
IML HOMEWORK AND COMMENTS FOR WEEK 1

Homework: Exercises 2.1, 3, 5 from the book, plus the exercises below. The last exercise below

is optional.

Set theoretic notation. I remind you that in lecture we introduced the following set-theoretic1

notation: 0 = ∅, and in general the natural number n is defined to be

n = {0, . . . , n− 1}.

We also defined

ω = {0, 1, 2, . . . , n, . . .},
that is, ω is the set of non-negative integers.

We let V denote the (sometimes non-existent) totality of all sets, that is, x ∈ V if and only if x

is a set. We emphasize that this simply is practical short-hand notation, since V is not usually a

set itself. (This follows from the well-known Russel’s paradox.)

(Warning: The book defines V to be the set of all our variable symbols. It should not be confused

with V. Most set theory books use V to denote what we have called V.)

To avoid confusion with the rounded parenthesis that show up in our language (and in terms

and formulas), we will use angled brackets, 〈〉 to enclose finite ordered sequences in set theory. As

always, we allow a slight abus de langage and identify a and 〈a〉.
In this course, a relation is a subset R of some (finite) cartesian product of sets. To be precise,

an n-ary relation is a subset R ⊆ A1× · · · ×An of some n-fold cartesian product. One often writes

R(x1, . . . , xn) rather than 〈x1, . . . , xn〉 ∈ R; if this is the case then we say that x1, . . . , xn are related

by R.

Let A be a set. A sequence of length n ∈ ω in A is a function S : n→ A. We naturally identify

An with the set {s : n→ A : s is a function}. We let

A<ω =
⋃
n∈ω

An;

that is, A<ω is the set the set of all finite sequences in A. For s ∈ Aω, we let `h(s) = dom(s), the

length of s.

For any function f : B → A, where B and A are some sets, and a subset B0 ⊆ B, we let

f �B0 denote the restriction of f to B0, that is, f �B0 is the function with domain B0 defined by

(f �B0)(x) = f(x) for all x ∈ B0.

Exercise 1. Some people2 like to be really formal (and some have good reasons to). One such

person defines a language as follows: A language is a pair 〈f, p〉 where

(1) f : ω → V;

(2) p : ω \ {0} → V;

1Until further notice, we will use sets näıvely in this course, that is, sets are treated just like they are in other

math course you’ve taken.
2We will call such a person a Really Formal Person, or RFP.
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(3) (∀m ∈ ω)(∀n ∈ ω)(f(m) ∩ p(n) = ∅ ∧ (m 6= n =⇒ (f(m) ∩ f(n) = ∅ = p(m) ∩ p(m))));

(4) for all n ∈ ω, f(n) and p(n) are disjoint from {2n : n ∈ ω} ∪ {1, 3, 5, 7, 9, 11};
(5) no function whose domain is in ω \ {∅} belongs to any f(n) or p(n).

Explain. (Hint: The same person also defines that the variables v0, v1, v2, . . . officially are the

sets 0, 2, 4, . . ., that ( is 1, that ) is 3, that = is 5, that ¬ is 7, → is 9, and ∀ is 11.) �

Terms. Let L be language3. In lecture we defined

TermL0 = {a : a is a variable or constant symbol},

and then, recursively, that t ∈ TermLn+1 if and only if there is some m and an m-place function

symbol F in L, and terms t1, . . . , tm ∈
⋃

0≤i≤n TermLi such that t is F (t1 . . . tm). (We decided to use

a start and end parenthesis in lecture that the book skips. It makes no real difference. Commas,

however, are not part of our language, and so only informally may we write F (t1, . . . , tn) rather

than F (t1 . . . tn).) We finally defined Term(L) =
⋃

n∈ω TermLn , and convinced ourselves that t is

a term (in L) if and only if t ∈ Term(L). The complexity of a term t is the least n such that

t ∈ TermLn .

Exercise 2. Show that TermLn ⊆ TermLn+1 for n > 0. What about n = 0? Is it possible for

TermLn = ∅ when n > 0? What about n = 0? �

Exercise 3. Prove by induction on complexity that terms have an equal number of start parenthesis

‘(’ and stop parenthesis ‘)’. (If you use the definition of terms from the book this exercise is really

easy.) �

Given g : m→ V and h : n→ V, where m,n ∈ ω, we let gah : m+ n→ V be given by

gah(k) =

{
g(k) if k < m,

h(j) if k = m+ j and j < n.

If h is a finite sequence of finite sequences (that is, informally, h ∈ (V<ω)<ω), we define concat(h),

the concatenation of h, recursively as:

concat(h) =

{
∅ if `h(h) = 0,

(concat(h �n))ah(n) if `h(h) = n+ 1.

Exercise 4. Let L = (f, p) be a language in the really formal sense. A RFP defines terms as

follows:

TermL0 = {〈a〉 : a is a variable or constant symbol},
and recursively, TermLn+1 is defined to be the set of all concat(h) such that for some k ∈ ω \ {0},

(a) h : k + 3→ V;

(b) h(0) ∈ {〈a〉 : a ∈ f(k)};
(c) h(1) = 〈1〉;
(d) h(k + 2) = 〈3〉
(e) (∀j < k)h(2 + j) ∈

⋃
m≤n TermLm.

3Recall that in lecture we decided to include equality, =, as a logical symbol, whereas the book treats it as

an optional part of the language. This will not make a big difference, but it slightly alters the structure of some

definitions.
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Then define a term of L to be any element of Term(L) =
⋃

n∈ω TermLn . Explain how this really

formal definition relates to our usual definition of a term. �

In lecture, we defined FormulaL0 , the set of atomic formulas, to be the set of ϕ such that ϕ is

either t1 = t2, where t1, t2 ∈ Term(L), or ϕ is R(t1 . . . tk) where R is a k-place relation symbol, and

t1, . . . , tk ∈ Term(L). We then defined, by recursion on n ∈ ω, that FormulaLn+1 consists of the ϕ

such that one of the following three holds:

(A) ϕ is ¬ψ for some ψ ∈
⋃

m≤n FormulaLm;

(B) ϕ is (ψ → θ), where ψ, θ ∈
⋃

m≤n FormulaLm;

(C) ϕ is (∀vi)ψ for some vi ∈ V and ψ ∈
⋃

m≤n FormulaLm.

We let Formula(L) =
⋃

n∈ω FormulaLn . In lecture we convinced ourselves that ϕ is a formula in

L if and only if ϕ ∈ Formula(L). (Note that the use of parenthesis in the lectures differ slightly

from that of the book. This is a purely cosmetic difference of no mathematical consequence.) The

complexity of a formula ϕ is the least n such that ϕ ∈ FormulaLn .

Exercise 5. Show that FormulaLn ⊆ FormulaLn+1 for n > 0. What happens with n = 0? �

Exercise 6. Prove the induction principle for formulas: If Φ ⊆ Formula(L) is a set of formulas

such that FormulaL0 ⊆ Φ and it holds that

(A) if ϕ ∈ Φ then ¬ϕ ∈ Φ;

(B) if ϕ,ψ ∈ Φ then (ϕ→ ψ) ∈ Φ;

(C) if ϕ ∈ Φ then for any vi ∈ V , (∀vi)ϕ ∈ Φ;

then Φ = Formula(L). (Hint: Use induction on complexity.) �

Exercise 7. Use the induction principle for formulas to show that in any formula ϕ there is an

equal number of start parenthesis and end parenthesis. �

Exercise 8*. Give a definition of formulas and of FormulaLn worthy of a RFP. �


