
Small eigenvalues of large Hankel matrices: The indeterminate case �Christian Berg, Yang Chen and Mourad E. H. IsmailJuly 27, 1999AbstractIn this paper we characterize the indeterminate case by the eigenvalues of the Hankel matricesbeing bounded below by a strictly positive constant. An explicit lower bound is given in terms of theorthonormal polynomials and we �nd expressions for this lower bound in a number of indeterminatemoment problems.
1 IntroductionLet � be a positive measure on R with in�nite support and �nite moments of all orderssn = sn(�) = ZR xnd�(x):(1.1)With � we associate the in�nite Hankel matrix H1 = fHjkg,Hjk = sj+k:(1.2)LetHN be the (N+1)�(N+1) matrix whose entries are Hjk; 0 � j; k � N . SinceHN is positive de�nite,then all its eigenvalues are positive. The large N asymptotics of the smallest eigenvalue, denoted as�N , of the Hankel matrix HN has been studied in papers by Szeg}o [11], Widom and Wilf [13], Chenand Lawrence [6]. See also the monograph by Wilf [14]. All the cases considered by these authors aredeterminate moment problems, and it was shown in each case that �N ! 0, and asymptotic resultswere obtained about how fast �N tends to zero.The smallest eigenvalue can be obtained from the classical Rayleigh quotient:�N = min8<: NXj=0 NXk=0 sj+kvjvk : NXk=0 v2j = 1; vj 2 R; 0 � j � N9=; :(1.3)�This research is partially supported by the EPSRC GR/M16580 and NSF grant DMS 99-708651



It follows that �N is a decreasing function of N:The main result of this paper is Theorem 1.1, which we state next.Theorem 1.1 The moment problem associated with the moments (1.1) is determinate if and only iflimN!1 �N = 0.We shall compare this result with a theorem of Hamburger [8, Satz XXXI], cf. [1, p.83] or [10, p.70]Let �N be the minimum of the Hankel form HN on the hyperplane v0 = 1, i.e.�N = min8<: NXj=0 NXk=0 sj+kvjvk : v0 = 1; vj 2 R; 0 � j � N9=; ;(1.4)and let �0N be the corresponding minimum for the moment sequence s0n = sn+2; n � 0, i.e.�0N = min8<: NXj=0 NXk=0 sj+k+2v0jv0k : v00 = 1; v0j 2 R; 0 � j � N9=;= min8<:N+1Xj=0 N+1Xk=0 sj+kvjvk : v0 = 0; v1 = 1; vj 2 R; 0 � j � N + 19=; :The theorem of Hamburger can be stated that the moment problem is determinate if and only if atleast one of the limits limN!1 �N , limN!1 �0N are zero.It is clear from (1.3), (1.4) that �N � �N and similarly �0N � �N+1. From these inequalities andHamburger's theorem, we obtain the \only if" statement in Theorem 1.1. The \if" statement will beproved by �nding a positive lower bound for the eigenvalues �N in the indeterminate case, cf. Theorem1.2 below.We think that Theorem 1.1 has the advantage over the theorem of Hamburger that it involves onlythe moment sequence (sn) and not the shifted sequence (sn+2). In section 2 we give another proof ofthe \only if" statement to make the proof of Theorem 1.1 independent of Hamburger's theorem.If �N (x) := NXj=0 vjxj; vj 2 R(1.5)then a simple calculation shows thatX0�j; k�N sj+kvjvk = ZE �2N (x) d�(x);(1.6) 2



and NXk=0 v2k = Z 2�0 ����N (ei�)���2 d�2� :(1.7)We could also study the reciprocal of �N given by1�N = max�Z 2�0 ����N (ei�)���2 d�2� : �N ; ZE �2N (x)d�(x) = 1� :(1.8)Let fpkg denote the orthonormal polynomials with respect to �, normalized so that pk has positiveleading coe�cient.We recall that the moment problem is indeterminate, cf. [1],[10], if and only if there exists a non-realnumber z0 such that1Xk=0 jpk(z0)j2 <1:(1.9)In the indeterminate case the series in (1.9) actually converges for all z0 in C, uniformly on compactsets. In the determinate case the series in (1.9) diverges for all non-real z0 and also for all real numbersexcept the at most countably many points, where � has a positive mass.If we expand the polynomial (1.5) as a linear combination of the orthonormal system�N (x) = NXj=0 cjpj(x);then Z 2�0 ����N (ei�)���2 d�2� = X0�j; k�N cjck Z 2�0 pj(ei�)pk(e�i�)d�2� = X0�j; k�N Kjkcjck;where we have de�nedKjk = Z 2�0 pj(ei�)pk(e�i�)d�2� :(1.10)Thus 1�N = max8<: X0�j;k�N Kjkcjck : cj ; NXj=0 c2j = 19=; :(1.11)Since the eigenvalues of the matrix (Kjk)0�j;k�N are positive, and their sum is its trace, then1�N � NXk=0Kkk = Z 2�0 NXk=0 ���pk(ei�)���2 d�2� :(1.12) 3



Thus in the case of indeterminacy,1�N � Z 2�0 1Xk=0 ���pk(ei�)���2 d�2� <1;(1.13)which shows thatlimN!1�N � �Z 2�0 1�(ei�) d�2���1 ;(1.14)where �(ei�) =  1Xk=0 ���pk(ei�)���2!�1 :(1.15)We recall that for z 2 C nR the number �(z)=jz � zj is the radius of the Weyl circle at z.The above argument establishes the following result:Theorem 1.2 In the indeterminate case the smallest eigenvalue �N of the Hankel matrix HN is boundedbelow by the harmonic mean of the function � along the unit circle.We shall conclude this paper with examples, where we have calculated or estimated the quantity�0 = Z 2�0 1Xk=0����pk �ei������2 d�2� :(1.16)This will be done for the moment problems associated with the Stieltjes-Wigert polynomials, cf. [4],[12],the Al-Salam-Carlitz polynomials [2], the symmetrized version of polynomials of Berg-Valent ([3]) lead-ing to a Freud-like weight [5], and the q�1-Hermite polynomials of Ismail and Masson [9].If we introduce the coe�cients of the orthonormal polynomials aspk(x) = kXj=0 �k;jxj(1.17)then Z 2�0 jpk(ei�)j2 d�2� = kXj=0 �2k;j;and therefore�0 = 1Xk=0 kXj=0 �2k;j:(1.18) 4



Another possibility for calculating �0 is to use the entire functions B;D from the Nevanlinna matrixsince it is well known that [1, p.123]1Xk=0 jpk(z)j2 = B(z)D(z)�D(z)B(z)z � z :(1.19)It follows that1Xk=0 jpk(ei�)j2 = ImfB(ei�)D(e�i�)g= sin �:(1.20)
2 Indeterminate Moment ProblemsIn this section we shall give a proof of Theorem 1.1 which is independent of Hamburgers result. Wehave already established that if limN!1 �N = 0, then the problem is determinate. We shall next provethat if �N � 
 for all N , where 
 > 0, then the problem is indeterminate. Since 1=�N � 1=
 for all N ,and 1=�N is the biggest eigenvalue of the positive de�nite matrix (Kjk)0�j;k�N , we getX0�j;k�N Kjkcjck � 1
 NXj=0 jcj j2;(2.1)for all vectors (c0; : : : ; cN ) 2 CN+1. If we consider an arbitrary complex polynomial p of degree � Nwritten as p(x) =PNk=0 ckpk(x), the inequality (2.1) can be formulatedZ 2�0 jp(ei�)j2 d�2� � 1
 Z jp(x)j2 d�(x):(2.2)Let now z0 be an arbitrary non-real number in the open unit disc. By the Cauchy integral formulap(z0) = 12� Z 2�0 p(ei�)ei� � z0 ei� d�;and thereforejp(z0)j2 � Z 2�0 jp(ei�)j2 d�2� Z 2�0 1jei� � z0j2 d�2� :(2.3)Combined with (2.2) we see that there is a constant K such that for all complex polynomials pjp(z0)j2 � K Z jp(x)j2 d�(x);(2.4) 5



where K = 1=(
(1 � jz0j2)):This inequality implies indeterminacy in the following way. Applying it to the polynomialp(x) = NXk=0 pk(z0)pk(x);we get NXk=0 jpk(z0)j2 � K;(2.5)and since N is arbitrary, indeterminacy follows.Remark. We see that the in�nite positive de�nite matrix K1 = fKj;kg is bounded on `2 if andonly if �N � 
 for all N for some 
 > 0. Furthermore K1 is of trace class if and only if �0 <1. Theresult of Theorem 1.1 can be reformulated to say that boundedness implies trace class for this familyof operators.3 ExamplesWe shall follow the notation and terminology for q-special functions as those in Gasper and Rahman[7].Example 1. The Stieltjes-Wigert Polynomials.These polynomials are orthonormal with respect to the weight function!(x) = kp� exp(�k2(log x)2); x > 0;(3.1)where k > 0 is a positive parameter, cf. [4],[12]. They are given bypn(x) = (�1)nq n2+ 14 (q; q)� 12n nXk=0�nk�qqk2(�q 12x)k;(3.2)where we have de�ned q = expf�(2k2)�1g.It follows by (1.18) that�0 = 1Xn=0 qn+ 12(q; q)n nXk=0 qk(2k+1)�nk�2q(3.3) = 1Xk=0 q2k2+k+ 12 1Xn=k qn(q; q)n�nk�2q: 6



Putting n = k + j; the inner sum is1Xj=0 qk+j(q; q)2k (q; q)k+j(q; q)2j = qk(q; q)k 2�1(qk+1; 0; q; q; q)and hence�0 = 1Xk=0 q2(k+ 12 )2(q; q)k 2�1(0; qk+1; q; q; q):(3.4)We can obtain another expression for �0. We apply the transformation [7, (III.5)]2�1(a; b; c; q; z) = (abz=c; q)1(bz=c; q)1 3�2(a; c=b; 0; c; cq=bz; q; q)(3.5)to see that1Xn=k qn(q; q)n�nk�2q = 1(q; q)1 kXj=0 qk+j(q; q)2j :(3.6)We then �nd�0 = 1(q; q)1 1Xk=0 q2(k+ 12 )2 kXj=0 qj(q; q)2j :(3.7)A formula more general than (3.6) is1Xn=k !n(q; q)n�nk�2q = 1(!; q)1 kXj=0 (!; q)j!2k�j(q; q)j(q; q)2k�jand is stated in [2]. This more general identity also follows from (3.5) and the simple observation(q�k; q)j(q1�k=!; q)j = (q; q)k (!; q)k�j(!; q)k (q; q)k�j (!=q)j :We have numerically computed the smallest eigenvalue of the Hankel matrix of various dimensionswith the Stieltjes{Wigert weight from which we extrapolate to determine the smallest eigenvalue s =limN!1 �N of the in�nite Hankel matrix for di�erent values of q: This is then compared with thenumerically computed lower bound l = 1=�0: For q = 12 we have s = 0:3605 : : : ; l = 0:3435 : : : . Thepercentage error 100(s � l)=s is plotted for various values of q and is shown in �gure 1.Example 2. Al-Salam{Carlitz polynomials. 7
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Figure 1: Percentage error plotted for various values of q:The Al-Salam-Carlitz polynomials were introduced in [2]. We consider the indeterminate polynomi-als V (a)n (x; q), where 0 < q < 1 and q < a < 1=q, cf. [3]. For the corresponding orthonormal polynomialsfpkg we have by [3, (4.24)]1Xk=0 jpk(ei�)j2 = (qei�; qe�i�; q)1(aq; q; q; q)1 3�2(ei�; e�i�; aq; qei�; qe�i�; q; q=a):(3.8)Therefore�0 = Z 2�0 1Xk=0 jpk(ei�)j2 d�2� = 1(aq; q; q; q)1 1Xn=0 In (aq; q)n(q; q)n � qa�n ;(3.9)where In = Z 2�0 (ei�; e�i�; q)1(1� qnei�)(1� qne�i�) d�2�(3.10) = Zjzj=1 (z; 1=z; q)1(1� qnz)(1� qn=z) dz2�iz :Recall the Jacobi triple product identity [7],j(z) := (q; z; 1=z; q)1 = 1Xk=�1 ckzk;(3.11)with ck = (�1)k hqk(k+1)=2 + qk(k�1)=2i :(3.12) 8



Note that ck = c�k.Using the partial fraction decompositionqn1� qnz � q�n1� q�nz = 1� q2n(1� qnz)(z � qn)we �nd by the residue theorem and the Jacobi triple product identity (3.11) that for n � 1, In is givenby (1� q2n)(q; q)1 In = qnRes� j(z)1� qnz ; z = 0�� q�nRes� j(z)1� q�nz ; z = 0�= qn 1Xk=0 qnkc�k�1 � q�n 1Xk=0 q�nkc�k�1= 1Xk=1 �qnk � q�nk� ck;while for n = 0, I0 is(q; q)1I0 = Zjzj=1 j(z)(1� z)(z � 1) dz2�i = �Res� j(z)(1� z)2 ; z = 0�= � 1Xk=0(k + 1)c�k�1 = 1Xk=0(�1)kqk(k+1)=2:The conclusion isI0 = 1(q; q)1 1Xk=0(�1)kqk(k+1)=2;(3.13) In = 1(1� q2n)(q; q)1 1Xk=1 ck �qnk � q�nk� ; n � 1:The above formulas can be further simpli�ed. Using the Jacobi triple product identity (3.11) we �ndfor integer values of n1Xk=�1(�1)kqnkq(k2) = 0;hence 1Xk=0(�1)kqnk q(k2) = � 1Xk=1(�1)kq�nk q(k+12 ); n = 0;�1; : : : :(3.14)This analysis implies(q; q)1(1� q2n) In = 2 1Xk=1(�1)k q(k2) hqnk � q�nki :(3.15) 9



Thus we have established the representation for n � 1In = 2q�n(q; q)1 1Xk=1(�1)k�1 q(k2) sin(nk�)sin(n�) ; q = e�i� :(3.16)It is clear that I0 is the limiting case of In as n ! 0. The representation (3.16) indicates that In is atheta function evaluated at the special point n� , hence we do not expect to �nd a closed form expressionfor In.Example 3. Freud-like weight.In [3] Berg-Valent found the Nevanlinna matrix in the case of the indeterminate moment problemcorresponding to a birth and death process with quartic rates. Later Chen and Ismail, cf. [5], consideredthe corresponding symmetrized moment problem, found the Nevanlinna matrix and observed that thereare solutions which behave as the Freud weight exp(�pjxj). In particular they found the entire functionsB(z) = ��0(K0pz=2); D(z) = 4��2(K0pz=2);(3.17)where �l(z) = 1Xn=0 (�1)n(4n+ l)!z4n+l; l = 0; 1; 2; 3;(3.18) K0 = �(1=4)�(5=4)p� :(3.19)Note that�0(z) = 12 hcosh(zpi) + cos(zpi)i ;(3.20) �2(z) = 12i hcosh(zpi)� cos(zpi)i :(3.21)If ! := exp(i�=4) = (1 + i)=p2; then a simple calculation shows thatB(x)D(y)�D(x)B(y)(3.22) = �2i� hcos(!3K0px=2) cos(!K0py=2)� cos(!3K0py=2) cos(!K0px=2)i :If x = ei�; and y = e�i�; then we linearize the products of cosines and �nd that the right-hand side of(3.22) is �i� ncos[K0(!3ei�=2 + !e�i�=2)=p2] + cos[K0(!3ei�=2 � !e�i�=2)=p2]� cos[K0(!3e�i�=2 + !ei�=2)=p2]� cos[K0(!3e�i�=2 � !ei�=2)=p2]o10



We now combine the �rst and third terms, then combine the second and fourth terms and apply theaddition theorem for trigonometric functions. We then see that the above is2i� fsinh[K0 cos(�=2)] sinh[K0 sin(�=2)] + sin[K0 cos(�=2)] sin[K0 sin(�=2)]g :Thus we have proved thatB �ei��D �e�i���B �e�i��D �ei��ei� � e�i�(3.23) = 1� sin � fsinh[K0 cos(�=2)] sinh[K0 sin(�=2)] + sin[K0 cos(�=2)] sin[K0 sin(�=2)]g :Thus in the case under consideration, after some straightforward calculations and the evaluation of abeta integral, we obtain�0 = Z 2�0 1Xn=0 ���pn(ei�)���2 d�2� = K20� Xm;n�0;m+n even (K0=2)2m+2n(2m+ 1)(2n+ 1)m!n! (m + n)! :(3.24)Example 4. q�1-Hermite polynomials.Ismail and Masson [9] proved that for this moment problem the functions B and D are given byB(sinh �) = �(qe2�; qe�2� ; q2)1(q; q; q2)1 ; D(sinh �) = sinh �(q; q)1 (q2e2�; q2e�2�; q2)1;(3.25)[9, (5.32)], [9, (5.36)]; respectively. Ismail and Masson also showed that [9, (6.25)]B(sinh �)D(sinh �)�B(sinh �)D(sinh �)(3.26) = �e�2(q; q)1 1Yn=0 �1� 2e��qn sinh � � e�2�q2n� �1 + 2e�qn+1 sinh � � e2�q2n+2� :We rewrite the in�nite product as1Yn=0 anbn = a0 1Yn=1 anbn�1;and with sinh � = ei� and sinh � = e�i� we get the following representationB(ei�)D(e�i�)�B(e�i�)D(ei�)ei� � e�i�(3.27) = 1(q; q)1 1Yn=1 �1 + 4qn � 2q2n + 4q3n + q4n � 8q2n cos(2�)�= 1(q; q)1 1Yn=1 �(1 + qn)4 � 16q2n cos2 �� :11



Writing the in�nite product as a power series in cos2 � and usingZ ��� cos2k � d�2� = 2�2k�2kk �;we evaluate the integral of (3.27) with respect to d�=2� as�0 = (�q; q)41(q; q)1 1Xk=0�2kk � X1�n1<:::<nk (�2)2kq2(n1+���+nk)[(1 + qn1) � � � (1 + qnk)]4 :(3.28)The formula (3.27) can be transformed further by putting cos2  = � cos � and p2 = q, because then1Yn=1 �(1 + qn)2 + 4qn cos �� = 1Yn=1 �1 + p4n � 2p2n cos(2 )�can be expressed by means of the theta function #1(p; ). We �nd1Yn=1 �(1 + qn)2 + 4qn cos �� = 1(q; q)1 1Xn=0(�1)nq(n+12 )U2n(cos );(3.29)where U2n(cos ) = sin(2n+ 1) sin is the Chebyshev polynomium of the second kind given byU2n(x) = nXk=0�2n+ 12k + 1�(�1)kx2(n�k)(1� x2)k:(3.30)Similarly putting cos2 ' = cos � we �nd1Yn=1 �(1 + qn)2 � 4qn cos �� = 1(q; q)1 1Xn=0(�1)nq(n+12 )U2n(cos'):(3.31)If we let U�n be the polynomial of degree n such that U2n(x) = U�n(x2), we getB(ei�)D(e�i�)�B(e�i�)D(ei�)ei� � e�i�(3.32) = 1(q; q)21 1Xn;m=0(�1)mq(n+12 )+(m+12 )U�n(� cos �)U�m(cos �):
12
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