Algebra III/Introduction to Algebra III: Scheme Theory

Due: Please upload solutions to NUCT by Tuesday, May 17, 2022.

Problem 1. Let k be an algebraically closed field, let V be a finite-dimensional k-vector space, and let $T: V \to V$ be a k-linear map. Consider the (commutative) subring R of the non-commutative ring $\operatorname{End}_k(V)$ generated by T, and let |X| be the Zariski space of R.

(1) Show that |X| is canonically homeomorphic to the spectrum of T, that is, the set of eigenvalues of T with the discrete topology.

We next consider the sheaf \widetilde{V} on |X| associated with V, considered as an R-module by restriction of scalars along the inclusion $R \to \operatorname{End}_k(V)$.

(2) Let λ be an eigenvalue of $T: V \to V$, and let $x \in |X|$ be the point corresponding to λ under the homeomorphism in (1). Show that the restriction map

$$V = \widetilde{V}(|X|) \longrightarrow \widetilde{V}(\{x\})$$

induces an isomorphism from the generalized λ -eigenspace

 $V_{\lambda} = \{ \boldsymbol{v} \in V \mid (T - \lambda \operatorname{id})^{m}(\boldsymbol{v}) = 0 \text{ for some } m > 0 \} \subset V$

onto $\widetilde{V}(\{x\})$.