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Abstract

We compare the absolute and relative de Rham-Witt complexes considered by the au-
thor and Madsen [7, 6] and by Langer and Zink [13], which both generalize the classical
de Rham-Witt complex of Bloch, Deligne, and Illusie [9] from Fp-schemes to Z(p)-schemes.
From this comparison, we derive a Gauss-Manin connection on the crystalline cohomology
of X/Wn(S) for a smooth family X/S.

Introduction

Let f : X → S be a morphism of noetherian Z(p)-schemes and suppose that p is odd and nilpotent
on S. There is a canonical surjective map

WnΩ·
X →WnΩ·

X/S

from the absolute de Rham-Witt complex of X considered by the author and Madsen [7] to the
relative de Rham-Witt complex of X/S considered by Langer and Zink [13]. In the classical case,
where S is a perfect Fp-scheme, the map is an isomorphism and the common complex coincides
with the de Rham-Witt complex of Bloch, Deligne, and Illusie [9]. In general, the terms of the
complexes are quasi-coherent Wn(OX)-modules on the small étale site of X, and the differential of
the relative de Rham-Witt complex is f−1Wn(OS)-linear. The kernel I of the projection is equal to
the differential graded ideal generated by the image of the canonical map f−1WnΩ1

S →WnΩ1
X . The

graded pieces for the I-adic filtration are differential graded modules over the differential graded
ring WnΩ·

X/S , and hence, complexes of quasi-coherent f−1Wn(OS)-modules on the small étale site
of X. We show that the absolute and relative de Rham-Witt complexes are related as follows.

Theorem A. Let f : X → S be a smooth morphism of noetherian Z(p)-schemes and suppose that
p is odd and nilpotent on S. Then there is a canonical isomorphism

f−1WnΩs
S ⊗L

f−1Wn(OS) WnΩ·−s
X/S

∼−→ grs
IWnΩ·

X

in the derived category of quasi-coherent f−1Wn(OS)-modules.

By Langer and Zink [13, Thm. 3.5], there is a canonical isomorphism

Hq
crys(X/Wn(S)) ∼−→ Hq(X,WnΩ·

X/S).

Suppose that S = SpecR is affine and that the groups Hq
crys(X/Wn(S)) are flat Wn(R)-modules.

This is true, for instance, if X is an abelian S-scheme [2]. Then the isomorphism of Thm. A gives
rise to an integrable Gauss-Manin connection

∇ : Hq
crys(X/Wn(S)) →WnΩ1

R ⊗Wn(R) H
q
crys(X/Wn(S))

on the crystalline cohomology groups. The structure of WnΩ1
R is not well-understood in general,
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but see [6, 4] for some partial results. However, we have

WnΩ1
Z(p)

=
∏

16s<n

Z/psZ · dV s([1]n−s).

The Gauss-Manin connection constructed here is related to the monodromy operator of Hyodo and
Kato [8] on log-crystalline cohomology; see Rem. 3.5 below.

We remark that the proof of Thm. A given here also works in the relative situation, where
f : X → S and g : S → T are morphisms of Z(p)-schemes with f smooth and with p odd and
nilpotent on T . If I denotes the kernel of the projection

WnΩ·
X/T →WnΩ·

X/S ,

then we obtain a canonical isomorphism

f−1WnΩs
S/T ⊗

L
f−1Wn(OS) WnΩ·−s

X/S

∼−→ grs
IWnΩ·

X/T

in the derived category of quasi-coherent f−1Wn(OS)-modules. This slightly generalizes and gives
a new proof of a result of Langer and Zink [12, Prop. 2].

The proof of Thm. A is based on a formula for the absolute de Rham-Witt complex of the
polynomial algebra A[T1, . . . , Td] in terms of that of A. In fact, we prove a slightly stronger result.
Let I be the kernel of the canonical projection

WnΩ·
A[T1,...,Td] � WnΩ·

A[T1,...,Td]/A

from the absolute to the relative de Rham-Witt complex. We then give a formula for the graded
pieces for the I-adic filtration of the left-hand side in terms of the absolute de Rham-Witt complex
of A. The formula is similar to the formula for the right-hand side given by Langer and Zink [13,
Thm. 2.8]. In particular, the following notation from loc. cit. will be used.

Let N0[1p ] denote the set of non-negative rational numbers with denominator a power of p. We
define a weight of rank d to be a function

k : {1, 2, . . . , d} → N0[1p ]

and the filtration of k to be the smallest non-negative integer u(k) with the property that pu(k)k
takes integer values. We choose, for every weight k, a total ordering

supp(k) = {i1, . . . , is}

of the support such that vp(ki1) 6 · · · 6 vp(kis). We then say that a partition of the support into
intervals

P : supp(k) = I0 t I1 t · · · t I`
is admissible, if for all 1 6 s 6 `, the interval Is is non-empty and the elements of Is are greater
than the elements of Is−1. The non-negative integer ` is called the length of the partition.

We inductively prove the following result starting from the case d = 1, which was proved by the
author and Madsen in [7, Thm. B]. The statement for s = 0 was proved by Langer and Zink [13,
Thm. 2.8] by different methods.

Theorem B. Let A be a Z(p)-algebra, where p is an odd prime. Then there is a canonical isomor-
phism of abelian groups ⊕

(k,P)

Wn−u(k)Ω
s
A

∼−→ grs
I WnΩq

A[T1,...,Td]

where, on the left-hand side, the sum runs over all weights k of rank d and filtration 0 6 u(k) < n
and over all admissible partitions P of supp(k) of length ` = q − s.
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The paper consists of three paragraphs, where the first and second contains the proofs of theo-
rems B and A, respectively. In the final paragraph three, we prove a version of theorems A and B
for the de Rham-Witt complex with log-poles.

We denote by N (resp. by N0, resp. by N0[1p ]) the set of positive integers (resp. non-negative
integers, resp. non-negative rational numbers whose denominator is a power of p). By a pro-object
of a category C we mean a functor from N, viewed as a category with one arrow from n+ 1 to n, to
C, and by a strict map between pro-objects we mean a natural transformation.

The results of this paper are much inspired by the work of Langer and Zink [12]. I would like to
thank Thomas Zink for explaining this work to me and for suggesting that similar results might hold
in the situation considered here. This paper was written in part while the author was visiting the
University of Tokyo. I would like to express my sincere gratitude to the university and to Takeshi
Saito in particular for the kind hospitality and generous support that I received. Finally, I would
like to thank the anonymous referee for a very careful reading of an earlier version of this paper.

1. Polynomial extensions

Let f : R → A be a map of Z(p)-algebras, where p is an odd prime. We briefly recall the definition
of the canonical projection

WnΩ·
A →WnΩ·

A/R

from the absolute to the relative de Rham-Witt complex. The reader is referred to [7, 13] for more
details.

We recall from [7] that a Witt complex over a Z(p)-algebra A is defined to be a quadruple
(E, λ, F, V ) where E = {E·

n}n∈N is a pro-differential graded ring, λ is a strict map of pro-rings
λ : Wn(A) → E0

n from the pro-ring of Witt vectors in A, F is a strict map of pro-graded rings
F : E·

n → E·
n−1 such that λF = Fλ and such that for all a ∈ A, Fdλ([a]n) = λ([a]n−1)p−1dλ([a]n−1),

and V is a strict map of graded E·
n-modules V : F∗E·

n−1 → E·
n such that λV = V λ, FdV = d, and

FV = p. A map of Witt complexes over A is a strict map of pro-differential graded rings f : E∗
· → E′

·
∗

such that λ′ = fλ, F ′f = fF and V ′f = fV . We also recall from [7, Lemma 1.2.1] that the relations
dF = pFd and V d = pdV hold in every Witt complex.

The absolute de Rham-Witt complex WnΩ·
A considered by the author and Madsen [7] is defined

to be the initial example of a Witt complex over A. It is proved in [7, Thm. A] that the initial
object exists and that the canonical map

λ : Ω·
Wn(A) →WnΩ·

A

is surjective. Similarly, the relative de Rham-Witt complex WnΩ·
A/R considered by Langer and

Zink [13] is defined to be the initial example of a Witt complex over A with Wn(R)-linear differen-
tials. The proof of [7, Thm. 3] shows that the initial object exists and that the canonical map

λ : Ω·
Wn(A)/Wn(R) →WnΩ·

A/R

is surjective, but see also [13, Prop. 1.6] for a different and somewhat more direct construction.

Lemma 1.1. Let f : R → A be a map of Z(p)-algebras with p odd. Then there is a unique and
surjective map of Witt complexes

π : WnΩ·
A →WnΩ·

A/R

and the kernel is equal to the differential graded ideal generated by the image of the canonical map
WnΩ1

R →WnΩ1
A.

Proof. Since a Witt complex over A with Wn(R)-linear differentials is, in particular, a Witt complex
over A, there exists a unique map of Witt complexes as in the statement. Similarly, there is a
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commutative diagram of pro-differential graded rings

Ω·
Wn(A)

λ //

��

WnΩ·
A

π

��

Ω·
Wn(A)/Wn(R)

λ // WnΩ·
A/R

where the left-hand vertical map is the canonical projection. Since the left-hand vertical map and
the lower horizontal map are both surjective, so is the right-hand vertical vertical map.

It remains to show that the kernel of the map of the statement is equal to the differential graded
ideal In ⊂ WnΩ·

A generated by the image of the canonical map WnΩ1
R → WnΩ1

A. The map of the
statement induces a canonical surjective map

(WnΩ·
A)/In →WnΩ·

A/R.

To produce an inverse map, we will show that the differential graded rings on the left-hand side
form a Witt complex over A with Wn(R)-linear differentials. It suffices to show that F (In) ⊂ In−1

and V (In−1) ⊂ In. We prove the first statement. It suffices to show that for all x ∈ Wn(R), the
element Fdλ(f(x)) ∈WnΩ1

A is contained in In−1. We can write x ∈Wn(R) uniquely as

x = [x0]n + V [x1]n−1 + · · ·+ V n−1[xn−1]1,

and hence, suppressing the map f from the notation, we have

Fdλ(x) = Fdλ([x0]n) + FdV λ([x1]n−1) + · · ·+ FdV n−1λ([xn−1]1)

= λ([x0]n−1)p−1dλ([x0]n−1) + dλ([x1]n−1) + · · ·+ dV n−2λ([xn−1]1).

The lemma follows.

Let f : A → A′ be a map of Z(p)-algebras, where p is an odd prime. It was proved in [7,
Prop. 1.2.3] that the map f gives rise to an adjoint pair of functors (f∗, f∗) between the categories
of Witt complexes over A and A′. Since a left adjoint functor preserves colimits, the canonical map

WnΩ·
A′ → f∗WnΩ·

A

is an isomorphism. In Thm. 1.2 below, we give a formula for the inverse image functor f∗ associated
with the map f : A→ A[T1, . . . , Td] that includes the constant polynomials. The proof is by induction
starting from the case d = 1 which was proved by the author and Madsen in [7, Thm. B].

Let A be a Z(p)-algebra with p odd, and let E be a Witt complex over A. Let

k : {1, 2, . . . , d} → N0[1p ].

be a weight of rank d and filtration 0 6 u(k) < n, and let

I = {is+1, . . . , is+m} ⊂ supp(k)

be an interval with respect to the chosen total ordering. We write kI for the weight with kI(i) = k(i),
if i ∈ I, and kI(i) = 0, otherwise, and let XkI be the image of

[Tis+1 ]
kis+1

n−u(k) . . . [Tis+m ]
kis+m

n−u(k) = [T
kis+1

is+1
. . . T

kis+m

is+m
]n−u(k)

by the ring homomorphism

λ : Wn−u(k)(A[T1, . . . , Td]) → (f∗E)0n−u(k)

which is part of the structure of a Witt complex over A[T1, . . . , Td]. Finally, let

P : supp(k) = I0 t I1 t · · · t I`
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be an admissible partition of supp(k) of length 0 6 ` < q. We associate to the pair (k,P) the map
of abelian groups

e(k,P) : Eq−`
n−u(k) → (f∗f∗E)q

n = (f∗E)q
n

that takes ξ to the basic Witt differential e = e(k,P)(ξ) of one of the following four types (A)–(D).
Let t(I) = max{−vp(ki) | i ∈ I}, and let η : E → f∗f

∗E is the unit of the adjunction (f∗, f∗).
(A) If I0 6= ∅ and if k is not integral, then

e = V u(k)(η(ξ)Xpu(k)kI0F u(k)−t(I1)dXpt(I1)kI1 . . . F u(k)−t(I`)dXpt(I`)kI` ).

(B) If I0 6= ∅ and if k is integral, then

e = η(ξ)XkI0F−t(I1)dXpt(I1)kI1 . . . F−t(I`)dXpt(I`)kI` .

(C) If I0 = ∅ and if k is not integral, then

e = dV u(k)(η(ξ)Xpu(k)kI1F u(k)−t(I2)dXpt(I2)kI2 . . . F u(k)−t(I`)dXpt(I`)kI` ).

(D) If I0 = ∅ and if k is integral, then

e = η(ξ)F−t(I1)dXpt(I1)kI1 . . . F−t(I`)dXpt(I`)kI` .

We note that the definition of the basic Witt differential given here is equivalent to the definition
given in [13, (2.15)–(2.17)]. In the following, we shall often suppress the unit η in the notation. We
prove the following result by induction on the number of variables d starting from the basic case
d = 1 which was proved in [7, Thm. B].

Theorem 1.2. Let E be a Witt complex over a Z(p)-algebra A, where p is an odd prime, and let
f : A→ A[T1, . . . , Td] be the inclusion of the constant polynomials. Then the basic Witt differentials
define an isomorphism of abelian groups

e :
⊕
(k,P)

Eq−`
n−u(k)

∼−→ (f∗E)q
n.

Here the sum on the left-hand side runs over all weights k of rank d and filtration 0 6 u(k) < n
and over all admissible partitions P of supp(k).

We spell out the statement of the theorem for d = 1. Let k be a weight of rank one. If k is zero,
then supp(k) = ∅, the only admissible partition is P : supp(k) = I0, and e(k,P)(ξ) = η(ξ). If k is
non-zero, then supp(k) = {1}, there are two possible admissible partitions P0 : supp(k) = I0 and
P1 : supp(k) = I1, e(k,P0)(ξ) = V u(k)(η(ξ)Xpu(k)k), and e(k,P1)(ξ) is either η(ξ)F−t(k)dXpt(k)k =
η(ξ)pt(k)kXk−1dX or dV u(k)(η(ξ)Xpu(k)k) as k is integral or not.

As mentioned above, the proof of Thm. 1.2 is by induction on the rank d. In the induction step,
we shall use the following combinatorial result.

Lemma 1.3. The following formula gives a bijection between the set of pairs of weights (k′, k′′) with
domain {0} and {1, 2, . . . , d} and the set of weights k with domain {0, 1, 2, . . . , d}.

k(i) =

{
p−u(k′′)k′(0) if i = 0,

k′′(i) if i > 0.

For each weight k with domain {0, 1, 2, . . . , d}, let a total ordering supp(k) = {i1, . . . , ir} be chosen
such that vp(i1) 6 · · · 6 vp(ir), and give supp(k′) and supp(k′′) the induced total orderings. Then
the following formulas establish a bijection between the set of pairs of admissible partitions (P ′,P ′′)
of supp(k′) and supp(k′′) and the set of admissible partitions P of supp(k). We write (I–II–III) to
indicate that (k′,P ′) is type I, that (k′′,P ′′) is type II, and that (k,P) is type III.
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Case (A–A–A). Let I0 = {0} ∪ I ′′0 and Is = I ′′s , for 0 < s 6 `′′.

Case (B–A–A). If there exists 0 6 s < `′′ such that every element of I ′′s+1 is larger than 0, let m
be the smallest such s; otherwise, let m = `′′. Then Is = I ′′s , if s 6= m, and Im = I ′′m ∪ {0}.

Case (C–A–A). Let I0 = {0} and Is = I ′′s−1, for 0 < s 6 `.

Case (D–A–A). If there exists 0 6 s < `′′ such that every element of I ′′s+1 is larger than 0, let
m be the smallest such s; otherwise, let m = `′′. Write I ′′m = I ′′m,1 t I ′′m,2 with every element of I ′′m,1

smaller than 0 and every element of I ′′m,2 larger than 0. If m = 0 and I ′′0,1 = ∅, let I0 = {0}, and let
Is = I ′′s−1, for 0 < s 6 `. Otherwise, let Is = I ′′s , for 0 6 s < m, let Im = I ′′m,1 and Im+1 = {0}∪I ′′m,2,
and let Is = I ′′s−1, for m+ 1 < s 6 `.

Case (A–B–A). Let I0 = {0} ∪ I ′′0 and Is = I ′′s , for 0 < s 6 `′′.

Case (B–B–B). If there exists 0 6 s < `′′ such that every element of I ′′s+1 is larger than 0, let m
be the smallest such s; otherwise, let m = `′′. Then Is = I ′′s , if s 6= m, and Im = I ′′m ∪ {0}.

Case (C–B–C). Let I1 = {0} ∪ I ′′0 , and let Is = I ′′s−1, for 1 < s 6 `.

Case (D–B–B). If there exists 0 6 s < `′′ such that every element of I ′′s+1 is larger than 0, let
m be the smallest such s; otherwise, let m = `′′. Write I ′′m = I ′′m,1 t I ′′m,2 with every element of I ′′m,1

smaller than 0 and every element of I ′′m,2 larger than 0. If m = 0 and I ′′0,1 = ∅, let I0 = {0}, and let
Is = I ′′s−1, for 0 < s 6 `. Otherwise, let Is = I ′′s , for 0 6 s < m, let Im = I ′′m,1 and Im+1 = {0}∪I ′′m,2,
and let Is = I ′′s−1, for m+ 1 < s 6 `.

Case (A–C–C). If there exists 1 6 s < `′′ such that every element of I ′′s+1 is larger than 0, let m
be the smallest such s; otherwise, let m = `′′. Then Is = I ′′s , if s 6= m, and Im = I ′′m ∪ {0}.

Case (B–C–C). If there exists 1 6 s < `′′ such that every element of I ′′s+1 is larger than 0, let m
be the smallest such s; otherwise, let m = `′′. Then Is = I ′′s , if s 6= m, and Im = I ′′m ∪ {0}.

Case (C–C–C). Let I1 = {0}, and let Is = I ′′s−1, for 1 < s 6 `.

Case (D–C–C). If there exists 1 6 s < `′′ such that every element of I ′′s+1 is larger than 0, let
m be the smallest such s; otherwise, let m = `′′. Write I ′′m = I ′′m,1 t I ′′m,2 with every element of I ′′m,1

smaller than 0 and every element of I ′′m,2 larger than 0. If m = 1 and I ′′1,1 = ∅, let I1 = {0}, and let
Is = I ′′s−1, for 1 < s 6 `. Otherwise, let Is = I ′′s , for 1 6 s < m, let Im = I ′′m,1 and Im+1 = {0}∪I ′′m,2,
and let Is = I ′′s−1, for m+ 1 < s 6 `.

Case (A–D–A). Let I0 = {0}, and let Is = I ′′s , for 0 < s 6 `.

Case (B–D–D). If there exists 1 6 s < `′′ such that every element of I ′′s+1 is larger than 0, let m
be the smallest such s; otherwise, let m = `′′. Then Is = I ′′s , if s 6= m, and Im = I ′′s ∪ {0}.

Case (C–D–C). Let I1 = {0}, and let Is = I ′′s−1, for 1 < s 6 `.

Case (D–D–D). If there exists 1 6 s < `′′ such that every element of I ′′s+1 is larger than 0, let
m be the smallest such s; otherwise, let m = `′′. Write I ′′m = I ′′m,1 t I ′′m,2 with every element of I ′′m,1

smaller than 0 and every element of I ′′m,2 larger than 0. If m = 1 and I ′′1,1 = ∅, let I1 = {0}, and let
Is = I ′′s−1, if 1 < s 6 `. Otherwise, let Is = I ′′s , for 1 6 s < m, let Im = I ′′m,1 and I ′′m+1 = {0} ∪ I ′′m,2,
and let Is = I ′′s−1, for m+ 1 < s 6 `.

Proof. The assignment of the weight k to the pair of weights (k′, k′′) is a bijection. Indeed, the
inverse assignment associates to a weight k with domain {0, 1, 2, . . . , d}, the pair of weights (k′, k′′)
with domain {0} and {1, 2, . . . , d}, where k′′ is obtained from k by restriction, and where k′ is given
by k′(0) = pu(k′′)k(0). We note that u(k) = u(k′) + u(k′′) and ` = `′ + `′′.

To prove that the assignment of the partition P to the pair of partitions (P ′,P ′′) is a bijection
we explicitely give the inverse function. In all cases, the partition P ′ is uniquely determined, so we
only give the partition P ′′. We consider the cases where k′ and k′′ are integral and not integral
separately.

Suppose first that k′ and k′′ are both not integral.
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Case (A–A–A). The partition P ranges over all type A partitions of supp(k) such that I0 6= {0}.
We let I ′′0 = I0 r {0} and I ′′s = Is, for 0 < s 6 `′′.

Case (C–A–A). The partition P ranges over all type A partitions of supp(k) such that I0 = {0}.
We define I ′′s = Is+1.

Case (A–C–C). The partition P ranges over all type C partitions of supp(k) such that I1 6= {0}.
We let I ′′1 = I1 r {0} and I ′′s = Is, for 1 < s 6 `′′.

Case (C–C–C). The partition P ranges over all type C partitions of supp(k) such that I1 = {0}.
We define I ′′s = Is+1.

Suppose next that k′ is integral and that k′′ is not integral.
Case (B–A–A). The partition P ranges over all type A partitions of supp(k) such that I0 6= {0}

and such that min Is 6= 0, for all 0 < s 6 `. We let I ′′s = Is, if 0 /∈ Is, and I ′′s = Is r {0}, if 0 ∈ Is.
Case (D–A–A). The partition P ranges over all type A partitions of supp(k) such that I0 = {0}

or such that min Is = 0, for some 0 < s 6 `. If I0 = {0}, we let I ′′s = Is+1. If I0 6= {0}, then
0 ∈ Im+1, for some 0 6 m 6 `′′, and we let I ′′s = Is, for 0 6 s < m, I ′′m = Im ∪ (Im+1 r {0}), and
I ′′s = Is+1, for m < s 6 `′′.

Case (B–C–C). The partition P ranges over all type C partitions of supp(k) such that I1 6= {0}
and such that min Is 6= 0, for all 1 < s 6 `. We let I ′′s = Is, if 0 /∈ Is, and I ′′s = Is r {0}, if 0 ∈ Is.

Case (D–C–C). The partition P ranges over all type C partitions of supp(k) such that I1 = {0}
or such that min Is = 0, for some 1 < s 6 `. If I1 = {0}, we let I ′′s = Is+1. If I1 6= {0}, then
0 ∈ Im+1, for some 1 6 m 6 `′′, and we let I ′′s = Is, for 1 6 s < m, I ′′m = Im ∪ (Im+1 r {0}), and
I ′′s = Is+1, for m < s 6 `′′.

We next suppose that k′ is not integral and that k′′ is integral.
Case (A–B–A). The partition P ranges over all type A partitions of supp(k) such that I0 6= {0}.

We let I ′′0 = I0 r {0} and I ′′s = Is, for 0 < s 6 `′′.
Case (C–B–C). The partition P ranges over all type C partitions of supp(k) such that I1 6= {0}.

We let I ′′0 = I1 r {0} and I ′′s = Is+1, for 0 < s 6 `′′.
Case (A–D–A). The partition P ranges over all type A partitions of supp(k) such that I0 = {0}.

We let I ′′s = Is, for 1 6 s 6 `′′.
Case (C–D–C). The partition P ranges over all type C partitions of supp(k) such that I1 = {0}.

We let I ′′s = Is+1, for 1 6 s 6 `′′.
Finally, we suppose that k′ and k′′ are both integral.
Case (B–B–B). The partition P ranges over all type B partitions of supp(k) such that I0 6= {0}

and such that min Is 6= 0, for all 0 < s 6 `. We let I ′′s = Is, if 0 /∈ Is, and I ′′s = Is r {0}, if 0 ∈ Is.
Case (D–B–B). The partition P ranges over all type B partitions of supp(k) such that I0 = {0}

or such that min Is = 0, for some 0 < s 6 `. If I0 = {0}, we let I ′′s = Is+1, for 0 6 s 6 `′′. If I0 6= {0},
then 0 ∈ Im+1, for some 0 6 m 6 `′′, and we let I ′′s = Is, for 0 6 s < m, I ′′m = Im ∪ (Im+1 r {0}),
and I ′′s = Is+1, for m < s 6 `′′.

Case (B–D–D). The partition P ranges over all type D partitions of supp(k) such that min Is 6= 0,
for all 1 < s 6 `. We let I ′′s = Is, if 0 /∈ Is, and I ′′s = Is r {0}, if 0 ∈ Is.

Case (D–D–D). The partition P ranges over all type D partitions of supp(k) such that min Is = 0,
for some 1 < s 6 `. Then 0 ∈ Im+1, for some 1 6 m < `′′, and we define I ′′s = Is, for 1 6 s < m,
I ′′m = Im ∪ (Im+1 r {0}), and I ′′s = Is+1, for m < s 6 `′′.

Proof of Thm. 1.2. The proof is by induction on the rank d starting from the case d = 1 which
was proved in [7, Thm. B]. So we assume that the statement of Thm. 1.2 is true for d and prove
it is true for d + 1. Let f ′ : A → A[T0], f ′′ : A[T0] → A[T0][T1, . . . , Td], and f : A → A[T0, . . . , Td]
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be the inclusions of the constant polynomials. Let k′ and k′′ be two weights with domain {0}
and {1, 2, . . . , d}, and let k be the corresponding weight with domain {0, 1, 2, . . . , d} given by the
bijection of Lemma 1.3. We choose a total ordering

supp(k) = {i1, . . . , ir}

such that vp(i1) 6 · · · 6 vp(ir) and give supp(k′) and supp(k′′) the induced total orderings. We
define a total ordering on the set of admissible partitions of supp(k) as follows. Two admissible
partitions P and P ′ of supp(k) are either equal or there exists a smallest s such that the cardinality
of Is and I ′s are not equal. In the latter case, we define P to be less than P ′ if the cardinality of
Is is less than the cardinality of I ′s and vice versa. We note that the admissible partition with I0
the whole set is the largest and the admissible partition with I0 empty and the remaining Is a
one-element set is the smallest.

Let P ′ be an admissible partition of supp(k′) of length `′, let P ′′ be an admissible partition of
supp(k′′) of length `′′, and let ` = `′ + `′′. We claim that the composite

Eq−`
n−u(k)

e(k′,P ′)−−−−−→ (f ′∗E)q−`′′

n−u(k′′)

e(k′′,P ′′)−−−−−→ (f ′′∗f ′∗E)q
n = (f∗E)q

n

is a linear combination of the maps

e(k,Q) : Eq−`
n−u(k) → (f∗E)q

n,

where Q ranges over the admissible partition of supp(k) of length `. We further claim that the
smallest partition Q such that the coefficient e(k,Q) is not divisible by p is equal to the partition
P associated to the pair of partitions (P ′,P ′′) by the bijection of Lemma 1.3. It follows that the
dotted map exists that makes the following diagram commute and that this map is an isomorphism.⊕

(k′,P ′)(
⊕

(k′′,P ′′)E
q−`′′−`′

n−u(k′′)−u(k′))
e
∼

//

∼
��
�
�
�

⊕
(k′,P ′) f

′∗Eq−`′

n−u(k′)

e∼
��⊕

(k,Q)E
q−`
n−u(k)

e // (f∗E)q
n.

The top horizontal map and the right-hand vertical maps are isomorphisms by the inductive hy-
pothesis. Hence, also the lower horizontal map is an isomorphism. This proves the induction step.

It remains to prove the claim. We will consider the several cases of Lemma 1.3 separately.
Case (A–A–A). We rewrite e(k′′,P ′′) ◦ e(k′,P ′) as

V u(k)(ξXpu(k)k0X
pu(k)kI′′0 F u(k)−t(I′′1 )dX

pt(I′′1 )kI′′1 . . . F u(k)−t(I′′
`′′ )dX

p
t(I′′

`′′ )kI′′
`′′ )

which is equal to the basic Witt differential e(k,P).
Case (B–A–A). We rewrite e(k′′,P ′′) ◦ e(k′,P ′) by the same formula as in the case (A–A–A). If

m = 0, this expression is equal to the basic Witt differential e(k,P). If m > 0, this formula is not
of the form of a basic Witt differential, and we further rewrite it as a linear combination of basic
Witt differentials e(k,Q). To this end we use that if t = t(k) > t′ = t(k′) > t′′ = t(k′′), then

yk′ · F−td(xptkzptk′′) = F−t(yptk′d(xptkzptk′′))

= F−td(xptkyptk′zptk′′)− xk · F−td(yptk′zptk′′) + xkyk′ · F−td(zptk′′)

= F−td(xptkyptk′zptk′′)− pt−t′xk · F−t′d(ypt′k′zpt′k′′)

+ pt−t′′xkyk′ · F−t′′d(zpt′′k′′)

The claim follows by repeated use the this relation.
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Case (C–A–A). We rewrite e(k′′,P ′′) ◦ e(k′,P ′) as

V u(k′′)(dV u(k′)(ξXpu(k′)k′0)X
pu(I′′0 )k′′

I′′0 . . . F u(k′′)−t(I′′
`′′ )dX

p
t(I′′

`′′ )k′′
I′′
`′′ )

= pu(k′′)dV u(k)(ξXpu(k)k0X
pu(k)kI′′0 . . . F u(k)−t(I′′

`′′ )dX
p

t(I′′
`′′ )kI′′

`′′ )

− V u(k)(ξXpu(k)k0F u(k)−t(I′′0 )dX
pt(I′′0 )kI′′0 . . . F u(k)−t(I′′

`′′ )dX
p

t(I′′
`′′ )kI′′

`′′ ).

This is a linear combination of two basic Witt differentials. The latter is e(k,P), and the coefficient
of the former is divisible by p, since u(k′′) > 0.

Case (D–A–A). We rewrite e(k′′,P ′′) ◦ e(k′,P ′)(ξ) as

V u(k)(ξF u(k)−t(k0)dXpt(k0)k0 ·Xpu(I′′0 )kI′′0 . . . F u(k)−t(I′′
`′′ )dX

p
t(I′′

`′′ )kI′′
`′′ ).

This expression is not in the form of a basic Witt differential, but we can rewrite it as a a linear
combination of basic Witt differentials of the form e(k,Q) by repeated use of the following two
relations. If t = t(k) > t′ = t(k′) > t′′ = t(k′′), then

F u−t′d(ypt′k′)F u−t(xptkzptk′′) = F u−t(xptk)F u−t′d(ypt′k′zpt′k′′)

− pt′−t′′F u−t(xptkyptk′)F u−t′′d(zpt′′k′′)

and

F u−t′d(ypt′k′)F u−td(xptkzptk′′) = −F u−td(xptk)F u−t′d(ypt′k′zpt′k′′)

+ pt′−t′′F u−td(xptkyptk′)F u−t′′d(zpt′′k′′).
The relations are proved by expanding both sides of the equations. It follows that the composite
map e(k′′,P ′′) ◦ e(k′,P ′) is equal to a linear combination of maps e(k,Q) and that Q = P is the
smallest admissible partition such that the coefficient of e(k,P) is not divisible by p.

Case (A–B–A). This case is analogous to the case (A–A–A).
Case (B–B–B). This case is analogous to the case (B–A–A).
Case (C–B–C). We can rewrite e(k′′,P ′′) ◦ e(k′,P ′) as

dV u(k′)(ξXpu(k′)k′0) ·X
k′′

I′′0 F−t(I′′1 )dX
pt(I′′1 )k′′

I′′1 . . . F−t(I′′
`′′ )dX

p
t(I′′

`′′ )k′′
I′′
`′′

= dV u(k)(ξXpu(k)k0X
pu(k)kI′′0 F u(k)−t(I′′1 )dX

pt(I′′1 )kI′′1 . . . F u(k)−t(I′′
`′′ )dX

p
t(I′′

`′′ )kI′′
`′′ )

− V u(k)(ξXpu(k)k0F u(k)−t(I′′0 )dX
pt(I′′0 )kI′′0 . . . F u(k)−t(I′′

`′′ )dX
p

t(I′′
`′′ )kI′′

`′′ ).

This is a linear combination of two basic Witt differentials e(k,Q), which both have coefficient not
divisible by p. The partition of the former is smaller than the partition of the latter in the total
ordering of the set of admissible partitions of supp(k) which we defined at the beginning of the
proof. This smaller partition is equal to the partition P of Lemma 1.3.

Case (D–B–B). This is analogous to the case (D–A–A).
Case (A–C–C)—(D–C–C). These are completely parallel to the cases (A–A–A)—(D–A–A). For

instance, in the case (A–C–C) we rewrite e(k′′,P ′′) ◦ e(k′,P ′) as

dV u(k)(ξXpu(k)k0X
pu(k)kI′′1 F u(k)−t(I′′2 )dX

pt(I′′2 )kI′′2 . . . F u(k)−t(I′′
`′′ )dX

p
t(I′′

`′′ )kI′′
`′′ )

which is equal to the basic Witt differential e(k,P).
Case (A–D–A). In this case, e(k′′,P ′′) ◦ e(k′,P ′) = e(k,P).
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Case (B–D–D). We claim that e(k′′,P ′′) ◦ e(k′,P ′) can be expressed as a linear combination
of basic Witt differentials e(k,Q) and that Q = P is the smallest partition which occurs with a
non-zero coefficient. Moreover, this coefficient is equal to 1. Indeed, this follows by iterated use of
the relation we considered in the case (A–A–A).

Case (C–D–C). In this case, e(k′′,P ′′) ◦ e(k′,P ′) = e(k,P).
Case (D–D–D). The composite e(k′′,P ′′) ◦ e(k′,P ′)(ξ) is given by

ξF−t(I′1)dXpt(I′1)k′0F−t(I′′1 )dX
pt(I′′1 )k′′

I′′1 . . . F−t(I′′
`′′ )dX

p
t(I′′

`′′ )k′′
I′′
`′′ .

We can use the same relations as in the case (D–A–A) above to write this as a linear combination
of basic Witt differentials e(k,Q) with all partitions Q of type D. The smallest partition Q such
that e(k,Q) occur with a non-zero coefficients is the partition P of Lemma 1.3.

Proof of Thm. B. Let f : A→ A[T1, . . . , Td] be the inclusion of the constant polynomials. Since f∗

has a right adjoint, the unique map

WnΩ·
A[T1,...,Td] → f∗WnΩ·

A

is an isomorphism. Hence Thm. 1.2 gives a canonical isomorphism

e :
⊕
(k,P)

Wn−u(k)Ω
q−`
A

∼−→WnΩq
A[T1,...,Td]

where, on the left-hand side, the sum runs over all weights k of rank d and filtration 0 6 u(k) < n
and over all admissible partitions P of supp(k). We must show that the length of the partition P
determines the I-adic filtration as stated.

The statement for s = 0 was proved by Langer and Zink [13, Thm. 2.8] but is also an immediate
consequence of Thm. 1.2 once we prove that

WnΩ·
A[T1,...,Td]/A

∼−→ f∗WnΩ·
A/A.

To see this, let E′
n

· be a Witt complex over A′ = A[T1, . . . , Td] with Wn(A)-linear differentials. Then
f∗E

′
n

· is a Witt complex over A with Wn(A)-linear differentials, and hence there is a unique map
WnΩ·

A/A → f∗E
′
n

· of Witt complexes over A. It follows that there is a unique map

f∗WnΩ·
A/A → E′

n
·

of Witt complexes over A′, and hence f∗WnΩ·
A/A is the initial Witt complex over A′ with Wn(A)-

linear differentials.
To prove the statement for s > 0, we define

FilsWnΩq
A[T1,...,Td] ⊂WnΩq

A[T1,...,Td]

to be the image by the isomorphism e above of the summands (k,P) with P of length ` 6 q − s.
We must show that

FilsI WnΩq
A[T1,...,Td] = FilsWnΩq

A[T1,...,Td].

This is true for 0 6 s 6 1, since the theorem holds for s = 0. The I-adic filtration is multiplicative
by definition, and it is straightforward to check that also the filtration

WnΩ·
A[T1,...,Td] = Fil0WnΩ·

A[T1,...,Td] ⊃ Fil1WnΩ·
A[T1,...,Td] ⊃ . . .

is multiplicative. We then have

FilsI WnΩq
A[T1,...,Td] ⊂ FilsWnΩq

A[T1,...,Td]

and must prove equality. Every element on the right-hand side is a sum of elements e(k,P)(η),
where k is a weight of rank d and filtration 0 6 u(k) < n, P an admissible partition of supp(k) of
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length ` 6 q − s, and η ∈ Wn−u(k)Ω
q−`
A . So it suffices to show that these elements are contained in

the left-hand side. Now if ξ ∈WnΩ·
A and if P : supp(k) = I0 t · · · t I` is type A, B, or D, then

ξ · e(k,P)(η) = e(k,P)(F u(k)ξ · η),

and if P is of type C, then

ξ · e(k,P)(η) = e(k,P)(F u(k)ξ · η)− e(k,P ′)(F u(k)dξ · η),

where P ′ : supp(k) = I ′0t . . . ,tI ′`′ is the type A partition given by I ′s = Is+1. Hence, by Lemma 1.1,
it suffices to show that the map

WnΩs
A ⊗Wn−u(k)Ω

q−`−s
A →Wn−u(k)Ω

q−`
A

that to ξ ⊗ η assigns F u(k)ξ · η is surjective. A general element on the right-hand side is a sum of
elements of the form

V t0([a0])dV t1([a1]) . . . dV tq−`([aq−`]),

where a0, . . . , aq−` ∈ A. But this element is the image of

dV u(k)+t1([a1]) . . . dV u(k)+ts([as])⊗ V t0([a0])dV ts+1([as+1]) . . . dV tq−`([aq−`]).

The surjectivity and the theorem follows.

2. The Gauss-Manin connection

Let f : X → S be a map of noetherian Z(p)-schemes and assume that the prime p is odd and
nilpotent on S. The induced map f−1OS → OX is a map of Z(p)-algebras in the topos of sheaves of
sets on the small étale site of X and we define WnΩ·

X = WnΩ·
OX

and WnΩ·
X/S = WnΩ·

OX/f−1OS
.

Lemma 2.1. If X ′ → X is étale and X ′ is affine, then

Γ(X ′,WnΩ·
X) = WnΩ·

Γ(X′,OX).

Proof. We recall that the small étale site of X consists of the category of étale morphisms X ′ → X
equipped with the étale topology. The inclusion of the full subcategory of étale morphisms X ′ → X
with X ′ affine induces an isomorphism of the associated topoi of sheaves of sets. We claim that the
pre-sheaf E of Witt complexes on the latter category given by

Γ(X ′, E·
n) = WnΩ·

Γ(X′,OX)

is a sheaf for the étale topology. In effect, we claim that the pre-sheaf Eq
n is a sheaf of quasi-coherent

Wn(OX)-modules, for all q > 0. We recall from the proof of [14, III.1, Thm.-Def. 3] that this is
equivalent to the statement that for all étale morphisms X ′′ → X ′ → X with X ′ and X ′′ affine, the
following canonical map is an isomorphism.

Γ(X ′′,Wn(OX))⊗Γ(X′,Wn(OX)) Γ(X,Eq
n) → Γ(X ′′, Eq

n).

To produce the inverse map, it suffices to show that the left-hand side constitutes a Witt complex
over Γ(X ′′,OX). In effect, by [7, Thm. D], it is enough to show that the left-hand side constitutes
a V -pro-complex over Γ(X ′′,OX) in the sense of [9, I]. And this, given [13, Prop. A.8], follows from
the proof of [9, Prop. I.1.14]. Hence E is a Witt complex over the Z(p)-algebra OX in the topos
of sheaves of sets on the small étale site of X. Finally, it is clear from the definition that E is the
initial Witt complex over OX .

In a similar way, the following result follows from [13, Prop. 1.9].
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Lemma 2.2. Suppose that there is a commutative diagram

X ′ //

��

X

��

S′ // S

with the upper and lower horizontal morphisms étale and unramified, respectively, and with X ′ and
S′ affine. Then

Γ(X ′,WnΩ·
X/S) = WnΩ·

Γ(X′,OX)/Γ(S′,OS).

Proof of Thm. A. We define the map of the statement. The canonical map

f−1WnΩs
S ⊗f−1Wn(OS) WnΩ·−s

X → grs
IWnΩ·

X

factors through the projection

f−1WnΩs
S ⊗f−1Wn(OS) WnΩ·−s

X → f−1WnΩs
S ⊗f−1Wn(OS) WnΩ·−s

X/S

and hence induces a map

f−1WnΩs
S ⊗f−1Wn(OS) WnΩ·−s

X/S → grs
IWnΩ·

X .

The map of the statement is the composition of this map and the canonical map

f−1WnΩs
S ⊗L

f−1Wn(OS) WnΩ·−s
X/S → f−1WnΩs

S ⊗f−1Wn(OS) WnΩ·−s
X/S .

We wish to show that this composite map is an isomorphism in the derived category of quasi-coherent
f−1Wn(OS)-modules on the small étale site of X. The terms in the complexes are quasi-coherent
Wn(OX)-modules, but the differential, in general, is notWn(OX)-linear. However, since p is nilpotent
on X, there exists m > n such that multiplication by pm−n annihilates the terms of the complexes.
We view the terms of the complexes as Wm(OX)-modules via Fm−n : Wm(OX) → Wn(OX). Then
the terms of the complexes are quasi-coherent Wm(OX)-modules and the differential is Wm(OX)-
linear, since dFm−n = pm−nFm−nd.

We can thus assume that S = SpecR and that X = SpecR[T1, . . . , Td]. We recall from the proof
of [13, Thm. 3.5] that the map of differential graded Wn(R)-algebras

Ω·
Wn(R)[X1,...,Xd]/Wn(R) →WnΩ·

R[T1,...,Td]/R

that to Xi associates [Ti] is a quasi-isomorphism and the left-hand side is a complex of free Wn(R)-
modules. Hence, we must show that the following map is a quasi-isomorphism of complexes of
Wn(R)-modules.

WnΩs
R ⊗Wn(R) Ω·−s

Wn(R)[X1,...,Xd]/Wn(R) → grs
I WnΩ·

R[T1,...,Td].

We recall from Thm. B the isomorphism of abelian groups

e :
⊕
(k,P)

Wn−u(k)Ω
s
R

∼−→ grs
I WnΩq

R[T1,...,Td]

where k runs over all weights of rank d and filtration 0 6 u(k) < n and P over all admissible
partitions P of supp(k) of length ` = q−s. Under this isomorphism, the map above is an isomorphism
onto the summands (k,P) with k integral. Hence, the cokernel is identified with the summands (k,P)
with k not integral. Suppose that k is not integral. Then there is a one-to-one correspondance
between the type A partitions of supp(k) of length ` = q − s and the type C partitions of supp(k)
of length `′ = q + 1 − s that to the type A partition P : supp(k) = I0 t I1 t · · · t I` assigns the
type C partition P ′ : supp(k) = I ′1 t · · · t I ′`′ with I ′r = Ir−1. Moreover, the differential maps the
summand (k,P) isomorphically onto the summand (k,P ′). It follows that the cokernel is acyclic as
desired.
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The isomorphism of Thm. A gives rise to a Gauss-Manin connection on the crystalline cohomol-
ogy of X/Wn(S). The construction is similar to the classical case [11] which we first recall.

Let X
f−→ S

g−→ T be two composable morphisms of schemes, and let I be the kernel of the
induced surjective map of de Rham complexes

Ω·
X/T → Ω·

X/S .

The I-adic filtration of Ω·
X/T gives rise to a spectral sequence

Es,t
1 = Rs+tf∗ grs

I Ω·
X/T ⇒ Rs+tf∗Ω·

X/T

of sheaves of abelian groups on the small étale site of S. Suppose that f : X → S is smooth. Then
an argument similar to the proof of Thm. A gives a canonical isomorphism

f−1Ωs
S/T ⊗

L
f−1OS

Ω·−s
X/S

∼−→ grs
I Ω·

X/T

in the derived category of quasi-coherent f−1OS-modules, and hence, we obtain the following iso-
morphism in the derived category of quasi-coherent OS-modules.

Rf∗(f−1Ωs
S/T ⊗

L
f−1OS

Ω·−s
X/S) ∼−→ Rf∗ grs

I Ω·
X/T .

Suppose further that the schemes X and S are of finite Krull dimension. Then the projection
formula [5, Prop. II.5.6] gives a canonical isomorphism

Ωs
S/T ⊗

L
OS

Rf∗Ω·−s
X/S

∼−→ Rf∗(f−1Ωs
S/T ⊗

L
f−1OS

Ω·−s
X/S)

in the derived category of quasi-coherent OS-modules. Finally, suppose that for all i > 0, one or
both of the quasi-coherent OS-modules Ωi

S/T or Rif∗Ω·
X/S are flat. Then we have

Es,t
1 = Ωs

S/T ⊗OS
Rtf∗Ω·

X/S .

Since the I-adic filtration is multiplicative, the spectral sequence is multiplicative in the sense that
the Er-terms are bi-graded rings and the dr-differentials derivations [3, Chap. XV, Exer. 2]. In
particular, the differential d1 : E0,t

1 → E1,t
1 defines an integrable connection

∇ : Rtf∗Ω·
X/S → Ω1

S/T ⊗OS
Rtf∗Ω·

X/S

and this is the Gauss-Manin connection. The differential d1 : Es,t
1 → Es+1,t

1 is equal to the differential
associated with the connection in the sense that

d1(η ⊗ ω) = dη ⊗ ω + (−1)sη · ∇(ω).

Suppose that S = SpecA and T = SpecB are affine. Then the functor that takes a quasi-coherent
OS-module M to the A-module of global sections Γ(S,M) is exact, and hence the Gauss-Manin
connection induces the integrable connection

∇ : Hq
dR(X/S) → Ω1

A/B ⊗A H
q
dR(X/S)

on the de Rham cohomology of X/S. This completes our recollection of the classical Gauss-Manin
connection.

Similarly, for f : X → S as in the statement of Thm. A, the I-adic filtration of the absolute
de Rham-Witt complex WnΩ·

X gives rise to a spectral sequence

Es,t
1 = Rs+tf∗ grs

IWnΩ·
X ⇒ Rs+tf∗WnΩ·

X

of sheaves of abelian groups on the small étale site of S. The canonical isomorphism

f−1WnΩs
S ⊗L

f−1Wn(OS) WnΩ·−s
X/S

∼−→ grs
IWnΩ·

X
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of Thm. A induces a canonical isomorphism

Rf∗(f−1WnΩs
S ⊗L

f−1Wn(OS) WnΩ·−s
X/S) ∼−→ Rf∗ grs

IWnΩ·
X

in the derived category of quasi-coherent Wn(OS)-modules. Suppose further the schemes X and
S are of finite Krull dimension. Then the projection formula [5, Prop. II.5.6] gives the following
canonical isomorphism in the derived category of quasi-coherent Wn(OS)-modules.

WnΩs
S ⊗L

Wn(OS) Rf∗(WnΩ·−s
X/S) ∼−→ Rf∗(f−1WnΩs

S ⊗L
f−1Wn(OS) WnΩ·−s

X/S).

Suppose, finally, that the quasi-coherent Wn(OS)-modules Rtf∗WnΩ·
X/S are flat, for all i > 0. This

is true, for instance, if X is an abelian S-scheme [2]. Then the E1-term becomes identified as

Es,t
1 = WnΩs

S ⊗Wn(OS) Rtf∗WnΩ·
X/S .

Since the I-adic filtration is multiplicative, the spectral sequence is multiplicative in the sense that
the Er-terms are bi-graded rings and the dr-differentials derivations [3, Chap. XV, Exer. 2]. In
particular, the differential d1 : E0,t

1 → E1,t
1 defines an integrable Witt connection

∇ : Rtf∗WnΩ·
X/S →WnΩ1

S ⊗Wn(OS) Rtf∗WnΩ·
X/S , (2.3)

and the differential d1 : Es,t
1 → Es+1,t

1 is then given by

d1(η ⊗ ω) = dη ⊗ ω + (−1)sη · ∇(ω).

We remark that Berthelot [1, IV Cor. 3.6.2] has defined a connection

∇̃ : Rtf∗WnΩ·
X/S → Ω1

Wn(S) ⊗Wn(OS) Rtf∗WnΩ·
X/S (2.4)

which for n = 1 agrees with the Gauss-Manin connection [1, Prop. 3.6.4]. We expect that the Witt
connection (2.3) is equal to the composite of the connection (2.4) and the canonical projection

Ω1
Wn(S) ⊗Wn(OS) Rtf∗WnΩ·

X/S →WnΩ1
S ⊗Wn(OS) Rtf∗WnΩ·

X/S .

Suppose that S = SpecR is affine. Then the functor that takes a quasi-coherent Wn(OS)-module M
to the Wn(R)-module of global sections Γ(S,M) is exact. Hence the Witt connection (2.3) induces
the integrable Witt connection

∇ : Hq
crys(X/Wn(S)) →WnΩ1

R ⊗Wn(R) H
q
crys(X/Wn(S))

on the crystalline cohomology of X/Wn(S) that we mentioned in the introduction.

3. The de Rham-Witt complex with log-poles

Let f : (X,M) → (S,N) be a map of log-Z(p)-schemes, where p is an odd prime. We recall the
definition of the canonical projection

WnΩ·
(X,M) →WnΩ·

(X,M)/(S,N)

from the absolute to the relative de Rham-Witt complex. But first we recall some basic notions
concerning log-schemes from Kato [10].

A pre-log structure on a ring A in a topos is a map of monoids α : M → A from a monoid M to
the underlying multiplicative monoid of A. A log-structure is a pre-log structure α : M → A such
that the map α−1(A∗) → A∗ induced by α is an isomorphism, and a log-ring (A,M) is a ring A
with a log-structure α : M → A. The forgetful functor from rings with a log-structure to rings with
a pre-log structure has a right adjoint functor which to a ring A with a pre-log structure α : M → A
associates the ring A with the log-structure αa : Ma → A given by the following push-out square of
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(commutative) monoids.

α−1(A∗) α //

��

A∗

��

M // Ma.

If (A,M) is a log-ring, then we write (Wn(A),Wn(M)) for the ring of Witt vectors of length n in A
with the log-structure associated to the pre-log structure given by the composition of α : M → A
and [−]n : A→Wn(A).

A log-differential graded ring (E·,M) is a differential graded ring E· together with a log-structure
α : M → E0 and a map of monoids d log : M → E1 from M to the underlying additive monoid of
E1 such that d ◦ d log = 0 and such that dα(x) = α(x)d log x, for all x ∈M . Maps of log-rings and
log-differential graded rings are defined in the obvious way.

We recall from [6, Def. 3.2.1] that if (A,M) is a log-Z(p)-algebra, where p is an odd prime, then
a Witt complex over (A,M) consist of the following data.

(i) a pro-log differential graded ring (E,ME) = {(E·
n,ME,n)}n∈N together with a strict map of

pro-log rings

λ : (Wn(A),Wn(M)) → (E0
n,ME,n);

(ii) a strict map of pro-log graded rings

F : (E·
n,ME,n) → (E·

n−1,ME,n−1)

such that λF = Fλ and such that

Fdλ([a]n) = λ([a]n−1)p−1dλ([a]n−1), for all a ∈ A,
Fd logn λ(x) = d logn−1 λ(x), for all x ∈M ;

(iii) a strict map of pro-graded E·
n-modules

V : F∗E·
n−1 → E·

n

such that λV = V λ, FdV = d, and FV = p.
A map of Witt complexes over (A,M) is a strict map f : (E·

n,ME,n) → (E′
n

·,ME′,n) of pro-log
differential graded rings such that λ′ = fλ, F ′f = fF and V ′f = fV .

Let f : (R,N) → (A,M) be a map of log-Z(p)-algebras with p odd. The absolute de Rham-Witt
complex of (A,M) is defined to be the initial example of a Witt complex over (A,M). The relative
de Rham-Witt complex of (A,M)/(R,N) is defined to be the initial example of a Witt complex
over (A,M) with Wn(R)-linear differentials and with d logn λ(f(x)) = 0, for all x ∈ N and all n > 1.
Standard category theory shows that the initial objects exist and that the canonical map

WnΩ·
(A,M) →WnΩ·

(A,M)/(R,N)

is surjective. An argument similar to the proof of Lemma 1.1 shows that the kernel I of the canonical
projection is equal to the differential graded ideal generated by the image of the canonical map
WnΩ1

(R,N) →WnΩ1
(A,M).

A map of log-Z(p)-algebras f : (A,M) → (A′,M ′) gives rise to an adjoint pair (f∗, f∗) between
the categories of Witt complexes over (A,M) and (A′,M ′). The direct image functor f∗ is given
by viewing a Witt complex over (A′,M ′) as a Witt complex over (A,M) by replacing the map
λ by the composite λ ◦Wn(f), and one can prove that the inverse image functor f∗ exists by an
argument similar to [7, Prop. 1.2.3]. We describe the inverse image functor f∗ in the case where the
log-structure M ′ and the inverse image log-structure induced from M agree.
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More precisely, we write f = (g, h) : (A,M) → (A′,M ′) and assume that the map of monoids
h : g∗M →M ′ is an isomorphism. Let ((E,ME), λ, F, V ) be a Witt complex over (A,M). We define
a Witt complex ((E′,ME′), λ′, F ′, V ′) over (A′,M ′) and a map of Witt complexes over (A,M)

((E,ME), λ, F, V ) → f∗((E′,ME′), λ′, F ′, V ′) (3.1)

in the following way. The Witt complex ((E,ME), λ, F, V ) over (A,M) determines, by neglect of
structure, a Witt complex (E,ϕ, F, V ) over A, and we define

(E′, ϕ′, F ′, V ′) = g∗(E,ϕ, F, V )

to be the inverse image Witt complex over A′. The composition of the map αE,n : ME,n → E0
n and

the unit η : E0
n → (g∗g∗E)0n = E′

n
0 of the adjunction (g∗, g∗) gives rise to a pre-log structure on E′

n
0,

and we define
αE′,n : ME′,n → E′

n
0

to be the associated log-structure. The map ME,n → E′
n
1 which is given as the composition of

d logn : ME,n → E1
n and the unit η : E1

n → E′
n
1 and the map (E′

n
0)∗ → E′

n
1 that takes a to a−1da

determines a unique strict map of pro-monoids

d log′n : ME′,n → E′
n
1.

The maps λ : (Wn(A),Wn(M)) → (E0
n,ME,n) and ϕ′ : Wn(A′) → E′

n
0 give rise to a strict map of

pro-log rings
λ′ = (ϕ′, ψ′) : (Wn(A′),Wn(M ′)) → (E′

n
0,ME′,n).

Finally, the unit maps ηE : E → E′ and ηM : ME →ME′ define the map (3.1).

Lemma 3.2. Let f = (g, h) : (A,M) → (A′,M ′) be a map of log-Z(p)-algebras, where p is an odd

prime, and assume that the map h induces an isomorphism of monoids g∗M
∼−→ M ′. Then the

adjoint of the map (3.1)

f∗((E,ME), λ, F, V ) → ((E′,ME′), λ′, F ′, V ′)

is an isomorphism of Witt complexes over (A′,M ′).

Proof. One readily verifies that ((E′,ME′), λ′, F ′, V ′) is indeed a Witt complex over (A′,M ′) and
that the map (3.1)

η = (ηE , ηM ) : ((E,ME), λ, F, V ) → f∗((E′,ME′), λ′, F ′, V ′)

is a map of Witt complexes over (A,M). Suppose that ((E′′,ME′′), λ′′, F ′′, V ′′) is a Witt complex
over (A′,M ′) and that

ξ = (ξE , ξM ) : ((E,ME), λ, F, V ) → f∗((E′′,ME′′), λ′′, F ′′, V ′′)

is a map of Witt complexes over (A,M). We must show that there is a unique map

γ = (γE , γM ) : ((E′,ME′), λ′, F ′, V ′) → ((E′′,ME′′), λ′′, F ′′, V ′′)

of Witt complexes over (A′,M ′) such that ξ = f∗(γ) ◦ η. Since the map ηE is the unit for the
adjunction (g∗, g∗), there is a unique map γE of Witt complexes over A′ such that ξE = g∗(γE)◦ηE .
The maps ξM : ME → M ′′

E and γE : (E′0)∗ → (E′′0)∗ determine a unique map of pro-monoids
γM : M ′

E → M ′′
E and the pair of maps γ = (γE , γM ) is the desired map of Witt complexes over

(A′,M ′).

Let (A,M) be a log-Z(p)-algebra, let g : A → A[T1, . . . , Td] be the inclusion of the constant
polynomials, and let M [T1, . . . , Td] = g∗M be the inverse image log-structure on the polynomial
algebra. We let I be the kernel of the projection

WnΩ·
(A[T1,...,Td],M [T1,...,Td]) →WnΩ·

(A[T1,...,Td],M [T1,...,Td])/(A,M)
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and consider the I-adic filtration of the absolute de Rham-Witt complex on the left-hand side. We
have the following extension of Thm. B of the introduction.

Theorem 3.3. Let (A,M) be a log-Z(p)-algebra, where p is an odd prime. Then there is a canonical
isomorphism of abelian groups⊕

(k,P)

Wn−u(k)Ω
s
(A,M)

∼−→ grs
I WnΩq

(A[T1,...,Td],M [T1,...,Td])

where, on the left-hand side, the sum runs over all weights k of rank d and filtration 0 6 u(k) < n
and over all admissible partitions P of supp(k) of length ` = q − s.

Proof. We apply Lemma 3.2 to the map

f = (g, h) : (A,M) → (A[T1, . . . , Td],M [T1, . . . , Td]) = (A′,M ′),

where h : M → g∗g
∗M is the unit of the adjunction (g∗, g∗). Since the inverse image functor f∗ has

a right adjoint, the unique map is an isomorphism

WnΩ·
(A[T1,...,Td],M [T1,...,Td])

∼−→ f∗WnΩ·
(A,M).

Hence Lemma 3.2 and Thm. 1.2 gives a canonical isomorphism

e :
⊕
(k,P)

Wn−u(k)Ω
q−`
(A,M)

∼−→WnΩq
(A[T1,...,Td],M [T1,...,Td])

where, on the left-hand side, the sum runs over all weights k of rank d and filtration 0 6 u(k) < n
and over all admissible partitions P of supp(k). The proof that the length of the partition P
determines the I-adic filtration as stated is completely analogous to the argument given in the
proof of Thm. B.

Let f : (X,M) → (S,L) be a morphism of log-Z(p)-schemes and assume that the schemes X and
S are noetherian and that p is odd and nilpotent on S. We consider the canonical projection

WnΩ·
(X,M) →WnΩ·

(X,M)/(S,L)

from the absolute to the relative de Rham-Witt complex. The terms of the complexes are quasi-
coherent Wn(OX)-modules on the small étale site of X, and the differential of the relative complex is
f−1Wn(OS)-linear. The kernel I of the projection is equal to the differential graded ideal generated
by the image of the canonical map f−1WnΩ1

(S,L) → WnΩ1
(X,M). The graded pieces for the I-adic

filtration are complexes of quasi-coherent f−1Wn(OS)-modules on the small étale site of X. We
prove the following extension of Thm. A of the introduction.

Theorem 3.4. Let (S,L) be a log-Z(p)-scheme with S noetherian and p odd and nilpotent on S.
Let f : X → S be a smooth morphism and let M = f∗L be the inverse image log-structure on X.
Then there is a canonical isomorphism

f−1WnΩs
(S,L) ⊗

L
f−1Wn(OS) WnΩ·−s

(X,M)/(S,L)

∼−→ grs
IWnΩ·

(X,M)

in the derived category of quasi-coherent f−1Wn(OS)-modules.

Proof. The proof is completely analogous to the proof of Thm. A with the exception that Thm. 3.3
is used in place of Thm. B.

Remark 3.5. Let k be a perfect field of odd characteristic p, and let (S,L) be S = Spec k with the
log-structure associated to the pre-log structure given by the map α : N0 → k that takes 1 to 0. Let
t ∈ L be the image of 1 ∈ N0. Then the absolute de Rham-Witt complex is the exterior algebra

WnΩ·
(S,L) = ΛWn(k){d logn t}
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The absolute and relative de Rham-Witt complexes

with zero differential. Let f : Y → S be a smooth morphism and let N = f∗L be the inverse image
log-structure on Y . Then theorem 3.4 gives an exact triangle

WnΩ·−1
(Y,N)/(S,L) →WnΩ·

(Y,N) →WnΩ·
(Y,N)/(S,L) →WnΩ·

(Y,N)/(S,L).

It was proved by Hyodo and Kato [8, Prop. 1.5] that such an exact triangle exists, more generally,
if f : Y → S is the special fiber of a scheme X with semi-stable reduction over a complete discrete
valuation ring of mixed characteristic (0, p) with residue field k and if α : N → Y is the inverse image
log-structure of the log-structure on X defined by Y . We recall from loc. cit. that, by definition, the
map of cohomology groups induced by the boundary map of the triangle above is the monodromy
operator on log-crystalline cohomology

N : H∗
crys((Y,M)/(Wn(S),Wn(N))) → H∗

crys((Y,M)/(Wn(S),Wn(N))).

This map is zero, if f : Y → S = Spec k is smooth, since the composite

WnΩ·
Y →WnΩ·

(Y,N) →WnΩ·
(Y,N)/(S,L)

is an isomorphism. It is an interesting problem to also generalize theorem 3.4 to the semi-stable
reduction case.
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