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1. Introduction

During the last 15 years there has been developped an extensive potential theory
for harmonic spaces. The main motivation has been to unify the study of the
solutions to various elliptic and parabolic partial differential equations of second
order on an open subset of IR” or more generally on a differentiable manifold.

Classical potential theory in R" is translation invariant and it is therefore
natural to consider harmonic spaces (G, ), where the underlying space G is a
group and the harmonic sheaf 5 is invariant under the translations of G. We
say then that (G, 5#) is a harmonic group. Harmonic groups were studied by
Bliedtner in [3]. The only existing examples of harmonic groups seem to be
defined on a Lie group G and the sheaf J# is the sheaf of solutions to an invariant
second order differential operator of elliptic or parabolic type.

In [4] there was an attempt to prove that the base space of a harmonic group
is a Lie group, but as pointed out in [17] the proof was not correct although the
result might still be true.

The purpose of this paper is to prove that such a result can not be true, be-
cause we construct a harmonic group with base space T® (countable product
of circle groups). More precisely we construct a translation invariant sheaf
on T such that (T*, #) is a P-Brelot space in the sense of Constantinescu and
Cornea [7]. A similar construction may be carried out for the groups R"x T,

In [9] Forst considered the problem of constructing a harmonic group from
a special Dirichlet space in the case of the base space being a locally compact
abelian group G. The Dirichlet space is given in terms of a symmetric convolution
semigroup on G, which in turn is the transition semigroup of a Hunt process on
G. Then Forst proves that if the convolution semigroup satisfies certain axioms
{cf Theorem 1.12 below), then the harmonic functions defined in terms of the
Hunt process satisfy the axioms of a harmonic group.

However, no examples of convolution semigroups were given which satisfied
the axioms, except that it was clear that the Brownian semigroup in R” satisfied
the axioms.

* Supported partially by Grant 511-3598 from Statens Naturvidenskabelige Forskningsraad.
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One possible way of proving the existence of a harmonic sheaf # on T®
such that (T'®, #) is a harmonic group would then be to construct a convolution
semigroup (u,),. , on T* satisfying the axioms of Forst. This will be done in the
first part of this work.

It is interesting however to have a construction of the harmonic sheaf # on
T® which does not depend on the Hunt process, and a proof of the main properties
of # which does not depend on the results of Forst. In the second part of this
paper we carry this out: The harmonic functions on T* are constructed as the
solutions to the equation Af=0, where A is the infinitesimal generator of the
(Brownian) convolution semigroup on T constructed in the first part.

The two parts of the paper are to some extent independent of each other, but
some of the estimates obtained in the first part will be used in the second part.
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In §1 we recall some fundamental concepts which will be used throughout
the paper. Although we are only going to deal with the compact groups T” and
T™ we have preferred to present the material in §1 for arbitrary locally compact
abelian groups.

In §2 we define the Brownian convolution semigroup on T. The measure g,

. . I . 6
to time ¢ has a density g(0) which is equal to the theta function 3, (5, e*‘). It is

essential for the following to have thorough knowledge of this function, in parti-
cular to have estimates of the function when ¢ is small or large. All the necessary
estimates are proved in this paragraph.

In §3 we use the estimates of §2 to give information about the Brownian
semigroup on T?. This paragraph is only a prelude to §4 where the main topic
of part I is developed.

For an arbitrary sequence &/ =(a,, a,, ---) of positive numbers we define a
Brownian semigroup (i), , on T™ as

' =Qu,, for t>0,
k=1
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and we use the estimates of §2 to examine how u depends on /. It is proved
that 1 is absolutely continuous with respect to Haar measure on T* if and only

if Z e~ 2™ < oo (cf. 4.3), and that g has a continuous density if and only if
k=

o0

Z e~ '* < o0, Furthermore, if Z Ao we prove an estimate for the density
k=1 ) a,

gj" for 4 which implies that the resolvent (cf. 1.8) has densities which are finite
and continuous on T*~{0}. This shows that (u¥), , satisfies the axioms of
Forst, cf. 1.12 and 1.13.

In §6 we introduce the harmonic functions on T > as solutions in a distribution
sense to the equation

2 0*h
; kaaz =05 (1)

where o/ =(a,, a,,...) is as above and 420, and we prove that the solutions
form a sheaf #”. An important approximation lemma in § 6 states that harmonic
functions on T* can be approximated by solutions to (1) on T? for p sufficiently
large. (When we use (1) for functions on T? we take only terms in the series with
indices <p.) This approximation technique permits us to obtain information
about #;* from known results on “harmonic functions” on T” and therefore we
state some useful facts about harmonic functions on T? in §5. A few results from
§5 deserve being mentioned. Let V be a bounded domain in IR? with smooth
boundary and let P(x, £) denote the Poisson kernel for V for the differential
operator
62
a ——s—A,
kgl . 6913 (2)

where 120, and xeV, £€dV.
1) For every compact subset K<V there exist constants A, B>0 such that

B(x,&)<Ae 8"  for xeK, edV and A=l

2) For xeV and £edV the mapping 4 — B(x, &) is completely monotone.

In §7 we prove that if U< T? is a regular subset of T? with respect to (2) then
U x T* is a regular subset of T* with respect to #,% thus establishing the existence
of a base of regular sets for the sheaf #%

In §6 and §7 the only assumptions on the sequence ./ is that a,>0 for all
keN. In order to prove that #% has the Brelot convergence property we must
impose a growth condition on /. In § 8 we prove the Brelot convergence property
under the assumption on ./ that

w(.l/v)k
klfk

The proof depends on explicit knowledge of the Poisson kernel for special
domains in T* of the form U x T*®, and this permits us to prove Harnack-type
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inequalities for positive harmonic functions. In the proof of the existence of a
Poisson kernel for U x T* we make use of the results 1) and 2) mentioned above.

In §9 we finally prove that if &/ =(1, 1, ---) then the Brelot convergence pro-
perty is not satisfied.

In the reading of this paper we recommend the reader to start with §§6-8 in
order to get familiar with the main ideas, and then go back to the previous para-
graphs when it is needed.

This work was done while the author visited University of California at
Los Angeles and he wants to thank the Department of Mathematics for its
helpfulness and hearty atmosphere. The author wants in particular to thank
John Garnett, James Ralston and Raymond Redheffer for many stimulating
discussions.

Part 1. Convolution Semigroups on T%
1. Convolution Semigroups on Locally Compact Abelian Groups

In the following we will recall parts of the theory of convolution semigroups on
locally compact abelian groups. A detailed exposition can be found in [2].

1.1. Let G denote a locally compact abelian group with Haar measure dx.
The neutral element in G is always denoted 0. The dual group of G is denoted I
and the dual Haar measure on I’ is denoted dy.

The set of continuous functions f: G — R is denoted C(G). The set of functions
f€C(G) which tend to zero at infinity, resp. which have compact support, is
denoted C,(G) resp. C.(G). Under the uniform norm Cy(G) is a Banach space.

1.2. A family (u,),. , of positive measures on G is called a convolution semi-
group on G if

u(G)s1  for t>0, (1)
wrp=p,, for t,s>0, 2)
lin(} U, =8, vaguely. 3)
t—

The condition (3) simply means that li1r01 s 2 =11(0) for all feC (G).
b .

A continuous function : I'> € is called negative definite if the following
condition is satisfied:

For every nelN and for every n-tuple (y,, ..., y,) of elements from I" the nx n
matrix

W)+ G) = (&—7)

is non-negative hermitian.
To every convolution semigroup (4,),., on G is associated a continuous
negative definite function ¢: I'- € such that

f(y)=e"? for yeI' and ¢>0. @)

Conversely, if y: I'->C is a continuous negative definite function on I' there
exists a uniquely determined convolution semigroup (4,),,, on G such that (4)
holds.
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1.3 A convolution semigroup (1), o on G is called symmetric if all the measures
(14,), o are symmetric. This is true if and only if the associated negative definite
function y is real-valued.

For a symmetric convolution semigroup (4,),. , on G we have (cf. [1])

supp (k) ={yel Y=y ()} forall t>0. (5
1.4. A continuous function f: I'— R is called a quadratic form if
q(y+0)+4q(y—08)=24(y)+2q(d) for y, eI

A quadratic form g satisfies g(0)=0 and g(ny)=n?q(y) for neZ and yer.

A non-negative quadratic form is negative definite.

1.5. A convolution semigroup (,),., on G induces a strongly continuous
contraction semigroup (B),, , on C,(G), namely

Pf=pxf for t>0 and -feCy(G)

The infinitesimal generator is denoted (A, D ,) and defined as follows

{fe C,(G)| hm ! (Pf f) existsin C (G)}
Af=}i33;(1?f—f) for feD,.

The convolution semigroup (u,),. , is said to be of local type if the infinitesimal
generator (4, D) is a local operator in the following sense:

For every feD , we have supp (A f)=supp(f).

The following theorem concerning convolution semigroups of local type is a
special case of Theorem 18.27 in [2].

1.6. Theorem. A symmetric convolution semigroup (1), , on G is of local type
if and only if the associated negative definite function y on I is of the form y(y)=
c+q(y) for yeT', where ¢20 and q is a non-negative quadratic form.

1.7. Theorem. Let (1,),., be a symmetric' convolution semigroup on G with
associated negative definite function \y on I'. For each t >0 the following conditions
are equivalent :

(i) u, has a continuous density g, with respect to Haar measure on G.
(i) e~¥el}(I).
If (ii) holds for every t>0 then g,€ D, and

Ag,(x)= ;gt() for t>0 and xeG.

Furthermore, the function g: 10, o{ x G — R defined by g(t, x) =g (x) is continuous.

Proof. Each measure g, is positive definite because fi,=e~'¥ is positive since ¥
is real. If y, has a continuous density g, then g, is necessarily a positive definite

! The symmetry is only needed in the proof of (i) =>(ii)
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function, so (ii) follows from Bochner’s theorem and the inversion theorem,
cf. {15].

On the other hand (ii)= (i) follows from the inversion theorem which implies
that

g(x)={(x,y) e ¥Pdy for xeG (6)
r

is a continuous density for g, if (ii) holds. By the Riemann-Lebesgue lemma we
get that g,eG,(G).

. . |
Suppose now that (ii) holds for all t>0. Since sup xe™'*=—¢~! for t>0 we
get that *20 t

2
jl//(y)e"""”dygz e 'fert¥Widy<oo  for t>0.
r r

For t and s>>0 and xeG we have
{ {
E (I; gt(x) - g,(x)) =g (gt+s(x) - gt(x))
1
— I(x, V) e W (_ (e—s'l/(v)_ 1)) dy
r M
which converges uniformly for xe G to

~ [ ) Ylyye YD dy.
r
The dominated convergence theorem can be applied on account of the inequality
i
- le=s¥® _1)<y(y) for s>0 and yerl.

It follows that g,e D, and

d
Agx)=— g (x)=~ [,y e dy

for t>0 and xeG.
Using (6) it is straightforward to prove that g(t, x)=g,(x) is continuous. []

1.8. Let (y,),., be a convolution semigroup on G. The family (p,),,, of
positive bounded measures defined by

pp fo=[e <y, frdt for A>0 and feC(G) (7)
0
is called the resolvent for (1), .

The Fourier transform of p, is p, =1/(y + A).
The convolution semigroup is called transient if

T(ut,f> dt<oo forall feCr(G).
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If (1), o is transient there exists a positive measure x called the potential kernel
for (u,),. o and defined by

o fy= [ frdt for feCG).

Notice that for A>0(e~* 1), , is a transient convolution semigroup with
potentiai kernel p,.

1.9. Proposition. Let (1)

>0
the notation from above we have

ppAf—4f>=~fQ) for feD,.

Proof. It is well known that

p*{Af—Af)=—f for feD,.
Since (,),.,. o is symmetric fe D, implies fe D, and A(f)=(Af), and we therefore
get for feD &

{1 Af =2 > =p, x(A(f) = I/} 0)= —J(O)= —f(0). [

L.10. Let (@), , be a symmetric convolution semigroup on G and suppose
that each measure p, has a continuous density g,. In this case we consider the
integrals

p,(0)=fe*g(x)dt for A20 and xeG. (8)
0

be a symmetric convolution semigroup on G. With

It is clear that p, is a density for p, with respect to Haar measure when 1>0,
and in the transient case that p, is a density for the potential kernel «.

By the last part of Theorem 1.7 follows that p, is a lower semicontinuous
function on G for 4z 0. In the cases we will be dealing with we have p,(0)= 0
for A>0. We are interested in cases where p, satisfy further regularity conditions.
Due to the result 1.12 below it is interesting to know if p, is a continuous function
on G~ {0}

1.11. In the theory of harmonic spaces we follow the terminology of Con-
stantinescu and Cornea [7].

A harmonic sheaf # on G is called translation invariant if for every open
subset U< G, every aeG and every he #(U) the translated function 7, h belongs
to ' (a+ U), where 1, h(x)=h(x —a).

We say that # is symmetric if for every open subset U =G and every he #(U)
the reflected function % belongs to #(— U).

1.12. Theorem. (Forst [9]). Let G be a non-discrete second countable locally
compact abelian group and let (), , be a symmetric convolution semigroup on G
satisfying the following axioms*

(i) (1) o is of local type.

(i) (n,), o is transient with potential kernel x.

(ili) = has a lower semicontinuous density N which is finite and continuous on
G~ {0},

*  One can prove that {i}-{iii) implies that the connected component of the neutral element in G is
open, ¢f. [ {] Proposition 9.
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Then there exists a translation invariant harmonic sheaf # on G such that
(G, #) is a PB-Brelot space.

The harmonic sheaf 5 is constructed as the harmonic functions of the Hunt
process associated with (), , via the (sub) markov transition semigroup

R(xs B)zﬂz(B—x)s

where xeG, t >0 and B is a Borel subset of G.
As an application of Theorem 1.12 to the compact group T we find the
following result.

1.13. Theorem. Let (1,),. , be a symmetric convolution semigroup of probability
measures on T™ with the following properties:

(i) (1), ¢ is of local type.
(i1) p, has a continuous density g, for every t>0.
(1il) p, is finite and continuous on T™~ {0} for every 1 >0.
Then for every A>0 there exists a translation invariant harmonic sheaf 3, on
T™ such that (T, #,) is a P-Brelot space.
In §4 we will construct a convolution semigroup (4,),, , on T verifying the
hypotheses of Theorem 1.13.

1.14. Remark. A convolution semigroup (4,),., of probability measures on
T is never transient and we are therefore forced to consider the convolution
semigroup (e~*'u,),. , with potential kernel p, for 2>0. Under the hypotheses
of Theorem 1.13 it is easy to see that each of the convolution semigroups (e~ * i), o
satisfies the axioms from Theorem 1.12.

1.15. A function ¢: JO, co[ » R is called completely monotone if it is C* and
satisfies (— 1) ¢"(x)= 0 for all x>0 and n20.
We shall make use of the following result.

1.16. Proposition. Let y: I' =R be a real-valued continuous negative definite
Sunction and let ¢: [0, o[ —IR be continuous and completely monotone. Then
@oyy: I'~ R is continuous and positive definite.

Proof. By Bernstein’s theorem there exists a positive bounded measure u on
[0, oof such that

o(x)= e~ *du(t) for x=0,
0

(cf. e.g. [13]), and therefore

P )= }06""’") du(t) for yerl.

The composition makes sense because y(y) =0 for all yeI'. From 1.2 follows that

e~ is positive definite for all 20 and therefore @ o is positive definite. []
Using the canonical extension of ¢ to the half-plane Re 220, {cf. [2]), Pro-

position 1.16 remains true for complex-valued negative definite functions.
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2. The Brownian Semigroup on T

2.1. The Brownian convolution semigroup (4,),., on IR is the family of pro-
bability measures y, =p,(x) dx on R, where
2

px)=(47 )% exp (—%) for xeRR. )

The Fourier transform of p, is equal to

p,)=[e ™ p(x)dx=e""" for yeR. )
R

2.2. The Brownian convolution semigroup on T(={zeC||z|=1}) is perhaps
less well-known. It is the family (u,), . , of probability measures on T given by the
densities g, with respect to normatized Haar measure on 7T, where

g0)=Y e einf= =1+2 Z e~ cos(nf) for felR. 3)
nelZ n=
{Here and in the following we describe functions on T as functions on R which
are periodic with period 2n.)
The Fourier transform (coefficients) of g, is equal to

1 = . 2
g,(n) =3 . [e"g(@)do=e"" for neZ, 4

and it follows that g,(0) =0 because the function n — e~ """ is positive definite on Z,
cf. (2). It also follows from (4) that (u,),. , is a convolution semigroup on T. The
negative definite function (cf. 1.2) associated with (,),,, is g(n)=n* for neZ
which is a non-negative quadratic form on Z, so (u,),, , is of local type. Note
that every non-negative quadratic form on Z has the form n— an? where a=0,
80 (i,),, o is essentially the only symmetric convolution semigroup of probability
measures on T which is of local type.
The following expression for g, is very important.

2.3. Proposition. For 0eR and t>0 we have

g,(6)= Ze (_M)

kel 4t

Proof. Let o denote the discrete measure on IR which has the mass 1 in each
of the points 2nn, neZ. The function G,=w *p,, where p, is given by (1), is a
continuous periodic function, and the Fourier coefficients of G, are given for neZ
by

2n
G(n)-—~2— jp,(0+2nk)e‘i""d9
0

o0

. 1 1 5
=7 jp,(x)e*”'"dx— p,(n)——-e“"

This shows that 272G, and g, have the same Fourier coefficients, and the for-
mula follows. []
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2.4. The function g,(f) is essentially a theta function. With the notation of
Hille [11], p. 156 we put

9 (x’ q)_ anl 2inx

neZ

0 .
and then g,(0)=39, (5’ e"). Proposition 23 is a special case of a well-known

formula for 3,. The function g,(0) is called the heat-kernel for T because it satisfies
the heat-equation

az

602 gt( ) gt( )

and g,(0) has the physical interpretation of representing the temperature at the
point €' to time t in a ring of radius 1(~ T), when a “unit of heat” is put at the
point 1 to time 0. It is therefore to expect that g,(6) for fixed ¢>0 is an even func-
tion, decreasing for 0[O0, n]. It is clearly even, but it is not at all obvious by the
previous formulas that it is decreasing on [0, n]. This follows however from the
classical product formula of Jacobi for 9, (cf. [11], p. 163) which in this context
reads . .
gO)=](1—e 2" ][(1+2e 2" Dicos 4o 421,

n=1 n=1

In fact all the factors are decreasing for 0€[0, n].

The formula in Proposition 2.3 shows that the heat-kernel g,(6) for T is ob-
tained by summing equidistant shifts of the heat-kernel p, for R, as could be
expected physically.

2.5. We introduce the following notation

o(t,0)=Y e cos(nf) for t>0 and OeR, (5)
n=1
p(O=0(t,0=Y e ™ for t>0. (6)
n=1

Clearly |o(t, 0)| < @(¢) for t>0 and feR.
2.6. Lemma. The function ¢(t) has the following properties

(i) o)< ;l/i for 150,
(i) w(t)~ﬂ/’; for 10,

(iii) e(t)~e™* for t— 0.
Proof. We have

o)< [e= dx=

fortemg e

II
N —
H|§
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and
o0z e dv=r
1 t

2
e "du

Je—3

The property (iii) is obvious. []
2.7. Proposition. The following estimate holds

g(0)= (1+21/)exp<—i—i) for 0e[—m,w], t>0.

In particular

31_}1{.1 g2(0)=0 for 8el—m, n]~{0}.

We have also g,(0)~]/§ for t—0.
Proof. By Proposition 2.3 we get

g,0)= %rexp( zi){lﬁ- > [exp (—'—(nn+0))+exp (——(nn 0))]}

It is clearly enough to prove the inequality for 8€[0, n] and for such 0 we find

oz (-0 o § o[22 220

TN e S
e () (0 ).

Using Lemma 2.6(i) the inequality follows. By Lemma 2.6(ii) we finally get that

[
|
[¢]
e
gl
|
:

g,(0)~ %fort—»O. 0

For later use we put

o(t) wf]/gt Vd0  for t>0, )

and the following result about the behavior of p will turn out to be important.

2.8. Proposition. The function p has the properties
() O<p)<l for t>0,
(ii) lin(} p(t)=0,
t—

(iii) 1—p(t)~Le=2 for t—>a.
4



60 Ch. Berg

Proof. The inequality p(t) <1 follows from the Cauchy-Schwarz inequality.
By Proposition 2.7 we get

k3 T _6_2 1 o0 s
p(t)§(1+21/j?) ;1[—543 TIZ(§1+16Y/Fm) [ e du

0 0
which proves (ii).
For t>n we have

lo(t, B)l < w(ﬂé%ﬂﬁ%,

and therefore

x

1
V)= (;) 2¢"t,0) uniformly for SR

n=0
so that
0 1 1 n
p)—1= (2)2"-—j<p"(t, 0)do.
n=2 n n ]
Since

lim " @™(t, 0)=cos"6  uniformly for #cR
t—w

we finally get
1

tim e (p(0)- )= (2) 22— foos*0d0= 1.
11— w 2 ki 0

2.9. The resolvent (p,),  , for the Brownian semigroup on T has the following
densities (cf. 1.8 and 1.10)

PAO)=[ e-¥g(B)dt for OeR. (8)
0

2.10. Proposition. For each A>0 the function p, is a continuous function with
the absolutely convergent Fourier series

Pi)=3 —

U
in . 9
Hn +/le ©)

For e[ — =, ] we have

o cosh((m=16)y/R) 0
PO = T (10)

Proof. By Lemma 2.6(i) it follows that

g,(6)§1+l/—§~ for feR,

so the dominated convergence theorem implies that p, is continuous. We also

have (cf. 1.8) p,(n)=1/(n*+41) for neZ and Y (n*+1)~' < oo, so the right hand
neX

side of (9) is a continuous density for p, and hence equal to g, .
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By Proposition 2.3 we get

)=y Y je A-Yexp

neZ 0

(‘ (9+§nn)

) dt for felR,

and using

fe‘“t*%exp(—%)dtzﬁi*%exp(—]ml) for a=0, >0,
0
cf. [8] p. 146, we get
P 0)=ni"*Y exp(—1/2|0+2nn|).
nelZ

For 8e[ —r, ] it is easy to reduce this sum to the expression in (10). []

2.11. Corollary. Let ae [0,1]. Then the following functions are completely
monotone on 0, co[

1 cosh(a}/2)
V2 sinh(y/2)
sinh(a})/A)
nh(ﬂ
Proof. The function A— §,(6) is completely monotone for fixed # because it is
the Laplace transform of the positive function t — g (6). It follows that (i) is com-

pletely monotone.
For 6¢[0, n] we find

o sinh(@@—0)YA) = "
Pif)=—r sinh(nﬂ) Ofe ’

and since g,(0) is decreasing for 0[O0, n] it follows that A — — p’ (6) is completely
monotone and hence (ii) is completely monotone. []

) 1>

(i) A—

2.12. Remark. The classical infinite product expansion for sinh x can also be
used to prove that the function (ii) of Corollary 2.11 is completely monotone.
In the same way it can also be proved that the function

. cosh (a1/7)
cosh (ﬂ)

is completely monotone when ae[0, 1].
The infinitesimal generator (A4, D) for the semigroup (P),, , on C(T) induced
by the Brownian semigroup, cf. 1.5, can easily be identified.

2.13. Proposition. The domain D, contains C*(T) and for fe C*(T) we have

&2 f
Af =5z
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d .
Proof. We know by Theorem 1.7 that g,eD, and that Ag,=—-g,, but since

42 d dt
797 8=, & We find
d2
Agt:ﬁ gt'

It is easy to see that D,*C(T)SD, and A(fxg)=(4f)xg for feD, and
ge C(T). For fe C*(T) we get in particular
2 d2

d
A, =(Ag)sf = (5538 )1 1=80 .

hence
2

. d .
llmA(gt*f)zd—gé (and lim g, xf=f)
t—0 t-0

d*f

in C(T). The operator (4, D ,) being closed we get feD , and Af:W'

0

3. The Brownian Semigroup on T?

3.1. The Brownian semigroup (4,),. , on 7%, p =1, is defined as the direct product
of p copies of the Brownian semigroup on T. The measure p, has therefore a density
g!P! with respect to Haar measure on T? given as

P
g O)=[1g0) for 6=(6,,...,0)eR?”,
i=1

where g, is defined in 2.2. Here and in the following we describe functions on T”
as functions on IR? periodic in each variable with period 2z.

By reasons which become clear later we want to consider a slight generalization
of this semigroup.

Leta=(a,, ..., a,) bea p-tuple of positive numbers and consider the convolution
semigroup (u?),, , on T? defined by
B =l @@y, for >0, (1)

where (14,),. o is the Brownian semigroup on T. The measure u has the following
density with respect to Haar measure on T?

14
g/ (0)= n g,.(0) for 0eR”. )
i=1
The Fourier series for g# is
g(0)= ZZPCXP(”‘ t(agn+-- +apnf, ) gi<m 0> )

which converges absolutely and uniformly. Here we use the standard notation

{n,0>=n0,+--+n,0, for neZ? and 0OeR”.
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The negative definite function associated with (4f),., is the non-negative
quadratic form

qm)=a,ni+---+a,n,, 4
so (i), o is of local type, cf. 1.6.

Introducing a=min(a,, ..., a,) and B=max(a,,...,a,) we get from 2.6 and
2.7 that

p
giO)= (1+l/§) for 0eR? and t>0 (5)
and
“(6)<(1+2]/E)pex (—”9”2) for Be[—m,7]? and ¢>0 ©)
&= to P 4tp ’ ’
so in particular
11m gi0)= for Oe[ —mn, n]P~ {0}.

The resolvent (p%), . , for (17),. o has densities (§9), . , given by (cf. 1.10)
p50)= [ e *gi(0)dt for OeR”. (7
0

3.2. Proposition. For each A1>0 the function p$ is lower semicontinuous on T*
and continuous on TP~ {0}, where O denotes the neutral element in T?. For p>
2 we have p4(0)= co. Furthermore pSe I?(T?) if and only if p< 3.

Proof. From (5) it follows that
68— 1;Oe"“gf‘(e)dt

is finite and continuous on IR?, and from (6) it follows that
0 aje““g‘;(())dt

is finite and continuous on [ —x, ©]?~ {0}. Therefore p4 is finite and continuous

on TP~ {0}. In the case p=1 §¢ is finite and continuous at every point of T (cf.
2.10), but since

2 i
g0~1] - for t -0,
i=1 i

cf. 2.7, it follows that p4(0)=co for p=2.

The Fourier transform of the measure p§ is given by p4=1/(g+4) where g
is defined in (4), and this function is square summable on Z? if and only if p<3, so
the last assertion follows from Plancherel’s theorem. [

By the same method of proof as in Proposition 2.13 it is easy to obtain the
following result:
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3.3. Proposition. Let (4, D ) denote the infinitesimal generator for the semigroup
on C(T?) induced by (U2, o. Then CHTP)= D, and

2

roog
Af = Zak—aé» for feC*(TP).
k=1 k

4. Brownian Semigroups on T,

4.1. The product of countably many copies of a set X is denoted X*. The set T
is a compact abelian group with respect to the ordinary product structures. The
neutral element of T® is denoted 0. The normalized Haar measure on T is the
product of the normalized Haar measures on the countably many factors T.

The subgroup of Z® consisting of all sequences in Z% which are eventually
zero is denoted Z. The dual group of T can be identified with Z‘* in the follow-
ing way, cf. [15]: Each n=(n,,n,,...,n,,0,...)eZ"*’ determines a character ¥,
on T% namely

14
v(2)=[]z for z=(z;,2,,..)eT™.
k=3

The mapping n-+y, is an isomorphism of Z™ onto the dual group of T™.
‘We will often describe functions on T as functions on R® which are periodic
with (2xZ)® as periodicity group.

4.2. Let{y,),, , be the Brownian semigroup on T. One could define the Brownian
semigroup (ul®}),_, on T as the infinite product

= p, for t>0
k=1

of countably many copies of y,. However, by the theorem of Kakutani [12], uf*!
is singular with respect to Haar measure for every 1> 0, and therefore the convolu-
tion semigroup (ul®h), _, does not lead to a satisfactory potential theory on T*,

We consider therefore a sequence &/=(a,, a,, ...) of positive numbers (g,>0
for all i) and define for each t >0 the product measure

w= é Mg, . (1
=1

and will study the convolution semigroup (1¥),, , and its dependence on the se-
quence /. We call all these semigroups on T™ for Brownian semigroups on T®.

In order to see that (i), , is indeed a convolution semigroup on T% we find
the Fourier transform of ¢

i =T A, (n)=exp (~£ 3 a, nf) for ne Z™™, 2
ka1 k=1

Note that the infinite product and sum above are “finite” because neZ™ is
eventually zero.
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From (2) follows easily that (¢),_ , is a symmetric convolution semigroup of
probability measures on T, and the associated negative definite function is

gm)= Y an; for neZ.
k=1

Since q is a non-negative quadratic form on Z‘* we get that (1), , is of local type,
and since g(n)>0 for n+0 we get by 1.3(5) that supp (1¥)=T> for all >0.3
(This contradicts of course not that ;¢ is concentrated on a set of Haar measure
zero in the case &/ =(1,1,...).)

By means of Kakutani’s theorem we can determine for which sequences
o, 1 is absolutely continuous with respect to Haar measure on T*.

4.3. Theorem. Let t >0 be fixed. Then ¢ defined by (1) is absolutely continuous
with respect to Haar measure on T if and only if

s 8]
Y e ta<on.
k=1

In the affirmative case the infinite product

11 84 (6)
k=1

converges almost everywhere to a density for .

Proof. By Kakutani’s theorem [12] we know that u is absolutely continuous
with respect to Haar measure on T if and only if

l_[ p(tak)>05
k=1

where p is the function introduced in § 2 formula (7). This is however equivalent
with

Y (1—plta)) <o,
k=1
which in turn is equivalent with

o]
Y e <0
k=1

on account of the properties of p proved in Proposition 2.8. The rest of Theorem 4.3
follows from Kakutani’s theorem. The n’th partial product

[T 80 (0
k=1

shall be considered as a function on T® which depends only on the first n variab-
les. 0]

3 This follows also from supp (g,})=T for all ¢>0.
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4.4. Remark. Defining

00
Z e»Ztak< (x)}’
k=1

it follows from the above result and Kakutani’s theorem that g is singular for
0<t<t, and g is absolutely continuous for t,<t. Whether g is singular or
absolutely continuous in the case 0 <t, < oo depends on /.

t0=inf{te]0, o[

to

1
If we put ak=-2—o?10g(k+1) for k=1,2, ..., where «>0, we get t,=o and p’

1
is singular. If we put akzja—log (k+1)+&10g log(k+2) for k=1,2,..., where
o>0, we get t,=a and ,uz is absolutely continuous.

Convolution semigroups {1,),. , on R with the property of being singular for
t<t, and absolutely continuous for ¢ >t, have been constructed by Rubin and
Stratton, cf. [16].

It is also possible to determine the sequences .« for which 1 has a continuous
density. We begin with a lemma.

4.5. Lemma. For every sequence .« and every t>0 we have

ZIEW=ﬁ&umgw.

ned(=)

Proof. We have

14
Y exp(—tlani+- +apn§))=kl:[1gmk(0)

ny, ..., npelk

and the supremum over pelN of the left and right hand side of this equation is
respectively the left and right hand side of the equation of the lemma. []

4.6. Theorem. For fixed t >0 the following conditions are equivalent,
(i) 47 has a continuous density g* with respect to Haar measure on T™,

(i) ;w)ft’f’ (n)<oo,

(i) Y e <oo.
k=1

If the condition (i)(iii) are satisfied we have

g 0)=11g.060) for 0eR” 3

k=1
and the convergence is uniform for fe IR,

Proof. The equivalence of (i) and (ii) is a special case of Theorem 1.7. By
Lemma 4.5 (ii) is satisfied if and only if the infinite product

l@m@
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is convergent, and since g,, (0)=1+2¢(ta,) this is equivalent to the convergence
of the series

o o)

Y oltay),

k=1

which by Lemma 2.6 is equivalent to (iii).
If the conditions (i)-(ii1) are satisfied we know from Theorem 4.3 that

H gtak(gk)
k=1

converges almost everywhere to a density for y, so it suffices to prove that this
product converges uniformly for e R®. For e R* we find

n+p n n n+p
118,060~ I1 8, 00| = 1 2.0 00] T 8.0 (601 {
k=1 k=1 k=1 k=n+1
n n+p
él{&uw)kII}1+2¢U%,@D~4
n n+p
<180 ( TT 1+200a)-1) ®)
k=1 k=n+1

] gtak(o) - kI:I1 gtak(o)a

k

I

where the inequality () can be seen by carring out the multiplication. By Lemma
4.5 the infinite product

184,00
k=1

is convergent, so the uniform convergence follows. []

4.7. Remark. With the notation of the Remark 4.4 we find that 1 is absolutely
continuous but without a continuous density for te]t,, 2¢,[, and ;& has a con-
tinuous density for £>2t,.

Since g,(0) is a decreasing function of ¢, the inequality in the proof of Theorem
4.6 also shows that the convergence of (3) is uniform in #e R® and te[t,+¢, [
for every ¢>0. Therefore g“(f) is a continuous function of (¢, 0)e]Jt,, o[ x R™.
In particular we have the following Corollary which also follows from Theorem 1.7.

4.8. Corollary. Suppose that o/ satisfies
Y et <o forall t>0.
k=1

Then the function

g?(9)=f[1 20,6

is continuous for (t, 0)e 0, co[ x R®.
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The sequence o given by a, =k"for k=1, 2, ... satisfies the condition of Corol-
lary 4.8 for every £>0.

We shall now consider a condition on the sequence o which implies that all
the measures ¥ have continuous densities and which furthermore allows us to
estimate these densities. The condition is the following

2] 1
- . 4
* ;2:1 |/ a; < ( )

4.9. Theorem. Suppose that o/ verifies (4). Then every i has a continuous density
g7 given as
g/ O)=11g.06) for 6cR™,
k=1

and the following estimates hold

() <g”(0)<exp (a]/?) for 0eR® and >0, (5)

() <exp (2a‘/’;)exp (—1 3 Qé) for 0e[—m]™ and 1>0. (6)

Itk:lak

In particular we have

31“3 (=0 for fe[—m, n]* {0}

Proof. For t>0 there exists a constant x,=x,(t) such that e“‘xgl/]/; for
ac

xXZX,, and therefore (4) implies that ) e~'*<co for all 1>0. It follows from
k=1
Theorem 4.6 that 4 has a continuous density g given by (3), so it is clear that

£ 0270 18,0~ [(1+20(a,).

Using the elementary inequality 1 +x<e* for x20 we get

ﬁ (1+2¢(ta) Sexp (2§1<p(rak)) <exp (a‘/ftf—)

where we have used Lemma 2.6(i) and the number o from (4). By Proposition 2.7
we have for k=1,2, ...

(9)<(1+2(_1‘..)§) ( 95) if 9, e[~ ]
gmk V= o exp 4{5{ 1 ke Ty,

k k

and for e[ — 7, 1]™ we therefore get

el (5 o ()

i 4ta,

. ] 2
<exp (Zalﬁf) exp (—i @‘-)
t 4t = a,
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Note that (4) implies the convergence of the series Y 1/a,. If 0c[—n, n]™~ {0}
then

w0 02

Y, *£>0,

k=1 Y

and since

lim exp (i—§>=0 for A, B>0,

=0 ]ﬁ t

the last assertion follows. [J

4.10. The resolvent of the Brownian semigroup (i), , is the family of measures
(09),. , defined by the vector integral (cf. 1.8)

pi= e uar for 1>0.

If the measure i is absolutely continuous for all >0 and hence having a
continuous density g“ for all t>0 by 4.3 and 4.6, we know by 1.10 that g7 has a
lower semicontinuous density 5% given by

5 O)= [e-*g @) dt  for OeR™, (7)
0

If o7 satisfies (4) even more can be proved.

4.11. Theorem. Suppose that </ verifies condition (4) and let 1>0 be fixed.
Then the function (% given by (7) is finite and continuous on T~ {0} and

lim 7(0)=7(0)= . (8)
Proof. The inequality
g/ 0=1]2.(02g,,0 g,,(0)
k=1
together with the asymptotic formula (cf. 2.7)

1
" — for t—=0

gta; (0) gtaz (0) NW t
12

show that g% (0)= oo, and since §7 is lower semicontinuous (8) follows. For the
rest of the proof it is convenient to put

hy (0)= je"“g‘*"@)dt and h,(0)= [e ' g?(0)d

»—e_iB

By (5) we have
g (0)gexp(@yn) for feR® and 21,
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so it follows by the dominated convergence theorem that h, is finite and contin-
uwouson T,
We next prove that h, is finite and continuous on 7%~ {0}. Let

el —n, n]*~ {0}

be given and let #e[ —n, n]™ be a sequence such that lim 0" =0 [ -n, ],

i.c. lim 6 =0, for every ke N. Since 2 1/a, < 20 it is clear that
—® k=

) g(n)z Bl 92
lim Z —~~2-=~_ Y *=4>0
now ko1 k=1 %
so there exists a number ny,eIN such that
g(n)
Z( r zt4  for nzn,.
k=1 %

By (6) we then have for nzn, and t>0

g¥(0™) <exp (fo 1/;) exp ( ;{)

The expression on the right side of this inequality tends to zero for t — 0, in parti-
cular it 1s integrable over J0, 1[, so by the dominated convergence theorem we get

lim A (6™)=h, () <o0. [
4.12. Conclusion. In the previous sections we have proved the following: For

o -
every sequence &/ of positive numbers satisfying Y 1/}/&}:00 the Brownian
k=1
semigroup (u),. , satisfies the conditions of Theorem 1.13. For every such .o/
and every A>0 there exists a translation invariant harmonic sheaf # on T™

such that (T, 5#7) is a ‘B-Brelot space.

4.13. Let o be an arbitrary sequence of positive numbers, and let (P),. , be
the semigroup of operators on C(T*) induced by (¢),. o, ¢f. 1.5. We shall now
describe the infinitesimal generator (4, D,) for (P),.,, and since (Iffl)»o is of
local type we know that (4, D) is a local operator in the sense of 1.5, so it is to
expect that A4 is a differential operator in some sense.

For peN we define =,: T — T¥ by

n2)=(z;, ..., zp) for z={z,2,, ... )€T™.
For fe C(T?) the function fon, € C(T™) depends only on the first p variables.

4.14. Proposition. For every peIN and every fe C*(T?) we have fo n,eD, and
2

LA
Alfer)=3Y a éﬁjz—ronp.
Py p

Proof. For fe C*(T?) we easily find

i (fom)=[ (@ ) oo,
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and by Proposition 3.3 we have

i P P92

i (@) 11]- Loz
uniformly on T%, hence

R L

lim — [+ (fomy)—fom,]= ,Zjlak 502 ™

uniformly on T*. []

4.15. In the preceding sections we have seen that certain growth conditions
on the sequence .o/ imply that the convolution semigroup (i), , has nice pro-
perties. In § 8 we need an estimate which essentially deals with another convolution
semigroup on T*, namely the analogue of the Cauchy semigroup.

The function : Z'™ > R defined by

Yin)= (}E a, n} )‘2 for neZt™ 9)

is negative definite as the square root of a negative definite function (cf. [2], p. 45).
There exists consequently a symmetric convolution semigroup (¢%),,, on T,
called the Cauchy semigroup, such that

07 (n=e""Y™  for t>0 and neZ'™.

We want to find a condition on o/ which ensures that all the measures 67, >0,

have continuous densities. By Theorem 1.7 this is equivalent with finding a con-
dition which ensures that

Y e"¥™Wao  forall >0,

neZoo)
and this is exactly what is needed in § 8.

4.16. Proposition. If o/ satisfies the condition

5 0

=1 Va,
then

Y e W< forall t>0,

neZt=)

< o0, (10)

where s is given by (9).
Proof. We put

olay, ..., a,;0)= ) exp(—tla, nj +---+a,n?)). an

neZP

To estimate (11) we use the inequalities

1/a+b;—1~£(1/&+1/5) for a,b>0,
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and

Ze"'"'<1+—2— for t>0,
nel

and procede in the following way:

o(a, ..., a3 1)S ) exp (—tll;—;jlnll) o (az, e ap;~l/%)

neZ

ff)a(az,.._,ap;%)
)( tll/[')) (03’ a";(lé)z)

o (Hzt(ll/fj_i") o (ap;FVE;__l)gﬁ (1+2t<11/f;z").

We therefore get

L 212
e ""W=gsupala,...,a,; )< (1+ )
ne;:w) peN 1 ! kl;Il tl/a_k

which is finite because the infinite series in (10) is convergent. [I
4.17. Corollary. If .o/ satisfies (10) then for all t>0, A=0 and p=0

1
2

Y exp (—t (/1+ Zap+kn,f) ><oo
k=1

neZ()
Proof. The Corollary follows because the sum in question is majorized by

e-lvm, 0

neZ(=)

4.18. Remark. It is clear that (10) implies (4). We have not been able to decide
whether (4) suffices to ensure the convergence of

etV

neZ()

for all t>0.

Part II. Harmonic Functions on T®
5. Harmonic Functions on T?

5.1. In this paragraph peN is fixed and a=(a,, a,, ..., a,) is a p-tuple of numbers
all >0. For every 420 we define a differential operator L, on R? by

Sa i
L=Ya ~—5—4 (1)
P eng
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Let V be an open subset of IR?. A function fe C*(V) is called L,-harmonic if
L, f=0in V. The sheaf of L,-harmonic functions on R? turns IR? into a Brelot
space. We refer the reader to [10] for information about the properties of this
harmonic space. We will often make use of the boundary minimum principle for
L,-superharmonic functions.

We can also consider L, as a differential operator on the differentiable mani-
fold T” by the following device:

Let y: R?— T? be the mapping

Y0y, ..., 0,)=(", ..., ) for (0,,...,0,)cRP.

For an open subset U< T? and a function fe C®(U) we consider L,(f-7) on
y~1(U), and it is easy to see that there exists a uniquely determined function
L, f: U— R such that

L,(fop)=(L; f)ey on y (V). 2
We will simply write

2

LI
L, f= Zakw—if for fe C*(U).
k=1 k

A function fe C*(U) is called L,-harmonic in U if L, f=0 in U. The set of L,-
harmonic functions in U is denoted H#F(U). Of course #F(U) depends also on
a, ..., a, but these numbers will be fixed throughout the paragraph so we avoid
them in the notation.

Since fe #F(U) if and only if L,(foy)=0 on y~'(U), it is clear that #7 is a
harmonic sheaf on T?;(we use the terminology of Constantinescu and Cornea [7]).
From the fact that the sheaf of solutions to (1) on IR? turns R” into a Brelot space,
it is easy to see that (T?, ) is a Brelot space.

To construct J#7-regular sets on T? one may proceed in the following way:
Let Q<IR? be an open set such that y: Q— T? is a homeomorphism of £ onto
y(€) (which is necessarily open in TP). If V is a regular subset of Q in the sense of
classical potential theory then V is also regular with respect to the sheaf of solu-
tions to (1) ([7], p. 79) and U =y(V) is regular on T? with respect to #7. In fact,
for feC(0U) let H,,, be the solution to the L,-Dirichlet problem for V with
boundary function foye C(éV). Then H =H foyoy“ee}f;"(U) is the solution to
the #P-Dirichlet problem for U with boundary function f. By y~! we mean the
inverse function of y | Q.

The property of a subset U< T? being regular with respect to 7 is inde-
pendent of 4120 and the p-tuple (a;, ..., a,) as is easily seen invoking the cor-
responding result in R?. We can therefore talk about regular subsets of T? without
specifying the sheaf.

We will later make use of regular sets with smooth boundaries and this concept
is made precise in the following definition.

5.2. Definition. Let Q be an open subset of IR” such that y is a homeomorphism
of Q onto y(Q2). If V is a bounded domain with C*-boundary such that V=Q
then U=v(V) is called a strongly regular subset of T?.
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It is clear that 77 has a base of strongly regular domains.
For an open subset U< T? we define

C2U)={feC™(T")|supp(f)c U}, 3)

and using the normalized Haar measure on 7%, denoted 40 or dz, we can regard
locally integrable functions on T? as distributions and we can talk about distri-
bution solutions to L, f=0.

Along these lines we have the following resuit.

5.3. Proposition. Let U < T* be open and suppose that fe C(U) satisfies L, f=0
in the sense of distributions on U. Then fe #F(U).

Proof. Since both hypothesis and conclusion are of local nature the result
reduces to an analogous statement for an open subset of R?, and this case is
settled by the ellipticity of L,. ]

5.4. Proposition. Let U< T? be g domain and let fe C*{(U} satisfy L, f<0in U.
If there exists a point x,eU such that f(xe)zigf F=0, then f is constant.

Proof. Putting
A={xeU|f()=inff}

we have that 4 is non-empty and closed in U. By the Hopf minimum principle
{cf. [14], p. 64) it follows that 4 is open and the conclusion follows. []
The following boundary minimum principle will be crucial later:

5.5. Proposition. Let U< T® be open, U+ T?, and let : U — R be continuous
and satisfying L, f<0 on U in the distribution sense.
Iffz00n éU then fz0on U.

Proof. The proof follows classical lines. Let 6: U — 10, oof denote the distance
to TP~ U, ie.

o= inf lx—yl,

where ||+]} is the ordinary distance in €”. By B, we denote the open ball in T?
with radius £>0 and center at (1,1,..., 1) For all sufficiently small £>0 we
choose a C*-function ¢,: T? - [0, cof such that supp{¢p,)< B, and j @, d0=1,
and then (¢,), . , is an approximate unit.

In U={xeU|d{x)>¢e} we define f,=f*¢,, where the convolution % is on the
group T?. Then f,e C*(U}), L, f,<01in U, and f, has a continuous extension to U,.

Let a>0 be arbitrary. Smce £ is uniformly continuous on U and f>0 on éU
there exists a number o> 0 such that

xelU, dx)sh=f(x)+az0.

For 2e<b we get f,+a=0on dU, and since L,(f,+a)=L, f,—Aa<0in U, we get
by Proposition 54 that f,+a=0in U,. In fact if mf (f, +a)<0 there would exist
xq€ U, such that

f(xo)+a=inf(f,+a) <0,

and an application of Proposition 5.4 leads to a contradiction.
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For xeU fixed we therefore have f(x)+a=0 for all sufficiently small £¢>0,
and letting ¢ tend to zero we obtain f(x)+a=0 and hence f(x)=0. [J

5.6. Remark. One can prove that a continuous function f: U >R is super-
harmonic in the harmonic space (7%, #7) if and only if L, f<0 in the sense of
distributions, but we shall not need this result.

5.7. Proposition. (i) If A=0 then #(T?) consists of the constant functions, and
the only potential on T? is zero.

(i) If A>0 then HF(TP)={0}, and (T®, #7?) is a B-Brelot space. The function
p; defined in 3.1(7) is a strictly positive potential which is L ,-harmonic in T?~ {0}.

Proof. (i) A=0. It is clear that every constant function belongs to #7(T?). If
feAF(TP) there exists a point x,€T” such that f (x0)=i;1pf f, and it follows by

Proposition 5.4 that g=7f—f(x,) is constantly zero. If s is a potential on T? there
exists by the lower semicontinuity of s a point x,€ T? such that s(x0)=ippf s, and

5(xy)=0 because s(x,) is a non-negative harmonic minorant of s. Since (T?, #7)
is a Brelot space we conclude that s=0, cf. [7], p. 138.
(i) 4>0. Let fe #P(T?) and assume that ippf S=0 (if not we replace f by —f).

There exists x,e T? such that f (x0)=i;1pf £, and by Proposition 5.4 we get that f is

constant, but then L, f=—Af=0 implies that f=0.

Let (47),, , be the convolution semigroup studied in § 3 and let (p3), ., be the
resolvent. If (4, D,) denotes the infinitesimal generator for the semigroup on
C(T?) induced by (47),. , we have by Proposition 1.9 that

(p5, Af=Af>=—f(0) for feD,,
in particular by 3.3

o5, Lif>=—f0) for feC™(T?),

and it follows that L, p} = —¢, in the distribution sense. Since §¢ is continuous on
T~ {0}, Proposition 5.3 implies that p$ is L,-harmonic in T?~ {0}.

In the case p=2 we conclude that p¢ is superharmonic because it is lower
semicontinuous and has the value oo at 0 (cf. 3.2).

In the case p=1 p9 is continuous and has a global maximum at 0, and therefore
it is clear that p is superharmonic.

Since 0 is the only L,-harmonic function on T? every non-negative super-
harmonic function is a potential.

The potential j4 is >0 at every point. This follows either from [7] p. 138 or
directly from the concrete expression for 5. [

5.8. Remark. The sheaf #7 is translation invariant on T? for every A=0.

5.9. Let 5 be a harmonic sheaf on a locally compact space X and let V=X
be an A -regular set ([7] p. 12). Then every fe C(0V) has a unique continuous
extension H{, to ¥ such that H/|Ves#(V), and there exists a family of positive
measures (w, ), ., such that

H (x)={fdw for feC(0V) and xeV.
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Let ¢ be a privileged positive measure on 0V such that supp(o)=2V. If there
exists a continuous function P: V x 8V — [0, oo[ such that

! =P(x, &)da(£)  for all xeV,

i.e. such that

Hy(x)= [ P(x,&)f(&)da(’) for fe C(0V) and xeV,
ov

then P is called the Poisson kernel for ¥ with respect to # (and o). If the Poisson
kernel exists it is uniquely determined due to the requirement that supp (6)=23V.

5.10. Proposition. Suppose that for each open set U< X the vector space #{U)
is closed in C(U} in the topology of compact convergence. Suppose further that the
Poisson kernel P exists for a regular set V < X. Then the function x — P(x, &) belongs
to # (V) for every EedV.

Proof. Let B’ be a base of compact neighbourhoods of &,e0V and choose for
every We B a function f,, € C*(0V) such that

supp(fy)=W and [fydo=1.

Then it is easy to see that
1i§{1 H,«W(x)=1i§1 { P(x, O fl&)da(&)=P(x, &)

uniformly for x in compact subsets of ¥, and the assertion follows due to the closed-
ness assumption about #. [f

5.11. Let o be the sheaf of C*-solutions to L,f=0 in IR” and let V< IR?
be a bounded domain with C®-boundary. Then it is well known that V is #-
regular and there exists a Poisson kernel P, for ¥ with respect to 5 and the surface
measure o, on V. In fact it follows by Green’s formula that

B(x, £)=§;Gi(x, &) for xeV and &edV,

. . . 0 . .
where G, is the Green function for V with respect to L,, and 2,18 the inward

conormal derivative applied above to the function y— G,{x, ) at the boundary
point £edV, cf. [14] p. 88.

It follows by the maximum principle at the boundary, cf. [14] p. 68, that
B(x,&)>0 for xeV and {edV.

The following estimate of B, is crucial.

5.12. Theorem. Let V<R? be a bounded domain with C*-boundary and let
B, be the Poisson kernel for V as defined in 5.11.
For every compact subset K <V there exist constants A and B>0 such that

B(x,)<Ae V*®  for xeK, £e€dV and 1214
4 There exist actually constants 4 and B such that the inequality holds for all 120. This follows
from the proof below when p=3, but for p=1,2 special estimates are needed. Since we are only
interested in large A we do not develop this further.
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Proof. Let p? denote the probability density on R? defined by
Pix)=Pp (X} .. P, (x,)  for xeR” and >0,

where p,{x) is given by 2.1(1). Putting 2 =(g, ... a,/''" and

1 xiz E3
el o= (El?;,) for xeR?
we have
P 2
pi(x)=(4nta) *exp (_%{)

For A>0 a fundamental solution to the differential operator L, in R?is — N,
where

Ny(x)={ e *'p2x)dt for xeR?,
3

cf 1.9. Introducing

o r2

2 o
o,(r)= [ (4nta) *e"*Me Bdr  for r20 and A>0
0

we get the following estimate
N(x)E o, (Ixl Jexp(—11/2lx],) for xeR? and A1 (@)
In fact, putting

-1 2
%} for xeR? fixed,

iz ’-~AI (_
e{t)=e" Mexp ar

we find

max o(t)=exp(—1/Z]x1L),
and hence

SV oD exp(—3V/4 xI,),
so that

NS0, (Ixlyexp(—11/AIx])

and (4) follows.
We suppose from now on that A2 1.
The Green function G, for ¥V is equal to
G,(x, Y)=N{x—y)—h,(x,y») for xeV and yeV,

where y - h,(x, y) is the solution to the L,-Dirichlet problem for V with boundary
values y-+ N,(x—y). By the boundary minimum principle h,(x,y)=0 and
G,(x, ¥)20 and hence by (4)

0SG,(x, NEN -y <o, (Ix—yl)exp(—+V/AIx—yll,).
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Let K be a compact subset of V. We define
20=inf{|x—yl, |xeK, ye R?V}

and choose a domain ¥, with C*-boundary such that K<V, <V, =V and
inf {|x—y{,IxeK, ye R?~ 11} 2 9.

Let H be chosen as the continuous function on ¥~ ¥; which is 1 on d¥;,0 on oV
and which satisfies L, H =0in V'~ ¥, . The function H iseven C* up to the boundary
and in particular we have

0H
Sup —a;-< 0

a . . .
where — is the inward conormal derivative.

ov
For xeK and yedV, we have ||x—y||,= ¢ and hence
G,(x,y) S0, (8) exp(—11/A9). (5)

Let xe K. The function
¢,()=G,(x, y)—0,(8) exp(—31/48) H(y)
defined for ye V. ¥} has the following properties:

() Ly@,()=4G,(x, )20 for yeV~1V,,
(i) ¢ (=0 for yedV,
(iii) ¢ (y)<0 for yedV] (on account of (5)).

By (i) ¢, is L,-subharmonic, and by the boundary maximum principle for such
functions we get ¢, <0 in V' V,. The function ¢, being <0 and 0 on Vit is clear

that ; ¢,<0on 0V, and hence

P(x,é)—— G,(x, )< a,(8)exp(— 21/5 for ¢edV.

5,
Putting 4=0,(d) sup a—H and B=14 we finally have

P(x,&)<Ae®V"  for xeK, éedV and Az1. 0

5.13. Theorem. Let V < IR? be a bounded domain with C*-boundary and let P,
denote the Poisson kernel for V as defined in 5.11.

(i) For every xeV and £c0dV the function
A= Pi(x, §)

is continuous on [0, oo[ and completely monotone.
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(i1) For every xeV and fe C*(dV) the function
A= [ P(x, &) f(&)day (&)

is continuous on [0, o[ and completely monotone.

Proof. For fe C*(dV) we denote by H(x, 1) the value at xeV of the solution
to the L,-Dirichlet problem for V with boundary function f.

Suppose first that fe C*T(0V) is the restriction to 0V of a non-negative C*-
function in R”. Then H,(x, 4) has the following regularity properties:

a) For each xeV the function Hf(x, +) is continuous on [0, o[, C* on ]0, .

b) For n=0 and 4>0 the function FyO H(-, 1) is continuous on V.
¢) Hye C*(V x]0, «o[).

Differentiating the equation

Lo H(x, A)=AH(x, 4)

n times with respect to 4 we get by ¢)

n Foid o ot
o LoHye =L (WH(x, ))_157 (5, A+ Hi(, ),
and hence
an n—1
L, (Wyf(x, ,1)) nziHy(x7)  for xeV and 1>0. 6)

We have clearly H/(x, 1)z 0 for xeV and 4>0, and suppose for the purpose
of induction that for some n=1
an—l
_1y-1
( 1) 611"71

Let A>0 be fixed and put

H(x,4)=20 for xeV and 1>0.

n

00)=(— 1P L H () for xeF.

oA
By (6) and the induction hypothesis we get L,¢ <0 so ¢ is L,-superharmonic in V.
For xedV we have H (x, u)=f(x) for £>0 and therefore ¢(x)=0. Using b) and
the boundary minimum principle for L,-superharmonic functions we get ¢ =0,
and this completes the induction. We have now proved that A — H/(x, 4) is con-
tinuous and completely monotone on [0, oo[ for fixed xeV and fe C*(dV) being
the restriction of a non-negative C*-function in IR”.

To prove (i) let xe V and &£,e0V be fixed and let f,e CT(IR?) be a sequence of
functions such that f,do, converges vaguely to the Dirac measure ¢, at .
For every 120 we then have

lim H, (x, 2)= lim | P,(x, &)£,(&)doy ()= Fy(x, &),
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so the function A — P,(x, {,) is pointwise limit of completely monotone functions
hence itself completely monotone. It is somewhat tedious to verify that A — P,(x, £,)
is continuous for A=0.

Finally it is easy to see that (i) implies (ii). [

5.14. Remark. Theorem 5.13 is valid for more general linear second order
elliptic operators and we shall treat this in a subsequent paper. Using the iterated
differences characterization of completely monotone functions (cf. [13]) we can
avoid the tedious verifications of differentiability needed in the above proof.

The result in Theorem 5.13 is also hidden in the following formula for hitting
distributions, cf. [5] p.61:

PA(x)=E*{e *TAf(X, ); T,<}.

5.15. Let #F be the sheaf of L,-harmonic functions on T”. Every strongly
regular domain U< T? (cf. 5.2) has a Poisson kernel with respect to #F and the
surface measure o, on the boundary of U.

Using the terminology of Definition 5.2 and denoting by B’ the Poisson kernel
for V defined in 5.11, then BY defined by

BU(x,&)=F/(y '(x),y (&) for xeU and ¢edU,

where y~! =(y{Q)~ !, is the Poisson kernel for U. To verify this one makes use of
the fact that the Jacobian of y is identically 1, and therefore y maps the surface
measure of V onto the surface measure of U. It is also clear that the results from
Theorem 5.12 and 5.13 carry over, so we have the following theorem:

5.16. Theorem. Let U< T? be a strongly regular domain. The Poisson kernel
P, for U with respect to the sheaf #F and the surface measure o, exists and satisfies:

(1) P(x,8)>0 for xeU, (edU and AZ0.

(ii) A— Py(x, &) is continuous and completely monotone on [0, o[ for xeU
and £edU. .

(iii) For every compact subset K < U there exist constants A and B> 0 such that

P(x,&)<AeV*B  for xeK,EedU and Az1.

6. Definition of Harmonic Functions on T®

In all of this paragraph </ =(a, , a,, ...) is an arbitrary sequence of positive numbers.
6.1. For peN we define n,: T*—T? by
n,(2)=(z,...,z,) for z=(z;,z,,...)eT*. O
For p, geN such that p<q we define =, ;: T>T? by
m, (2)=(zy,...,z,) for z=(zy, ..., 2,)eT". 2
Then we have

T, on,=n, for p=q. 3)
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For A< T? we denote by 4 x T the following subset of T*
AxT?=mn"A)y={zeT™|n (2)e A}.

This notation is very convenient although not quite correct. It leads to the
following easily verified formulas

(AXT) =AxT® (AxT* =AxT® HAXT®)=04AxT>

where the topological operations —, o, & (closure, interior, boundary) should be
understood being with respect to 7% on the left-hand side and with respect to
T? on the right-hand side.

If for every pelN we choose a base 2, for the topology of T?, then the set of
subsets of T®

{UxT""iUe@p, peIN} @

is a base for the topology of T™.
Let X< T* and consider a function f: X — IR. We say that f only depends on
the first p variables, if there exists a function g: 7,(X)— R such that

fZ)=g(r,(z)) forall zeX,

and we say that f only depends on finitely many variables, if there exists a peN
such that f only depends on the first p variables.

The normalized Haar measure on T? for peNuU{co} is always denoted
df,dx,dz, ..., and it should be clear from the context which Haar measure these
symbols are referring to.

6.2. For every pelN we consider the set C®(T?) of real-valued C®-functions
on the differentiable manifold T”. Every function f on T? may be considered as a

function on T™ depending only on the first p variables by composing f with
n,. We define

NT")= Ql{f0 m,lfe C*(T)}.

I ge@(T™) there exist peN and fe C*(T?) such that g= = fon,. For any g=p
there exists a function f,€ C*(T*) such that g=f on . We only have to put f,=
fom, . cf.(3).

From this remark it is clear that 2(T*) is an algebra of functions on T®. The
set P(T) is exactly the set of regular functions on T in the sense of Bruhat, cf. [6],
but this paper is independent of [6].

For an open subset Q< T® we define

D(Q)={feD(T*)|supp(fl=Q}.

6.3. Motivated by §4 we consider an arbitrary sequence o/ =(a,,a,,...)
of positive numbers and a non-negative number 4 and form the expression

o0 52
‘q{”_ PR———
L,.kgl % gz A. )
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For every pelN we define

P2
L-—Zakae2 A, (6)

which is the differential operator on T? studied in § 5.
We will now define I g for ge 2(T™). For ge2(T*) there exist peN and
JeC*(T") such that g=fon , and we then define

B g=(I%,f)om,. v

It is easy to see that the expression on the right-hand side of (7) is independent
of the choice of peN and fe C*(T?) such that g= fom,,.

We remark in passing that L“"’ is a differential operator on T* in the sense of
Bruhat [6].

Using the idea of distributions we now define harmonic functions in the follow-
ing way:

6.4. Definition. Let Q< T* be an open set. A continuous function h: Q - R is

called L""’ -harmonic if

jh V2 g(0)d0=0 for all ge2(Q).

The set of I-harmonic functions in Q is denoted #;(Q). In the terminology
of [6] a continuous function 4: 2 — R belongs to #.7(Q2) if and only if k=0 in
the distribution sense.

It is clear that () is a closed subspace of C(£), when the vector space
C(Q) of continuous real-valued functions on Q is equipped with the topology of
uniform convergence on compact subsets of Q. The following proposition exhibits
a large class of [5-harmonic functions.

6.5. Proposition. Let Q=U x T, where U is an open subset of T? for some
peN. If e #F(U) then h=gom e £ (Q).

Proof. Let ge 2(€2). We shall prove that
j h(6) I, g(0)d6=0.

There exists g=p such that g=fon, where fe C*(T"), and using Q=mr (Q)x T*
we find

gh(B)L g(0)ab= Ico(n (O f(m(0)d0= [ o(m, (NI f(8)dI

"q(g)

Using partial integration and the fact that supp(f) =, (£2) we see that the last
integral is equal to

| Bigeon, )9S(9)d3,

"q(ﬂ)
which is zero because

L (pom, JO)=L,0(r, (9)=0 for e (Q)
by hypothesis. [
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6.6. Theorem. The mapping #:* which to an open subset Q< T® associates the
vector space #*(Q) is a sheaf.

Proof. If ©, and @, are open subsets of T* such that Q, €Q,, it is clear that
he #7(Q,) implies that h|Q, e #7(Q,).

Suppose next that Q< T* is the union of a family (2)),_; of open subsets of
T* and that a function h: Q>R satisfies h|Q,e #7(Q,) for all iel. We shall
prove that he #7(Q).

Without loss of generality we may assume that each Q; has the form Q,=
U, x T, where U, is an open subset of T? for some p,eN.

Let ge2(Q) and put K =supp(g). There exists a finite set I,<I such that
K< () Q. Choosing pzmax {p;|iel,} such that g=fo n, for fe C*(T7), it is

ielg
possible for each i€l to write 2=V, x T* where ¥,= U, x T?~?'is an open subset
of TP. We then have

supp (f)=m,(K)= UV,

ielg

and it is well-known that there exists a partition of unity (¢,)
iel, ;e C*(T?) and supp (¢,)< V., and furthermore

Y ofz)=1 for zem(K).

ielg

iely» 1€ for each

We therefore have

f@=3 f@ofz) for zeT?,

iclp
and hence
g0)=> g(0) for OeT™,
ielp

where g;=g - (p;°n,). Since g,e Z(€) for each iel, we finally get
[h(0) I, 8(0)d0= 3 [h(6) ] g(6) dO
Q

ielg 02
=5 [h(0)E g0)d0=0. 0
ielg €;

6.7. In the following we shall often approximate functions on T with func-
tions on T which only depend on finitely many variables. We will use the fol-
lowing notation:

Let f: Ux T®—R be a given function, where U is a subset of T? for some
pelN.

Forr=p,p+1,... wedefine T,/ UxT" P> R by

T.f(x)= | f(x,0)d6 for xeUxT" 7. ®)
T!X?
Eq. (8) shall be understood in the following way. For xe U x T""? and 0e T®

we identify (x, 0) with the point in U x T® whose first r coordinates are given by x
and the following coordinates by 6, and therefore f(x,#) is well-defined. In the
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case r=p we of course define U x T%=U. We also assume that f is sufficiently
regular so the integral in (8) makes sense.

6.8. Lemma of Approximation. Let U be a subset of T* and let f: UXx T* >R
be continuous.

(i) For each r=p, p+1,... the function T [ is continuous in U x T"? and

Iim T fr(z)=f(z) forall zeUxT™. 9

If U is open the convergence in (9) is uniform on compact subsets of U x T®.

(i) If f is E-harmonic in U x T®, where U is open in T?, then T.f is a C*-
Sunction in U x T"~? and satisfies L,(T, f)=0, i.e. T, fe #] (U x T"~?). Furthermore
T,fom, is I -harmonic in U x T™.

Proof. (i) Let r=p be fixed and let xeU x T"? be given. The continuity of f
on the product space U x T*, where T* is compact, implies that

lim f(y, 9)=f(x, 0} uniformly for 8T,
y-x

where y tends to x in U x T""P. This clearly implies that T, f is a continuous
function.

Let zeUx T* and £>0 be given. By the continuity of f there exists r,2p
such that | f(z)—f(w)| Le for all we U x T*® for which 7, (w)=m, (z), and therefore
forrzr,

ITfr ()~ N [ If(m,(2),0)~f(2)| dO<e.
T
Let now K be an arbitrary compact subset of U supposed open in T?. We will
prove that

lim T, f(r,(2))=f(z)  uniformly for ze K x T™.

Let ¢>0 be given. For every ze K x T® there exists an open neighbourhood
Q. of z, 2, €U x T, such that

[fw)—f(w,)|<e  forall w,w,eQ,,

and we may assume that €, has the form Q_=U, x T®, where U, is an open subset
of 77 for some p,eN. By compactness there exist finitely many points z,, ..., z,
in K x T such that

n
KxT*c|)Q,,
i=1
and putting ro=max {p, |i=1, ..., n} we can write
Q =V,xT* for i=1,...,n,

where V,=U, x T™ 7z is an open subset of T™.
For w,, w,e K x T® such that =, (w,)=mn, (w,) there exists ie{l,..., n} such
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that w, w,€€, , and therefore

Lfw)—f(wy)l <e.

For ze K x T* and r Zmax (p, r,) we then find
IT,f(m(2)—f2) L | |f(m,(2),0)—f(2)]dO<e.
Td)

Since every compact subset of U x T™ is contained in a compact set of the form
K x T®, where K is a compact subset of U, we have proved (i).

(ii). Suppose that fe #:7(U x T*) and r 2 p. We will show that I,(T, f)=0 in
the distribution sense on U x T"~ 2. Once this is done, it follows from Proposition
53 that T, fe#, (U x T""?), and by Proposition 6.5 we finally get that T, fon,e
HZ(U x T™).

Let pe C?(U x T~ ?). We shall prove that

[ T )L, o(x)dx=0.

UxTr-»

Since g=@ on,eZ(U x T*) we have
[ f@Eg@dz= | f@)L, er(z)dz=0,

UxTx UxT®
and splitting ze U x T* as z=(x, 0) where xe U x T""? and 0e T*, and using that
dz=dx®d6 with dx and d0 being normalized Haar measure on 7" and T*
respectively, we get

0= | Jfx0L, o(x)dodx

UxTr-» T®

= | Tf®L exdx. [
UxTr-p
6.9. Corollary. If =0 the set #(T®) of I-harmonic functions on T* is the
constant functions.
If 2> 0 then #*(T*)={0}.

Proof. Every constant function belongs to #.(T*), e.g. because of Pro-
position 6.5. If he #¥(T*) we have by Lemma 6.8 that T, he #7(T") for r= 1. By
Proposition 5.7 follows that T, h is constant in the case A=0 and zero in the case
A>0. Letting r —» co the assertion follows. [

The approximation Lemma 6.8 leads to the characterization of ¥-harmonic
functions as functions which are locally approximable by “ordinary harmonic”
functions.

6.10. Theorem. Let Q be an open subset of T®. A function h: Q>R is F-
harmonic if and only if the following holds:

For each zeQ there exist an open neighbourhood Q,<Q of z and a sequence
h,: Q.- R of functions satisfying.

(i) For each neN there exist a number p,eN and a function f,e #(r, (Q,))
such that h,=f o=, ,

(i) lim h,=h uniformly on compact subsets of Q.
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Proof. The “if-part”. By Proposition 6.5 we know that h, e #;*(Q,) for all n,
hence by (i) that he #;%(Q,). The sheaf property finally assures that he #7(Q).

The “only if-part™ Suppose that he #%(Q) and that zeQ. There exist peN
and an open set U< T? such that zeU x T < and we put Q,=UxT*. The
sequence of functions h,=(T,, ,h)on, , defined on Q, for n=1 satisfies (i) and
(1) on account of Lemma 6.8. [

7. Construction of Regular Sets

In this paragraph &/ =(q,, a,, ...) is an arbitrary sequence of positive numbers
and 4 is an arbitrary non-negative number.

7.1. Definition. Let Q be an open subset of T®. A continuous function f* Q@ >R
is called I -superharmonic if

j f(2) F g(2)dz<0  for all geP*(Q).

The set of continuous I¥-superharmonic functions in Q is a convex cone
containing (). Every non-negative constant function h: Q - R is I5-super-
harmonic:

If ge 27 (£) has the form g=fon, with fe C*(T”), we get

jh VIF g(z)dz=h | I f(n,(2)dz

supp (f) x T®
=h j" I f(x)dx=—Ah j f(x)dx =0,
supp (f) supp (f)

and the assertion follows.

7.2. Lemma. Let U be an open subset of T? suchthat U=+ T? and put Q=U x T®.
For a continuous function f: Q - R such that f|Q is [-superharmonic the boundary
minimum principle holds, i.e.

If f200n 0Q then f 20 in Q.

Proof. For r=p the function T,f: Ux T"~? - IR is continuous and satisfies
L (T, )20 in the distribution sense in U x T"~?. Actually, the same calculation
as in the proof of Lemma 6.8 gives for e C°(U x T""?) that

| Tf(x)L'A(p(x dX-ff(Z)L (pom,)(z)dz,

UxTr-

which by Definition 7.1 is <0 if ¢ =0, because then @ on,e27(Q).
Furthermore T, f(x)20 for xed(U x T"~?) (boundary in T") because

L= [ f(x0)a0

and for xed(U x T""?)and 0 T™ we have n

,(x)edU (boundary in T”) and hence
(x, )edU x T*=0Q, so by hypothesis f(x, ) =0.
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From the boundary minimum principle in Proposition 5.5 we get 7, f=0 in
Ux T ? and hence

f@)=1im T, f(x,(z))20

forall zeQ. {1

7.3. Corollary. Let U be an open subset of T? such that U+T?" and put Q=
U x T®. For a continuous function h: @ >R such that h|Qe #*(Q) we have

sup [h|=sup |hl.
7] o0

Proof. If we put a=sup |h| both of the functions a+h are continuous on €,
o

I¥-superharmonic in @ and =0 on 9Q. By Lemma 7.2 follows that a+h>0
in ©, i.c. sup |h| < a, and the assertion follows. []
Q

We are now able to construct open sets in T* which are regular with respect

to Ay

7.4. Theorem. Let U be a regular subset of TF. Then Q=U x T* is regular
with respect to the sheaf #¥ on T*.

Proof. For a continuous function f: 02 — IR there exists at most one solution
to the [-Dirichlet problem for ©, i.e. at most one continuous function F: Q - R
for which F|Qe#(Q) and F|0Q=/f If namely F, and F, denote two such
functions, we know that G=F, —F, is continuous on Q, G=0 on 8Q, and that
G| Qe (Q), and hence by Corollary 7.3 that G=0.

To prove the existence of a solution to the I-Dirichlet problem we introduce

A={feC(0Q)|IFeC(Q): F|0Q=/, F|Qe#7(Q)}.

We shall prove that A= C(6Q) which will be accomptished by the following steps:

a) A is a closed subspace of C(0Q).

b) Construction of a subset B& 4 which is dense in C(09Q).

Proof of a). It is clear that A is a subspace of C(0Q). Let (f,),_ be a sequence
from A converging uniformly on 0Q to a function fe C(0Q). If (F,), . denotes the
corresponding sequence of “solutions”, we have by Corollary 7.3 that

sup an—Fm|=sup If,—f, forall n,meN.

This implies that (F,),. is a Cauchy sequence in the Banach space C(f), and
there exists consequently a function Fe C(Q) such that F,— F uniformly on Q.
Clearly F|0Q=f, and since #*(Q) is closed in the topology of uniform conver-
gence on compact subsets of Q, we also have F|Qe#:¥(Q). This proves that
feA.

b) For each neZ' we consider the character y, on T defined in 4.1. For
neZ'™ and ¢e C(0U) the tensor product ¢ ®7, determines a continuous function
on 0U x T® =482, namely

e®7y,x.2)=¢(x)y,(z) for xedU and zeT*. (1)
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The subspace of C(9Q) generated by the functions (1) when ¢ e C(3U) and ne Z™
is denoted B, i.e.

B=span {p®7y,|9e C(0U), neZ}. )

B is a subalgebra of C(0Q) and it is easy to see that the Stone-Weierstrass
theorem can be applied to the effect that B is dense in C(0€2). In order to see that
B< A it suffices to prove that f=¢®y,eA for every e C(0U) and neZ™, and
this is done in Theorem 7.5 below.

We finally have to prove that if fe C*(6Q) and if F is the solution to the
E5-Dirichlet problem with boundary function f, then F>0 on Q. This however
follows from Lemma 7.2. [J

7.5. Theorem. Let U be a regular subset of T? and put Q=U x T*. Let f=
@ ®y,€ C(0Q) be given, where pe C(0U) and ne 2,

The solution to the Ei-Dirichlet problem for Q with boundary function f is
F=®®y,eC(Q), where @ is the solution to the I2-Dirichlet problem for U with
boundary function .

The constant c is given by

q
c=/1+k;ap+kn,f, 3)

where neZ'™ is equal to n=(n, n,, ..., 1, 0,0,...).

Proof. Since U < T? is regular, in particular s#,P-regular, there exists a uniquely

determined function @€ C(U) such that ¢|{3U=¢ and ¢|Ue#P(U). Therefore
e C*(U)and Z ¢=0in U. The function F=®®y,, i.e. the function defined by

F(x,2)=®(x)y,(2) for (x,2)eQ=UxT>,

is continuous on Q apd F|0Q=¢®y,=f Furthermore we have F|Qe#(Q).
To see this we define F: Ux T?—> R by

N q

Flx,2)=®(x)[[zp~ for xeU and zeT9,

k=1

so that F=F °T,,, O Q, and by Proposition 6.5 it therefore suffices to prove
that the C*-function F satisfies I7"?F=0 in U x T% This means by definition
that I274(G)=0 in y~'(U)x RY, where y: R? — T? is the mapping defined in 5.1
and G: y~}(U)xIR?- R is defined by
q .
GO)=d((0,, ..., 491,))"[_[1 e'mefp i

for

0=00,,....0,,0,, ..., 0p+q)ey“1(U)x]Rq.
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We find
2
LPA“’G (P 0o y

Y g O, 0)) [T e

—Poy(d,, ..., Qp) (k21ap+k n,%)kUIeinkop-Hc_lG(O)

p 62¢O .
= (Zak%—;(el, . 9,,)*04507)(91,,.., gp)) Hennkap+k
k=1 k k=1

q
=LI;(¢°V)(91, ey 01’)1_[ ei"k9p+k=0
k=1

because I2(®oy)=0iny " (U). 1[I

7.6. Corollary. There exists a basis for the topology of T® consisting of H#/-
regular domains.

7.7. Summarizing the results of §6 and §7 we have for an arbitrary sequence
</ of positive numbers and an arbitrary 4=0 constructed a harmonic sheaf #¥
on T® and proved the existence of a base of #:*-regular domains.

Our goal is to prove that (T, #7) is a Brelot space and this will be done in
the next paragraph, but for the result to hold we must impose a growth condition
on ..

8. Existence of the Poisson Kernel and Its Consequences

In this paragraph we will assume that the sequence &/ =(q,, a,, ...) of positive
numbers tends to infinity so rapidly that

(1/

k 1 a

This is the condition (10) of 4.16.
As before 4 is an arbitrary non-negative number.

8.1. Let 2= T be an open set of the form Q=U x T*, where U is a strongly
regular domain in 77. We know that Q is #%-regular (7.4) and will now show
that there exists a Poisson kernel for Q with respect to # and the measure
oy ®dw on 0Q=0U x T*, where o, is the surface measure on the boundary of U
and dw is the Haar measure on T®.

We first define a function A: Z‘° - [0, co[ by

(1)

A=+ Y a,,  n; for neZ'. : ()
k=1

Note that the sum is finite since ne Z'™ is eventually zero. The function A depends
on .2/ and 4 and furthermore on p equal to the dimension of U (or T?). The function
A is negative definite as sum of a non-negative constant A and a non-negative
quadratic form. The Poisson kernel for U with respect to 57 and o, is denoted
P, cf 5.15 and 5.16.
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8.2. Lemma. With the above notation the Fourier series on T®

P(x,&2)= Y Pyp(x 81,2 3)
neZ()
where xeU, U and ze T™, converges absolutely and uniformly on compact
subsets of U x0U x T® to a continuous function #: U x U x T* - [0, ool.

Proof. Since 0<aq, and a, —» oo for k— o0 there exists a finite subset D<= Z™)
such that

An)z1 for all neZ™'\. D.

Let K be a compact subset of U. By Theorem 5.16 there exist constants 4
and B> 0 such that

[Py (% &) 7,(2)| = By (x, E) £ A4 o—BAmE

for neZ!®'~\. D, xeK, é€dU and ze T*. Furthermore

4
e B4~ n
neZ(=)

because of Corollary 4.17, where the hypothesis (1) is used. It follows now by
classical arguments that the series in (3) converges absolutely and uniformly on
KxdUxT®, and consequently the series in (3) converges absolutely and uni-
formly on compact subsets of U x U x T® to a continuous function #.

For fixed xeU and £€0U the function

n—-P . (x,&) for neZ* (4)

is positive definite on the group Z‘. In fact it is equal to ho A, where h is the
function h(4)=PF,(x, &), i.e. equal to the composition of the completely monotone
function & (cf. 5.16) and the negatlve definite function A, and Proposition 1.16
can be applied.

The function (4) being positive definite and summabile, it follows by Bochner’s
theorem and the inversion theorem that 2>0. []

8.3. Theorem. Let Q= T® be of the form Q=U x T*®, where U is a strongly
regular domain in TP. Let points in Q=U x T® and 0Q=0U x T® be represented
respectively as (x, z) and (&, w) where xe U, £€0U and z, we T™.

Then the Poisson kernel for Q with respect to #;* and the measure o, ® dw is
the continuous function P: Q x 0Q — [0, o[ given by

P((x,2); (&, W)=2P(x, &, zW)= Y. Py (x, &) 7,(zW). (5)

neZ(=)

Proof. We know by Lemma 8.2 that the function P: Q x 02— [0, co[ defined
by (5) is continuous, and we shall prove that

Hy(x,2)= [ [ P((x,2); (& w) f(&w)dwday(&) (6)

oU T=

holds for all (x,z)eQ and all fe C(6Q), where H, denotes the solution to the
E-Dirichlet problem for  with boundary functlon 1.
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By the properties of the set B defined in the proof of Theorem 7.4 formula (2)
it clearly suffices to prove (6) for funcnons of the form f=¢ ®7,_, where o€ C(8U)
and n,eZ™.

W1th the terminology of Theorem 7.5 this amounts to prove that

T J Pllx, 2)5 (& W) @(&) 7, (W) dw da () = B(x) 7,,,(2). (M

U T=

Because of the uniform convergence in w of the series in (5) we get

f P((x,2); (5, W) 7, (WY dw =Py, (x, &) 7, (2),

so the left-hand side of (7} is equal to
o2 ] Py (%5 &) @(E) do18),

which by Theorem 7.5 is equal to y, (z) @(x), because A(n,) is equal to the constant
cin7.5(3). 0O

8.4. Remark. The preceding proof shows that (6) holds even without knowledge
of P being non-negative. On the other hand, once (6) is established, it follows from
(6) that P must be non-negative because fe C*(0Q) implies that H,>0. Therefore
the non-negativity of P may be established without making use of Theorem 5.16(ii).

We now deduce some important consequences of Theorem 8.3.

8.5. Theorem. Let Q be a domain in T™. Every function he #7(Q)* is either
identically zero or positive at every point of Q.

Proof. For he #7 (Q)* we put
A={weQ|h(w)=0},

and it is clear that 4 is closed relatively to Q. We will prove that A is also open
relatively to ©Q, and the statement then follows since Q is supposed connected.

Assume that we 4. There exist peIN and a domain U, = T? such that we U, x
T <Q. We next choose a strongly regular domain U in T? such that U< U
and welU x T*. The Poisson kernel for ' =U x T* is denoted P. Due to the
uniqueness of the solution to the Dirichlet problem for ' we have

O=h(w)= | [ P(w; (& w)h(& w)dwde(¢)

oU T

and therefore
Plo, (&, w)) (&, w)=0 forall (&, w)edU x T*. (8)

Let ¢ be a strictly positive If,-harmonic function defined in a nexghbourhood
of U in T? (such a function clearly exists) and put hy =@on,. Then h, is F-har-
monic in a neighbourhood of & in T™, and as above we ﬁnd

0<hf@)= | [ Plw;(&w)h(&w)dwday(E),

oU T=

and it follows that there exists a non-empty open subset G of U x T such that
P(w; (&, w))>0for (£, w)e G, hence by (8) that h(&, w)==0 for (¢, w)e G. We can choose
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G of the form G=V, x V, x T® where V] is an open subset of 0U and V, is an
open subset of TY for some geN.

Since U, x T < we may consider the function T h for r=p, cf. 6.7. We have
The](U xT "?)and Thz0in U, x T" 2.

Let (e V] and neV, be chosen. Then (£, m)eU, x T Let r be arbitrary >p-+gq
and let 7 be chosen in T"~*9. Considering x=(&,#,7) as a point in U, x T" 7
in the obvious way, we have

T,h(x)= | h(x,z)dz=0
T

because (x, z)=(¢, 1, 1, 2)€G for all ze T™.

Since (T7, #7) is a Brelot space we conclude that T A is identically zero in the
domain U, x T"~?. However, r was arbitrary >p+gq, so letting r — o0 we get by
Lemma 6.8 that & is identically zero in U, x T*. This shows that we U, x T =4
and we have proved that A is open. []

8.6. Corollary. Let P denote the Poisson kernel for a domain Q=UxT*,
where U is a strongly regular domain in TP.

For every (£, w)e0Q the function P(-;(&,w)) is strictly positive and belongs to
HZ(Q).

Proof. Proposition 5.10 can be applied to the effect that the function in question
belongs to #;7 (), and it is also known to be non-negative, hence either identically
zero or strictly positive.

If P((x, z); (£, w))=0 for all (x, z)e Q we get by (5) putting z=w

Z I)A(n) (X, f) =0,

neZ(=)
which is impossible because P, (x, £)>0 for all neZ™. [

From the existence of a strictly positive and continuous Poisson kernel it is
possible to deduce all the classical “Harnack-type results” for positive I¥-harmonic
functions.

8.7. Theorem. Let Q be an open subset of T and let w,eQ. For every ¢>0
there exists a neighbourhood Q(w,) of w, contained in © such that

(1—e)h(wy) Sh(@)=(1+e)h(w,)
for all weXw,) and all he A7 (Q)*.

Proof. Let & be a neighbourhood of w, of the form Q@ =U x T®, where U
is a strongly regular domain in T? for some peN, and such that Q' < Q. Let P
denote the Poisson kernel for €. By the uniqueness of the solution to the E-
Dirichlet problem for ' we have

h(w)= | P(w, &)AE)dE  for weQ and he #7(Q),
o

where we write d¢ for the measure on 6’ equal to o, ® dw. Since P(w, £)>0 for
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weld and {0 the continuity of P: Q' x 02 —» R implies that
lim L. <)
RN o (798 5

uniformly for £€89Q". To every e>0 there exists then a neighbourhood Q{w,) of
w, contained in € such that

P(w, 3
woa 5)
For he #7(Q)" and weQ(w,) we then get
. P(w, &) (1+e)himy),
h o L
=1 pond 2(1-9h).0
8.8. Theorem. Let Q be a domain in T and let F be a family of positive I%-

harmonic functions in Q. Then the function h=sup F is either identically infinite
in Q or finite and continuous everywhere in .

e[l—e 1+6] for we(w,) and coL.

= Plag, Eh(E)dE {

Proof. Defining A= {weQlh{w)<oo}, it follows from Theorem 8.7 that A
is open and closed relatively to  and furthermore that & is equicontinuous at
every point of 4. [1

8.9. Theorem. The sheaf # has the Brelot convergence property, ie. the limit
function of an increasing sequence of I*i-harmonic functions in a domain is either
identically infinite or a I%-harmonic function in the domain.

Proof. Let  be a domain in T and let (h,),. be an increasing sequence of
functions from #*(Q). Putting # ={h,—h,|n22}, it follows by Theorem 8.8
that h=sup & is either identically infinite in Q or finite and continuous in Q.
In the latter case Dini’s theorem implies that hm (h,—h,)="h uniformly on com-

pact subsets of Q and therefore h and h+h, bekmg to #(Q). [

_ We have now proved that (T, #%) is a Brelot space. Like in Proposition 5.7
the existence of positive potentials depends on 4.

8.10. Theorem. Suppose ¢ satisfies (1) and let A=0. Then # is a translation
invariant, symmetric harmonic sheaf, and (T™, 37} is a Brelot space.

(i) If A=0 then every superharmonic function on T* is constant and every potential
is zero.

(i) If >0 then (T®, #)is a PB-Brelot space. The function i} defined in 4.10(7)
is a strictly positive potential which is IZ-harmonic in T®~ {0}.

Proof. It is clear that #% is symmetric and translation invariant. The proof of
(i) and (ii) is similar to that of Proposition 5.7. In particular we have that

(pf,Ag—Agd=—g(0) for geD,,

where (4, D) is the infinitesimal generator for the semigroup on C(T°°) induced
by (1), o- By Proposition 4.14 we then have

(ol Elg>=—g(0) for ge2(T™),
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hence by Theorem 4.11 that 7 is E-harmonic in T*\ {0}. Since 57 is lower
semicontinuous and 7% (0)= oo we get that 57 is superharmonic, and it is a potential
because #7(T*)={0}. 0

8.11. Remarks. (i) The axiom of domination is verified for the Brelot space
(Tw,éi’jl"”) when A>0. In fact the domination axiom is true for any symmetric
strong harmonic group, cf. Forst [9].

(ii). Let Q be an open subset of T® and let f: 2 — R be a continuous function.
Then f is superharmonic in the harmonic space (T, #¥) if and only if f is I-
superharmonic in the sense of Definition 7.1.

(iil). Let Q=T be a domain, let weQ and let K be a compact subset of Q.
Then there exists a constant a> 0 such that

1
—h(w)<infh<sup hZah(w)
a K 'K

for all he #7(Q)*.

8.12. The preceding constructions show that there exist harmonic groups
(G, ) where the base space is G=T®. It is easy to modify the construction to the
case G=IR"x T”. This shows that the base space G of a harmonic group need not
be a Lie group, (T is not a Lie group in the classical sense, neither is it a Lie group
of infinite dimension), which settles a problem studied in [4], cf. also [17].

9. A Counterexample

In this paragraph we will assume that the sequence & is a4, =a,=---=1 and that
A=0. The sheaf #;* is simply denoted # in this case.

The sequence o7 does of course not satisfy the hypothesis (1) of § 8 and therefore
the proof of the Brelot convergence property of the sheaf breaks down. It is the
purpose of this paragraph to prove that the Brelot convergence property is really
violated in this case.

9.1. We consider the open interval V=70, I[. The Poisson kernel for V with
respect to the differential operator

d2

L=~

A, 420,

and the measure 6 =g, +¢, on @V is given by

sinh(}/A(1 — x))
sinh(}/2)

sinh (/2 x)
W for xeV and é=1.

for xeV and =0,
B(x, &)=
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For 2=0 this should be interpreted as

1—x for xeV and £=0,
R)(x’é)—{x for xeV and ¢=1.
As a special case of Theorem 5.13 we get that the function
l_)mr.lh(ﬂx) )
sinh(}/2)

is continuous and completely monotone on [0, co[ for every xe V. This should also
be compared with Corollary 2.11.

9.2. Theorem. For every pelN the Fourier series

< sinh(lnl®)
hle 0= 2 = anini)

i, @
where xeV and 0eR¥, converges in the Fréchet space C*(V x R¥) to a C®-function
h, which satisfies the differential equation

0*h, 0%h 0*h

Zpy Ry 4 P, 3

axt oo T o ®)
Furthermore h is strictly positive.

Proof. For xeV and n+0 (hence |n| = 1) we have

sinh({[n]| x)

—e-2lnlix
o-llnlia-n1—¢€ <e-lnta-n__1

sinh(||n]]) [—e- 2l = 1—e 2"

Since Y, e*I"l < oo (cf. 9.4 below) for ¢ > 0, it follows that the series in (2) converges

nel?
uniformly on [¢, 1 —¢] x R for every ee]0, 3[.
Along the same lines it is easy to see that any of the series

« Sinh(|n] x) 0, 4
neZ? Slnh(”n”)
where D" is an arbitrary partial derivative with respect to x, 8;, ..., 0,, converges
uniformly on [e, 1—¢] x R? for £€]0,[, and therefore h, is a C*-function and
D*h, is the sum of (4). It is then easy to check that h,, satisfies (3).
For each xeV the function

sinh(]|n] x)

—-—————  for neZ?
sinh(||n|)

is positive definite on Z? as the composition of the completely monotone function
(1) and the negative definite function n— ln||?> on Z?, cf 1.16. It follows that h,
is 20, and since h, is harmonic in the ordinary sense and obviously not identically
zero it must be strictly positive. []
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9.3. Let s5:]0,1[— T be the mapping s(@)=e'’. Then U=s(]0, 1[)=s(})
is a domam in Tand 2=UxT> is a domain in T*. Since h, is periodic with
period 27 in each of the last p variables we will consider &, as a function on V' x T?
without further comment. We then define a function ¢ ,: Q2 >R by

@, (x.2)=h,(s7'(x),n,(z)) for xeU and zeT™. (5)

Then ¢, depends only on the first p+1 variables, and by Proposition 6.5
¢,€# " (). We will use the sequence (¢ ), to construct an increasing sequence
which violates the Brelot convergence property, but we first need some estimates

of ¢,
For t>0 and peN we define
o ()= Y et (6)

neZ?

9.4. Lemma. Let s>0 be arbitrary. The infinite series

converges for every t>s and uniformly for t = s+¢ for every £>0. In particular we
have

t
lim i )=0 for t>s
p—c0 TplS)
and
lim G”(t)=oo for t<s.
p— o Gp(s)

Proof. We will compare the quantity ¢ (¢) with the quantity
1,()= [e "1"ldx  where t>0 and peN.
IRP
One easily finds ()= C,t~F where C, is a constant depending only on p.

For neZ* we put A,=n+[0, 1[* and we then find

Y exp(—tsup ||x||)§tp(t)§ Y exp(—tinf|x]).
neZ? An neZ? An

However, we clearly have
Inl =Vp<lxILlnl+yp  for xed,,
and hence
e Vo ()<1,()<e o (1) for peN and t>0.

For s>0, ¢>0 and t=>s+¢ we then find

) T 5+8) _ ssavs Tp(s+8)=e(2s+a)ﬁ( u >p
o,()7 o,(s) T 1,(8) s+e/)’
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and putting b, = 25+ 9VF we have gincxo b,.1/b,=1, and hence
i 25 +a VP (,.,E_)p< oo,
= s+e
80 the assertion follows. [
9.5. For the sequence ¢ € # *(Q) defined by (5) we have
o sinh(%|n
o€, 0=h 4, 0)= z;ﬁﬁ(@—”’%
where 0e T® as usual denotes the neutral element. The functions
V,=0,/0,*0), peN, @]
belong to & *(£2) and are all equal to 1 at the point (¢ %, 0)e Q. We finally define

fi= Y by ne, ®)

and (f,),. IS an increasing sequence in # 7 (Q).

9.6. Proposition. Let Q be the domain in T® defined by Q=5(]0, 1[) x T® and
let (f,),n be the increasing sequence of functions from # * (Q) defined in (8).

(i) For points w in the subdomain Q' =s(]0,3[)x T® of Q the limit f(w)=
3}_{2} S (@) exists and the convergence is uniform over compact subsets of Q. In parti-
cular fe#(Q).

(ii). For points weQ of the form w=(e'*, 0) where xe[3, 1[ we have }lijr;oﬁ,(w): 0.

Proof. For points weQ of the form w=(e**, 0) where x€10, 1[ we have

_  sinh(Jnl®)
‘pp(m)_nép sinh(nl)

For neZ?~ {0} and x€]0, 1[ we have

< sinh(||n]| x) < 1

p=2xy,~ Inli (1 ~x)
(1=em e =Sioh(Jnl) = T—e"?

e lnlla -2

which together with

%(l—e—zx)éxé 1‘—8‘2

implies that (cf. (6))

1
t1—e?9a,(1 ‘“x)§(ﬂp(w)é“‘i"_—e:~: o, {1 —x).
For x=1 we have in particular

s(l—e" Yo ,G)<S0,(e',0)=

=7 %)
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so there exist positive constants c,, ¢, such that

=0 e gy<e, 21X o veqon ©
O'p(%) :wp > ): 2 Gp(%) ] t) [ ()
(i). Suppose now that w=(e'*,z) with xe€]0,1—¢[ for some e€]0,[ and
zeT*. By (9) we find

c,(1—e %)

o,(l—x)

o,G)
and it follows by Lemma 9.4 that lim f,(w) exists uniformly for x€]0,3—¢] and
ze T and this proves (i). ne

(ii). Suppose next that w=(e'%, 0) with xe]3, 1[. By (9) and Lemma 9.4 we get
lim  (w)=00 and a fortiori lim f (w)= oo.
p—© n— o0

0=y (@) Sy, (%, 0)<c,

For o=(¢'%,0) we have f (w)=n. [

9.7. Proposition 9.6 shows that the sheaf # = #* with o&/=(1, 1, ...) and A=0
does not have the Brelot convergence property. The proof above can be modified
to show that the Brelot convergence property also fails for the sheaf #;* where
o=(1,1,...) and 1>0.

Addendum

a) Let o/ be an arbitrary sequence of positive numbers and let 2>0.

We know from § 7 that T™ has a base of 5#*-regular domains, and we claim that
the associated sweeping is elliptic.

To be precise, let U be a regular subset of T? for some p=1, put Q=U x T*®
and let i denote the harmonic measure associated with w=(x, z)eQ. We will
prove that

supp p2=0Q=0U x T*,

which implies the ellipticity.

Let ¢ C*(0U). With the terminology of the proof of Theorem 5.13 we denote
by H,(x, ) the value at xe U of the solution to the I7,-Dirichlet problem for U
with boundary function ¢. By Theorem 5.13(ii) there exists a positive bounded
measure ¢, on [0, co[ such that

H,(x,)= [ e **do (s) for A=0. (1)
0

The function A defined in (2) §8 is negative definite, and the associated convolu-
tion semigroup on T is

«©
— At
=€ "Quy,,,, fort>0,
k=1

where (u,),. o is the Brownian semigroup on T.
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Putting
a0
v.={ 1,do (1),
0

we get a positive bounded measure v_ or T the Fourier transform of which is
given by

b (m=Hy(x,A(n) for neZ.

The solution to the I¥-Dirichlet problem for Q with boundary function f=
¢ ®7, is by Theorem 7.5 given as

F(x,2)=H,(x, A()7,(2) =V, (n)y,(2) =7, *v,(2)

for xeU and zeT™.
From this formula follows immediately that the solution to the E-Dirichlet
problem for Q with boundary function f=¢ ® y, where ye C(T*), is

F(x,z)=y*v.(z).

Now, if supp p + 0€, there exist o C* (0U) and ye C* (T®) with ¢, x#0such
that

F(x,Z)=j(p®xdu£:x*vx(z)=0. )

Since @ 40 the measure ¢ in (1) is non-zero, and using that supp 7,= T for all
t>0 (cf. 4.2), we get supp v, =T*, which contradicts (2) because =0, # 0.

Remark. 1t is easy to deduce Theorem 8.5 from the ellipticity. It follows that
the result in Theorem 8.5 is valid without any growth condition on the sequence /.

b) The method of § 9 applied to the sheaf #3 leads to the following result:
Suppose kin]Nf a,>0andlets,=a,+---+a,. Ifgim (VS 1 —V/5) =0 the sheaf #2

does not have the Brelot convergence property. In particular the Brelot conver-
gence property fails for the sheafs #* with a,=k* for 0<e<1.
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Note added in proof. Professor Fuglede has kindly pointed out for us that condition {4) in paragraph 4
implies the convergence of the series in 4.18.



