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Abstract

We discuss a probability distribution Iq depending on a parameter 0 <
q < 1 and determined by its moments n!/(q; q)n. The treatment is purely
analytical. The distribution has been discussed recently by Bertoin, Biane
and Yor in connection with a study of exponential functionals of Lévy
processes.
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1 Introduction

In [13] Bertoin et al. studied the distribution Iq of the exponential functional

Iq =

∫ ∞
0

qNt dt, (1)

where 0 < q < 1 is fixed and (Nt, t ≥ 0) is a standard Poisson process. They
found the density iq(x), x > 0 and its Laplace and Mellin transforms. They also
showed that a simple construction from Iq leads to the density

λq(x) =
1

log(1/q)(q,−x,−q/x; q)∞
, (2)

found by Askey, cf. [2], and having log-normal moments. The notation in (2) is
the standard notation from [21], see below.

The distribution Iq has also appeared in recent work of Cowan and Chiu [19],
Dumas et al. [20] and Pakes [24].

The proofs in [13] rely on earlier work on exponential functionals which use
quite involved notions from the theory of stochastic processes, see [17],[18].
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The purpose of this note is to give a self-contained analytic treatment of the
distribution Iq and its properties.

In Section 2 we define a convolution semigroup (Iq,t)t>0 of probabilities sup-
ported by [0,∞[, and it is given in terms of the corresponding Bernstein function
f(s) = log(−s; q)∞ with Lévy measure ν on ]0,∞[ having the density

dν

dx
=

1

x

∞∑
n=0

exp(−xq−n). (3)

The function 1/ log(−s; q)∞ is a Stieltjes transform of a positive measure which is
given explicitly, and this permits us to determine the potential kernel of (Iq,t)t>0.

The measure Iq := Iq,1 is a generalized Gamma convolution in the sense of
Thorin, cf. [27], [28]. The moment sequence of Iq is shown to be n!/(q; q)n, and
the n’th moment of Iq,t is a polynomial of degree n in t. We give a recursion
formula for the coefficients of these polynomials. We establish that Iq has the
density

iq(x) =
∞∑
n=0

exp(−xq−n)
(−1)nqn(n−1)/2

(q; q)n(q; q)∞
.

A treatment of the theory of generalized Gamma convolutions can be found
in Bondesson’s monograph [16]. The recent paper [15] contains several examples
of generalized Gamma convolutions which are also distributions of exponential
functionals of Lévy processes.

We shall use the notation and terminology from the theory of basic hyperge-
ometric functions for which we refer the reader to the monograph by Gasper and
Rahman [21]. We recall the q-shifted factorials

(z; q)n =
n−1∏
k=0

(1− zqk), z ∈ C, 0 < q < 1, n = 1, 2, . . . ,∞

and (z; q)0 = 1. Note that (z; q)∞ is an entire function of z.
For finitely many complex numbers z1, z2, . . . , zp we use the abbreviation

(z1, z2, . . . , zp; q)n = (z1; q)n(z2; q)n . . . (zp; q)n.

The q-shifted factorial is defined for arbitrary complex index λ by

(z; q)λ =
(z; q)∞

(zqλ; q)∞
,

and this is related to Jackson’s function Γq defined by

Γq(z) =
(q; q)z−1

(1− q)z−1
=

(q; q)∞
(qz; q)∞

(1− q)1−z. (4)
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In Section 3 we introduce the entire function h(z) = Γ(z)(qz; q)∞ and use
it to express the Mellin transform of Iq. We finally show that the density λq
given in (2) can be written as the product convolution of Iq and another related
distribution, see Theorem 3.2 below. The Mellin transform of the density λq can
be evaluated as a special case of the Askey-Roy beta-integral given in [4] and in
particular we have, see also [3]:

∫ ∞
0

tc

(−t,−q/t; q)∞
dt

t
= (q; q)∞

Γ(c)Γ(1− c)
Γq(c)Γq(1− c)

(1− q), c ∈ C \ Z. (5)

The value of (5) is an entire function of c and equals h(c)h(1− c)/(q; q)∞.
The following formulas about the q-exponential functions, cf. [21], are impor-

tant in the following:

eq(z) =
∞∑
n=0

zn

(q; q)n
=

1

(z; q)∞
, |z| < 1, (6)

Eq(z) =
∞∑
n=0

qn(n−1)/2zn

(q; q)n
= (−z; q)∞, z ∈ C. (7)

2 The analytic method

We recall that a function ϕ : ]0,∞[ 7→ [0,∞[ is called completely monotonic, if it
is C∞ and (−1)kϕ(k)(s) ≥ 0 for s > 0, k = 0, 1, . . . . By the Theorem of Bernstein
completely monotonic functions have the form

ϕ(s) =

∫ ∞
0

e−sx dα(x), (8)

where α a non-negative measure on [0,∞[. Clearly ϕ(0+) = α([0,∞[). The
equation (8) expresses that ϕ is the Laplace transform of the measure α.

To establish that a probability η on [0,∞[ is infinitely divisible, one shall
prove that its Laplace transform can be written∫ ∞

0

e−sx dη(x) = exp(−f(s)), s ≥ 0,

where the non-negative function f has a completely monotonic derivative. If η
is infinitely divisible, there exists a convolution semigroup (ηt)t>0 of probabilities
on [0,∞[ such that η1 = η and it is uniquely determined by∫ ∞

0

e−sx dηt(x) = e−tf(s), s > 0,
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cf. [11],[12]. The function f is called the Laplace exponent or Bernstein function
of the semigroup. It has the integral representation

f(s) = as+

∫ ∞
0

(1− e−sx) dν(x), (9)

where a ≥ 0 and the Lévy measure ν on ]0,∞[ satisfies the integrability condition∫
x/(1 + x) dν(x) <∞. If f is not identically zero the convolution semigroup is

transient with potential kernel κ =
∫∞

0
ηt dt, and the Laplace transform of κ is

1/f since∫ ∞
0

e−sx dκ(x) =

∫ ∞
0

(

∫ ∞
0

e−sx dηt(x))dt =

∫ ∞
0

e−tf(s) dt =
1

f(s)
. (10)

The generalized Gamma convolutions η are characterized among the infinitely
divisible distributions by the following property of the corresponding Bernstein
function f , namely by f ′ being a Stieltjes transform, i.e. of the form

f ′(s) = a+

∫ ∞
0

dµ(x)

s+ x
, s > 0,

where a ≥ 0 and µ is a non-negative measure on [0,∞[. The relation between µ
and ν is that

dν

dx
=

1

x

∫ ∞
0

e−xy dµ(y).

This result was used in [6] to simplify the proof of a theorem of Thorin ([27]),
stating that the Pareto distribution is a generalized Gamma convolution.

Theorem 2.1 Let 0 < q < 1 be fixed. The function

f(s) = log(−s; q)∞ =
∞∑
n=0

log(1 + sqn), s ≥ 0 (11)

is a Bernstein function. The corresponding convolution semigroup ((Iq,t)t>0) con-
sists of generalized Gamma convolutions and we have∫ ∞

0

e−sx dIq,t(x) = e−tf(s) =
1

(−s; q) t∞
, s > 0. (12)

The potential kernel κq =
∫∞

0
Iq,t dt has the following completely monotonic den-

sity

kq(x) = 1− q +

∫ ∞
1

e−xyϕ(y) dy, (13)

where ϕ is the continuous function

ϕ(x) =

{
n
(
log2 |(x; q)∞|+ n2π2

)−1
if q−(n−1) < x < q−n, n = 1, 2, . . .

0 if x = q−n, n = 0, 1, . . . .

(14)
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Proof: The function f defined by (11) has the derivative

f ′(s) =
∞∑
n=0

1

s+ q−n
,

showing that f ′ is a Stieltjes transform with a = 0, and µ is the discrete measure
with mass 1 in each of the points q−n, n ≥ 0. In particular f is a Bernstein
function with a = 0 and Lévy measure given by (3).

Since
log(1 + s)

s
=

∫ ∞
1

1

x+ s

dx

x

we get ([x] denoting the integer part of x)

f(s)

s
=

∫ ∞
1

[log x/ log(1/q)] + 1

(x+ s)x
dx

showing that f(s)/s is a Stieltjes transform. It follows by the Reuter-Itô Theo-
rem, cf.[22],[25],[5], that 1/f(s) is a Stieltjes transform. Since f is an increasing
function mapping ]− 1,∞[ onto the real line with f(0) = 0 and f ′(0) = 1/(1− q)
we get

1

f(s)
=

1− q
s

+

∫ ∞
1

dµ(x)

x+ s
,

where

dµ(x) = lim
y→0+

−1

π
Im{ 1

f(−x+ iy)
} dx

in the vague topology.
For x ∈

]
q−(n−1), q−n

[
, n = 1, 2, . . . we find

lim
y→0+

1

f(−x+ iy)
=

(
n−1∑
k=0

log |1− qkx|+ inπ +
∞∑
k=n

log(1− qkx)

)−1

= (log |(x; q)∞|+ inπ)−1 .

These expressions define in fact a continuous function on [1,∞[, vanishing at the
points q−n, n ≥ 0, so the measure µ has the density ϕ given by (14). Using that
the Stieltjes transformation is the second iteration of the Laplace transformation,
the assertion about the potential kernel κq follows. �

Denoting by Ea, a > 0 the exponential distribution with density a exp(−ax)
on the positive half-line, we have∫ ∞

0

e−sx dEa(x) = e− log(1+s/a), s ≥ 0,

so we can write Iq := Iq,1 as the infinite convolution

Iq = ∗∞n=0 Eq−n .
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If we let Γa,t denote the Gamma distribution with density

x 7→ at

Γ(t)
xt−1e−ax, x > 0,

then we similarly have
Iq,t = ∗∞n=0 Γq−n,t.

Specializing (12) to t = 1 we have∫ ∞
0

e−sx dIq(x) =
1

(−s; q)∞
, s > 0, (15)

and since the right-hand side of (15) is meromorphic in C with poles at s =
−q−n, n ≥ 0 and in particular holomorphic for |s| < 1, we know that Iq has
moments of any order with

sn(Iq) = (−1)nDn{ 1

(−s; q)∞
}s=0, n = 0, 1, . . . ,

cf. [23, p.136]. Here and in the following we denote by sn(µ) the n’th moment of
the measure µ. However by (6) we have

1

(−s; q)∞
=
∞∑
n=0

(−s)n

(q; q)n
, (16)

hence

sn(Iq) =
n!

(q; q)n
. (17)

Since Iq has an analytic characteristic function, the corresponding Hamburger
moment problem is determinate. By Stirling’s formula we have

∞∑
n=0

1
2n
√
s2n(Iq)

=∞,

so also Carleman’s criterion shows the determinacy, cf. [1]. By [7, Cor. 3.3]
follows that Iq,t is determinate for all t > 0 and by [9] the n’th moment sn(Iq,t)
is a polynomial of degree n in t given by

sn(Iq,t) =
n∑
k=1

cn,kt
k, n ≥ 1, (18)

where the coefficients cn,k satisfy the recurrence equation

cn+1,l+1 =
n∑
k=l

ck,l

(
n

k

)
σn−k.
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Here σn = (−1)nf (n+1)(0), where f is given by (11), cf. [9, Prop. 2.4], so σn is
easily calculated to be

σn =
n!

1− qn+1
, n ≥ 0.

It follows also by [9] that

cn,n = σn0 = (1− q)−n, cn,1 = σn−1 = (n− 1)!/(1− qn).

Defining dn,k = (1− q)kcn,k we have

sn(Iq,t) =
n∑
k=1

dn,k

(
t

1− q

)k
, n ≥ 1, (19)

and

dn+1,l+1 = n!
n∑
k=l

dk,l
k!

(
n−k∑
j=0

qj

)−1

, l = 0, 1, . . . , n. (20)

In particular

dn,n = 1, dn,n−1 =

(
n
2

)
1 + q

, dn,1 = (n− 1)!

(
n−1∑
j=0

qj

)−1

.

We give the first coefficients

d1,1 = 1

d2,2 = 1, d2,1 =
1

1 + q

d3,3 = 1, d3,2 =
3

1 + q
, d3,1 =

2

1 + q + q2
.

It follows by induction using (20) that dn,k as a function of q has a finite limit
for q → 1−.

The image measures µt = τ1−q(Iq,t) under τ1−q(x) = x(1− q) form a convolu-
tion semigroup (µt)t>0 with∫ ∞

0

e−sx dµt(x) =
1

(−s(1− q); q) t∞
, s > 0,

and

sn(µt) =
n∑
k=1

dn,k(1− q)n−ktk.
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It follows that sn(µt)→ tn for q → 1−, so limq→1− µt = δt weakly by the method
of moments. This is also in accordance with

lim
q→1−

1

(−s(1− q); q) t∞
= e−st,

because the q-exponential function Eq given in (7) converges to the exponential
function in the following sense

lim
q→1−

Eq(z(1− q)) = exp(z),

cf. [21].

Remark 2.2 Consider a non-zero Bernstein function f . In [17], [18] it was
proved by probabilistic methods that the sequence

sn =
n!

f(1) · . . . · f(n)

is a determinate Stieltjes moment sequence, meaning that it is the moment se-
quence of a unique probability on [0,∞[ . The special case f(s) = 1 − qs gives
the moment sequence (17). In [10] the above result of [17], [18] is obtained as a
special case of the following result:

Let (an) be a non-vanishing Hausdorff moment sequence. Then (sn) defined
by s0 = 1 and sn = 1/(a1 · . . . · an) for n ≥ 1 is a normalized Stieltjes moment
sequence.

In order to find an expression for Iq we consider the discrete signed measure

µq =
∞∑
k=0

(−1)kqk(k+1)/2

(q; q)k(q; q)∞
δqk (21)

with moments

sn(µq) =
∞∑
k=0

(−1)kqnkqk(k+1)/2

(q; q)k(q; q)∞
=

(qn+1; q)∞
(q; q)∞

=
1

(q; q)n
,

where we have used (7). In particular, the signed measure µq has mass 1.
For measures ν, τ on ]0,∞[ we define the product convolution ν � τ as the

image of the product measure ν⊗ τ under x, y 7→ xy. The product convolution is
the ordinary convolution of measures on the locally compact abelian group ]0,∞[
with multiplication as group operation. In particular we have∫

f dν � τ =

∫∫
f(xy) dν(x) dτ(y).
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From this equation we get the moment equation

sn(ν � τ) = sn(ν)sn(τ),

hence sn(µq �E1) = n!/(q; q)n, which shows that µq �E1 has the same moments as
Iq. Since the first measure is not known to be non-negative, we cannot conclude
right-away that the two measures are equal, although Iq is Stieltjes determinate.
We shall show that µq � E1 has a density iq(x), which is non-negative. Since
δa � E1 = E1/a for a > 0, it is easy to see that

iq(x) =
∞∑
n=0

exp(−xq−n)
(−1)nqn(n−1)/2

(q; q)n(q; q)∞
, (22)

but it is not obvious that iq(x) ≥ 0.

Proposition 2.3 The function iq(x) given by (22) is non-negative for x > 0.
Therefore Iq = µq � E1 = iq(x)1]0,∞[(x) dx.

Proof: The Laplace transform of the function iq is

∞∑
n=0

(−1)nqn(n−1)/2

(s+ q−n)(q; q)n(q; q)∞
, (23)

which is the partial fraction expansion of 1/(−s; q)∞, since the residue of this
function at the pole s = q−n is

(−1)nqn(n−1)/2

(q; q)n(q; q)∞
.

We claim that

1

(−s; q)∞
=
∞∑
n=0

(−1)nqn(n−1)/2

(s+ q−n)(q; q)n(q; q)∞
, s 6= q−n, n = 0, 1, . . . , (24)

which shows that Iq and iq have the same Laplace transform, so iq is the density
of Iq and hence non-negative.

To see the equation (24) we note that the left-hand side minus the right-hand
side of the equation is an entire function φ, and by (16) we get

φ(n)(0)

n!
=

(−1)n

(q; q)n
− (−1)n

(q; q)∞

∞∑
k=0

q(n+1)k (−1)kqk(k−1)/2

(q; q)k
,

but by (7) the sum above equals (qn+1; q)∞, and we get φ(n)(0)/n! = 0, which
shows that φ is identically zero.
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We call the attention to the fact that the identity (24) was also used in the
work [20] of Dumas et al., but it is in fact a special case of Jackson’s transforma-
tions, see (III 4) in [21] with b = 1, a = −s, z = q. �

Let Rq denote the following positive discrete measure

Rq = (q; q)∞

∞∑
k=0

qk

(q; q)k
δqk (25)

with moments

sn(Rq) = (q; q)∞

∞∑
k=0

(qn+1)k

(q; q)k
= (q; q)n, (26)

by (6). We claim that µq given by (21) and Rq are the inverse of each other under
the product convolution, i.e.

δ1 = µq �Rq. (27)

This amounts to proving that

n∑
k=0

(−1)kqk(k+1)/2qn−k

(q; q)k(q; q)n−k
= δn0, n ≥ 0,

but this follows by Cauchy multiplication of the power series (6), (7). Combining
Proposition 2.3 with (27) we get:

Corollary 2.4 The following factorization hold

E1 = Iq �Rq,

which corresponds to the factorization of the moments of E1 as

n! =
n!

(q; q)n
· (q; q)n.

Remark 2.5 The factorization of Corollary 2.4 is a special case of a general
factorization in [14]:

E1 = If �Rf , n! =
n!

f(1) · . . . · f(n)
· (f(1) · . . . · f(n)),

where f is a non-zero Bernstein function (9), and If , Rf are determined by their
moments

sn(If ) =
n!

f(1) · . . . · f(n)
, sn(Rf ) = f(1) · . . . · f(n).

10



3 The entire function h(z) := Γ(z)(qz; q)∞

Since the Gamma function has simple poles at z = −n, n = 0, 1, . . . , where
(qz; q)∞ has simple zeros, it is clear that the product h(z) := Γ(z)(qz; q)∞ is
entire. We have

h(0) = lim
z→0

Γ(z)(qz; q)∞ = lim
z→0

Γ(z + 1)(qz+1; q)∞
1− qz

z
= (q; q)∞ log(1/q),

and from this it is easy to see that

h(−n) =
(q; q)n
n!

q−n(n+1)/2(q; q)∞ log(1/q). (28)

Proposition 3.1 For z ∈ C we have∫ ∞
0

xz dIq(x) =
h(z + 1)

(q; q)∞
. (29)

Proof: For <z > −1 the following calculation holds by (22) and (7):∫ ∞
0

xz dIq(x) =
∞∑
n=0

(−1)nqn(n−1)/2

(q; q)n(q; q)∞

∫ ∞
0

xze−xq
−n
dx = (q; q)−1

∞ Γ(z + 1)(qz+1; q)∞.

Since the right-hand side is entire and Iq is a positive measure, we get by a
classical result (going back to Landau for Dirichlet series, see [29, p.58]) that the
integral in (29) must converge for all z ∈ C, and therefore the equation holds for
all z ∈ C. �

When discussing measures on ]0,∞[ it is useful to consider this set as a lo-
cally compact group under multiplication. The Haar measure is then dm(x) =
(1/x) dx, and it is useful to consider the density of a measure with respect to the
Haar measure m. The Mellin transformation is the Fourier tranformation of the
locally compact abelian group (]0,∞[, ·), and when the dual group is realized as
the additive group R, the Mellin transformation of a finite measure µ on ]0,∞[
is defined as

M(µ)(ξ) =

∫ ∞
0

x−iξ dµ(x), ξ ∈ R.

We get from (29) that

M(Iq)(ξ) =
h(1− iξ)
(q; q)∞

. (30)

From Proposition 3.1 it follows that Iq has negative moments of any order,
and from (28) we get in particular that

Jq :=
1

x log(1/q)
dIq(x) (31)
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is a probability.
The image of Jq under the reflection x 7→ 1/x is denoted J̌q.

Theorem 3.2 The product convolution Lq := Iq � J̌q has the density (2)

λq(x) =
1

log(1/q)(q,−x,−q/x; q)∞

with respect to Lebesgue measure on the half-line.

Proof: For z ∈ C we clearly have∫ ∞
0

xz dLq(x) =

∫ ∞
0

xz dIq(x)

∫ ∞
0

x−z dJq(x),

and by (29) we get ∫ ∞
0

xz dLq(x) =
h(z + 1)h(−z)

log(1/q)(q; q)2
∞
.

By (5) it follows that for z ∈ C∫ ∞
0

xz dLq(x) =

∫ ∞
0

xzλq(x) dx,

so Lq = λq(x) dx. �

Remark 3.3 In [13] the authors prove Theorem 3.2 by showing that∫ ∞
0

xz dLq(x) =
1

(q; q)3
∞ log(1/q)

∫ ∞
0

xz

(
∞∑

n=−∞

(−1)nqn(n+1)/2

x+ qn

)
dx

for −1 < <z < 0, and then they prove the partial fraction expansion of the
meromorphic density λq(x)

λq(x) =
1

(q; q)3
∞ log(1/q)

∞∑
n=−∞

(−1)nqn(n+1)/2

x+ qn
.

Remark 3.4 The moments of J̌q are given by

sn(J̌q) =
(q; q)n
n!

q−(n+1)n/2, (32)

so
∞∑
n=0

1

2n

√
sn(J̌q)

<∞.
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Therefore Carleman’s criterion gives no information about determinacy of J̌q. By
the Krein criterion, cf. [8],[26], we can conclude that∫ ∞

0

log iq(x)√
x(1 + x)

dx = −∞,

because Iq is determinate. The substitution x = 1/y in this integral leads to∫ ∞
0

log iq(1/y)
√
y(1 + y)

dy = −∞, (33)

but since

J̌q =
iq(1/y) dy

y log(1/q)
,

we see that (33) gives no information about indeterminacy of J̌q. We do not
know if J̌q is determinate or indeterminate, and as a factor of an indeterminate
distribution Lq none of these possibilities can be excluded.
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