
COMPUTABLE AND RECURSIVE FUNCTIONS, AND CHURCH’S THESIS

What does it mean for a function f : ω → ω to be computable? This is a hard question to

answer. Intuitively, it should mean something like this: There is a fixed procedure, such that given

a natural number n, one can carry out this procedure in a finite amount of time with input n, and

determine f(n).

For instance, most people feel that the function f(x) = x2 + x+ 1 is computable, because given

n, we first compute n2 by adding n to itself n times (which requires further subtasks, perhaps),

and then we add n to it, and then we add 1, and this is the answer, f(n). Of course, one must

investigate why it is we believe that adding n to itself n times is a computable task, etc., which

leads one to go back to how we were taught to add numbers in grade 1. At any rate, everyone

believes this function f is computable.

Several attempts have been made to formalize the notion of a computable function. Two such

are Church’s Lambda calculus, and Turing’s Turing machines. A third possibility is the notion of

a recursive function, given below. It turns out that all these approaches define the same concept

(though they look rather different), which is seen as evidence that they all correctly formalize the

(same) intuitive concept of a computable function.

Primitive recursive and recursive functions. We start by describing two schemes for creating

new functions from old. We make the convention that a function f : ω0 → ω is identified with an

element of ω. Alternatively, it can be thought of as a constant function.

Composition scheme. Given h : ωm → ω and g1, . . . , gm : ωk → ω, we may define a new

function f : ωk → ω by

f(x1, . . . , xk) = h(g1(x1, . . . , xk), g2(x1, . . . , xk), . . . , gm(x1, . . . , xk)).

Primitive recursion scheme. Given k ≥ 1, and functions h : ωk−1 → ω, g : ωk+1 → ω, we

can define a new function f : ωk → ω by letting

f(0, x1, . . . , xk) = h(x2, . . . , xk)

and

f(x1 + 1, x2, . . . , xk) = g(x1, f(x1, . . . , xk), x2, . . . , xk)

Definition 0.1. (I) The class of elementary functions consists of:

(1) The successor function S : ω → ω, defined by S(x) = x+ 1.

(2) The projection functions, defined for each n ≥ 1 and 1 ≤ i ≤ n by Ini (x1, . . . , xn) = xi.

(3) All constant functions, i.e. c : ωn → ω where c(x1, . . . , xn) = k for some k ∈ ω, indepen-

dently of x1, . . . , xk.

(II) The class of primitive recursive functions is the smallest class of functions which contains the

elementary functions and which is closed under the composition scheme and the primitive recursion

scheme.
1



2 COMPUTABLE AND RECURSIVE FUNCTIONS

A more descriptive way of defining the class of primitive recursive functions is the following: A

function f is primitive recursive if only if there is a finite sequence f1, . . . , fn of functions with

fn = f , and where each fi is either elementary, or obtained by applying one of the schemes to

functions that comes before fi on the list. (Exercise: Check this!)

In order to define the recursive functions, we need one more scheme.

µ-operator scheme. If g : ωk+1 → ω is a function for which it holds that

(∀x1, . . . , xn ∈ ω)(∃y ∈ ω)g(y, x1, . . . , xn) = 0

then we may form a new function f : ωn → ω by

f(x1 . . . , xn) = µy[g(y, x1, . . . , xn) = 0]

where µy[...] means “the least y such that [...].

Definition 0.2. The class of recursive functions is the smallest class of functions which contains the

elementary functions, and which is closed under the composition scheme, the primitive recursion

scheme, and the µ-operator scheme.

Note that all primitive recursive functions are recursive. An alternative description of the class

of recursive functions is: A function f is recursive iff there is a finite list f1, . . . , fn, where f = fn,

and where each element on the list is either an elementary function, or obtained by applying one

of the three schemes to functions appearing earlier on the list.

There are recursive functions that are not primitive recursive, but that is a story for another

day.

Definition 0.3. (1) A relation R ⊆ ωn is recursive iff its characteristic function

1R(x1, . . . , xn) =

{
1 if (x1, . . . , xn) ∈ R
0 otherwise

is recursive.

(2) A set A ⊆ ω is recursively enumerable if there is a recursive function f : ω → ω with

ran(f) = A.

Computable vs. recursive functions. All recursive functions are computable (in the intuitive

sense). This can be seen by induction: All elementary functions are clearly computable; if a function

is formed by one of the schemes from computable functions, then it is also computable (if you don’t

see it, go back and re-read the schemes and convince yourself.)

In 1936, American logician Alonzo Church (1903–1995) introduced a class of computable func-

tions in a different way, using what he called λ-calculus. It turns out that the class of recursive

functions and the class of functions defined using λ-calculus are the same. They are also the same

as the class of Turing computable functions, introduced by Alan Turing (1912–1954) in 1936 using

an idealized notion of a computer. Church hypothesized the following:



COMPUTABLE AND RECURSIVE FUNCTIONS 3

Church’s thesis. The class of intuitively computable function on the natural numbers corresponds

exactly to the class of recursive functions.

This claim cannot be proved, since the notion of intuitively computable function is not a math-

ematical notion, but rather an intuitive idea. Church’s thesis could potentially be disproved by

giving and example of an intuitively computable function which is not recursive, but no-one has

ever succeeded in doing so. Rather, the vast majority of mathematicians familiar with mathematical

logic believe Church’s thesis to be true.

Connections to the book’s notion of recursive and computable function. Our book de-

clares that a relation is recursive iff it is representable in a consistent finitely axiomatizable theory

in a language containing the symbols 0 and S. It further declares that a function f : ωn → ω is

recursive iff its graph, considered as a subset of ωn+1, is recursive.

It turns out that this definition is equivalent to the above definition (we may in fact see this before

the end of the course). But it seems like a very strange definition of a concept that is supposed to

capture an intuitive notion, which is why I chose to give the usual1 definition of recursive function

in class and above.

1By saying it is the usual definition, I mean that is the definition given in the vast majority of textbooks.


