),

and by rearrangement, this yields that almost surely, for n ≥ N ,

1

n

n∑
k=1

Xk =
1

n

n∑
k=1

Xk1(Xk≤k) +
1

n

N∑
k=1

(Xk −Xk1(Xk≤k)).

As the last term on the right-hand side tends almost surely to zero, the conclusions of the

lemma follows.

Lemma 1.5.2. Let (Xn) be a sequence of independent, identically distributed variables with

common mean µ. Assume that for all n ≥ 1, Xn ≥ 0. For α > 1, define nk = [αk], with [αk]
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denoting the largest integer which is less than or equal to αk. It if holds for all α > 1 that

lim
k→∞

1

nk

nk∑
i=1

(Xi1(Xi≤i) − EXi1(Xi≤i)) = 0

almost surely, then 1
n

∑n
k=1Xk1(Xk≤k) converges to µ almost surely.

Proof. First note that as α > 1, we have nk = [αk] ≤ [αk+1] = nk+1. Therefore, (nk) is

increasing. Also, as [αk] > αk − 1, nk tends to infinity as k tends to infinity. Define a

sequence (Yn) by putting Yn = Xn1(Xn≤n). Our assumption is then that for all α > 1, it

holds that limk→∞
1
nk

∑nk
i=1 Yi −EYi = 0 almost surely, and our objective is to demonstrate

that limn→∞
1
n

∑n
k=1 Yi = µ almost surely. Let ν be the common distribution of the Xn.

Note that by the dominated convergence theorem,

lim
n→∞

EYn = lim
n→∞

EXn1(Xn≤n) = lim
n→∞

∫ ∞
0

1(x≤n)x dν(x) =

∫ ∞
0

xdν(x) = µ.

As convergence of a sequence implies convergence of the averages, this allows us to conclude

that limn→∞
1
n

∑n
k=1EYk = µ as well. And as convergence of a sequence implies convergence

of any subsequence, we obtain limk→∞
1
nk

∑nk
i=1EYi = µ from this. Therefore, we have

lim
k→∞

1

nk

nk∑
i=1

Yi = lim
k→∞

1

nk

nk∑
i=1

Yi − EYi + lim
k→∞

1

nk

nk∑
i=1

EYi = µ,

almost surely. We will use this to prove that 1
n

∑n
k=1 Yk converges to µ. To do so, first note

that since αn − 1 < [αn] ≤ αn, it holds that

α− α−n =
αn+1 − 1

αn
≤ nk+1

nk
≤ αn+1

αn − 1
=

α

1− α−n
,

from which it follows that limk→∞
nk+1

nk
= α. Now fix m ≥ 1 and define a sequence (k(m))m≥1

by putting k(m) = sup{i ≥ 1 | ni ≤ m}. As the sequence ({i ≥ 1 | ni ≤ m})m≥1 is increasing

in m, k(m) is increasing as well. And as nk(m)+1 > m, we find that k(m) tends to infinity as

m tends to infinity. Finally, nk(m) ≤ m ≤ nk(m)+1, by the properties of the supremum. As

Yi ≥ 0, we thus find that

1

nk(m)+1

nk(m)∑
i=1

Yi ≤
1

m

m∑
i=1

Yi ≤
1

nk(m)

nk(m)+1∑
i=1

Yi.
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We therefore obtain, using that k(m) tends to infinity as m tends to infinity,

1

α
µ = lim inf

m→∞

nk(m)

nk(m)+1

1

nk(m)

nk(m)∑
i=1

Yi = lim inf
m→∞

1

nk(m)+1

nk(m)∑
i=1

Yi

≤ lim inf
m→∞

1

m

m∑
i=1

Yi ≤ lim sup
m→∞

1

m

m∑
i=1

Yi ≤ lim sup
m→∞

1

nk(m)

nk(m)+1∑
i=1

Yi

≤ lim sup
m→∞

nk(m)+1

nk(m)

1

nk(m)+1

nk(m)+1∑
i=1

Yi = αµ.

In conclusion, we have now shown for all α > 1 that

1

α
µ ≤ lim inf

m→∞

1

m

m∑
i=1

Yi ≤ lim sup
m→∞

1

m

m∑
i=1

Yi ≤ αµ.

Letting α tend to one strictly from above, we obtain

lim inf
m→∞

1

m

m∑
i=1

Yi = lim sup
m→∞

1

m

m∑
i=1

Yi = µ,

almost surely, proving that 1
m

∑m
i=1 Yi is almost surely convergent with limit µ. This con-

cludes the proof of the lemma.

Theorem 1.5.3 (The strong law of large numbers). Let (Xn) be a sequence of independent,

identically distributed variables with common mean µ. It then holds that 1
n

∑n
k=1Xk converges

almost surely to µ.

Proof. We first consider the case where Xn ≥ 0 for all n ≥ 1. Combining Lemma 1.5.1 and

Lemma 1.5.2, we find that in order to prove the result, it suffices to show that

lim
k→∞

1

nk

nk∑
i=1

(Yi − EYi) = 0 (1.22)

almost surely, where Yn = Xn1(Xn≤n), nk = [αk] and α > 1. In order to do so, by Lemma

1.2.12, it suffices to show that for any ε > 0,
∑∞
k=1 P (| 1

nk

∑nk
i=1(Yi − EYi)| ≥ ε) is finite.

Using Lemma 1.2.7, we obtain

∞∑
k=1

P

(∣∣∣∣∣ 1

nk

nk∑
i=1

(Yi − EYi)

∣∣∣∣∣ ≥ ε
)
≤ 1

ε2

∞∑
k=1

E

(
1

nk

nk∑
i=1

(Yi − EYi)

)2

=
1

ε2

∞∑
k=1

nk∑
i=1

1

n2
k

V Yi. (1.23)
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Now, as all terms in the above are nonnegative, we may apply Tonelli’s theorem to obtain

∞∑
k=1

nk∑
i=1

1

n2
k

V Yi =

∞∑
k=1

∞∑
i=1

1(i≤nk)
1

n2
k

V Yi

=

∞∑
i=1

∞∑
k=1

1(i≤nk)
1

n2
k

V Yi =

∞∑
i=1

V Yi
∑

k:nk≥i

1

n2
k

. (1.24)

We wish to identify a bound for the inner sum as a function of i. To this end, note that for

x ≥ 2, we have [x] ≥ x− 1 ≥ x
2 , and for 1 ≤ x < 2, [x] = 1 ≥ x

2 as well. Thus, for all x ≥ 1,

we have [x] ≥ x
2 . Let mi = inf{k ≥ 1 | nk ≥ i}, we then have

∑
k:nk≥i

1

n2
k

=
∞∑

k=mi

1

[αk]2
≤

∞∑
k=mi

1

(αk/2)2
= 4

∞∑
k=mi

α−2k =
4α−2mi

1− α−2
,

where we have applied the formula for summing a geometric series. Noting that mi satisfies

that αmi ≥ [αmi ] = nmi ≥ i, we obtain α−2mi = (α−mi)2 ≤ i−2, resulting in the estimate∑
k:nk≥i

1
n2
k
≤ 4(1 − α−2)−1i−2. Combining this with (1.23) and (1.24), we find that in

order to show almost sure convergence of 1
nk

∑nk
i=1(Yi−EYi) to zero, it suffices to show that∑∞

i=1
1
i2V Yi is finite. To this end, let ν denote the common distribution of the Xn. We then

apply Tonelli’s theorem to obtain

∞∑
i=1

1

i2
V Yi ≤

∞∑
i=1

1

i2
EX2

i 1(Xi≤i) =

∞∑
i=1

1

i2

i∑
j=1

EX2
i 1(j−1<Xi≤j)

=

∞∑
i=1

i∑
j=1

1

i2

∫ j

j−1

x2 dν(x) =

∞∑
j=1

∫ j

j−1

x2 dν(x)

∞∑
i=j

1

i2
. (1.25)

Now, for j ≥ 2 it holds that j + 2 ≤ 2j, leading to j ≤ 2(j − 1) and therefore

∞∑
i=j

1

i2
≤
∞∑
i=j

1

i(i− 1)
=

∞∑
i=j

1

i− 1
− 1

i
=

1

j − 1
≤ 2

j
, (1.26)

and the same equality for j = 1 follows as
∑∞
i=1

1
i2 = 1 +

∑∞
i=2

1
i2 ≤ 1 + 1 = 2. Combining

(1.25) and (1.26), we obtain

∞∑
i=1

1

i2
V Yi ≤ 2

∞∑
j=1

1

j

∫ j

j−1

x2 dν(x) ≤ 2

∞∑
j=1

∫ j

j−1

xdν(x) = 2

∫ ∞
0

x dν(x),

which is finite, since the Xi has finite mean. We have now shown that
∑∞
i=1

1
i2V Yi is conver-

gent, and therefore we may now conclude that 1
nk

∑nk
i=1(Yi − EYi) converges to zero almost

surely, proving (1.22). Lemma 1.5.1 and Lemma 1.5.2 now yields that 1
n

∑n
k=1Xk converges

almost surely to µ.
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It remains to extend the result to the case where Xn is not assumed to be nonnegative.

Therefore, we now let (Xn) be any sequence of independent, identically distributed variables

with mean µ. With x+ = max{0, x} and x− = max{0,−x}, Lemma 1.3.7 shows that

the sequences (X+
n ) and (X−n ) each are independent and identically distributed with finite

means
∫
x+ dν(x) and

∫
x− dν(x), and both sequences consist only of nonnegative variables.

Therefore, from what we already have shown, we obtain

lim
n→∞

1

n

n∑
k=1

Xk = lim
n→∞

1

n

n∑
k=1

X+
k − lim

n→∞

1

n

n∑
k=1

X−k =

∫
x+ dν(x)−

∫
x− dν(x) = µ,

as desired.

In fact, the convergence in Theorem 1.5.3 holds not only almost surely, but also in L1. In

Chapter 2, we will obtain this as a consequence of a more general convergence theorem. Before

concluding the chapter, we give an example of a simple statistical application of Theorem

1.5.3.

Example 1.5.4. Consider a measurable space (Ω,F) endowed with a sequence of random

variables (Xn). Assume given a parameter set Θ and a set of probability measures (Pθ)θ∈Θ

such that for the probability space (Ω,F , Pθ), (Xn) consists of independent and identically

distributed variables with second moment. Assume further that the first moment is ξθ and

that the second moment is σ2
θ . Natural estimators of the mean and variance parameter

functions based on n samples are then

ξ̂n =
1

n

n∑
k=1

Xk and σ̂2
n =

1

n

n∑
k=1

(
Xk −

1

n

n∑
i=1

Xi

)2

.

Theorem 1.5.3 allows us to conclude that under Pθ, it holds that ξ̂n
a.s.−→ ξθ, and furthermore,

by two further applications of Theorem 1.5.3, as well as Lemma 1.2.6 and Lemma 1.2.10, we

obtain

σ̂2
n =

1

n

n∑
k=1

X2
k −

2

n
Xk

n∑
i=1

Xi +

(
1

n

n∑
i=1

Xi

)2

=
1

n

n∑
k=1

X2
k −

(
1

n

n∑
i=1

Xi

)2

a.s.−→ σ2
θ .

The strong law of large numbers thus allows us to conclude that the natural estimators ξ̂n

and σ̂2
n converge almost surely to the true mean and variance. ◦
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1.6 Exercises

Exercise 1.1. Let X be a random variable, and let (an) be a sequence of real numbers

converging to zero. Define Xn = anX. Show that Xn converges almost surely to zero. ◦

Exercise 1.2. Give an example of a sequence of random variables (Xn) such that (Xn)

converges in probability but does not converge almost surely to any variable. Give an example

of a sequence of random variables (Xn) such that (Xn) converges in probability but does not

converge in L1 to any variable. ◦

Exercise 1.3. Let (Xn) be a sequence of random variables such that Xn is Poisson dis-

tributed with parameter 1/n. Show that Xn converges in L1 to zero. ◦

Exercise 1.4. Let (Xn) be a sequence of random variables such that Xn is Gamma dis-

tributed with shape parameter n2 and scale parameter 1/n. Show that Xn does not converge

in L1 to any integrable variable. ◦

Exercise 1.5. Consider a probability space (Ω,F , P ) such that Ω is countable and such that

F is the power set of Ω. Let (Xn) be a sequence of random variables (Xn) on (Ω,F , P ), and

let X be another variable. Show that if Xn
P−→ X, then Xn

a.s.−→ X. ◦

Exercise 1.6. Let (Xn) be a sequence of random variables and let X be another variable.

Let (Fn) be a sequence of sets in F . Assume that for all k, Xn1Fk
P−→ X1Fk , and assume

that limk→∞ P (F ck ) = 0. Show that Xn
P−→ X. ◦

Exercise 1.7. Let (Xn) be a sequence of random variables and let X be another variable.

Let (εk)k≥1 be a sequence of nonnegative real numbers converging to zero. Show that Xn

converges in probability to X if and only if limn→∞ P (|Xn −X| ≥ εk) = 0 for all k ≥ 1. ◦

Exercise 1.8. Let (Xn) be an sequence of random variables, and let X be some other

variable. Show that Xn
a.s.−→ X if and only if supk≥n |Xk −X|

P−→ 0. ◦

Exercise 1.9. Let X and Y be two variables, and define

d(X,Y ) = E
|X − Y |

1 + |X − Y |
.

Show that d is a pseudometric on the space of real stochastic variables, in the sense that

d(X,Y ) ≤ d(X,Z) + d(Z, Y ), d(X,Y ) = d(Y,X) and d(X,X) = 0 for all X, Y and Z. Show
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that d(X,Y ) = 0 if and only if X and Y are almost surely equal. Let (Xn) be a sequence

of random variables and let X be some other variable. Show that Xn
P−→ X if and only if

limn→∞ d(Xn, X) = 0. ◦

Exercise 1.10. Let (Xn) be a sequence of random variables. Show that there exists a

sequence of positive constants (cn) such that cnXn
a.s.−→ 0. ◦

Exercise 1.11. Let (Xn) be a sequence of i.i.d. variables with mean zero. Assume that Xn

has fourth moment. Show that for all ε > 0,

∞∑
n=1

P

(∣∣∣∣∣ 1n
n∑
k=1

Xk

∣∣∣∣∣ ≥ ε
)
≤ 4EX4

1

ε4

∞∑
n=1

1

n2
.

Use this to prove the following result: For a sequence (Xn) of i.i.d. variables with fourth

moment and mean µ, it holds that 1
n

∑n
k=1Xk

a.s.−→ µ. ◦

Exercise 1.12. Let (Xn) be a sequence of random variables and let X be some other variable.

Assume that there is p > 1 such that supn≥1E|Xn|p is finite. Show that if Xn
P−→ X, then

E|X|p is finite and Xn
Lq−→ X for 1 ≤ q < p. ◦

Exercise 1.13. Let (Xn) be a sequence of random variables, and let X be some other

variable. Assume that Xn
a.s.−→ X. Show that for all ε > 0, there exists F ∈ F with

P (F c) ≤ ε such that

lim
n→∞

sup
ω∈F
|Xn(ω)−X(ω)| = 0,

corresponding to Xn converging uniformly to X on F . ◦

Exercise 1.14. Let (Xn) be a sequence of random variables. Let X be some other variable.

Let p > 0. Show that if
∑∞
n=1E|Xn −X|p is finite, then Xn

a.s.−→ X. ◦

Exercise 1.15. Let (Xn) be a sequence of random variables, and let X be some other

variable. Assume that almost surely, the sequence (Xn) is increasing. Show that if Xn
P−→ X,

then Xn
a.s.−→ X. ◦

Exercise 1.16. Let (Xn) be a sequence of random variables and let (εn) be a sequence of

nonnegative constants. Show that if
∑∞
n=1 P (|Xn+1 − Xn| ≥ εn) and

∑∞
n=1 εn are finite,

then (Xn) converges almost surely to some random variable. ◦

Exercise 1.17. Let (Un) be a sequence of i.i.d. variables with common distribution being

the uniform distribution on the unit interval. Define Xn = max{U1, . . . , Un}. Show that Xn
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converges to 1 almost surely and in Lp for p ≥ 1. ◦

Exercise 1.18. Let (Xn) be a sequence of random variables. Show that if there exists c > 0

such that
∑∞
n=1 P (Xn > c) is finite, then supn≥1Xn is almost surely finite. ◦

Exercise 1.19. Let (Xn) be a sequence of independent random variables. Show that if

supn≥1Xn is almost surely finite, there exists c > 0 such that
∑∞
n=1 P (Xn > c) is finite. ◦

Exercise 1.20. Let (Xn) be a sequence of i.i.d. random variables with common distribution

being the standard exponential distribution. Calculate P (Xn/ log n > c i.o.) for all c > 0

and use the result to show that lim supn→∞Xn/ log n = 1 almost surely. ◦

Exercise 1.21. Let (Xn) be a sequence of random variables, and let J be the corresponding

tail-σ-algebra. Let B ∈ B. Show that (Xn ∈ B i.o.) and (Xn ∈ B evt.) are in J . ◦

Exercise 1.22. Let (Xn) be a sequence of random variables, and let J be the correspond-

ing tail-σ-algebra. Let B ∈ B and let (an) be a sequence of real numbers. Show that if

limn→∞ an = 0, then (limn→∞
∑n
k=1 an−k+1Xk ∈ B) is in J . ◦

Exercise 1.23. Let (Xn) be a sequence of independent random variables concentrated on

{0, 1} with P (Xn = 1) = pn. Show that Xn
P−→ 0 if and only if limn→∞ pn = 0, and show

that Xn
a.s.−→ 0 if and only if

∑∞
n=1 pn is finite. ◦

Exercise 1.24. Let (Xn) be a sequence of nonnegative random variables. Show that if∑∞
n=1EXn is finite, then

∑n
k=1Xk is almost surely convergent. ◦

Exercise 1.25. Let (Xn) be an i.i.d. sequence of independent random variables such that

P (Xn = 1) and P (Xn = −1) both are equal to 1
2 . Let (an) be a sequence of real num-

bers. Show that the sequence
∑n
k=1 akXk either is almost surely divergent or almost surely

convergent. Show that the sequence is almost surely convergent if
∑∞
n=1 a

2
n is finite. ◦

Exercise 1.26. Give an example of a sequence (Xn) of independent variables with first

moment such that
∑n
k=1Xk converges almost surely while

∑n
k=1EXk diverges. ◦

Exercise 1.27. Let (Xn) be a sequence of independent random variables with EXn = 0.

Assume that
∑∞
n=1E(X2

n1(|Xn|≤1) + |Xn|1(|Xn|>1)) is finite. Show that
∑n
k=1Xk is almost

surely convergent. ◦
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Exercise 1.28. Let (Xn) be an sequence of independent and identically distributed random

variables. Show that E|X1| is finite if and only if P (|Xn| > n i.o.) = 0. ◦

Exercise 1.29. Let (Xn) be an sequence of independent and identically distributed random

variables. Assume that there is c such that 1
n

∑n
k=1Xk

a.s.−→ c. Show that E|X1| is finite and

that EX1 = c. ◦
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Chapter 2

Ergodicity and stationarity

In Section 1.5, we proved the strong law of large numbers, which shows that for a sequence

(Xn) of integrable, independent and identically distributed variables, the empirical means

converge almost surely to the true mean. A reasonable question is whether such a result may

be extended to more general cases. Consider a sequence (Xn) where each Xn has the same

distribution ν with mean µ. If the dependence between the variables is sufficiently weak, we

may hope that the empirical means still converge to the true mean.

One fruitful case of sufficiently weak dependence turns out to be embedded in the notion

of a stationary stochastic process. The notion of stationarity is connected with the notion

of measure-preserving mappings. Our plan for this chapter is as follows. In Section 2.1, we

investigate measure-preserving mappings, in particular proving the ergodic theorem, which

is a type of law of large numbers. Section 2.2 investigates sufficient criteria for the ergodic

theorem to hold. Finally, in Section 2.3, we apply our results to stationary processes and

prove versions of the law of large numbers for such processes.

2.1 Measure preservation, invariance and ergodicity

As in the previous chapter, we work in the context of a probability space (Ω,F , P ). Our

main interest of this section will be a particular type of measurable mapping T : Ω → Ω.

Recall that for such a mapping T , the image measure T (P ) is the measure on F defined by
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that for any F ∈ F , T (P )(F ) = P (T−1(F )).

Definition 2.1.1. Let T : Ω→ Ω be measurable. We say that T is P -measure preserving, or

measure preserving for P , or simply measure preserving, if the image measure T (P ) is equal

to P .

Another way to state Definition 2.1.1 is thus that T is measure preserving precisely when

P (T−1(F )) = P (F ) for all F ∈ F .

Definition 2.1.2. Let T : Ω → Ω be measurable. The T -invariant σ-algebra, or simply the

invariant σ-algebra, is defined by IT = {F ∈ F | T−1(F ) = F}.

As the operation of taking the preimage T−1(F ) is stable under complements and countable

unions, the set family IT in Definition 2.1.2 is in fact a σ-algebra.

Definition 2.1.3. Let T : Ω→ Ω be measurable and measure preserving. The mapping T is

said to be P -ergodic, or to be ergodic for P , or simply ergodic, if P (F ) is either zero or one

for all F ∈ IT .

We have now introduced three concepts: measure preservation of a mapping T , the invariant

σ-algebra for a mapping T and ergodicity for a mapping T . These will be the main objects

of study for this section. Before proceeding, we introduce a final auxiliary concept. Recall

that ◦ denotes function composition, in the sense that if T : Ω → Ω and X : Ω → R, X ◦ T
denotes the mapping from Ω to R defined by (X ◦ T )(ω) = X(T (ω)).

Definition 2.1.4. Let T : Ω→ Ω be measurable, and let X be a random variable. X is said

to be T -invariant, or simply invariant, if X ◦ T = X.

We are now ready to begin preparations for the main result of this section, the ergodic

theorem. Note that for T : Ω → Ω, it is sensible to consider T ◦ T , denoted T 2, which is

defined by (T ◦ T )(ω) = T (T (ω)), and more generally, Tn for some n ≥ 1. In the following,

T denotes some measurable mapping from Ω to Ω. The ergodic theorem states that if T is

measure preserving and ergodic, it holds for any variable X with p’th moment, p ≥ 1, that

the average 1
n

∑n
k=1X ◦ T k−1 converges almost surely and in Lp to the mean EX. In order

to show the result, we first need a few lemmas.

Lemma 2.1.5. Let X be a random variable. It holds that X is invariant if and only if X is

IT measurable.
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Proof. First assume that X is invariant, and consider A ∈ B. We need to prove that (X ∈ A)

is in IT , which is equivalent to showing T−1(X ∈ A) = (X ∈ A). To obtain this, we simply

note that as X ◦ T = X,

T−1(X ∈ A) = {ω ∈ Ω | T (ω) ∈ (X ∈ A)} = {ω ∈ Ω | X(T (ω)) ∈ A}

= (X ◦ T ∈ A) = (X ∈ A).

Thus, X is IT measurable. Next, assume that X is IT measurable, we wish to demonstrate

that X is invariant. Fix some x ∈ R. As {x} ∈ B, we have (X = x) ∈ IT , yielding

(X = x) = T−1(X = x) = (X ◦ T = x). Next, fix ω ∈ Ω. We wish to show that

X(ω) = (X ◦ T )(ω). From what we just proved, it holds that X(T (ω)) = x if and only if

X(ω) = x. In particular, X(T (ω)) = X(ω) if and only if X(ω) = X(ω), and the latter is

trivially true. Thus, (X ◦ T )(ω) = X(ω), so X ◦ T = X. Hence, X is invariant.

Lemma 2.1.6. Let T be P -measure preserving. Let X be an integrable random variable.

Define Sn =
∑n
k=1X ◦ T k−1. It then holds that EX1(supn≥1

1
nSn>0) ≥ 0.

Proof. Fix n and define Mn = max{0, S1, . . . , Sn}. Note that supn≥1
1
nSn > 0 if and only if

there exists n such that 1
nSn > 0, which is the case if and only if there exists n such that

Mn > 0. As the sequence of sets ((Mn > 0))n≥1 is increasing, the dominated convergence

theorem then shows that

EX1(supn≥1
1
nSn>0) = EX1∪∞n=1(Mn>0) = E lim

n→∞
X1(Mn>0) = lim

n→∞
EX1(Mn>0),

and so it suffices to prove that EX1(Mn>0) ≥ 0 for each n. To do so, fix n. Note that as T

is measure preserving, so is Tn for all n. As Mn is nonnegative, we then have

0 ≤ EMn ≤ E
n∑
i=1

|Si| ≤ E
n∑
i=1

i∑
k=1

|X| ◦ T k−1 =

n∑
i=1

i∑
k=1

E|X| = n(n+ 1)

2
E|X|,

which shows that Mn is integrable. As E(Mn ◦ T )1(Mn>0) ≤ E(Mn ◦ T ) = EMn by the

measure preservation property of T , (Mn ◦ T )1(Mn>0) is also integrable, and we have

EX1(Mn>0) = E(X +Mn ◦ T )1(Mn>0) − E(Mn ◦ T )1(Mn>0)

≥ E(X +Mn ◦ T )1(Mn>0) − EMn

= E(X +Mn ◦ T )1(Mn>0) − EMn1(Mn>0).

Therefore, it suffices to show that (X +Mn ◦ T )1(Mn>0) ≥ Mn1(Mn>0), To do so, note that

for 1 ≤ k ≤ n− 1, it holds that X +Mn ◦ T ≥ X + Sk ◦ T = X +
∑k
i=1X ◦ T i = Sk+1, and

also X+Mn ◦T ≥ X = S1. Therefore, X+Mn ◦T ≥ max{S1, . . . , Sn}. From this, it follows

that (X +Mn ◦ T )1(Mn>0) ≥ max{S1, . . . , Sn}1(Mn>0) = Mn1(Mn>0), as desired.
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Theorem 2.1.7 (Birkhoff-Khinchin ergodic theorem). Let p ≥ 1, let X be a variable with

p’th moment and let T be a mapping which is measure preserving and ergodic. It then holds

that limn→∞
1
n

∑n
k=1X ◦ T k−1 = EX almost surely and in Lp.

Proof. We first consider the case where X has mean zero. Define Sn =
∑n
k=1X ◦ T k−1. We

need to show that limn→∞
1
nSn = 0 almost surely and in Lp. Put Y = lim supn→∞

1
nSn, we

will show that almost surely, Y ≤ 0. If we can obtain this, a symmetry argument will then

allow us to obtain the desired conclusion. In order to prove that Y ≤ 0 almost surely, we

first take ε > 0 and show that P (Y > ε) = 0. To this end, we begin by noting that

Y ◦ T = lim sup
n→∞

1

n
(Sn ◦ T ) = lim sup

n→∞

1

n

n∑
k=1

X ◦ T k = lim sup
n→∞

1

n
(Sn+1 −X) = Y,

so Y is T -invariant. Therefore, by Lemma 2.1.5, (Y > ε) is in IT . As T is ergodic, it therefore

holds that P (Y > ε) either is zero or one, our objective is to show that the probability in fact

is zero. We will obtain this by applying Lemma 2.1.6 to a suitably chosen random variable.

Define X ′ : Ω→ R by X ′ = (X − ε)1(Y >ε) and put S′n =
∑n
k=1X

′ ◦T k−1, we will eventually

apply Lemma 2.1.6 to X ′. First note that

S′n =

n∑
k=1

X ′ ◦ T k−1 =

n∑
k=1

(X − ε)1(Y >ε) ◦ T k−1

=

n∑
k=1

X1(Y >ε) ◦ T k−1 − ε
n∑
k=1

1(Y >ε) ◦ T k−1

= 1(Y >ε)

(
n∑
k=1

X ◦ T k−1 − nε

)
= 1(Y >ε)(Sn − nε),

allowing us to conclude

(Y > ε) = (Y > ε) ∩ (supn≥1
1
nSn > ε) = (Y > ε) ∩ ∪∞n=1( 1

nSn > ε)

= ∪∞n=1(Y > ε) ∩ (Sn − nε > 0) = ∪∞n=1(S′n > 0)

= ∪∞n=1( 1
nS
′
n > 0) = (supn≥1

1
nS
′
n > 0). (2.1)

This relates the event (Y > ε) to the sequence (S′n). Applying Lemma 2.1.6 and recalling

(2.1), we obtain E1(Y >ε)X
′ ≥ 0, which implies

εP (Y > ε) ≤ E1(Y >ε)X. (2.2)

Finally, recall that by ergodicity of T , P (Y > ε) is either zero or one. If P (Y > ε) is one,

(2.2) yields ε ≤ 0, a contradiction. Therefore, we must have that P (Y > ε) is zero. We now

use this to complete the proof of almost sure convergence. As P (Y > ε) is zero for all ε > 0,



2.1 Measure preservation, invariance and ergodicity 39

we conclude that P (Y > 0) = P (∪∞n=1(Y > 1
n )) = 0, so lim supn→∞

1
nSn = Y ≤ 0 almost

surely. Next note that

− lim inf
n→∞

1

n
Sn = − lim inf

n→∞

1

n

n∑
k=1

X ◦ T k−1 = lim sup
n→∞

1

n

n∑
k=1

(−X) ◦ T k−1,

so applying the same result with −X instead of X, we also obtain − lim infn→∞
1
nSn ≤ 0

almost surely. All in all, this shows that 0 ≤ lim infn→∞
1
nSn ≤ lim supn→∞

1
nSn ≤ 0

almost surely, so limn→∞
1
nSn = 0 almost surely, as desired. Finally, considering the case

where EX is nonzero, we may use our previous result with the variable X − EX to obtain

limn→∞
1
n

∑n
k=1X ◦T k−1 = limn→∞

1
n

∑n
k=1(X −EX) ◦T k−1 +EX = EX, completing the

proof of almost sure convergence in the general case.

It remains to show convergence in Lp, meaning that we wish to prove the convergence of

E|EX− 1
n

∑n
k=1X ◦T k−1|p to zero as n tends to infinity. With ‖ · ‖p denoting the seminorm

on Lp(Ω,F , P ) given by ‖X‖p = (EXp)1/p, we will show that ‖EX − 1
nSn‖p tends to zero.

To this end, we fix m ≥ 1 and define X ′ = X1(|X|≤m) and S′n =
∑n
k=1X

′ ◦ T k−1. By the

triangle inequality, we obtain

‖EX − 1
nSn‖p ≤ ‖EX − EX

′‖p + ‖EX ′ − 1
nS
′
n‖p + ‖ 1

nS
′
n − 1

nSn‖p.

We consider the each of the three terms on the right-hand side. For the first term, it holds

that ‖EX − EX ′‖p = |EX − EX ′| = |EX1(|X|>m)| ≤ E|X|1(|X|>m). As for the sec-

ond term, the results already proven show that 1
nS
′
n converges almost surely to EX ′. As

|S′n| = | 1n
∑n
k=1X

′ ◦ T k−1| ≤ m, the dominated convergence theorem allows us to con-

clude limn→∞E|X ′ − 1
nS
′
n|p = E limn→∞ |X ′ − 1

nS
′
n|p = 0, which implies that we have

limn→∞ ‖EX ′ − 1
nSn‖p = 0. Finally, we may apply the triangle inequality and the measure

preservation property of T to obtain

‖ 1
nS
′
n − 1

nSn‖p =

∥∥∥∥∥ 1

n

n∑
k=1

X ′ ◦ T k−1 − 1

n

n∑
k=1

X ◦ T k−1

∥∥∥∥∥
p

≤ 1

n

n∑
k=1

‖X ◦ T k−1 −X ′ ◦ T k−1‖p

=
1

n

n∑
k=1

(∫
|(X −X ′) ◦ T k−1|p dP

)1/p

=
1

n

n∑
k=1

(∫
|(X −X ′)|p dP

)1/p

= ‖X −X ′‖p = (E|X|p1(|X|>m))
1/p.

Combining these observations, we obtain

lim sup
n→∞

‖EX − 1
nSn‖p ≤ lim sup

n→∞
‖EX − EX ′‖p + ‖EX ′ − 1

nS
′
n‖p + ‖ 1

nS
′
n − 1

nSn‖p

≤ E|X|1(|X|>m) + (E|X|p1(|X|>m))
1/p (2.3)
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By the dominated convergence theorem, both of these terms tend to zero as m tends to

infinity. As the bound in (2.3) holds for all m, we conclude lim supn→∞ ‖EX − 1
nSn‖p = 0,

which yields convergence in Lp.

Theorem 2.1.7 shows that for any variable X with p’th moment and any measure preserving

and ergodic transformation T , a version of the strong law of large numbers holds for the

process (X ◦ T k−1)k≥1 in the sense that 1
n

∑n
k=1X ◦ T k−1 converges almosts surely and in

Lp to EX. Note that in this case, the measure preservation property of T shows that X and

X ◦ T k−1 have the same distribution for all k ≥ 1. Therefore, Theorem 2.1.7 is a type of law

of large numbers for processes of identical, but not necessarily independent variables.

2.2 Criteria for measure preservation and ergodicity

To apply Theorem 2.1.7, we need to be able to show measure preservation and ergodicity. In

this section, we prove some sufficient criteria which will help make this possible in practical

cases. Throughout this section, T denotes a measurable mapping from Ω to Ω.

First, we consider a simple lemma showing that in order to prove that T is measure preserv-

ing, it suffices to check the claim only for a generating family which is stable under finite

intersections.

Lemma 2.2.1. Let H be a generating family for F which is stable under finite intersections.

If P (T−1(F )) = P (F ) for all F ∈ H, then T is P -measure preserving.

Proof. As both P and T (P ) are probability measures, this follows from the uniqueness the-

orem for probability measures.

Next, we consider the somewhat more involved problem of showing that a measure preserving

mapping is ergodic. A simple first result is the following.

Theorem 2.2.2. Let T be measure preserving. Then T is ergodic if and only if every

invariant random variable is constant almost surely.

Proof. First assume that T is ergodic. Let X be an invariant random variable. By Lemma

2.1.5, X is IT measurable, so in particular (X ≤ x) ∈ IT for all x ∈ R. As T is ergodic, all
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events in IT have probability zero or one, so we find that P (X ≤ x) is zero or one for all

x ∈ R.

We claim that this implies that X is constant almost surely. To this end, we define c by

putting c = sup{x ∈ R | P (X ≤ x) = 0}. As we cannot have P (X ≤ x) = 1 for all x ∈ R,

{x ∈ R | P (X ≤ x) = 0} is nonempty, so c is not minus infinity. And as we cannot have

P (X ≤ x) = 0 for all x ∈ R, {x ∈ R | P (X ≤ x) = 0} is not all of R. As x 7→ P (X ≤ x)

is increasing, this implies that {x ∈ R | P (X ≤ x) = 0} is bounded from above, so c is not

infinity. Thus, c is finite.

Now, by definition, c is the least upper bound of the set {x ∈ R | P (X ≤ x) = 0}. Therefore,

any number strictly smaller than c is not an upper bound. From this we conclude that for

n ≥ 1, there is cn with c− 1
n < cn such that P (X ≤ cn) = 0. Therefore, we must also have

P (X ≤ c − 1
n ) ≤ P (X ≤ cn) = 0, and so P (X < c) = limn→∞ P (X ≤ c − 1

n ) = 0. On the

other hand, as c is an upper bound for the set {x ∈ R | P (X ≤ x) = 0}, it holds for any

ε > 0 that P (X ≤ c + ε) 6= 0, yielding that for all ε > 0, P (X ≤ c + ε) = 1. Therefore,

P (X ≤ c) = limn→∞ P (X ≤ c + 1
n ) = 1. All in all, we conclude P (X = c) = 1, so X is

constant almost surely. This proves the first implication of the theorem.

Next, assume that every invariant random variable is constant almost surely, we wish to

prove that T is ergodic. Let F ∈ IT , we have to show that P (F ) is either zero or one. Note

that 1F is IT measurable and so invariant by Lemma 2.1.5. Therefore, by our assumption,

1F is almost surely constant, and this implies that P (F ) is either zero or one. This proves

the other implication and so concludes the proof.

Theorem 2.2.2 is occasionally useful if the T -invariant random variables are easy to charac-

terize. The following theorem shows a different avenue for proving ergodicity based on a sort

of asymptotic independence criterion.

Theorem 2.2.3. Let T be P -measure preserving. T is ergodic if and only if it holds for all

F,G ∈ F that limn→∞
1
n

∑n
k=1 P (F ∩ T−(k−1)(G)) = P (F )P (G).

Proof. First assume that T is ergodic. Fix F,G ∈ F . Applying Theorem 2.1.7 with the inte-

grable variable 1G, and noting that 1G ◦T k−1 = 1T−(k−1)(G), we find that 1
n

∑n
k=1 1T−(k−1)(G)

converges almost surely to P (G). Therefore, 1
n

∑n
k=1 1F 1T−(k−1)(G) converges almost surely

to 1FP (G). As this sequence of variables is bounded, the dominated convergence theorem
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yields

lim
n→∞

1

n

n∑
k=1

P (F ∩ T−(k−1)(G)) = lim
n→∞

E
1

n

n∑
k=1

1F 1T−(k−1)(G)

= E lim
n→∞

1

n

n∑
k=1

1F 1T−(k−1)(G)

= E1FP (G) = P (F )P (G),

proving the first implication. Next, we consider the other implication. Assume that for all

F,G ∈ F , limn→∞
1
n

∑n
k=1 P (F ∩ T−(k−1)(G)) = P (F )P (G). We wish to show that T is

ergodic. Let F ∈ IT , we then obtain

P (F ) = lim
n→∞

1

n

n∑
k=1

P (F ∩ T−(k−1)(F )) = P (F )2,

so that P (F ) is either zero or one, and thus T is ergodic.

Definition 2.2.4. If limn→∞ P (F ∩ T−n(G)) = P (F )P (G) for all F,G ∈ F , we say that

T is mixing. If limn→∞
1
n

∑n
k=1 |P (F ∩ T−(k−1)(G))− P (F )P (G)| = 0 for all F,G ∈ F , we

say that T is weakly mixing.

Theorem 2.2.5. Let T be measure preserving. If T is mixing, then T is weakly mixing. If

T is weakly mixing, then T is ergodic.

Proof. First assume that T is mixing. Let F,G ∈ F . As T is mixing, we find that

limn→∞ P (F ∩ T−n(G)) = P (F )P (G), and so limn→∞ |P (F ∩ T−n(G)) − P (F )P (G)| = 0.

As convergence of a sequence implies convergence of the averages, this implies that we have

limn→∞
1
n

∑n
k=1 |P (F ∩ T−(k−1)(G)) − P (F )P (G)| = 0, so T is weakly mixing. Next, as-

sume that T is weakly mixing, we wish to show that T is ergodic. Let F,G ∈ F . As

limn→∞
1
n

∑n
k=1 |P (F ∩ T−(k−1)(G))− P (F )P (G)| = 0, we also obtain

lim sup
n→∞

∣∣∣∣∣ 1n
n∑
k=1

P (F ∩ T−(k−1)(G))− P (F )P (G)

∣∣∣∣∣
≤ lim sup

n→∞

1

n

n∑
k=1

|P (F ∩ T−(k−1)(G))− P (F )P (G)|,

which is zero, so limn→∞
1
n

∑n
k=1 P (F ∩T−(k−1)(G)) = P (F )P (G), and Theorem 2.2.3 shows

that T is ergodic. This proves the theorem.
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Lemma 2.2.6. Let T be measure preserving, and let H be a generating family for F which

is stable under finite intersections. Assume that one of the following holds:

(1). limn→∞
1
n

∑n
k=1 P (F ∩ T−(k−1)(G)) = P (F )P (G) for all F,G ∈ H.

(2). limn→∞
1
n

∑n
k=1 |P (F ∩ T−(k−1)(G))− P (F )P (G)| = 0 for all F,G ∈ H.

(3). limn→∞ P (F ∩ T−n(G)) = P (F )P (G) for all F,G ∈ H.

Then, the corresponding statement also holds for all F,G ∈ F .

Proof. The proofs for the three cases are similar, so we only argue that the third claim holds.

Fix F ∈ H and define

D =
{
G ∈ F

∣∣∣ lim
n→∞

P (F ∩ T−n(G)) = P (F )P (G)
}
.

We wish to argue that D is a Dynkin class. To this end, note that since T−1(Ω) = Ω, it holds

that Ω ∈ D. Take A,B ∈ D with A ⊆ B. We then also have T−n(A) ⊆ T−n(B), yielding

lim
n→∞

P (F ∩ T−n(B \A)) = lim
n→∞

P (F ∩ (T−n(B) \ T−n(A)))

= lim
n→∞

P (F ∩ T−n(B))− lim
n→∞

P (F ∩ T−n(A))

= P (F )P (B)− P (F )P (A) = P (F )P (B \A),

and so B \A ∈ D. Finally, let (An) be an increasing sequence in D and let A = ∪∞n=1An. As

limm→∞ P (Am) = P (A), we obtain limm→∞ P (A \ Am) = 0. Pick ε > 0 and let m be such

that for i ≥ m, P (A \ Ai) ≤ ε. Note that T−n(Ai) ⊆ T−n(A). As T is measure preserving,

we obtain for all n ≥ 1 and i ≥ m that

0 ≤ P (F ∩ T−n(A))− P (F ∩ T−n(Ai))

= P (F ∩ (T−n(A) \ T−n(Ai))) = P (F ∩ (T−n(A \Ai)))

≤ P (T−n(A \Ai)) = P (A \Ai) ≤ ε.

From this we find that for all n ≥ 1 and i ≥ m,

P (F ∩ T−n(Ai))− ε ≤ P (F ∩ T−n(A)) ≤ P (F ∩ T−n(Ai)) + ε,

and therefore, for i ≥ m,

P (F )P (Ai)− ε = lim
n→∞

P (F ∩ T−n(Ai))− ε ≤ lim inf
n→∞

P (F ∩ T−n(A))

≤ lim sup
n→∞

P (F ∩ T−n(A)) ≤ lim
n→∞

P (F ∩ T−n(Ai)) + ε

= P (F )P (Ai) + ε. (2.4)
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As (2.4) holds for all i ≥ m, we in particular conclude that

P (F )P (A)− ε = lim
i→∞

P (F )P (Ai)− ε ≤ lim inf
n→∞

P (F ∩ T−n(A))

≤ lim sup
n→∞

P (F ∩ T−n(A)) = lim
i→∞

P (F )P (Ai) + ε

= P (F )P (A) + ε. (2.5)

And as ε > 0 is arbitrary in (2.5), we conclude limn→∞ P (F ∩T−n(A)) = P (F )P (A), so that

A ∈ D. Thus, D is a Dynkin class. By assumption, D contains H, and therefore, by Dynkin’s

lemma, F = σ(H) ⊆ D. This proves limn→∞ P (F ∩ T−n(G)) = P (F )P (G) when F ∈ H and

G ∈ F . Next, we extend this to all F ∈ F . To do so, fix G ∈ F and define

E =
{
F ∈ F

∣∣∣ lim
n→∞

P (F ∩ T−n(G)) = P (F )P (G)
}
.

Similarly to our earlier arguments, we find that E is a Dynkin class. As E contains H,

Dynkin’s lemma yields F = σ(H) ⊆ E. This shows limn→∞ P (F ∩ T−n(G)) = P (F )P (G)

when F,G ∈ F and so proves the first claim. By similar arguments, we obtain the two

remaining claims.

Combining Theorem 2.2.5 and Lemma 2.2.6, we find that in order to show ergodicity of T ,

it suffices to show that T is mixing or weakly mixing for events in a generating system for F
which is stable under finite intersections. This is in several cases a viable method for proving

ergodicity.

2.3 Stationary processes and the law of large numbers

We will now apply the results from Section 2.1 and Section 2.2 to obtain laws of large numbers

for the class of processes known as stationary processes. In order to do so, we first need to

investigate in what sense we can consider the simultaneous distribution of an entire process

(Xn). Once we have done so, we will be able to obtain our main results by applying the

ergodic theorem to this simultaneous distribution.

The results require some formalism. By Rn for n ≥ 1, we denote the n-fold product of R, the

set of n-tuples with elements from R. Analogously, we define R∞ as the set of all sequences

of real numbers, in the sense that R∞ = {(xn)n≥1 | xn ∈ R for all n ≥ 1}. Recall that

the Borel σ-algebra on Rn, defined as the smallest σ-algebra containing all open sets, also

is given as the smallest σ-algebra making all coordinate projections measurable. In analogy
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with this, we make the following definition of the Borel σ-algebra on R∞. By X̂n : R∞ → R,

we denote the n’th coordinate projection of R∞, X̂n(x) = xn, where x = (xn)n≥1.

Definition 2.3.1. The infinite-dimensional Borel σ-algebra, B∞, is the smallest σ-algebra

making X̂n measurable for all n ≥ 1.

In detail, Definition 2.3.1 states the following. Let A be the family of all σ-algebras G on R∞

such that for all n ≥ 1, X̂n is G-B measurable. B∞ is then the smallest σ-algebra in the set

A of σ-algebras, explicitly constructed as B∞ = ∩G∈AG.

In the following lemmas, we prove some basic results on the measure space (R∞,B∞). In

Lemma 2.3.2, a generating family which is stable under finite intersections is identified, and

in Lemma 2.3.3, the mappings which are measurable with respect to B∞ are identified. In

Lemma 2.3.4, we show how we can apply B∞ to describe and work with stochastic processes.

Lemma 2.3.2. Let K be a generating family for B which is stable under finite intersec-

tions. Define H as the family of sets {x ∈ R∞ | x1 ∈ B1, . . . , xn ∈ Bn}, where n ≥ 1 and

B1 ∈ K, . . . , Bn ∈ K. H is then a generating family for B∞ which is stable under finite

intersections.

Proof. It is immediate that H is stable under finite intersections. Note that if F is a set such

that F = {x ∈ R∞ | x1 ∈ B1, . . . , xn ∈ Bn} for some n ≥ 1 and B1 ∈ K, . . . , Bn ∈ K, we also

have

F = {x ∈ R∞ | x1 ∈ B1, . . . , xn ∈ Bn}

= {x ∈ R∞ | X̂1(x) ∈ B1, . . . , X̂n(x) ∈ Bn}

= {x ∈ R∞ | x ∈ X̂−1
1 (B1), . . . , x ∈ X̂−1

n (Bn)}

= ∩nk=1X̂
−1
n (Bk).

Therefore, H ⊆ B∞, and so σ(H) ⊆ B∞. It remains to argue that B∞ ⊆ σ(H). To this

end, fix n ≥ 1 and note that H contains X̂−1
n (B) for all B ∈ K. Therefore, σ(H) contains

X̂−1
n (B) for all B ∈ K. As {B ∈ B | X̂−1

n (B) ∈ σ(H)} is a σ-algebra which contains K, we

conclude that it also contains B. Thus, σ(H) contains X̂−1
n (B) for all B ∈ B, and so σ(H)

is a σ-algebra on R∞ making all coordinate projections measurable. As B∞ is the smallest

such σ-algebra, we conclude B∞ ⊆ σ(H). All in all, we obtain B∞ = σ(H), as desired.

Lemma 2.3.3. Let X : Ω → R∞. X is F-B∞ measurable if and only if X̂n ◦ X is F-B
measurable for all n ≥ 1.
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Proof. First assume that X is F-B∞ measurable. As X̂n is B∞-B measurable by definition,

we find that X̂n ◦X is F-B measurable. Conversely, assume that X̂n ◦X is F-B measurable

for all n ≥ 1, we wish to show that X is F-B∞ measurable. To this end, it suffices to

show that X−1(A) ∈ F for all A in a generating family for B∞. Define H by putting

H = {X̂−1
n (B) | n ≥ 1, B ∈ B}, H is then a generating family for B∞. For any n ≥ 1 and

B ∈ B, we have X−1(X̂−1
n (B)) = (X̂n ◦X)−1(B) ∈ F by our assumptions. Thus, X is F-B∞

measurable, as was to be proven.

Lemma 2.3.4. Let (Xn) be a stochastic process. Defining a mapping X : Ω→ R∞ by putting

X(ω) = (Xn(ω))n≥1, it holds that X is F-B∞ measurable.

Proof. As X̂n ◦X = Xn and Xn is F-B measurable by assumption, the result follows from

Lemma 2.3.3.

Letting (Xn)n≥1 be a stochastic process, Lemma 2.3.4 shows that with X : Ω→ R∞ defined

by X(ω) = (Xn(ω))n≥1, X is F-B∞ measurable, and therefore, the image measure X(P )

is well-defined. This motivates the following definition of the distribution of a stochastic

process.

Definition 2.3.5. Letting (Xn)n≥1 be a stochastic process. The distribution of (Xn)n≥1 is

the probability measure X(P ) on B∞.

Utilizing the above definitions and results, we can now state our plan for the main results

to be shown later in this section. Recall that one of our goals for this section is to prove an

extension of the law of large numbers. The method we will apply is the following. Consider

a stochastic process (Xn). The introduction of the infinite-dimensional Borel-σ-algebra and

the measurability result in Lemma 2.3.4 have allowed us in Definition 2.3.5 to introduce the

concept of the distribution of a process. In particular, we have at our disposal a probability

space (R∞,B∞, X(P )). If we can identify a suitable transformation T : R∞ → R∞ such that

T is measure preserving and ergodic for X(P ), we will be able to apply Theorem 2.1.7 to

obtain a type of law of large numbers with X(P ) almost sure convergence and convergence in

Lp(R∞,B∞, X(P )). If we afterwards succeed in transfering the results from the probability

space (R∞,B∞, X(P )) back to the probability space (Ω,F , P ), we will have achieved our

goal.

Lemma 2.3.6. Let (Xn) be a stochastic process. Define X : Ω→ R∞ by X(ω) = (Xn(ω))n≥1.

The image measure X(P ) is the unique probability measure on B∞ such that for all n ≥ 1
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and all B1 ∈ B, . . . , Bn ∈ B, it holds that

P (X1 ∈ B1, . . . , Xn ∈ Bn) = X(P )(∩nk=1X̂
−1
k (Bk)). (2.6)

Proof. Uniqueness follows from Lemma 2.3.2 and the uniqueness theorem for probability

measures. It remains to show that X(P ) satisfies (2.6). To this end, we note that

X(P )(∩nk=1X̂
−1
k (Bk)) = P (X−1(∩nk=1X̂

−1
k (Bk))) = P (∩nk=1X

−1(X̂−1
k (Bk)))

= P (∩nk=1(X̂k ◦X)−1(Bk))) = P (∩nk=1(Xk ∈ Bk))

= P (X1 ∈ B1, . . . , Xn ∈ Bn).

This completes the proof.

Lemma 2.3.6 may appear rather abstract at a first glance. A clearer statement might be

obtained by noting that ∩nk=1X̂
−1
k (Bk) = B1 × · · · ×Bk × R∞. The lemma then states that

the distribution X(P ) is the only probability measure on B∞ such that the X(P )-measure

of a “finite-dimensional rectangle” of the form B1 × · · · × Bk × R∞ has the same measure

as P (X1 ∈ B1, . . . , Xn ∈ Bn), a property reminiscent of the characterizing feature of the

distribution of an ordinary finite-dimensional random variable.

Using the above, we may now formalize the notion of a stationary process. First, we define

θ : R∞ → R∞ by putting θ((xn)n≥1) = (xn+1)n≥1. We refer to θ as the shift operator.

Note that by Lemma 2.3.3, θ is B∞-B∞ measurable. The mapping θ will play the role of the

measure preserving and ergodic transformation in our later use of Theorem 2.1.7.

Definition 2.3.7. Let (Xn) be a stochastic process. We say that (Xn) is a stationary process,

or simply stationary, if it holds that θ is measure preserving for the distribution of (Xn). We

say that a stationary process is ergodic if θ is ergodic for the distribution of (Xn).

According to Definition 2.3.7, the property of being stationary is related to the measure

preservation property of the mapping θ on B∞ in relation to the measure X(P ) on B∞, and

the property of being ergodic is related to the invariant σ-algebra of θ, which is a sub-σ-

algebra of B∞. It is these conceptions of stationarity and ergodicity we will be using when

formulating our laws of large numbers. However, for practical use, it is convenient to be able

to express stationarity and ergodicity in terms of the probability space (Ω,F , P ) instead of

(R∞,B∞, X(P )). The following results will allow us to do so.

Lemma 2.3.8. Let (Xn) be a stochastic process. The following are equivalent.
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(1). (Xn) is stationary.

(2). (Xn)n≥1 and (Xn+1)n≥1 have the same distribution.

(3). For all k ≥ 1, (Xn)n≥1 and (Xn+k)n≥1 have the same distribution.

Proof. We first prove that (1) implies (3). Assume that (Xn) is stationary and fix k ≥ 1.

Define a process Y by setting Y = (Xn+k)n≥1, we then also have Y = θk ◦ X. As (Xn) is

stationary, θ is X(P )-measure preserving. By an application of Theorem A.2.13, this yields

Y (P ) = (θk ◦X)(P ) = θk(X(P )) = X(P ), showing that (Xn)n≥1 and (Xn+k)n≥1 have the

same distribution, and so proving that (1) implies (3).

As it is immediate that (3) implies (2), we find that in order to complete the proof, it suffices

to show that (2) implies (1). Therefore, assume that (Xn)n≥1 and (Xn+1)n≥1 have the same

distribution, meaning that X(P ) and Y (P ) are equal, where Y = (Xn+1)n≥1. We then obtain

θ(X(P )) = (θ ◦X)(P ) = Y (P ) = X(P ), so θ is X(P )-measure preserving. This proves that

(2) implies (1), as desired.

An important consequence of Lemma 2.3.8 is the following.

Lemma 2.3.9. Let (Xn) be a stationary stochastic process. For all k ≥ 1 and n ≥ 1,

(X1, . . . , Xn) has the same distribution as (X1+k, . . . , Xn+k).

Proof. Fix k ≥ 1 and n ≥ 1. Let Y = (Xn+k)n≥1. By Lemma 2.3.8, it holds that (Xn)n≥1

and (Yn)n≥1 have the same distribution. Let ϕ : R∞ → Rn denote the projection onto the

first n coordinates of R∞. Using Theorem A.2.13, we then obtain

(X1, . . . , Xn)(P ) = ϕ(X)(P ) = ϕ(X(P )) = ϕ(Y (P ))

= ϕ(Y )(P ) = (Y1, . . . , Yn)(P ) = (X1+k, . . . , Xn+k)(P ),

proving that (X1, . . . , Xn) has the same distribution as (X1+k, . . . , Xn+k), as was to be

shown.

Next, we consider a more convenient formulation of ergodicity for a stationary process.

Definition 2.3.10. Let (Xn) be a stationary process. The invariant σ-algebra I(X) for the

process is defined by I(X) = {X−1(B) | B ∈ B∞, B is invariant for θ}.
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Lemma 2.3.11. Let (Xn) be a stationary process. (Xn) is ergodic if and only if it holds that

for all F ∈ I(X), P (F ) is either zero or one.

Proof. First assume that (Xn) is ergodic, meaning that θ is ergodic for X(P ). This means

that with Iθ denoting the invariant σ-algebra for θ on B∞, X(P )(B) is either zero or one for

all B ∈ Iθ. Now let F ∈ I(X), we then have F = (X ∈ B) for some B ∈ Iθ, so we obtain

P (F ) = P (X ∈ B) = X(P )(B), which is either zero or one. This proves the first implication.

Next, assume that for all F ∈ I(X), P (F ) is either zero or one. We wish to show that (Xn)

is ergodic. Let B ∈ Iθ. We then obtain X(P )(B) = P (X−1(B)), which is either zero or one

as X−1(B) ∈ I(X). Thus, (Xn) is ergodic.

Lemma 2.3.8 and Lemma 2.3.11 shows how to reformulate the definitions in Definition 2.3.7

more concretely in terms of the probability space (Ω,F , P ) and the process (Xn). We are now

ready to use the ergodic theorem to obtain a law of large numbers for stationary processes.

Theorem 2.3.12 (Ergodic theorem for ergodic stationary processes). Let (Xn) be an ergodic

stationary process, and let f : R∞ → R be some B∞-B measurable mapping. If f((Xn)n≥1)

has p’th moment, 1
n

∑n
k=1 f((Xi)i≥k) converges almost surely and in Lp to Ef((Xi)i≥1).

Proof. We first investigate what may be obtained by using the ordinary ergodic theorem of

Theorem 2.1.7. Let P̂ = X(P ), the distribution of (Xn). By our assumptions, θ is P̂ -measure

preserving and ergodic. Also, f is a random variable on the probability space (R∞,B∞, P̂ ),

and ∫
|f |p dP̂ =

∫
|f |p dX(P ) =

∫
|f ◦X|p dP = E|f(X)|p = E|f((Xn)n≥1)|p,

which is finite by our assumptions. Thus, considered as a random variable on (R∞,B∞, P̂ ),

f has p’th moment. Letting µ = Ef((Xn)n≥1), Theorem 2.1.7 yields

lim
n→∞

1

n

n∑
k=1

f ◦ θk−1 =

∫
f dP̂ = Ef((Xn)n≥1) = µ,

in the sense of P̂ almost sure convergence and convergence in Lp(R∞,B∞, P̂ ). These are limit

results on the probability space (R∞,B∞, P̂ ). We would like to transfer these results to our

original probability space (Ω,F , P ). We first consider the case of almost sure convergence.

We wish to argue that 1
n

∑n
k=1 f((Xi)i≥k) converges P -almost surely to µ. To do so, first
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note that(
1

n

n∑
k=1

f((Xi)i≥k) converges to µ

)
=

{
ω ∈ Ω

∣∣∣∣∣ lim
n→∞

1

n

n∑
k=1

f((Xi)i≥k(ω)) = µ

}

=

{
ω ∈ Ω

∣∣∣∣∣ lim
n→∞

1

n

n∑
k=1

f((Xi(ω))i≥k) = µ

}

=

{
ω ∈ Ω

∣∣∣∣∣ lim
n→∞

1

n

n∑
k=1

f(θk−1(X(ω))) = µ

}
,

and this final set is equal to X−1(A), where

A =

{
x ∈ R∞

∣∣∣∣∣ lim
n→∞

1

n

n∑
k=1

f(θk−1(x)) = µ

}
,

or, with our usual probabilistic notation, A = (limn→∞
1
n

∑n
k=1 f ◦ θk−1 = µ). Therefore, we

obtain

P

(
1

n

n∑
k=1

f((Xi)i≥k) converges to µ

)
= P (X−1(A)) = X(P )(A)

= P̂ (A) = P̂

(
lim
n→∞

1

n

n∑
k=1

f ◦ θk−1 = µ

)
,

and the latter is equal to one by the P̂ -almost sure convergence of 1
n

∑n
k=1 f ◦θk−1 to µ. This

proves P -almost sure convergence of 1
n

∑n
k=1 f((Xi)i≥k) to µ. Next, we consider convergence

in Lp. Here, we need limn→∞E|µ− 1
n

∑n
k=1 f((Xi)i≥k)|p = 0. To obtain this, we note that

for any ω ∈ Ω, it holds that(∣∣∣∣∣µ− 1

n

n∑
k=1

f((Xi)i≥k)

∣∣∣∣∣
p)

(ω) =

∣∣∣∣∣µ− 1

n

n∑
k=1

f((Xi(ω))i≥k)

∣∣∣∣∣
p

=

∣∣∣∣∣µ− 1

n

n∑
k=1

f(θk−1(X(ω)))

∣∣∣∣∣
p

=

(∣∣∣∣∣µ− 1

n

n∑
k=1

f ◦ θk−1

∣∣∣∣∣
p)

(X(ω)),

yielding ∣∣∣∣∣µ− 1

n

n∑
k=1

f((Xi)i≥k)

∣∣∣∣∣
p

=

(∣∣∣∣∣µ− 1

n

n∑
k=1

f ◦ θk−1

∣∣∣∣∣
p)
◦X,
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and so the change-of-variables formula allows us to conclude that

lim
n→∞

E

∣∣∣∣∣µ− 1

n

n∑
k=1

f((Xi)i≥k)

∣∣∣∣∣
p

= lim
n→∞

∫ ∣∣∣∣∣µ− 1

n

n∑
k=1

f((Xi)i≥k)

∣∣∣∣∣
p

dP

= lim
n→∞

∫ (∣∣∣∣∣µ− 1

n

n∑
k=1

f((X̂i)i≥k)

∣∣∣∣∣
p)
◦X dP

= lim
n→∞

∫ (∣∣∣∣∣µ− 1

n

n∑
k=1

f((X̂i)i≥k)

∣∣∣∣∣
p)

dX(P )

= lim
n→∞

∫ (∣∣∣∣∣µ− 1

n

n∑
k=1

f((X̂i)i≥k)

∣∣∣∣∣
p)

dP̂ = 0,

by the Lp(R∞,B∞, P̂ )-convergence of 1
n

∑n
k=1 f((X̂i)i≥k) to µ. This demonstrates the desired

convergence in Lp and so concludes the proof of the theorem.

Theorem 2.3.12 is the main theorem of this section. As the following corollary shows, a

simpler version of the theorem is obtained by applying the theorem to a particular type of

function from R∞ to R.

Corollary 2.3.13. Let (Xn) be an ergodic stationary process, and let f : R → R be some

Borel measurable mapping. If f(X1) has p’th moment, 1
n

∑n
k=1 f(Xk) converges almost surely

and in Lp to Ef(X1).

Proof. Define g : R∞ → R by putting g((xn)n≥1) = f(x1). Then g = f ◦ X̂1, so as f is B-B
measurable and X̂1 is B∞-B measurable, g is B∞-B measurable. Also, g((Xi)i≥1) = f(X1),

which has p’th moment by assumption. Therefore, Theorem 2.3.12 allows us to conclude that
1
n

∑n
k=1 g((Xi)i≥k) converges almost surely and in Lp to Ef(X1). As g((Xi)i≥k) = f(Xk),

this yields the desired conclusion.

Theorem 2.3.12 and Corollary 2.3.13 yields powerful convergence results for stationary and

ergodic processes. Next, we show that our results contain the strong law of large numbers

for independent and identically distributed variables as a special case. In addition, we also

obtain Lp convergence of the empirical means. To show this result, we need to prove that

sequences of independent and identically distributed variables are stationary and ergodic.

Corollary 2.3.14. Let (Xn) be a sequence of independent, identically distributed variables.

Then (Xn) is stationary and ergodic. Assume furthermore that Xn has p’th moment for some

p ≥ 1, and let µ be the common mean. Then 1
n

∑n
k=1Xk converges to µ almost surely and

in Lp.
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Proof. We first show that (Xn) is stationary. Let ν denote the common distribution of the

Xn. Let X = (Xn)n≥1 and Y = (Xn+1)n≥1. Fix n ≥ 1 and B1, . . . , Bn ∈ B, we then obtain

Y (P )(∩nk=1X̂
−1
k (Bk)) = P (X2 ∈ B1, . . . , Xn+1 ∈ Bn) =

n∏
i=1

ν(Bi)

= P (X1 ∈ B1, . . . , Xn ∈ Bn) = X(P )(∩nk=1X̂
−1
k (Bk)),

so by Lemma 2.3.2 and the uniqueness theorem for probability measures, we conclude that

Y (P ) = X(P ), and thus (Xn) is stationary. Next, we show that (Xn) is ergodic. Let I(X)

denote the invariant σ-algebra for (Xn), and let J denote the tail-σ-algebra for (Xn), see

Definition 1.3.9. Let F ∈ I(X), we then have F = (X ∈ B) for some B ∈ Iθ, where Iθ is

the invariant σ-algebra on R∞ for the shift operator. Therefore, for any n ≥ 1, we obtain

(X ∈ B) = (X ∈ θ−n(B)) = (θn(X) ∈ B)

= ((Xn+1, Xn+2, . . .) ∈ B) ∈ σ(Xn+1, Xn+2, . . .). (2.7)

As n is arbitrary in (2.7), we conclude (X ∈ B) ∈ J , and as a consquence, I(X) ⊆ J . Now

recalling from Theorem 1.3.10 that P (F ) is either zero or one for all F ∈ J , we obtain that

whenever F ∈ I(X), P (F ) is either zero or one as well. By Lemma 2.3.11, this shows that

(Xn) is ergodic. Corollary 2.3.13 yields the remaining claims of the corollary.

In order to apply Theorem 2.3.12 and Corollary 2.3.13 in general, we need results on how

to prove stationarity and ergodicity. As the final theme of this section, we show two such

results.

Lemma 2.3.15. Let (Xn) be stationary. Assume that for all m, p ≥ 1, A1, . . . , Am ∈ B and

B1, . . . , Bp ∈ B:

(1). With F = ∩mi=1(Xi ∈ Ai) and Gk = ∩pi=1(Xi+k−1 ∈ Bi) for k ≥ 1, it holds that

limn→∞
1
n

∑n
k=1 P (F ∩Gk) = P (F )P (G1).

(2). With F = ∩mi=1(Xi ∈ Ai) and Gk = ∩pi=1(Xi+k−1 ∈ Bi) for k ≥ 1, it holds that

limn→∞
1
n

∑n
k=1 |P (F ∩Gk)− P (F )P (G1)| = 0.

(3). With F = ∩mi=1(Xi ∈ Ai) and Gn = ∩pi=1(Xi+n ∈ Bi) for n ≥ 1, it holds that

limn→∞ P (F ∩Gn) = P (F )P (G1).

Then (Xn) is ergodic.
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Proof. We only prove the result in the case where the third convergence holds, as the other

two cases follow similarly. Therefore, assume that the first criterion holds, such that for all

m, p ≥ 1, A1, . . . , Am ∈ B and B1, . . . , Bp ∈ B, it holds that

lim
n→∞

P (∩mi=1(Xi ∈ Ai) ∩ ∩pi=1(Xi+n ∈ Bi)) = P (∩mi=1(Xi ∈ Ai))P (∩pi=1(Xi ∈ Bi)). (2.8)

We wish to show that (Xn) is ergodic. Recall that by Definition 2.3.7 that since (Xn) is

stationary, θ is measure preserving for P̂ , where P̂ = X(P ). Also recall from Definition

2.3.7 that in order to show that (Xn) is ergodic, we must show that θ is ergodic for P̂ . We

will apply Lemma 2.2.6 and Theorem 2.2.5 to the probability space (R∞,B∞, P̂ ) and the

transformation θ. Note that as θ is measure preserving for P̂ , Lemma 2.2.6 and Theorem

2.2.5 are applicable.

Define H as the family of sets {x ∈ R∞ | x1 ∈ B1, . . . , xn ∈ Bn}, where n ≥ 1 and

B1 ∈ B, . . . , Bn ∈ B. By Lemma 2.3.2, H is then a generating family for B∞ which is

stable under finite intersections. By Lemma 2.2.6 and Theorem 2.2.5, θ is ergodic for P̂ if it

holds that for all F,G ∈ H,

lim
n→∞

P̂ (F ∩ θ−n(G)) = P̂ (F )P̂ (G). (2.9)

However, for any F,G ∈ H, we have that there is m, p ≥ 1 such that F = ∩mi=1X̂
−1
i (Ai) and

G = ∩pi=1X̂
−1
i (Bi), and so

P̂ (F ∩ θ−n(G)) = X(P )(∩mi=1X̂
−1
i (Ai) ∩ θ−n(∩pi=1X̂

−1
i (Bi)))

= X(P )(∩mi=1X̂
−1
i (Ai) ∩ ∩pi=1X̂

−1
i+n(Bi))

= P (∩mi=1X
−1
i (Ai) ∩ ∩pi=1X

−1
i+n(Bi))

= P (∩mi=1(Xi ∈ Ai) ∩ ∩pi=1(Xi+n ∈ Bi)),

and similarly, we obtain P̂ (F ) = P (∩mi=1(Xi ∈ Ai)) and P̂ (G) = P (∩pi=1(Xi ∈ Ai)). Thus,

for F,G ∈ H with F = ∩mi=1X̂
−1
i (Ai) and G = ∩pi=1X̂

−1
i (Bi), (2.9) is equivalent (2.8). As

we have assumed that (2.8) holds for all m, p ≥ 1, A1, . . . , Am ∈ B and B1, . . . , Bp ∈ Bm, we

conclude that (2.9) holds for all F,G ∈ H. Lemma 2.2.6 then allows us to conclude that (2.9)

holds for all F,G ∈ B∞, and Theorem 2.2.5 then allows us to conclude that θ is ergodic for

P̂ , so that (Xn) is ergodic, as desired.

Lemma 2.3.16. Let (Xn) be a sequence of random variables. Let ϕ : R∞ → R be measurable,

and define a sequence of random variables (Yn) by putting Yn = ϕ(Xn, Xn+1, . . .). If (Xn) is

stationary, then (Yn) is stationary. And if (Xn) is both stationary and ergodic, then (Yn) is

both stationary and ergodic.
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Proof. We first derive a formal expression for the sequence (Yn) in terms of (Xn). Define a

mapping Φ : R∞ → R∞ by putting, for k ≥ 1, Φ((xi)i≥1)k = ϕ((xi)i≥k). Equivalently, we

also have Φ((xi)i≥1)k = (ϕ ◦ θk−1)((xi)i≥1). As θ is B∞-B∞ measurable by Lemma 2.3.3

and ϕ is B∞-B measurable, Φ has B∞ measurable coordinates, and so is B∞-B∞ measurable,

again by Lemma 2.3.3. And we have (Yn) = Φ((Xn)n≥1).

Now assume that (Xn) is stationary. Let P̂ be the distribution of (Xn), and let Q̂ be the

distribution of (Yn). By Definition 2.3.7, our assumption that (Xn) is stationary means that

θ is measure preserving for P̂ , and in order to show that (Yn) is stationary, we must show

that θ is measure preserving for Q̂. To do so, we note that for all k ≥ 1, it holds that

θ(Φ((xi)i≥1))k = Φ((xi)i≥1)k+1 = ϕ(θk((xi)i≥1)) = ϕ(θk−1(θ((xi)i≥1))) = Φ(θ((xi)i≥1))k,

which means that θ ◦ Φ = Φ ◦ θ, and so, since θ is measure preserving for P̂ ,

θ(Q̂) = θ(Φ(P̂ )) = (θ ◦ Φ)(P̂ ) = (Φ ◦ θ)(P̂ ) = Φ(P̂ ) = Q̂,

proving that θ also is measure preserving for Q̂, so (Yn) is stationary. Next, assume that

(Xn) is ergodic. By Definition 2.3.7, this means that all elements of the invariant σ-algebra

Iθ of θ has P̂ measure zero or one. We wish to show that (Yn) is ergodic, which means

that we need to show that all elements of Iθ has Q̂ measure zero or one. Let A ∈ Iθ, such

that θ−1(A) = A. We then have Q̂(A) = P̂ (Φ−1(A)), so it suffices to show that Φ−1(A) is

invariant for θ, and this follows as

θ−1(Φ−1(A)) = (Φ ◦ θ)−1(A) = (θ ◦ Φ)−1(A) = Φ−1(θ−1(A)) = Φ−1(A).

Thus, Φ−1(A) is invariant for θ. As θ is ergodic for P̂ , P̂ (Φ−1(A)) is either zero or one, and

so Q̂(A) is either zero or one. Therefore, θ is ergodic for Q̂. This shows that (Yn) is ergodic,

as desired.

We end the section with an example showing how to apply the ergodic theorem to obtain

limit results for empirical averages for a practical case of a process consisting of variables

which are not independent.

Example 2.3.17. Let (Xn) be a sequence of independent and identically distributed

variables concentrated on {0, 1} with P (Xn = 1) = p. The elements of the sequence

(XnXn+1)n≥1 then have the same distribution for each n ≥ 1, but they are not indepen-

dent. We will use the results of this section to examine the behaviour of 1
n

∑n
k=1XkXk+1.

By Corollary 2.3.14, (Xn) is stationary and ergodic. Define a mapping f : R∞ → R by

putting f((xn)n≥1) = x1x2, f is then B∞-B measurable, and f((Xi)i≥1) = X1X2. Noting
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that EX1X2 = p2 and that X1X2 has moments of all orders, Theorem 2.3.12 shows that
1
n

∑n
k=1XkXk+1 converges to p2 almost surely and in Lp for all p ≥ 1. ◦

2.4 Exercises

Exercise 2.1. Consider the probability space ([0, 1),B[0,1), P ) where P is the Lebesgue

measure. Define T (x) = 2x− [2x] and S(x) = x+ λ− [x+ λ], λ ∈ R. Here, [x] is the unique

integer satisfying [x] ≤ x < [x] + 1. Show that T and S are P -measure preserving. ◦

Exercise 2.2. Define T : [0, 1) → [0, 1) by letting T (x) = 1
x − [ 1

x ] for x > 0 and zero

otherwise. Show that T is Borel measurable. Define P as the nonnegative measure on

([0, 1),B[0,1)) with density t 7→ 1
log 2

1
1+t with respect to the Lebesgue measure. Show that P

is a probability measure, and show that T is measure preserving for P . ◦

Exercise 2.3. Define T : [0, 1] → [0, 1] by putting T (x) = 1
2x for x > 0 and one other-

wise. Show that there is no probability measure P on ([0, 1],B[0,1]) such that T is measure

preserving for P . ◦

Exercise 2.4. Consider the probability space ([0, 1),B[0,1), P ) where P is the Lebesgue

measure. Define T : [0, 1)→ [0, 1) by T (x) = x+λ− [x+λ]. T is then P -measure preserving.

Show that if λ is rational, T is not ergodic. ◦

Exercise 2.5. Let (Ω,F , P ) be a probability space and let T be measure preserving. Let

X be an integrable random variable and assume that X ◦ T ≤ X almost surely. Show that

X = X ◦ T almost surely. ◦

Exercise 2.6. Let (Ω,F , P ) be a probability space and let T : Ω → Ω be measurable.

Assume that T is measure preserving. Show that if T 2 is ergodic, T is ergodic as well. ◦

Exercise 2.7. Give an example of a probability space (Ω,F , P ) and a measurable mapping

T : Ω→ Ω such that T 2 is measure preserving but T is not measure preserving. ◦

Exercise 2.8. Let (Ω,F , P ) be a probability space and let T be measurable and measure

preserving. We may then think of T as a random variable with values in (Ω,F). Let F ∈ F .

(1). Show that (Tn ∈ F i.o.) is invariant.
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(2). Show that for n ≥ 1, (∪∞k=0T
−k(F )) \ (∪∞k=nT

−k(F )) is a null set.

(3). Show that F ∩ (T k ∈ F c evt.) is a null set.

(4). Assume that P (F ) > 0. Show that if T is ergodic, P (Tn ∈ F i.o.) = 1.
◦

Exercise 2.9. Let (Ω,F) be a measurable space and let T : Ω → Ω be measurable. As-

sume that T is measure preserving. Show that the mapping T is ergodic if and only if it

holds for all random variables X and Y such that X is integrable and Y is bounded that

limn→∞
1
n

∑n
k=1EY (X ◦ T k−1) = (EY )(EX). ◦

Exercise 2.10. Consider the probability space ([0, 1),B[0,1), P ) where P is the Lebesgue

measure. Define T : [0, 1) → [0, 1) by T (x) = 2x − [2x]. T is then P -measure preserving.

Show that T is mixing. ◦

Exercise 2.11. Let (Ω1,F1, P1) and (Ω2,F2, P2) be two probability spaces. Consider two

measurable mappings T1 : Ω1 → Ω1 and T2 : Ω2 → Ω2. Assume that T1 is P1-measure

preserving and that T2 is P2-measure preserving. Define a probability space (Ω,F , P ) by

putting (Ω,F , P ) = (Ω1 × Ω2,F1 ⊗ F2, P1 ⊗ P2). Define a mapping T : Ω → Ω by putting

T (ω1, ω2) = (T1(ω1), T2(ω2)).

(1). Show that T is P -measure preserving.

(2). Let IT1
, IT2

and IT be the invariant σ-algebras for T1, T2 and T . Show that the

inclusion IT1
⊗ IT2

⊆ IT holds.

(3). Argue that if T is ergodic, both T1 and T2 are ergodic.

(4). Argue that T is mixing if and only if both T1 and T2 are mixing.
◦

Exercise 2.12. Let (Xn) be a stationary process. Fix B ∈ B. Show that (Xn ∈ B i.o.) is

in I(X). ◦

Exercise 2.13. Let (Xn) and (Yn) be two stationary processes. Let U be a random variable

concentrated on {0, 1} with P (U = 1) = p, and assume that U is independent of X and

independent of Y . Define Zn = Xn1(U=0) + Yn1(U=1). Show that (Zn) is stationary. ◦

Exercise 2.14. We say that a process (Xn) is weakly stationary if it holds that Xn has

second moment for all n ≥ 1, EXn = EXk for all n, k ≥ 1 and Cov(Xn, Xk) = γ(|n− k|) for
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some γ : N0 → R. Now assume that (Xn) is some process such that Xn has second moment

for all n ≥ 1. Show that if (Xn) is stationary, (Xn) is weakly stationary. ◦

Exercise 2.15. We say that a process (Xn) is Gaussian if all of its finite-dimensional

distributions are Gaussian. Let (Xn) be some Gaussian process. Show that (Xn) is stationary

if and only if it is weakly stationary in the sense of Exercise 2.14. ◦



58 Ergodicity and stationarity



Chapter 3

Weak convergence

In Chapter 1, in Definition 1.2.2, we introduced four modes of convergence for a sequence

of random variables: Convergence in probability, almost sure convergence, convergence in

Lp and convergence in distribution. Throughout most of the chapter, we concerned our-

selves solely with the first three modes of convergence. In this chapter, we instead focus

on convergence in distribution and the related notion of weak convergence of probability

distributions.

While our main results in Chapter 1 and Chapter 2 were centered around almost sure and Lp

convergence of 1
n

∑n
k=1Xk for various classes of processes (Xn), the theory of weak conver-

gence covered in this chapter will instead allow us to understand the asymptotic distribution

of 1
n

∑n
k=1Xk, particularly through the combined results of Section 3.5 and Section 3.6.

The chapter is structured as follows. In Section 3.1, we introduce weak convergence of

probability measures, and establish that convergence in distribution of random variables and

weak convergence of probability measures essentially are the same. In Section 3.2, Section 3.3

and Section 3.4, we investigate the fundamental properties of weak convergence, in the first

two sections outlining conncetions with cumulative distribution functions and convergence

in probability, and in the third section introducing the characteristic function and proving

the major result that weak convergence of probability measures is equivalent to pointwise

convergence of characteristic functions.

After this, in Section 3.5, we prove several versions of the central limit theorem which in its
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simplest form states that under certain regularity conditions, the empirical mean 1
n

∑n
k=1Xk

of independent and identically distributed random variables can for large n be approximated

by a normal distribution with the same mean and variance as 1
n

∑n
k=1Xk. This is arguably

the main result of the chapter, and is a result which is of great significance in practical

statistics. In Section 3.6, we introduce the notion of asymptotic normality, which provides a

convenient framework for understanding and working with the results of Section 3.5. Finally,

in Section 3.7, we state without proof some multidimensional analogues of the results of the

previous sections.

3.1 Weak convergence and convergence of measures

Recall from Definition 1.2.2 that for a sequence of random variables (Xn) and another random

variable X, we say that Xn converges in distribution to X and write Xn
D−→ X when

limn→∞Ef(Xn) = Ef(X) for all bounded, continuous mappings f : R → R. Our first

results of this section will show that convergence in distribution of random variables in a

certain sense is equivalent to a related mode of convergence for probability measures.

Definition 3.1.1. Let (µn) be a sequence of probability measures on (R,B), and let µ be

another probability measure. We say that µn converges weakly to µ and write µn
wk−→ µ if it

holds for all bounded, continuous mappings f : R→ R that limn→∞
∫
f dµn =

∫
f dµ.

Lemma 3.1.2. Let (Xn) be a sequence of random variables and let X be another random

variable. Let µ denote the distribution of X, and for n ≥ 1, let µn denote the distribution of

Xn. Then Xn
D−→ X if and only if µn

wk−→ µ.

Proof. We have Ef(Xn) =
∫
f ◦Xn dP =

∫
f dXn(P ) =

∫
f dµn, and by similar arguments,

Ef(X) =
∫
f dµ. From these observations, the result follows.

Lemma 3.1.2 clarifies that convergence in distribution of random variables is a mode of con-

vergence depending only on the marginal distributions of the variables involved. In particular,

we may investigate the properties of convergence in distribution of random variables by inves-

tigating the properties of weak convergence of probability measures on (R,B). Lemma 3.1.2

also allows us to make sense of convergence of random variables to a probability measure

in the following manner: We say that Xn converges in distribution to µ for a sequence of

random variables (Xn) and a probability measure µ, and write Xn
D−→ µ, if it holds that

µn
wk−→ µ, where µn is the distribution of Xn.
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The topic of weak convergence of probability measures in itself provides ample opportunities

for a rich mathematical theory. However, there is good reason for considering both conver-

gence in distribution of random variables and weak convergence of probability measures, in

spite of the apparent equivalence of the two concepts: Many results are formulated most

naturally in terms of random variables, particularly when transformations of the variables

are involved, and furthermore, expressing results in terms of convergence in distribution for

random variables often fit better with applications.

In the remainder of this section, we will prove some basic properties of weak convergence of

probability measures. Our first interest is to prove that weak limits of probability measures

are unique. By Cb(R), we denote the set of bounded, continuous mappings f : R→ R, and

by Cub (R), we denote the set of bounded, uniformly continuous mappings f : R → R. Note

that Cub (R) ⊆ Cb(R).

Lemma 3.1.3. Assume given two intervals [a, b] ⊆ (c, d). There exists a function f ∈ Cub (R)

such that 1[a,b](x) ≤ f(x) ≤ 1(c,d)(x) for all x ∈ R.

Proof. As [a, b] ⊆ (c, d), we have that a ≤ x ≤ b implies c < x < d. In particular, c < a and

b < d. Then, to obtain the desired mapping, we simply define

f(x) =



0 for x ≤ c
x−c
a−c for c < x < a

1 for a ≤ x ≤ b
d−x
d−b for b < x < d

0 for d ≤ x

,

and find that f possesses the required properties.

The mappings whose existence are proved in Lemma 3.1.3 are known as Urysohn functions,

and are also occasionally referred to as bump functions, although this latter name in general

is reserved for functions which have continuous derivatives of all orders. Existence results of

this type often serve to show that continuous functions can be used to approximate other

types of functions. Note that if [a, b] ⊆ (c, d) and 1[a,b](x) ≤ f(x) ≤ 1(c,d)(x) for all x ∈ R, it

then holds for x ∈ [a, b] that 1 = 1[a,b](x) ≤ f(x) ≤ 1(c,d)(x) = 1, so that f(x) = 1. Likewise,

for x /∈ (c, d), we have 0 = 1[a,b](x) ≤ f(x) ≤ 1(c,d)(x) = 0, so f(x) = 0.

In the following lemma, we apply Lemma 3.1.3 to show a useful criterion for two probability

measures to be equal, from which we will obtain as an immediate corollary the uniqueness

of limits for weak convergence of probability measures.
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Lemma 3.1.4. Let µ and ν be two probability measures on (R,B). If
∫
f dµ =

∫
f dν for

all f ∈ Cub (R), then µ = ν.

Proof. Let µ and ν be probability measures on (R,B) and assume that
∫
f dµ =

∫
f dν for

all f ∈ Cub (R). By the uniqueness theorem for probability measures, we find that in order to

prove that µ = ν, it suffices to show that µ((a, b)) = ν((a, b)) for all a < b. To this end, let

a < b be given. Now pick n ∈ N so large that a+1/n < b−1/n. By Lemma 3.1.3, there then

exists a mapping fn ∈ Cub (R) such that 1[a+1/n,b−1/n] ≤ f ≤ 1(a,b). By our assumptions, we

then have
∫
fn dµ =

∫
fn dν.

Now, for x /∈ (a, b), we have x /∈ [a+ 1/n, b− 1/n] as well, so fn(x) = 0. And for x ∈ (a, b),

it holds that x ∈ [a+ 1/n, b− 1/n] for n large enough, yielding fn(x) = 1 for n large enough.

Thus, limn→∞ fn(x) = 1(a,b)(x) for all x ∈ R. By the dominated convergence theorem, we

then obtain

µ((a, b)) =

∫
1(a,b) dµ = lim

n→∞

∫
fn dµ = lim

n→∞

∫
fn dν =

∫
1(a,b) dν = ν((a, b)),

and the result follows.

Lemma 3.1.5. Let (µn) be a sequence of probability measures on (R,B), and let µ and ν be

two other such probability measures. If µn
wk−→ µ and µn

wk−→ ν, then µ = ν.

Proof. For all f ∈ Cb(R), we obtain
∫
f dν = limn→∞ f dµn =

∫
f dµ. In particular, this

holds for f ∈ Cub (R). Therefore, by Lemma 3.1.4, it holds that ν = µ.

Lemma 3.1.5 shows that limits for weak convergence of probability measures are uniquely

determined. Note that this is not the case for convergence in distribution of variables. To

understand the issue, note that combining Lemma 3.1.2 and Lemma 3.1.5, we find that if

Xn
D−→ X, then we also have Xn

D−→ Y if and only if X and Y have the same distribution.

Thus, for example, if Xn
D−→ X, where X is normally distributed with mean zero, then

Xn
D−→ −X as well, since X and −X have the same distribution, even though it holds that

P (X = −X) = P (X = 0) = 0.

In order to show weak convergence of µn to µ, we need to prove limn→∞
∫
f dµn =

∫
f dµ for

all f ∈ Cb(R). A natural question is whether it suffices to prove this limit result for a smaller

class of mappings than Cb(R). We now show that it in fact suffices to consider elements of

Cub (R). For f : R → R bounded, we denote by ‖f‖∞ the uniform norm of f , meaning that
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‖f‖∞ = supx∈R |f(x)|. Before obtaining the result, we prove the following useful lemma.

Sequences of probability measures satisfying the property (3.1) referred to in the lemma are

said to be tight.

Lemma 3.1.6. Let (µn) be a sequence of probability measures on (R,B), and let µ be some

other probability measure. If limn→∞
∫
f dµn =

∫
f dµ for all f ∈ Cub (R), it holds that

lim
M→∞

sup
n≥1

µn([−M,M ]c) = 0. (3.1)

In particular, (3.1) holds if µn is weakly convergent.

Proof. Fix ε > 0. We will argue that there is M > 0 such that µn([−M,M ]c) ≤ ε for n ≥ 1.

To this end, let M∗ > 0 be so large that µ([−M∗/2,M∗/2]c) < ε. By Lemma 3.1.3, we find

that there exists a mapping g ∈ Cub (R) with 1[−M∗/2,M∗/2](x) ≤ g(x) ≤ 1(−M∗,M∗)(x) for

x ∈ R. With f = 1− g, we then also obtain 1(−M∗,M∗)c(x) ≤ f(x) ≤ 1[−M∗/2,M∗/2]c(x). As

f ∈ Cub (R) as well, this yields

lim sup
n→∞

µn([−M∗,M∗]c) ≤ lim sup
n→∞

∫
1(−M∗,M∗)c dµn ≤ lim sup

n→∞

∫
f dµn

=

∫
f dµ ≤

∫
1[−M∗/2,M∗/2]c dµ = µ([−M∗/2,M∗/2]c) < ε,

and thus µn([−M∗,M∗]c) < ε for n large enough, say n ≥ m. Now fix M1, . . . ,Mm > 0 such

that µn([−Mn,Mn]c) < ε for n ≤ m. Putting M = max{M∗,M1, . . . ,Mm}, we obtain that

µn([−M,M ]c) ≤ ε for all n ≥ 1. This proves (3.1).

Theorem 3.1.7. Let (µn) be a sequence of probability measures on (R,B), and let µ be

some other probability measure. Then µn
wk−→ µ if and only if limn→∞

∫
f dµn =

∫
f dµ for

f ∈ Cub (R).

Proof. As Cub (R) ⊆ Cb(R), it is immediate that if µn
wk−→ µ, then limn→∞

∫
f dµn =

∫
f dµ

for f ∈ Cub (R). We need to show the converse. Therefore, assume that for f ∈ Cub (R),

we have limn→∞
∫
f dµn =

∫
f dµ. We wish to show that limn→∞

∫
f dµn =

∫
f dµ for all

f ∈ Cb(R).

Using Lemma 3.1.6, take M > 0 such that µn([−M,M ]c) ≤ ε for all n ≥ 1 and such that

µ([−M,M ]c) ≤ ε as well. Note that for any h ∈ Cb(R) such that ‖h‖∞ ≤ ‖f‖∞ and
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f(x) = h(x) for x ∈ [−M,M ], we then have∣∣∣∣∫ f dµ−
∫
hdµ

∣∣∣∣ =

∣∣∣∣∫ f1[−M,M ]c dµ−
∫
h1[−M,M ]c dµ

∣∣∣∣
≤
∣∣∣∣∫ f1[−M,M ]c dµ

∣∣∣∣+

∣∣∣∣∫ h1[−M,M ]c dµ

∣∣∣∣
≤ ‖f‖∞µ([−M,M ]c) + ‖h‖∞µ([−M,M ]c) ≤ 2ε‖f‖∞, (3.2)

and similarly for µn instead of µ. To complete the proof, we now take f ∈ Cb(R), we wish

to show limn→∞
∫
f dµn =

∫
f dµ. To this end, we locate h ∈ Cub (R) agreeing with f on

[−M,M ] with ‖h‖∞ ≤ ‖f‖∞ and apply (3.2). Define h : R→ R by putting

h(x) =


f(−M) exp(M + x) for x < −M
f(x) for −M ≤ x ≤M
f(M) exp(M − x) for x > M

.

Then ‖h‖∞ ≤ ‖f‖∞. We wish to argue that h is uniformly continuous. Note that as

continuous functions are uniformly continuous on compact sets, f is uniformly continuous on

[−M,M ], and thus h also is uniformly continuous on [−M,M ]. Furthermore, for x, y > M

with |x− y| ≤ δ, the mean value theorem allows us to obtain

|h(x)− h(y)| ≤ |f(M)|| exp(M − x)− exp(M − y)| ≤ |f(M)||x− y|,

and similarly, |h(x) − h(y)| ≤ |f(−M)||x − y| for x, y < −M . We conclude that h is a con-

tinuous function which is uniformly continuous on (−∞,−M), on [−M,M ] and on (M,∞).

Hence, h is uniformly continuous on R. Furthermore, h agrees with f on [−M,M ]. Collecting

our conclusions, we now obtain by (3.2) that∣∣∣∣∫ f dµn −
∫
f dµ

∣∣∣∣ ≤ ∣∣∣∣∫ f dµn −
∫
hdµn

∣∣∣∣+

∣∣∣∣∫ hdµn −
∫
hdµ

∣∣∣∣+

∣∣∣∣∫ hdµ−
∫
f dµ

∣∣∣∣
≤ 4ε‖f‖∞ +

∣∣∣∣∫ hdµn −
∫
hdµ

∣∣∣∣ ,
leading to lim supn→∞ |

∫
f dµn −

∫
f dµ| ≤ 4ε‖f‖∞. As ε > 0 was arbitrary, this shows

limn→∞
∫
f dµn =

∫
f dµ, proving µn

wk−→ µ.

Before turning to a few examples, we prove some additional basic results on weak convergence.

Lemma 3.1.8 and Lemma 3.1.9 give results which occasionally are useful for proving weak

convergence.

Lemma 3.1.8. Let (µn) be a sequence of probability measures on (R,B), and let µ be some

other probability measure on (R,B). Let h : R→ R be a continuous mapping. If µn
wk−→ µ, it

then also holds that h(µn)
wk−→ h(µ).
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Proof. Let f ∈ Cb(R). Then f ◦ h ∈ Cb(R) as well, and we obtain

lim
n→∞

∫
f(x) dh(µn)(x) = lim

n→∞

∫
f(h(x)) dµn(x) =

∫
f(h(x)) dµ(x) =

∫
f(x) dh(µ)(x),

proving that h(µn)
wk−→ h(µ), as desired.

Lemma 3.1.9 (Scheffé’s lemma). Let (µn) be a sequence of probability measures on (R,B),

and let µ be another probability measure on (R,B). Assume that there is a measure ν such

that µn = gn · ν for n ≥ 1 and µ = g · ν. If limn→∞ gn(x) = g(x) for ν-almost all x, then

µn
wk−→ µ.

Proof. To prove the result, we first argue that limn→∞
∫
|gn − g|dν = 0. To this end, with

x+ = max{0, x} and x− = max{0,−x}, we first note that since both µn and µ are probability

measures, we have

0 =

∫
gn dν −

∫
g dν =

∫
gn − g dν =

∫
(gn − g)+ dν −

∫
(gn − g)− dν,

which implies
∫

(gn − g)+ dν =
∫

(gn − g)− dν and therefore∫
|gn − g|dν =

∫
(gn − g)+ dν +

∫
(gn − g)− dν = 2

∫
(gn − g)− dν.

It therefore suffices to show that this latter tends to zero. To do so, note that

(gn − g)−(x) = max{0,−(gn(x)− g(x))} = max{0, g(x)− gn(x)} ≤ g(x), (3.3)

and furthermore, since x 7→ x− is continuous, (gn − g)− converges almost surely to 0. As

0 ≤ (gn− g)− ≤ g by (3.3), and g is integrable with respect to ν, the dominated convergence

theorem yields limn→∞
∫

(gn − g)− dν = 0. Thus, we obtain limn→∞
∫
|gn − g|dν = 0. In

order to obtain the desired weak convergence from this, let f ∈ Cb(R), we then have

lim sup
n→∞

∣∣∣∣∫ f(x) dµn(x)−
∫
f(x) dµ(x)

∣∣∣∣ ≤ lim sup
n→∞

∫
|f(x)||gn(x)− g(x)|dν(x)

≤ ‖f‖∞ lim sup
n→∞

∫
|gn(x)− g(x)|dν(x) = 0,

proving limn→∞
∫
f dµn =

∫
f dµ and hence µn

wk−→ µ.

Lemma 3.1.8 shows that weak convergence is conserved under continuous transformations,

a result similar in spirit to Lemma 1.2.6. Lemma 3.1.9 shows that for probability measures

which have densities with respect to the same common measure, almost sure convergence of
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the densities is sufficient to obtain weak convergence. This is in several cases a very useful

observation.

This concludes our preliminary investigation of weak convergence of probability measures.

We end the section with some examples where weak convergence naturally occur.

Example 3.1.10. Let (xn) be a sequence of real numbers and consider the corresponding

Dirac measures (εxn), that is, εxn is the probability measure which accords probability one

to the set {xn} and zero to all Borel subsets in the complement of {xn}. We claim that if xn

converges to x for some x ∈ R, then εxn converges weakly to εx. To see this, take f ∈ Cb(R).

By continuity, we then have

lim
n→∞

∫
f dεxn = lim

n→∞
f(xn) = f(x) =

∫
f dεx,

yielding weak convergence of εxn to εx. ◦

Example 3.1.11. Let µn be the uniform distribution on {0, 1
n ,

2
n , . . . ,

n−1
n }. We claim that

µn converges weakly to the uniform distribution on [0, 1]. To show this, let f ∈ Cb(R), we

then have
∫
f dµn = 1

n

∑n
k=1 f((k − 1)/n). Now define a mapping fn : [0, 1]→ R by putting

fn(x) =
∑n
k=1 f((k − 1)/n)1[(k−1)/n,k/n)(x), we then obtain

∫
f dµn =

∫ 1

0
fn(x) dx. As f is

continuous, we have limn→∞ fn(x) = f(x) for all 0 ≤ x < 1. As f is bounded, the dominated

convergence theorem then allows us to conclude that limn→∞
∫
f dµn =

∫ 1

0
f(x) dx, which

shows that µn converges weakly to the uniform distribution on [0, 1]. ◦

Note that the measures (µn) in Example 3.1.11 are discrete in nature, while the limit measure

is continuous in nature. This shows that qualities such as being discrete or continuous in

nature are not preserved by weak convergence.

Example 3.1.12. Let (ξn) and (σn) be two real sequences with limits ξ and σ, respectively,

where we assume that σ > 0. Let µn be the normal distribution with mean ξn and variance

σ2
n. We claim that µn converges to µ, where µ denotes the normal distribution with mean ξ

and variance σ2. To demonstrate this result, define mappings gn for n ≥ 1 and g by putting

gn(x) = 1
σn
√

2π
exp(− 1

2σ2
n

(x−ξn)2) and g(x) = 1
σ
√

2π
exp(− 1

2σ2 (x−ξ)2). Then, µn has density

gn with respect to the Lebesgue measure, and µ has density g with respcet to the Lebesgue

measure. As gn converges pointwisely to g, Lemma 3.1.9 shows that µn converges to µ, as

desired. ◦
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3.2 Weak convergence and distribution functions

In this section, we investigate the connection between weak convergence of probability mea-

sures and convergence of the corresponding cumulative distribution functions. We will show

that weak convergence is not in general equivalent to pointwise convergence of cumulative

distribution functions, but is equivalent to pointwise convergence on a dense subset of R.

Lemma 3.2.1. Let (µn) be a sequence of probability measures on (R,B), and let µ be some

other probability measure. Assume that µn has cumulative distribution function Fn for n ≥ 1,

and assume that µ has cumulative distribution function F . If µn
wk−→ µ, then it holds that

limn→∞ Fn(x) = F (x) whenever F is continuous at x.

Proof. Assume that µn
wk−→ µ and let x be such that F is continuous at x. Let ε > 0. By

Lemma 3.1.3, there exists h ∈ Cb(R) such that 1[x−2ε,x−ε](y) ≤ h(y) ≤ 1(x−3ε,x)(y) for y ∈ R.

Putting f(y) = h(y) for y ≥ x − ε and f(y) = 1 for y < x − ε, we find that 0 ≤ f ≤ 1,

f(y) = 1 for y ≤ x− ε and f(y) = 0 for y > x. Thus, 1(−∞,x−ε](y) ≤ f(y) ≤ 1(−∞,x](y) for

y ∈ R. This implies F (x− ε) ≤
∫
f dµ and

∫
f dµn ≤ Fn(x), from which we conclude

F (x− ε) ≤
∫
f dµ = lim

n→∞

∫
f dµn ≤ lim inf

n→∞
Fn(x). (3.4)

Similarly, there exists g ∈ Cb(R) such that 0 ≤ g ≤ 1, g(y) = 1 for y ≤ x and g(y) = 0 for

y > x+ ε, implying Fn(x) ≤
∫
g dµn and

∫
g dµ ≤ F (x+ ε) and allowing us to obtain

lim sup
n→∞

Fn(x) ≤ lim
n→∞

∫
g dµn =

∫
g dµ ≤ F (x+ ε). (3.5)

Combining (3.4) and (3.5), we conclude that for all ε > 0, it holds that

F (x− ε) ≤ lim inf
n→∞

Fn(x) ≤ lim sup
n→∞

Fn(x) ≤ F (x+ ε).

Since F is continuous at x, we may now let ε tend to zero and obtain that lim infn→∞ Fn(x)

and lim supn→∞ Fn(x) are equal, and the common value is F (x). Therefore, Fn(x) converges

and limn→∞ Fn(x) = F (x). This completes the proof.

The following example shows that in general, weak convergence does not imply convergence

of the cumulative distribution functions in all points. After the example, we prove the gen-

eral result on the correspondence between weak convergence and convergence of cumulative

distribution functions.
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Example 3.2.2. For each n ≥ 1, let µn be the Dirac measure in 1
n , and let µ be the Dirac

measure at 0. According to Example 3.1.10, µn
wk−→ µ. But with Fn being the cumulative

distribution function for µn and with F being the cumulative distribution function for µ, we

have Fn(0) = 0 for all n ≥ 1, while F (0) = 1, so that limn→∞ Fn(0) 6= F (0). ◦

Theorem 3.2.3. Let (µn) be a sequence of probability measures on (R,B), and let µ be some

other probability measure. Assume that µn has cumulative distribution function Fn for n ≥ 1,

and assume that µ has cumulative distribution function F . Then µn
wk−→ µ if and only if

there exists a dense subset A of R such that limn→∞ Fn(x) = F (x) for x ∈ A.

Proof. First assume that µn
wk−→ µ, we wish to identify a dense subset of R such that we

have pointwise convergence of the cumulative distribution functions on this set. Let B be

the set of discontinuity points of F , B is then countable, so Bc is dense in R. By Lemma

3.2.1, limn→∞ Fn(x) = F (x) whenever x ∈ Bc, and so Bc satisfies the requirements.

Next, assume that there exists a dense subset A of R such that limn→∞ Fn(x) = F (x) for

x ∈ A. We wish to show that µn
wk−→ µ. To this end, let f ∈ Cb(R), we need to prove

limn→∞
∫
f dµn =

∫
f dµ. Fix ε > 0. Recall that F (x) tends to zero and one as x tends

to minus infinity and infinity, respectively. Therefore, we may find a, b ∈ A with a < b such

that limn→∞ Fn(a) = F (a), limn→∞ Fn(b) = F (b), F (a) < ε and F (b) > 1 − ε. For n large

enough, we then also obtain Fn(a) < ε and Fn(b) > 1 − ε. Applying these properties, we

obtain

lim sup
n→∞

∣∣∣∣∫ f1(−∞,a] dµn −
∫
f1(−∞,a] dµ

∣∣∣∣ ≤ lim sup
n→∞

‖f‖∞(µn((−∞, a]) + µ((−∞, a]))

= lim sup
n→∞

‖f‖∞(Fn(a) + F (a)) ≤ 2ε‖f‖∞

and similarly,

lim sup
n→∞

∣∣∣∣∫ f1(b,∞) dµn −
∫
f1(b,∞) dµ

∣∣∣∣ ≤ lim sup
n→∞

‖f‖∞(µn((b,∞)) + µ((b,∞)))

= lim sup
n→∞

‖f‖∞(1− Fn(b) + (1− F (b))) ≤ 2ε‖f‖∞.

As a consequence, we obtain the bound

lim sup
n→∞

∣∣∣∣∫ f dµn −
∫
f dµ

∣∣∣∣ ≤ 4ε‖f‖∞ + lim sup
n→∞

∣∣∣∣∫ f1(a,b] dµn −
∫
f1(a,b] dµ

∣∣∣∣ . (3.6)

Now, f is uniformly continuous on [a, b]. Pick δ > 0 parrying ε for this uniform continuity.

Using that A is dense in R, pick a partition a = x0 < x1 < · · · < xm = b of elements in



3.3 Weak convergence and convergence in probability 69

A such that |xi − xi−1| ≤ δ for all i ≤ m. We then have |f(x) − f(xi−1)| ≤ ε whenever

xi−1 < x ≤ xi, and so∣∣∣∣∣
∫
f1(a,b] dµn −

∫ m∑
i=1

f(xi−1)1(xi−1,xi] dµn

∣∣∣∣∣ =

∣∣∣∣∣
m∑
i=1

∫
(f(x)− f(xi−1))1(xi−1,xi](x) dµn(x)

∣∣∣∣∣
≤

m∑
i=1

∫
|f(x)− f(xi−1)|1(xi−1,xi](x) dµn(x)

≤ εµn((a, b]) ≤ ε,

leading to |
∫
f1(a,b] dµn−

∑m
i=1 f(xi−1)(Fn(xi)−Fn(xi−1))| ≤ ε. By a similar argument, we

obtain the same bound with µ instead of µn. Combining these conclusions, we obtain∣∣∣∣∫ f1(a,b] dµn −
∫
f1(a,b] dµ

∣∣∣∣ ≤ 2ε+

∣∣∣∣∣
m∑
i=1

f(xi−1)(Fn(xi)− Fn(xi−1)− (F (xi)− F (xi−1)))

∣∣∣∣∣
≤ 2ε+ ‖f‖∞

m∑
i=1

|Fn(xi)− F (xi)|+ |Fn(xi−1)− F (xi−1)|.

As each xi is in A, this yields

lim sup
n→∞

|
∫
f1(a,b] dµn −

∫
f1(a,b] dµ| ≤ 2ε. (3.7)

Combining (3.6) and (3.7), we obtain lim supn→∞ |
∫
f dµn −

∫
f dµ| ≤ 4ε‖f‖∞ + 2ε. As

ε > 0 was arbitrary, this yields limn→∞
∫
f dµn =

∫
f dµ. As a consequence, µn

wk−→ µ, as

was to be shown.

3.3 Weak convergence and convergence in probability

In this section, we will investigate the connections between convergence in distribution of

random variables and convergence in probability. In general, these two modes of convergence

do not work well together, but in the case where we have convergence in distribution of one

sequence and convergence in probability towards a constant of another, we may obtain useful

results. As we in this section work with random variables instead of measures, we assume

given some background probability space (Ω,F , P ). In general, given two sequences (Xn) and

(Yn), our results in this section will only involve the distributions of (Xn, Yn), and in principle

each (Xn, Yn) could be defined on separate probability spaces (Ωn,Fn, Pn). This, however, is

mostly a theoretical distinction and is of little practical importance. When formulating our

results, we wil for clarity in general not mention the background probability space explicitly.
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We begin with a simple equivalence. Note that for x ∈ R, statements such as Xn
P−→ x and

Xn
D−→ x are equivalent to the statements that limn→∞ P (|Xn − x| > ε) = 0 for ε > 0 and

limn→∞Ef(Xn) = f(x) for f ∈ Cb(R), respectively, and so in terms of stochasticity depend

only on the distributions of Xn for each n ≥ 1. In the case of convergence in probability, this

is not the typical situation, as we in general have that Xn
P−→ X is a statement depending

on the multivariate distributions (Xn, X).

Lemma 3.3.1. Let (Xn) be a sequence of random variables, and let x ∈ R. Then Xn
P−→ x

if and only if Xn
D−→ x.

Proof. By Theorem 1.2.8, we know that if Xn
P−→ x, then Xn

D−→ x as well. In order to

prove the converse, assume that Xn
D−→ x, we wish to show that Xn

P−→ x. Take ε > 0. By

Lemma 3.1.3, there exists g ∈ Cb(R) such that 1[x−ε/2,x+ε/2](y) ≤ g(y) ≤ 1(x−ε,x+ε)(y) for

y ∈ R. With f = 1 − g, we then also obtain 1(x−ε,x+ε)c(y) ≤ f(y) ≤ 1[x−ε/2,x+ε/2]c(y), and

in particular, f(x) = 0. By weak convergence, we may then conclude

lim sup
n→∞

P (|Xn − x| ≥ ε) = lim sup
n→∞

E1(x−ε,x+ε)c(Xn)

≤ lim sup
n→∞

Ef(Xn) = Ef(x) = 0,

so Xn
P−→ x, as desired.

Lemma 3.3.2 (Slutsky’s Lemma). Let (Xn, Yn) be a sequence of random variables, and let

X be some other variable. If Xn
D−→ X and Yn

P−→ 0, then Xn + Yn
D−→ X.

Proof. Applying Theorem 3.1.7, we find that in order to obtain the result, it suffices to prove

that limn→∞Ef(Xn + Yn) = Ef(X) for f ∈ Cub (R). Fix f ∈ Cub (R). Note that

lim sup
n→∞

|Ef(Xn + Yn)− Ef(X)|

≤ lim sup
n→∞

|Ef(Xn + Yn)− Ef(Xn)|+ lim sup
n→∞

|Ef(Xn)− Ef(X)|

= lim sup
n→∞

|Ef(Xn + Yn)− Ef(Xn)|, (3.8)

so it suffices to show that the latter is zero. To this end, take ε > 0, and pick δ > 0 parrying

ε for the uniform continuity of f . We then obtain in particular that for x ∈ R and |y| ≤ δ,

|f(x+ y)− f(x)| ≤ ε. We then obtain

|Ef(Xn + Yn)− Ef(Xn)| ≤ E|f(Xn + Yn)− f(Xn)| ≤ ε+ 2‖f‖∞P (|Yn| > δ),
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and as Yn
P−→ 0, this implies lim supn→∞ |Ef(Xn + Yn) − Ef(Xn)| ≤ ε. As ε > 0 was

arbitrary, this yields lim supn→∞ |Ef(Xn + Yn)− Ef(Xn)| = 0. Combining this with (3.8),

we obtain limn→∞Ef(Xn + Yn) = Ef(X), as desired.

Theorem 3.3.3. Let (Xn, Yn) be a sequence of random variables, let X be some other vari-

able and let y ∈ R. Let h : R2 → R be a continuous mapping. If Xn
D−→ X and Yn

P−→ y,

then h(Xn, Yn)
D−→ h(X, y).

Proof. First note that h(Xn, Yn) = h(Xn, Yn) − h(Xn, y) + h(Xn, y). Define hy : R → R
by hy(x) = h(x, y). The distribution of h(Xn, y) is then hy(Xn(P )) and the distribution

of h(X, y) is hy(X(P )). As we have assumed that Xn
D−→ X, Lemma 3.1.2 yields that

Xn(P )
wk−→ X(P ). Therefore, as hy is continuous, hy(Xn(P ))

wk−→ hy(X(P )) by Lemma

3.1.8, which by Lemma 3.1.2 implies that h(Xn, y)
wk−→ h(X, y). Therefore, by Lemma 3.3.2,

it suffices to prove that h(Xn, Yn)− h(Xn, y) converges in probability to zero.

To this end, let ε > 0, we have to show limn→∞ P (|h(Xn, Yn)− h(Xn, y)| > ε) = 0. We have

assumed that h is continuous. Equipping R2 with the metric d : R2 × R2 → [0,∞) given by

d((a1, a2), (b1, b2)) = |a1 − b1| + |a2 − b2|, h is in particular continuous with respect to this

metric on R2. Now let M,η > 0 and note that h is uniformly continous on the compact set

[−M,M ]× [y−η, y+η]. Therefore, we may pick δ > 0 parrying ε for this uniform continuity,

and we may assume that δ ≤ η. We then have

(|Xn| ≤M) ∩ (|Yn − y| ≤ δ) ⊆ (|Xn| ≤M) ∩ (|Yn − y| ≤ δ) ∩ (d((Xn, Yn), (Xn, y)) ≤ δ)

⊆ (|h(Xn, Yn)− h(Xn, y)| ≤ ε),

which yields (|h(Xn, Yn)− h(Xn, y)| > ε) ⊆ (|Xn| > M) ∪ (|Yn − y| > δ) and thus

lim sup
n→∞

P (|h(Xn, Yn)− h(Xn, y)| > ε) ≤ lim sup
n→∞

P (|Xn| > M) + P (|Yn − y| > δ)

≤ sup
n≥1

P (|Xn| > M).

By Lemma 3.1.6, the latter tends to zero as M tends to infinity. We therefore conclude

that lim supn→∞ P (|h(Xn, Yn) − h(Xn, y)| > ε) = 0, so h(Xn, Yn) − h(Xn, y) converges in

probability to zero and the result follows.
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3.4 Weak convergence and characteristic functions

Let C denote the complex numbers. In this section, we will associate to each probability

measure µ on (R,B) a mapping ϕ : R→ C, called the characteristic function of µ. We will see

that the characteristic function determines the probability measure uniquely, in the sense that

two probability measures with equal characteristic functions in fact are equal. Furthermore,

we will show, and this will be the main result of the section, that weak convergence of

probability measures is equivalent to pointwise convergence of characteristic functions. As

characteristic functions in general are pleasant to work with, both from theoretical and

practical viewpoints, this result is of considerable use.

Before we introduce the characteristic function, we recall some results from complex analysis.

For z ∈ C, we let <(z) and =(z) denote the real and imaginary parts of z, and with i denoting

the imaginary unit, we always have z = <(z) + i=(z). < and = are then mappings from C
to R. Also, for z ∈ C with z = <(z) + i=(z), we define z = <(z) − i=(z) and refer to z as

the complex conjugate of z.

Also recall that we may define the complex exponential by its Taylor series, putting

ez =

∞∑
n=0

zn

n!

for any z ∈ C, where the series is absolutely convergent. We then also obtain the relationship

eiz = cos z + i sin z, where the complex cosine and the complex sine functions are defined by

their Taylor series,

cos z =

∞∑
n=0

(−1)nz2n

(2n)!
and sin z =

∞∑
n=0

(−1)nz2n+1

(2n+ 1)!
.

In particular, for t ∈ R, we obtain eit = cos t + i sin t, where cos t and sin t here are the

ordinary real cosine and sine functions. This shows that the complex exponential of a purely

imaginary argument yields a point on the unit circle corresponding to an angle of t measured

in radians.

Let (E, E , µ) be a measure space and let f : E → C be a complex valued function defined on

E. Then f(z) = <(f(z))+i=(f(z)). We refer to the mappings z 7→ <(f(z)) and z 7→ =(f(z))

as the real and imaginary parts of f , and denote them by <f and =f , respectively. Endowing

C with the σ-algebra BC generated by the open sets, it also holds that BC is the smallest

σ-algebra making < and = measurable. We then obtain that for any f : E → C, f is E-BC
measurable if and only if both the real and imaginary parts of f are E-B measurable.
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Definition 3.4.1. Let (E, E , µ) be a measure space. A measurable function f : E → C is

said to be integrable if both <f and =f are integrable, and in the affirmative, the integral of

f is defined by
∫
f dµ =

∫
<f dµ+ i

∫
=f dµ.

The space of integrable complex functions is denoted LC(E, E , µ) or simply LC. Note that we

have the inequalities |<f | ≤ |f |, |=f | ≤ |f | and |f | ≤ |<f |+ |=f |. Therefore, f is integrable

if and only if |f | is integrable.

Example 3.4.2. Let γ 6= 0 be a real number. Since |eiγt| = 1 for all t ∈ R, t 7→ eiγt is

integrable with respect to the Lebesgue measure on all compact intervals [a, b]. As it holds

that eiγt = cos γt+ i sin γt, we obtain∫ b

a

eiγt dt =

∫ b

a

cos γt dt+ i

∫ b

a

sin γtdt

=
sin γb− sin γa

γ
+ i
− cos γb+ cos γa

γ

=
−i
γ

(cos γb+ i sin γb− cos γa− i sin γa) =
eiγb − eiγa

iγ
,

extending the results for the real exponential function to the complex case. ◦

Lemma 3.4.3. Let (E, E , µ) be a measure space. If f, g ∈ LC and z, w ∈ C, it then holds

that zf + wg ∈ LC and
∫
zf + wg dµ = z

∫
f dµ+ w

∫
g dµ.

Proof. We first show that for f integrable and z ∈ C, it holds that zf is integrable and∫
zf dµ = z

∫
f dµ. First off, note that

∫
|zf |dµ =

∫
|z||f |dµ = |z|

∫
|f |dµ < ∞, so zf is

integrable. Furthermore,∫
zf dµ =

∫
(<(z) + i=(z))(<f + i=f) dµ

=

∫
<(z)<f −=(z)=f + i(<(z)=f + =(z)<f) dµ

=

∫
<(z)<f −=(z)=f dµ+ i

∫
<(z)=f + =(z)<f dµ

= <(z)

∫
<f dµ−=(z)

∫
=f dµ+ i

(
<(z)

∫
=f dµ+ =(z)

∫
<f dµ

)
= (<(z) + i=(z))

(∫
<f dµ+ i

∫
=f dµ

)
= z

∫
f dµ,

as desired. Next, we show that for f, g ∈ LC, f + g ∈ LC and
∫
f + g dµ =

∫
f dµ +

∫
g dµ.

First, as |f + g| ≤ |f |+ |g|, it follows that f + g ∈ LC. In order to obtain the desired identity
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for the integrals, we note that∫
f + g dµ =

∫
<(f + g) dµ+ i

∫
=(f + g) dµ

=

∫
<f + <g dµ+ i

∫
=f + =g dµ

=

∫
<f + i

∫
=f dµ+

∫
<g dµ+ i

∫
=g dµ =

∫
f dµ+

∫
g dµ,

as desired. Collecting our conclusions, we obtain the desired result.

Lemma 3.4.4. Let (E, E , µ) be a measure space. If f ∈ LC, then |
∫
f dµ| ≤

∫
|f |dµ.

Proof. Recall that for z ∈ C, there exists θ ∈ R such that z = |z|eiθ. Applying this to the

integral
∫
f dµ, we obtain |

∫
f dµ| = e−iθ

∫
f dµ =

∫
e−iθf dµ by Lemma 3.4.3. As the left

hand side is real, the right hand side must be real as well. Hence, we obtain∣∣∣∣∫ f dµ

∣∣∣∣ = <
(∫

e−iθf dµ

)
=

∫
<(e−iθf) dµ

≤
∫
|<(e−iθf)|dµ ≤

∫
|e−iθf |dµ =

∫
|f |dµ,

as desired.

Next, we state versions of the dominated convergence theorem and Fubini’s theorem for

complex mappings.

Theorem 3.4.5. Let (E, E , µ) be a measure space, and let (fn) be a sequence of measurable

mappings from E to C. Assume that the sequence (fn) converges µ-almost everywhere to

some mapping f . Assume that there exists a measurable, integrable mapping g : E → [0,∞)

such that |fn| ≤ g µ-almost everywhere for all n. Then fn is integrable for all n ≥ 1, f is

measurable and integrable, and

lim
n→∞

∫
fn dµ =

∫
lim
n→∞

fn dµ.

Proof. As fn converges µ-almost everywhere to f , we find that <fn converges µ-almost every-

where to <f and =fn converges µ-almost everywhere to =f . Furthermore, we have |<fn| ≤ g
and |=fn| ≤ g µ-almost everywhere. Therefore, the dominated convergence theorem for real-

valued mappings yields

lim
n→∞

∫
fn dµ = lim

n→∞

∫
<fn dµ+ i

∫
=fn dµ

=

∫
lim
n→∞

<fn dµ+ i

∫
lim
n→∞

=fn dµ =

∫
lim
n→∞

fn dµ,
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as desired.

Theorem 3.4.6. Let (E, E , µ) and (F,F , ν) be two σ-finite measure spaces, and assume that

f : E×F → C is E ⊗F measurable and µ⊗ ν integrable. Then y 7→ f(x, y) is integrable with

respect to ν for µ-almost all x, the set where this is the case is measurable, and it holds that∫
f(x, y) d(µ⊗ ν)(x, y) =

∫ ∫
f(x, y) dν(y) dµ(x).

Proof. As f is µ ⊗ ν integrable, both <f and =f are µ ⊗ ν integrable as well. Therefore,

the Fubini theorem for real-valued mappings yields that y 7→ <f(x, y) and y 7→ =f(x, y)

are integrable µ-almost surely, and the sets where this is the case are measurable. As a

consequence, the set where y 7→ f(x, y) is integrable is measurable and is a µ-almost sure

set. The Fubini theorem for real-valued mappings furthermore yields that∫
f(x, y) d(µ⊗ ν)(x, y) =

∫
<f(x, y) d(µ⊗ ν)(x, y) + i

∫
=f(x, y) d(µ⊗ ν)(x, y)

=

∫ ∫
<f(x, y) dν(y) dµ(x) + i

∫ ∫
=f(x, y) dν(y) dµ(x)

=

∫ ∫
<f(x, y) dν(y) dµ(x) +

∫
i

∫
=f(x, y) dν(y) dµ(x)

=

∫ ∫
<f(x, y) dν(y) + i

∫
=f(x, y) dν(y) dµ(x)

=

∫ ∫
f(x, y) dν(y) dµ(x),

as was to be proven.

We are now ready to introduce the characteristic function of a probability measure on (R,B).

Definition 3.4.7. Let µ be a probability measure on (R,B). The characteristic function for

µ is the function ϕ : R→ C defined by ϕ(θ) =
∫
eiθx dµ(x).

Since |eiθx| = 1 for all values of θ and x, the integral
∫
eiθx dµ(x) in Definition 3.4.7 is

always well-defined. For a random variable X with distribution µ, we also introduce the

characteristic function ϕ of X as the characteristic function of µ. The characteristic function

ϕ of X may then also be expressed as

ϕ(θ) =

∫
eiθx dµ(x) =

∫
eiθx dX(P )(x) =

∫
eiθX(ω) dP (ω) = EeiθX .

The following lemmas demonstrate some basic properties of characteristic functions.
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Lemma 3.4.8. Let µ be a probability measure on (R,B) and assume that ϕ is the charac-

teristic function of µ. The mapping ϕ has the following properties.

(1). ϕ(0) = 1.

(2). For all θ ∈ R, |ϕ(θ)| ≤ 1.

(3). For all θ ∈ R, ϕ(−θ) = ϕ(θ).

(4). ϕ is uniformly continuous.

Furthermore, for n ≥ 1, if
∫
|x|n dµ(x) is finite, then ϕ is n times continuously differentiable,

and with ϕ(n) denoting the n’th derivative, we have ϕ(n)(θ) = in
∫
xneiθx dµ(x). In particular,

in the affirmative, ϕ(n)(0) = in
∫
xn dµ(x).

Proof. The first claim follows as ϕ(0) =
∫
ei0x dµ(x) = µ(R) = 1, and the second claim

follows as |ϕ(θ)| = |
∫
eiθx dµ(x)| ≤

∫
|eiθx|dµ(x) = 1. Also, the third claim follows since

ϕ(−θ) =

∫
ei(−θ)x dµ(x) =

∫
cos(−θx) + i sin(−θx) dµ(x)

=

∫
cos(−θx) dµ(x) + i

∫
sin(−θx) dµ(x)

=

∫
cos(θx) dµ(x)− i

∫
sin(θx) dµ(x) = ϕ(θ).

To obtain the fourth claim, let θ ∈ R and let h > 0. We then have

|ϕ(θ + h)− ϕ(θ)| =
∣∣∣∣∫ ei(θ+h)x − eiθx dµ(x)

∣∣∣∣ =

∣∣∣∣∫ eiθx(eihx − 1) dµ(x)

∣∣∣∣
≤
∫
|eiθx||(eihx − 1)|dµ(x) =

∫
|(eihx − 1)|dµ(x),

where limh→0

∫
|(eihx − 1)|dµ(x) = 0 by the dominated convergence theorem. In order to

use this to obtain uniform continuity, let ε > 0. Choose δ > 0 so that for 0 ≤ h ≤ δ,∫
|(eihx − 1)|dν(x) ≤ ε. We then find for any x, y ∈ R with x < y and |x − y| ≤ δ that

|ϕ(y)−ϕ(x)| = |ϕ(x+(y−x))−ϕ(y)| ≤ ε, and as a consequence, we find that ϕ is uniformly

continuous.

Next, we prove the results on the derivative. We apply an induction argument, and wish

to show for n ≥ 0 that if
∫
|x|n dµ(x) is finite, then ϕ is n times continuously differentiable

with ϕ(n) = in
∫
xneiθx dµ(x). Noting that the induction start holds, it suffices to prove the
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induction step. Assume that the result holds for n, we wish to prove it for n + 1. Assume

that
∫
|x|n+1 dµ(x) is finite. Fix θ ∈ R and h > 0. We then have

ϕ(n)(θ + h)− ϕ(n)(θ)

h
=

1

h

(
in
∫
xnei(θ+h)x dµ(x)− in

∫
xneiθx dµ(x)

)
= in

∫
xneiθx

eihx − 1

h
dµ(x). (3.9)

We wish to apply the dominated convergence theorem to calculate the limit of the above as

h tends to zero. First note that by l’Hôpital’s rule, we have

lim
h→0

eihx − 1

h
= lim
h→0

coshx− 1

h
+ i

sinhx

h
= lim
h→0
−x sinhx+ ix coshx = ix,

so the integrand in the final expression of (3.9) converges pointwise to ixn+1eiθx. Note

furthermore that since | cosx − 1| = |
∫ x

0
sin y dy| ≤ |x| and | sinx| = |

∫ x
0

cos y dy| ≤ |x| for

all x ∈ R, we have ∣∣∣∣eihx − 1

h

∣∣∣∣ =

∣∣∣∣coshx− 1

h
+ i

sinhx

h

∣∣∣∣ ≤ 2|x|,

yielding that |xneiθx e
ihx−1
h | ≤ 2|x|n+1. As we have assumed that the latter is integrable with

respect to µ, the dominated convergence theorem applies and allows us to conclude that

lim
h→0

ϕ(n)(θ + h)− ϕ(n)(θ)

h
= lim
h→0

in
∫
xneiθx

eihx − 1

h
dµ(x)

= in
∫

lim
h→0

xneiθx
eihx − 1

h
dµ(x)

= in+1

∫
xn+1 dµ(x),

as desired. This proves that ϕ is n+ 1 times differentiable, and yields the desired expression

for ϕ(n+1). By another application of the dominated convergence theorem, we also obtain

that ϕ(n+1) is continuous. This completes the induction proof. As a consequence of this

latter result, it also follows that when
∫
|x|n dµ(x) is finite, ϕ(n)(0) = in

∫
xn dµ(x). This

completes the proof of the lemma.

Lemma 3.4.9. Assume that X is a random variable with characteristic function ϕ, and let

α, β ∈ R. The variable α+ βX has characteristic function φ given by φ(θ) = eiθαϕ(βθ).

Proof. Noting that φ(θ) = Eeiθ(α+βX) = eiθαEeiβθX = eiθαϕ(βθ), the result follows.
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Next, we show by example how to calculate the characteristic functions of a few distributions.

Example 3.4.10. Let ϕ be the characteristic function of the standard normal distribution,

we wish to obtain a closed-form expression for ϕ. We will do this by proving that ϕ satisfies

a particular differential equation. To this end, let f be the density of the standard normal

distribution, f(x) = 1√
2π

exp(− 1
2x

2). Note that for any θ ∈ R, we have by Lemma 3.4.8 that

ϕ(θ) =

∫ ∞
−∞

eiθxf(x) dx =

∫ ∞
−∞

e−iθxf(−x) dx =

∫ ∞
−∞

e−iθxf(x) dx = ϕ(−θ) = ϕ(θ).

As a consequence, =ϕ(θ) = 0, so ϕ(θ) =
∫∞
−∞ cos(θx)f(x) dx. Next, note that∣∣∣∣ d

dθ
cos(θx)f(x)

∣∣∣∣ = | − x sin(θx)f(x)
∣∣∣ ≤ |x|f(x),

which is integrable with respect to the Lebesgue measure. Therefore, ϕ(θ) is differentiable

for all θ ∈ R, and the derivative may be calculated by an exchange of limits. Recalling that

f ′(x) = −xf(x), we obtain

ϕ′(θ) =
d

dθ

∫ ∞
−∞

cos(θx)f(x) dx =

∫ ∞
−∞

d

dθ
cos(θx)f(x) dx

= −
∫ ∞
−∞

x sin(θx)f(x) dx =

∫ ∞
−∞

sin(θx)f ′(x) dx.

Partial integration then yields

ϕ′(θ) = lim
M→∞

∫ M

−M
sin(θx)f ′(x) dx

= lim
M→∞

sin(θM)f(M)− sin(−θM)f(−M)−
∫ M

−M
θ cos(θx)f(x) dx

= − lim
M→∞

∫ M

−M
θ cos(θx)f(x) dx = −θϕ(θ),

since limM→∞ f(M) = limM→∞ f(−M) = 0. Thus, ϕ satisfies ϕ′(θ) = −θϕ(θ). All the

solutions to this differential equation are of the form θ 7→ c exp(− 1
2θ

2) for some c ∈ R, so we

conclude that there exists c ∈ R such that ϕ(θ) = c exp(− 1
2θ

2) for all θ ∈ R. As ϕ(0) = 1,

this implies ϕ(θ) = exp(− 1
2θ

2).

By Lemma 3.4.9, we then also obtain as an immediate corollary that the characteristic

function for the normal distribution with mean ξ and variance σ2, where σ > 0, is given by

θ 7→ exp(iξθ − 1
2σ

2θ2). ◦
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Example 3.4.11. In this example, we derive the characteristic function for the standard

exponential distribution. Let ϕ denote the characteristic function, we then have

ϕ(θ) =

∫ ∞
0

cos(θx)e−x dx+ i

∫ ∞
0

sin(θx)e−x dx,

and we need to evaluate both of these intgrals. In order to do so, fix a, b ∈ R and note that

d

dx

(
a cos(θx)e−x + b sin(θx)e−x

)
= (bθ − a) cos(θx)e−x − (aθ + b) sin(θx)e−x.

Next, note that the pair of equations bθ − a = c and −(aθ + b) = d have unique solutions in

a and b given by a = (−c− dθ)/(1 + θ2) and b = (cθ − d)/(1 + θ2), such that we obtain

d

dx

(
−c− dθ
1 + θ2

cos(θx)e−x +
cθ − d
1 + θ2

sin(θx)e−x
)

= c cos(θx)e−x + d sin(θx)e−x. (3.10)

Using (3.10) with c = 1 and d = 0, we conclude that∫ ∞
0

cos(θx)e−x dx = lim
M→∞

[
− cos(θx)

1 + θ2
e−x +

θ sin(θx)

1 + θ2
e−x

]M
0

=
1

1 + θ2
, (3.11)

and likewise, using (3.10) with c = 0 and d = 1, we find∫ ∞
0

sin(θx)e−x dx = lim
M→∞

[
−θ cos(θx)

1 + θ2
e−x +

− sin(θx)

1 + θ2
e−x

]M
0

=
θ

1 + θ2
. (3.12)

Combining (3.11) and (3.12), we conclude

ϕ(θ) =
1

1 + θ2
+ i

θ

1 + θ2
=

1 + iθ

1 + θ2
=

1 + iθ

(1 + iθ)(1− iθ)
=

1

1− iθ
.

By Lemma 3.4.9, we then also obtain that the exponential distribution with mean λ for λ > 0

has characteristic function θ 7→ 1
1−iλθ . ◦

Example 3.4.12. We wish to derive the characteristic function for the Laplace distribution.

Denote by ϕ this characteristic function. Using the relationships sin(−θx) = − sin(θx) and

cos(−θx) = cos(θx) and recalling (3.10), we obtain

ϕ(θ) =

∫ ∞
−∞

cos(θx)
1

2
e−|x| dx+ i

∫ ∞
−∞

sin(θx)
1

2
e−|x| dx

=

∫ ∞
−∞

cos(θx)
1

2
e−|x| dx =

∫ ∞
0

cos(θx)e−x dx

= lim
M→∞

[
− cos(θx)

1 + θ2
e−x +

θ sin(θx)

1 + θ2
e−x

]M
0

=
1

1 + θ2
.

◦

Next, we introduce the convolution of two probability measures and argue that characteristic

functions interact in a simple manner with convolutions.
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Definition 3.4.13. Let µ and ν be two probability measures on (R,B). The convolution

µ ∗ ν of µ and ν is the probability measure h(µ⊗ ν) on (R,B), where h : R2 → R is given by

h(x, y) = x+ y.

The following lemma gives an important interpretation of the convolution of two probability

measures.

Lemma 3.4.14. Let X and Y be two independent random variables X and Y defined on

the same probability space. Assume that X has distribution µ and that Y has distribution ν.

Then X + Y has distribution µ ∗ ν.

Proof. As X and Y are independent, it holds that (X,Y )(P ) = µ ⊗ ν. With h : R2 → R
defined by h(x, y) = x+ y, we then have, by the theorem on successive transformations, that

(X + Y )(P ) = h(X,Y )(P ) = h((X,Y )(P )) = h(µ⊗ ν) = µ ∗ ν,

so µ ∗ ν is the distribution of X + Y .

Lemma 3.4.15. Let µ and ν be probability measures on (R,B) with characteristic functions

ϕ and φ. Then µ ∗ ν has characteristic function θ 7→ ϕ(θ)φ(θ).

Proof. Let ψ be the characteristic function of µ ∗ ν. Fix θ ∈ R, we need to demonstrate that

ψ(θ) = ϕ(θ)φ(θ). Let h : R2 → R be given by h(x, y) = x + y. Using Fubini’s theorem, we

obtain

ψ(θ) =

∫
eiθz d(µ ∗ ν)(z) =

∫
eiθz dh(µ⊗ ν)(z)

=

∫
eiθh(x,y) d(µ⊗ ν)(x, y) =

∫
eiθ(x+y) d(µ⊗ ν)(x, y)

=

∫ ∫
eiθxeiθy dµ(x) dν(y) =

∫
eiθy

∫
eiθx dµ(x) dν(y)

=

∫
eiθx dµ(x)

∫
eiθy dν(y) = ϕ(θ)φ(θ),

proving the desired result.

As mentioned earlier, two of our main objectives in this section is to prove that probability

measures are uniquely determined by characteristic functions, and to prove that weak con-

vergence is equivalent to pointwise convergence of characteristic functions. To show these

results, we will employ a method based on convolutions with normal distributions.
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We will need three technical lemmas. Lemma 3.4.16 shows that convoluting a probability

measure with a normal distribution approximates the original probability measure when the

mean in the normal distribution is zero and the variance is small. Lemma 3.4.17 will show

that if we wish to prove weak convergence of some sequence (µn) to some µ, it suffices to

prove weak convergence when both the sequence and the limit are convoluted with a normal

distribution with mean zero and small variance. Intuitively, this is not a surprising result. Its

usefulness is clarified by Lemma 3.4.18, which states that the convolution of any probability

measure µ with a particular normal distribution has density with respect to the Lebesgue

measure, and the density can be obtained in closed form in terms of the characteristic function

of the measure µ. This is a frequently seen feature of convolutions: The convolution of two

probability measures in general inherits the regularity properties of each of the convoluted

measures, in this particular case, the regularity property of having a density with respect

to the Lebesgue measure. Summing up, Lemma 3.4.16 shows that convolutions with small

normal distributions are close to the original probability measure, Lemma 3.4.17 shows that

in order to prove weak convergence, it suffices to consider probability measures convoluted

with normal distributions, and Lemma 3.4.18 shows that such convolutions possess good

regularity properties.

Lemma 3.4.16. Let µ be a probability measure on (R,B). Let ξk be the normal distribution

with mean zero and variance 1
k . Then µ ∗ ξk

wk−→ µ.

Proof. Consider a probability space endowed with two independent random variables X

and Y , where X has distribution µ and Y follows a standard normal distribution. Define

Yk = 1√
k
Y , then Yk is independent of X and has distribution ξk. As a consequence, we also

obtain P (|Yk| > δ) ≤ δ−2E|Yk|2 = δ−2/k by Lemma 1.2.7, so Yk converges in probability to

0. Therefore, Lemma 3.3.2 yields X + Yk
D−→ X. However, by Lemma 3.4.14, X + Yk has

distribution µ ∗ ξk. Thus, we conclude that µ ∗ ξk
wk−→ µ.

Lemma 3.4.17. Let (µn) be a sequence of probability measures on (R,B), and let µ be some

other probability measure. Let ξk be the normal distribution with mean zero and variance 1
k .

If it holds for all k ≥ 1 that µn ∗ ξk
wk−→ µ ∗ ξk, then µn

wk−→ µ as well.

Proof. According to Theorem 3.1.7, it suffices to show that limn→∞
∫
f dµn =

∫
f dµ for

f ∈ Cub (R). To do so, let f ∈ Cub (R). Fix n, k ≥ 1. For convenience, assume given

a probability space with independent random variables Xn, Yk and X, such that Xn has
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distribution µn, Yk has distribution ξk and X has distribution µ. We then have∣∣∣∣∫ f dµn −
∫
f dµ

∣∣∣∣ = |Ef(Xn)− Ef(X)|

≤ |Ef(Xn)− Ef(Xn + Yk)|+ |Ef(Xn + Yk)− Ef(X + Yk)|

+ |Ef(X + Yk)− Ef(X)|. (3.13)

We will prove that the limes superior of the left-hand side is zero by bounding the limes

superior of each of the three terms on the right-hand side. First note that by our assumptions,

limn→∞ |Ef(Xn + Yk) − Ef(X + Yk)| = limn→∞ |
∫
f d(µn ∗ ξk) −

∫
f d(µ ∗ ξk)| = 0. Now

consider some ε > 0. Pick δ parrying ε for the uniform continuity of f . We then obtain

|Ef(Xn)− Ef(Xn + Yk)| ≤ E|f(Xn)− f(Xn + Yk)|

≤ ε+ E|f(Xn)− f(Xn + Yk)|1(|Yk|>δ)

≤ ε+ 2‖f‖∞P (|Yk| > δ),

and similarly, |Ef(X) − Ef(X + Yk)| ≤ ε + 2‖f‖∞P (|Yk| > δ) as well. Combining these

observations with (3.13), we get lim supn→∞ |
∫
f dµn −

∫
f dµ| ≤ 2ε + 4‖f‖∞P (|Yk| > δ).

By Lemma 1.2.7, P (|Yk| > δ) ≤ δ−2E|Yk|2 = δ−2/k, so limk→∞ P (|Yk| > δ) = 0. All in

all, this yields lim supn→∞ |
∫
f dµn −

∫
f dµ| ≤ 2ε. As ε > 0 was arbitrary, this proves

limn→∞
∫
f dµn =

∫
f dµ, and thus µn

wk−→ µ by Theorem 3.1.7.

Lemma 3.4.18. Let µ be some probability measure, and let ξk be the normal distribution

with mean zero and variance 1
k . Let ϕ be the characteristic function for µ. The probability

measure µ ∗ ξk then has density f with respect to the Lebesgue measure, and the density is

given by

f(u) =
1

2π

∫
ϕ(x) exp

(
− 1

2k
x2

)
e−iux dx.

Proof. Let x ∈ R. By Tonelli’s theorem and the change of variable u = y + z, we obtain

(µ ∗ ξk)((−∞, x]) =

∫
1(y+z≤x) d(µ⊗ ξk)(y, z) =

∫ ∫
1(y+z≤x) dξk(z) dµ(y)

=

∫ ∫
1(y+z≤x)

√
k√
2π

exp

(
−k

2
z2

)
dz dµ(y)

=

∫ ∫
1(u≤x)

√
k√
2π

exp

(
−k

2
(u− y)2

)
dudµ(y)

=

∫ x

−∞

∫ √
k√
2π

exp

(
−k

2
(y − u)2

)
dµ(y) du.
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This implies that µn ∗ξk has density with respect to the Lebesgue measure, and the density f

is given by f(u) =
∫ √

k√
2π

exp
(
−k2 (y − u)2

)
dµ(y). By Example 3.4.10, exp(−k2 (y−u)2) is the

characteristic function of the normal distribution with mean zero and variance k, evaluated

in y − u. Therefore, we have

exp

(
−k

2
(y − u)2

)
=

∫
ei(y−u)x 1√

2πk
exp

(
−x

2

2k

)
dx.

Substituting this in our expression for the density and applying Fubini’s theorem, we obtain

f(u) =

∫ √
k√
2π

∫
ei(y−u)x 1√

2πk
exp

(
−x

2

2k

)
dxdµ(y)

=
1

2π

∫ ∫
ei(y−u)x exp

(
−x

2

2k

)
dxdµ(y)

=
1

2π

∫ ∫
eiyx dµ(y) exp

(
− 1

2k
x2

)
e−iux dx

=
1

2π

∫
ϕ(x) exp

(
− 1

2k
x2

)
e−iux dx,

proving the lemma.

With Lemma 3.4.17 and Lemma 3.4.18 in hand, our main results on characteristic functions

now follow without much difficulty.

Theorem 3.4.19. Let µ and ν be probability measures on (R,B) with characteristic functions

ϕ and φ, respectively. Then µ and ν are equal if and only if ϕ and φ are equal.

Proof. If µ and ν are equal, we obtain for θ ∈ R that

ϕ(θ) =

∫
eiθx dµ(x) =

∫
eiθx dν(x) = φ(θ),

so ϕ and φ are equal. Conversely, assume that ϕ and φ are equal. Let ξk be the normal

distribution with mean zero and variance 1
k . By Lemma 3.4.18, µ ∗ ξk and ν ∗ ξk both have

densities with respect to the Lebesgue measure, and the densities fk and gk are given by

fk(u) =
1

2π

∫
ϕ(x) exp

(
− 1

2k
x2

)
e−iux dx and

gk(u) =
1

2π

∫
φ(x) exp

(
− 1

2k
x2

)
e−iux dx,

respectively. As ϕ and φ are equal, fk and gk are equal, and so µ ∗ ξk and ν ∗ ξk are equal.

By Lemma 3.4.16, µ ∗ ξk
wk−→ µ and ν ∗ ξk

wk−→ ν. As µ ∗ ξk and ν ∗ ξk are equal by our above

observations, we find that µ ∗ ξk
wk−→ µ and µ ∗ ξk

wk−→ ν, yielding µ = ν by Lemma 3.1.5.
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Theorem 3.4.20. Let (µn) be a sequence of probability measures on (R,B), and let µ be

some other probability measure. Assume that µn has characteristic function ϕn and that µ

has characteristic function ϕ. Then µn
wk−→ µ if and only if limn→∞ ϕn(θ) = ϕ(θ) for all

θ ∈ R.

Proof. First assume that µn
wk−→ µ. Fix θ ∈ R. Since x 7→ cos(θx) and x 7→ sin(θx) are in

Cb(R), we obtain

lim
n→∞

ϕn(θ) = lim
n→∞

∫
cos(θx) dµn(x) + i

∫
sin(θx) dµn(x)

=

∫
cos(θx) dµ(x) + i

∫
sin(θx) dµ(x) = ϕ(θ),

as desired. This proves one implication. It remains to prove that if the characteristic functions

converge, the probability measures converge weakly.

In order to do so, assume that limn→∞ ϕn(θ) = ϕ(θ) for all θ ∈ R. We will use Lemma 3.4.17

and Lemma 3.4.18 to prove the result. Let ξk be the normal distribution with mean zero

and variance 1
k . By Lemma 3.4.18, µn ∗ ξk and µ ∗ ξk both have densities with respect to the

Lebesgue measure, and the densities fnk and fk are given by

fnk(u) =
1

2π

∫
ϕn(x) exp

(
− 1

2k
x2

)
e−iux dx and

fk(u) =
1

2π

∫
ϕ(x) exp

(
− 1

2k
x2

)
e−iux dx,

respectively. Since |ϕn| and |ϕ| are bounded by one, the dominated convergence theorem

yields limn→∞ fnk(u) = fk(u) for all k ≥ 1 and u ∈ R. By Lemma 3.1.9, we may then

conclude µn ∗ ξk
wk−→ µ ∗ ξk for all k ≥ 1, and Lemma 3.4.17 then shows that µn

wk−→ µ, as

desired.

For the following corollary, we introduce C∞b (R) as the set of continuous, bounded functions

f : R→ R which are differentiable infinitely often with bounded derivatives.

Corollary 3.4.21. Let (µn) be a sequence of probability measures on (R,B), and let µ be

some other probability measure. Then µn
wk−→ µ if and only if limn→∞

∫
f dµn =

∫
f dµ for

f ∈ C∞b (R).

Proof. As C∞b (R) ⊆ Cb(R), it is immediate that if µn
wk−→ µ, then limn→∞

∫
f dµn =

∫
f dµ

for f ∈ C∞b (R). To show the converse implication, assume that limn→∞
∫
f dµn =

∫
f dµ for
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f ∈ C∞b (R). In particular, it holds for θ ∈ R that limn→∞
∫

sin(θx) dµn(x) =
∫

sin(θx) dµ(x)

and limn→∞
∫

cos(θx) dµn(x) =
∫

cos(θx) dµ(x). Letting ϕn and ϕ denote the characteristic

functions for µn and µ, respectively, we therefore obtain

lim
n→∞

ϕn(θ) = lim
n→∞

∫
cos(θx) dµn(x) +

∫
sin(θx) dµn(x)

=

∫
cos(θx) dµ(x) +

∫
sin(θx) dµ(x) = ϕ(θ)

for all θ ∈ R, so that Theorem 3.4.20 yields µn
wk−→ µ, as desired.

3.5 Central limit theorems

In this section, we use our results from Section 3.4 to prove Lindeberg’s central limit theorem,

which gives sufficient requirements for a normalized sum of independent variables to be

approximated by a normal distribution in a weak convergence sense. This is one of the main

classical results in the theory of weak convergence.

The proof relies on proving pointwise convergence of characteristic functions and applying

Theorem 3.4.20. In order to prove such pointwise convergence, we will be utilizing some

finer properties of the complex exponential, as well as a particular inequality for complex

numbers. We begin by proving these auxiliary results, after which we prove the central limit

theorem for the case of independent and identically distributed random variables. This result

is weaker than the Lindeberg central limit theorem to be proven later, but the arguments

applied illustrate well the techniques to be used in the more difficult proof of Lindeberg’s

central limit theorem, which is given afterwards.

Lemma 3.5.1. Let z1, . . . , zn and w1, . . . , wn be complex numbers with |zi| ≤ 1 and |wi| ≤ 1

for all i = 1, . . . , n. It then holds that |
∏n
i=1 zi −

∏n
i=1 wi| ≤

∑n
i=1 |zi − wi|.
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Proof. For n ≥ 2, we have∣∣∣∣∣
n∏
i=1

zi −
n∏
i=1

wi

∣∣∣∣∣ ≤
∣∣∣∣∣
n∏
i=1

zi −

(
n−1∏
i=1

zi

)
wn

∣∣∣∣∣+

∣∣∣∣∣
(
n−1∏
i=1

zi

)
wn −

n∏
i=1

wi

∣∣∣∣∣
=

(
n−1∏
i=1

|zi|

)
|zn − wn|+ |wn|

∣∣∣∣∣
n−1∏
i=1

zi −
n−1∏
i=1

wi

∣∣∣∣∣
≤ |zn − wn|+

∣∣∣∣∣
n−1∏
i=1

zi −
n−1∏
i=1

wi

∣∣∣∣∣ ,
and the desired result then follows by induction.

Lemma 3.5.2. It holds that

(1). |ex − (1 + x)| ≤ 1
2x

2 for all x ≤ 0.

(2).
∣∣eix − 1− ix+ x2

2

∣∣ ≤ 3
2x

2 for all x ∈ R.

(3).
∣∣eix − 1− ix+ x2

2

∣∣ ≤ 1
3 |x|

3 for all x ∈ R.

Proof. To prove the first inequality, we apply a first order taylor expansion of the exponential

mapping around zero. Fix x ∈ R, by Taylor’s theorem we then find that there exists ξ(x)

between zero and x such that exp(x) = 1 + x + 1
2 exp(ξ(x))x2, which for x ≤ 0 yields

| exp(x)− (1 + x)| ≤ 1
2 | exp(ξ(x))x2| ≤ 1

2x
2. This proves the first inequality.

Considering the second inequality, recall that eix = cosx+ i sinx. We therefore obtain

|eix − 1− ix+ 1
2x

2| = |eix − 1− ix|+ 1
2x

2 = | cosx− 1 + i(sinx− x)|+ 1
2x

2

≤ | cosx− 1|+ | sinx− x|+ 1
2x

2.

Recalling that cos′ = − sin, cos′′ = − cos, sin′ = cos and sin′′ = − sin, first order Taylor

expansions around zero yield the existence of ξ∗(x) and ξ∗∗(x) between zero and x such that

cosx = 1− 1
2 cos(ξ∗(x))x2 and sinx = x− 1

2 sin(ξ∗∗(x))x2,

which yields | cosx − 1| ≤ 1
2 | cos(ξ∗(x))x2| ≤ 1

2x
2 and | sinx − x| ≤ 1

2 | sin(ξ∗∗(x))x2| ≤ 1
2x

2.

Combining our three inequalities, we obtain |eix − 1− ix + 1
2x

2| ≤ 3
2x

2, proving the second

inequality. Finally, we demonstrate the third inequality. Second order Taylor expansions

around zero yield the existence of η∗(x) and η∗∗(x) such that

cosx = 1− 1
2x

2 + 1
6 sin(η∗(x))x3 and sinx = x− 1

6 cos(η∗∗(x))x3,
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allowing us to obtain

|eix − 1− ix+ 1
2x

2| = | cosx− 1 + 1
2x

2 + i(sinx− x)|

≤ | cosx− 1 + 1
2x

2|+ | sinx− x|

≤ 1
6 | sin(η∗(x))x3|+ 1

6 | cos(η∗∗(x))x3| ≤ 1
3 |x|

3,

as desired. This proves the third inequality.

The combination of Lemma 3.5.1, Lemma 3.5.2 and Theorem 3.4.20 is sufficient to obtain

the following central limit theorem for independent and identically distributed variables.

Theorem 3.5.3 (Classical central limit theorem). Let (Xn) be a sequence of independent

and identically distributed random variables with mean ξ and variance σ2, where σ > 0. It

then holds that

1√
n

n∑
k=1

Xk − ξ
σ

D−→ N (0, 1),

where N (0, 1) denotes the standard normal distribution.

Proof. It suffices to consider the case where ξ = 0 and σ2 = 1. In this case, we have to

argue that 1√
n

∑n
k=1Xk

D−→ N (0, 1). Denote by ϕ the common characteristic function of

Xn for n ≥ 1, and denote by ϕn the characteristic function of 1√
n

∑n
k=1Xk. Lemma 3.4.15

and Lemma 3.4.9 show that ϕn(θ) = ϕ(θ/
√
n)n. Recalling from Example 3.4.10 that the

standard normal distribution has characteristic function θ 7→ exp(− 1
2θ

2), Theorem 3.4.20

yields that in order to prove the result, it suffices to show for all θ ∈ R that

lim
n→∞

ϕ(θ/
√
n)n = e−θ

2/2. (3.14)

To do so, first note that by Lemma 3.4.8 and Lemma 3.5.1 we obtain

|ϕ(θ/
√
n)n − exp(− 1

2θ
2)| = |ϕ(θ/

√
n)n − exp(− 1

2nθ
2)n|

≤ n|ϕ(θ/
√
n)− exp(− 1

2nθ
2)|. (3.15)

Now, as the variables (Xn) have second moment, we have from Lemma 3.4.8 that ϕ is two

times continuously differentiable with ϕ(0) = 1, ϕ′(0) = 0 and ϕ′′(0) = −1. Therefore, a

first-order Taylor expansion shows that for each θ ∈ R, there exists ξ(θ) between 0 and θ

such that ϕ(θ) = ϕ(0) + ϕ′(0)θ + 1
2ϕ
′′(ξ(θ))θ2 = 1 + 1

2θ
2ϕ′′(ξ(θ)). In particular, this yields

ϕ(θ/
√
n) = 1 + 1

2nθ
2ϕ′′(ξ(θ/

√
n))

= 1− 1
2nθ

2 + 1
2nθ

2(1 + ϕ′′(ξ(θ/
√
n))). (3.16)
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Combining (3.15) and (3.16) and applying the first inequality of Lemma 3.5.2, we obtain

|ϕ(θ/
√
n)n − exp(− 1

2θ
2)| ≤ n|1− 1

2nθ
2 + 1

2nθ
2(1 + ϕ′′(ξ(θ/

√
n)))− exp(− 1

2nθ
2)|

≤ n|1− 1
2nθ

2 − exp(− 1
2nθ

2)|+ 1
2θ

2|1 + ϕ′′(ξ(θ/
√
n))|

≤ n
2 ( 1

2nθ
2)2 + 1

2θ
2|1 + ϕ′′(ξ(θ/

√
n))|

= 1
8nθ

4 + 1
2θ

2|1 + ϕ′′(ξ(θ/
√
n))|. (3.17)

Now, as n tends to infinity, θ/
√
n tends to zero, and so ξ(θ(

√
n)) tends to zero. As ϕ′′

by Theorem 3.4.8 is continuous with ϕ′′(0) = −1, this implies limn→∞ ϕ′′(ξ(θ/
√
n)) = −1.

Therefore, we obtain from (3.17) that lim supn→∞ |ϕ(θ/
√
n)n − exp(− 1

2θ
2)| = 0, proving

(3.14). As a consequence, Theorem 3.4.20 yields 1√
n

∑n
k=1Xk

D−→ N (0, 1). This concludes

the proof.

Theorem 3.5.3 and its proof demonstrates that in spite of the apparently deep nature of

the central limit theorem, the essential ingredients in its proof are simply first-order Taylor

expansions, bounds on the exponential function and Theorem 3.4.20. Next, we will show how

to extend Theorem 3.5.3 to the case where the random variables are not necessarily identically

distributed. The suitable framework for the statement of such more general results is that of

triangular arrays.

Definition 3.5.4. A triangular array is a double sequence (Xnk)n≥k≥1 of random variables.

Let (Xnk)n≥k≥1 be a triangular array. We think of (Xnk)n≥k≥1 as ordered in the shape of a

triangle as follows:

X11

X21 X22

X31 X32 X33

...
...

...
. . .

We may then define the row sums by putting Sn =
∑n
k=1Xnk, and we wish to establish

conditions under which Sn converges in distribution to a normally distributed limit. In

general, we will consider the case where (Xnk)k≤n is independent for each n ≥ 1, where

EXnk = 0 for all n ≥ k ≥ 1 and where limn→∞ V Sn = 1. In this case, it is natural to hope

that under suitable regularity conditions, Sn converges in distribution to a standard normal

distribution. The following example shows how the case considered in Theorem 3.5.3 can be

put in terms of a triangular array.
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Example 3.5.5. Let X1, X2, . . . be independent and identically distributed random variables

with mean ξ and variance σ2, where σ > 0. For 1 ≤ k ≤ n, we then define Xnk = 1√
n
Xk−ξ
σ .

Ordering the variables in the shape of a triangle, we have

1√
1

X1−ξ
σ

1√
2

X1−ξ
σ

1√
2

X2−ξ
σ

1√
3

X1−ξ
σ

1√
3

X2−ξ
σ

1√
3

X3−ξ
σ

...
...

...
. . .

The row sums of the triangular array are then Sn =
∑n
k=1Xnk = 1√

n

∑n
k=1

Xk−ξ
σ , which is

the same as the expression considered in Theorem 3.5.3. ◦

Theorem 3.5.6 (Lindeberg’s central limit theorem). Let (Xnk)n≥k≥1 be a triangular array

of variables with second moment. Assume that for each n ≥ 1, the family (Xnk)k≤n is

independent and assume that EXnk = 0 for all n ≥ k ≥ 1. With Sn =
∑n
k=1Xnk, assume

that limn→∞ V Sn = 1. Finally, assume that for all c > 0,

lim
n→∞

n∑
k=1

E1(|Xnk|>c)X
2
nk = 0. (3.18)

It then holds that Sn
D−→ N (0, 1), where N (0, 1) denotes the standard normal distribution.

Proof. We define σ2
nk = V Xnk and η2

n =
∑n
k=1 σ

2
nk. Our strategy for the proof will be similar

to that for the proof of Theorem 3.5.3. Let ϕnk be the characteristic function of Xnk, and let

ϕn be the characteristic function of Sn. As (Xnk)k≤n is independent for each n ≥ 1, Lemma

3.4.15 shows that ϕn(θ) =
∏n
k=1 ϕnk(θ). Recalling Example 3.4.10, we find that by Theorem

3.4.20, in order to prove the theorem, it suffices to show for all θ ∈ R that

lim
n→∞

n∏
k=1

ϕnk(θ) = exp(− 1
2θ

2). (3.19)

First note that by the triangle inequality, Lemma 3.4.8 and Lemma 3.5.1, we obtain∣∣∣∣∣
n∏
k=1

ϕnk(θ)− exp(− 1
2θ

2)

∣∣∣∣∣ ≤ ∣∣exp(− 1
2η

2
nθ

2)− exp(− 1
2θ

2)
∣∣+

∣∣∣∣∣
n∏
k=1

ϕnk(θ)− exp(− 1
2η

2
nθ

2)

∣∣∣∣∣
≤
∣∣exp(− 1

2η
2
nθ

2)− exp(− 1
2θ

2)
∣∣+

n∑
k=1

∣∣ϕnk(θ)− exp(− 1
2σ

2
nkθ

2)
∣∣ .

where the former term tends to zero, since limn→∞ ηn = 1 by our assumptions. We wish to

show that the latter term also tends to zero. By Lemma 3.5.2, we have

|ϕnk(θ)− exp(− 1
2σ

2
nkθ

2)| ≤ |ϕnk(θ)− (1− 1
2σ

2
nkθ

2)|+ | exp(− 1
2σ

2
nkθ

2)− (1− 1
2σ

2
nkθ

2)|

≤ |ϕnk(θ)− (1− 1
2σ

2
nkθ

2)|+ 1
2 ( 1

2σ
2
nkθ

2)2,
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such that
n∑
k=1

∣∣ϕnk(θ)− exp(− 1
2σ

2
nkθ

2)
∣∣ ≤ n∑

k=1

|ϕnk(θ)− (1− 1
2σ

2
nkθ

2)|+
n∑
k=1

1
2 |

1
2σ

2
nkθ

2|2

=

n∑
k=1

|ϕnk(θ)− (1− 1
2σ

2
nkθ

2)|+ θ4

8

n∑
k=1

σ4
nk.

Combining our conclusions, we find that (3.19) follows if only we can show

lim
n→∞

n∑
k=1

|ϕnk(θ)− (1− 1
2σ

2
nkθ

2)| = 0 and lim
n→∞

n∑
k=1

σ4
nk = 0. (3.20)

Consider the first limit in (3.20). Fix c > 0. As EXnk = 0 and EX2
nk = σ2

nk, we may apply

the two final inequalities of Lemma 3.5.2 to obtain

n∑
k=1

|ϕnk(θ)− (1− 1
2σ

2
nkθ

2)| =
n∑
k=1

|EeiθXnk − 1− iEXnk + 1
2θ

2EX2
nk|

≤
n∑
k=1

E|eiθXnk − 1− iXnk + 1
2θ

2X2
nk|

≤
n∑
k=1

E1(|Xnk|≤c)
1
3 |θXnk|3 + E1(|Xnk|>c)

3
2 |θXnk|2

≤ c|θ|3

3
η2
n +

3θ2

2

n∑
k=1

E1(|Xnk|>c)X
2
nk. (3.21)

Now, by our asumption (3.18), limn→∞
∑n
k=1E1(|Xnk|>c)X

2
nk = 0, while we also have

limn→∞(1/3)c|θ|3η2
n = (1/3)c|θ|3. Applying these results with the bound (3.21), we obtain

lim sup
n→∞

n∑
k=1

|ϕnk(θ)− (1− 1
2σ

2
nkθ

2)| ≤ c|θ|3

3
,

and as c > 0 was arbitrary, this yields limn→∞
∑n
k=1 |ϕnk(θ)− (1− 1

2σ
2
nkθ

2)| = 0, as desired.

For the second limit in (3.20), we note that for all c > 0, it holds that

n∑
k=1

σ4
nk ≤

(
max
k≤n

σ2
nk

) n∑
k=1

σ2
nk = η2

n max
k≤n

EX2
nk

= η2
n max
k≤n

(E1(|Xnk|≤c)X
2
nk + E1(|Xnk|>c)X

2
nk)

≤ η2
nc

2 + η2
n

n∑
k=1

E1(|Xnk|>c)X
2
nk,

so by (3.18), lim supn→∞
∑n
k=1 σ

4
nk ≤ c2 for all c > 0. Again, as c > 0 was arbitrary, this

yields limn→∞
∑n
k=1 σ

4
nk = 0. Thus, both of the limit result in (3.20) hold. Therefore, (3.19)

holds, and so Theorem 3.4.20 allows us to conclude the proof.
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The conditions given in Theorem 3.5.6 are in many cases sufficient to obtain convergence

in distribution to the standard normal distribution. The main important condition (3.18) is

known as Lindeberg’s condition. The condition, however, is not always easy to check. The

following result yields a central limit theorem where the conditions are less difficult to verify.

Here, the condition (3.22) is known as Lyapounov’s condition.

Theorem 3.5.7 (Lyapounov’s central limit theorem). Let (Xnk)n≥k≥1 be a triangular array

of variables with third moment. Assume that for each n ≥ 1, the family (Xnk)k≤n is inde-

pendent and assume that EXnk = 0 for all n ≥ k ≥ 1. With Sn =
∑n
k=1Xnk, assume that

limn→∞ V Sn = 1. Finally, assume that there is δ > 0 such that

lim
n→∞

n∑
k=1

E|Xnk|2+δ = 0. (3.22)

It then holds that Sn
D−→ N (0, 1), where N (0, 1) denotes the standard normal distribution.

Proof. We note that for c > 0, it holds that |Xnk| > c implies 1 ≤ |Xnk|δ/cδ and so

n∑
k=1

E1(|Xnk|>c)X
2
nk ≤

n∑
k=1

E1(|Xnk|>c)
1
cδ
|Xnk|2+δ ≤ 1

cδ

n∑
k=1

E|Xnk|2+δ,

so Lyapounov’s condition (3.22) implies Lindeberg’s condition (3.18). Therefore, the result

follows from Theorem 3.5.6.

In order to apply Theorem 3.5.7, we require that the random variables in the triangular array

have third moments. In many cases, this requirement is satisfied, and so Lyapounov’s central

limit theorem is frequently useful. However, the moment condition is too strong to obtain

the classical central limit theorem of Theorem 3.5.3 as a corollary. As the following example

shows, this theorem in fact does follow as a corollary from the stronger Lindeberg’s central

limit theorem.

Example 3.5.8. Let (Xn) be a sequence of independent and identically distributed random

variables with mean ξ and variance σ2, where σ > 0. As in Example 3.5.5, we define a

triangular array by putting Xnk = 1√
n
Xk−ξ
σ for n ≥ k ≥ 1. The elements of each row are

then independent, with EXnk = 0, and the row sums of the triangular array are given by

Sn =
∑n
k=1Xnk = 1√

n

∑n
k=1

Xk−ξ
σ and satisfy V Sn = 1. We obtain for c > 0 that

lim
n→∞

n∑
k=1

E1(|Xnk|>c)X
2
nk = lim

n→∞

n∑
k=1

E1(|Xk−ξ|>cσ
√
n)

(Xk − ξ)2

σ2n

= lim
n→∞

1

σ2
E1(|X1−ξ|>cσ

√
n)(X1 − ξ)2 = 0,
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by the dominated convergence theorem, since X1 has second moment. Thus, we conclude

that the triangular array satisfies Lindeberg’s condition, and therefore, Theorem 3.5.6 applies

and yields 1√
n

∑n
k=1

Xk−ξ
σ = Sn

D−→ N (0, 1), as in Theorem 3.5.3. ◦

3.6 Asymptotic normality

In Section 3.5, we saw examples of particular normalized sums of random variables converging

to a standard normal distribution. The intuitive interpretation of these results is that the

non-normalized sums approximate normal distributions with nonstandard parameters. In

order to easily work with this idea, we in this section introduce the notion of asymptotic

normality.

Definition 3.6.1. Let (Xn) be a sequence of random variables, and let ξ and σ be real with

σ > 0. We say that Xn is asymptotically normal with mean ξ and variance 1
nσ

2 if it holds

that
√
n(Xn − ξ)

D−→ N (0, σ2), where N (0, σ2) denotes the normal distribution with mean

zero and variance σ2. If this is the case, we write

Xn
as∼ N

(
ξ,

1

n
σ2

)
. (3.23)

The results of Theorem 3.5.3 can be restated in terms of asymptotic normality as fol-

lows. Assume that (Xn) is a sequence of independent and identically distributed random

variables with mean ξ and variance σ2, where σ > 0. Theorem 3.5.3 then states that
1√
n

∑n
k=1

Xk−ξ
σ

D−→ N (0, 1). By Lemma 3.1.8, this implies 1√
n

∑n
k=1(Xk − ξ)

D−→ N (0, σ2),

and so

√
n

((
1

n

n∑
k=1

Xk

)
− ξ

)
=

1√
n

n∑
k=1

(Xk − ξ)
D−→ N (0, σ2),

which by Definition 3.6.1 corresponds to 1
n

∑n
k=1Xk

as∼ N (ξ, 1
nσ

2). The intuitive content of

this statement is that as n tends to infinity, the average 1
n

∑n
k=1Xk is approximated by a

normal distribution with the same mean and variance as the empirical average, namely ξ and
1
nσ

2.

We next show two properties of asymptotic normality, namely that for asymptotically nor-

mal sequences (Xn), Xn converges in probability to the mean, and we show that asymptotic

normality is preserved by transformations with certain mappings. These results are of con-

siderable practical importance when analyzing the asymptotic properties of estimators based

on independent and identically distributed samples.



3.6 Asymptotic normality 93

Lemma 3.6.2. Let (Xn) be a sequence of random variables, and let ξ and σ be real with

σ > 0. Assume that Xn is asymptotically normal with mean ξ and variance 1
nσ

2. It then

holds that Xn
P−→ ξ.

Proof. Fix ε > 0. As Xn is asymptotically normal,
√
n(Xn − ξ)

D−→ N (0, σ2), so Lemma

3.1.6 yields limM→∞ supn≥1 P (
√
n|Xn − ξ| ≥M) = 0. Now let M > 0, we then have

lim sup
n→∞

P (|Xn − ξ| ≥ ε) = lim sup
n→∞

P (
√
n|Xn − ξ| ≥

√
nε)

≤ lim sup
n→∞

P (
√
n|Xn − ξ| ≥M)

≤ sup
n≥1

P (
√
n|Xn − ξ| ≥M),

and as M > 0 was arbitrary, this implies lim supn→∞ P (|Xn − ξ| ≥ ε) = 0. As ε > 0 was

arbitrary, we obtain Xn
P−→ ξ.

Theorem 3.6.3 (The delta method). Let (Xn) be a sequence of random variables, and let ξ

and σ be real with σ > 0. Assume that Xn is asymptotically normal with mean ξ and variance
1
nσ

2. Let f : R → R be measurable and differentiable in ξ. Then f(Xn) is asymptotically

normal with mean f(ξ) and variance 1
nσ

2f ′(ξ)2.

Proof. By our assumptions,
√
n(Xn− ξ)

D−→ N (0, σ2). Our objective is to demonstrate that
√
n(f(Xn) − f(ξ))

D−→ N (0, σ2f ′(ξ)2). Note that when defining R : R → R by putting

R(x) = f(x) − f(ξ) − f ′(ξ)(x − ξ), we obtain f(x) = f(ξ) + f ′(ξ)(x − ξ) + R(x), and in

particular

√
n(f(Xn)− f(ξ)) =

√
n(f ′(ξ)(Xn − ξ) +R(Xn))

= f ′(ξ)
√
n(Xn − ξ) +

√
nR(Xn) (3.24)

As
√
n(Xn− ξ)

D−→ N (0, σ2), Lemma 3.1.8 shows that f ′(ξ)
√
n(Xn− ξ)

D−→ N (0, σ2f ′(ξ)2).

Therefore, by Lemma 3.3.2, the result will follow if we can prove
√
nR(Xn)

P−→ 0. To this

end, let ε > 0. Note that as f is differentiable at ξ, we have

lim
x→ξ

R(x)

x− ξ
= lim
x→ξ

f(x)− f(ξ)

x− ξ
− f ′(ξ) = 0.

Defining r(x) = R(x)/(x−ξ) when x 6= ξ and r(ξ) = 0, we then find that r is measurable and

continuous at ξ, and R(x) = (x−ξ)r(x). In particular, there exists δ > 0 such that whenever

|x−ξ| < δ, we have |r(x)| < ε. It then also holds that if |r(x)| ≥ ε, we have |x−ξ| ≥ δ. From

this and Lemma 3.6.2, we get lim supn→∞ P (|r(Xn)| ≥ ε) ≤ lim supn→∞ P (|Xn−ξ| ≥ δ) = 0,
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so r(Xn)
P−→ 0. As the multiplication mapping (x, y) 7→ xy is continuous, we obtain by

Theorem 3.3.3 that
√
nR(Xn) =

√
n(Xn − ξ)r(Xn)

D−→ 0, and so by Lemma 3.3.1, we get
√
nR(Xn)

P−→ 0. Combining our conclusions with (3.24), Lemma 3.3.2 now shows that
√
n(f(Xn)− f(ξ))

D−→ N (0, σ2f ′(ξ)2), completing the proof.

Using the preceeding results, we may now give an example of a practical application of the

central limit theorem and asymptotic normality.

Example 3.6.4. As in Example 1.5.4, consider a measurable space (Ω,F) endowed with a

sequence of random variables (Xn). Assume given for each ξ ∈ R a probability measure Pξ

such that for the probability space (Ω,F , Pξ), (Xn) consists of independent and identically

distributed variables with mean ξ and unit variance. We may then define an estimator of

the mean by putting ξ̂n = 1
n

∑n
k=1Xk. As the variables have second moment, Theorem 3.5.3

shows that ξ̂n is asymptotically normal with mean ξ and variance 1
n .

This intuitively gives us some information about the distribution of ξ̂n for large n ≥ 1. In

order to make practical use of this, let 0 < γ < 1. We consider the problem of obtaining a

confidence interval for the parameter ξ with confidence level approximating γ as n tends to

infinity. The statement that ξ̂n is asymptotically normal with the given parameters means

that
√
n(ξ̂n − ξ)

D−→ N (0, 1). With Φ denoting the cumulative distribution function for

the standard normal distribution, we obtain limn→∞ Pξ(
√
n(ξ̂n − ξ) ≤ x) = Φ(x) for all

x ∈ R by Lemma 3.2.1. Now let zγ be such that Φ(−x) = (1− γ)/2, meaning that we have

zγ = −Φ−1((1−γ)/2). As (1−γ)/2 < 1/2, zγ > 0. Also, Φ(zγ) = 1−Φ(−zγ) = 1−(1−γ)/2,

and so we obtain

lim
n→∞

Pξ(−zγ ≤
√
n(ξ̂n − ξ) ≤ zγ) = Φ(zγ)− Φ(−zγ) = γ.

However, we also have

Pξ(−zγ ≤
√
n(ξ̂n − ξ) ≤ zγ) = Pξ(−zγ/

√
n ≤ ξ̂n − ξ ≤ zγ/

√
n)

= Pξ(ξ̂n − zγ/
√
n ≤ ξ ≤ ξ̂n + zγ/

√
n),

so if we define Iγ = (ξ̂n − zγ/
√
n, ξ̂n + zγ/

√
n), we have limn→∞ Pξ(ξ ∈ Iγ) = γ for all

ξ ∈ R. This means that asymptotically speaking, there is probability γ that Iγ contains ξ.

In particular, as Φ(−1.96) ≈ 2.5%, we find that (ξ̂n−1.96/
√
n, ξ̂n+ 1.96/

√
n) is a confidence

interval which a confidence level approaching a number close to 95% as n tends to infinity. ◦
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3.7 Higher dimensions

Throughout this chapter, we have worked with weak convergence of random variables with

values in R, as well as probability measures on (R,B). Among our most important results

are the results that weak convergence is equivalent to convergence of characteristic functions,

the interplay between convergence in distribution and convergence in probability, the central

limit theorems and our results on asymptotic normality. The theory of weak convergence

and all of its major results can be extended to the more general context of random variables

with values in Rd and probability measures on (Rd,Bd) for d ≥ 1, and to a large degree, it

is these multidimensional results which are most useful in practice. In this section, we state

the main results from the multidimensional theory of weak convergence without proof.

In the following, Cb(Rd) denotes the set of continuous, bounded mappings f : Rd → R.

Definition 3.7.1. Let (µn) be a sequence of probability measures on (Rd,Bd), and let µ be

another probability measure. We say that µn converges weakly to µ and write µn
wk−→ µ if it

holds for all f ∈ Cb(Rd) that limn→∞
∫
f dµn =

∫
f dµ.

As in the univariate case, the limit measure is determined uniquely. Also, we say that a

sequence of random variables (Xn) with values in Rd converges in distribution to a random

variable X with values in Rd or a probability measure µ on (Rd,Bd) if the distributions

converge weakly. The following analogue of Lemma 3.1.8 then holds.

Lemma 3.7.2. Let (µn) be a sequence of probability measures on (Rd,Bd), and let µ be

another probability measure. Let h : Rd → Rp be some continuous mapping. If it holds that

µn
wk−→ µ, then it also holds that h(µn)

wk−→ h(µ).

An important result which relates multidimensional weak convergence to one-dimensional

weak convergence is the following result. In Theorem 3.7.3, θt denotes transpose, and the

mapping x, y 7→ xty for x, y ∈ Rd thus corresponds to the ordinary inner product on Rd.

Theorem 3.7.3 (Cramér-Wold’s device). Let (Xn) be a sequence of random variables with

values in Rd, and let X be some other such variable. Then Xn
D−→ X if and only if it holds

for all θ ∈ Rd that θtXn
D−→ θtX.

Letting (Xn)n≥1 be a sequence of random variables with values in Rd and letting X be

some other such variable, we may define a multidimensional analogue of convergence in

probability by saying that Xn converges in probability to X and writing Xn
P−→ X when
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limn→∞ P (‖Xn − X‖ ≥ ε) = 0 for all ε > 0, where ‖ · ‖ is some norm on Rd. We then

have that Xn
P−→ x if and only if Xn

D−→ x, and the following multidimensional version of

Theorem 3.3.3 holds.

Theorem 3.7.4. Let (Xn, Yn) be a sequence of random variables with values in Rd and Rp,

respectively, let X be some other variable with values in Rd and let y ∈ Rp. Consider a

continuous mapping h : Rd × Rp → Rm. If Xn
D−→ X and Yn

P−→ y, then it holds that

h(Xn, Yn)
D−→ h(X, y).

We may also define characteristic functions in the multidimensional setting. Let µ be a prob-

ability measure on (Rd,Bd). We define the characteristic function for µ to be the mapping

ϕ : Rd → C defined by ϕ(θ) =
∫
eiθ

tx dµ(x). As in the one-dimensional case, the characteris-

tic function determines the probability measure uniquely, and weak convergence is equivalent

to pointwise convergence of probability measures.

The central limit theorem also holds in the multidimensional case.

Theorem 3.7.5. Let (Xn) be a sequence of independent and identically distributed random

variables with values in Rd with mean vector ξ and positive semidefinite variance matrix Σ.

It then holds that

1√
n

n∑
k=1

(Xk − ξ)
D−→ N (0,Σ),

where N (0,Σ) denotes the normal distribution with mean zero and variance matrix Σ.

As in the one-dimensional case, we may introduce a notion of asymptotic normality. For

a sequence of random variables (Xn) with values in Rd, we say that Xn is asymptotically

normal with mean ξ and variance 1
nΣ if

√
n(Xn − ξ)

D−→ N (0,Σ), and in this case, we write

Xn
as∼ N (ξ, 1

nΣ). If Xn
as∼ N (ξ, 1

nΣ), it also holds that Xn
P−→ ξ. Also, we have the following

version of the delta method in the multidimensional case.

Theorem 3.7.6. Let (Xn) be a sequence of random variables with values in Rd, and assume

that Xn is asymptotically normal with mean ξ and variance 1
nΣ. Let f : Rd → Rp be

measurable and differentiable in ξ, then f(Xn) is asymptotically normal with mean f(ξ) and

variance 1
nDf(ξ)ΣDf(ξ)t, where Df(ξ) is the Jacobian of f at ξ, that is, the p × d matrix

consisting of the partial derivatives of f at ξ.

Note that Theorem 3.7.6 reduces to Theorem 3.6.3 for d = p = 1, and in the one-dimensional

case, the products in the expression for the asymptotic variance commute, leading to a simpler

expression in the one-dimensional case than in the multidimensional case.
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To show the strengh of the multidimensional theory, we give the following example, extending

Example 3.6.4.

Example 3.7.7. As in Example 3.6.4, consider a measurable space (Ω,F) endowed with a

sequence of random variables (Xn). Let Θ = R × (0,∞). Assume for each θ = (ξ, σ2) that

we are given a probability measure Pθ such that for the probability space (Ω,F , Pθ), (Xn)

consists of independent and identically distributed variables with fourth moment, and with

mean ξ and variance σ2. As in Example 1.5.4, we may then define estimators of the mean

and variance based on n samples by putting

ξ̂n =
1

n

n∑
k=1

Xk and σ̂2
n =

1

n

n∑
k=1

X2
k −

(
1

n

n∑
k=1

Xk

)2

.

Now note that the variables (Xn, X
2
n) also are independent and identically distributed, and

with ρ denoting Cov(Xn, X
2
n) and η2 denoting V X2

n, we have

E

(
Xn

X2
n

)
=

(
ξ

σ2 + ξ2

)
and V

(
Xn

X2
n

)
=

(
σ2 ρ

ρ η2

)
. (3.25)

Let µ and Σ denote the mean and variance, respectively, in (3.25). By Xn and X2
n, we

denote 1
n

∑n
k=1Xk and 1

n

∑n
k=1X

2
k , respectively. Using Theorem 3.7.5, we then obtain that

(Xn, X2
n) is asymptotically normal with parameters (µ, 1

nΣ).

We will use this multidimensional relationship to find the asymptotic distributions of ξ̂n and

σ̂2
n, and we will do so by applying Theorem 3.7.6. To this end, we first consider the mapping

f : R2 → R given by f(x, y) = x. Note that we have Df(x, y) = (1 0). As ξ̂n = f(Xn, X2
n),

Theorem 3.7.6 yields that ξ̂n is asymptotically normal with mean f(µ) = ξ and variance

1

n
Df(µ)ΣDf(µ)t =

1

n

(
1 0

)( σ2 ρ

ρ η2

)(
1

0

)
=

1

n
σ2,

in accordance with what we would have obtained by direct application of Theorem 3.5.3.

Next, we consider the variance estimator. Define g : R2 → R by putting g(x, y) = y − x2.

We then have Dg(x, y) = (−2x 1). As σ̂2
n = g(Xn, X2

n), Theorem 3.7.6 shows that σ̂2
n is

asymptotically normal with mean g(µ) = σ2 and variance

1

n
Dg(µ)ΣDg(µ)t =

1

n

(
−2ξ 1

)( σ2 ρ

ρ η2

)(
−2ξ

1

)
=

1

n
(4ξ2σ2 − 4ξρ+ η2).

Thus, applying Theorem 3.7.5 and Theorem 3.7.6, we have proven that both ξ̂n and σ̂2
n are

asymptotically normal, and we have identified the asymptotic parameters.
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Next, consider some 0 < γ < 1. We will show how to construct a confidence interval for ξ

which has a confidence level approximating γ as n tends to infinity. Note that this was already

accomplished in Example 3.6.4 in the case where the variance was known and equal to one.

In this case, we have no such assumptions. Now, we already know that ξ̂n is asymptotically

normal with parameters (ξ, 1
nσ

2), meaning that
√
n(ξ̂n− ξ)

D−→ N (0, σ2). Next, note that as

σ̂2
n ias asymptotically normal with mean σ2, Lemma 3.6.2 shows that σ̂2

n
P−→ σ2. Therefore,

using Theorem 3.3.3, we find that
√
n(ξ̂ − ξ)/

√
σ̂2
n
D−→ N (0, 1). We may now proceed as

in Example 3.6.4 and note that with Φ denoting the cumulative distribution function for

the standard normal distribution, limn→∞ P (
√
n(ξ̂n − ξ)/

√
σ̂2
n ≤ x) = Φ(x) for all x ∈ R by

Lemma 3.2.1. Putting zγ = −Φ−1((1−γ)/2), we then obtain zγ > 0 and Φ(zγ)−Φ(−zγ) = γ,

and if we define Iγ = (ξ̂n − zγ
√
σ̂2
n/n, ξ̂n + zγ

√
σ̂2
n/n), we then obtain

lim
n→∞

Pθ(ξ ∈ Iγ) = lim
n→∞

Pθ(ξ̂n −
√
σ̂2
nzγ/

√
n ≤ ξ ≤ ξ̂n +

√
σ̂2
nzγ/

√
n)

= lim
n→∞

Pθ(−
√
σ̂2
nzγ/

√
n ≤ ξ̂n − ξ ≤

√
σ̂2
nzγ/

√
n)

= lim
n→∞

Pθ(−zγ ≤
√
n(ξ̂n − ξ)/

√
σ̂2
n ≤ zγ)

= Φ(zγ)− Φ(−zγ) = γ,

so Iγ is a confidence interval for ξ such that asymptotically speaking, there is probability γ

that Iγ contains ξ. ◦

3.8 Exercises

Exercise 3.1. Let (θn) be a sequence of positive numbers. Let µn denote the uniform

distribution on [0, θn]. Show that µn converges weakly if and only if θn is convergent. In the

affirmative case, identify the limiting distribution. ◦

Exercise 3.2. Let (µn) be a sequence of probability measures concentrated on N0, and let

µ be another such probability measure. Show that µn
wk−→ µ if and only if it holds that

limn→∞ µn({k}) = µ({k}) for all k ≥ 0. ◦

Exercise 3.3. Let µn denote the Student’s t-distribution with n degrees of freedom, that

is, the distribution with density fn given by fn(x) =
Γ(n+ 1

2 )√
2nπΓ(n)

(1 + x2

2n )−(n+ 1
2 ). Show that µn

converges weakly to the standard normal distribution. ◦

Exercise 3.4. Let (pn) be a sequence in (0, 1), and let µn be the binomial distribution with

success probability pn and length n. Assume that limn→∞ npn = λ for some λ ≥ 0. Show
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that if λ > 0, then µn converges weakly to the Poisson distribution with parameter λ. Show

that if λ = 0, then µn converges weakly to the Dirac measure at zero. ◦

Exercise 3.5. Let Xn be a random variable which is Beta distributed with shape parameters

(n, n). Define Yn =
√

8n(Xn − 1
2 ). Show that Yn has density with respect to the Lebesgue

measure. Show that the densities converge pointwise to the density of the standard normal

distribution. Argue that Yn converges in distribution to the standard normal distribution. ◦

Exercise 3.6. Let µ be a probability measure on (R,B) with cumulative distribution function

F . Let q : (0, 1) → R be a quantile function for µ, meaning that for all 0 < p < 1, it holds

that F (q(p)−) ≤ p ≤ F (q(p)). Let µn be the probability measure on (R,B) given by putting

µn(B) = 1
n

∑n
k=1 1(q(k/(n+1))∈B) for B ∈ B. Show that µn converges weakly to µ. ◦

Exercise 3.7. Let (ξn) and (σn) be sequences in R, where σn > 0. Let µn denote the normal

distribution with mean ξn and variance σ2
n. Show that µn converges weakly if and only if ξn

and σn both converge. In the affirmative case, identify the limiting distribution. ◦

Exercise 3.8. Let (µn) be a sequence of probability measures on (R,B) such that µn has

cumulative distribution function Fn. Let µ be some other probability measure with cumu-

lative distribution function F . Assume that F is continuous and assume that µn converges

weakly to µ. Let (xn) be a sequence of real numbers converging to some point x. Show that

limn→∞ Fn(xn) = F (x). ◦

Exercise 3.9. Let µn be the measure on (R,B) concentrated on {k/n | k ≥ 1} such that

µn({k/n}) = 1
n (1 − 1

n )k−1 for each k ∈ N. Show that µn is a probability measure and that

µn converges weakly to the standard exponential distribution. ◦

Exercise 3.10. Calculate the characteristic function of the binomial distribution with suc-

cess parameter p and length n. ◦

Exercise 3.11. Calculate an explicit expression for the characteristic function of the Poisson

distribution with parameter λ. ◦

Exercise 3.12. Consider a probability space endowed with two independent variables X

and Y with distributions µ and ν, respectively, where µ has characteristic function ϕ and ν

has characteristic function φ. Show that the variable XY has characteristic function ψ given

by ψ(θ) =
∫
ϕ(θy) dν(y). ◦
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Exercise 3.13. Consider a probability space endowed with four independent variables X,

Y , Z and W , all standard normally distributed. Calculate the characteristic function of

XY − ZW and argue that XY − ZW follows a Laplace distribution. ◦

Exercise 3.14. Assume (Xn) is a sequence of independent random variables. Assume that

there exists β > 0 such that |Xn| ≤ β for all n ≥ 1. Define Sn =
∑n
k=1Xk. Prove that if

it holds that
∑∞
n=1 V Xn is infinite, then (Sn −ESn)/

√
V Sn converges in distribution to the

standard normal distribution. ◦

Exercise 3.15. Let (Xn) be a sequence of independent random variables. Let ε > 0. Show

that if
∑n
k=1Xk converges almost surely as n tends to infinity, then the following three series

are convergent:
∑∞
n=1 P (|Xn| > ε),

∑∞
n=1EXn1(|Xn|≤ε) and

∑∞
n=1 V Xn1(|Xn|≤ε). ◦

Exercise 3.16. Consider a measurable space (Ω,F) endowed with a sequence (Xn) of

random variables as well as a family of probability measures (Pλ)λ>0 such that under Pλ,

(Xn) consists of independent and identically distributed variables such that Xn follows a

Poisson distribution with mean λ for some λ > 0. Let Xn = 1
n

∑n
k=1Xk. Find a mapping

f : (0,∞)→ (0,∞) such that for each λ > 0, it holds that under Pλ, f(Xn) is asymptotically

normal with mean f(λ) and variance 1
n . ◦

Exercise 3.17. Let (Xn) be a sequence of independent random variables such that Xn has

mean ξ and unit variance. Put Sn =
∑n
k=1Xk. Let α > 0. Show that (Sn − nξ)/nα

P−→ 0 if

and only if α > 1/2. ◦

Exercise 3.18. Let θ > 0 and let (Xn) be a sequence of independent and identically

distributed random variables such that Xn follows a normal distribution with mean θ and

variance θ. The maximum likelihood estimator for estimation of θ based on n samples is

θ̂n = − 1
2 + ( 1

4 + 1
n

∑n
k=1X

2
k)1/2. Show that θ̂n is asymptotically normal with mean θ and

variance 1
n

4θ3+2θ2

4θ2+2θ+1 . ◦

Exercise 3.19. Let µ > 0 and let (Xn) be a sequence of independent and identically

distributed random variables such that Xn follows an exponential distribution with mean

1/µ. Let Xn = 1
n

∑n
k=1Xk. Show that Xn and X

−1

n are asymptotically normal and identify

the asymptotic parameters. Define Yn = 1
logn

∑n
k=1

Xk
k . Show that Yn

P−→ 1/µ. ◦

Exercise 3.20. Let θ > 0 and let (Xn) be a sequence of independent and identically

distributed random variables such that Xn follows a uniform distribution on [0, θ]. Define

Xn = 1
n

∑n
k=1Xk. Show that Xn is asymptotically normal with mean µ and variance 1

nµ
2.
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Next, put Yn = 4
n2

∑n
k=1 kXk. Demonstrate that Yn

P−→ θ. Use Lyapounov’s central limit

theorem to show that (Yn − θ)/(
√

4θ2/9n) converges to a standard normal distribution. ◦

Exercise 3.21. Let (Xn, Yn) be a sequence of independent and identically distributed vari-

ables such that for each n ≥, Xn and Yn are independent, where Xn follows a standard normal

distribution and Yn follows an exponential distribution with mean α for some α > 0. Define

Sn = 1
n

∑n
k=1Xk + Yk and Tn = 1

n

∑n
k=1X

2
k . Show that (Sn, Tn) is asymptotically normally

distributed and identify the asymptotic parameters. Show that Sn/
√
Tn is asymptotically

normally distributed and identify the asymptotic parameters. ◦

Exercise 3.22. Let (Xn) be a sequence of independent and identically distributed variables

such that Xn follows a normal distribution with mean µ and variance σ2 for some σ > 0.

Assume that µ 6= 0. Define Xn = 1
n

∑n
k=1Xk and S2

n = 1
n

∑n
k=1(Xk − Xn)2. Show that

Sn/Xn is asymptotically normally distributed and identify the asymptotic parameters. ◦
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Chapter 4

Signed measures and

conditioning

In this chapter, we will consider two important but also very distinct topics: Decompositions

of signed measures and conditional expectations. The topics are only related by virtue of the

fact that we will use results from the first section to prove the existence of the conditional

expectations to be defined in the following section. In the first section, the framework is a

measurable space that will be equipped with a so–called signed measure. In the rest of the

chapter, the setting will a probability space endowed with a random variable.

4.1 Decomposition of signed measures

In this section, we first introduce a generalization of bounded measures, namely bounded,

signed measures, where negative values are allowed. We then show that a signed measure can

always be decomposed into a difference between two positive, bounded measures. Afterwards

we prove the main result of the section, stating how to decompose a bounded, signed measure

with respect to a bounded, positive measure. Finally we will show the Radon–Nikodym

theorem, which will be crucial in Section 4.2 in order to prove the existence of conditional

expectations.
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In the rest of the section, we let (Ω,F) be a measurable space. Recall that µ : F → [0,∞] is

a measure on (Ω,F) if µ(∅) = 0 and for all disjoint sequences F1, F2, . . . it holds that

µ
( ∞⋃
n=1

Fn

)
=

∞∑
n=1

µ(Fn) .

If µ(Ω) < ∞ we say that µ is a finite measure. However, in the context of this section,

we shall most often use the name bounded, positive measure. A natural generalisation of

a bounded, positive measure is to allow negative values. Hence we consider the following

definition:

Definition 4.1.1. A bounded, signed measure ν on (Ω,F) is a map ν : F → R such that

(1) sup{|ν(F )| | F ∈ F} <∞,

(2) ν(
∞
∪
n=1

Fn) =
∞
Σ
n=1

ν(Fn) for all pairwise disjoint F1, F2, . . . ∈ F .

Note that condition (2) is similar to the σ–additivity condition for positive measures. Con-

dition (1) ensures that ν is bounded.

A bounded, signed measure has further properties that resemble properties of positive mea-

sures:

Theorem 4.1.2. Assume that ν is a bounded, signed measure on (Ω,F). Then

(1) ν(∅) = 0 .

(2) ν is finitely additive: If F1, . . . , FN ∈ F are disjoint sets, then

ν
( N⋃
n=1

Fn
)

=

N∑
n=1

ν(Fn) .

(3) ν is continuous: If Fn ↑ F or Fn ↓ F , with F1, F2, . . . ∈ F , then

ν(Fn)→ ν(F )

Proof. To prove (1) let F1 = F2 = · · · = ∅ in the σ–additivity condition. Then we can utilize

the simple fact ∅ =
⋃∞
n=1 ∅ such that

ν(∅) = ν
( ∞⋃
n=1

∅
)

=
∞∑
n=1

ν(∅)
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which can only be true if ν(∅) = 0.

Considering the second result, let FN+1 = FN+2 = · · · = ∅ and apply the σ–additivity again

such that

ν
( N⋃
n=1

Fn

)
= ν

( N⋃
n=1

Fn ∪
∞⋃

n=N+1

∅
)

=

N∑
n=1

ν(Fn) +

∞∑
n=N+1

0 =

N∑
n=1

ν(Fn) .

Finally we demonstrate the third result in the case where Fn ↑ F . Define G1 = F1, G2 =

F2 \ F1, G3 = F3 \ F2, . . .. Then G1, G2, . . . are disjoint with

N⋃
n=1

Gn = FN ,

∞⋃
n=1

Gn = F ,

so

ν(FN ) = ν
( N⋃
n=1

Gn
)

=

N∑
n=1

ν(Gn)→
∞∑
n=1

ν(Gn) = ν(F ) as N →∞.

From the definition of a bounded, signed measure and Theorem 4.1.2 we almost immediately

see that bounded, signed measures with non–negative values are in fact bounded, positive

measures.

Theorem 4.1.3. Assume that ν is a bounded, signed measure on (Ω,F). If ν only has values

in [0,∞), then ν is a bounded, positive measure.

Proof. That ν is a measure in the classical sense follows since it satisfies the σ–additivity

condition, and we furthermore have ν(∅) = 0 according to (1) in Theorem 4.1.2. That

ν(Ω) <∞ is obviously a consequence of (1) in Definition 4.1.1.

Example 4.1.4. Let Ω = {1, 2, 3, 4} and assume that ν is a bounded, signed measure on Ω

given by

ν({1}) = 2 ν({2}) = −1 ν({3}) = 4 ν({4}) = −2 .

Then e.g.

ν({1, 2}) = 1 ν({3, 4}) = 2

and

ν(Ω) = 3 .
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so we see that although {3} ( Ω, it is possible that ν({3}) > ν(Ω). Hence, the condition 1 in

the definition is indeed meaningful: Only demanding that ν(Ω) <∞ as for positive measures

would not ensure that ν is bounded on all sets, and in particular ν(Ω) is not necessarily an

upper bound for ν. ◦

Recall, that if µ is a bounded, positive measure then, for F1, F2 ∈ F with F1 ⊆ F2, it holds

that µ(F1) ≤ µ(F2). Hence, condition (1) in Definition 4.1.1 will (for µ) be equivalent to

µ(Ω) <∞.

If ν is a bounded, signed measure and F1, F2 ∈ F with F1 ⊆ F2 then it need not hold that

ν(F1) ≤ ν(F2):

In general we have using the finite additivity that

ν(F2) = ν(F1) + ν(F2\F1),

but ν(F2\F1) ≥ 0 and ν(F2\F1) < 0 are both possible.

Recall from classical measure theory that new positive measures can be constructed by in-

tegrating non–negative functions with respect to other positive measures. Similarly, we can

construct a bounded, signed measure by integrating an integrable function with respect to a

bounded, positive measure.

Theorem 4.1.5. Let µ be a bounded, positive measure on (Ω,F) and let f : (Ω,F)→ (R,B)

be a µ-integrable function, i.e. ∫
|f |dµ <∞.

Then

ν(F ) =

∫
F

f dµ (F ∈ F) (4.1)

defines a bounded, signed measure on (Ω,F). Furthermore it holds that ν is a bounded,

positive measure if and only if f ≥ 0 µ-a.e. (almost everywhere).

Proof. For all F ∈ F we have

|ν(F )| ≤
∫
F

|f |dµ ≤
∫
|f |dµ <∞

which gives (1). To obtain that (2) is satisfied, let F1, F2, . . . ∈ F be disjoint and define

F = ∪Fn. Observe that

|1∪Nn=1Fn
f | ≤ |f |



4.1 Decomposition of signed measures 107

for all N ∈ N. Then dominated convergence yields

ν
( ∞⋃
n=1

Fn

)
= ν(F ) =

∫
F

f dµ =

∫
lim
N→∞

1⋃N
n=1 Fn

f dµ = lim
N→∞

∫
1⋃N

n=1 Fn
f dµ

= lim
N→∞

N∑
n=1

∫
Fn

f dµ = lim
N→∞

N∑
n=1

ν(Fn) =

∞∑
n=1

ν(Fn) .

The last statement follows from Theorem 4.1.3, since f ≥ 0 µ–a.e. implies that ν(F ) ≥ 0 for

all F ∈ F .

In the following definition we introduce two possible relations between a signed measure

and a positive measure. A main result in this chapter will be that the two definitions are

equivalent.

Definition 4.1.6. Assume that µ is a bounded, positive measure, and that ν is a bounded,

signed measure on (Ω,F).

(1) ν is absolutely continuous with respect to µ, (we write ν � µ) if µ(F ) = 0 implies

ν(F ) = 0.

(2) ν has density with respect to µ if there exists a µ-integrable function f (the density),

such that (4.1) holds. If ν has density with respect to µ we write ν = f · µ and f = dν
dµ . f is

called the Radon-Nikodym derivative of ν with respect to µ.

Lemma 4.1.7. Assume that µ is a bounded, positive measure on (Ω,F) and that ν is a

bounded signed measure on (Ω,F). If ν = f · µ, then ν � µ.

Proof. Choose F ∈ F with µ(F ) = 0. Then 1F f = 0 µ–a.e. so

ν(F ) =

∫
F

f dµ =

∫
1F f dµ =

∫
0 dµ = 0 ,

and the proof is complete.

The following definition will be convenient as well:

Definition 4.1.8. Assume that ν, ν1, and ν2 are bounded, signed measures on (Ω,F).

(1) ν is concentrated on F ∈ F if ν(G) = 0 for all G ∈ F with G ⊆ F c.
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(2) ν1 and ν2 are singular (we write ν1 ⊥ ν2), if there exist disjoint sets F1, F2 ∈ F such

that ν1 is concentrated on F1 and ν2 is concentrated on F2.

Example 4.1.9. Let µ be a bounded, positive measure on (Ω,F), and assume that f is

µ-integrable. Define the bounded, signed measure ν by ν = f · µ. Then ν is concentrated

on (f 6= 0): Take G ⊆ (f 6= 0)c, or equivalently G ⊆ (f = 0). Then 1Gf = 0, so ν(G) =∫
1Gf dµ =

∫
0 dµ = 0 and we have the result.

Now assume that both f1 and f2 are µ-integrable and define ν1 = f1 ·µ and ν2 = f2 ·µ. Then

it holds that ν1 ⊥ ν2 if (f1 6= 0) ∩ (f2 6= 0) = ∅.

In fact, the result would even be true if we only have µ((f1 6= 0) ∩ (f2 6= 0)) = 0 (why?). ◦

Lemma 4.1.10. Let ν be a bounded, signed measure on (Ω,F). If ν is concentrated on

F ∈ F then ν is also concentrated on any G ∈ F with G ⊇ F .

A bounded, positive measure µ on (Ω,F) is concentrated on F ∈ F if and only if µ(F c) = 0.

Proof. To show the first statement, assume that ν is concentrated on F ∈ F , and let G ∈ F
satisfy G ⊇ F . For any set G′ ⊆ Gc we have that G′ ⊆ F c, so by the definition we have

ν(G′) = 0.

For the second result, we only need to show that if µ(F c) = 0, then µ is concentrated on F .

So assume that G ⊆ F c. Then, since µ is assumed to be a positive measure, we have

0 ≤ µ(G) ≤ µ(F c) = 0

and we have that µ(G) = 0 as desired.

The following theorem is a deep result from classical measure theory, stating that any

bounded, signed measure can be constructed as the difference between two bounded, positive

measures.

Theorem 4.1.11. (The Jordan-Hahn decomposition). A bounded, signed measure ν can be

decomposed in exactly one way,

ν = ν+ − ν−,

where ν+, ν− are positive, bounded measures and ν+ ⊥ ν−.
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Proof. The existence: Define λ = inf{ν(F ) : F ∈ F}. Then −∞ < λ ≤ 0 and for all n ∈ N
there exists Fn ∈ F with

ν(Fn) ≤ λ+
1

2n
.

We first show that with G = (Fn evt.) = ∪∞n=1 ∩∞k=n Fk it holds that

ν(G) = λ . (4.2)

Note that
∞⋂
k=n

Fk ↑
∞⋃
n=1

∞⋂
k=n

Fk = G as n→∞

so since ν is continuous, we have

ν(G) = lim
n→∞

ν
( ∞⋂
k=n

Fk

)
.

Similarly we have ∩Nk=nFk ↓ ∩∞k=nFk (as N →∞) so

ν(G) = lim
n→∞

lim
N→∞

ν
( N⋂
k=n

Fk

)
.

Let n be fixed and suppose it is shown that for all N ≥ n

ν
( N⋂
k=n

Fk

)
≤ λ+

N∑
k=n

1

2k
. (4.3)

Since we have that
∑∞
k=1

1
2k
<∞, we must have that limn→∞ limN→∞

∑N
k=n

1
2k

= 0. Hence

λ ≤ ν(G) ≤ λ+ lim
n→∞

lim
N→∞

N∑
k=n

1

2k
= λ+ 0 = λ .

So we have that ν(G) = λ, if we can show (4.3). This is shown by induction for all N ≥ n.

If N = n the result is trivial from the choice of Fn:

ν
( N⋂
k=n

Fk

)
= ν(Fn) ≤ λ+

1

2n
= λ+

N∑
k=n

1

2k
.

If (4.3) is true for N − 1 we obtain

ν
( N⋂
k=n

Fk

)
= ν

(N−1⋂
k=n

Fk ∩ FN
)

= ν
(N−1⋂
k=n

Fk

)
+ ν(FN )− ν

(N−1⋂
k=n

Fk ∪ FN
)

≤
(
λ+

N−1∑
k=n

1

2k

)
+
(
λ+

1

2N

)
− λ = λ+

N∑
k=n

1

2k
.
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In the inequality we have used (4.3) for N − 1, the definition of FN , and that ν(F ) ≥ λ for

all F ∈ F .

We have thus shown ν(G) = λ and may now define, for F ∈ F ,

ν−(F ) = −ν(F ∩G), ν+(F ) = ν(F ∩Gc).

Obviously e.g.

sup{|ν−(F )| : F ∈ F} ≤ sup{|ν(F )| : F ∈ F} <∞

and

ν−
( ∞⋃
n=1

Fn

)
= −ν

(
(

∞⋃
n=1

Fn) ∩G
)

= −ν
( ∞⋃
n=1

(Fn ∩G)
)

= −
∞∑
n=1

ν(Fn ∩G) =

∞∑
n=1

ν−(Fn)

for F1, F2, . . . ∈ F disjoint sets, so ν+ and ν− are bounded, signed measures. It is easily seen

(since G and Gc are disjoint) that ν = ν+−ν−. We furthermore have that ν− is concentrated

on G, since for F ⊆ Gc

ν−(F ) = −ν(F ∩G) = −ν(∅) = 0 .

Similarly ν+ is concentrated on Gc, so we must have ν− ⊥ ν+.

The existence part of the proof can now be completed by showing that ν+ ≥ 0, ν− ≥ 0. For

F ∈ F we have F ∩G = G \ (F c ∩G) so

ν−(F ) = −ν(F ∩G)

= −(ν(G)− ν(F c ∩G))

= −λ+ ν(F c ∩G) ≥ 0

and

ν+(F ) = ν(F ) + ν−(F ) = ν(F )− λ+ ν(F c ∩G)

= −λ+ ν(F ∪ (F c ∩G)) ≥ 0 ,

and the argument is complete.

The uniqueness: In order to show uniqueness of the decomposition, let ν = ν̃+ − ν̃− be

another decomposition satisfying ν̃+ ≥ 0, ν̃− ≥ 0 and ν̃+ ⊥ ν̃−. Choose G̃ ∈ F to be a set,

such that ν̃− is concentrated on G̃ and ν̃+ is concentrated on G̃c. Then for F ∈ F

ν(F ∩G ∩ G̃c) =

{
−ν−(F ∩ G̃c) ≤ 0 , since it is a subset of G

ν̃+(F ∩G) ≥ 0 , since it is a subset of G̃c
,
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and hence ν(F ∩G ∩ G̃c) = 0. Similarly we observe that ν(F ∩Gc ∩ G̃) = 0, so

ν−(F ) = −ν(F ∩G) = −ν(F ∩G ∩ G̃)− ν(F ∩G ∩ G̃c)

= −ν(F ∩G ∩ G̃) = −ν(F ∩G ∩ G̃)− ν(F ∩Gc ∩ G̃)

= −ν(F ∩ G̃) = ν̃−(F )

for all F ∈ F .

Example 4.1.12. If ν = f ·µ, where µ is a bounded, positive measure and f is µ-integrable,

we see that the decomposition is given by

ν+ = f+ · µ, ν− = f− · µ,

where f+ = f ∨ 0 and f− = −(f ∧ 0) denote the positive and the negative part of f ,

respectively. The argument is by inspection: It is clear that ν = ν+ − ν−, ν+ ≥ 0, ν− ≥ 0

and moreover ν+ ⊥ ν− since ν+ is concentrated on (f ≥ 0) and ν− is concentrated on

(f < 0). ◦

Theorem 4.1.13 (The Lebesgue decomposition). If ν is a bounded, signed measure on (Ω,F)

and µ is a bounded, positive measure on Ω,F) then there exists a F–measurable, µ–integrable

function f and a bounded, signed measure νs with νs ⊥ µ such that

ν = f · µ+ νs .

The decomposition is unique in the sense that if ν =
∼
f ·µ+

∼
νs is another decomposition, then

∼
f = f µ− a.e.,

∼
νs = νs.

If ν ≥ 0, then f ≥ 0 µ− a.e. and νs ≥ 0.

Proof. We begin with the uniqueness part of the theorem: Assume that

ν = f · µ+ νs =
∼
f · µ+

∼
νs,

where µ ⊥ νs and µ ⊥ ∼νs. Choose F0,
∼
F 0 ∈ F such that νs is concentrated on F0, µ is

concentrated on F c0 ,
∼
νs is concentrated on

∼
F 0 and µ is concentrated on

∼
F c0. Define G0 =

F0 ∪
∼
F 0. According to Lemma 4.1.10 we only need to show that µ(G0) = 0 in order to

conclude that µ is concentrated on Gc0, since µ ≥ 0. This is true since

0 ≤ µ(G0) = µ(F0 ∪ F̃0) ≤ µ(F0) + µ(F̃0) = 0 + 0 = 0 .
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Furthermore we have that νs is concentrated on G0 since F0 ⊆ G0. Similarly ν̃s is concen-

trated on G0. Then for F ∈ F

ν̃s(F )− νs(F ) = ν̃s(F ∩G0)− νs(F ∩G0)

=
(
ν(F ∩G0)− (f̃µ)(F ∩G0)

)
−
(
ν(F ∩G0)− (fµ)(F ∩G0)

)
=
(
ν(F ∩G0)− 0

)
−
(
ν(F ∩G0)− 0

)
= 0 ,

where we have used µ(F ∩G0) = 0 such that∫
F∩G0

f dµ = 0 and

∫
F∩G0

f̃ dµ = 0 .

Then νs = ν̃s. The equation f · µ+ νs = f̃ · µ+ ν̃s gives f · µ = f̃ · µ, which leads to f = f̃

µ–a.e.

To prove existence, it suffices to consider the case ν ≥ 0. For a general ν we can find the

Jordan–Hahn decomposition, ν = ν+ − ν−, and then apply the Lebesgue decomposition to

ν+ and ν− separately:

ν+ = fµ+ νs and ν− = gµ+ κs

where there exist F0 and F̃0 such that νs is concentrated on F0, µ is concentrated on F c0 , κs

is concentrated on F̃0, and µ is concentrated on F̃ c0 . Defining G0 = F0 ∪ F̃0 we can obtain,

similarly to the argument above, that

νs, κs both are concentrated on G0 and µ is concentrated on Gc0 .

Obviously, the bounded, signed measure νs − κs is then concentrated on G0 as well, leading

to νs − κs ⊥ µ. Writing

ν = (f − g)µ+ (νs − κs)

gives the desired decomposition.

So assume that ν ≥ 0. Let L(µ)+ denote the set of non–negative, µ–integrable functions and

define

H =
{
g ∈ L(µ)+

∣∣∣ ν(F ) ≥
∫
F

g dµ for all F ∈ F
}

Recall that ν ≥ 0 such that e.g. 0 ∈ H. Define furthermore

α = sup
{∫

g dµ
∣∣∣ g ∈ H

}
.

Since
∫

Ω
g dµ ≤ ν(Ω) for all g ∈ H, we must have

0 ≤ α ≤ ν(Ω) <∞ .
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We will show that there exists f ∈ H with
∫
f dµ = α.

Note that if h1, h2 ∈ H then h1 ∨ h2 ∈ H: For F ∈ F we have∫
F

h1 ∨ h2 dµ =

∫
F∩(h1≥h2)

h1 dµ+

∫
F∩(h1<h2)

h2 dµ

≤ ν(F ∩ (h1 ≥ h2)) + ν(F ∩ (h1 < h2)) = ν(F ) .

At the inequality it is used that both h1 and h2 are in H.

Now, for each n ∈ N, choose gn ∈ H so that∫
gn dµ ≥ α− 1

n

and define fn = g1 ∨ · · · ∨ gn for each n ∈ N. According to the result shown above, we have

fn ∈ H and furthermore it is seen that the sequence (fn) is increasing. Then the pointwise

limit f = limn→∞ fn exists, and by monotone convergence we obtain for F ∈ F that∫
F

f dµ = lim
n→∞

∫
F

fn dµ ≤ ν(F ) .

Hence f ∈ H. Furthermore we have for all n ∈ N that f ≥ gn, so∫
f dµ ≥

∫
gn dµ ≥ α− 1

n

leading to the conclusion that
∫
f dµ = α .

Now we can define the bounded measure νs by

νs = ν − f · µ

Then νs ≥ 0 since f ∈ H such that

νs(F ) = ν(F )−
∫
F

f dµ ≥ 0

for all F ∈ F .

What remains in the proof is showing that νs ⊥ µ. For all n ∈ N define the bounded, signed

measure (see e.g. Exercise 4.1) λn by

λn = νs −
1

n
µ

Let λn = λ+
n −λ−n be the Jordan–Hahn decomposition of λn. Then we can find Fn ∈ F such

that

λ−n is concentrated on Fn and λ+
n is concentrated on F cn
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For F ∈ F and F ⊆ F cn we obtain

ν(F ) = νs(F ) +

∫
F

f dµ = λn(F ) +
1

n
µ(F ) +

∫
F

f dµ

= λ+
n (F ) +

1

n
µ(F ) +

∫
F

f dµ ≥
∫
F

f +
1

n
dµ .

If we define

f̃n =

{
f on Fn

f + 1
n on F cn

,

then for F ∈ F ∫
F

f̃n dµ =

∫
F∩Fn

f dµ+

∫
F∩F cn

f +
1

n
dµ

≤ ν(F ∩ Fn) + ν(F ∩ F cn) = ν(F )

so f̃n ∈ H. Hence

α ≥
∫
f̃n dµ =

∫
f dµ+

1

n
µ(F cn) = α+

1

n
µ(F cn) .

This implies that µ(F cn) = 0 leading to

µ
( ∞⋃
n=1

F cn

)
= 0 .

Thus µ is concentrated on F0 = (∪∞1 F cn)c = ∩∞1 Fn. Finally, we have for all n ∈ N (recall

that λ+
n is concentrated on F cn) that

0 ≤ νs(F0) ≤ νs(Fn) =
1

n
µ(Fn) + λn(Fn)

=
1

n
µ(Fn)− λ−n (Fn) ≤ 1

n
µ(Ω)

which for n→∞ implies that νs(F0) = 0. Hence (since νs ≥ 0) νs is concentrated on F c0 .

Theorem 4.1.14 (Radon-Nikodym). Let µ be a positive, bounded measure and ν a bounded,

signed measure on (Ω,F). Then ν � µ if and only if there exists a F–measurable, µ–

integrable f such that ν = f · µ.

If ν � µ then the density f is uniquely determined µ-a.e. If in addition ν ≥ 0 then f ≥ 0

µ-a.e.

Proof. That f is uniquely determined follows from the uniqueness in the Lebesgue decom-

position. Also ν ≥ 0 implies f ≥ 0 µ–a.e.
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In the ”if and only if” part it only remains to show, that ν � µ implies the existence of a

F–measurable and µ–integrable function f with ν = fµ. So assume that ν � µ and consider

the Lebesgue decomposition of ν

ν = f · µ+ νs .

Choose F0 such that νs is concentrated on F0 and µ is concentrated on F c0 . For F ∈ F we

then obtain that

νs(F ) = νs(F ∩ F0) = ν(F ∩ F0)− (fµ)(F ∩ F0) = 0

since µ(F ∩F0) = 0 and since ν � µ implies that ν(F ∩F0) = 0. Hence νs = 0 and the claim

ν = f · µ follows.

4.2 Conditional Expectations given a σ-algebra

In this section we will return to considering a probability space (Ω,F , P ) and real random

variables defined on this space. We shall see how the existence of conditional expectations

can be shown using a Radon-Nikodym derivative. In the course MI the existence is shown

from L2-theory using projetions on the subspace L2(Ω,D, P ) of L2(Ω,F , P ), when D ⊆ F is

a sub σ-algebra.

Let X be a real random variable defined on (Ω,F , P ) with E|X| < ∞. A conditional

expectation of X (given something) can be interpreted as a guess on the value of X(ω) based

on varying amounts of information about which ω ∈ Ω has been drawn. If we know nothing

about ω, then it is not possible to say very much about the value of X(ω). Perhaps the best

guess we can come up with is suggesting the value E(X) =
∫
X dP !

Now let D1, . . . , Dn be a system of disjoint sets in F with ∪ni=1Di = Ω, and assume that for

a given ω ∈ Ω, we know whether ω ∈ Di for each i = 1, . . . , n. Then we actually have some

information about the ω that has been drawn, and an educated guess on the value of X(ω)

may not be as simple as E(X) any more. Instead our guessing strategy will be

guess on X(ω) =
1

P (Di)

∫
Di

X dP if ω ∈ Di . (4.4)

We are still using an integral of X, but we only integrate over the set Di, where we know that

ω is an element. It may not be entirely clear, why this is a good strategy for our guess (that

will probably depend on the definition of a good guess), but at least it seems reasonable that

we give the same guess on X(ω) for all ω ∈ Di.
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Example 4.2.1. Suppose Ω = {a, b, c, d} and that the probability measure P is given by

P ({a}) = P ({b}) = P ({c}) = P ({d}) =
1

4

and furthermore that X : Ω→ R is defined by

X(a) = 5 X(b) = 4 X(c) = 3 X(d) = 2 .

If we know nothing about ω then the guess is

E(X) =
5 + 4 + 3 + 2

4
= 3.5 .

Now let D = {a, b} and assume that we want to guess X(ω) in a situation where we know

whether ω ∈ D or ω ∈ Dc. The strategy described above gives that if ω ∈ D then

guess on X(ω) =

∫
D
X dP

P (D)
=

1
4 (5 + 4)

1
2

= 4.5 .

Similarly, if we know ω ∈ Dc = {c, d}, then the best guess would be 2.5. Given the knowledge

of whether ω ∈ D or ω ∈ Dc we can write the guess as a function of ω, namely

guess(ω) = 1D(ω) · 4.5 + 1Dc(ω) · 2.5 .

◦

Note that the collection {D1, . . . , Dn} is a sub σ–algebra of F . The stability requirements for

σ–algebras fit very well into the knowledge of whether ω ∈ Di for all i: If we know whether

ω ∈ Di, then we also know whether ω ∈ Dc
i . And we know whether ω ∈ ∪Ai, if we know

whether ω ∈ Ai for all i.

The concept of conditional expectations takes the guessing strategy to a general level, where

the conditioning σ-algebra D is general sub σ–algebra of F . The result will be a random

variable (as in Example 4.2.1) which we will denote E(X|D) and call the conditional expecta-

tion of X given D. We will show in Example 4.2.5 that when D has the form {D1, . . . , Dn}
as above, then E(X|D) is given by (4.4).

Definition 4.2.2. let X be a real random variable defined on (Ω,F , P ) with E|X| <∞. A

conditional expectation X given D is a D-measurable real random variable, denoted E(X|D)

which satisfies

E|E(X|D)| <∞, (1)∫
D

E(X|D) dP =

∫
D

X dP for all D ∈ D . (2)
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Note that one cannot in general use E(X|D) = X (even though it satisfies (1) and (2)): X

is assumed to be F-measurable but need not be D-measurable.

Given this definition, conditional expectations are almost surely unique:

Theorem 4.2.3. (1) If U and
∼
U are both conditional expectations of X given D, then U =

∼
U

a.s.

(2) If U is a conditional expectation of X given D and
∼
U is D-measurable with

∼
U = U a.s.

then
∼
U is also a conditional expectation of X given D.

Proof. For the first result consider, e.g., D = (
∼
U > U). Then∫

D

(
∼
U − U) dP =

∫
D

∼
UdP −

∫
D

U dP =

∫
D

X dP −
∫
D

X dP = 0

according to (2) in Definition 4.2.2 . But
∼
U > U on D, so therefore P (D) = P (

∼
U > U) = 0.

Similarly, P (
∼
U < U) = 0.

The second statement is trivial: Simply use that

E|Ũ | = E|U | and

∫
D

Ũ dP =

∫
D

U dP

so Ũ satisfies (1) and (2).

Theorem 4.2.4. If X is a real random variable with E|X| <∞, then there exists a condi-

tional expectation of X given D.

Proof. Define for D ∈ D
ν(D) =

∫
D

X dP .

Then ν is a bounded, signed measure on (Ω,D). Let P 0 denote the restriction of P to D:

P 0 is the probability measure on (Ω,D) given by

P 0(D) = P (D)

for all D ∈ D. Now we obviously have for all D ∈ D

P 0(D) = 0 ⇒ P (D) = 0 ⇒ ν(D) = 0 ,
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so ν � P 0. According to the Radon–Nikodym Theorem we can find the Radon–Nikodym

derivative U = dν/dP 0 satisfying

ν(D) =

∫
D

U dP 0 .

By construction in the Radon–Nikodym Theorem, U is automatically D–measurable and

P 0–integrable. For all D ∈ D we now have that∫
D

X dP = ν(D) =

∫
D

U dP 0 =

∫
D

U dP (4.5)

so it is shown that U is a conditional expectation of X given D.

That the last equation in (4.5) is true is just basic measure theory: The integral of a function

with respect to some measure does not change if the measure is extended to a larger σ–

algebra; the function is also a measurable function on the larger measurable space.

A direct argument could be first looking at indicator functions. Let D ∈ D and note that 1D

is D–measurable. Then ∫
1D dP 0 = P 0(D) = P (D) =

∫
1D dP .

Then it follows that ∫
Y dP 0 =

∫
Y dP

if Y is a linear combination of indicator functions, and finally the result is shown to be true

for general D–measurable functions Y by a standard approximation argument.

Example 4.2.5. consider a probability space (Ω,F , P ) and a real random variable X defined

on Ω with E|X| <∞. Assume that D1, . . . , Dn ∈ F form a partition of Ω: Di ∩Dj = ∅ for

i 6= j and ∪ni=1Di = Ω. Also assume (for convenience) that P (Di) > 0 for all i = 1, . . . , n.

Let D be the σ–algebra generated by the Dj–sets. Then D ∈ D if and only if D is a union

of some Dj ’s.

We will show that

U =

n∑
i=1

1

P (Di)

(∫
Di

X dP
)

1Di .

is a conditional expectation of X given D. First note that U is D–measurable, since the
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indicator functions 1Di are D–measurable. Furthermore

E|U | ≤
n∑
i=1

∫ ∣∣∣ 1

P (Di)

(∫
Di

X dP
)

1Di

∣∣∣dP
≤

n∑
i=1

1

P (Di)

(∫
Di

|X| dP
)∫

1Di dP

=

n∑
i=1

∫
Di

|X| dP = E|X| <∞ .

Finally let D ∈ D. Then D = ∪mk=1Dik for some 1 ≤ i1 < · · · < im ≤ n. We therefore obtain∫
D

X dP =

m∑
k=1

∫
Dik

X dP

so ∫
D

U dP =

m∑
k=1

∫
Dik

n∑
i=1

1

P (Di)

(∫
Di

X dP
)

1Di dP

=

m∑
k=1

∫
Dik

1

P (Dik)

(∫
Dik

X dP
)

1Dik dP

=

m∑
k=1

1

P (Dik)

(∫
Dik

X dP
)∫

Dik

1Dik dP

=

m∑
k=1

∫
Dik

X dP =

∫
D

X dP .

Hence U satisfies the conditions in Definition 4.2.2 and is therefore a conditional expectation

of X given D. ◦

We shall now show a series of results concerning conditional expectations. The results and the

proofs are well-known from the course MI. In Theorem 4.2.6, X,Y and Xn are real random

variables, all of which are integrable.

Theorem 4.2.6. (1) If X = c a.s., where c ∈ R is a constant, then E(X|D) = c a.s.

(2) For α, β ∈ R it holds that

E(αX + βY |D) = αE(X|D) + βE(Y |D) a.s.

(3) If X ≥ 0 a.s. then E(X|D) ≥ 0 a.s. If Y ≥ X a.s. then E(Y |D) ≥ E(X|D) a.s.
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(4) If D ⊆ E are sub σ-algebras of F then

E(X|D) = E[E(X|E)|D] = E[E(X|D)|E ] a.s.

(5) If σ(X) and D are independent then

E(X|D) = EX a.s.

(6) If X is D-measurable then

E(X|D) = X a.s.

(7) If it holds for all n ∈ N that Xn ≥ 0 a.s. and Xn+1 ≥ Xn a.s. with limXn = X a.s.,

then

lim
n→∞

E(Xn|D) = E(X|D) a.s.

(8) If X is D-measurable and E|XY | <∞, then

E(XY |D) = X E(Y |D) a.s.

(9) If f : R → R is a measurable function that is convex on an interval I, such that

P (X ∈ I) = 1 and E|f(X)| <∞, then it holds that

f
(
E(X|D)

)
≤ E

(
f(X)|D)

)
a.s.

Proof. (1) We show that the constant variable U given by U(ω) = c meets the conditions

from Definition 4.2.2. Firstly, it is D–measurable, since for B ∈ B we have

U−1(B) =

{
Ω c ∈ B
∅ c /∈ B

which is D measurable in either case. Furthermore E|U | = |c| <∞ and obviously∫
D

U dP =

∫
D

cdP =

∫
D

X dP .
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(2) αE(X|D) + βE(Y |D) is D-measurable and integrable, so all we need to show is (see

part (2) of Definition 4.2.2), that∫
D

(αE(X|D) + βE(Y |D)) dP =

∫
D

(αX + βY ) dP

for all D ∈ D. But here, the left hand side is

α

∫
D

E(X|D) dP + β

∫
D

E(Y |D) dP,

which is seen to equal the right hand side when we use Definition 4.2.2 on both terms.

(3) For the first claim define D = (E(X|D) < 0) = E(X|D)−1((−∞, 0)) and note that

D ∈ D since E(X|D) is D–measurable. Then∫
D

E(X|D) dP =

∫
D

X dP ≥ 0 ,

since X ≥ 0 a.s. But the fact that E(X|D) < 0 on D, makes
∫
D
E(X|D) dP < 0, if P (D) > 0.

Hence P (D) = 0 and E(X|D) ≥ 0 a.s.

For the second claim, just use the first result on Y −X and apply (2).

(4) Firstly, we show that E(X|D) = E[E(X|E)|D] a.s. By definition we have that

E[E(X|E)|D] is D–measurable with finite expectation, and for D ∈ D∫
D

E[E(X|E)|D] dP =

∫
D

E(X|E) dP =

∫
D

X dP .

Hence we have the result from Definition 4.2.2. In the first equality, it is used that E[E(X|E)|D]

is a conditional expectation of E(X|E) given D. In the second equality Definition 4.2.2 is

applied to E(X|E), using that D ∈ D ⊆ E .

Secondly, we prove that E(X|D) = E[E(X|D)|E ] a.s. by showing that E(X|D) is a condi-

tional expectation of E(X|D) given E . But that follows directly from 6, since E(X|D) is

E–measurable.

(5) As in (1), the constant map ω 7→ EX is D–measurable and has finite expectation, so

it remains to show that for D ∈ D∫
D

EX dP =

∫
D

X dP .

The left hand side is EX ·P (X). For the right hand side we obtain the following, using that

1D and X are independent∫
D

X dP =

∫
1D ·X dP =

∫
1D dP ·

∫
X dP = P (D) · EX ,
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so the stated equality is true.

(6) Trivial.

(7) According to (3) we have for all n ∈ N that E(Xn+1|D) ≥ E(Xn|D) a.s., so with

Fn = (E(Xn+1|D) ≥ E(Xn|D)) ∈ D

we have P (Fn) = 1. Let F0 = (E(X1|D) ≥ 0) such that P (F0) = 1. With the definition

F = ∩∞n=0Fn we have F ∈ D and P (F ) = 1. For ω ∈ F it holds that the sequence(
E(Xn|D)(ω)

)
n∈N is increasing and E(X1|D)(ω) ≥ 0. Hence for ω ∈ F the number Y (ω) =

limn→∞E(Xn|D)(ω)

is well–defined in [0,∞]. Defining e.g. Y (ω) = 0 for ω ∈ F c makes Y a D–measurable random

variable (since F is D–measurable, and Y is the point–wise limit of 1FE(Xn|D) that are all

D–measurable variables) with values in [0,∞]. Thus the integrals
∫
G
Y dP of Y makes sense

for all G ∈ F .

In particular we obtain the following for D ∈ D using monotone convergence in the third and

the sixth equality∫
D

Y dP =

∫
D∩F

Y dP =

∫
D∩F

lim
n→∞

E(Xn|D) dP = lim
n→∞

∫
D∩F

E(Xn|D) dP

= lim
n→∞

∫
D

E(Xn|D) dP = lim
n→∞

∫
D

Xn dP =

∫
D

lim
n→∞

Xn dP =

∫
D

X dP .

Letting D = Ω shows that E|Y | = EY = EX < ∞, so we can conclude Y = E(X|D) a.s..

Thereby we have shown (7).

(8) SinceXE(Y |D) is obviouslyD–measurable, it only remains to show that E|XE(Y |D)| <
∞ and that ∫

D

XE(Y |D) dP =

∫
D

XY dP (4.6)

for all D ∈ D.

We now prove the result for all X ≥ 0 and Y ≥ 0 by showing the equation in the following

steps:

(i) when X = 1D0 for D0 ∈ D

(ii) when X =
∑n
k=1 ak1Dk for Dk ∈ D and ak ≥ 0
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(iii) when X ≥ 0 is a general D–measurable variable

So firstly assume that X = 1D0
with D0 ∈ D. Then

E|1D0E(Y |D)| ≤ E|E(Y |D)| <∞

and since D ∩D0 ∈ D we obtain∫
D

1D0
E(Y |D) dP =

∫
D∩D0

E(Y |D) dP

=

∫
D∩D0

Y dP

=

∫
D

1D0
Y dP .

Hence formula (4.6) is shown in case (i). If

X =

n∑
k=1

ak1Dk

with Dk ∈ D and ak ≥ 0, we easily obtain (4.6) from linearity∫
D

XE(Y |D) dP =

n∑
k=1

ak

∫
D

1DkE(Y |D) dP =

n∑
k=1

ak

∫
D

1DkY dP =

∫
D

XE(Y |D) dP .

For a general D–measurable X we can obtain X through the approximation

X = lim
n→∞

Xn ,

where

Xn =

n2n∑
k=1

k − 1

2n
1( k−1

2n ≤X<
k
2n ) .

Note that all sets (k−1
2n ≤ X < k

2n ) are D–measurable, so each Xn have the form from step

(ii). Hence ∫
D

XnE(Y |D) dP =

∫
D

XnY dP (4.7)

for all n ∈ N. Furthermore the construction of (Xn)n∈N makes it non–negative and increasing.

Since we have assumed that Y ≥ 0 we must have XE(Y |D) ≥ 0 a.s. Thereby the inte-

gral
∫
D
XE(Y |D) dP is defined for all D ∈ D (but it may be +∞). Since the sequence
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(XnE(Y |D))n∈N is almost surely increasing (increasing for all ω with E(Y |D)(ω) ≥ 0) we

obtain ∫
D

XE(Y |D) dP =

∫
D

lim
n→∞

XnE(Y |D) dP = lim
n→∞

∫
D

XnE(Y |D) dP

= lim
n→∞

∫
D

XnY dP =

∫
D

XY dP ,

where the second and the fourth equality follow from monotone convergence, and the third

equality is a result of (4.7). From this (since E|XY | <∞) we in particular see, that

E|XE(Y |D)| = E(XE(Y |D)) =

∫
Ω

XE(Y |D) dP =

∫
Ω

XY dP = E(XY ) <∞ .

Hence (8) is shown in the case, where X ≥ 0 and Y ≥ 0. That (8) holds in general then

easily follows by splitting X and Y up into their positive and negative parts, X = X+−X−

and Y = Y + − Y −, and then applying the version of (8) that deals with positive X and Y

on each of the terms we obtain the desired result by multiplying out the brackets.

(9) The full proof is given in the lecture notes of the course MI. That

E(X|D)+ ≤ E(X+|D) a.s.

is shown in Exercise 4.11, and that

|E(X|D)| ≤ E(|X||D) a.s.

is shown in Exercise 4.12.

4.3 Conditional expectations given a random variable

In this section we will consider the special case, where the conditioning σ–algebra D is

generated by a random variable Y . So assume that Y : (Ω,F)→ (E, E) is a random variable

with values in the space E that is not necessarily R. If D = σ(Y ), i.e. the σ-algebra generated

by Y , we write

E(X|Y )

rather than E(X|D) and the resulting random variable is referred to as the conditional

expectation of X given Y . Recall that D ∈ σ(Y ) is always of the form D = (Y ∈ A) for

some A ∈ E . Then we immediately have the following characterization of E(X|Y ):
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Theorem 4.3.1. Let X be a real random variable with E|X| <∞, and assume that Y is a

random variable with values in (E, E). Then the conditional expectation E(X|Y ) of X given

Y is characterised by being σ(Y )-measurable and satisfying E|E(X|Y )| <∞ and∫
(Y ∈A)

E(X|Y )dP =

∫
(Y ∈A)

X dP for all A ∈ E .

Note that if σ(Y ) = σ(
∼
Y ), then E(X|Y ) = E(X|

∼
Y ) a.s. If e.g. Y takes values in the

real numbers and ψ : E → E is a bijective and bimeasurable map (ψ and ψ−1 are both

measurable), then

E(X|Y ) = E(X|ψ(Y )) a.s.

The following lemma will be extremely useful in the comprehension of conditional expecta-

tions given random variables.

Lemma 4.3.2. A real random variable Z is σ(Y )-measurable if and only if there exists a

measurable map φ : (E, E)→ (R,B) such that

Z = φ ◦ Y.

Proof. First the easy implication:

Assume that Z = φ◦Y , where φ is E−B–measurable, and obviously Y is σ(Y )−E–measurable.

Then it is well–known that Z is σ(Y )–B–measurable.

Now assume that Z is σ(Y )–measurable. We can write Z as

Z = lim
n→∞

n2n∑
k=−n2n

k − 1

2n
1( k−1

2n ≤Z<
k
2n ) , (4.8)

where each set (k−1
2n ≤ Z < k

2n ) ∈ σ(Y ), since Z is σ(Y )–measurable. Define the class H of

real random variables by

H = {Z ′ : there exists a E − B–measurable function ψ with Z ′ = ψ ◦ Y }

Because of the approximation (4.8) the argument will be complete, if we can show that H
has the following properties

(i) 1D ∈ H for all D ∈ σ(Y )
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(ii) a1Z1 + · · ·+ anZn ∈ H if Z1, . . . , Zn ∈ H and a1, . . . , an ∈ R

(iii) Z ∈ H, where Z = limn→∞ Zn and all Zn ∈ H

because in that case we will have shown that Z ∈ H.

(i): Assume that D ∈ σ(Y ). Then there exists a set A ∈ E such that D = (Y ∈ A) (simply

from the definition of σ(Y )). But then 1D = 1A ◦ Y , since

1D(ω) = 1 ⇔ ω ∈ D = (Y ∈ A)

⇔ Y (ω) ∈ A

⇔ (1A ◦ Y )(ω) = 1 .

We have that 1A is E − B–measurable, so (i) is shown.

(ii): Assume that Zk = φk ◦ Y , where φk is E − B–measurable, for k = 1, . . . , n. Then we

get
n∑
k=1

akZk(ω) =

n∑
k=1

ak(φk(Y (ω))) =

(( n∑
k=1

akφk

)
◦ Y

)
(ω) .

So
n∑
k=1

akZk = (

n∑
k=1

akφk) ◦ Y ,

where
∑n
k=1 akφk is measurable. Hence we have shown (ii).

(iii): Assume that Zn = φn ◦ Y for all n ∈ N, where φn is E − B–measurable. Then

Z(ω) = lim
n→∞

Zn(ω) = lim
n→∞

(φn ◦ Y )(ω) = lim
n→∞

φn(Y (ω))

for all ω ∈ Ω. In particular the limit limn→∞ φn(y) exists for all y ∈ Y (Ω) = {Y (ω) : ω ∈ Ω}.
Define φ : E → R by

φ(y) =

{
limn→∞ φn(y) if the limit exists

0 otherwise
,

then φ is E − B–measurable, since F = (limn φn exists) ∈ E and φ = limn(1Fφn) with each

1Fφn being E −B–measurable. Furthermore note that Z(ω) = φ(Y (ω)), so Z = φ◦Y . Hence

(iii) is shown.

Now we return to the discussion of the σ(Y )-measurable random variable E(X|Y ). By the

lemma, we have that

E(X|Y ) = φ ◦ Y,
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for some measurable φ : E → R. We call φ(y) a conditional expectation of X given Y = y

and write

φ(y) = E(X|Y = y).

This type of conditional expectations is characterized in Theorem 4.3.3 below.

Theorem 4.3.3. A measurable map φ : E → R defines a conditional expectation of X given

Y = y for all y if and only if φ is integrable with respect to the distribution Y (P ) of Y and∫
B

φ(y) dY (P )(y) =

∫
(Y ∈B)

X dP (B ∈ E).

Proof. Firstly, assume that φ defines a conditional expectation of X given Y = y for all y.

Then we have E(X|Y ) = φ ◦ Y so∫
E

|φ(y)|dY (P )(y) =

∫
Ω

|φ ◦ Y |dP =

∫
Ω

|E(X|Y )|dP = E|E(X|Y )| <∞ ,

and we have shown that φ is Y (P )–integrable. Above, the first equality is a result of the

Change–of–variable Formula. Similarly we obtain for all B ∈ E∫
B

φ(y) dY (P )(y) =

∫
(Y ∈B)

E(X|Y ) dP =

∫
(Y ∈B)

X dP .

Thereby the ”only if” claim is obtained.

Conversely, assume that φ is integrable with respect to Y (P ) and that∫
B

φ(y) dY (P )(y) =

∫
(Y ∈B)

X dP

for all B ∈ E .

Firstly, we note that φ◦Y is σ(Y )–measurable (as a result of the trivial implication in Lemma

4.3.2). Furthermore we have∫
Ω

|φ ◦ Y |dP =

∫
E

|φ(y)|dY (P )(y) <∞

using the change–of–variable formula again (simply the argument from above backwards).

Finally for D ∈ σ(Y ) we have B ∈ E with D = (Y ∈ B) so∫
D

φ ◦ Y dP =

∫
B

φ(y) dY (P )(y) =

∫
D

X dP ,

where we have used the assumption. This shows that φ ◦ Y is a conditional expectation of

X given Y , so φ ◦ Y = E(X|Y ). From that we have by definition, that φ(y) is a conditional

expectation of X given Y = y.
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4.4 Exercises

Exercise 4.1. Assume that ν1 and ν2 are bounded, signed measures. Show that αν1 + βν2

is a bounded, signed measure as well, when α, β ∈ R are real–valued constants, using the

(obvious) definition

(αν1 + βν2)(A) = αν1(A) + βν2(A) .

◦

Note that the definition ν � µ also makes sense if µ is a positive measure (not necessarily

bounded).

Exercise 4.2. Let τ be the counting measure on N0 = N∪{0} (equipped with the σ–algebra

P(N0) that contains all subsets). Let µ be the Poisson distribution with parameter λ:

µ({n}) =
λn

n!
e−λ for n ∈ N0 .

Show that µ� τ . Does µ have a density f with respect to τ? In that case find f .

Now let ν be the binomial distribution with parameters (N, p). Decide whether µ� ν and/or

ν � µ. ◦

Exercise 4.3. Assume that µ is a bounded, positive measure and that ν1, ν2 � µ are

bounded, signed measures. Show

d(ν1 + ν2)

dµ
=
dν1

dµ
+
dν2

dµ
µ–a.e.

◦

Exercise 4.4. Assume that π, µ are bounded, positive measures and that ν is a bounded,

signed measure, such that ν � π � µ. Show that

dν

dµ
=
dν

dπ

dπ

dµ
µ–a.e.

◦

Exercise 4.5. Assume that µ, ν are bounded, positive measures such that ν � µ and µ� ν.

Show
dν

dµ
=

(
dµ

dν

)−1

.
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both ν–a.e. and µ–a.e. ◦

Exercise 4.6. Assume that ν is a bounded, signed measure and that µ is a σ–finite measure

with ν � µ. Show that there exists f ∈ L(µ) such that ν = f · µ (meaning ν(F ) =
∫
F
f dµ).

◦

In the following exercises we assume that all random variables are defined on a probability

space (Ω,F , P ).

Exercise 4.7. Let X and Y be random variables with E|X| < ∞ and E|Y | < ∞ that are

both measurable with respect to some sub σ–algebra D. Assume furthermore that∫
D

X dP =

∫
D

Y dP for all D ∈ D .

Show that X = Y a.s. ◦

Exercise 4.8. Assume that X1 and X2 are independent random variables satisfying X1 ∼
exp(β) and X2 ∼ N (0, 1). Define Y = X1 + X2 and the sub σ–algebra D by D = σ(X1).

Show that E(Y |D) = X1 a.s. ◦

Exercise 4.9. Assume that X is a real random variable with EX2 <∞ and that D is some

sub σ–algebra. Let Y = E(X|D). Show that

X(P ) = Y (P ) ⇔ X = Y a.s.

◦

Exercise 4.10. Let X and Y be random variables with EX2 < ∞ and EY 2 < ∞. The

conditional variance of X given the sub σ–algebra D is defined by

V (X|D) = E(X2|D)− (E(X|D))2

and the conditional covariance between X and Y given D is

Cov(X,Y |D) = E(XY |D)− E(X|D)E(Y |D)

Show that

V (X) = E(V (X|D)) + V (E(X|D))

Cov(X,Y ) = E(Cov(X,Y |D)) + Cov(E(X|D), E(Y |D))

◦
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Exercise 4.11. Let X be a real random variable with E|X| <∞. Let D be a sub σ–algebra.

Show without referring to (9) in Theorem 4.2.6 that

(E(X|D))+ ≤ E(X+|D) a.s.

◦

Exercise 4.12. Let X be a real random variable with E|X| <∞. Let D be a sub σ–algebra.

Show without referring to (9) in Theorem 4.2.6 that

|E(X|D)| ≤ E(|X| |D) a.s.

◦

Exercise 4.13. Let (Ω,F , P ) = ((0, 1),B, λ) (where λ is the Lebesgue measure on (0, 1)).

Define the real random variable X by

X(ω) = ω

and

D = {D ⊆ (0, 1) | D or Dc is countable} .

Then D is a sub σ–algebra of B (you can show this if you want...). Find a version of E(X|D).

◦

Exercise 4.14. Let (Ω,F, P ) = ([0, 1],B, λ), where λ is the Lebesgue measure on [0, 1].

Consider the two real valued random variables

X1(ω) = 1− ω X2(ω) = ω2

Show that for any given real random variable Y it holds that E(Y |X1) = E(Y |X2).

Show by giving an example that E(Y |X1 = x) and E(Y |X2 = x) may be different on a set

of x’s with positive Lebesgue measure. ◦

Exercise 4.15. Assume that X is a real random variable with E|X| < ∞ and that D is a

sub σ–algebra of F. Assume that Y is a D–measurable real random variable with E|Y | <∞
that satisfies

E(X) = E(Y )

and ∫
D

Y dP =

∫
D

X dP
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for all D ∈ G, where G is a ∩–stable set of subsets of Ω with σ(G) = D.

Show that Y is a conditional expectation of X given D. ◦

Exercise 4.16. Let X = (X1, X2, . . .) be a stochastic process, and assume that Y and Z

are real random variables, such that (Z, Y ) is independent of X. Assume that Y has finite

expectation.

(1) Show that ∫
(Z∈B,X∈C)

E(Y |Z) dP =

∫
(Z∈B,X∈C)

Y dP

for all B ∈ B and C ∈ B∞.

(2) Show that

E(Y |Z) = E(Y |Z,X)

◦

Exercise 4.17. Let X1, X2, . . . be independent and identically distributed random variables

with E|X1| <∞. Define Sn = X1 + · · ·+Xn.

(1) Show that E(X1|Sn) = E(X1|Sn, Sn+1, Sn+2, . . .) a.s.

(2) Show that 1
nSn = E(X1|Sn, Sn+1, Sn+2, . . .) a.s.

◦

Exercise 4.18. Assume that (X,Y ) follows the two–dimensional Normal distribution with

mean vector (µ1, µ2) and covariance matrix[
σ11 σ12

σ21 σ22

]

where σ12 = σ21. Then X ∼ N (µ1, σ11), Y ∼ N (µ2, σ22) and Cov(X,Y ) = σ12.

Show that

E(X|Y ) = µ1 + β(Y − µ2) ,

where β = σ12/σ22. ◦
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Chapter 5

Martingales

In this chapter we will present the classical theory of martingales. Martingales are sequences

of real random variables, where the index set N (or [0,∞)) is regarded as a time line, and

where – conditionally on the present level – the level of the sequence at a future time point

is expected to be as the current level. So it is sequences that evolves over time without a

drift in any direction. Similarly, submartingales are expected to have the same or a higher

level at future time points, conditioned on the present level.

In Section 5.1 we will give an introduction to the theory based on a motivating example from

gambling theory. The basic definitions will be presented in Section 5.2 together with results

on the behaviour of martingales observed at random time points. The following Section 5.3

will mainly address the very important martingale theorem, giving conditions under which

martingales and submartingales converge. In Section 5.4 we shall introduce the concept of

uniform integrability and see how this interplays with martingales. Finally, in Section 5.5

we will prove a central limit theorem for martingales. That is a result that relaxes the

independence assumption from Section 3.5.
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5.1 Introduction to martingale theory

Let Y1, Y2, . . . be mutually independent identically distributed random variables with

P (Yn = 1) = 1− P (Yn = −1) = p

where 0 < p < 1. We will think of Yn as the result of a game where the probability of winning

is p, and where if you bet 1 dollar. and win you receive 1 dollar. and if you lose, you lose

the 1 dollar you bet.

If you bet 1 dollar, then, the expected winnings in each game is

EYn = p− (1− p) = 2p− 1,

and the game is called favourable if p > 1
2 , fair if p = 1

2 and unfavourable if p < 1
2

corresponding to whether EYn is > 0, = or < 0, respectively.

If the player in each game makes a bet of 1, his (signed) winnings after n games will be

Sn = Y1 + · · ·+ Yn. According to the strong law of large numbers,

1

n
Sn

a.s.→ 2p− 1,

so it follows that if the game is favourable, the player is certain to win in the long run (Sn > 0

evt. almost surely) and if the game is unfavourable, the player is certain to lose in the long

run.

Undoubtedly, in practice, it is only possible to participate in unfavourable games (unless you

happen to be, e.g, a casino or a state lottery). Nevertheless, it may perhaps be possible for

a player to turn an unfavourable game into a favourable one, by choosing his bets in a clever

fashion Assume that the player has a starting capital of X0 > 0, where X0 is a constant. Let

Fn = σ(Y1, . . . , Yn) for n ≥ 1. A strategy is a sequence (φn)n≥1 of functions

φn : (0,∞)× {−1, 1}n−1 → [0,∞),

such that the value of

φn(X0, y1, . . . , yn−1)

is the amount the player will bet in the n’th game, when the starting capital is X0 and

y1, . . . , yn−1 are the results of the n− 1 first games (the observed values of Y1, . . . , Yn−1).

A strategy thus allows for the player to take the preceding outcomes into account when he

makes his n’th bet.
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Note that φ1 is given by X0 alone, making it constant. Further note that it is possible to

let φn = 0, corresponding to the player not making a bet, for instance because he or she has

been winning up to this point and therefore wishes to stop.

Given the strategy (φn) the (signed) winnings in the n’th game become

Zn = Ynφn(X0, Y1, . . . , Yn−1)

and the capital after the n’th game is

Xn = X0 +

n∑
k=1

Zk.

It easily follows that for all n, Xn is Fn-measurable, integrable and

E(Xn+1|Fn) = E(Xn + Yn+1φn+1(X0, Y1, . . . , Yn)|Fn)

= Xn + φn+1(X0, Y1, . . . , Yn)E(Yn+1|Fn)

= Xn + φn+1(X0, Y1, . . . , Yn)(2p− 1).

The most important message here is that

E(Xn+1|Fn)
≥
=
≤
Xn for p

>
=
<

1

2
, (5.1)

meaning that (Xn,Fn) is a submartingale (≥), martingale (=) or a supermartingale (≤) (see

Definition 5.2.3 below).

For instance, if p < 1
2 , the conditional expected value of the capital after the n+ 1’st game is

at most Xn, so the game with strategy (φn) is at best fair. But what if one simply chooses

to focus on the development of the capital at points in time that are advantageous for the

player, and where he or she can just decide to quit?

With 0 < p < 1 infinitely many wins, Yn = 1 and, of course, infinitely many losses, Yn = −1,

will occur with probability 1. Let τk be the time of the k’th win, i.e.

τ1 = inf{n : Yn = 1}

and for k ≥ 1,

τk+1 = inf{n > τk : Yn = 1}.

Each τk can be shown to be a stopping time (see Definition 5.2.6 below) and Theorem 5.2.12

provides conditions for when ’(Xn) is a supermartingale (fair or unfavourable)’ implies that



136 Martingales

’(Xτk) is a supermartingale’. The conditions of Theorem 5.2.12 are for instance met if (Xn)

is a supermartingale and we require, not unrealistically, that Xn ≥ a always, where a is some

given constant. (The player has limited credit and any bet made must, even if the player

loses, leave a capital of at least a). It is this result we phrase by stating that it is not possible

to turn an unfavourable game into a favourable one.

Even worse, if p ≤ 1
2 and we require that Xn ≥ a, it can be shown that if there is a minimum

amount that one must bet (if one chooses to play) and the player keeps playing, he or she

will eventually be ruined! (If p > 1
2 there will still be a strictly positive probability of ruin,

but it is also possible that the capital will beyond all any number).

The result just stated ’only’ holds under the assumption of, for instance, all Xn ≥ a. As we

shall see, it is in fact easy to specify strategies such that Xτk ↑ ∞ for k ↑ ∞. The problem

is that such strategies may well prove costly in the short run.

A classic strategy is to double the amount you bet every game until you win and then start

all over with a bet of, e.g., 1, i.e.

φ1(X0) = 1,

φn(X0, y1, . . . , yn−1) =

2φn−1(X0, y1, . . . , yn−2) if yn−1 = −1,

1 if yn−1 = 1.

If, say, τ1 = n, the player loses
∑n−1
k=1 2k−1 in the n− 1 first games and wins 2n−1 in the n’th

game, resulting in the total winnings of

−
n−1∑

1

2k−1 + 2n−1 = 1.

Thus, at the random time τk the total amount won is k and the capital is

Xτk = X0 + k.

But if p is small, one may experience long strings of consecutive losses and Xn can become

very negative.

In the next sections we shall - without referring to gambling - discuss sequences (Xn) of

random variables for which the inequalities (1.1) hold. A main result is the martingale

convergence theorem (Theorem 5.3.2).

The proof presented here is due to the American probabilist J.L. Doob.
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5.2 Martingales and stopping times

Let (Ω,F , P ) be a probability space and let (Fn)n≥1 be a sequence of sub σ-algebras of F ,

which is increasing Fn ⊆ Fn+1 for all n. We say that (Ω,F ,Fn, P ) is a filtered probability

space with filtration (Fn)n≥1. The interpretation of a filtration is that we think of n as a

point in time and Fn as consisting of the events that are decided by what happens up to and

including time n.

Now let (Xn)n≥1 be a sequence of random variables defined on (Ω,F).

Definition 5.2.1. The sequence (Xn) is adapted to (Fn) if Xn is Fn-measurable for all n.

Instead of writing that (Xn) is adapted to (Fn) we often write that (Xn,Fn) is adapted.

Example 5.2.2. Assume that (Xn) is a sequence of random variables defined on (Ω,F , P ),

and define for each n ∈ N the σ–algebra Fn by

Fn = σ(X1, . . . , Xn) .

Then (Fn) is a filtration on (Ω,F , P ) and (Xn,Fn) is adapted. ◦

Definition 5.2.3. An adapted sequence (Xn,Fn) of real random variables is called a mar-

tingale if for all n ∈ N it holds that E|Xn| <∞ and

E(Xn+1|Fn) = Xn a.s. ,

and a submartingale if for all n ∈ N it holds that E|Xn| <∞ and

E(Xn+1|Fn) ≥ Xn a.s. ,

and a supermartingale if (−Xn,Fn) is a submartingale.

Note that if (Xn,Fn) is a submartingale (martingale), then for all m < n ∈ N

E(Xn|Fm) = E(E(Xn|Fn−1)|Fm) ≥
(=)

E(Xn−1|Fm)

= E(E(Xn−1|Fn−2)|Fm) ≥
(=)

. . . ≥ Xm

and in particular EXn ≥
(=)

EXm.

The following lemma will be very useful and has a corollary that gives an equivalent formu-

lation of the submartingale (martingale) property.
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Lemma 5.2.4. Suppose that X and Y are real random variables with E|X| <∞ and E|Y | <
∞, and let D be a sub σ–algebra of F such that X is D–measurable. Then

E(Y |D) ≥
(=)

X a.s.

if and only if ∫
D

Y dP ≥
(=)

∫
D

X dP for all D ∈ D .

Proof. Since both E(Y |D) and X are D–measurable, we have that

E(Y |D) ≥ X
(=)

(5.2)

if and only if ∫
D

E(Y |D) dP ≥
(=)

∫
D

X dP

for all D ∈ D (The ”if” implication should be obvious. For ”only if”, consider the integral∫
D

(E(Y |D) − X) dP , where D = (E(Y |D) < X)). The left integral above equals
∫
D
Y dP

because of the definition of conditional expectations, so (5.2) holds if and only if∫
D

Y dP ≥
(=)

∫
D

X dP

for all D ∈ D.

Corollary 5.2.5. Assume that (XnFn) is adapted with E|Xn| < ∞ for all n ∈ N. Then

(Xn,Fn) is a submartingale (martingale) if and only if for all n ∈ N∫
F

Xn+1 dP ≥
(=)

∫
F

Xn dP

for all F ∈ Fn.

When handling martingales and submartingales it is often fruitful to study how they behave

at random time points of a special type called stopping times.

Definition 5.2.6. A stopping time is a random variable τ : Ω→ N = N ∪ {∞} such that

(τ = n) ∈ Fn

for all n ∈ N. If τ <∞ we say that τ is a finite stopping time.
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Example 5.2.7. Let (Xn) be a sequence of real random variables, and define the filtration

(Fn) by Fn = σ(X1, . . . , Xn). Assume that τ is a stopping time with respect to this filtration,

and consider the set (τ = n) that belongs to Fn. Since Fn is generated by the vector

(X1, . . . , Xn) there exists a set B ∈ Bn such that

(τ = n) =
(
(X1, . . . , Xn) ∈ Bn

)
.

The implication of this is, that we are able to read off from the values of X1, . . . , Xn whether

τ = n or not. So by observing the sequence (Xn) for some time, we know if τ has occurred

or not. ◦

We have an equivalent definition of a stopping time:

Lemma 5.2.8. A random variable τ : Ω→ N is a stopping time if and only if

(τ ≤ n) ∈ Fn

for all n ∈ N.

Proof. Firstly, assume that τ is a stopping time. We can write

(τ ≤ n) = ∪nk=1(τ = k)

which belongs to Fn, since each (τ = k) ∈ Fk and the filtration (Fn) is increasing, so Fk ⊆ Fn
for k ≤ n.

Assume conversely, that (τ ≤ n) ∈ Fn for all n. Then the stopping time property follows

from

(τ = n) = (τ ≤ n)\(τ ≤ n− 1) ,

since (τ ≤ n) ∈ Fn and (τ ≤ n− 1) ∈ Fn−1 ⊆ Fn.

Example 5.2.9. If n0 ∈ N then the constant function τ = n0 is a stopping time:

(τ = n) ∈ {∅,Ω} ⊆ Fn for all n ∈ N .

If σ and τ are stopping times then σ ∧ τ, σ ∨ τ and σ + τ are also stopping times. E.g. for

σ ∧ τ write

(σ ∧ τ ≤ n) = (σ ≤ n) ∪ (τ ≤ n)

and note that (σ ≤ n), (τ ≤ n) ∈ Fn. ◦
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We now define a σ-algebra Fτ , which consists of all the events that are decided by what

happens up to and including the random time τ .

Consider for τ a stopping time the collection of sets

Fτ = {F ∈ F : F ∩ (τ = n) ∈ Fn for all n ∈ N}.

Then we have

Theorem 5.2.10. (1) Fτ is a σ-algebra.

(2) If σ, τ are stopping times and σ ≤ τ , then Fσ ⊆ Fτ .

Proof. (1) We have

Ω ∩ (τ = n) = (τ = n) ∈ Fn for all n ∈ N ,

since τ is a stopping time. Hence Ω ∈ Fτ . Now assume that F ∈ Fτ . Then by definition

F ∩ (τ = n) ∈ Fn for all n ∈ N, so

F c ∩ (τ = n) = (τ = n) \
(
F ∩ (τ = n)

)
∈ Fn

for all n ∈ N. This shows that F c ∈ Fn. Finally assume that F1, F2, . . . ∈ Fτ . Then

( ∞⋂
k=1

Fk
)
∩ (τ = n) =

∞⋂
k=1

(
Fk ∩ (τ = n)

)
∈ Fn

for all n ∈ N.

Altogether it is shown that Fτ is a σ–algebra.

(2) Assume that F ∈ Fσ. Since σ ≤ τ we can write

F ∩ (τ = n) =

n⋃
k=1

F ∩ (σ = k, τ = n)

=

n⋃
k=1

(
(F ∩ (σ = k)) ∩ (τ = n)

)
∈ Fn

using that for k ≤ n we have Fk ⊆ Fn and F ∩ (σ = k) ∈ Fk. Hence by definition we have

F ∈ Fτ .

With τ a finite stopping time, we consider the process (Xn) at the random time τ and define

Xτ (ω) = Xτ(ω)(ω).
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From now on we only consider real-valued Xn’s.

Although definition of Fτ may not seem very obvious, Theorem 5.2.11 below shows that both

Xτ and τ are Fτ–measurable. Hence certain events at time τ are Fτ–measurable, and the

intuitive interpretation of Fτ as consisting of all events up to time τ is still reasonable.

Theorem 5.2.11. If (Xn,Fn) is adapted and τ is a finite stopping time, then both τ and

Xτ are Fτ -measurable.

Proof. The proof is straightforward manipulations. If we consider the event (τ = k) then we

have

(τ = k) ∩ (τ = n) =

{
(τ = n) if k = n

∅ if k 6= n
,

so in both cases we get that (τ = k) ∩ (τ = n) ∈ Fn, and hence (τ = k) ∈ Fτ . This shows

the measurability of τ .

For the second statement, let B ∈ B and realize that for all n,

(Xτ ∈ B) ∩ (τ = n) = (Xn ∈ B) ∩ (τ = n) ∈ Fn,

implying that (Xτ ∈ B) ∈ Fτ as desired.

Theorem 5.2.12 (Optional sampling, first version). Let (Xn,Fn) be a submartingale (mar-

tingale) and assume that σ and τ are finite stopping times with σ ≤ τ . If E|Xτ | < ∞,

E|Xσ| <∞ and

lim inf
N→∞

∫
(τ>N)

X+
NdP = 0

(lim inf
N→∞

∫
(τ>N)

|XN |dP = 0),

then

E(Xτ |Fσ) ≥
(=)

Xσ .

Proof. According to Theorem 5.2.4 we only need to show that∫
A

Xτ dP ≥
(=)

∫
A

Xσ dP (5.3)
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for all A ∈ Fσ. So we fix A in the following and define Dj = A ∩ (σ = j). If we can show∫
Dj

Xτ dP ≥
(=)

∫
Dj

Xσ dP (5.4)

for all j = 1, 2, . . ., then (5.3) will follow since then∫
A

Xτ dP =

∞∑
j=1

∫
Dj

Xτ dP ≥
(=)

∞∑
j=1

∫
Dj

Xσ dP =

∫
A

Xσ dP

In the two equalities we have used dominated convergence: E.g. for the first equality we have

the integrable upper bound |Xτ |, so∫
A

Xτ dP =

∫ ∞∑
j=1

1DjXτ dP =

∫
lim
M→∞

M∑
j=1

1DjXτ dP

= lim
M→∞

∫ M∑
j=1

1DjXτ dP = lim
M→∞

M∑
j=1

∫
1DjXτ dP =

∞∑
j=1

∫
Dj

Xτ dP

Hence the argument will be complete if we can show (5.4). For this, first define for N ≥ j

IN =

∫
Dj∩(τ≤N)

Xτ dP +

∫
Dj∩(τ>N)

XN dP .

We claim that

Ij ≤ Ij+1 ≤
(=)

Ij+2 ≤
(=)

. . .

For N > j we get

IN =

∫
Dj∩(τ≤N)

Xτ dP +

∫
Dj∩(τ>N)

XN dP

=

∫
Dj∩(τ<N)

Xτ dP +

∫
Dj∩(τ=N)

Xτ dP +

∫
Dj∩(τ>N)

XN dP

=

∫
Dj∩(τ<N)

Xτ dP +

∫
Dj∩(τ=N)

XN dP +

∫
Dj∩(τ>N)

XN dP

=

∫
Dj∩(τ<N)

Xτ dP +

∫
Dj∩(τ≥N)

XN dP

Note that (τ ≥ N) = (τ ≤ N − 1)c ∈ FN−1. Also note that Dj = A ∩ (σ = j) ∈ Fj
from the definition of Fσ (since it is assumed that A ∈ Fσ). Then (recall that j < N)

Dj ∩ (τ ≥ N) ∈ FN−1, so Theorem 5.2.4 yields∫
Dj∩(τ≥N)

XN dP ≥
(=)

∫
Dj∩(τ≥N)

XN−1 dP
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So we have

IN =

∫
Dj∩(τ<N)

Xτ dP +

∫
Dj∩(τ≥N)

XN dP

≥
(=)

∫
Dj∩(τ≤N−1)

Xτ dP +

∫
Dj∩(τ>N−1)

XN−1 dP = IN−1

and thereby the sequence (IN )N≥j is shown to be increasing. For the left hand side in (5.4)

this implies that ∫
Dj

Xτ dP =

∫
Dj∩(τ≤N)

Xτ dP +

∫
Dj∩(τ>N)

Xτ dP

+

∫
Dj∩(τ>N)

XN dP −
∫
Dj∩(τ>N)

XN dP

= IN +

∫
Dj∩(τ>N)

Xτ dP −
∫
Dj∩(τ>N)

XN dP

≥
(=)

Ij +

∫
Dj∩(τ>N)

Xτ dP −
∫
Dj∩(τ>N)

XN dP

≥ Ij +

∫
Dj∩(τ>N)

Xτ dP −
∫
Dj∩(τ>N)

X+
N dP (5.5)(

Ij +

∫
Dj∩(τ>N)

Xτ dP −
∫
Dj∩(τ>N)

XN dP
)

Recall the assumption σ ≤ τ . Then

Dj ∩ (τ ≤ j) = A ∩ (σ = j) ∩ (τ ≤ j) = Dj ∩ (τ = j) ,

so

Ij =

∫
Dj∩(τ≤j)

Xτ dP +

∫
Dj∩(τ>j)

Xj dP

=

∫
Dj∩(τ=j)

Xj dP +

∫
Dj∩(τ>j)

Xj dP

=

∫
Dj

Xj dP =

∫
A∩(σ=j)

Xj dP =

∫
Dj

Xσ dP (5.6)

Hence we have shown (5.4) if we can show that the two last terms in (5.5) can be ignored.

Since (τ > N) ↓ ∅ for N → ∞ and Xτ is integrable, we have from dominated convergence

that

lim
N→∞

∫
Dj∩(τ>N)

Xτ dP = lim
N→∞

∫
1Dj∩(τ>N)Xτ dP =

∫
lim
N→∞

1Dj∩(τ>N)Xτ dP = 0 (5.7)

And because of the assumption from the theorem, we must have a subsequence of natural
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numbers N1, N2, . . . such that

lim
`→∞

∫
(τ>N`)

X+
N`

dP = 0(
lim
`→∞

∫
(τ>N`)

|XN` |dP = 0
)

Hence from using (5.7) we have

lim
`→∞

(∫
Dj∩(τ>N`)

Xτ dP −
∫
Dj∩(τ>N`)

X+
N`

dP
)

= 0

and combining this with (5.5) and (5.6) yields∫
Dj

Xτ dP ≥
(=)

Ij =

∫
Dj

Xσ dP

which is (5.4).

Corollary 5.2.13. Let (Xn,Fn) be a submartingale (martingale), and let σ ≤ τ be bounded

stopping times. Then E|Xτ | <∞, E|Xσ| <∞ and

E(Xτ |Fσ) ≥
(=)

Xσ

Proof. We show that the conditions from Theorem 5.2.12 are fulfilled. There exists K <∞
such that supω∈Ω τ(ω) ≤ K. Then

E|Xτ | =
∫ ∣∣ K∑

k=1

1(τ=k)Xk

∣∣dP ≤ K∑
k=1

∫
1(τ=k)|Xk|dP ≤

K∑
k=1

∫
|Xk|dP =

K∑
k=1

E|Xk| <∞ .

That E|Xσ| < ∞ follows similarly. Furthermore it must hold that (τ > N) = ∅ for all

N ≥ K, so obviously ∫
(τ>N)

X+
N dP = 0

for all N ≥ K.

We can also translate Theorem 5.2.12 into a result concerning the process considered at a

sequence of stopping times. Firstly, we need to specify the sequence of stopping times.

Definition 5.2.14. A sequence (τn)n≥1 of positive random variables is a sequence of sam-

pling times if it is increasing and each τn is a finite stopping time.



5.3 The martingale convergence theorem 145

With (τn) a sequence of sampling times it holds, according to 1. in Theorem 5.2.10, that

Fτn ⊆ Fτn+1
for all n. If (Xn,Fn) is adapted then, according to Theorem 5.2.11, Xτn is

Fτn -measurable. Hence, the sampled sequence (Xτn ,Fτn) is adapted.

Theorem 5.2.15. Let (Xn,Fn) be a submartingale (martingale) and let (τk) be a sequence

of sampling times. If

E|Xτk | <∞ for all k, (a)

lim inf
N→∞

∫
(τk>N)

X+
NdP = 0 for all k, (b)

(lim inf
N→∞

∫
(τk>N)

|XN |dP = 0 for all k),

then (Xτk ,Fτk) is a submartingale (martingale).

Proof. Use Theorem 5.2.12 for each k separately.

5.3 The martingale convergence theorem

We shall need the following result on transformations of martingales and submartingales.

Lemma 5.3.1. Assume that (Xn,Fn) is an adapted sequence.

(1) If (Xn,Fn) is a martingale, then both (|Xn|,Fn) and (X+
n ,Fn) are submartingales.

(2) If (Xn,Fn) is a submartingale, then (X+
n ,Fn) is a submartingale.

Proof. (1) Assume that (Xn,Fn) is a martingale. Then Xn is Fn–measurable, so also

|Xn| and X+
n are Fn–measurable. Furthermore we have E(Xn+1|Fn) = Xn a.s., so that

E(Xn+1|Fn)+ = X+
n a.s. and |E(Xn+1|Fn)| = |Xn| a.s. We also have EX+

n < ∞ (recall

that 0 ≤ X+
n ≤ |Xn|) and obviously E|Xn| <∞.

Then

E(X+
n+1|Fn) ≥ E(Xn+1|Fn)+ = X+

n a.s. ,

where the inequality follows from (9) in Theorem 4.2.6, since the function x 7→ x+ is convex.

Similarly since x 7→ |x| is convex, (9) in Theorem 4.2.6 gives that

E(|Xn+1||Fn) ≥ |E(Xn+1|Fn)| = |Xn| a.s.
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which proves (1).

(2) If (Xn,Fn) is a submartingale, we similarly have that X+
n is Fn–measurable with

EX+
n <∞. Furthermore it holds

E(Xn+1|Fn) ≥ Xn a.s. ,

and since x 7→ x+ is increasing, we also have

E(Xn+1|Fn)+ ≥ X+
n a.s. .

We obtain

E(X+
n+1|Fn) ≥ E(Xn+1|Fn)+ ≥ X+

n a.s.

We shall now prove the main theorem of classic martingale theory.

Theorem 5.3.2 (The martingale convergence theorem). If (Xn,Fn) is a submartingale such

that sup
n

EX+
n <∞, then X = lim

n→∞
Xn exists almost surely and E|X| <∞.

The proof is given below. Note that, cf. Lemma 5.3.1 the sequence EX+
n is increasing, so

the assumption sup
n

EX+
n <∞ is equivalent to assuming

lim
n→∞

EX+
n <∞.

The proof is based on a criterion for convergence of a sequence of real numbers, which we

shall now discuss.

Let (xn)n≥1 be a sequence of real numbers. For a < b consider

n1 = inf{n ≥ 1 | xn ≥ b}, m1 = inf{n > n1 | xn ≤ a}

and recursively define

nk = inf{n > mk−1 | xn ≥ b}, mk = inf{n > nk | xn ≤ a},

always using the convention inf ∅ = ∞. We now define the number of down-crossings from

b to a for the sequence (xn) as +∞ if all mk < ∞ and as k if mk < ∞ and mk+1 = ∞ (in

particular, 0 down-crossings in the case m1 = ∞). Note that n1 ≤ m1 ≤ n2 ≤ m2 . . . with

equality only possible, if the common value is ∞.
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Lemma 5.3.3. The limit x = lim
n→∞

xn exists (as a limit in R = [−∞,∞]) if and only if for

all rational a < b it holds that the number of down-crossings from b to a for (xn) is finite.

Proof. Firstly, consider the ”only if” implication. So assume that the limit x = limn→∞

exists in R and let a < b be given. We must have that either x > a or x < b (if not both of

them are true). If for instance x > a then we must have some n0 such that

xn > a for all n ≥ n0 ,

since e.g there exists n0 with |x − xn| < x − a for all n ≥ n0. But then we must have that

mk = ∞ for k large enough, which makes the number of down–crossings finite. The case

x < b is treated analogously.

Now we consider the ”if” part of the result, so assume that the limit limn→∞ xn does not

exist. Then lim infn→∞ xn < lim supn→∞ xn, so in particular we can find rational numbers

a < b such that

lim inf
n→∞

xn < a < b < lim sup
n→∞

xn .

This implies that xn ≤ a for infinitely many n and xn ≥ b for infinitely many n. Especially

we must have that the number of down–crossings from b to a is infinite.

In the following proofs we shall apply the result to a sequence (Xn) of real random variables.

For this we will need some notation similar to the definition of nk and mk above. Define the

random times

σ1 = inf{n | Xn ≥ b}, τ1 = inf{n > σ1 | Xn ≤ a},

and recursively

σk = inf{n > τk−1 | Xn ≥ b}, τk = inf{n > σk | Xn ≤ a}.

We have that σ1 ≤ τ1 ≤ σ2 ≤ τ2 ≤ . . . , where equality is only possible if the common value

is ∞.

Furthermore, all τk and σk are stopping times: We can write

(σ1 = n) =
( n−1⋃
i=1

(Xi < b)
)
∩ (Xn ≥ b)

which is in Fn, since all X1, . . . , Xn are Fn–measurable, implying that (Xi > a) ∈ Fn (when

i < n) and (Xn ≤ a) ∈ Fn. Furthermore if e.g. σk is a stopping time, then

(τk = n) =

n−1⋂
j=1

(σk = j) ∩ (Xj+1 > a, . . . ,Xn−1 > a,Xn ≤ a)
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which belongs to Fn, since (σk = j) ∈ Fn and all the X–variables involved are Fn–

measurable. Hence τk is a stopping time as well.

Let βab(ω) be the number of down–crossings from b to a for the sequence (Xn(ω)) for each

ω ∈ Ω. Then we have (we suppress the ω)

βab =

∞∑
k=1

1(τk<∞)

so we see that βab is an integer–valued random variable. With this notation, we can also

define the number of down–crossings βNab from b to a in the time interval {1, . . . , N} as

βNab =

∞∑
k=1

1(τk≤N) =

N∑
k=1

1(τk≤N) .

The last equality follows since we necessarily must have τN+1 ≥ N + 1 (either τN+1 =∞ or

the strict inequality holds, making σ1 < τ1 < · · · < σN+1 < τN+1).

Finally note, that βNab ↑ βab as N →∞.

Proof of Theorem 5.3.2. In order to show that X = limXn exists as a limit in R it is,

according to Lemma 5.3.3, sufficient to show that

P (βab is finite for all rational a < b) = 1 ,

But it follows directly from the down–crossing lemma (Lemma 5.3.4), that for all rational

pairs a < b we have P (βab <∞) = 1. Hence also

1 = P
( ⋂
a<b rational

(βab <∞)
)

= P (βab is finite for all rational a < b) .

We still need to show that E|X| <∞. In the affirmative, we will also know that X is finite

almost surely. Otherwise we would have

P (|X| =∞) = ε > 0

such that

E|X| ≥ E(1(|X|=∞) · ∞) =∞ · ε =∞

which is a contradiction.

So we prove that E|X| <∞. Fatou’s Lemma yields

E|X| = E( lim
n→∞

|Xn|) = E(lim inf
n→∞

|Xn|) ≤ lim inf
n→∞

E|Xn|
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Note that since (Xn,Fn) is a submartingale, then

EX1 ≤ EXn = EX+
n − EX−n .

which implies that EX−n ≤ EX+
n − EX1 such that

E|Xn| = EX+
n + EX−n ≤ 2EX+

n − EX1 .

Then we obtain that

E|X| ≤ lim inf
n→∞

E|Xn| ≤ 2 lim inf
n→∞

EX+
n − EX1 = 2 lim

n→∞
EX+

n − EX1 <∞ ,

due to the assumption in Theorem 5.3.2.

The most significant and most difficult part of the proof of Theorem 5.3.2 is contained in the

next result.

Lemma 5.3.4 (The down–crossing lemma). If (Xn,Fn) is a submartingale then it holds,

for all N ∈ N, a < b, that

EβNab ≤
E(XN − b)+

b− a
, (5.8)

Eβab ≤
1

b− a
lim
n→∞

E(Xn − b)+. (5.9)

In particular, βab <∞ a.s. if limn→∞EX+
n <∞.

Proof. The last claim follows directly from (5.9) and the inequality (Xn − b)+ ≤ X+
n + |b|,

since it is assumed in the theorem that supEX+
n = limEX+

n <∞.

Note that for all N, k ∈ N it holds that 1(σk≤N) = 1(τk≤N) + 1(σk≤N<τk). Then we can write

N∑
k=1

(Xτk∧N −Xσk∧N )1(σk≤N) =

N∑
k=1

(Xτk∧N −Xσk∧N )(1(τk≤N) + 1(σk≤N<τk))

=

N∑
k=1

(Xτk −Xσk)1(τk≤N) +

N∑
k=1

(XN −Xσk)1(σk≤N<τk)

≤ (a− b)
N∑
k=1

1(τk≤N) + (XN − b)
N∑
k=1

1(σk≤N<τk)

≤ (a− b)βNab + (XN − b)+ .
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In the first inequality we have used, that if τk < ∞, then Xσk ≥ b and Xτk ≤ a, and also if

only σk <∞ it holds that Xσk ≥ b. By rearranging the terms above, we obtain the inequality

βNab ≤
(XN − b)+

b− a
− 1

b− a

N∑
k=1

(Xτk∧N −Xσk∧N )1(σk≤N) . (5.10)

Note that for each k we have that σk ∧ N ≤ τk ∧ N are bounded stopping times. Hence

Corollary 5.2.13 yields that E|Xσk∧N | <∞, E|Xτk∧N | <∞ and E(Xτk∧N |Fσk∧N ) ≥ Xσk∧N .

Then according to Lemma 5.2.4 it holds that∫
F

Xτk∧N dP ≥
∫
F

Xσk∧N dP

for all F ∈ Fσk∧N . Since

(σk ≤ N) ∩ (σk ∧N = n) =

{
(σk = n) n ≤ N
∅ n > N

∈ Fn

for all n ∈ N, we must have that (σk ≤ N) ∈ Fσk∧N which implies that

E
(

(Xτk∧N −Xσk∧N )1(σk≤N)

)
=

∫
(σk≤N)

Xτk∧N dP −
∫

(σk≤N)

Xσk∧N dP ≥ 0 .

Then the sum in (5.10) has positive expectation, so in particular we have

EβNab ≤
E(XN − b)+

b− a

Finally note that (Xn − b,Fn) is a submartingale, since (Xn,Fn) is a submartingale. Hence

the sequence ((Xn − b)+,Fn) will be a submartingale as well according to 2. in Lemma

5.3.1, such that E(XN − b)+ is increasing and thereby convergent. So applying monotone

convergence to the left hand side (recall βNab ↑ βab) leads to

Eβab ≤
1

b− a
lim
n→∞

E(Xn − b)+ .

It is useful to highlight the following immediate consequences of Theorem 5.3.2.

Corollary 5.3.5. 1. If (Xn,Fn) is a submartingale and there exists c ∈ R such that Xn ≤ c
a.s. for all n, then X = limXn exists almost surely and E|X| <∞.

2. If (Xn,Fn) is a martingale and there exists c ∈ R such that either Xn ≤ c a.s. for all n

or Xn ≥ c a.s. for all n, then X = limXn exists almost surely and E|X| <∞.
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5.4 Martingales and uniform integrability

If (Xn,Fn) is a martingale then in particular EXn = EX1 for all n, but even though Xn
a.s.→ X

and E|X| <∞, it is not necessarily true that EX = EX1. We shall later obtain some results

where not only EX = EX1 but where in addition, the martingale (Xn,Fn) has a number of

other attractive properties. Let (Xn)n≥1, X be real random variables with E|Xn| < ∞,∀n
and E|X| <∞. Recall that by Xn

L1

−→ X we mean that

lim
n→∞

E|Xn −X| = 0,

and if this is the case then

lim
n→∞

|
∫
F

Xn dP −
∫
F

X dP | = 0

will hold for all F ∈ F , (because |
∫
F
Xn dP −

∫
F
X dP | ≤ E|Xn − X|). In particular the

L1–convergence gives that EX1 = EX. We are looking for a property that implies this

L1–convergence.

Definition 5.4.1. A family (Xi)i∈I of real random variables is uniformly integrable if

E|Xi| <∞ for all i ∈ I and

lim
x→∞

sup
I

∫
(|Xi|>x)

|Xi|dP = 0.

Example 5.4.2. (1) The family {X} consisting of only one real variable is uniformly inte-

grable if E|X| <∞:

lim
x→∞

∫
(|X|>x)

|X|dP =

∫
lim
x→∞

1(|X|>x)|X|dP = 0

by dominated convergence (since 1(|X|>x)|X| ≤ |X|, and |X| is integrable).

(2) Now consider a finite family (Xi)i=1,...,n of real random variables. This family is uniformly

integrable, if each E|Xi| <∞:

lim
x→∞

sup
i∈I

∫
(|Xi|>x)

|Xi|dP = lim
x→∞

max
i=1,...,n

∫
(|Xi|>x)

|Xi|dP = 0 ,

since each integral has limit 0 because of (1). ◦
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Example 5.4.3. Let (Xi)i∈I be a family of real random variables. If supi∈I E|Xi|r <∞ for

some r > 1, then (Xi) is uniformly integrable:∫
(|Xi|>x)

|Xi|dP ≤
∫

(|Xi|>x)

∣∣∣Xi

x

∣∣∣r−1

|Xi|dP =
1

xr−1

∫
(|Xi|>x)

|Xi|r dP

≤ 1

xr−1
E|Xi|r ≤

1

xr−1
sup
j∈I

E|Xj |r

so we obtain

sup
i∈I

∫
(|Xi|>x)

|Xi|dP ≤
1

xr−1
sup
j∈I

E|Xj |r

which has limit 0 as x→∞. ◦

We have the following equivalent definition of uniform integrability:

Theorem 5.4.4. The family (Xi)i∈I is uniformly integrable if and only if,

(1) sup
I
E|Xi| <∞,

(2) there for all ε > 0 exists a δ > 0 such that

sup
i∈I

∫
A

|Xi|dP < ε

for all A ∈ F with P (A) < δ.

Proof. First we demonstrate the ”only if” statement. So assume that (Xi) is uniformly

integrable. For all x > 0 we have for all i ∈ I that

E|Xi| =
∫

Ω

|Xi|dP =

∫
(|Xi|≤x)

|Xi|dP +

∫
(|Xi|>x)

|Xi|dP

≤ xP (|Xi| ≤ x) +

∫
(|Xi|>x)

|Xi|dP ≤ x+

∫
(|Xi|>x)

|Xi|dP

so also

sup
i∈I

E|Xi| ≤ x+ sup
i∈I

∫
(|Xi|>x)

|Xi|dP .

The last term is assumed to → 0 as x→∞. In particular it is finite for x sufficiently large,

so we conclude that supi∈I E|Xi| is finite, which is (1).
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To show (2) let ε > 0 be given. Then for all A ∈ F we have (with a similar argument to the

one above) ∫
A

|Xi|dP =

∫
A∩(|Xi|≤x)

|Xi|dP +

∫
A∩(|Xi|>x)

|Xi|dP

≤ xP (A ∩ (|Xi| ≤ x)) +

∫
A∩(|Xi|>x)

|Xi|dP

≤ xP (A) +

∫
(|Xi|>x)

|Xi|dP

so

sup
i∈I

∫
A

|Xi|dP ≤ xP (A) + sup
i∈I

∫
(|Xi|>x)

|Xi|dP .

Now choose x = x0 > 0 according to the assumption of uniform integrability such that

sup
i∈I

∫
(|Xi|>x0)

|Xi|dP <
ε

2
.

Then for A ∈ F with P (A) < ε
2x0

we must have

sup
i∈I

∫
A

|Xi|dP < x0
ε

2x0
+
ε

2
= ε

so if we choose δ = ε
2x0

we have shown (2).

For the ”if” part of the theorem, assume that both (1) and (2) hold. Assume furthermore

that it is shown that

lim
x→∞

sup
i∈I

P (|Xi| > x) = 0 . (5.11)

In order to obtain that the definition of uniform integrability is fulfilled, let ε > 0 be given.

We want to find x0 > 0 such that

sup
i∈I

∫
(|Xi|>x)

|Xi|dP ≤ ε

for x > x0. Find the δ > 0 corresponding to ε according to (2) and then let x0 satisfy that

sup
i∈I

P (|Xi| > x) < δ

for x > x0. Now for all x > x0 and i ∈ I we have P (|Xi| > x) < δ such that (because of (2))∫
(|Xi|>x)

|Xi|dP ≤ sup
j∈I

∫
(|Xi|>x)

|Xj |dP ≤ ε

so also

sup
i∈I

∫
(|Xi|>x)

|Xi|dP ≤ ε .
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Hence the proof is complete, if we can show (5.11). But for x > 0 it is obtained from Markov’s

inequality that

sup
i∈I

P (|Xi| > x) ≤ 1

x
sup
i∈I

E|Xi|

and the last term → 0 as x→∞, since supi∈I E|Xi| is finite by the assumption (1).

The next result demonstrates the importance of uniform integrability if one aims to show L1

convergence.

Theorem 5.4.5. Let (Xn)n≥1, X be real random variables with E|Xn| <∞ for all n. Then

E|X| <∞ and Xn
L1

−→ X if and only if (Xn)n≥1 is uniformly integrable and Xn
P→ X.

Proof. Assume that E|X| <∞ and Xn
L1

−→ X. Then in particular Xn
P−→ X.

We will show that (Xn) is uniformly integrable by showing (1) and (2) from Theorem 5.4.4

are satisfied.

That (1) is satisfied follows from the fact that

E|Xn| = E|Xn −X +X| ≤ E|Xn −X|+ E|X|

so

sup
n≥1

E|Xn| ≤ E|X|+ sup
n≥1

E|Xn −X| .

Since each E|Xn−X| ≤ E|Xn|+E|X| <∞ and the sequence (E|Xn−X|)n∈N converges to

0 (according to the L1–convergence), it must be bounded, so supn≥1E|Xn −X| <∞.

To show (2) first note that for A ∈ F∫
A

|Xn|dP =

∫
A

|Xn−X+X|dP ≤
∫
A

|Xn−X|dP +

∫
A

|X|dP ≤ E|Xn−X|+
∫
A

|X|dP .

Now let ε > 0 be given and choose n0 so that E|Xn−X| < ε
2 for n > n0. Furthermore (since

the one–member family {X} is uniformly integrable) we can choose δ1 > 0 such that∫
A

|X|dP <
ε

2
if P (A) < δ1 .

Then we have ∫
A

|Xn|dP ≤ E|Xn −X|+
∫
A

|X|dP < ε

whenever n > n0 and P (A) < δ1.
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Now choose δ2 > 0 (since the finite family (Xn)1≤n≤n0
is uniformly integrable) such that

max
1≤n≤n0

∫
A

|Xn|dP < ε

if P (A) < δ2. We have altogether with δ = δ1∧δ2 that for all n ∈ N it holds that
∫
A
|Xn|dP <

ε if P (A) < δ, and this shows (2) since then

sup
n≥1

∫
A

|Xn|dP ≤ ε if P (A) < δ .

For the converse implication, assume that (Xn)n≥1 is uniformly integrable and Xn
P−→ X.

Then we can choose (according to Theorem 1.2.13) a subsequence (nk)k≥1 such that Xnk
a.s.−→

X. From Fatou’s Lemma and the fact that (1) is satisfied we obtain

E|X| = E lim
k→∞

|Xnk | = E lim inf
k→∞

|Xnk | ≤ lim inf
k→∞

E|Xnk | ≤ sup
k≥1

E|Xnk | ≤ sup
n≥1

E|Xn| <∞ .

In order to show that E|Xn −X| → 0 let ε > 0 be given. We obtain for all n ∈ N

E|Xn −X| =
∫

(|Xn−X|≤ ε2 )

|Xn −X|dP +

∫
(|Xn−X|> ε

2 )

|Xn −X|dP

≤ ε

2
+

∫
(|Xn−X|> ε

2 )

|Xn −X|dP

≤ ε

2
+

∫
(|Xn−X|> ε

2 )

|Xn|dP +

∫
(|Xn−X|> ε

2 )

|X|dP

In accordance with (2) applied to the two families (Xn) and (X) choose δ > 0 such that

sup
m∈N

∫
A

|Xm|dP <
ε

4
and

∫
A

|X|dP <
ε

4

for all A ∈ F with P (A) < δ. Since Xn
P−→ X we can find n0 ∈ N such that P (|Xn −X| >

ε
2 ) < δ for n ≥ n0. Then for n ≥ n0 we have∫

(|Xn−X|> ε
2 )

|Xn|dP ≤ sup
m≥1

∫
(|Xn−X|> ε

2 )

|Xm|dP <
ε

4∫
(|Xn−X|> ε

2 )

|X|dP <
ε

4

so we have shown that for n ≥ n0 it holds

E|Xn −X| <
ε

2
+
ε

4
+
ε

4
= ε

which completes the proof.
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After this digression into the standard theory of integration we now return to adapted se-

quences, martingales and submartingales.

Definition 5.4.6. If (Xn,Fn) is a submartingale (martingale) and Y is a real random

variable with E|Y | <∞, we say that Y closes the submartingale (martingale) if

E(Y |Fn) ≥ Xn, (E(Y |Fn) = Xn) a.s.

for all n ≥ 1.

Theorem 5.4.7. (1) Let (Xn,Fn) be a submartingale. If (X+
n )n≥1 is uniformly integrable,

then X = lim
n→∞

Xn exists almost surely, X closes the the submartingale and X+
n
L1

−→ X+.

A sufficient condition for uniform integrability of (X+
n ) is the existence of a random variable

Y that closes the submartingale.

(2) Let (Xn,Fn) be a martingale. If (Xn) is uniformly integrable, then X = lim
n→∞

Xn exists

almost surely, X closes the martingale and Xn
L1

−→ X.

A sufficient condition for uniform integrability of (Xn) is the existence of a random variable

Y that closes the martingale.

Proof. (1) We start with the final claim, so assume that there exists Y such that

E(Y |Fn) ≥ Xn a.s.

for all n ∈ N. Then from (9) in Theorem 4.2.6 we obtain

X+
n ≤ (E(Y |Fn))+ ≤ E(Y +|Fn) a.s. (5.12)

and taking expectations on both sides yields EX+
n ≤ EY + so also supnEX

+
n ≤ EY + <∞.

Then according to the martingale convergence theorem (Theorem 5.3.2) we have that X =

limn→∞Xn exists almost surely. Since (Xn(ω))n→∞ is convergent for almost all ω ∈ Ω it is

especially bounded (not by the same constant for each ω), and in particular supnX
+
n (ω) <∞

for almost all ω. We obtain that for all x > 0 and n ∈ N∫
(X+

n>x)

X+
n dP ≤

∫
(X+

n>x)

E(Y +|Fn) dP =

∫
(X+

n>x)

Y + dP ≤
∫

(supkX
+
k >x)

Y + dP ,
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where the first inequality is due to (5.12) and the equality follows from the definition of

conditional expectations, since Xn is Fn–measurable such that (X+
n > x) ∈ Fn. Since this

is true for all n ∈ N we have

sup
n∈N

∫
(X+

n>x)

X+
n dP ≤

∫
(supnX

+
n>x)

Y + dP

Furthermore we have that Y + is integrable with 1(supnX
+
n>x)Y

+ ≤ Y + for all x, and obviously

since supnX
+
n < ∞ almost surely, we have 1(supX+

n>x)Y
+ → 0 a.s. when x → ∞. Then

from Dominated convergence the right hand integral above will → 0 as x → ∞. Hence we

have shown that (X+
n ) is uniformly integrable.

Now we return to the first statement, so assume that (X+
n ) is uniformly integrable. In

particular (according to 1 in Theorem 5.4.4) we have supnEX
+
n <∞. Then The Martingale

convergence Theorem yields that X = limn→∞Xn exists almost surely with E|X| < ∞.

Obviously we must also have X+
n

a.s.−→ X+, and then Theorem 5.4.5 implies that X+
n
L1

−→ X+.

In order to show that

E(X|Fn) ≥ Xn a.s.

for all n ∈ N it is equivalent (according to Lemma 5.2.4) to show that for all n ∈ N it holds∫
F

Xn dP ≤
∫
F

X dP (5.13)

for all F ∈ Fn. For F ∈ Fn and n ≤ N we have (according to Corollary 5.2.5, since (Xn,Fn)

is a submartingale) ∫
F

Xn dP ≤
∫
F

XN dP =

∫
F

X+
N dP −

∫
F

X−N dP .

Since it is shown that X+
N
L1

−→ X+ we have from the remark just before Definition 5.4.1 that

lim
N→∞

∫
F

X+
N dP =

∫
F

X+ dP

Furthermore Fatou’s lemma yields (when using that XN
a.s.−→ X so X−N

a.s.−→ X− and thereby

lim infN→∞X−N = X− a.s.)

lim sup
N→∞

(
−
∫
F

X−N dP
)

= − lim inf
N→∞

∫
F

X−N dP ≤ −
∫
F

lim inf
N→∞

X−N dP = −
∫
F

X− dP .
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When combining the obtained inequalities we have for all n ∈ N and F ∈ Fn that∫
F

Xn dP ≤ lim sup
N→∞

(∫
F

X+
N dP −

∫
F

X−N dP
)

= lim
N→∞

∫
F

X+
N dP + lim sup

N→∞

(
−
∫
F

X−N dP
)

≤
∫
F

X+ dP −
∫
F

X− dP =

∫
F

X dP

which is the inequality (5.13) we were supposed to show.

(2) Once again we start proving the last claim, so assume that Y closes the martingale, so

E(Y |Fn) = Xn a.s. for all n ∈ N. From (10) in Theorem 4.2.6 we have

|Xn| = |E(Y |Fn)| ≤ E(|Y ||Fn) a.s. .

Similar to the argument in 1 we then have supn≥1E|Xn| ≤ E|Y | < ∞ so in particular

supn≥1EX
+
n < ∞. Hence X = limn→∞Xn exists almost surely leading to the fact that

supn≥1 |Xn| <∞ almost surely. Then for all n ∈ N and x > 0∫
(|Xn|>x)

|Xn|dP ≤
∫

(|Xn|>x)

E(|Y ||Fn) dP =

∫
(|Xn|>x)

|Y |dP ≤
∫

(supk |Xk|>x)

|Y |dP ,

where the last integral → 0 as x→∞ as a result of dominated convergence. Hence

0 ≤ lim
x→∞

sup
n∈N

∫
(|Xn|>x)

|Xn|dP ≤ lim
x→∞

∫
(supk |Xk|>x)

|Y |dP = 0

so (Xn) is uniformly integrable.

Finally assume that (Xn) is uniformly integrable. Then supnE|Xn| < ∞ (from Theorem

5.4.4) and in particular supnEX
+
n < ∞. According to the martingale convergence theorem

we have Xn
a.s.−→ X with E|X| <∞. From Theorem 5.4.5 we have Xn

L1

−→ X which leads to

(see the remark just before Definition 5.4.1)

lim
N→∞

∫
F

XN dP =

∫
F

X dP .

for all F ∈ F . We also have from the martingale property of (Xn,Fn) that for all n ≤ N

and F ∈ Fn ∫
F

Xn dP =

∫
F

XN dP

so we must have ∫
F

Xn dP =

∫
F

X dP

for all n ∈ N and F ∈ Fn. This shows that E(X|Fn) = Xn a.s., so X closes the martingale.
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An important warning is the following: Let (Xn,Fn) be a submartingale and assume that

(X+
n )n≥1 is uniformly integrable. As we have seen, we then have Xn

a.s.−→ X and X+
n
L1

−→ X+,

but we do not in general have Xn
L1

−→ X. If, e.g., (X−n )n≥1 is also uniformly integrable, then

it is true that Xn
L1

−→ X since X−n
a.s.−→ X− implies that X−n

L1

−→ X− by Theorem 5.4.5 and

then E|Xn −X| ≤ E|X+
n −X+|+ E|X−n −X−| → 0.

Theorem 5.4.8. Let (Fn)n∈N be a filtration on (Ω,F , P ) and let Y be a random variable

with E|Y | <∞. Define for all n ∈ N

Xn = E(Y |Fn) .

Then (Xn,Fn) is a martingale, and Xn → X a.s. and in L1, where

X = E(Y |F∞)

with F∞ ⊆ F the smallest σ–algebra containing Fn for all n ∈ N.

Proof. Clearly, (Xn,Fn) is adapted and E|Xn| <∞ and since

E(Xn+1|Fn) = E(E(Y |Fn+1)|Fn) = E(Y |Fn) = Xn,

we see that (Xn,Fn) is a martingale. It follows directly from the definition of Xn that Y

closes the martingale, so by 2 in Theorem 5.4.7 it holds that X = limXn exists a.s. and that

Xn
L1

−→ X.

The remaining part of the proof is to show that

X = E(Y |F∞) . (5.14)

For this, first note that X = limn→∞Xn can be chosen F∞–measurable, since

F = ( lim
n→∞

Xn exists) =

∞⋂
N=1

∞⋃
k=1

∞⋂
m,n=k

(
|Xn −Xm| ≤

1

N

)
∈ F∞ ,

and X can be defined as

X = lim
n→∞

Xn1F ,

where each Xn1F is F∞–measurable, making X measurable with respect to F∞ as well.

Hence, in order to show (5.14), we only need to show that∫
F

X dP =

∫
F

Y dP
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for all F ∈ F∞. Note that F∞ = σ
(
∪∞n=1 Fn

)
where ∪∞n=1Fn is ∩–stable. Then according

to Exercise 4.15 it is enough to show the equality above for all F ∈ Fn for any given n ∈ N.

So let n ∈ N be given and assume that F ∈ Fn. Then we have for all N ≥ n that∫
F

XN dP =

∫
F

Y dP

since XN = E(Y |FN ) and F ∈ Fn ⊆ FN . Furthermore we have XN
L1

−→ X, so∫
F

X dP = lim
N→∞

∫
F

XN dP

which leads to the conclusion that ∫
F

X dP =

∫
F

Y dP

In conclusion of this chapter, we shall discuss an extension of the optional sampling theorem

(Theorem 5.2.12).

Let (Xn,Fn)n≥1 be a (usual) submartingale or martingale, and let τ be an arbitrary stopping

time. If limXn = X exists a.s., we can define Xτ even if τ is not finite as is assumed in

Theorem 5.2.12:

Xτ (ω) =

Xτ(ω)(ω) if τ(ω) <∞

X(ω) if τ(ω) =∞.

With this, Xτ is a Fτ -measurable random variable which is only defined if (Xn) converges

a.s.

If σ ≤ τ are two stopping times, we are interested in investigating when

E(Xτ |Fσ) ≥ Xσ , (5.15)

if (Xn,Fn) is a submartingale, and when

E(Xτ |Fσ) = Xσ , (5.16)

if (Xn,Fn) is a martingale.

By choosing τ = ∞, σ = n for a given, arbitrary, n ∈ N, the two conditions amount to the

demand that X closes the submartingale, respectively the martingale. So if (5.15), (5.16) is

to hold for all pairs σ ≤ τ of stopping times, we must consider submartingales or martingales,

which satisfy the conditions from Theorem 5.4.7. For pairs with τ <∞ we can use Theorem

5.2.12 to obtain weaker conditions.
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Theorem 5.4.9 (Optional sampling, full version). Let (Xn,Fn) be a submartingale (mar-

tingale) and let σ ≤ τ be stopping times. If one of the three following conditions is satisfied,

then E|Xτ | <∞ and

E(Xτ |Fσ) ≥
(=)

Xσ.

(1) τ is bounded.

(2) τ <∞, E|Xτ | <∞ and

lim inf
N→∞

∫
(τ>N)

X+
NdP = 0

(lim inf
N→∞

∫
(τ>N)

|XN |dP = 0).

(3) (X+
n )n≥1 is uniformly integrable ((Xn)n≥1 is uniformly integrable).

If 3 holds, then limXn = X exists a.s. with E|X| <∞ and for an arbitrary stopping time τ

it holds that

E|Xτ | ≤ 2EX+ − EX1. (5.17)

Proof. That the conclusion is true under assumption (1) is simply Corollary 5.2.13. Com-

paring condition (2) with the conditions in Theorem 5.2.12 shows, that if (2) implies that

E|Xσ| < ∞, then the argument concerning condition (2) is complete. For this consider the

increasing sequence of bounded stopping times given by (σ ∧ n)n≥1. For each n the pair of

stopping times σ∧n ≤ σ∧ (n+ 1) fulfils the conditions of Corollary 5.2.13, so E|Xσ∧n| <∞,

E|Xσ∧(n+1)| <∞, and

E(Xσ∧(n+1)|Fσ∧n) ≥
(=)

Xσ∧n a.s. ,

which shows that the adapted sequence (Xσ∧n,Fσ∧n) is a submartingale (martingale). We

have similarly that the pair of stopping times σ ∧ n ≤ τ fulfils the conditions from Theo-

rem 5.2.12 (because of the assumption (2) and that E|Xσ∧n| <∞ as argued above). Hence

the theorem yields that for each n ∈ N we have

E(Xτ |Fσ∧n) ≥
(=)

Xσ∧n a.s. ,

which shows that Xτ closes the submartingale (martingale) (Xσ∧n,Fσ∧n). Hence according

to Theorem 5.4.7 it converges almost surely, where the limit is integrable. Since obviously,

Xσ∧n
a.s.−→ Xσ we conclude that E|Xσ| <∞ as desired.

We finally show that (3) implies (5.15) if (Xn,Fn) is a submartingale. That (3) implies

(5.16) if (Xn,Fn) is a martingale, is then seen as follows: From fact that (|Xn|) is uniformly
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integrable we have that both (X+
n ) and (X−n ) are uniformly integrable. Since both (Xn,Fn)

and (−Xn,Fn) are submartingales (with (X+
n ) and ((−Xn)+) uniformly integrable) the result

for submartingales can be applied to obtain

E(Xτ |Fσ) ≥ Xσ and E(Xτ |Fσ) ≤ Xσ

from which the desired result can be derived.

So, assume that (Xn,Fn) is a submartingale and that (X+
n ) is uniformly integrable. From (1)

in Theorem 5.4.7 we have that X = limn→∞Xn exists almost surely and that X closes the

submartingale (Xn,Fn). Since (X+
n ,Fn) is a submartingale as well we can apply Theorem

5.4.7 again and obtain that X+ closes the submartingale (X+
n ,Fn). Using the notation

X+
∞ = X+ we get

EX+
τ =

∫ ∑
1≤n≤∞

1(τ=n)X
+
n dP =

∑
1≤n≤∞

∫
(τ=n)

X+
n dP

≤
∑

1≤n≤∞

∫
(τ=n)

X+ dP =

∫ ∑
1≤n≤∞

1(τ=n)X
+ dP =

∫
X+ dP = EX+

at the inequality we have used Lemma 5.2.4 and (τ = n) ∈ Fn since E(X+|Fn) ≥ X+
n . Let

N ∈ N. Then τ ∧ N is a bounded stopping time with τ ∧ N ↑ τ as N → ∞. Applying the

inequality above to τ ∧N yields

EX+
τ∧N ≤ EX

+ . (5.18)

Furthermore we have according to part (1) in the theorem (since 1 ≤ τ ∧ N are bounded

stopping times), that

EX1 ≤ EXτ∧N . (5.19)

Then combining (5.18) and (5.19) gives

EX−τ∧N = EX+
τ∧N − EXτ∧N ≤ EX+ − EX1

such that by Fatou’s lemma it holds that

EX−τ = E lim inf
N→∞

X−τ∧N ≤ lim inf
N→∞

EX−τ∧N ≤ EX
+ − EX1

Thereby we have

E|Xτ | = EX+
τ + EX−τ ≤ 2EX+ − EX1

which in particular is finite.

The proof will be complete, if we can show

E(Xτ |Fσ) ≥ Xσ



5.4 Martingales and uniform integrability 163

which is equivalent to showing ∫
F

Xσ dP ≤
∫
F

Xτ dP

for all F ∈ Fσ. For showing this inequality it will suffice to show∫
F∩(σ=k)

Xk dP ≤
∫
F∩(σ=k)

Xτ dP (5.20)

for all F ∈ Fσ and k ∈ N since in that case we can obtain (using dominated convergence,

since E|Xτ | <∞ and E|Xσ| <∞)∫
F

Xσ dP =
∑

1≤k≤∞

∫
F∩(σ=k)

Xk dP ≤
∑

1≤k≤∞

∫
F∩(σ=k)

Xτ dP =

∫
F

Xτ dP

and we obviously have ∫
F∩(σ=∞)

X∞ dP =

∫
F∩(σ=∞)

Xτ dP .

So we will show the inequality (5.20). The Theorem in the 1–case yields (since σ∧N ≤ τ ∧N
are bounded stopping times) that E(Xτ∧N |Fσ∧N ) ≥ Xσ∧N a.s. Now let Fk = F ∩ (σ = k)

and assume that N ≥ k. Then Fk ∈ Fσ∧N :

Fk ∩ (σ ∧N = n) =

{
F ∩ (σ = n) ∈ Fn n = k

∅ ∈ Fn n 6= k

From this we obtain∫
Fk

Xk dP =

∫
Fk

Xσ∧N dP ≤
∫
Fk

Xτ∧N dP

=

∫
Fk∩(τ≤N)

Xτ dP +

∫
Fk∩(τ>N)

XN dP .

We will spend the rest of the proof on finding an upper limit of the two terms, as N → ∞.

Considering the first term, we have from dominated convergence (since |1Fk∩(τ≤N)Xτ | ≤ |Xτ |,
Xτ is integrable, and (τ ≤ N) ↑ (τ <∞)) that

lim
N→∞

∫
Fk∩(τ≤N)

Xτ dP =

∫
Fk∩(τ<∞)

Xτ dP

For the second term we will use that Fk ∈ Fσ∧N ⊆ FN and (τ > N) = (τ ≤ N)c ∈ FN , such

that Fk ∩ (τ > N) ∈ FN . Then, since X closes the submartingale (Xn,Fn), we obtain∫
Fk∩(τ>N)

XN dP ≤
∫
Fk∩(τ>N)

X dP



164 Martingales

where the right hand side converges using dominated convergence:

lim
N→∞

∫
Fk∩(τ>N)

X dP =

∫
Fk∩(τ=∞)

X dP =

∫
Fk∩(τ=∞)

Xτ dP

Altogether we have shown∫
Fk

Xk dP ≤ lim sup
N→∞

(∫
Fk∩(τ≤N)

Xτ dP +

∫
Fk∩(τ>N)

XN dP
)

≤
∫
Fk∩(τ<∞)

Xτ dP +

∫
Fk∩(τ=∞)

Xτ dP

=

∫
Fk

Xτ dP

which was the desired inequality (5.20).

5.5 The martingale central limit theorem

The principle, that sums of independent random variables almost follow a normal distribution,

is sound. But it underestimates the power of central limit theorems: Sums of dependent

variables are very often approximately normal as well. Many common dependence structures

are weak in the sense the terms may be strongly dependent on a few other variables, but

almost independent of the major part of the variables. Hence the sum of such variables will

have a probabilistic structure resembling the sum of independent variables.

An important theme of the probability theory in the 20th century has been the refinement of

this loose reasoning. How should ”weak dependence” be understood, and how is it possible to

inspect the difference between the sum of interest and the corresponding sum of independent

variables? Typically, smaller and rather specific classes of models have been studied, but the

general drive has been missing. Huge amounts of papers exists focusing on

1) U-statistics (a type of sums that are very symmetric).

2) Stationary processes.

3) Markov processes.

The big turning point was reached around 1970 when a group of mathematicians, more or

less independent of each other, succeeded in stating and proving central limit theorems in the

frame of martingales. Almost all later work in the area have been based on the martingale

results.
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In the following we will consider a filtered probability space (Ω,F , (Fn), P ), and for notational

reasons we will often need a ”time 0” σ–algebra F0. In the lack of any other suggestions, we

will use the trivial σ–algebra

F0 = {∅,Ω} .

Definition 5.5.1. A real stochastic process (Xn)n≥1 is a martingale difference, relative to

the filtration (Fn)n≥1, if

(1) (Xn)n≥1 is adapted to (Fn)n≥1 ,

(2) E |Xn| <∞ for all n ≥ 1 ,

(3) E(Xn | Fn−1) = 0 a.s. for all n ≥ 1 .

Note that a martingale difference (Xn)n≥1 satisfies that

E(Xn) = E(E(Xn | Fn−1)) = E(0) = 0 for all n ≥ 1 .

If (Xn)n≥1 is a martingale difference, then

Sn =

n∑
i=1

Xi for n ≥ 1

is a martingale, relative to the same filtration, and all the variables in this martingale will

have mean 0. Conversely, if (Sn)n≥1 is a martingale with all variables having mean 0, then

X1 = S1 , Xn = Sn − Sn−1 for n = 2, 3, . . .

is a martingale difference. Hence a martingale difference somehow represents the same

stochastic property as a martingale, just with a point of view that is shifted a little bit.

Example 5.5.2. If the variables (Xn)n≥1 are independent and all have mean 0, then the

sequence form a martingale difference with respect to the natural filtration

Fn = σ(X1, . . . , Xn) ,

since

E(Xn | Fn−1) = E(Xn | X1, . . . , Xn−1)
a.s.
= E(Xn) = 0 for all n ≥ 1 .

The martingale corresponding to this martingale difference is what we normally interpret as

a random walk. ◦ We will typically be interested in square-integrable martingale differences,

that is martingale differences (Xn)n≥1 such that

EX2
n <∞ for all n ∈ N .
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This leads to the introduction of conditional variances defined by

Vn = V (Xn | Fn−1) = E(X2
n | Fn−1) a.s. for all n ≥ 1 .

It may also be useful to define the variables

Wn =

n∑
m=1

Vm .

In the terminology of martingales the process (Wn)n≥1 is often denoted the compensator for

the martingale (Sn)n≥1. It is easily shown that

S2
n −Wn

is a martingale. It should be noted that in the case of a random walk, where the X–variables

are independent, then the compensator is non–random, more precisely

Wn =

n∑
m=1

EX2
m .

We shall study the so–called martingale difference arrays, abbreviated MDA’s. These are

triangular arrays (Xnm) of real random variables,

X11

X21 X22

X31 X32 X33

...
...

...
. . .

such that each row in the array forms a martingale difference.

To avoid heavy notation we assume that the same fixed filtration (Fn)n≥1 is used in all rows.

In principle, it had been possible to use an entire triangular array of σ-algebras (Fnm), since

we will not need anywhere in the arguments that the σ-algebras in different rows a related,

but in practice the higher generality will not be useful at all.

Under these notation–dictated conditions, the assumptions for being a MDA will be

1) Xnm is Fm–measurable for all n ∈ N, m = 1, . . . , n ,

2) E |Xnm| <∞ for all n ≥ 1, m = 1, . . . , n ,

3) E(Xnm | Fm−1) = 0 a.s. for all n ≥ 1, m = 1, . . . , n .

Usually we will assume that all the variables in the array have second order moments. Sim-

ilarly to the notation in Section 3.5 we introduce the cumulated sums within rows, defined
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by

Snm =

m∑
k=1

Xnk for n ≥ 1, m = 1, . . . , n .

A central limit theorem in this framework will be a result concerning the full row sums Snn

converging in distribution towards a normal distribution as n→∞.

In Section 3.5 we saw that under a condition of independence within rows a central limit

theorem is constructed by demanding that the variance of the row sums converges towards a

fixed constant and that the terms in the sums are sufficiently small (Lyapounov’s conditions

or Lindeberg’s condition).

When generalizing to martingale difference arrays, it is still important to ensure that the

terms are small. But the condition concerning convergence of the variance of the row sums

is changed substantially. The new condition will be that the compensators of the rows

n∑
m=1

E(X2
nm | Fm−1) , (5.21)

(that are random variables) converge in probability towards a non–zero constant. This con-

stant will serve as the variance in the limit normal distribution. Without loss of generality,

we shall assume that this constant is 1.

In order to ease notation, we introduce the conditional variances of the variables in the array

Vnm = E(X2
nm | Fm−1) for n ≥ 1, m = 1, . . . , n ,

and the corresponding cumulated sums

Wnm =

m∑
k=1

Vnk for n ≥ 1, m = 1, . . . , n ,

representing the compensators within rows. Note that the Vnm’s are all non–negative (almost

surely), and that Wnm thereby grows as m increases. Furthermore note, that Wnm is Fm−1–

measurable.

At first, we shall additionally assume that |Wnn| ≤ 2, or equivalently that

Wnm ≤ 2 a.s. for all n ≥ 1, m = 1, . . . , n .

We will use repeatedly that for a bounded sequence of random variables, that converges in

probability to constant, the integrals will also converge:
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Lemma 5.5.3. Let (Xn) be a sequence of real random variables such that |Xn| ≤ C for all

n ≥ 1 and some constant C. If Xn
P−→ x, then EXn → x as well.

Proof. Note that (Xn)n≥1 is uniformly integrable, and thereby it converges in L1. Hence the

convergence of integrals follows.

Lemma 5.5.4. Let (Xnm) be a triangular array consisting of real random variables with

third order moment. Assume that there exists a filtration (Fn)n≥1, making each row in the

array a martingale difference. Assume furthermore that

n∑
m=1

E(X2
nm | Fm−1)

P→ 1 as n→∞ .

If
n∑

m=1

E(X2
nm | Fm−1) ≤ 2 a.s. for all n ≥ 1, (5.22)

and if the array fulfils Lyapounov’s condition

n∑
m=1

E |Xnm|3 → 0 as n→∞ , (5.23)

then the row sums Snn =
∑n
m=1Xnm will satisfy

Snn
wk−→ N (0, 1) as n→∞ .

Note that it is not important which upper bound is used in (5.22) - the number 2 could be

replaced by any constant c > 1 without changing the proof and without changing the utility

of the lemma.

Proof. It will be enough to show the following convergence∫
ei Snn t+Wnn t

2/2 dP → 1 as n→∞ (5.24)

for each t ∈ R. That is seen from the following: Let φn(t) be the characteristic function of

Snn, then we have

φn(t) et
2/2 =

∫
ei Snn t+t

2/2 dP =

∫
ei Snn t+Wnn t

2/2 dP +

∫
ei Snnt(et

2/2 − eWnn t
2/2) dP .
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Since we have assumed that Wnn
P−→ 1 and the function x 7→ exp(t2/2) − exp(xt2/2) is

continuous in 1 (with the value 0 in 1), we must have that

et
2/2 − eWnnt

2/2 P−→ 0 .

Then

P
(∣∣eiSnnt∣∣ ∣∣et2/2 − eWnnt

2/2
∣∣ > ε

)
= P

(∣∣et2/2 − eWnnt
2/2
∣∣ > ε

)
→ 0

so the integrand in the last integral above converges to 0 in probability. Furthermore recall

that Wnn is bounded by 2, so the integrand must be bounded by et
2

. Then the integral

converges to 0 as n→∞ because of Lemma 5.5.3. So if (5.24) is shown, we will obtain that

φn(t)et
2/2 → 1 as n→∞ which is equivalent to having obtained

φn(t)→ e−t
2/2 as n→∞ .

and according to the Theorem 3.4.20 we have thereby shown that Snn
wk−→ N (0, 1).

In order to show (5.24), we define the variables

Qnm = eiSnmt+Wnmt
2/2 Q̃nm = eiSn (m−1)t+Wnmt

2/2

and we will be done, if we can show

E(Qnn − 1) =

∫
Qnn dP − 1→ 0

Firstly, we can rewrite (when defining Sn0 = 0 and Qn0 = 1)

Qnn − 1 =

n∑
m=1

Qnm −Qn (m−1)

and we observe

Qnm = eiXnmtQ̃nm Qn (m−1) = e−Vnmt
2/2Q̃nm

such that

Qnn − 1 =

n∑
m=1

(
eiXnmt − e−Vnmt

2/2
)
Q̃nm .

Recall from the definitions, that both Sn (m−1) and Wnm are Fm−1–measurable, such that

Q̃nm is Fm−1–measurable as well. Then we can write

E(Qnn − 1) =

n∑
m=1

E
(
(eiXnmt − e−Vnmt

2/2)Q̃nm
)

=

n∑
m=1

E
(
E
(
(eiXnmt − e−Vnmt

2/2)Q̃nm|Fm−1

)
=

n∑
m=1

E
(
E
(
(eiXnmt − e−Vnmt

2/2)|Fm−1

)
Q̃nm

)
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Furthermore recall that |Wnm| ≤ |Wnn| ≤ 2 a.s., such that

|Q̃nm| = |eiSn (m−1)t||eWnmt
2/2| ≤ et

2

a.s.

such that we together with using the triangle inequality obtain

|E(Qnn − 1)| =
∣∣ n∑
m=1

E
(
E
(
(eiXnmt − e−Vnmt

2/2)|Fm−1

)
Q̃nm

)∣∣
≤

n∑
m=1

E
(∣∣E((eiXnmt − e−Vnmt2/2|Fm−1

)∣∣∣∣Q̃nm∣∣)
≤

n∑
m=1

E
∣∣E(eiXnmt − e−Vnmt2/2|Fm−1

)∣∣et2
We have from Lemma 3.5.2 that

eiy = 1 + iy − y2

2
+ r1(y) , |r1(y)| ≤ |y|

3

3
.

for y ∈ R and that

e−y/2 = 1− y

2
+ r2(y) , |r2(y)| ≤ y2

8
for y ≥ 0. Then

E
(
eiXnmt − e−Vnmt

2/2|Fm−1

)
= E

((
1 + iXnmt−

X2
nmt

2

2
+ r1(Xnmt)

)
−
(
1− Vnmt

2

2
+ r2(Vnmt

2)
)
|Fm−1

)
= itE(Xnm|Fm−1)− 1

2
t2E(X2

nm|Fm−1) + E(r1(Xnmt)|Fm−1) +
1

2
Vnmt

2 − r2(Vnmt
2)

= E(r1(Xnmt)|Fm−1)− r2(Vnmt
2) .

And if we apply the upper bounds for the remainder terms, we obtain∣∣E(eiXnmt − e−Vnmt2/2|Fm−1

)∣∣ = |E(r1(Xnmt)|Fm−1)− r2(Vnmt
2)|

≤ E(|r1(Xnmt)| |Fm−1) + |r2(Vnmt
2)|

≤ E(|Xnm|3|Fm−1)
|t|3

3
+
V 2
nmt

4

8

Collecting all the obtained inequalities yields that

|E(Qnn − 1)| ≤ et
2
( |t|3

3

n∑
m=1

E|Xnm|3 +
t4

8

n∑
m=1

EV 2
nm

)
That the first sum above converges to 0, is simply the Lyapounov condition that is assumed

to be true in the lemma. Hence the proof will be complete, if we can show that

n∑
m=1

EV 2
nm → 0
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as n→∞. This is obviously the same as showing that

E

n∑
m=1

V 2
nm → 0 as n→∞ . (5.25)

The integrand above must have the following upper bound

n∑
m=1

V 2
nm ≤

n∑
m=1

Vnm
(

max
k=1,...,n

Vnk
)

=
(

max
k=1,...,n

Vnk
) n∑
m=1

Vnm (5.26)

and this must be bounded by 4, since
∑n
m=1 Vnm ≤ 2 such that especially also all Vnk ≤ 2.

Hence the integrand in (5.25) is bounded, so Lemma 5.5.3 gives that the proof is complete,

if we can show
n∑

m=1

V 2
nm

P−→ 0 ,

which (because of the inequality (5.26) ) will be the case, if we can show

(
max

k=1,...,n
Vnk
) n∑
m=1

Vnm
P−→ 0 .

Since we have assumed that
∑n
m=1 Vnm

P−→ 1, it will according to Theorem 3.3.3 be enough

to show that

max
k=1,...,n

Vnk
P−→ 0 . (5.27)

In order to show (5.27) we will utilize the fact that for each c > 0 exists a d > 0 such that

x2 ≤ c+ d|x|3 for all x ∈ R .

So let c > 0 be some arbitrary number and find the corresponding d > 0. Then

Vnm = E(X2
nm|Fm−1) ≤ E(c+ d|Xnm|3|Fm−1)

= c+ dE(|Xnm|3|Fm−1) ≤ c+ d

n∑
m=1

E(|Xnm|3|Fm−1) ,

and since this upper bound does not depend on m, we have the inequality

max
m=1,...,n

Vnm ≤ c+ d

n∑
m=1

E(|Xnm|3|Fm−1)

Then from integration

E max
m=1,...,n

Vnm ≤ c+ d

n∑
m=1

E
(
E(|Xnm|3|Fm−1)

)
= c+ d

n∑
m=1

E|Xnm|3
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and letting n→∞ yields

lim sup
n→∞

E max
m=1,...,n

Vnm ≤ lim sup
n→∞

(
c+ d

n∑
m=1

E|Xnm|3
)

= c+ d lim
n→∞

n∑
m=1

E|Xnm|3 = c .

Since c > 0 was chosen arbitrarily, and the left hand side is independent of c, we must have

(recall that it is non–negative)

lim
n→∞

E max
m=1,...,n

Vnm = 0

And since Emaxm=1,...,n Vnm = E|maxm=1,...,n Vnm − 0|, we actually have that

max
m=1,...,n

Vnm
L1

−→ 0

which in particular implies (5.27).

Theorem 5.5.5 (Brown). Let (Xnm) be a triangular array of real random variables with

third order moment. Assume that there exists a filtration (Fn)n≥1 that makes each row in

the array a martingale difference. Assume furthermore that

n∑
m=1

E(X2
nm | Fm−1)

P→ 1 as n→∞ . (5.28)

If the array fulfils the conditional Lyapounov condition

n∑
m=1

E
(
|Xnm|3 | Fm−1

) P→ 0 as n→∞ , (5.29)

then the row sums Snn =
∑n
m=1Xnm satisfies that

Snn
D−→ N (0, 1) as n→∞

Proof. Most of the work is already done in lemma 5.5.4 - we only need to use a little bit of

martingale technology in order to reduce the general setting to the situation in the lemma.

Analogous to the Wnm-variables from before we define the cumulated third order moments

within each row

Znm =

m∑
k=1

E
(
|Xnk|3 | Fk−1

)
.
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Furthermore define the variable

X∗nm = Xnm 1(Wnm≤2, Znm≤1) .

It is not important exactly which upper limit is chosen above for the Z–variables – any

strictly positive upper limit would give the same results as 1. The trick will be to see that

the triangular array (X∗nm) consisting of the star variables fulfils the conditions from Lemma

5.5.4.

Note that since both Wnm and Znm are Fm−1–measurable, then the indicator function will

be Fm−1–measurable. Hence each X∗nm must be Fm–measurable. Furthermore (using that

(Xnm) is a martingale difference array)

E|X∗nm| = E|Xnm1(Wnm≤2,Znm≤1)| ≤ E|Xnm| <∞

and also

E(X∗nm|Fm−1) = E(Xnm|Fm−1)1(Wnm≤2,Znm≤1) = 0 .

Altogether this shows that (X∗nm) is a martingale difference array. We will define the variables

V ∗nm and W ∗nm for (X∗nm) similar to the variables Vnm and Wnm for (Xnm):

V ∗nm = E((X∗nm)2|Fm−1) , W ∗nm =

m∑
k=1

V ∗nk .

Then (as before)

V ∗nm = Vnm1(Wnm≤2,Znm≤1)

so

W ∗nm =

n∑
k=1

Vnk1(Wnk≤2,Znk≤1) .

From this we obtain that W ∗nn ≤ 2 (we only add V ’s to the sum as long as the W ’s are below

2). We also have that

W ∗nm = Wnm for m = 1, . . . , n on (Wnn ≤ 2, Znn ≤ 1) (5.30)

because, since bothWnk and Znk are increasing in k, all the indicator functions 1(Wnk≤2,Znk≤1)

are 1 on the set (Wnn ≤ 2, Znn ≤ 1). Since Wnn
P−→ 1 and Znn

P−→ 0 it holds that

P (Wnn ≤ 2) = P (|Wnn − 1| ≤ 1)→ 1 and P (Znn ≤ 1) = P (|Znn − 0| ≤ 1)→ 1. Hence also

P (Wnn ≤ 2, Znn ≤ 1)→ 1. Combining this with (5.30) yields

1 ≥ P (|W ∗nn −Wnn − 0| ≤ ε) ≥ P (W ∗nn = Wnn) ≥ P (Wnn ≤ 2, Znn ≤ 1)→ 1 ,

which shows that W ∗nn −Wnn
P−→ 0. Then

W ∗nn = (W ∗nn −Wnn) +Wnn
P−→ 0 + 1 = 1 .
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To be able to apply Lemma 5.5.4 to the triangular array we still need to show that the array

satisfies the unconditional Lyapounov condition (5.23). For this define

Z∗nn =

n∑
k=1

E(|X∗nk|3|Fk−1) =

n∑
k=1

E(|Xnk|3|Fk−1)1(Wnk≤2,Znk≤1)

It is obvious that Z∗nn ≤ 1 and from using that all terms in Znm are non–negative, such that

Znm increases for m = 1, . . . , n we also see (like above) that Z∗nn ≤ Znn. The assumption

Znn
P−→ 0 then implies

P (|Z∗nn − 0| > ε) = P (Z∗nn > ε) ≤ P (Znn > ε)→ 0

so Z∗nn
P−→ 0. The fact that all 0,≤ Z∗nn ≤ 1, makes (Z∗nn) uniformly integrable. For x > 1:

sup
n∈N

∫
(Z∗nn≥x)

Z∗nn dP =

∫
∅
Z∗nn dP = 0

So Theorem 5.4.5 gives, that Z∗nn
L1

−→ 0. Hence E(Z∗nn) = E|Z∗nn − 0| → 0, such that

n∑
k=1

E|X∗nk|3 =

n∑
k=1

E
(
E(|X∗nk|3|Fk−1)

)
= E

( n∑
k=1

E(|X∗nk|3|Fk−1)
)

= E(Z∗nn)→ 0

Summarising the results so far, we have shown that all conditions from Lemma 5.5.4 are

satisfied for the martingale difference array (X∗nm). Then the lemma gives that

n∑
m=1

X∗nm
D−→ N (0, 1) .

We have already argued, that on the set (Wnn ≤ 2, Znn ≤ 1) all the indicator functions

1(Wnk≤2,Znk≤1) are 1. Hence

X∗nm = Xnm for all m = 1, . . . , n on (Wnn ≤ 2, Znn ≤ 1)

so also
n∑

m=1

X∗nm =

n∑
m=1

Xnm on (Wnn ≤ 2, Znn ≤ 1) .

Then (using an argument similar to the previous) we obtain

1 ≥ P
(∣∣ n∑

m=1

X∗nm −
n∑

m=1

Xnm − 0
∣∣ ≤ ε) ≥ P (Wnn ≤ 2, Znn ≤ 1)→ 1

so
n∑

m=1

X∗nm −
n∑

m=1

Xnm
P−→ 0 .
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Referring to Slutsky’s lemma completes the proof since then

n∑
m=1

Xnm =

n∑
m=1

X∗nm +
( n∑
m=1

Xnm −
n∑

m=1

X∗nm

)
D−→ N (0, 1)

By some work it is possible to replace the third order conditions by some Lindeberg–inspired

conditions. It is sufficient that all the X–variables have second order moment, satisfy (5.28),

and fulfil
n∑

m=1

E
(
X2
nm 1(|Xnm|>c) | Fm−1

) P→ 0 as n→∞ , (5.31)

for all c > 0 in order for the conclusion in Brown’s Theorem to be maintained.

5.6 Exercises

All random variables in the following exercises are assumed to be real valued. Exercise

5.1. Characterise the mean function n→ E(Xn) if (Xn,Fn) is

(1) a martingale.

(2) a submartingale.

(3) a supermartingale.

Show that a submartingale is a martingale, if and only if the mean function is constant. ◦

Exercise 5.2. Let (Fn) be a filtration on (Ω,F) and assume that τ and σ are stopping

times. Show that τ ∨ σ and τ + σ are stopping times. ◦

Exercise 5.3. Let X1, X2, . . . be independent and identically distributed real random vari-

ables such that EX1 = 0 and V X1 = σ2. Let (Fn) be the filtration on (Ω,F) defined by

Fn = F(X1, . . . , Xn). Define

Yn =

(
n∑
k=1

Xk

)2

Zn = Yn − nσ2
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Show that (Yn,Fn) is a submartingale and that (Zn,Fn) is a martingale. ◦

Exercise 5.4. Assume that (Xn,Fn) is an adapted sequence, where each Xn is a real valued

random variable. Let A ∈ B. Define τ : Ω→ N ∪ {∞} by

τ(ω) = inf{n ∈ N : Xn(ω) ∈ A} .

Show that τ is a stopping time. ◦

Exercise 5.5. Let (Fn) be a filtration on (Ω,F). Let τ : Ω→ N∪{∞} be a random variable.

Show that τ is a stopping time if and only if there exists a sequence of sets (Fn), such that

Fn ∈ Fn for all n ∈ N and

τ(ω) = inf{n ∈ N : ω ∈ Fn}

◦

Exercise 5.6. Let (Fn) be a filtration on (Ω,F) and consider a sequence of sets (Fn) where

for each n Fn ∈ Fn. Let σ be a stopping time and define

τ(ω) = inf{n > σ(ω) : ω ∈ Fn}

Show that τ is a stopping time. ◦

Exercise 5.7.

(1) Assume that (Xn,Fn) is an adapted sequence. Show that (Xn,Fn) is a martingale if

and only if

E(Xk|Fτ ) = Xτ a.s.

for all k ∈ N and all stopping times τ , where τ ≤ k.

(2) Show that if (Xn,Fn) is a martingale and τ ≤ m ∈ N, then

E(Xτ ) = E(X1)

(3) Show that if (Xn,Fn) is a submartingale and τ ≤ m ∈ N, then

E(X1) ≤ E(Xτ ) ≤ E(Xm)

◦
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Exercise 5.8. Let (X1, X2, . . .) be a sequence of independent and identically distributed

random variables, such that X1 ∼ Pois(λ). Define for n ∈ N

Sn =

n∑
k=1

Xk and Fn = F(X1, . . . , Xn) .

(1) Show that (Sn − nλ,Fn) is a martingale.

(2) Define

τ = inf{n ∈ N : Sn ≥ 1}

Show that τ is a stopping time.

(3) Show that E(Sτ∧n) = λE(τ ∧ n) for all n ∈ N.

(4) Argue that P (τ <∞) = 1.

(5) Show that E(Sτ ) = λE(τ).

◦

Exercise 5.9. Let X1, X2, . . . be a sequence of independent random variables with EXn = 0

for all n ∈ N. Assume that
∑∞
n=1EX

2
n < ∞ and define Sn = X1 + · · · + Xn for all n ∈ N.

Show that limn→∞ Sn exists almost surely. ◦

Exercise 5.10. Assume that X1, X2, . . . are independent and identically distributed random

variables with

P (Xn = 1) = p P (Xn = −1) = 1− p ,

where 0 < p < 1 with p 6= 1
2 . Define

Sn = X1 + · · ·+Xn

and Fn = F(X1, . . . , Xn) for all n ≥ 1.

(1) Let r = 1−p
p and show that E(Mn) = 1 for all n ≥ 1, where

Mn = rSn .

and show that (Mn,Fn)n∈N is a martingale.

(2) Show that M∞ = limn→∞Mn exists a.s.
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(3) Show that EM∞ ≤ 1.

(4) Show that

lim
n→∞

1

n
Sn = 2p− 1 a.s.

and conclude that Sn → +∞ a.s. if p > 1
2 and Sn → −∞ a.s. if p < 1

2 .

(5) Let a, b ∈ Z with a < 0 < b and define

τ = inf{n ∈ N | Sn = a or Sn = b}

Show that τ is a stopping time.

(6) Show that P (τ <∞) = 1, and realise that P (Sτ ∈ {a, b}) = 1.

(7) Show that EMτ∧n = 1 for all n ≥ 1.

(8) Show that for all n ∈ N
|Sτ∧n| ≤ |a| ∨ b .

and conclude that the sequence (Mτ∧n)n∈N is bounded.

(9) Show that EMτ = 1.

(10) Show that

P (Sτ = b) =
1− ra

rb − ra

P (Sτ = a) =
rb − 1

rb − ra

◦

Exercise 5.11. The purpose of this exercise is to show that for a random variable X with

EX2 < ∞ and a sub σ–algebra D of F we have the following version of Jensen’s inequality

for conditional expectations

E(X2|D) ≥ E(X|D)2 a.s.

(1) Show that x2− y2 ≥ 2y(x− y) for all x, y ∈ R and show that for all n ∈ N it holds that

1Dn
(
X2 − E(X|D)2

)
≥ 1Dn2E(X|D)

(
X − E(X|D)

)
,

where Dn = (|E(X|D)| ≤ n). Show that both the left hand side and the right hand

side are integrable.
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(2) Show that

E
(

1Dn2E(X|D)
(
X − E(X|D)

)
|D
)

= 0 a.s.

(3) Show that

1DnE(X2|D) ≥ 1DnE(X|D)2 a.s. for all n ∈ N.

and conclude

E(X2|D) ≥ E(X|D)2 a.s.

◦

Exercise 5.12.(The Chebychev–Kolmogorov inequality) Let (Xn,Fn) be a martingale where

EX2
n <∞ for all n ∈ N.

(1) Show that (X2
n,Fn) is a submartingale.

(2) Define for some ε > 0

τ = inf{n ∈ N : |Xn| ≥ ε}

Show that τ is a stopping time.

(3) Show that for some n ∈ N it holds that

EX2
τ∧n ≤ EX2

n

(4) Show that

EX2
τ∧n ≥ ε2P ( max

k=1,...,n
|Xk| ≥ ε)

(5) Conclude the Chebychev–Kolmogorov Inequality:

P ( max
k=1,...,n

|Xk| ≥ ε) ≤
EX2

n

ε2

◦

Exercise 5.13.(Doob’s Inequality) Assume that (Yn,Fn)n∈N is a submartingale. Let t > 0

be a given constant.

(1) Define τ : Ω→ N ∪ {∞} by

τ = inf{k ∈ N : Yk ≥ t}

Show that τ is a stopping time.
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(2) Let n ∈ N and define

An = ( max
k=1,...,n

Yk ≥ t)

Use the definition of An and τ to show

tP (An) ≤
∫
An

Yτ∧n dP

(3) Show ”Doob’s Inequality”:

tP (An) ≤
∫
An

Yn dP

◦

Exercise 5.14.

(1) Assume that X1, X2, . . . are random variables with each Xn ≥ 0 and E|Xn| <∞, such

that Xn → 0 a.s. and EXn → 0. Show that (Xn) is uniformly integrable.

(2) Find a sequence X1, X2, . . . of random variables on (Ω,F , P ) = ([0, 1],B, λ) such that

Xn → 0 a.s. and EXn → 0

but where (Xn) is not uniformly integrable.

◦

Exercise 5.15. Let X be a random variable with E|X| < ∞. Let G be collection of sub

σ–algebras of F . In this exercise we shall show that the following family of random variables

(E(X|D))D∈G

is uniformly integrable.

(1) Let D ∈ G. Show that for all x > 0 it holds that∫
(|E(X|D)|>x)

|E(X|D)|dP ≤
∫

(E(|X||D)>x)

|X|dP

(2) Show that for all K ∈ N and x > 0∫
(E(|X||D)>x)

|X|dP ≤
∫

(|X|>K)

|X|dP +K
E|X|
x
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(3) Show that (E(X|D))D∈G is uniformly integrable.

◦

Exercise 5.16. Assume that (Ω,F , (Fn), P ) is a filtered probability space. Let τ be a

stopping time with Eτ <∞. Assume that (Xn,Fn) is a martingale.

(1) Argue that Xτ is almost surely well–defined and that Xτ∧n → Xτ a.s.

(2) Assume that (Xτ∧n)n∈N is uniformly integrable. Show that E|Xτ | < ∞ and Xτ∧n
L1

→
Xτ .

(3) Assume that (Xτ∧n)n∈N is uniformly integrable. Show that EXτ = EX1.

(4) Assume that a random variable Y exists such that E|Y | < ∞ and |Xτ∧n| ≤ |Y | a.s.

for all n ∈ N. Show that (Xτ∧n) is uniformly integrable.

In the rest of the exercise you can use without proof that

|Xτ∧n| ≤ |X1|+
∞∑
m=1

1(τ>m)|Xm+1 −Xm| (5.32)

for all n ∈ N.

(5) Show that

Eτ =

∞∑
n=0

P (τ > n)

(6) Assume that there exists a constant B > 0 such that

E(|Xn+1 −Xn|
∣∣Fn) ≤ B a.s.

for all n ∈ N. Show that EXτ = EX1

Let Y1, Y2, . . . be a sequence of independent and identically distributed random variables

satisfying E|Y1| <∞. Define Gn = F(Y1, . . . , Yn) and

Sn =

n∑
k=1

Yk Zn = Sn − nξ

where ξ = EY1.
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(7) Show that (Zn,Fn) is a martingale.

Let σ be a stopping time (with respect to the filtration (Gn)) such that Eσ <∞.

(8) Show that E(|Zn+1 − Zn|
∣∣Gn) = E(|Y1 − ξ|) a.s for all n ∈ N.

(9) Show that ESσ = EσEY1.

◦

Exercise 5.17. Assume that X1, X2, . . . are independent random variables such that for

each n it holds Xn ≥ 0 and EXn = 1. Define Fn = F(X1, . . . , Xn) and

Yn =

n∏
k=1

Xk

(1) Show that (Yn,Fn) is a martingale.

(2) Show that Y = limn→∞ Yn exists almost surely with E|Y | <∞.

(3) Show that 0 ≤ EY ≤ 1.

Assume furthermore that all Xn’s are identically distributed satisfying

P (Xn =
1

2
) = P (Xn =

3

2
) =

1

2
.

(4) Show that Y = 0 a.s.

(5) Conclude that there does not exist a random variable Z such that Yn
L1

−→ Z.

◦

Exercise 5.18. Let X1, X2, . . . be a sequence of real random variables with E|Xn| <∞ for

all n ∈ N. Assume that X is another random variable with E|X| < ∞. The goal of this

exercise is to show

Xn
L1

−→ X if and only if E|Xn| → E|X| and Xn
P−→ X
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(1) Assume that Xn
L1

−→ X. Show that E|Xn| → E|X| and Xn
P−→ X.

Let U1, U2, . . . and V, V1, V2, . . . be two sequences of random variables such that E|V | < ∞
and for all n ∈ N

E|Vn| <∞

|Un| ≤ Vn
Vn

a.s.−→ V as n→∞

EVn → EV as n→∞

(2) Apply Fatou’s lemma on the sequence (Vn − |Un|) to show that

lim sup
n→∞

E|Un| ≤ E lim sup
n→∞

|Un|

Hint: You can use that if (an) is a real sequence, then

lim inf
n→∞

(−an) = − lim sup
n→∞

an

and if (bn) is another real sequence with bn → b, then

lim inf
n→∞

bn = b

and

lim inf
n→∞

(an + bn) = (lim inf
n→∞

an) + b

lim sup
n→∞

(an + bn) = (lim sup
n→∞

an) + b

(3) Use (2) to show that if E|Xn| → E|X| and Xn ∩X then Xn
L1

−→ X.

(4) Assume that E|Xn| → E|X| and Xn
P−→ X. Show that Xn

L1

−→ X.

Now let (Yn,Fn) be a martingale. Assume that a random variable Y exists with E|Y | <∞,

such that Yn
P−→ Y .

(5) Assume that E|Yn| → E|Y |. Show that Yn
a.s.−→ Y .

(6) Show that Y closes the martingale if and only if E|Yn| → E|Y |.
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◦

Exercise 5.19. Consider the gambling strategy discussed in Section 5.1: Let Y1, Y2, . . . be

independent and identically distributed random variables with

P (Y1 = 1) = p P (Y1 = −1) = 1− p ,

where 0 < p < 1
2 . We think of Yn as the the result of a game, where the probability of

winning is p, and where if you bet 1 dollar, you will receive 1 dollar if you win, and lose the 1

dollar, if you lose the game. We consider the sequence of strategies where the bet is doubled

for each lost game, and when a game finally is won, the bet is reset to 1. That is defining

the sequence of strategies (φn) such that

φ1 = 1

and furthermore recursively for n ≥ 2

φn(y1, . . . , yn−1) =

{
2φn−1(y1, . . . , yn−2) if yn−1 = −1

1 if yn−1 = 1

Then the winnings in the n’th game is

Ynφn(Y1, . . . , Yn−1)

and the total winnings in game 1, . . . , n is

Xn =

n∑
k=1

Ykφk(Y1, . . . , Yk−1)

If e.g. we lose the first three games and win the fourth, then

X1 = −1, X2 = −1− 2, X3 = −1− 2− 22, X4 = −1− 2− 22 + 23 = 1

Define for each n ∈ N the σ–algebra Fn = σ(Y1, . . . , Yn).

(1) Show that (Xn,Fn) is a true supermartingale (meaning a supermartingale that is not

a martingale).

Define the sequence (τk) by

τ1 = inf{n ∈ N | Yn = 1}

τk+1 = inf{n > τk | Yn = 1}
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(2) Show that (τk) is a sequence of sampling times.

(3) Realise that Xτk = k for all k ∈ N and conclude that (Xτk ,Fτk) is a true submartingale.

Hence we have stopped a true supermartingale and obtained a true submartingale!! In the

next questions we shall compare that result to Theorem 5.4.9.

(4) See that on the set (τ1 > n) we must have Xn = −
∑n
k=1 2k−1 = 1− 2n and show that∫

(τ1>n)

X−n dP = qn − (2q)n → −∞ as n→∞ ,

where q = 1− p.

(5) Compare the result from 4 with assumption 2 in Theorem 5.4.9.

Now assume that we change the strategy sequence (φn) in such a way, that we limit our

betting in order to avoid Xn < −7. Hence we always have Xn ≥ −7. Since all bettings are

non–negative we still have, that (Xn,Fn) is a supermartingale.

(6) Let (σk) be an increasing sequence of stopping times. Show that (Xσk ,Fσk) is a super-

martingale.

◦

Exercise 5.20. The purpose of this exercise is to show the following theorem:

Let (Xn) be a martingale and assume that for some p > 1 it holds that

sup
n≥1

E|Xn|p <∞ .

Then a random variable X exists with E|X|p <∞ such that

Xn
a.s.−→ X , Xn

Lp→ X

(1) Assume that supn≥1E|Xn|p <∞. Show that there exists X such that Xn
a.s.−→ X and

E|X| <∞.
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(2) Assume that both supn≥1E|Xn|p < ∞ and E
[

supn |Xn|p
]
< ∞. Show that E|X|p <

∞ (with X from 1)) and Xn
Lp→ X.

In the rest of the exercise we shall show that E
[

supn |Xn|p
]
<∞ under the assumption that

supn≥1E|Xn|p <∞.

(3) Assume that Z ≥ 0 and let r > 0. Show

EZr =

∫ ∞
0

rtr−1P (Z ≥ t) dt

Define Mn = max1≤k≤n |Xk|.

(4) Show that

EMp
n ≤

∫ ∞
0

ptp−2

∫
(Mn≥t)

|Xn|dP dt

(5) Show that

EMp
n ≤

p

p− 1
E
(
Mp−1
n |Xn|

)

Recall that Hölder’s Inequality gives: If p, q > 1 such that 1
p + 1

q = 1 and furthermore Y , Z

are random variables with E|Y |p <∞ and E|Z|q <∞, then

E|Y Z| ≤
(
E|Y |p

)1/p(
E|Z|q

)1/q
.

(6) Show that

EMp
n ≤

( p

p− 1

)p
E(|Xn|p)

(7) Conclude that E
[

supn |Xn|p
]
<∞ under the assumption supn∈NE|Xn|p <∞.

◦

Exercise 5.21. (Continuation of Exercise 5.10)

Assume that X1, X2, . . . are independent and identically distributed random variables with

P (Xn = 1) = P (Xn = −1) =
1

2
.
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Define

Sn = X1 + · · ·+Xn

and Fn = σ(X1, . . . , Xn) for all n ∈ N.

(1) Show that (Sn,Fn) and (S2
n − n,Fn) are martingales.

Let a, b ∈ Z with a < 0 < b and define

τa,b = inf{n ∈ N : Sn = a or Sn = b}

It was seen in Exercise 5.10, that τa,b is a stopping time.

(2) Show for all n,m ∈ N that

P (τa,b > nm) ≤
n∏
k=1

P (|Skm − S(k−1)m| < b− a) = P (|Sm| < b− a)n

Defining S0 = 0.

(3) Show that P (τa,b <∞) = 1 and conclude that P (Sτa,b ∈ {a, b}) = 1.

(4) Show that ESτa,b∧n = 0 for all n ∈ N and conclude that ESτa,b = 0.

(5) Show that

P (Sτa,b = a) =
b

b− a
P (Sτa,b = b) =

−a
b− a

(6) Show that ES2
τa,b

= Eτa,b and conclude that Eτa,b = −ab.

Define the stopping time

τb = inf{n ∈ N : Sn = b}

(7) Show that P (F ) = 1, where F =
⋂∞
n=1(τ−n,b <∞).

(8) Show P ((τ−n,b = τb) ∩ F )→ 1 as n→∞. Conclude that P (G) = 1, where

G =

( ∞⋃
n=1

(τ−n,b = τb)

)
∩ F

(9) Show that P (τb <∞) = 1.



188 Martingales

(10) Show that Eτb =∞.

(11) Argue that

lim inf
N→∞

∫
(τb>N)

|SN | dP 6= 0

(12) Show that

P (sup
n≥1

Sn =∞) = 1

From symmetry it is seen that also

P ( inf
n≥1

Sn = −∞) = 1

◦

Exercise 5.22. Let (Ω,F ,Fn, P ) be a filtered probability space, and let (Yn)n≥1 and (Zn)n≥1

be two adapted sequences of real random variables. Define furthermore Z0 ≡ 1. Assume that

Y1, Y2, . . . are independent and identically distributed with E|Y1|3 <∞ and EY1 = 0. Assume

furthermore that for all n ≥ 2 it holds that Yn is independent of Fn−1. Finally, assume that

E|Zn|3 <∞ for all n ∈ N. Define for all n ∈ N

Mn =

n∑
m=1

Zm−1Ym

(1) Show that (Mn,Fn) is a martingale.

(2) Assume that

1

n

n−1∑
m=0

Z2
m

P−→ α2 > 0

and
1

n3/2

n−1∑
m=0

|Zm|3
a.s.−→ 0 .

Show that
1√
n
Mn

D−→ N (0, α2σ2) ,

where σ2 = EY 2
1 .

Define N1 ≡ Y1 and for n ≥ 2

Nn = Y1 +

n∑
m=2

1

m
Ym−1Ym
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(3) Argue that (Nn,Fn) is a martingale.

(4) Show that for all n ≥ 2

EN2
n = EN2

n−1 +
1

n2
(σ2)2

(5) Show that the sequence (Nn) is uniformly integrable.

(6) Show that N∞ = limn→∞Nn exists almost surely and in L1. Find EN∞.

(7) Show that for 1 ≤ i < j it holds that

EYi−1YiYj−1Yj = 0

and use this to conclude that for k, n ∈ N

E(Nn+k −Nn)2 = (σ2)

n+k∑
m=n+1

1

m2

(8) Show that Nn → N∞ in L2.

Define for all n ∈ N

M∗n =

n∑
m=2

Ym−1Ym

with the definition Y0 ≡ 1. In the following questions you can use Kronecker’s Lemma that is

a mathematical result: If (xn) is a sequence of real numbers such that limn→∞
∑n
k=1 xk = s

exists, and if 0 < b1 ≤ b2 ≤ · · · with bn →∞, then

lim
n→∞

1

bn

n∑
k=1

bkxk = 0 .

(9) Show that

lim
n→∞

1

n
M∗n = 0 a.s.

(10) Use the strong law of large numbers to show

1

n

n∑
k=1

Y 2
k

a.s.−→ σ2 a.s.

and
1

n3/2

n∑
k=1

|Yk|3
a.s.−→ 0 a.s.
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(11) Show that
1√
n
M∗n

D−→ N (0, (σ2)2)

◦



Chapter 6

The Brownian motion

The first attempt to define the stochastic process which is now known as the Brownian motion

was made by the Frenchman Bachelier, who at the end of the 19th century tried to give a

statistical description of the random price fluctuations on the stock exchange in Paris. Some

years later, a variation of the Brownian motion is mentioned in Einstein’s theory of relativity,

but the first precise mathematical definition is due to Norbert Wiener (1923) (which explains

the name one occasionally sees: the Wiener process). The Frenchman Paul Lévy explored

and discovered some of the fundamental properties of Brownian motion and since that time

thousands of research papers have been written concerning what is unquestionably the most

important of all stochastic processes.

Brown himself has only contributed his name to the theory of the process: he was a botanist

and in 1828 observed the seemingly random motion of flower pollen suspended in water,

where the pollen grains constantly changed direction, a phenomenon he explained as being

caused by the collision of the microscopic pollen grains with water molecules.

So far the largest collection of random variables under study have been sequences indexed by

N. In this chapter we study stochastic processes indexed by [0,∞). In Section 6.1 we discuss

how to define such processes indexed by [0,∞), and we furthermore define and show the

existence of the important Brownian motion. In following sections we study the behaviour

of the so–called sample paths of the Brownian motion. In Section 6.2 we prove that there

exists a continuous version, and in the remaining sections we study how well–behaved the

sample paths are – apart from being continuous.
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6.1 Definition and existence

We begin with a brief presentation of some definitions and results from the general theory of

stochastic processes.

Definition 6.1.1. A stochastic process in continuous time is a family X = (Xt)t≥0 of real

random variables, defined on a probability space (Ω,F , P ).

In Section 2.3 we regarded a sequence (Xn)n≥1 of real random variables as a random variable

with values in R∞ equipped with the σ–algebra B∞. Similarly we will regard a stochastic

process X in continuous time as having values in the space R[0,∞) consisting of all functions

x : [0,∞) → R. The next step is to equip R[0,∞) with a σ–algebra. For this, define the

coordinate projections X̂t by

X̂t(x) = xt for x ∈ R[0,∞)

for all t ≥ 0. Then we define

Definition 6.1.2. Let B[0,∞) denote the smallest σ–algebra that makes X̂t (B[0,∞) − B)

measurable for all t ≥ 0.

Then we have

Lemma 6.1.3. Let X : Ω → R[0,∞). Then X is is F − B[0,∞) measurable, if and only if

X̂t ◦X is F − B measurable for all t ≥ 0.

Proof. The proof will be identical to the proof of Lemma 2.3.3: If X is F−B[0,∞) measurable

we can use that X̂t by definition is B[0,∞) − B measurable, so the composition is F − B
measurable. Conversely, assume that X̂t ◦X is F −B measurable for all t ≥ 0. To show that

X is F −B[0,∞) measurable, it suffices to show that X−1(A) ∈ F for all A in the generating

system H = {X̂−1
t (B) | t ≥ 0, B ∈ B} for B[0,∞). But for any t ≥ 0 and B ∈ B we have

X−1(X̂−1
t (B)) = (X̂t ◦X)−1(B) ∈ F by our assumptions.

Lemma 6.1.4. Let X = (Xt)t≥0 be a stochastic process. Then X is F −B[0,∞) measurable.

Proof. Note that X̂t ◦X = Xt and Xt is F−B measurable by assumption. The result follows

from Lemma 6.1.3.
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IfX = (Xt)t≥0 is a stochastic process, we can consider the distributionX(P ) on (R[0,∞),B[0,∞).

For determining such a distribution, the following lemma will be useful.

Lemma 6.1.5. Define H as the family of sets on the form

{x ∈ R[0,∞) | (xt1 , . . . , xtn) ∈ Bn} =
(
(X̂t1 , . . . , X̂tn) ∈ Bn

)
,

where n ∈ N, 0 ≤ t1 < · · · < tn and Bn ∈ Bn. Then H is a generating family for B[0,∞)

which is stable under finite intersections.

Proof. It is immediate (but notationally heavy) to see that H is stable under finite inter-

sections. Let F =
(
(X̂t1 , . . . , X̂tn) ∈ Bn

)
∈ H and note that the vector (X̂t1 , . . . , X̂tn) is

B[0,∞)−Bn measurable, so F ∈ B[0,∞). Therefore H ⊆ B[0,∞), so also σ(H) ⊆ B[0,∞). For the

converse inclusion, note that for all t ≥ 0 and B ∈ B it holds that X̂−1
t (B) = (X̂t ∈ B) ∈ H,

so each coordinate projection must be σ(H) − B measurable. As B[0,∞) is the smallest σ–

algebra with this property, we conclude that B[0,∞) ⊆ σ(H). All together we have the desired

result B[0,∞) = σ(H).

If P̂ is a probability on (R[0,∞),B[0,∞)) then

P
(n)
t1...tn(Bn) = P̂ ((X̂t1 , . . . , X̂tn) ∈ Bn) (6.1)

defines a probability on (Rn,Bn) for all n ∈ N, t1 < · · · < tn. The class of all P
(n)
t1...tn is the

class of finite-dimensional distributions for P̂ .

If X is a real stochastic process with distribution P̂ then P
(n)
t1...tn given by (6.1) is the distribu-

tion of (Xt1 , . . . , Xtn) and the class (P
(n)
t1...tn) is called the class or family of finite-dimensional

distributions for X.

From Lemma 6.1.5 and Theorem A.2.4, it follows that a probability P̂ on (R[0,∞),B[0,∞))

is uniquely determined by the finite-dimensional distributions. The main result concerning

the construction of stochastic processes, Kolmogorov’s consistency theorem, gives a simple

condition for when a given class of finite-dimensional distributions is the class of finite-

dimensional distributions for one (and necessarily only one) probability on (R[0,∞),B[0,∞)).

With P̂ a probability on (R[0,∞),B[0,∞)), it is clear that the finite-dimensional distributions

for P̂ fit together in the following sense: the P̂ -distribution of (X̂t1 , . . . , X̂tn) can be obtained

as the marginal distribution of (X̂u1
, . . . , X̂um) for any choice of m and 0 ≤ u1 < . . . < um

such that {t1, . . . , tn} ⊆ {u1, . . . , um}. In particular, a class of finite-dimensional distributions
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must always fulfil the following consistency condition: for all n ∈ N, 0 ≤ t1 < . . . < tn+1 and

all k ,1 ≤ k ≤ n+ 1, we have

P
(n)
t1...tk−1tk+1...tn+1

= πk(P
(n+1)
t1...tn+1

), (6.2)

where πk : Rn+1 → Rn is given by

πk(y1, . . . , yn+1) = (y1, . . . , yk−1, yk+1, . . . , yn+1).

If X = (Xt)t≥0 has distribution P̂ with finite-dimensional distributions (P
(n)
t1...tn), then (6.2)

merely states that the distribution of (Xt1 , . . . , Xtk−1
, Xtk+1

, . . . , Xtn+1
), is the marginal dis-

tribution in the distribution of (Xt1 , . . . , Xtn+1) which is obtained by excluding Xtk .

We will without proof use

Theorem 6.1.6 (Kolmogorov’s consistency theorem). If P = (P
(n)
t1...tn) is a family of finite-

dimensional distributions, defined for n ∈ N, 0 ≤ t1 < · · · < tn, which satisfies the consistency

condition (6.2), then there exists exactly one probability P̂ on (R[0,∞),B[0,∞)) which has P
as its family of finite-dimensional distributions.

We shall use the consistency theorem to prove the existence of a Brownian motion, that is

defined by

Definition 6.1.7. A real stochastic process X = (Xt)t≥0 defined on a probability space

(Ω,F, P ) is a Brownian motion with drift ξ ∈ R and variance σ2 > 0, if the following three

conditions are satisfied

(1) P (X0 = 0) = 1.

(2) For all 0 ≤ s < t the increments Xt−Xs are normally distributed N ((t−s)ξ, (t−s)σ2)).

(3) The increments Xt1 = Xt1 − X0, Xt2 − Xt1 , . . . , Xtn − Xtn−1 are for all n ∈ N and

0 ≤ t1 < · · · < tn mutually independent.

Definition 6.1.8. A normalised Brownian motion is a Brownian motion with drift ξ = 0

and variance σ2 = 1.

Theorem 6.1.9. For any ξ ∈ R and σ2 > 0 there exists a Brownian motion with drift ξ and

variance σ2.
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Proof. We shall use Kolmogorov’s consistency theorem. The finite dimensional distributions

for the Brownian motion are determined by (1)–(3):

Let 0 ≤ t1 < · · · < tn+1. Then we know that

Xt1 , Xt2 −Xt1 , . . . , Xtn+1
−Xtn

are independent and normally distributed. Then the vector

(Xt1 , Xt2 −Xt1 , . . . , Xtn+1
−Xtn) (6.3)

is n+ 1–dimensional normally distributed. Since

(Xt1 , Xt2 , . . . , Xtn+1) (6.4)

is a linear transformation of (6.3), then (6.4) is n+1-dimensional normally distributed as well.

The distribution of such a normal vector is determined by the mean vector and covariance

matrix. We have

E(Xt) = E(Xt −X0) = (t− 0)ξ = tξ

and for s ≤ t

Cov(Xs, Xt) = Cov(Xs, Xs + (Xt −Xs))

= V(Xs) + Cov(Xs, Xt −Xs)

= V(Xs) + 0 = V(Xs −X0) = (s− 0)σ2 = sσ2 .

We have shown that the finite-dimensional distributions of a Brownian motion with drift ξ

and variance σ2 are given by

P
(n+1)
t1,...,tn+1

= N





t1ξ

t2ξ

t3ξ
...

tn+1ξ

 ,



t1σ
2 t1σ

2 t1σ
2 · · · t1σ

2

t1σ
2 t2σ

2 t2σ
2 · · · t2σ

2

t1σ
2 t2σ

2 t3σ
2 · · · t3σ

2

...
...

...
...

t1σ
2 t2σ

2 t3σ
2 · · · tn+1σ

2




Finding πk(P

(n+1)
t1...tn+1

) (cf. (6.2)) is now simple: the result is an n-dimensional normal dis-

tribution, where the mean vector is obtained by deleting the k’th entry in the mean vector

for P
(n+1)
t1...tn+1

, and the covariance matrix is obtained by deleting the k’th row and the k’th

column of the covariance matrix for P
(n+1)
t1...tn+1

. It is immediately seen that we thus ob-

tain P
(n)
t1...tk−1tk+1...tn+1

, so by the consistency theorem there is exactly one probability P̂ on

(R[0,∞),B[0,∞)) with finite-dimensional distributions given by the normal distribution above.

With this probability measure P̂ , the process consisting of all the coordinate projections

X̂ = (X̂t)t≥0 becomes a Brownian motion with drift ξ and variance σ2.
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The following lemma will be useful in Section 6.2:

Lemma 6.1.10. Assume that X = (Xt) is a Brownian Motion with drift ξ and variance σ2.

Let u ≥ 0. Then

(Xs)s≥0
D
= (Xu+s −Xu)s≥0

Proof. We will show that the two processes have the same finite–dimensional distributions.

So let 0 ≤ t1 < · · · < tn. Then we show

(Xt1 , . . . , Xtn)
D
= (Xt1+u −Xu, Xt2+u −Xu, . . . , Xtn+u −Xu) . (6.5)

In the proof of Theorem 6.1.9 we obtained that

(Xt1 , . . . , Xtn)

is n–dimensional normally distributed, since it is a linear transformation of

(Xt1 −X0, Xt2 −Xt1 , . . . , Xtn −Xtn−1)

where the coordinates are independent and normally distributed. In the exact same way we

can see that

(Xu+t1 −Xu, . . . , Xu+tn −Xu)

is n–dimensional normally distributed, since it is a linear transformation of

(Xu+t1 −Xu, Xu+t2 −Xu+t1 , . . . , Xu+tn −Xu+tn−1)

that have independent and normally distributed coordinates. So both of the vectors in

(6.5) are normally distributed. To see that the two vectors have the same mean vector and

covariance matrix, it suffices to show that for 0 ≤ s

EXs = E(Xu+s −Xu)

and for 0 ≤ s1 < s2

Cov(Xs1 , Xs2) = Cov(Xu+s1 −Xu, Xu+s2 −Xu) .

We obtain

E(Xu+s −Xu) = EXu+s − EXu = ξ(u+ s)− ξu = ξs = EXs

and

Cov(Xu+s1 −Xu, Xu+s2 −Xu)

=Cov(Xu+s1 −Xu, Xu+s1 −Xu +Xu+s2 −Xu+s1)

=Cov(Xu+s1 −Xu, Xu+s1 −Xu) + Cov(Xu+s1 −Xu, Xu+s2 −Xu+s1)

=V (Xu+s1 −Xu) = σ2s1 = Cov(Xs1 , Xs2)
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6.2 Continuity of the Brownian motion

In the previous section we saw how it is possible using Kolmogorov’s consistency theorem

to construct probabilities on the function space (R[0,∞),B[0,∞)). Thereby we also obtained a

construction of stochastic processes X = (Xt)t≥0 with given finite-dimensional distributions.

However, if one aims to construct processes (Xt), which are well-behaved when viewed as

functions of t, the function space (R[0,∞),B[0,∞)) is much too large, as we shall presently see.

Let X = (Xt)t≥0 be a real process, defined on (Ω,F , P ). The sample paths of the process

are those elements

t→ Xt(ω)

in R[0,∞) which are obtained by letting ω vary in Ω. One might then be interested in

determining whether (almost all) the sample paths are continuous, i.e., whether

P (X ∈ C[0,∞)) = 1 ,

where C[0,∞) ⊆ R[0,∞) is the set of continuous x : [0,∞) → R. The problem is, that C[0,∞)

is not in B[0,∞)!

We will show this by finding two B[0,∞)–measurable processes X and Y defined on the same

(Ω,F , P ) and with the same finite dimensional distributions, but such that all sample paths

for X are continuous, and all sample paths for Y are discontinuous in all t ≥ 0. The processes

X and Y are constructed in Example 6.2.1. The existence of such processes X and Y gives

that

(X ∈ C[0,∞)) = Ω (Y ∈ C[0,∞)) = ∅

and if C[0,∞) was measurable the identical distributions would lead to

P (X ∈ C[0,∞)) = P (Y ∈ C[0,∞)) ,

which is a contradiction!

Example 6.2.1. Let U be defined on (Ω,F , P ) and assume that U has the uniform distri-

bution on [0, 1].

Define

Xt(ω) = 0 for all ω ∈ Ω, t ≥ 0

and

Yt(ω) =

{
0, if U(ω)− t is irrational

1, if U(ω)− t is rational
.
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The finite dimensional distributions of X are degenerated

P (Xt1 = · · · = Xtn = 0) = 1

for all n ∈ N and 0 ≤ t1 < · · · < tn. For Y we have

P (Yt = 1) = P (U − t ∈ Q) = 0

so P (Yt = 0) = 1 and thereby also

P (Yt1 = · · · = Ytn = 0) = 1

This shows that X and Y have the same finite dimensional distributions. ◦

Thus constructing a continuous process will take more than distributional arguments. In

the following we discuss a concrete approach that leads to the construction of a continuous

Brownian motion.

Definition 6.2.2. If the processes X = (Xt)t≥0 and Y = (Yt)t≥0 are both defined on

(Ω,F , P ), then we say that Y is a version of X if

P (Yt = Xt) = 1

for all t ≥ 0.

We see that Definition 6.2.2 is symmetric: If Y is a version of X, then X is also a version of

Y .

Example 6.2.3. With X and Y as in Example 6.2.1 from above, we have

(Yt = Xt) = (Yt = 0)

and since we have seen that P (Yt = 0) = 1, then Y is a version of X. ◦

Theorem 6.2.4. If Y is a version of X, then Y has the same distribution as X.

Proof. The idea is to show that Y and X have the same finite–dimensional distributions:

With t1 < · · · < tn we have P (Ytk = Xtk) = 1 for k = 1, . . . , n. Then also

P ((Yt1 , . . . , Ytn) = (Xt1 , . . . , Xtn)) = P
( n⋂
k=1

(Ytk = Xtk)
)

= 1
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The aim is to show that there exists a continuous version of the Brownian motion. Define

for n ∈ N
C◦n = {x ∈ R[0,∞) : x is uniformly continuous on [0, n] ∩Q}

and

C◦∞ =

∞⋂
n=1

C◦n

Lemma 6.2.5. If x ∈ C◦∞ then there exists a uniquely determined continuous function

y ∈ R[0,∞) such that yq = xq for all q ∈ [0,∞) ∩Q.

Proof. Let x ∈ C◦∞ and t ≥ 0. Then choose n such that n > t. We have that x ∈ C◦n, so x is

uniformly continuous on [0, n] ∩Q. That means

∀ε > 0 ∃δ > 0 ∀q1, q2 ∈ [0, n] ∩Q : |q1 − q2| < δ ⇒ |xq1 − xq2 | < ε

Choose a sequence (qk) ⊆ [0, n]∩Q with qk → t. Then in particular (qk) is a Cauchy sequence.

The uniform continuity of x gives that xqk is a Cauchy sequence as well: Let ε > 0 and find

the corresponding δ > 0. We can find K ∈ N such that for all m,n ≥ K it holds

|qm − qn| < δ

But then we must have that

|xqm − xqn | < ε

if only m,n ≥ K. This shows, that (xqk) is Cauchy, and therefore the limit yt = limk→∞ xqk
exists in R. We furthermore have, that the limit yt does not depend on the choice of (qk):

Let (q̃k) ⊆ [0, n] ∩Q be another sequence with q̃k → t. Then

|q̃k − qk| → 0 as k →∞

and this yields (using the uniform continuity again) that

|xq̃k − xqk | → 0 as k →∞

so limxq̃k = limxqk .

For all t ∈ Q we see that yt = xt, since the continuity of x in t gives limk→∞ xqk = xt.

Finally we have, that y is continuous in all t ≥ 0: Let t ≥ 0 and ε > 0 be given, and find

δ > 0 according to the uniform continuity. Now choose t′ with |t′ − t| < δ/2. Assume that

qk → t and q′k → t′. We can find K ∈ N such that |q′k − qk| < δ for k ≥ K. Then

|xq′k − xqk | < ε
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for all k ≥ K, and thereby we obtain that

|yt′ − yt| ≤ ε .

This shows the desired continuity of y in t.

It is a critical assumption, that the continuity is uniform. Consider x given by

xt = 1[
√

2,∞)

Then x is continuous on [0, n] ∩Q, but an y does not exist with the required properties.

We obtain, that C◦∞ ∈ B[0,∞) since

C◦n =

∞⋂
M=1

∞⋃
N=1

⋂
q1,q2∈[0,n]∩Q,|q1−q2|≤ 1

N

{
x ∈ R[0,∞) : |xq2 − xq1 | <

1

M

}
,

which is a B[0,∞)–measurable set, since{
x ∈ R[0,∞) : |xq2 − xq1 | <

1

M

}
=
(
|X̂q2 − X̂q1 | <

1

M

)
,

where X̂q1 , X̂q2 : R[0,∞) → R are both B[0,∞) − B–measurable.

Definition 6.2.6. A real process X = (Xt)t≥0 is continuous in probability if for all t ≥ 0

and all sequences (tk)k∈N with tk ≥ 0 and tk → t it holds that Xtk
P−→ Xt

Theorem 6.2.7. Let X = (Xt)t≥0 be a real process which is continuous in probability. If

P (X ∈ C◦∞) = 1 ,

then there exists a version Y of X which is continuous.

Proof. Let F = (X ∈ C◦∞). Assume that ω ∈ F . According to Lemma 6.2.5 there exists a

uniquely determined continuous function t 7→ Yt(ω) such that

Yq(ω) = Xq(ω) for all q ∈ [0,∞) ∩Q . (6.6)

Furthermore we must have for each t ≥ 0 that a rational sequence (qk) can be chosen with

qk → t. Then using the continuity of t→ Yt(ω) and the property in (6.6) yields that for all

ω ∈ F
Yt(ω) = lim

k→∞
Yqk(ω) = lim

k→∞
Xqk(ω) .
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If we furthermore define Yt(ω) = 0 for ω ∈ F c, then we have

Yt = lim
k→∞

1FXqk .

Since all 1FXqk are random variables (measurable), then Yt is a random variable as well.

And since t ≥ 0 was chosen arbitrarily, then Y = (Yt)t≥0 is a continuous real process (for

ω ∈ F c we chose (Yt(ω)) to be constantly 0 – which is a continuous function) that satisfies.

P (Yq = Xq) = 1 for all q ∈ [0,∞) ∩Q ,

since P (F ) = 1 and Yq(ω) = Xq(ω) when ω ∈ F .

We still need to show, that Y is a version of X. So let t ≥ 0 and find a rational sequence

(qk) with qk → t. Since X is assumed to be continuous in probability we must have

Xqk
P−→ Xt

and since we have Yqk
a.s.
= Xqk it holds

Yqk
P−→ Xt .

From the (true) continuity we have the convergence (for all ω ∈ Ω)

Yqk → Yt

Then

P (Yt = Xt) = 1 .

as desired.

Theorem 6.2.8. Let X = (Xt)t≥0 be a Brownian motion with drift ξ and variance σ2 > 0.

Then X has a continuous version.

Proof. It is sufficient to consider the normalized case, where ξ = 0 and σ2 = 1. For a general

choice of ξ and σ2 we have that

X̃t =
Xt − ξt

σ

is a normalized Brownian motion. And obviously, (Xt)t≥0 is continuous if and only if (X̃t)t≥0

is continuous.

So let X = (Xt)t≥0 be a normalized Brownian motion. Firstly, we show that X is continuous

in probability. For all 0 ≤ s < t we have

Xt −Xs ∼ N (0, t− s)
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such that
1√
t− s

(Xt −Xs) ∼ N (0, 1)

Then for ε > 0 we have

P (|Xt −Xs| > ε) = P
( 1√

t− s
|Xt −Xs| >

ε√
t− s

)
=

∫ − ε√
t−s

−∞

1√
2π
e−u

2/2 du+

∫ ∞
ε√
t−s

1√
2π
e−u

2/2 du

= 2

∫ ∞
ε√
t−s

1√
2π
e−u

2/2 du

For general s, t ≥ 0 with s 6= t we clearly have

P (|Xt −Xs| > ε) = 2

∫ ∞
ε√
|t−s|

1√
2π
e−u

2/2 du

and this decreases to 0 as |t− s| → 0. Hence in particular, we have for tk → t that

P (|Xt −Xtk | > ε)→ 0 as k →∞

which demonstrates the continuity in probability.

The following, that is actually a stronger version of the continuity in probability, will be

useful. It holds for all ε > 0 that

lim
h↓0

1

h
P (|Xh| > ε) = 0 . (6.7)

This follows from Markov’s inequality, since

1

h
P (|Xh| > ε) =

1

h
P (X4

h > ε4) ≤ 1

hε4
EX4

h =
h

ε4
E(

1√
h
Xh)4 =

3h

ε4

which has limit 0, as h → 0. In the last equality we used that 1√
h
Xh is N (0, 1)–distributed

and that the N (0, 1)–distribution has fourth moment = 3.

It is left to show that

P (X ∈ C◦∞) = 1

and for this it suffices to show that

P (X ∈ C◦n) = 1
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for all n ∈ N, recalling that a countable intersection of sets with probability 1 has probability

1. We show this for n = 1 (higher values of n would not change the argument, only make

the notation more involved). Define

VN = sup

{
|Xq′ −Xq| : q, q′ ∈ Q ∩ [0, 1], |q′ − q| ≤ 1

2N

}
.

Then VN decreases as N →∞, so

(X ∈ C◦1 ) =

∞⋂
M=1

∞⋃
N=1

⋂
q1,q2∈[0,1]∩Q,|q2−q1|≤ 1

N

(
|Xq2 −Xq1 | ≤

1

M

)

=

∞⋂
M=1

∞⋃
N=1

(
VN ≤

1

M

)
= ( lim

N→∞
VN = 0)

Hence we need to show that P (limN→∞ VN = 0) = 1. Since we already know, that VN is

decreasing, it will be enough to show that VN
P−→ 0. So we need to show that for any ε > 0,

P (VN > ε)→ 0 as N →∞.

For this define for N ∈ N and k = 1, . . . , 2N

Yk,N = sup{|Xq −X k−1

2N
| | q ∈ Jk,N} ,

where

Jk,N =
[k − 1

2N
,
k

2N

]
∩Q .

If we can show that

(1) VN ≤ 3 max{Yk,N | 1 ≤ k ≤ 2N}

(2) P (Yk,N > y) = P (Y1,N > y) ≤ 2P (|X 1

2N
| > y)

then we obtain

P (VN > ε) ≤ P
(

max
k=1,...,2N

Yk,N >
ε

3

)
= P

 2N⋃
k=1

(
Yk,N >

ε

3

)
≤

2N∑
k=1

P
(
Yk,N >

ε

3

)
= 2NP

(
Y1,N >

ε

3

)
≤ 2N+1P

(
|X 1

2N
| > ε

3

)
which has limit 0 as N → ∞ because of (6.7). The first inequality is according to (1), the

second inequality follows from Boole’s inequality, and the last inequality is due to (2). Hence,

the proof is complete if we can show (1) and (2).
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For (1): Consider for some fixed N ∈ N the q, q′ that are used in the definition of VN . Hence

q < q′ ∈ Q ∩ [0, 1] where |q′ − q| ≤ 1
2N

. We have two possibilities:

Either q, q′ belong to the same Jk,N such that

|Xq′ −Xq| = |Xq′ −X k−1

2N
+X k−1

2N
−Xq|

≤ |Xq′ −X k−1

2N
|+ |Xq −X k−1

2N
|

≤ 2Yk,N

≤ 2 max{Yk,N | 1 ≤ k ≤ 2N} ,

or q ∈ Jk−1,N and q′ ∈ Jk,N . Then

|Xq′ −Xq| = |Xq′ −X k−1

2N
+X k−1

2N
−X k−2

2N
+X k−2

2N
−Xq|

≤ |Xq′ −X k−1

2N
|+ |X k−1

2N
−X k−2

2N
|+ |Xq −X k−2

2N
|

≤ Yk,N + 2Yk−1,N

≤ 3 max{Yk,N | 1 ≤ k ≤ 2N} .

In any case we have

|Xq′ −Xq| ≤ 3 max{Yk,N | 1 ≤ k ≤ 2N} ,

where the right hand side does not depend on q, q′. Property (1) follows from taking the

supremum.

For (2): Note that for all k = 2, . . . , 2N , the variable Yk,N is calculated from the process

(X k−1

2N
+s −X k−1

2N
)s≥0

in the exact same way as Y1,N is calculated from the process (Xs)s≥0.

Also note that because of the Lemma 6.1.10 the two processes

(X k−1

2N
+s −X k−1

2N
)s≥0 and (Xs)s≥0

have the same distributions. Then also Yk,N
D
= Y1,N for all k = 2, . . . , 2N , such that in

particular

P (Yk,N > y) = P (Y1,N > y) ≤ 2P (|X 1

2N
| > y)

for all y > 0. The inequality comes from Lemma 6.2.9 below, since J1,N is countable with

J1,N ⊆ [0, 1
2N

].
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Lemma 6.2.9. Let X = (Xt)t≥0 be a normalized Brownian Motion and let D ⊆ [0, t0] be an

at most countable set. Then it holds for x > 0 that

P (sup
t∈D

Xt > x) ≤ 2P (Xt0 > x)

P (sup
t∈D
|Xt| > x) ≤ 2P (|Xt0 | > x)

Proof. First assume that D is finite such that D = {t1, . . . , tn}, where 0 ≤ t1 < · · · < tn ≤ t0.

Define

τ = min{k ∈ {1, . . . , n} | Xtk > x}

and let τ = n if Xtk ≤ x for all k = 1, . . . , n. Then

P (sup
t∈D

Xt > x) =

n−1∑
k=1

P (τ = k) + P (τ = n,Xtn > x)

Let k ≤ n− 1. Then

(τ = k) =

k−1⋂
j=1

(Xtj ≤ x) ∩ (Xtk > x)

and note that (Xt1 , . . . , Xtk) ⊥⊥ (Xtn −Xtk), so in particular

(τ = k) ⊥⊥ (Xtn −Xtk) .

Furthermore (Xtn −Xtk) ∼ N (0, tn − tk) so P (Xtn −Xtk > 0) = 1
2 . Hence

P (τ = k) = 2P (τ = k)P (Xtn −Xtk > 0) = 2P (τ = k,Xtn −Xtk > 0)

= 2P (τ = k,Xtn > Xtk) ≤ 2P (τ = k,Xtn > x) ,

where it is used that Xtk > x on (τ = k). Then

P (sup
t∈D

Xt > x) =

n−1∑
k=1

P (τ = k) + P (τ = n,Xtn > x)

≤ 2

n−1∑
k=1

P (τ = k,Xtn > x) + 2P (τ = n,Xtn > x)

= 2P (Xtn > x) ≤ 2P (Xt0 > x) .

In the last inequality it is used that tn ≤ t0 such that Xt0 have a larger variance than Xtn

(both variables have mean 0).
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Thereby we have shown the first result in the case, where D is finite. To obtain the second

result for a finite D, consider the process −X = (−Xt)t≥0, which is again a normalised

Brownian motion. Hence for x > 0 we have

P ( inf
t∈D

Xt < −x) = P (sup
t∈D

(−Xt) > x) ≤ 2P (−Xt0 > x) = 2P (Xt0 < −x)

so we can obtain

P (sup
t∈D
|Xt| > x) = P

(
(sup
t∈D

Xt > x) ∪ ( inf
t∈D

Xt < −x)
)

≤ P (sup
t∈D

Xt > x) + P ( inf
t∈D

Xt < −x)

≤ 2P (Xt0 > x) + 2P (Xt0 < −x)

= 2P (|Xt0 | > x)

Then we have also shown the second result, when D is finite.

For a general D find a sequence (Dn) of finite subsets of D where Dn ↑ D. Then the two

inequalities holds for each Dn. Since furthermore

( sup
t∈Dn

Xt > x) ↑ (sup
t∈D

Xt > x)

( sup
t∈Dn

|Xt| > x) ↑ (sup
t∈D
|Xt| > x)

the continuity of the probability measure P yields that

P (sup
t∈D

Xt > x) = lim
n→∞

P ( sup
t∈Dn

Xt > x) ≤ 2P (Xt0 > x)

P (sup
t∈D
|Xt| > x) = lim

n→∞
P ( sup

t∈Dn
|Xt| > x) ≤ 2P (|Xt0 | > x)

which completes the proof of the lemma.

6.3 Variation and quadratic variation

In this and the subsequent section we study the sample paths of a continuous Brownian

motion. In this framework it will be useful to consider the space C[0,∞) consisting of all
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functions x ∈ R[0,∞) that are continuous. Like the projections on R[0,∞) we let X̃t denote

the coordinate projections on C[0,∞), that is X̃t(x) = xt for all x ∈ C[0,∞). Let C[0,∞) denote

the smallest σ–algebra, that makes all X̃t C[0,∞) − B–measurable

C[0,∞) = σ(X̃t | t ≥ 0) .

Similarly to what we have seen previously, C[0,∞) is generated by all the finite–dimensional

cylinder sets

C[0,∞) = σ
((

(X̃t1 , . . . , X̃tn) ∈ Bn
)
| n ∈ N, 0 < t1 < · · · < tn, Bn ∈ Bn

)
.

We demonstrated in Section 6.2 that there exists a process X defined on (Ω,F , P ) with

values in (R[0,∞),B[0,∞)) such that X is a Brownian motion X = (Xt) and the sample paths

t 7→ Xt(ω) are continuous for all ω ∈ Ω. Equivalently, we have X(ω) ∈ C[0,∞) for all ω ∈ Ω,

so we can regard the process X as having values in C[0,∞). That X is measurable with values

in (R[0,∞),B[0,∞)) means that X̂t(X) is F −B measurable for all t ≥ 0. But X̃t(X) = X̂t(X)

since X is continuous, so X̃t(X) is also F−B measurable for all t ≥ 0. Then X is measurable,

when regarded as a variable with values in (C[0,∞), C[0,∞)). The distribution X(P ) of X will

be a distribution on (C[0,∞), C[0,∞)), and this is uniquely determined by the behaviour on the

finite–dimensional cylinder sets on the form
(
(X̃t1 , . . . , X̃tn) ∈ Bn

)
.

The space (C[0,∞), C[0,∞)) is significantly easier to deal with than (R∞,B[0,∞)), and a number

of interesting functionals become measurable on C[0,∞), while they are not measurable on

R[0,∞). For instance, for t > 0 we have that

M̃ = sup
s∈[0,t]

X̃s

is a measurable function (a random variable) on (C[0,∞), C[0,∞)), which can be seen by

(M̃ ≤ y) =
⋂

s∈[0,t]

(X̃s ≤ y) =
⋂

q∈[0,t]∩Q

(X̃q ≤ y)

where the last intersection is countable – hence measurable. For the last equality, the inclusion

’⊆’ is trivial. For the converse inclusion, assume that

x ∈
⋂

q∈[0,t]∩Q

(X̃q ≤ y) .

Then xq ≤ y for all q ∈ [0, t] ∩ Q. Let s ∈ [0, t] and find a rational sequence qn → s. Then

xs = limn→∞ xqn ≤ y and since s was arbitrarily chosen, it holds that

x ∈
⋂

s∈[0,t]

(X̃s ≤ y) .

We will define various concepts that can be used to describe the behaviour of the sample

paths of a process.
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Definition 6.3.1. Let x ∈ C[0,∞). We say that x is nowhere monotone if it for all 0 ≤ s < t

holds that x is neither increasing nor decreasing on [s, t]. Let S ⊆ C[0,∞) denote the set of

nowhere monotone functions.

Related to the set S we define Mst to be the set of functions, which are either increasing or

decreasing on the interval [s, t]:

Mst =

∞⋂
N=1

{x ∈ C[0,∞) | xtkN ≥ xtk−1,N
, 1 ≤ k ≤ 2N}

∪
∞⋂
N=1

{x ∈ C[0,∞) | xtkN ≤ xtk−1,N
, 1 ≤ k ≤ 2N} ,

where tkN = s+ k
2N

(t− s) for 0 ≤ k ≤ 2N . We note that Mst ∈ C[0,∞), since e.g.

{x ∈ C[0,∞) | xtkN ≤ xtk−1,N
, 1 ≤ k ≤ 2N} =

(
X̃tkN ≤ X̃tk−1,N

, 1 ≤ k ≤ 2N
)
.

Since x ∈ Sc if and only if there exists intervals with rational endpoints where x is monotone,

then we can write

Sc =
⋃

0≤q1<q2
q1,q2∈Q

Mq1q2 ,

which shows that S ∈ C[0,∞). We shall see later that P (X ∈ S) = 1 for a continuous Brownian

motion X.

Definition 6.3.2. Let x ∈ C[0,∞) and 0 ≤ s < t. The variation of x on [s, t] is defined as

Vst(x) = sup

n∑
k=1

|xtk − xtk−1
| ,

where sup is taken over all finite partitions s ≤ t0 < · · · < tn ≤ t of [s, t].

The variation has some simple properties:

Lemma 6.3.3. Let x, y ∈ C[0,∞), c ∈ R, 0 ≤ s < t and [s, t] ⊆ [s′, t′]. Then it holds that

(1) Vst(x) ≤ Vs′t′(x) .

(2) Vst(cx) = |c|Vst(x) .

(3) Vst(x+ y) ≤ Vst(x) + Vst(y) .
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Proof. The first statement is because the sup in Vs′t′(x) is over more partitions than the sup

in Vst(x). For the second result we have

Vst(cx) = sup

n∑
k=1

|cxtk − cxtk−1
| = |c| sup

n∑
k=1

|xtk − xtk−1
| = |c|Vst(x) ,

and the third property follows from

Vst(x+ y) = sup

n∑
k=1

|xtk + ytk − xtk−1
− ytk−1

|

≤ sup

n∑
k=1

|xtk − xtk−1
|+ |ytk − ytk−1

|

≤ sup

n∑
k=1

|xtk − xtk−1
|+ sup

n∑
k=1

|ytk − ytk−1
|

= Vst(x) + Vst(y)

Furthermore we have situations, where the variation is particularly simple

Lemma 6.3.4. If x ∈ C[0,∞) is monotone on [s, t] then

Vst = |xt − xs|

Proof. If x is monotone on [s, t] then

n∑
k=1

|xtk − xtk−1
| = |xtn − xt0 |

for any partition s ≤ t0 < · · · < tn ≤ t of [s, t].

Let x ∈ C[0,∞) and assume that s ≤ tk−1 < tk ≤ t are given. If (qn), (rn) ⊆ [s, t] are rational

sequences with qn → tk−1 and rn → tk, it holds due to the continuity of x that

lim
n→∞

|xrn − xqn | = |xtk − xtk−1
| .

This shows that all partitions can be approximated arbitrarily well by rational partitions,

so the sup in the definition of Vst needs only to be over all rational partitions. Hence Vst is

C[0,∞) − B measurable.
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Definition 6.3.5. (1) Let x ∈ C[0,∞) and 0 ≤ s < t. Then x is of bounded variation on

[s, t] if Vst(x) <∞. The set of functions of bounded variation on [s, t] is denoted

Fst = {x ∈ C[0,∞) | Vst(x) <∞}

(2) Let x ∈ C[0,∞). Then x is everywhere of unbounded variation, if x ∈ F cst for all

0 ≤ s < t. Let G = ∩0≤s<tF
c
st denote the set of continuous functions, which are everywhere

of unbounded variation.

Since Vst is C[0,∞)−B measurable we observe that Fst ∈ C[0,∞). Furthermore we can rewrite

G as

G =
⋂

0≤q1<q2
q1,q2∈Q

F cq1,q2 ,

which shows that G ∈ C[0,∞). The equality above is a direct consequence of (1) in Lemma

6.3.3.

The following lemmas shows which type of continuous functions have bounded variation.

Lemma 6.3.6. Let x ∈ C[0,∞). Then x ∈ Fst if and only if x on [s, t] has the form

x = y − ỹ ,

where both y and ỹ are increasing.

Proof. If x has the form x = y − ỹ on [s, t], where both y and ỹ are increasing, then using

Lemma 6.3.3 yields

Vst(x) = Vst(y − ỹ) ≤ Vst(y) + Vst(−ỹ) = Vst(y) + Vst(ỹ) = |yt − ys|+ |ỹt − ỹs|

which is finite. Conversely, assume that Vst(x) <∞ and define for u ∈ [s, t]

yu =
1

2
(xu + Vsu(x)) and ỹu =

1

2
(−xu + Vsu(x)) .

Then x = y− ỹ and furthermore we have, that e.g. u→ yu is increasing: If xu+h ≥ xu, then

yu+h ≥ yu since always Vs,u+h(x) ≥ Vs,u(x). If xu+h < xu, then

Vs,u(x) + |xu+h − xu| = ˜sup

n′∑
j=1

|xsj − xsj−1
|+ |xu+h − xu|

≤ sup

n∑
k=1

|xtk − xtk−1
| = Vs,u+h(x) ,
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where ˜sup is over all partitions s ≤ s0 < · · · < sn′ ≤ u and sup is over all partitions

s ≤ t0 < · · · < tn ≤ u+ h. Hence we have seen that

yu =
1

2

(
xu+h + |xu+h − xu|+ Vsu(x)

)
≤ 1

2

(
xu+h + Vs,u+h(x)

)
= yu+h .

Corollary 6.3.7. Let x ∈ C[0,∞). If x ∈ G then x ∈ S.

Proof. Assume that x ∈ Sc. Then there exists s < t such that x is monotone on [s, t]. But

then x has the form x − 0 on [s, t], where both x and 0 are increasing. Thus x ∈ Fst , so

x ∈ Gc.

Lemma 6.3.8. If x ∈ C[0,∞) is continuously differentiable on [s, t], then x ∈ Fst.

Proof. The derivative x′ of x is continuous on [s, t], so x′ must be bounded on [s, t]. Let

K = supu∈[s,t] |x′(u)| and consider an arbitrary partition s ≤ t0 < · · · < tn ≤ t. Then

n∑
k=1

|xtk − xtk−1
| =

n∑
k=1

(tk − tk−1)|x′uk | ≤ (t− s)K <∞ ,

where each uk ∈ [s, t] is chosen according to the mean value theorem.

Definition 6.3.9. Let x ∈ C[0,∞). The quadratic variation of x ∈ C[0,∞) on [s, t] is defined

as

Qst(x) = lim sup
N→∞

∑
k∈N

s≤ k−1

2N
< k

2N
≤t

(x k

2N
− x k−1

2N
)2 .

We observe that Qst is C[0,∞) − B measurable and that

Qst(x) ≤ Qs′t′(x) , (6.8)

if [s, t] ⊆ [s′, t′].

Lemma 6.3.10. For x ∈ C[0,∞) we have

Vst(x) <∞ ⇒ Qst(x) = 0 ,

or equivalently

Qst(x) > 0 ⇒ Vst(x) =∞ .
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Proof. For N ∈ N define

KN = max{|x k

2N
− x k−1

2N
| | k ∈ N, s ≤ k − 1

2N
<

k

2N
≤ t} .

Since x is uniformly continuous on the compact interval [s, t], we will have KN → 0 as

N →∞. Furthermore

Qst(x) = lim sup
N→∞

∑
k∈N

s≤ k−1

2N
< k

2N
≤t

(x k

2N
− x k−1

2N
)2

≤ lim sup
N→∞

KN

∑
k∈N

s≤ k−1

2N
< k

2N
≤t

|x k

2N
− x k−1

2N
|

≤ lim sup
N→∞

Vst(x)KN ,

from which the lemma follows.

The main result of the section is the following theorem which describes exactly how ”wild”

the sample paths of the Brownian motion behaves.

Theorem 6.3.11. If X = (Xt)t≥0 is a continuous Brownian motion with drift ξ and variance

σ2, then

P
⋂

0≤s<t

(Qst(X) = (t− s)σ2) = 1 .

Before turning to the proof, we observe:

Corollary 6.3.12. If X = (Xt)t≥0 is a continuous Brownian motion with drift ξ and vari-

ance σ2, then X is everywhere of unbounded variation,

P (X ∈ G) = 1 .

Proof. Follows by combining Theorem 6.3.11 and Lemma 6.3.10.

Corollary 6.3.13. If X = (Xt)t≥0 is a continuous Brownian motion with drift ξ and vari-

ance σ2, then X is nowhere monotone,

P (X ∈ S) = 1 .

Proof. Is a result of Corollary 6.3.12 and Corollary 6.3.7.
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Proof of Theorem 6.3.11. Firstly we can note that⋂
0≤s<t

{x ∈ C[0,∞) : Qst(x) = (t−s)σ2} =
⋂

0≤q1<q2, q1,q2∈Q
{x ∈ C[0,∞) : Qq1,q2(x) = (q2−q1)σ2}

The inclusion ⊆ is trivial. The converse inclusion ⊇ is argued as follows: Assume that x

is an element of the right hand side and let 0 ≤ s < t be given. Then we are supposed to

show that Qst(x) = (t−s)σ2. Let (q1
n), (q2

n), (r1
n), (r2

n) be rational sequences such that q1
n ↑ s,

q2
n ↓ t, r1

n ↓ s, and r2
n ↑ t. Then for all n ∈ N we must have [r1

n, r
2
n] ⊆ [s, t] ⊆ [q1

n, q
2
n] such

that because of (6.8) it holds that

Qr1n,r2n(x) ≤ Qst(x) ≤ Qq1n,q2n(x)

for all n ∈ N. By assumption

Qr1n,r2n(x) = (r2
n − r1

n)σ2 and Qq1n,q2n(x) = (q2
n − q1

n)σ2

for all n ∈ N, leading to

lim
n→∞

Qr1n,r2n(x) = lim
n→∞

(r2
n − r1

n)σ2 = (t− s)σ2

lim
n→∞

Qq1n,q2n(x) = lim
n→∞

(q2
n − q1

n)σ2 = (t− s)σ2

which combined with the inequality above gives the desired result that Qst(x) = (t− s)σ2.

Since the intersection above is countable, we only need to conclude that each of the sets in

the intersection has probability 1 in order to conclude the result. Hence it will suffice to show

that

P (Qst(X) = (t− s)σ2)

for given 0 ≤ s < t (we only need to show it for s, t ∈ Q, but that makes no difference in the

rest of the proof). Furthermore, we show the result for s = 0. The general result can be seen

in the exact same way, using even more notation.

Define for each n ∈ N

Uk,n =

√
2n

σ2

(
X k

2n
−X k−1

2n
− 1

2n
ξ
)
.

For the increment in Uk,n we have

X k
2n
−X k−1

2n
∼ N

( 1

2n
ξ,

1

2n
σ2
)
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so each Uk,n ∼ N (0, 1). Furthermore for fixed n and varying k, the increments are indepen-

dent, such that also U1,n, U2,n, . . . are independent. We can write

Q0t(X) = lim sup
n→∞

[2nt]∑
k=1

(X k
2n
−X k−1

2n
)2

= lim sup
n→∞

[2nt]∑
k=1

(√σ2

2n
Uk,n +

1

2n
ξ
)2

= lim sup
n→∞

[2nt]∑
k=1

(σ2

2n
U2
k,n + 2

√
σ2

2n
1

2n
Uk,nξ +

1

4n
ξ2
)

= lim sup
n→∞

[2nt]∑
k=1

σ2

2n
(
U2
k,n +

2√
σ22n

ξUk,n
)

+
[2nt]

4n
ξ2

 .

Which gives

Q0t(X)− tσ2

= lim sup
n→∞

[2nt]∑
k=1

σ2

2n
(
U2
k,n +

2√
σ22n

ξUk,n
)
− tσ2 +

[2nt]

4n
ξ2


= lim sup

n→∞

σ2

[2nt]∑
k=1

1

2n
(
U2
k,n +

2√
σ22n

ξUk,n − 1
)

+ σ2
( [2nt]

2n
− t
)

+
[2nt]

4n
ξ2


We have that

t− 1

2n
=

2nt− 1

2n
<

[2nt]

2n
≤ 2nt

2n
= t

which shows that
[2nt]

2n
→ t and

[2nt]

4n
=

1

2n
[2nt]

2n
→ 0

as n→∞ So for deterministic part Q0t(X)− tσ2 it holds

σ2(
[2nt]

2n
− t) +

[2nt]

4n
ξ2 → 0

as n→∞. Then the proof will be complete, if we can show that Sn
a.s.−→ 0 where

Sn =

[2nt]∑
k=1

1

2n
(
U2
k,n +

2√
σ22n

ξUk,n − 1
)
.

Note that

ESn =

[2nt]∑
k=1

1

2n
(
EU2

k,n +
2√
σ22n

ξEUk,n − 1
)

= 0
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since EU2
k,n = 1. According to Lemma 1.2.12 the convergence of Sn is obtained, if we can

show
∞∑
n=1

P (|Sn| > ε) <∞ (6.9)

for all ε > 0. Each term in this sum satisfies (using Chebychev’s Inequality)

P (|Sn| > ε) = P (|Sn − ESn| > ε) ≤ 1

ε2
V (Sn)

such that the sum in (6.9) converges, if we can show

∞∑
n=1

V (Sn) <∞ (6.10)

Using that U1,n, U2,n are independent and identically distributed gives

V (Sn) =

[2nt]∑
k=1

1

4n
V
(
U2
k,n +

2√
σ22n

ξUk,n − 1
)

=[2nt]
1

4n
V
(
U2

1,n +
2√
σ22n

ξU1,n − 1
)

=
[2nt]

4n
E
(
U2

1,n +
2√
σ22n

ξU1,n − 1
)2

=
[2nt]

4n

(
EU4

1,n +
2√
σ22n

ξEU3
1,n − EU2

1,n +
2√
σ22n

ξEU3
1,n +

4

σ22n
ξ2EU2

1,n

+
2√
σ22n

ξEU1,n − EU2
1,n −

2√
σ22n

ξEU1,n + 1

)

and since EU1,n = 0, EU2
1,n = 1, EU3

1,n = 0, and EU4
1,n = 3 we have

V (Sn) =
[2nt]

4n
(
3− 1 +

4ξ2

σ22n
− 1 + 1

)
=

[2nt]

4n
(
2 +

4ξ2

σ22n
)

≤ 2nt

4n
(
2 +

4ξ2

σ22

)
=

1

2n
t
(
2 +

4ξ2

σ22

)
from which it is seen that the sum in (6.10) is finite.

6.4 The law of the iterated logarithm

In this section we shall show a classical result concerning Brownian motion which in more

detail describes the behaviour of the sample paths immediately after the start of the process.
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If X = (Xt)t≥0 is a continuous Brownian motion we in particular have that lim
t→0

Xt = X0 = 0

a.s. For a more precise description of the behaviour near 0, we seek a function h, increasing

and continuous on an interval of the form [0, t0) with h(0) = 0, such that

lim sup
t→0

1

h(t)
Xt, lim inf

t→0

1

h(t)
Xt (6.11)

are both something interesting, i.e., finite and different from 0. A good guess for a sensible

h can be obtained by considering a Brownian motion without drift (ξ = 0), and using that

then
1√
t
Xt

has the same distribution for all t > 0 which could be taken as an indication that 1√
t
Xt

behaves sensibly for t → 0. But alas, h(t) =
√
t is too small, although not much of an

adjustment is needed before (6.11) yields something interesting.

In the sequel we denote by φ the function

φ(t) =

√
2t log log

1

t
, (6.12)

which is defined and finite for 0 < t < 1
e . Since

lim
t→0

t log log
1

t
= lim
t→∞

log log t

t
= 0

we have limt→0 φ(t) = 0 so it makes sense to define φ(0) = 0. Then φ is defined, non-negative

and continuous on [0, 1
e ). We shall also need the useful limit

lim
x→∞

∫∞
x
e−u

2/2du
1
xe
−x2/2

= 1 (6.13)

which follows from the following inequalities, that all hold for x > 0: since u
x ≥ 1 for u ≥ x

we have ∫ ∞
x

e−u
2/2 du ≤

∫ ∞
x

u

x
e−u

2/2 du =
1

x
[−e−u

2/2]∞x =
1

x
e−x

2/2

and since u
x+1 ≤ 1 for x ≤ u ≤ x+ 1 we have∫ ∞

x

e−u
2/2du ≥

∫ x+1

x

u

x+ 1
e−u

2/2du

=
1

x+ 1
(e−x

2/2 − e−(x+1)2/2)

=
1

x
e−x

2/2 x

x+ 1
(1− e−x−1/2),
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and then (6.13) follows once we note that

lim
x→∞

x

x+ 1
(1− e−x−1/2) = 1.

Theorem 6.4.1 (The law of the iterated logarithm). For a continuous Brownian motion

X = (Xt)t≥0 with drift ξ and variance σ2 > 0, it holds that

P (lim sup
t→0

Xt√
σ2φ(t)

= 1) = P (lim inf
t→0

Xt√
σ2φ(t)

= −1) = 1 ,

where φ is given by (6.12).

Proof. We show the theorem for X a continuous, normalised Brownian motion. Since

lim
t→0

ξt

φ(t)
= 0,

it then holds that with X normalised,

lim sup
t→0

σXt + ξt√
σ2φ(t)

= lim sup
t→0

Xt

φ(t)
= 1 a.s.

and similarly for lim inf. Since (σXt+ ξt)t≥0 has drift ξ and variance σ2, the theorem follows

for an arbitrary Brownian motion.

In the following it is therefore assumed that X is a continuous, normalised Brownian motion.

We show the theorem by showing the two following claims:

lim sup
t→0

Xt

φ(t)
≤ 1 + ε a.s. for all ε > 0 , (6.14)

lim sup
t→0

Xt

φ(t)
≥ 1− ε a.s. for all ε > 0 . (6.15)

From (6.14) and (6.15) it immediately follows that

P
(

lim sup
t→0

Xt

φ(t)
= 1
)

= 1

and, applying this result to the normalised Brownian motion −X,

P
(

lim inf
t→0

Xt

φ(t)
= −1

)
= 1.

To show (6.14), let 0 < u < 1, put tn = un and

Cn,ε,u =
⋃

t∈[tn+1,tn]

(Xt > (1 + ε)φ(t)).
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Since X is continuous, the union can be replaced by a countable union so Cn,ε,u is measurable.

For a given ε > 0 and 0 < u < 1 it is seen that

(Cn,ε,u i.o.) =
(
∀n0 ≥ 1 ∃n ≥ n0 ∃t ∈ [tn+1, tn] : Xt > (1 + ε)φ(t)

)
=
(
∀n ≥ 1 ∃t ≤ tn : Xt > (1 + ε)φ(t)

)
=

(
lim sup
t→0

Xt

φ(t)
> 1 + ε

)
so it is thus clear that (6.14) follows if there for all ε > 0 exists a u, 0 < u < 1, such that

P (Cn,ε,u i.o.) = 0

and to deduce this, it is by the Borel-Cantelli Lemma (Lemma 1.2.11) sufficient that∑
n

P (Cn,ε,u) <∞. (6.16)

(Note that Cn,ε,u is only defined for n so large that tn = un ∈ [0, 1
e ), the interval where φ is

defined. In all computations we of course only consider such n)

Since the function φ is continous on [0, 1
e ) with φ(0) = 0 and φ(t) > 0 for t > 0, there exists

0 < δ0 <
1
e such that φ is increasing on the interval [0, δ0]. Therefore it holds for n large (so

large that tn ≤ δ0) that

P (Cn,ε,u) ≤ P
( ⋃
t:tn+1≤t≤tn

(Xt > (1 + ε)φ(tn+1))
)

= P
(

sup
t:tn+1≤t≤tn

Xt > (1 + ε)φ(tn+1)
)

≤ P
(

sup
t:t≤tn

Xt > (1 + ε)φ(tn+1)
)
≤ 2P (Xtn > (1 + ε)φ(tn+1)) ,

where we in the last inequality have used Lemma 6.2.9 and the continuity of X (which implies

that sup
t≤tn

Xt = sup
q∈Q∩[0,tn]

Xq). Since 1√
tn
Xtn is N(0, 1)-distributed it follows that

P (Cn,ε,u) ≤
√

2

π

∫ ∞
xn

e−s
2/2 ds,

where

xn = (1 + ε)
1√
tn
φ(tn+1) = (1 + ε)

√
2u log((n+ 1) log

1

u
).

We see that xn →∞ for n→∞ and hence it holds by (6.13) that∫∞
xn
e−s

2/2ds
1
xn
e−x

2
n/2

→ 1 .

In particular we have ∫∞
xn
e−s

2/2ds

e−x
2
n/2

→ 0
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For n large, we thus have

P (Cn,ε,u) ≤
√

2

π
e−x

2
n/2 = K (n+ 1)−(1+ε)2u,

where K =
√

2
π (log 1

u )−(1+ε)2u. If we for a given ε > 0 choose u < 1 sufficiently close to 1,

we obtain that (1 + ε)2u > 1, making

∞∑
n=1

K(n+ 1)−(1+ε)2u <∞

Hence (6.16) and thereby also (6.14) follow.

To show (6.15), let tn = vn, where 0 < v < 1, put Zn = Xtn −Xtn+1
and define

Dn,ε,v =
(
Zn > (1− ε

2
)φ(tn)

)
.

Note that the events Dn,ε,v for fixed ε and v and varying n are mutually independent.

We shall show that, given ε > 0, there exists a v, 0 < v < 1, such that

P (Dn,ε,v i.o.) = 1 (6.17)

and we claim that this implies (6.15): if we apply (6.14) to −X, we get

P
(

lim inf
t→0

Xt

φ(t)
≥ −1

)
= 1,

so with (6.17) satisfied, we have for almost all ω ∈ Ω that

lim inf
t→0

Xt(ω)

φ(t)
≥ −1

and that there exists a subsequence (n′), n′ →∞ of natural numbers (depending on ω) such

that for all n′

ω ∈ Dn′,ε,v.

But then, for all n′,

Xtn′ (ω)

φ(tn′)
=
Zn′(ω)

φ(tn′)
+
Xtn′+1

(ω)

φ(tn′)
> 1− ε

2
+
Xtn′+1

(ω)

φ(tn′+1)

φ(tn′+1)

φ(tn′)

and since

φ(tn′+1)

φ(tn′)
=

√
2vn+1 log

(
(n+ 1) log 1

v

)√
2vn log

(
n log 1

v

) =
√
v

√
log
(
(n+ 1) log 1

v

)
log
(
n log 1

v

) →
√
v
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and furthermore

lim inf
n′→∞

Xtn′+1
(ω)

φ(tn′+1)
≥ lim inf

t→0

Xt(ω)

φ(t)
,

we see that

lim sup
t→0

Xt(ω)

φ(t)
≥ lim sup

n′→∞

Xtn′ (ω)

φ(tn′)
≥ 1− ε

2
+ lim inf

n′→∞

Xtn′+1
(ω)

φ(tn′+1)

√
v

≥ 1− ε

2
−
√
v ≥ 1− ε,

if v for given ε > 0 is chosen so small that
√
v < ε

2 . Hence we have shown that (6.17) implies

(6.15).

We still need to show (6.17). Since the Dn,ε,v’s for varying n are independent, (6.17) follows

from second version of the Borel-Cantelli lemma (Lemma 1.3.12) by showing that∑
n

P (Dn,ε,v) =∞. (6.18)

We conclude the proof by showing that this may be achieved by choosing v > 0 sufficiently

small for any given ε > 0 (this was already needed to conclude that (6.17) implies (6.15)).

But since Zn is N (0, tn − tn+1)–distributed, we obtain

P (Dn,ε,v) =
1√
2π

∫ ∞
yn

e−s
2/2ds,

where

yn =
(

1− ε

2

) φ(tn)√
tn − tn+1

= (1− ε

2
)

√
2

1− v
log
(
n log

1

v

)
.

Since yn →∞, (6.13) implies that ∫∞
yn
e−s

2/2ds
1
yn
e−y

2
n/2

→ 1,

and since

yn√
log n

= const. ·

√
log
(
n log 1

v

)
√

log n
= const. ·

√
log n+ log log 1

v

log n
→ const. > 0 ,

the proof is now finished by realising that for given ε > 0 we have∑ 1√
log n

e−y
2
n/2 =∞ (6.19)
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if only v is sufficiently close to 0. But

e−y
2
n/2 = exp

(
−
(
1− ε

2

)
1− v

log
(

log
1

v

))
= K n−α,

where α = (1−ε/2)2

1−v and K = (log 1
v )−α, so α < 1 if v is sufficiently small, and it is then a

simple matter to obtain (6.19): if, e.g., β > 0 is so small that α+ β < 1 then the n’th term

of (6.19) becomes
K√
log n

1

nα
= K

nβ√
log n

1

nα+β
>

K

nα+β

for n sufficiently large, and since
∑
n−(α+β) =∞ the desired conclusion follows.

As an immediate consequence of Theorem 6.4.1 we obtain the following result concerning the

number of points where the Brownian motion is zero.

Corollary 6.4.2. If X is a continuous Brownian motion, it holds for almost all ω that for

all ε > 0, Xt(ω) = 0 for infinitely many values of t ∈ [0, ε].

Note that it trivially holds that

P
⋂

q∈Q∩(0,∞)

(Xq 6= 0) = 1,

so for almost all ω there exists, for each rational q > 0, an open interval around q where

t → Xt(ω) does not take the value 0. In some sense therefore, Xt(ω) is only rarely 0 but it

still happens an infinite number of times close to 0.

Proof. Theorem 6.4.1 implies that for almost every ω there exist sequences 0 < sn ↓ 0 and

0 < tn ↓ 0 such that

Xsn(ω) >
1

2
φ(sn)

√
σ2 > 0, Xtn(ω) < −1

2
φ(tn)

√
σ2 < 0

for all n. Since X is continuous, the corollary follows.

Our final result is an analogue to Theorem 6.4.1, with t → ∞ instead of t → 0. However,

this result only holds for Brownian motions with drift ξ = 0.

Theorem 6.4.3. If X is a continuous standard Brownian motion, then

P
(

lim sup
t→∞

Xt√
2t log log t

= 1
)

= 1,
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P
(

lim inf
t→∞

Xt√
2t log log t

= −1
)

= 1 .

Proof. Define a new process Y by

Yt =

tX 1
t

(t > 0)

0 (t = 0).

Then t 7→ Yt is continuous on the open interval (0,∞) and for arbitrary n and 0 < t1 <

· · · < tn it is clear that (Yt1 , . . . , Ytn) follows an n-dimensional normal distribution. Since

Y0 = X0 = 0 and we for 0 < s < t have EYt = 0 while (recall the finite–dimensional

distributions of the Brownian motion)

Cov (Ys, Yt) = stCov (X 1
s
, X 1

t
) = s,

it follows that Y and X have the same finite-dimensional distributions. In particular we

therefore have

P
(

lim
q→0,q∈Q

Yq = 0
)

= P
(

lim
q→0,q∈Q

Xq = 0
)

= 1 ,

and with Y continuous on (0,∞) we see that Y becomes continuous on [0,∞). But then the

continuous process Y has the same distribution as X, and thus, Y is a continuous, normalized

Brownian motion. Theorem 6.4.1 applied to Y then shows us that for instance

lim sup
s→0

sX 1
s√

2s log log 1
s

= 1 a.s.

If the s here is replaced by 1
t we obtain

lim sup
t→∞

Xt√
2t log log t

= 1 a.s.

as we wanted.

From Theorem 6.4.3 it easily follows, by an argument similar to the one we used in the proof

of Corollary 6.4.2, that for t → ∞ a standard Brownian motion will cross any given level

x ∈ R infinitely many times.

Corollary 6.4.4. If X is a continuous, normalized Brownian motion it holds for almost

every ω that for all T > 0 and all x ∈ R, Xt(ω) = x for infinitely many values of t ∈ [T,∞).
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6.5 Exercises

Exercise 6.1. Let X = (Xt)t≥0 be a Brownian motion with drift ξ ∈ R and variance

σ2 > 0. Define for each t ≥ 0

X̃t =
Xt − ξt

σ

Show that X̃ = (X̃t)t≥0 is a normalised Brownian motion. ◦

Exercise 6.2. Assume that (Ω,F , P ) is a probability space, and assume that D1,D2 ⊆ F
both are ∩–stable collections of sets. Assume that D1 and D2 are independent, that is

P (D1 ∩D2) = P (D1)P (D2) for all D1 ∈ D1, D2 ∈ D2

Show that σ(D1) and σ(D2) are independent:

P (D1 ∩D2) = P (D1)P (D2) for all D1 ∈ σ(D1), D2 ∈ σ(D2) (6.20)

◦

Exercise 6.3. Let X = (Xt)t≥0 be a Brownian Motion with drift ξ and variance σ2 > 0.

Define for each t > 0 the σ–algebra

Ft = F(Xs : 0 ≤ s ≤ t)

Show that Ft is independent of σ(Xu −Xt), where u > t.

You can use without argument that (similarly to the arguments in the beginning of Sec-

tion 6.1) (Xs)0≤s≤t has values in (R[0,t],B[0,t]) where the σ–algebra B[0,t] is generated by

G = {
(
(X̂t1 , . . . , X̂tn) ∈ Bn

)
: n ∈ N, 0 ≤ t1 < · · · < tn ≤ t, Bn ∈ Bn}

Then Ft must be generated by the pre images of these sets

D = {((Xs)0≤s≤t)
−1(G) : G ∈ G}

= {
(
(Xt1 , . . . , Xtn) ∈ Bn

)
: n ∈ N, 0 ≤ t1 < · · · < tn ≤ t, Bn ∈ Bn}

◦

Exercise 6.4. Assume that X = (Xt)t≥0 is a Brownian Motion with drift ξ ∈ R and variance

σ2 > 0. Define Ft as in Exercise 6.3. Show that X has the following Markov property for

t ≥ s
E(Xt|Fs) = E(Xt|Xs) a.s.
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◦

Exercise 6.5. Assume that X = (Xt)t≥0 is a normalised Brownian motion and define Ft as

in Exercise 6.3 for each t ≥ 0. Show that

(1) Xt is Ft measurable for all t ≥ 0.

(2) E|Xt| <∞ for all t ≥ 0

(3) E(Xt|Fs) = Xs a.s. for all 0 ≤ s < t.

We say that (Xt,Ft)t≥0 is a martingale in continuous time. ◦

Exercise 6.6. Let X = (Xt)t≥0 be a normalised Brownian motion. Let T > 0 be fixed and

define the process BT = (BTt )0≤t≤T by

BTt = Xt −
t

T
XT

The process BT is called a Brownian bridge on [0, T ].

1) Show that for all 0 < t1 < · · · < tn < T then

(BTt1 , . . . , B
T
tn)

is n–dimensional normally distributed. And find for 0 < s < t < T

EBTs and Cov(BTs , B
T
t )

2) Show that for all T > 0 then

(BTTt)0≤t≤1
D
= (
√
TB1

t )0≤t≤1

◦

Exercise 6.7. A stochastic process X = (Xt)t≥0 is self–similar if there exists H > 0 such

that

(Xγt)t≥0
D
= (γHXt)t≥0 for all γ > 0 .

intuitively, this means that if we ”zoom in” on the process, then it looks like a scaled version

of the original process.
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(1) Assume that X = (Xt)t≥0 is a Brownian motion with drift 0 and variance σ2. Show

that X is self–similar and find the parameter H.

Now assume that X = (Xt)t≥0 is a stochastic process (defined on (Ω,F , P )) that is self–

similar with parameter 0 < H < 1. Assume that X has stationary increments:

Xt −Xs
D
= Xt−s for all 0 ≤ s ≤ t .

Assume furthermore that P (X0 = 0) = 1 and P (X1 = 0) = 0.

(2) Show that for all 0 ≤ s < t

Xt −Xs

t− s
D
= (t− s)H−1X1 .

(3) Show that P (Xt = 0) = 0 for all t > 0.

(4) Show that X is continuous in probability.

◦

Exercise 6.8. Let Y be a normalised Brownian motion with continuous sample paths.

Hence Y can be considered as a random variable with values in (C[0,∞), C[0,∞)). Define for

all n,M ∈ N the set

Cn,M =

{
x ∈ C[0,∞)

∣∣∣ sup
t∈[n,n+1]

|xt|
t

>
1

M

}

(1) Show that Cn,M ∈ C[0,∞).

(2) Show that

P (Y ∈ Cn,M ) ≤ 2P
(
Yn+1 >

n

M

)
(3) Show that

P
(
Yn+1 >

n

M

)
≤ 3(n+ 1)2M4

n4

and conclude that
∞∑
n=1

P (Y ∈ Cn,M ) <∞ .
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(4) Show that for all M ∈ N

P

((
sup

t∈[n,n+1]

|Yt|
t

>
1

M

)
i.o.

)
= 0 .

(5) Show that

P

∞⋂
M=1

((
sup

t∈[n,n+1]

|Yt|
t
≤ 1

M

)
evt.

)
= 1 .

(6) Show that
Yt
t

a.s.−→ 0 as t→∞ .

◦



Chapter 7

Further reading

In this final chapter, we reflect on the theory presented in the previous chapters and give

recommendations for further reading.

The material covered in Chapter 1 can be found scattered in many textbooks on probability

theory, such as Breiman (1968), Loève (1977a), Kallenberg (2002) and Rogers & Williams

(2000a).

Abstract results in ergodic theory as presented in Chapter 2 can be found in Breiman (1968)

and Loève (1977b). A major application of ergodic theory is to the theory of the class

of stochastic processes known as Markov processes. In Markov process theory, stationary

processes are frequently encountered, and thus the theory presents an opportunity for utilizing

the ergodic theorem for stationary processes. Basic introductions to Markov processes in both

discrete and continuous time can be found in Norris (1999) and Brémaud (1999). In Meyn

& Tweedie (2009), a more general theory is presented, which includes a series of results on

ergodic Markov processes.

In Chapter 3, we dealt with weak convergence. In its most general form, weak convergence

of probability measures can be cast in the context of probability measures on complete,

separable metric spaces, where the metric space considered is endowed with the Borel-σ-

algebra generated by the open sets. A classical exposition of this theory is found in Billingsley

(1999), with Parthasarathy (1967) also being a useful resource.
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Being one of the cornerstones of modern probability, the discrete-time martingale theory of

Chaper 5 can be found in many textbooks. A classical source is Rogers & Williams (2000a).

The results on Brownian motion in Chapter 6 represents an introduction to the problems

and results of the theory of continuous-time stochastic processes. This very large subject

encompasses many branches, prominent among them are continuous-time martingale theory,

stochastic integration theory and continuous-time Markov process theory, to name a few.

A good introduction to several of the major themes can be found in Rogers & Williams

(2000a) and Rogers & Williams (2000b). Karatzas & Shreve (1988) focuses on martingales

with continuous paths and the theory of stochastic integration. A solid introduction to

continuous-time Markov processes is Ethier & Kurtz (1986).



Appendix A

Supplementary material

In this chapter, we outline results which are either assumed to be well-known, or which are

of such auxiliary nature as to merit separation from the main text.

A.1 Limes superior and limes inferior

In this section, we recall some basic results on the supremum and infimum of a set in the

extended real numbers, as well as the limes superior and limes inferior of a sequence in R.

By R∗, we denote the set R∪{−∞,∞}, and endow R∗ with its natural ordering, in the sense

that −∞ < x < ∞ for all x ∈ R. We refer to R∗ as the extended real numbers. In general,

working with R∗ instead of merely R is useful, although somewhat technically inconvenient

from a formal point of view.

Definition A.1.1. Let A ⊆ R∗. We say that y ∈ R∗ is an upper bound for A if it holds for

all x ∈ A that x ≤ y. Likewise, we say that y ∈ R∗ is a lower bound for A if it holds for all

x ∈ A that y ≤ x.

Theorem A.1.2. Let A ⊆ R∗. There exists a unique element supA ∈ R∗ characterized by

that supA is an upper bound for A, and for any upper bound y for A, supA ≤ y. Likewise,

there exists a unique element inf A ∈ R∗ characterized by that inf A is a lower bound for A,

and for any lower bound y for A, y ≤ inf A.
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Proof. See Theorem C.3 of Hansen (2009).

The elements supA and inf A whose existence and uniqueness are stated in Theorem A.1.2

are known as the supremum and infimum of A, respectively, or as the least upper bound and

greatest lower bound of A, respectively.

In general, the formalities regarding the distinction between R and R∗ are necessary to keep

in mind when concerned with formal proofs, however, in practice, the supremum and infimum

of a set in R∗ is what one expects it to be: For example, the supremum of A ⊆ R∗ is infinity

precisely if A contains “arbitrarily large elements”, otherwise it is the “upper endpoint” of

the set, and similarly for the infimum.

The following yields useful characterisations of the supremum and infimum of a set when the

supremum and infimum is finite.

Lemma A.1.3. Let A ⊆ R∗ and let y ∈ R. Then y is the supremum of A if and only if the

following two properties hold:

(1). y is an upper bound for A.

(2). For each ε > 0, there exists x ∈ A such that y − ε < x.

Likewise, y is the infimum of A if and only if the following two properties hold:

(1). y is a lower bound for A.

(2). For each ε > 0, there exists x ∈ A such that x < y + ε.

Proof. We just prove the result on the supremum. Assume that y is the supremum of A. By

definition, y is then an upper bound for A. Let ε > 0. If y − ε were an upper bound for A,

we would have y ≤ y− ε, a contradiction. Therefore, y− ε is not an upper bound for A, and

so there exists x ∈ A such that y − ε < x. This proves that the two properties are necessary

for y to be the supremum of A.

To prove the converse, assume that the two properties hold, we wish to show that y is the

supremum of A. By our assumptions, y is an upper bound for A, so it suffices to show that

for any upper bound z ∈ R∗, we have y ≤ z. To obtain this, note that by the second of our
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assumptions, A is nonempty. Therefore, −∞ is not an upper bound for A. Thus, it suffices

to consider an upper bound z ∈ R and prove that y ≤ z. Letting z be such an upper bound,

assume that z < y and put ε = y− z. There then exists x ∈ A such that z = y− ε < x. This

shows that z is not an upper bound for A, a contradiction. We conclude that for any upper

bound z of A, it must hold that y ≤ z. Therefore, y is the supremum of A, as desired.

We also have the following useful results.

Lemma A.1.4. Let A,B ⊆ R∗. If A ⊆ B, supA ≤ supB and inf B ≤ inf A.

Proof. See Lemma C.4 of Hansen (2009).

Lemma A.1.5. Let A ⊆ R∗ and assume that A is nonempty. Then inf A ≤ supA.

Proof. See Lemma C.5 of Hansen (2009).

Lemma A.1.6. Let A ⊆ R∗. Put −A = inf{−x | x ∈ A}. Then − supA = inf(−A) and

− inf A = sup(−A).

Proof. See p. 4 of Carothers (2000).

A particular result which we will be of occasional use to us is the following.

Lemma A.1.7. Let A ⊆ R∗, and let y ∈ R. Then supA > y if and only if there exists x ∈ A
with x > y. Analogously, inf A < y if and only if there exists x ∈ A with x < y.

Proof. We prove the result on the supremum. Assume that supA > y. If supA is infinite, A

is not bounded from above, and so there exists arbitrarily large elements in A, in particular

there exists x ∈ A with x > y. If supA is finite, Lemma A.1.3 shows that with ε = supA−y,

there exists x ∈ A such that y = supA − ε < x. This proves that if supA > y, there exists

x ∈ A with x > y. Conversely, if there is x ∈ A with x > y, we also obtain y < x ≤ supA,

since supA is an upper bound for A. This proves the other implication.

Note that the result of Lemma A.1.7 is false if the strict inequalities are exchanged with

inequalities. For example, sup[0, 1) ≥ 1, but there is no x ∈ [0, 1) with x ≥ 1. Next, we turn

our attention to sequences.
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Definition A.1.8. Let (xn) be a sequence in R. We define

lim sup
n→∞

xn = inf
n≥1

sup
k≥n

xk

lim inf
n→∞

xn = sup
n≥1

inf
k≥n

xk,

and refer to lim supn→∞ xn and lim infn→∞ xn as the limes superior and limes inferior of

(xn), respectively.

The limes superior and limes inferior are useful tools for working with sequences and in

particular for proving convergence.

Lemma A.1.9. Let (xn) be a sequence in R. Then lim infn→∞ xn ≤ lim supn→∞ xn.

Proof. See Lemma C.11 of Hansen (2009).

Theorem A.1.10. Let (xn) be a sequence in R, and let c ∈ R∗. xn converges to c if and only

if lim infn→∞ xn = lim supn→∞ xn = c. In particular, (xn) is convergent to a finite limit if

and only if the limes inferior and limes superior are finite and equal, and in the affirmative,

the limit is equal to the common value of the limes inferior and the limes superior.

Proof. See Theorem C.15 and Theorem C.16 of Hansen (2009).

Corollary A.1.11. Let (xn) be a sequence of nonnegative numbers. Then xn converges to

zero if and only if lim supn→∞ xn = 0.

Proof. By Theorem A.1.10, it holds that lim supn→∞ xn = 0 if xn converges to zero. Con-

versely, assume that lim supn→∞ xn = 0. As zero is a lower bound for (xn), we find

0 ≤ lim infn→∞ xn ≤ lim supn→∞ xn = 0, so Theorem A.1.10 shows that xn converges

to zero.

We will often use Corollary A.1.11 to show various kinds of convergence results. We also

have the following useful results for the practical manipulation of expressions involving the

limes superior and limes inferior.
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Lemma A.1.12. Let (xn) and (yn) be sequences in R. Given that all the sums are well-

defined, the following holds.

lim inf
n→∞

xn + lim inf
n→∞

yn ≤ lim inf
n→∞

(xn + yn). (A.1)

lim sup
n→∞

(xn + yn) ≤ lim sup
n→∞

xn + lim sup
n→∞

yn. (A.2)

Furthermore, if (yn) is convergent with limit in R, it holds that

lim inf
n→∞

(xn + yn) = lim inf
n→∞

xn + lim
n→∞

yn. (A.3)

lim sup
n→∞

(xn + yn) = lim sup
n→∞

xn + lim
n→∞

yn. (A.4)

Also, we always have

− lim sup
n→∞

xn = lim inf
n→∞

(−xn). (A.5)

− lim inf
n→∞

xn = lim sup
n→∞

(−xn). (A.6)

If xn ≤ yn, it holds that

lim inf
n→∞

xn ≤ lim inf
n→∞

yn. (A.7)

lim sup
n→∞

xn ≤ lim sup
n→∞

yn. (A.8)

Proof. The relationships in (A.1) and (A.2) are proved in Lemma C.14 of Hansen (2009).

Considering (A.3), let y be the limit of (yn) and let m ≥ 1 be so large that y−ε ≤ yn ≤ y+ε

for n ≥ m. For such n, we then have

( inf
k≥n

xn) + y − ε = inf
k≥n

(xn + y − ε) ≤ inf
k≥n

(xn + yn) ≤ inf
k≥n

(xn + y + ε) = ( inf
k≥n

xn) + y + ε,

yielding lim infn→∞ xn + y − ε ≤ lim infn→∞(xn + yn) ≤ lim infn→∞ xn + y + ε. As ε > 0

was arbitrary, this yields (A.3). By a similar argument, we obtain (A.4). Furthermore, (A.5)

and (A.6) follow from Lemma A.1.6. The relationships (A.7) and (A.8) are proved in Lemma

C.12 of Hansen (2009).

A.2 Measure theory and real analysis

In this section, we recall some of the main results from measure theory and real analysis

which will be needed in the following. We first recall some results from basic measure theory,

see Hansen (2009) for a general exposition.
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Definition A.2.1. Let E be a set. Let E be a collection of subsets of E. We say that E is a

σ-algebra on E if it holds that E ∈ E, that if A ∈ E, then Ac ∈ E, and that if (An)n≥1 ⊆ E,

then ∪∞n=1An ∈ E.

We say that a pair (E, E), where E is some set and E is a σ-algebra on E, is a measurable

space. Also, if H is some set of subsets of E, we define σ(H) to be the smallest σ-algebra

containing H, meaning that H is the intersection of all σ-algebras on E containing H. For a

σ-algebra E on E and a family H of subsets of E, we say that H is a generating family for

E if E = σ(H). One particular example of this is the Borel σ-algebra BA on A ⊆ Rn, which

is the smallest σ-algebra on A containing all open sets in A. In particular, we denote by Bn
the Borel σ-algebra on Rn.

If it holds for all A,B ∈ H that A∩B ∈ H, we say that H is stable under finite intersections.

Also, if D is a family of subsets of E, we say that D is a Dynkin class if it satisfies the

following requirements: E ∈ D, if A,B ∈ D with A ⊆ B then B \ A ∈ D, and if (An) ⊆ D
with An ⊆ An+1 for all n ≥ 1, then ∪∞n=1An ∈ D. We have the following useful result.

Lemma A.2.2 (Dynkin’s lemma). Let D be a Dynkin class on E, and let H be a set of

subsets of E which is stable under finite intersections. If H ⊆ D, then σ(H) ⊆ D.

Proof. See Theorem 3.6 of Hansen (2009), or Theorem 4.1.2 of Ash (1972).

Definition A.2.3. Let (E, E) be a measurable space. We say that a function µ : E → [0,∞)

is a measure, if it holds that µ(∅) = 0 and that whenever (An) ⊆ E is a sequence of pairwise

disjoint sets, µ(∪∞n=1An) =
∑∞
n=1 µ(An).

We say that a triple (E, E , µ) is a measure space. Also, if there exists an increasing sequence

of sets (En) ⊆ E with E = ∪∞n=1En and such that µ(En) is finite, we say that µ is σ-finite

and refer to (E, E , µ) as a σ-finite measure space. If µ(E) is finite, we say that µ is finite, and

if µ(E) = 1, we say that µ is a probability measure. In the latter case, we refer to (E, E , µ)

as a probability space. An important application of Lemma A.2.2 is the following.

Theorem A.2.4 (Uniqueness theorem for probability measures). Let P and Q be two prob-

ability measures on (E, E). Let H be a generating family for E which is stable under finite

intersections. If P (A) = Q(A) for all A ∈ H, then P (A) = Q(A) for all A ∈ E.

Proof. See Theorem 3.7 in Hansen (2009).
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Next, we consider measurable mappings.

Definition A.2.5. Let (E, E) and (F,F) be two measurable spaces. Let f : E → F be some

mapping. We say that f is E-F measurable if f−1(A) ∈ E whenever A ∈ F .

For a family of mappings (fi)i∈I from E to Fi, where (Fi,Fi) is some measurable space,

we may introduce σ((fi)i∈I) as the smallest σ-algebra E on E such that all the fi are E-Fi
measurable. Formally, E is the σ-algebra generated by {(fi ∈ A) | i ∈ I, A ∈ Fi}. For

measurability with respect to such σ-algebras, we have the following very useful lemma.

Lemma A.2.6. Let E be a set, let (fi)i∈I be a family of mappings from E to Fi, where

(Fi,Fi) is some measurable space, and let E = σ((fi)i∈I). Let (H,H) be some other mea-

surable space, and let g : H → E. Then g is H-E measurable if and only if fi ◦ g is H-Fi
measurable for all i ∈ I.

Proof. See Lemma 4.14 of Hansen (2009) for a proof in the case of a single variable.

If f : E → R is E-B measurable, we say that f is Borel measurable. In the context of

probability spaces, we refer to Borel measurable mappings as random variables. For any

measure space (E, E , µ) and any Borel measurable mapping f : E → [0,∞], the integral∫
f dµ is well-defined as the supremum of the explicitly constructed integral of an appropriate

class of simpler mappings. If instead we consider some f : E → R, the integral
∫
f dµ is

well-defined as the difference between the integrals of the positive and negative parts of f

whenever
∫
|f |dµ is finite. The integral has the following important properties.

Theorem A.2.7 (The monotone convergence theorem). Let (E, E , µ) be a measure space,

and let (fn) be a sequence of measurable mappings fn : E → [0,∞]. Assume that the sequence

(fn) is increasing µ-almost everywhere. Then

lim
n→∞

∫
fn dµ =

∫
lim
n→∞

fn dµ.

Proof. See Theorem 6.12 in Hansen (2009).

Lemma A.2.8 (Fatou’s lemma). Let (E, E , µ) be a measure space, and let (fn) be a sequence

of measurable mappings fn : E → [0,∞]. It holds that∫
lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
fn dµ.
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Proof. See Lemma 6.25 in Hansen (2009).

Theorem A.2.9 (The dominated convergence theorem). Let (E, E , µ) be a measure space,

and let (fn) be a sequence of measurable mappings from E to R. Assume that the sequence

(fn) converges µ-almost everywhere to some mapping f . Assume that there exists a measur-

able, integrable mapping g : E → [0,∞) such that |fn| ≤ g µ-almost everywhere for all n.

Then fn is integrable for all n ≥ 1, f is measurable and integrable, and

lim
n→∞

∫
fn dµ =

∫
lim
n→∞

fn dµ.

Proof. See Theorem 7.6 in Hansen (2009).

For the next result, recall that for two σ-finite measure spaces (E, E , µ) and (F,F , ν), E ⊗F
denotes the σ-algebra on E × F generated by {A × B | A ∈ E , B ∈ F}, and µ ⊗ ν denotes

the unique σ-finite measure such that (µ⊗ ν)(A×B) = µ(A)ν(B) for A ∈ E and B ∈ F , see

Chapter 9 of Hansen (2009).

Theorem A.2.10 (Tonelli’s theorem). Let (E, E , µ) and (F,F , ν) be two σ-finite measure

spaces, and assume that f is nonnegative and E ⊗ F measurable. Then∫
f(x, y) d(µ⊗ ν)(x, y) =

∫ ∫
f(x, y) dν(y) dµ(x).

Proof. See Theorem 9.4 of Hansen (2009).

Theorem A.2.11 (Fubini’s theorem). Let (E, E , µ) and (F,F , ν) be two σ-finite measure

spaces, and assume that f is E ⊗ F measurable and µ ⊗ ν integrable. Then y 7→ f(x, y) is

integrable with respect to ν for µ-almost all x, the set where this is the case is measurable,

and it holds that ∫
f(x, y) d(µ⊗ ν)(x, y) =

∫ ∫
f(x, y) dν(y) dµ(x).

Proof. See Theorem 9.10 of Hansen (2009).

Theorem A.2.12 (Jensen’s inequality). Let (E, E , µ) be a probability space. Let X : E → R
be a Borel mapping. Let f : R → R be another Borel mapping. Assume that X and f(X)

are integrable and that f is convex. Then f(
∫
X dµ) ≤

∫
f(X) dµ.
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Proof. See Theorem 16.31 in Hansen (2009).

Theorem A.2.7, Lemma A.2.8 and Theorem A.2.9 are the three main tools for working with

integrals. Theorem A.2.12 is frequently useful as well, and can in purely probabilistic terms

be stated as the result that f(EX) ≤ Ef(X) when f is convex.

Also, for measurable spaces (E, E) and (F,F), µ a measure on (E, E) and t : E → F an E-F
measurable mapping, we define the image measure t(µ) as the measure on (F,F) given by

putting t(µ)(A) = µ(t−1(A)) for A ∈ F . We then have the following theorem on successive

transformations.

Theorem A.2.13. Let (E, E), (F,F) and (G,G) be measurable spaces. Let µ be a measure

on (E, E). Let t : E → F and s : F → G be measurable. Then s(t(µ)) = (s ◦ t)(µ).

Proof. See Theorem 10.2 of Hansen (2009).

The following abstract change-of-variable formula also holds.

Theorem A.2.14. Let (E, E , µ) be a measurable space and let (F,F) be some measure

space. Let t : E → F be measurable, and let f : F → R be Borel measurable. Then f

is t(µ)-integrable if and only if f ◦ t is µ-integrable, and in the affirmative, it holds that∫
f dt(µ) =

∫
f ◦ tdµ.

Proof. See Corollary 10.9 of Hansen (2009).

Next, we recall some results on Lp spaces.

Definition A.2.15. Let (E, E , µ) be a measurable space, and let p ≥ 1. By Lp(E, E , µ), we

denote the set of measurable mappings f : E → R such that
∫
|f |p dµ is finite.

We endow Lp(E, E , µ) with the norm ‖ · ‖p given by ‖f‖p = (
∫
|f |p dµ)1/p. That Lp(E, E , µ)

is a vector space and that ‖·‖p is a seminorm on this space is a consequence of the Minkowski

inequality, see Theorem 2.4.7 of Ash (1972). We refer to Lp(E, E , µ) as an Lp-space. For

Lp-spaces, the following two main results hold.

Theorem A.2.16 (Hölder’s inequality). Let p > 1 and let q be the dual exponent to p,

meaning that q > 1 is uniquely determined as the solution to the equation 1
p + 1

q = 1. If

f ∈ Lp(E, E , µ) and g ∈ Lq(E, E , µ), it holds that fg ∈ L1(E, E , µ), and ‖fg‖1 ≤ ‖f‖p‖g‖q.
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Proof. See Theorem 2.4.5 of Ash (1972).

Theorem A.2.17 (The Riesz-Fischer completeness theorem). Let p ≥ 1. The seminormed

vector space Lp(E, E , µ) is complete.

Proof. See Theorem 2.4.11 of Ash (1972).

Following these results, we recall a simple lemma which we make use of in the proof of the

law of large numbers.

Lemma A.2.18. Let (xn) be some sequence in R, and let x be some element of R. If

limn→∞ xn = x, then limn→∞
1
n

∑n
k=1 xk = x as well.

Proof. See Lemma 15.5 of Carothers (2000).

Also, we recall some properties of the integer part function. For any x ∈ R, we define

[x] = sup{n ∈ Z | n ≤ x}.

Lemma A.2.19. It holds that [x] is the unique integer such that [x] ≤ x < [x] + 1, or

equivalently, the unique integer such that x− 1 < [x] ≤ x.

Proof. We first show that [x] satisfies the bounds [x] ≤ x < [x] + 1. As x is an upper bound

for the set {n ∈ Z | n ≤ x}, and [x] is the least upper bound, we obtain [x] ≤ x. On the

other hand, as [x] is an upper bound for {n ∈ Z | n ≤ x}, [x] + 1 cannot be an element of

this set, yielding x < [x] + 1.

This shows that [x] satisfies the bounds given. Now assume that m is an integer satisfying

m ≤ x < m + 1, we claim that m = [x]. As m ≤ x, we obtain m ≤ [x]. And as x < m + 1,

m + 1 is not in {n ∈ Z | n ≤ x}. In particular, for all n ≤ x, n < m + 1. As [x] ≤ x, this

yields [x] < m+ 1, and so [x] ≤ m. We conclude that m = [x], as desired.

Lemma A.2.20. Let x ∈ R and let n ∈ Z. Then [x+ n] = [x] + n.

Proof. As [x] ≤ x < [x] + 1 is equivalent to [x] +n ≤ x+n < [x] +n+ 1, the characterization

of Lemma A.2.19 yields the result.
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Finally, we state Taylor’s theorem with Lagrange form of the remainder.

Theorem A.2.21. Let n ≥ 1 and assume that f is n times differentiable, and let x, y ∈ Rp.

It then holds that

f(y) =

n−1∑
k=0

f (k)(x)

n!
(y − x)k +

f (n)(ξ(x, y))

n!
(y − x)n,

where f (k) denotes the k’th derivative of f , with the convention that f (0) = f , and ξ(x, y) is

some element on the line segment between x and y.

Proof. See Apostol (1964) Theorem 7.6.

A.3 Existence of sequences of random variables

In this section, we state a result which yield the existence of particular types of sequences of

random variables.

Theorem A.3.1 (Kolmogorov’s consistency theorem). Let (Qn)n≥1 be a sequence of prob-

ability measures such that Qn is a probability measure on (Rn,Bn). For each n ≥ 2, let

πn : Rn → Rn−1 denote the projection onto the first n − 1 coordinates. Assume that

πn(Qn) = Qn−1 for all n ≥ 2. There exists a probability space (Ω,F , P ) and a sequence

of random variables (Xn)n≥1 on (Ω,F , P ) such that for all n ≥ 1, (X1, . . . , Xn) have distri-

bution Qn.

Proof. This follows from Theorem II.30.1 of Rogers & Williams (2000a).

Corollary A.3.2. Let (Qn)n≥1 be a sequence of probability measures on (R,B). There exists

a probability space (Ω,F , P ) and a sequence of random variables (Xn)n≥1 on (Ω,F , P ) such

that for all n ≥ 1, (X1, . . . , Xn) are independent, and Xn has distribution Qn.

Proof. This follows from applying Theorem A.3.1 with the sequence of probability measures

(Q1 ⊗ · · · ⊗Qn)n≥1.

From Corollary A.3.2, it follows for example that there exists a probability space (Ω,F , P )

and a sequence of independent random variables (Xn)n≥1 on (Ω,F , P ) such that Xn is dis-
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tributed on {0, 1} with P (Xn = 1) = pn, where (pn) is some sequence in [0, 1]. Such sequences

are occasionally used as examples or counterexamples regarding certain propositions.

A.4 Exercises

Exercise A.1. Let A = {1− 1
n |n ≥ 1}. Find supA and inf A. ◦

Exercise A.2. Let y ∈ R. Define A = {x ∈ Q | x < y}. Find supA and inf A. ◦

Exercise A.3. Let (E, E , µ) be a measure space, and let (fn) be a sequence of measurable

mappings fn : E → [0,∞). Assume that there is g : E → [0,∞) such that fn ≤ g for all n ≥ 1,

where g is integrable with respect to µ. Show that lim supn→∞
∫
fn dµ ≤

∫
lim supn→∞ fn dµ.

◦



Appendix B

Hints for exercises

B.1 Hints for Chapter 1

Hints for exercise 1.2. Consider the probability space (Ω,F , P ) = ([0, 1],B[0,1], λ), where λ

denotes the Lebesgue measure on [0, 1]. As a counterexample, consider variables defined as

Xn(ω) = nλ(An)−11An for an appropriate sequence of intervals (An). ◦

Hints for exercise 1.4. Show that the sequence (EXn)n≥1 diverges and use this to obtain the

result. ◦

Hints for exercise 1.5. Show that for any ω with P ({ω}) > 0, Xn(ω) converges to X(ω).

Obtain the desired result by noting that {ω | P ({ω}) > 0} is an almost sure set. ◦

Hints for exercise 1.6. Show that P (|Xn −X| ≥ ε) ≤ P (|Xn1Fk −X1Fk | ≥ ε) + P (F ck ), and

use this to obtain the result. ◦

Hints for exercise 1.7. To prove that limn→∞ P (|Xn − X| ≥ εk) = 0 for all k ≥ 1 implies

Xn
P−→ X, take ε > 0 and pick k such that 0 ≤ εk ≤ ε. ◦

Hints for exercise 1.8. Using that the sequence (supk≥n |Xk−X| > ε)n≥1 is decreasing, show

that limn→∞ P (supk≥n |Xk −X| > ε) = P (∩∞n=1 ∪∞k=n |Xk −X| > ε). Use this to prove the

result. ◦
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Hints for exercise 1.9. To obtain that d is a pseudometric, use that x 7→ x(1 + x)−1 is

increasing on [0,∞). To show that Xn
P−→ X implies convergence in d, prove that for all

ε > 0, it holds that d(Xn, X) ≤ P (|Xn − X| > ε) + ε
1+ε . In order to obtain the converse,

apply Lemma 1.2.7. ◦

Hints for exercise 1.10. Choose cn as a positive number such that P (|Xn| ≥ 1
ncn

) ≤ 1
2n . Use

Lemma 1.2.11 to show that this choice yields the desired result. ◦

Hints for exercise 1.11. To prove the first claim, apply Lemma 1.2.7 with p = 4. To prove

the second claim, apply Lemma 1.2.12. ◦

Hints for exercise 1.12. Use Lemma 1.2.13 and Fatou’s lemma to show that E|X|p is finite.

Apply Hölder’s inequality to obtain convergence in Lq for 1 ≤ q < p. ◦

Hints for exercise 1.13. Define S(n,m) = ∩∞k=n(|Xk −Xn| ≤ 1
m ) and argue that it suffices

for each ε > 0 to show that there exists F ∈ F with P (F c) ≤ ε such that for all m ≥ 1, there

is n ≥ 1 with F ⊆ S(n,m). To obtain such a set F , consider a sequence (εm)m≥1 of positive

numbers with
∑∞
m=1 εm ≤ ε and choose for each m an nm with P (S(nm, n)) ≥ 1− εm. ◦

Hints for exercise 1.14. Apply Lemma 1.2.12 and Lemma 1.2.7. ◦

Hints for exercise 1.15. Use Lemma 1.2.13, also recalling that all sequences in R which are

monotone and bounded are convergent. ◦

Hints for exercise 1.16. First argue that (|Xn+1 −Xn| ≤ εn evt.) is an almost sure set. Use

this to show that almost surely, for n > m large enough, |Xn −Xm| ≤
∑∞
k=m εk. Using that∑∞

k=m εk tends to zero as m tends to infinity, conclude that (Xn) is almost surely Cauchy. ◦

Hints for exercise 1.17. To prove almost sure convergence, calculate an explicit expression for

P (|Xn− 1| ≥ ε) and apply Lemma 1.2.12. To prove convergence in Lp, apply the dominated

convergence theorem. ◦

Hints for exercise 1.18. Apply Lemma 1.2.11. ◦

Hints for exercise 1.19. Use Lemma 1.3.12 to prove the contrapositive of the desired impli-

cation. ◦

Hints for exercise 1.20. To calculate P (Xn/ log n > c i.o.), use the properties of the expo-
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nential distribution to obtain an explicit expression for P (Xn/ log n > c), then apply Lemma

1.3.12. To prove lim supn→∞Xn/ log n = 1 almost surely, note that for all c > 0, it holds

that lim supn→∞Xn/ log n ≤ c when Xn/ log n ≤ c eventually and lim supn→∞Xn/ log n ≥ c
when Xn/ log n > c infinitely often. ◦

Hints for exercise 1.21. Use that sequence (∪k=n(Xk ∈ B))n≥1 is decreasing to obtain that

(Xn ∈ B i.o.) is in J . Take complements to obtain the result on (Xn ∈ B evt.). ◦

Hints for exercise 1.22. Show that

(
lim
n→∞

n∑
k=1

an−k+1Xk ∈ B

)
=

(
lim
n→∞

n∑
k=m

an−k+1Xk ∈ B

)
,

and use this to obtain the result. ◦

Hints for exercise 1.23. For the result on convergence in probability, work directly from the

definition of convergence in probability and consider 0 < ε < 1 in this definition. For the

result on almost sure convergence, note that Xn converges to zero if and only if Xn is zero

eventually, and apply Lemma 1.3.12. ◦

Hints for exercise 1.24. Use the monotone convergence theorem. ◦

Hints for exercise 1.25. Use Theorem 1.3.10 to show that
∑n
k=1 akXk either is almost surely

divergent or almost surely convergent. To obtain the sufficient criterion for convergence,

apply Theorem 1.4.2. ◦

Hints for exercise 1.26. Let (Xn) be an sequence of independent random variables concen-

trated on {0, n} with P (Xn = n) = pn. Use Lemma 1.3.12 to choose (pn) so as to obtain the

result. ◦

Hints for exercise 1.27. Apply Theorem 1.4.3. ◦

Hints for exercise 1.28. Use Lemma 1.3.12 to conclude that P (|Xn| > n i.o.) = 0 if and

only if
∑∞
n=1 P (|X1| > n) is finite. Apply the monotone convergence theorem and Tonelli’s

theorem to conclude that the latter is the case if and only if E|X1| is finite. ◦

Hints for exercise 1.29. Apply Exercise 1.28 to show that E|X1| is finite. Apply Theorem

1.5.3 to show that EX1 = c. ◦
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B.2 Hints for Chapter 2

Hints for exercise 2.1. To show that T is measure preserving, find simple explicit expressions

for T (x) for 0 ≤ x < 1
2 and 1

2 ≤ x < 1, respectively, and use this to show the relationship

P (T−1([0, α))) = P ([0, α)) for 0 ≤ α ≤ 1. Apply Lemma 2.2.1 to obtain that T is P -measure

preserving. To show that S is measure preserving, first show that it suffices to consider the

case where 0 ≤ λ < 1. Fix 0 ≤ α ≤ 1. Prove that for α ≥ µ, S−1([0, α)) = [0, α−µ)∪[1−µ, 1),

and for α < µ, S−1([0, α)) = [1 − µ, 1 − µ + α). Use this and Lemma 2.2.1 to obtain the

result. ◦

Hints for exercise 2.2. Apply Lemma 2.2.1. To do so, find a simple explicit expression

for T (x) when 1
n+1 < x ≤ 1

n , and use this to calculate, for 0 ≤ α < 1, T−1([0, α)) and

subsequently P (T−1([0, α))), ◦

Hints for exercise 2.3. Assume, expecting a contradiction, that P is a probability measure

such that T is measure preserving for P . Show that this implies P ({0}) = 0 and that

P (( 1
2n ,

2
2n ]) = 0 for all n ≥ 1. Use this to obtain the desired contradiction. ◦

Hints for exercise 2.4. Let λ = n/m for n ∈ Z and m ∈ N. Show that Tm(x) = x in this

case. Fix 0 ≤ α ≤ 1 and put Fα = ∪m−1
k=0 T

−k([0, α]) and show that for α small and positive,

Fα is a set in the T -invariant σ-algebra which has a measure not equal to zero or one. ◦

Hints for exercise 2.5. Prove that
∫
X −X ◦ T dP = 0 and use this to obtain the result. ◦

Hints for exercise 2.6. Show that IT ⊆ IT 2 and use this to prove the result. ◦

Hints for exercise 2.7. Consider a space Ω containing only two points. ◦

Hints for exercise 2.8. For part two, note that ∪∞k=nT
−k(F ) ⊆ ∪∞k=0T

−k(F ) and use that T

is measure preserving. For part three, use that F ⊆ ∪∞k=0T
−k(F ). For part four, use that

F = (F ∩ (T k ∈ F c evt.)) ∪ (F ∩ (T k ∈ F c evt.)c) ◦

Hints for exercise 2.9. To show that the criterion is sufficient for T to be ergodic, use

Theorem 2.2.3. For the converse implication, assume that T is ergodic and use Theorem

2.2.3 to argue that the result holds when X and Y are indicators for sets in F . Consider

X = 1G and Y nonnegative and bounded and use linearity and approximation with simple

functions to obtain that the criterion also holds in this case. Use a similar argument to
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obtain the criterion for general X and Y such that X is nonnegative and integrable and Y

is nonnegative and bounded. Use linearity to obtain the final extension to X integrable and

Y bounded. ◦

Hints for exercise 2.10. First use Lemma 2.2.6 to argue that it suffices to show that for

α, β ∈ [0, 1), limn→∞ P ([0, β) ∩ T−n([0, α))) = P ([0, β))P ([0, α)). To do so, first show that

Tn(x) = 2nx− [2nx] and use this to obtain a simple explicit expression for T−n([0, α)). Use

this to prove the desired result. ◦

Hints for exercise 2.11. For part one, use that the family {F1 × F2 | F1 ∈ F1, F2 ∈ F2} is

a generating family for F1 ⊗ F2 which is stable under finite intersections and apply Lemma

2.2.1. For part two, show that whenever F1 is T1-invariant and F2 is T2-invariant, F1×F2 is

T -invariant, and use this to obtain the desired result. For part three, use that for F1 ∈ F1

and F2 ∈ F2, it holds that P1(F1) = P (F1 × Ω2) and P2(F2) = P (Ω1 × F2). For part four,

use Lemma 2.2.6. ◦

Hints for exercise 2.12. Let A = (X̂n ∈ B i.o.) and note that (Xn ∈ B i.o.) = X−1(A).

Show that A is θ-invariant to obtain the result. ◦

Hints for exercise 2.13. For B ∈ B∞, express Z(P )(B) in terms of X(P )(B), Y (P )(B) and

p. Use this to obtain that θ is measure preserving for Z(P ). ◦

Hints for exercise 2.14. Assume that (Xn) is stationary. Using that θ is X(P )-measure

preserving, argue that all Xn have the same distribution and conclude that EXn = EXk for

all n, k ≥ 1. Using a similar argument, argue that for all 1 ≤ n ≤ k, (Xn, Xk) has the same

distribution as (X1, Xk−(n−1)) and conclude that Cov(Xn, Xk) = Cov(X1, Xk−(n−1)). Use

this to conclude that (Xn) is weakly stationary. ◦

Hints for exercise 2.15. Use Exercise 2.14 to argue that if (Xn) is stationary, it is also weakly

stationary. To obtain the converse implication, assume that (Xn) is stationary and argue that

for all n ≥ 1, (X2, . . . , Xn+1) has the same distribution as (X1, . . . , Xn). Combine this with

the assumption that (Xn) has Gaussian finite-dimensional distributions in order to obtain

stationarity. ◦
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B.3 Hints for Chapter 3

Hints for exercise 3.1. First assume that (θn) converges with limit θ. In the case where

θ > 0, apply Lemma 3.1.9 to obtain weak convergence. In the case where θ = 0, prove weak

convergence directly by proving convergence of
∫
f dµn for f ∈ Cb(R).

Next, assume that (µn) is weakly convergent. Use Lemma 3.1.6 to argue that (θn) is bounded.

Assume that (θn) is not convergent, and argue that there must exist two subsequences (θnk)

and (θmk) with different limits θ and θ∗. Use what was already shown and Lemma 3.1.5 to

obtain a contradiction. ◦

Hints for exercise 3.2. To obtain weak convergence when the probabilities converge, apply

Lemma 3.1.9. To obtain the converse implication, use Lemma 3.1.3 to construct for each k a

mapping in Cb(R) which takes the value 1 on k and takes the value zero for, say (k−1, k+1)c.

Use this mapping to obtain convergence of the probabilities. ◦

Hints for exercise 3.3. Applying Stirlings’s formula and the fact that limn→∞
(
1 + x

n

)n
= ex

for all x ∈ R to prove that the densities fn converges pointwise to the density of the normal

disribution. Invoke Lemma 3.1.9 to obtain the desired result. ◦

Hints for exercise 3.4. Using Stirling’s formula as well as the result that if (xn) is a sequence

converging to x, then limn→∞
(
1 + xn

n

)n
= ex, prove that the probability functions converge

pointwise. Apply Lemma 3.1.9 to obtain the result. ◦

Hints for exercise 3.5. Apply Stirling’s formula and Lemma 3.1.9. ◦

Hints for exercise 3.6. Let Fn be the cumulative distribution function for µn. Using the

properties of cumulative distribution functions, show that for x ∈ R satisfying the inequalities

q(k/(n+ 1)) < x < q((k+ 1)/(n+ 1)), with k ≤ n, it holds that |Fn(x)− F (x)| ≤ 2/(n+ 1).

Also show that for x < q(1/(n+ 1)) and x > q(n/(n+ 1)), Fn(x)−F (x)| ≤ 1/(n+ 1). Then

apply Theorem 3.2.3 to obtain the result. ◦

Hints for exercise 3.7. First assume that (ξn) and (σn) converge to limits ξ and σ. In the

case where σ > 0, apply Lemma 3.1.9 to obtain weak convergence of µn. In the case where

σ = 0, use Theorem 3.2.3 to obtain weak convergence.

Next, assume that µn converges weakly. Use Lemma 3.1.6 to show that both (ξn) and (σn)
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are bounded. Then apply a proof by contradiction to show that ξn and σn both must be

convergent. ◦

Hints for exercise 3.8. Let ε > 0, and take n so large that |xn − x| ≤ ε. Use Lemma 3.2.1

and the monotonicity properties of cumulative distribution functions to obtain the set of

inequalities F (x − ε) ≤ lim infn→∞ Fn(xn) ≤ lim supn→∞ Fn(xn) ≤ F (x + ε). Use this to

prove the desired result. ◦

Hints for exercise 3.9. Argue that with Fn denoting the cumulative distribution function for

µn, it holds that Fn(x) = 1 − (1 − 1/n)[nx], where [nx] denotes the integer part of nx. Use

l’Hôpital’s rule to prove pointwise convergence of Fn(x) as n tends to infinity, and invoke

Theorem 3.2.3 to conclude that the desired result holds. ◦

Hints for exercise 3.10. Use the binomial theorem. ◦

Hints for exercise 3.11. Use the Taylor expansion of the exponential function. ◦

Hints for exercise 3.12. Use independence of X and Y to express the characteristic function

of XY as an integral with respect to µ⊗ ν. Apply Fubini’s theorem to obtain the result. ◦

Hints for exercise 3.13. Argue that XY and −ZW are independent and follow the same

distribution. Use Lemma 3.4.15 to 3.13 to express the characteristic function of XY − ZW
in terms of the characteristic function of XY . Apply Exercise 3.12 and Example 3.4.10 to

obtain a closed expression for this characteristic function. Recognizing this expression as the

characteristic function for the Laplace distribution, use Theorem 3.4.19 to obtain the desired

distributional result. ◦

Hints for exercise 3.14. Define a triangular array by puttingXnk = (Xn−EXn)/
√∑n

k=1 V Xk.

Apply Theorem 3.5.6 to show that
∑n
k=1Xnk converges to the standard normal distribution,

and conclude the desired result from this. ◦

Hints for exercise 3.15. Fix ε > 0. Use independence and Lemma 1.3.12 to conclude that∑∞
n=1 P (|Xn| > ε) converges. To argue that

∑∞
n=1 V Xn1(|Xn|≤ε), assume that the series is

divergent. Put Yn = Xn1(|Xn|≤ε) and Sn =
∑n
k=1 Yn. Use Exercise 3.15 to argue that Sn

converges almost surely, while (Sn − ESn)/
√
V Sn converges in distribution to the standard

normal distribution. Use Lemma 3.3.2 to conclude that ESn/
√
V Sn converges in distribution

to the standard normal distribution. Obtain a contradiction from this. For the convergence

of the final series, apply Theorem 1.4.2. ◦
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Hints for exercise 3.16. Use Theorem 3.5.3 to obtain that using the probability space

(Ω,F , Pλ), Xn is asymptotically normal. Fix a differentiable mapping f : R → R, and

use Theorem 3.6.3 to show that f(Xn) is asymptotically normal as well. Use the form of the

asymptotic parameters to obtain a requirement on f ′ for the result of the exercise to hold.

Identify a function f satisfying the requirements from this. ◦

Hints for exercise 3.17. In the case α > 1/2, use Lemma 1.2.7 to obtain the desired con-

vergence in probability. In the cas α ≤ 1/2, note by Theorem 3.5.3, that (Sn − nξ)/n1/2

converges in distribution to the standard normal distribution. Fix ε > 0 and use Lemma 3.1.3

to obtain a mapping g ∈ Cb(R) such that 1(ξ−2ε,ξ+2ε)c(x) ≤ g(x) ≤ 1[ξ−ε,ξ+ε]c(x). Use this

to prove that lim infn→∞ P (|Sn − nξ|/nα ≥ ε) is positive, and conclude that (Sn − nξ)/nα

does not converge in probability to zero. ◦

Hints for exercise 3.18. First calculate EX2
n and EX4

n. Use Theorem 3.5.3, to obtain that Xn

is asymptotically normal. Apply Theorem 3.6.3 to obtain that θ̂n is asymptotically normal

as well. ◦

Hints for exercise 3.19. Use Theorem 3.5.3 and Theorem 3.6.3 to obtain the results on Xn

and X
−1

n . In order to show Yn
P−→ 1/µ, calculate EYn and V Yn and use Lemma 1.2.7 to

prove the convergence. ◦

Hints for exercise 3.20. Use Theorem 3.5.3 to argue that Xn is asymptotically normal. To

obtain the result on (Yn − θ)/(
√

4θ2/9n), define a triangular array (Xnk)n≥k≥1 by putting

Xnk =
√

36
θn3/2 (kUk − kθ

2 ) and apply Theorem 3.5.7. ◦

B.4 Hints for Chapter 4

Hints for exercise 4.1. Use that ν1 and ν2 are signed measures to show that αν1+βν2 satisfies

(i) and (ii) in the definition. ◦

Hints for exercise 4.2. For µ� τ : Use that τ(A) = 0 if and only if A = ∅.

For the density f : Recall that any function g : N0 → R is measurable and∫
A

g dτ =
∑
a∈A

g(a) for A ∈ P(N0)

and write µ(A) =
∑
a∈A f(a) for a suitable function f .
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Finally show that ν � µ and find a counter example to µ� ν. ◦

Hints for exercise 4.3. Define ν = ν1 + ν2 and argue that ν � µ. Argue that there exists

measurable and µ–integrable functions f, f1, f2 with ν(F ) =
∫
F
f dµ, ν1(F ) =

∫
F
f1 dµ, and

ν2(F ) =
∫
F
f2 dµ for all F ∈ F. Show that∫

F

f dµ =

∫
F

f1 dµ+

∫
F

f2 dµ for all F ∈ F

and conclude the desired result. ◦

Hints for exercise 4.4. Argue that ν � µ and let f = dν
dµ , h = dν

dπ , and g = dπ
dµ . Note

that π and g are non–negative measure and density as known from Sand1. Show that

ν(F ) =
∫
F
hg dµ and ν(F )

∫
F
f dµ. ◦

Hints for exercise 4.5. Let f = dν
dµ and g = dµ

dν . Show that ν(F ) =
∫
F
fg dν and ν(F ) =∫

F
1 dν. Conclude the desired result ν–a.e. Obtain the result µ–a.e. by symmetry. ◦

Hints for exercise 4.6. Find a disjoint sequence of sets (Fn) such that µ(Fn) < ∞ and⋃
Fn = Ω. Define the measures µn(F ) = µ(F ∩ Fn) and νn(F ) = ν(F ∩ Fn) and show that

νn � µn for all n. Let fn = dνn
dµn

and fn = 0 on F cn (why is that OK?). Define f =
∑∞
n=1 fn.

Show that∫
|f |dµ = · · · =

∞∑
n=1

(∫
(fn>0)

fn dµ−
∫

(fn<0)

fn dµ
)
≤ · · · ≤ 2 sup

F∈F
|ν(F )| <∞

and that ν(F ) =
∫
F
f dµ. ◦

Hints for exercise 4.7. Show that X is a conditional expectation of Y given D, and that Y

is a conditional expectation of X given D. ◦

Hints for exercise 4.8. Straightforward application of Theorem 4.2.6 (2), (5) and (7). ◦

Hints for exercise 4.9. ”⇐” is trivial. For ”⇒” show that EX2 = EY 2 and use that X = Y

a.s. if and only if E[(X − Y )2] = 0. Apply Theorem 4.2.6. ◦

Hints for exercise 4.10. Straightforward calculations! ◦

Hints for exercise 4.11. Recall that x+ = max{x, 0}. Show and use P (0 ≤ E(X+|D)) = 1

and P (E(X|D) ≤ E(X+|D)) = 1. ◦

Hints for exercise 4.12. Use that |x| = x+ + x− and (−x)+ = x− and Exercise 4.11. ◦
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Hints for exercise 4.13. Show that E(X|D) = 1
2 . Show and use that if D is countable, then

1D = 0 a.s. and 1Dc = 1 a.s. ◦

Hints for exercise 4.14. Compare σ(X1) and σ(X2). ◦

Hints for exercise 4.15. Define

H = {F ∈ D |
∫
D

Y dP =

∫
D

X dP}

and use Dynkin’s lemma (Lemma A.2.2) to show that σ(G) ⊆ H (it is assumed that G ⊆ H).

◦

Hints for exercise 4.16.

(1) Write E(Y |Z) = φ(Z) (!) so e.g. the left hand side equals E(φ(Z)1(Z∈B)1(X∈C)). Use

that Z ⊥⊥ X and (Y,Z) ⊥⊥ X.

(2) Use Exercise 4.15 and 1 to show that E(Y |Z) is a conditional expectation of Y given

σ(Z,X).

◦

Hints for exercise 4.17.

(1) Show that σ(Sn, Sn+1, Sn+2, . . .) = σ(Sn, Xn+1, Xn+2, . . .). Use Exercise 4.16 and that

the Xn–variables are independent.

(2) First show that 1
nSn = E(X1|Sn) by checking the conditions for being a conditional

expectation of X1 given Sn. For the proof of∫
(Sn∈B)

1

n
Sn dP =

∫
(Sn∈B)

X1 dP for all B ∈ B ,

use (and show) that 1(Sn∈B)Xk
D
= 1(Sn∈B)X1 (the distributions are equal) for all k =

1, . . . , n.

◦
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Hints for exercise 4.18. Write X = Z + µ1 + cY , where Z = (X − µ1)− cY and c is chosen

such that Cov(Z, Y ) = 0 (Recall that in that case Z and Y will be independent!) ◦

B.5 Hints for Chapter 5

Hints for exercise 5.5. For ⇒, let Fn = (τ = n). For ⇐, show and use that

(τ = m) = ∩mn=1F
c
n ∩ Fm .

◦

Hints for exercise 5.6. Use the partition (τ = m) = ∪m−1
k=1 (τ = m,σ = k). ◦

Hints for exercise 5.7. (1): For ⇐, let τ = n and k = n+ 1. For ⇒, use Corollary 5.2.13. ◦

Hints for exercise 5.8. For (2): Use Exercise 5.4. For 3: Show E(S1) = 0 and use (2) in

Exercise 5.7. For (4): Use The Strong of Large Numbers to show that Sn
a.s.−→ +∞. For 5:

Use monotone convergence of both sides in (3). ◦

Hints for exercise 5.9. First show that (Sn,Fn) is a martingale with a suitable choice of (Fn).

Then use the independence to show that ES2
n ≤

∑∞
n=1EX

2
n < ∞ for all n ∈ N. Finally

use The martingale convergence theorem (for the argument of supnES
+
n < ∞, recall that

x+ ≤ |x| ≤ x2 + 1). ◦

Hints for exercise 5.10. For (2): See that Mn ≥ 0 and use Theorem 5.3.2. For (3): Use

Fatou’s lemma. For (5): Use Exercise 5.4. For (7): Use Corollary 5.2.13 and the fact that

τ ∧n and n are bounded stopping times. For (9): Use (7)+(8)+ dominated convergence. For

(10): Let q = P (Sτ = b) and write EMτ = qrb + (1− q)ra. ◦

Hints for exercise 5.11. For (1): Exploit the inequality (x−y)2 ≥ 0. For the integrability, use

that 1DnE(X|D) is bounded by n. For (2): use that both 1Dn and E(X|D) are D–measurable.

For (3): Use (1) and (2) to obtain that

E
(

1Dn
(
X2 − E(X|D)2

)
|D
)
≥ 0 a.s.

◦

Hints for exercise 5.12.
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(1) Use Exercise 5.11 and that E(Xn+1|Fn)2 = X2
n a.s. by the martingale property.

(2) Use Exercise 5.4.

(3) Use Corollary 5.2.13, since τ ∧ n and n are bounded stopping times.

(4) Write

EX2
τ∧n =

∫
(maxk=1,...,n |Xk|≥ε)

X2
τ∧n dP +

∫
(maxk=1,...,n |Xk|<ε)

X2
τ∧n dP

and use (and prove) that |Xτ∧n| ≥ ε on the set (maxk=1,...,n |Xk| ≥ ε).

◦

Hints for exercise 5.13. For (3): Show that An ∈ Fτ∧n (recall the definition of Fτ∧n) and

use this to show ∫
An

Yτ∧n dP ≤
∫
An

E(Yn|Fτ∧n) dP =

∫
An

Yn dP .

◦

Hints for exercise 5.14. (1): Use Theorem 5.4.5 and the fact that E|Xn − 0| = EXn.

(2): According to (1), the variables should have both positive and negative values. Use linear

combinations of indicator functions like 1[0, 1n ) and 1[ 1
n ,

2
n ). ◦

Hints for exercise 5.15. For (1): Use 10 in Theorem 4.2.6 and the definition of conditional

expectations. For (2): First divide into the two situations |X| ≤ K and |X| > K, and

secondly use Markov’s inequality. For (3): Obtain that for all K ∈ N

lim
x→∞

sup
D∈G

∫
|(E(X|D)|>x)

|E(X|D)|dP ≤
∫

(|X|>K)

|X|dP .

Let K →∞ and use dominated convergence. ◦

Hints for exercise 5.16.

(1) This IS very easy.

(2) Use Theorem 5.4.5 and that Xτ∧n
P−→ Xτ .

(3) Show that EXτ∧n → EXτ (use e.g. the remark before Definition 5.4.1) and that

EXτ∧n = EX1.
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(4) Show and use that ∫
(|Xτ∧n|>x)

|Xτ∧n|dP ≤
∫

(|Y |>x)

|Y | dfP

for all x > 0 and n ∈ N. Use dominated convergence to see that the right hand side

→ 0 as x→∞.

(5) Write
∞∑
n=0

P (τ > n) =

∞∑
n=0

1(k≥n)P (τ = k)

and interchange the sums.

(6) Define Y as the right hand side of (5.32) and expand E|Y |:

E|Y | = . . . = E|X1|+
∞∑
m=1

∫
(τ>m)

E(|Xm+1 −Xm|
∣∣Fm) dP

Use E(|Xn+1 −Xn|
∣∣Fn) ≤ B a.s. and (5) to obtain that E|Y | <∞. Use (1)-(4).

(9) Use (6)-(8) to show that EZσ = 0. Furthermore realise that Zσ = Sσ − σξ.

◦

Hints for exercise 5.17. For (2): Use that all Yn ≥ 0. For (3): Write Y = lim infn→∞ Yn

and use Fatou’s Lemma. For 4: Write Yn = exp
(∑n

k=1 log(Xk)
)

and use The Strong Law

of Large Numbers to show 1
n

∑n
k=1 log(Xk) → ξ < 0 a.s.. For 5: Use that if Yn

L1

−→ Z

then Yn
P−→ Z and conclude that Z = 0 a.s. Realise that Yn

L1

9 0 (You might need that if

Yn
P−→ Y and Yn

P−→ Z, then Y = Z a.s.). ◦

Hints for exercise 5.18.

(1) Use the triangle inequality to obtain |E|Xn| − E|X|| ≤ E|Xn − X|. For the second

claim use Theorem 1.2.8.

(3) Define Un = Xn −X and Vn = |Xn| + |X|. Showing Xn
L1

−→ X will be equivalent (?)

to show lim supn→∞E|Xn−X| = 0. Argue and use that lim supn→∞ |Xn−X| = 0 a.s.

(4) Let (n`) be a subsequence such that

E|Xn` −X|
`→∞−→ lim sup

n→∞
E|Xn −X|
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(such a subsequence will always exist). Find a subsequence (n`k) of (n`) such that

Xn`k

a.s.−→ X .

Conclude from (3) that E|Xn`k
−X| → 0 and use the uniqueness of this limit to derive

lim supn→∞E|Xn −X| = 0.

(5) Use (4) and Theorem 5.4.5 to conclude that (Yn) is uniformly integrable. Use (2) in

Thm 5.4.7 (You might need that if Yn
P−→ Y and Yn

P−→ Z, then Y = Z a.s.).

(6) For ⇐, do as in 5 and use furthermore Thm 5.4.7 to conclude that Y closes.

For ⇒, use 5.4.7, 5.4.5, and (1).

◦

Hints for exercise 5.19.

(3) Use that if τ1 = n then we have lost the first n − 1 games and won the n’th games,

such that (like the example in the exercise)

X1 = −1, X2 = −1− 2, . . . , Xn−1 =

n−1∑
k=1

2k−1, Xn =

n−1∑
k=1

2k−1 + 2n−1 = 1

(5) It may be useful to recall that (−Xn,Fn) is a submartingale, and (−Xτk ,Fτk) is a

supermatingale.

6: Show and use that ((−Xn)+) is uniformly integrable.

◦

Hints for exercise 5.20.

(1) Use x+ ≤ 1 + |x|p to show supEX+
n <∞.

(2) For E|X|p <∞, apply Fatou’s lemma to E|X|p = E lim infn |Xn|p. For Xn
Lp→ X, show

that |Xn −X|p ≤ 2p supn |Xn|p and use dominated convergence on E
(
|Xn −X|p

)
.

(3) Hint: Write P (Z ≥ t) =
∫∞

0
1[t,∞)(x) dZ(P )(x) and apply Tonelli’s Theorem to the

right hand side. Use that 1[t,∞)(x) = 1[0,x](t).
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(4) Combine (3) and Doob’s inequality from Exercise 5.13.

(5) Apply Toenlli’s theorem to the double integral in (4).

(6) Apply Hölder to E(Mp−1
n |Xn|) (use that 1

p/(p−1) + 1
p = 1). Combine with the inequality

from (5).

(7) Write E
[

supn |Xn|p
]

= E
(

limnM
p
n

)
and use monotone convergence together with the

inequality from (6).

◦

Hints for exercise 5.21.

(2) Realize that if τa,b > nm, then especially

Sm, S2m, S3m, . . . , Snm ∈ (a, b)

Which leads to the conclusion that

|Sm − S0| < b− a, |S2m − Sm| < b− a, . . . , |Snm − S(n−1)m| < b− a .

Use that all these differences are independent and identically distributed.

(3) Use (2). Choose a fixed m such that P (|Sm| < b− a) < 1 and let n→∞. The second

statement is trivial.

(4) For the first result, use optional sampling for the martingale (Sn,Fn) and e.g. the

two bounded stopping times 1 and τa,b ∧ n. For the second result, let n → ∞ using

dominated (since Sτa,b∧n is bounded) and monotone convergence.

(5) Write ESτa,b = aP (Sτa,b = a) + bP (Sτa,b = b). Use (3).

(6) Apply the arguments from (4) to the martingale (S2
n−n,Fn). For the second statement,

use that the distribution of Sτa,b is well–known from (5).

(7) Use (3).

(8) Use that on F we have τ−n,b = τb if and only if Sτ−n,b = b.

(9) Use and show that if ω ∈ G, then τb(ω) <∞.

(10) Use that τ−n,b ↑ τb as n→∞.



256 Hints for exercises

(11) See that ESτb 6= ES1 and compare with Theorem 5.4.9.

(12) Write

(sup
n∈N

Sn =∞) =

∞⋂
n=1

(τn <∞)

◦

Hints for exercise 5.22.

(2): Define the triangular array (Xnm) by

Xnm =
1√

nα2σ2
Zm−1Ym

and use Brown’s Theorem to show that

1√
nα2σ2

Mn
wk−→ N (0, 1) ,

(4) Recall that EYn = 0.

(5) Show that supn∈NEN
2
n <∞ and use the

(6) Use appropriate theorems from Chapter 5.

(9) Use the almost sure convergence from (6) and Kronecker’s lemma.

(11) Use the result from (2) with Zm = Ym for all m ≥ 0. Use (10) to see that the

assumptions are fulfilled.

◦

B.6 Hints for Chapter 6

Hints for exercise 6.1. Find the distribution of (X̃t1 , . . . , X̃tn). ◦

Hints for exercise 6.2. Show the result in two steps:

(1) Show that P (D1 ∩D2) = P (D1)P (D2) for all D1 ∈ D1, D2 ∈ σ(D2).
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(2) Show (6.20).

For (1): Let D1 ∈ D1 and define

ED1
= {F ∈ σ(D2) : P (D1 ∩ F ) = P (D1)P (F )}

and then show that ED1
= σ(D2) using Lemma A.2.2. Note that you already have D2 ⊆

ED1
⊆ σ(D2).

For (2): Let A ∈ σ(D2) and define

EA = {F ∈ F(D1) : P (F ∩A) = P (F )P (A)} .

Show that EA = σ(D2) (as for (1)). ◦

Hints for exercise 6.3. Show that D ⊥⊥ σ(Xu −Xt) and use Exercise 6.2. ◦

Hints for exercise 6.4. Write Xt = Xt −Xs +Xs and use Exercise 6.3. ◦

Hints for exercise 6.6. Show that the finite–dimensional distributions are the same. ◦

Hints for exercise 6.7.

(1) Find H > 0 such that for all γ > 0 and all 0 ≤ t1 < · · · < tn

(Xγt1 , . . . , Xγtn)
D
= (γHXt1 , . . . , γ

HXtn) .

(2) Use both of the assumptions: stationary increments and self–similarity.

(3) Use (2) and the assumption P (X1 = 0) = 0.

(4) You need to show that for some t ≥ 0 and tn → t, then for all ε > 0

lim
n→∞

P (|Xtn −Xt| > ε) = 0 .

Use (2).

◦

Hints for exercise 6.8.
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(1) Write Cn,M on the form

Cn,M =
{
x ∈ C[0,∞)

∣∣ sup
q∈[n,n+1]∩Q

xq
q
>

1

M

}
=

⋃
q∈[n,n+1]∩Q

(|X̃q| . . .)

(2) Use that

(Y ∈ Cn,M ) =
(

sup
q∈[n,n+1]∩Q

|Yq|
q

>
1

M

)
and Lemma 6.2.9.

(3) For the first result use Markov’s inequality and that EU4 = 3 if U ∼ N (0, 1).

(4) Use Borel–Cantelli.

(5) Start showing that

P

((
sup

t∈[n,n+1]

|Yt|
t
≤ 1

M

)
evt.

)
= 1 .

for all M ∈ N.

(6) Use (5).

◦

B.7 Hints for Appendix A

Hints for exercise A.1. To obtain the supremum, use that weak inqeualities are preserved by

limits. ◦

Hints for exercise A.2. To obtain the supremum, use Lemma A.1.3 and the fact that Q is

dense in R. ◦

Hints for exercise A.3. Apply Fatou’s lemma to the sequence (g − fn)n≥1. ◦
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Cb(R), 61

C∞b (R), 84

C∞b (Rd), 95

Cub (R), 61

C[0,∞), 206

[ · ], 238

BC, 72

B[0,∞), 192

C[0,∞), 207

I(X), 48

IT , 36

R∗, 229

R[0,∞), 192

σ-algebra, 2, 233

Borel, 2

generated by a family of sets, 2

generated by a family of variables, 3

infinite-dimensional Borel, 45

Adapted sequence, 137

Asymptotic normality, 92

and convergence in probability, 92

and transformations, 93

Bimeasurable map, 125

Birkhoff-Khinchin ergodic theorem, 38

Borel-Cantelli lemma, 12, 20

Bounded, signed measure, 104

absolute continuity, 107

concentrated on set, 107

continuity, 104

density, 106, 107

given as integral, 106

properties, 104

Radon-Nikodym derivative, 107

relation to positive measure, 105

singularity, 107

Brownian motion, 194

continuous version, 201

drift, 194

existence, 194

finite-dimensional distribution, 195

law of the iterated logarithm, 217

normalised, 194, 223

points with value 0, 221

quadratic variation of, 212

variance, 194

variation of, 212

Bump function, 61

Cauchy sequence, 14

Central limit theorem

classical, 87, 88, 91

Lindeberg’s, 89

Lyapounov’s, 91

martingale, 172

Change-of-variable formula, 237

Characteristic function, 75

and convolutions, 80

and linear transformations, 77

and the exponential distribution, 78

and the Laplace distribution, 79
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and the normal distribution, 78

properties, 75

uniqueness of, 83

Chebychev–Kolmogorov inequality, the, 179

Closing of martingales, 156

Complex conjugate, 72

Conditional expectation

and independence, 120

and monotone convergence, 120

existence, 117

given σ-algebra, 116

given Y = y, 127

given finite σ-algebra, 118

given random variable, 124

Jensen’s inequality for, 120

properties, 119

uniform integrability, 180

uniqueness, 117

Confidence interval, 94, 98

Continuity in probability, 200

Convergence

Almost surely, 12

almost surely, 4

and limes superior and limes inferior, 232

completeness of modes of, 14

in Lp, 4

in distribution, 4

in law, 4

In probability, 12

in probability, 4

Khinchin-Kolmogorov theorem, 22

relationship between modes of, 8

stability properties, 7, 10

uniqueness of limits, 6

weak, of probability measures, 60

Convolution, 79

Delta method, the, 93

Dirac measure, 66

Dominated convergence theorem, the, 236

Doob’s Inequality, 179

Down-crossing, 146

and convergence, 146

lemma, 149

number of, 148

Drift of Brownian motion, 194

Dynkin’s lemma, 2, 234

Ergodic theorem for stationary processes, 49

Ergodicity, 36

of a stochastic process, 47, 48

sufficient criteria for, 40–42

Eventually, 11

Fatou’s lemma, 235

Favourable game, 134

Filtration, 137

Finite-dimensional distribution of stochastic

process, 193

Fubini’s theorem, 236

Gambling theory, 134

Hölder’s inequality, 237

Image measure, 237

Independence

of σ-algebras, 15

of events, 17

of random variables, 17

of transformed variables, 18

sufficient criteria for, 16

Infimum, 229

Infinitely often, 11

Integer part function, 238

Integral

of complex functions, 72

Invariant σ-algebra, 36
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of stationary process, 48

Invariant random variable, 36

measurability, 36

Iterated logarithm, law of, 217

Jacobian, 96

Jensen’s inequality, 236

for conditional expectation, 120

Jordan-Hahn decomposition, the, 108

Khinchin-Kolmogorov theorem, the, 22

Kolmogorov’s consistency theorem, 194, 239

Kolmogorov’s three-series theorem, 24

Kolmogorov’s zero-one law, 19

Law of the iterated logarithm, 217

Lebesgue decomposition, the, 111

Limes inferior, 231

Limes superior, 231

Lower bound, 229

Martingale, 137

central limit theorem, 172

closing of, 156

continuous time, 224

convergence theorem, the, 146

integral definition of, 138

optional sampling, 141

sub-, 137

super-, 137

Martingale difference, 165

and martingales, 165

array, 166

compensator, 166

square-integrable, 165

Maximal ergodic lemma, 37

Maximal inequality

Kolmogorov’s, 21

Measurability, 3, 235

σ-algebra generated by variable, 125

Measurable space, 234

Measure, 234

bounded, positive, 104

bounded, signed, 104

Measure preservation, 36

sufficient criteria for, 40

Measure space

σ-finite, 234

Mixing, 42

Monotone convergence theorem, the, 235

Nowhere monotone function, 207

Brownian motion, 212

Optional sampling, 141, 160

at sequence of sampling times, 145

bounded stopping times, 144

infinite stopping times, 160

Probability measure, 2

σ-additivity, 2

downwards continuity, 3

of measurable functions, 235

uniqueness, 234

upwards continuity, 3

Probability space, 2

filtered, 137

Quadratic variation, 211

and variation, 211

of Brownian motion, 212

Radon-Nikodym

derivative, 107

theorem, the, 114

Random variable, 3

p’th moment of, 3

mean of, 3

Random walk, 165

Riesz-Fischer theorem, the, 238
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Sampling times, sequence of, 144

Scheffé’s lemma, 65

Shift operator, 47

Slutsky’s lemma, 70

Stochastic process

adapted, 137

at infinite stopping time, 160

at stopping time, 140, 160

continuous-time, 192

discrete-time, 3

distribution of, 46, 193

down-crossings, number of, 148

finite-dimensional distribution, 193

sample path, 197

stationary, 47

version of, 198

Stopping time, 138

σ-algebra, 140

finite, 138

optional sampling, 160

Strategy, 134

Strong law of large numbers, 27

Submartingale, 137

closing of, 156

convergence of, 146

integral definition of, 138

Sum of independent variables, 21

divergence of, 21

Supermartingale, 137

Supremum, 229

Tail σ-algebra, 19

Taylor expansion, 239

Taylor’s theorem, 239

Tightness, 63

Tonelli’s theorem, 236

Triangular array, 88, 166

Uniform integrability, 151

and L1-convergence, 154

and closing, 156

finite family of variables, 151

Uniform norm, 63

Upper bound, 229

Urysohn function, 61

Variance of Brownian motion, 194

Variation, 208

and quadratic variation, 211

bounded, 209

of Brownian motion, 212

of monotone function, 209

properties, 208

unbounded, 210

Version

continuous, 200

of stochastic process, 198

Weak convergence of probability measures

and characteristic functions, 84

and continuous transformations, 71

and convergence in probability, 70

and distribution functions, 67, 68

examples, 66

in higher dimensions, 95

relation to convergence of variables, 60

stability properties, 64

sufficient criteria for, 84

uniqueness of limits, 62

Weak mixing, 42

Weak stationarity, 56
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