Chapter 2

Differentiable manifolds

The recognition that, in classical mechanics as well as in special relativity, space-time
events can be labeled, at least locally on a cosmological scale, by a continuum of three
space coordinates and one time coordinate leads naturally to the concept of a 4-dimensional
manifold as the basis of theories of space-time. Trajectories of moving particles in space-
time are described by curves on the manifold. The requirement of being able to associate a
velocity to a moving particle at each instant of time leads to the notion of tangent vectors,
which in turn necessitates the presence of a differentiable structure on space-time.

In this chapter we introduce the above mentioned basic notions. Besides forming the
basis of the whole area of differential geometry it turns out that these concepts have a great
variety of other applications in physics, as is exemplified by the usefulness of considering
the phase space of a classical mechanical system as a differentiable manifold.

2.1 Manifolds

Let M be a set and U = {U, | « € I} a covering of M, ie. U, C M, a € I, and

Uta=Mm.
a€el

A set of mappings {z, | @ € I}, 2, : Uy — R, where n is fixed, is called a CN-atlas
on M, N € NU{0,00}, if for all o, 3 € I:

i) z maps U, bijectively onto z4(U,),
ii) zo(Uy NUp) is an open subset of R™. In particular, z,(Uy) € R™ is open.
iii) If Uy, NUg # 0, the overlap function

Tof = Tq © mgl c23(Ua NUB) — 24(Ua NUR)

is CV, i.e. it is N times continuously differentiable.



Definition 2.1 A C"-manifold is a pair (M, {z, | a € I}), where {2, | a € I} is a CN-
atlas on M. A mapping = : U — R" is called a coordinate system on (M,{z, | o« € I'}), or
just on M, and U is called a coordinate patch on M, if {x, | o € I} U {z} is a CN-atlas on
M.

Remark 2.2 Two CV-atlases {z, | @ € I} and {7, | @ € J} on M are equivalent if
{z,|a € TUJ}is aCN-atlas on M. An equivalence class of CVN-atlases on M is called a
CN -structure on M. Thus equivalent atlases determine the same CV-structure on M.

A C%-manifold is called a topological or a continuous manifold. A differentiable manifold
is a CV-manifold, where N > 1, and correspondingly we refer to a CN-structure, where
N > 1, as a differentiable structure. A C*°-manifold is also called a smooth manifold. In
order to equip the set of tangent vectors to a differentiable manifold with a differentiable
structure (see section 1.4) we need N > 2. For simplicity we assume in the following that
N = oo unless otherwise explicitly stated. We shall, however, also encounter Lipschitz
manifolds, also called C'~-manifolds, defined as above by requiring the overlap functions
to satisfy a Lipschitz condition instead of the differentiability requirement in iii).

The concepts and constructions associated to a smooth manifold to be developed in the
following will generally only depend on the differentiable structure defined by its atlas. We
shall therefore subsequently make no distinction between an atlas and the differentiable
structure which it represents.

An atlas {z, | @ € I} on M induces a unique topology on M by the requirement that
each U, be an open set in M and each x, be a homeomorphism from U, (with induced
topology from M) onto x4 (Uy).

It is easy to see that equivalent atlases yield the same topology on M, and that

OCM isopen & z,(0NU,) CR" is open Va € I .

We shall always consider M as a topological space with the so defined topology, which
we henceforth assume to be Hausdorff and connected.

Example 2.3 1) The atlas {x = idgn} defines a differentiable structure on R", referred to
as the standard differentiable structure, and whose corresponding topology is the standard
one.

2) The (n — 1)-dimensional unit sphere is defined as S" ! = {x € R" | |z| = 1}, where
| - | denotes the Euclidean norm on R™.

The atlas {x1,x2} consisting of two stereo-graphic projections w.r.t. two antipodal
points defines what we call the standard differentiable structure on S™ ! and the corre-
sponding topology is easily seen to be the one induced from R".

If the two antipodal points are N = (0,...,0,1) and S = (0,...,0,—1), we have

1(T) 1(7”1,..., ): 11 (Tla"'vrn—l)v ‘E‘:la T'n%l,
(T) (Tla . n) = 1+Tn (Tl’ . 77ﬁn71)a |£| = 1; Tn 7£ -1 ;
wi(u) = op Quful> =1), weR™,

x5t (u) = Wﬁ@u,l —|ul?), weR"!

X



Figure 2.1: The stereo-graphic projection

and u
xlg(u) = .Tgl(u) = W , UuE€ Rnil \ {0} .

3) Given a smooth manifold M with atlas {z, | @ € I} and an open set U C M, it
is clear that {xO“UamU | a € I}, where xC‘“UaﬂU denotes the restriction of z, to U, N U,
constitutes an atlas on U and that the corresponding topology on U equals the induced
topology from M. We say that U with the so defined differentiable structure is an open
submanifold of M.

4) Given, in addition to M as above, a second smooth manifold N with atlas {y3: V3 —
R™ | B € J} it is easy to see that {zo X yg | @ € I, B € I}, where x4 Xyg : Uy x Vg — R*T™
is defined by

(20 % ) (1,0) = (@a(u), ys(v)) .

is an atlas on M x N. We call M x N with the so defined differentiable structure the
product manifold of M and N.

By repeated application of this construction we obtain e.g. the n-torus T" as the
product of n copies of the circle, T" = 81 x ... x S1.

2.2 Maps
Let (M,{zq : Uy = R" | € I}), (N,{yg: Vg — R™| € J}) be smooth manifolds.

Definition 2.4 A continuous mapping F' : M — N is called a C"-mapping, r > 1, if for all
a €1, 8 € J such that U, N F*I(Vﬁ) # () the coordinate representation of F with respect
to z, and yg, given by

ygo F o:ngl : 2o (Ua N F_l(Vﬁ)) - yﬁ(vﬁ) )

is C". A C'-mapping will also be called a differentiable mapping and a C*°-mapping is called
a smooth mapping or simply a map.



Figure 2.2: Coordinate representation of a map

It is easy to see that a continuous mapping ' : M — N is C" if and only if for each
p € M there exist coordinate systems x : U — R™ and y : V' — R™ around p and F(p),
respectively, such that yo F oz~ !is C".

Likewise, it follows that F': M — N is a C"-mapping if there exists an open covering
U of M such that F ‘U is C" for each U in U. Given a third manifold O and C"-mappings
F: M — N and G: N — O it follows immediately from Definition 2.4 and standard
results on differentiable functions of several real variables that Go F': M — O is also C".

Definition 2.5 A homeomorphism F : M — N is a diffeomorphism if both F and F~!
are smooth.

Definition 2.6 A curve in M is a mapping v : I — M, where I C R is an interval. In
case I is not open then + is called a C"-curve if it can be extended to a C"-mapping on an
open interval containing I.

We let
C'(M)={f:M—-R|fisC}.

and use the notation C(M) instead of C*°(M).

Example 2.7 1) Let z : U — R" be a coordinate system, and let 2' : U — R denote the
i’th coordinate function. Then clearly 2 is a smooth function on U.

2) Let again z : U — R™ be a coordinate system. For p € U let ¢g : 2(U) — R be
a smooth function which equals 1 in some neighborhood A C z(U) of z(p) and vanishes
outside a neighborhood B of z(p) such that A C B C B C z(U), say A and B are balls
centered at z(p) with sufficiently small radii.



Then the function ¢ : M — R defined by

(g) = po(z(q))  for qeU
2T =0 for g€ M\U

is smooth on M since it obviously is smooth on the open sets U and M \ B, which cover
M. Such a function is called a localization function at p in U.

Clearly, for any neighborhood U of p one may find a coordinate system = : U — R™ and
an associated localization function ¢ at p in U. Thus, given any smooth function f : U — R
we obtain a smooth function ¢ - f : M — R which agrees with f on a neighborhood of p
and vanishes outside U by setting

— _Je(@)f(q) for qeU
(p.f(q)_{() for ¢¢U.

We shall exploit the existence of such functions frequently in the following.

2.3 Tangent vectors

Let v : I — M be a Cl-curve in M and let ty € I. The tangent vector to ~ at tg is the
linear mapping 7/, : CY(M) — R, also denoted by *(to) , defined by

_dfoy

il =L

(2.1)

to

That is to say, we define a tangent vector in terms of its action as a directional derivative
on functions as expressed by the right-hand side of the above equation. If v(¢¢) = p we say
that *'y]to is a tangent vector to v at p or with base point p. The tangent space T),M to M
at p consists of all tangent vectors with base point p:

T,M = {4],, |7:1— M C'-curve with y(to) = p} . (2.2)

Thus T, M is a subset of the vector space of functions from C*(M) into R. We shall
next show that, in fact, T}, M is an n-dimensional subspace.

If z: U — R" is a coordinate system around p with p = 2~ (u!,... ,u"), let 71,..., 7%
be the coordinate curves through p, that is

yilt) = 27wl e ™) (2.3)
for t €] — e, +¢[, e sufficiently small (see Fig.1.3).
We set £,i ‘p = 7il, , such that
of 5} O foxt
A = . = 2.4
) = ] (=] (2.4



Figure 2.3: Coordinate curves

For a differentiable curve v with ~(tyg) = p we then have

: dfon dfoaxloxoy

o) = =5 ="l
B Zn:afo:n_l .dacioy
N P ou’ z(p) dt

of

to Ot

to

n

_ dalory
- Zl dt

1=

(), fec'(M),

that is

n

. dx'on
7|fozz dt
i—1

1=

0

to 3ml

, (2.5)

yielding 4|, as a linear combination of the %]p.
On the other hand, given a',...,a" € R, let v be given by

() =z ut +alt,. .. u" + a™t)
for t €] — e, +¢|, € sufficiently small. Then

dfox tul+tal,... ,u"+a™t)

io(f) = — |,
- Zafa—fl = X g ecton,
that is 4|, = Y., @’ 8?& . Together with (2.5) this shows that T, M is a vector space
spanned by (%""?8%);;5 (% p,...,a% p>.




Clearly, a tangent vector v, = 4|y, at p acts on C'-functions f defined on any open
neighborhood U of p by formula (2.1), that is v, can be regarded as a tangent vector at
p on U. This yields a canonical isomorphism between T),M and T,,U. In the following we
shall identify T, M and T,U by this isomorphism. We may then rewrite (2.5) as

n
0
vy, = vp(2t)=—| . 2.6
p Z p(l' )8.%'Z » ( )
=1
Moreover, in order to show that (%, e a%)p is a linearly independent set we note
n .
that, if Z a’ 8?& = 0, then
i=1 p
n .
. Oxd
O_Za’laxi(p)_aj7 j_]-a ,Tl/,
i=1
since ‘ ‘ ‘
axﬂ()_axﬂogfl oW _ s JLiti=g
dxi L o L,y 0wl 7T Yo it
Thus we have shown
Theorem 2.8 For each coordinate system x at p € M the set (%, e a%)p s a basis of

the real vector space T, M .

Note that T),M actually consists of tangent vectors to smooth curves, and it would
make no difference to restrict attention to smooth curves in the definition (2.2) of T),M
and to let tangent vectors act only on smooth functions.

2.4 The tangent bundle

Define
TM = U T,M (disjoint union)
peEM
and 7w: TM — M by
w(vp) =p for v, € T,M.
Given an atlas {zo : Uy — R"} on M there is an induced atlas {7, : U, — R?} on TM
given by U, = 7~ }(U,) and

gCM(UP) = (xa(p), Up(l‘é), cee 7Up(mg)) ’ (27)
We note that by (2.6) vy(x}),...,v,(z2) are the coordinates of the vector v, in the basis
(%, e %)p. It follows, in particular, that
0 - axé 0
- — — o 5 2
Dal ]Z; Bar (9m]6 on U, NUpg (2.8)
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and therefore by (2.7) and (2.6)

palit) = (3000, G2 (ea ) 0) = (mnl) . G2 0) 29

for (u,v) € Za(UyN ﬁg) = 24(Us NUg) x R™, and where 82% is the Jacobi matrix of zgq.
Thus we have shown that {Z,} is a C*>°-atlas and hence defines a C*°-structure on T'M.
The mapping 7 : TM — M is smooth, since

Xy O O jgl(u, V) =40 x;l(u) , (2.10)

and the mapping hy, : Uy x R? — 771(U,) defined by

n
-0
ha(pav) = Zvlax(ix p (211)
i=1
is a diffeomorphism, since
Fo 0 hg 0 (2 X idgn) Hu,v) = (u,v) (2.12)
for (u,v) € U, x R™. The inverse of h,, is given by
ha'(vp) = (P, vp(xa), - vp(y)) (2.13)
for v, € T,M, p € U,.
Note also that
mohy =pry, , (2.14)

where the latter denotes the projection onto U,, and that for each p € U, the mapping
(ha)p : R" — T,,M given by
(ha)p(v) = ha(p,v)

is an isomorphism, since <%, ceey 6%) is a basis of T, M.
[e3 [e3

The triple 7(M) = (T M, 7, M) is called the tangent bundle over M. The diffeomor-
phisms h,, are called local trivialisations of T(M).

Exercises

Exercise 1 Let V be a vector space of finite dimension n. Show that the set of linear
isomorphisms from V onto R” is an atlas on V. We call the corresponding differentiable
structure on V the standard one.

For u,v € V, let ¢, , be the straight line through u directed along v,

Yup(t) =u+tv, teR.

Show that the mapping v — (buvv(O) is an isomorphism from V onto T, V. We shall always
identify V' with T,V by this mapping.



Exercise 2 The real projective space RP" is by definition the set of lines through 0 in
R e,
RP" = {5 | v e R™1\ {0}}

where ¥ denotes the line through 0 parallel to v.

Fora=1,....n+1let Uy = {9 | v = (v1,...,0n01) € R" | v, # 0}, and define
ZTq Uy — R™ by

xa(/ﬁ) = ’U(;l(vl’ <o Va—15Va+1, - - - 7Un+1) :

Show that {x1,...,z,+1} is an atlas on RP™. This atlas defines the standard differentiable

structure on RP™.
Prove that the mapping F : S! — RP! defined by

F(cos6,sinf) = (cos(g),sin(g))~, 6 €[0,2n] ,

is a diffeomorphism.

Exercise 3 a) Show that the group GL(n) of invertible n X n-matrices is an open subset
of the vector space M(n) of all n x n-matrices, that is GL(n) is an open submanifold of
b) Verify that inversion g — ¢~ and multiplication (g, h) — gh are differentiable maps
(from GL(n) to GL(n) and from GL(n) x GL(n) to GL(n), respectively).
This means that GL(n) is a Lie group according to the following

1

Definition A group G equipped with a differentiable structure is called a Lie group
if inversion and multiplication are both differentiable maps, from G to G and from G x G
to G, respectively. (It can be shown by use of the implicit function theorem that it is
sufficient that multiplication be differentiable.)

c) Show that, if G is a Lie group, then inversion is a diffeomorphism of G, and that for
fixed g € G the mappings L, : h +— gh and R, : h +— hg, called left and right multiplication
by g, respectively, are diffeomorphisms of G.

Exercise 4 Let M be a smooth manifold of dimension n and let F;,M denote the set of
all (ordered) bases of T, M, also called frames at p, for p € M. Set

FM = | F,M,
peEM
and define 7p : FM — M by np(e) =p foree F,M , pe M.
Given an atlas {z, : Uy — R" | @ € I} on M, we define k, : U, x GL(n) — FM for
a € I, such that k4 (p, b) is obtained by rotating the coordinate basis (a%, cel %)p at p
by the matrix b, whose matrix elements we denote by b;;. That is : ’

9 9N
ozl dan )

a) Show that k, maps U, x GL(n) bijectively onto 7' (U, ) and that {#,|a € T}, where

= 0 = 0
ka(p,b): ijl—,,...,ijn—A
o Oy o7 Oza ,

.TAJO{ = ($ X ldGL(n)) o k;l y

9



is an atlas defining a C*°-structure on F'M (where GL(n) has been identified canonically
with an open subset of R"").
b) Show that 7 is a smooth mapping, and that the mapping

(e,b) —e-b= (ijlej,...,ijnej)
j=1

j=1
from FM x GL(n) to FM is smooth and satisfies
i) (e-bl)-bgze-(blbg), for €EFM,b1,b2€GL(n),

ii) For fixed e € F, M the mapping b — e - b is bijective from GL(n) onto F,M.

The properties listed above amount to showing that (FM, g, M) is a principal GL(n)-
bundle, called the frame bundle over M, according to the following

Definition Let GG be a Lie group and M a smooth manifold. A principal G-bundle
over M is a triple (P, 7, M), where w : P — M is a smooth surjective map, together with
a smooth map (a,g) — a- g from P x G to P such that

i) (a-g1)-g2=a-(g192), for a€P, g1,90€G,
ii) For fixed a € 7~!(p) the mapping g — a - g is bijective from G onto 7~ 1(p).

In addition, it is required that there exists an open covering {U, | a € I} of M, and
diffeomorphisms kq, : Uy x G — 7 1(U,), called local trivialisations, fulfilling ko (p, g192) =
ka(p,g1) 92, PE€Uqs, 91,92 €G.

A mapping (a,g) — a- g from P x G to P fulfilling i) above is called a G-action on P,
which is said to be free, resp. transitive, on 7~'(p), if injectivity, resp. surjectivity, holds
in ii), instead of bijectivity. In this language a principal G-bundle is given by a smooth
surjective map P > M together with a smooth G-action on P, which is free and transitive
on each fiber 7=1(p) , p € M, subject to the requirement of local triviality. It is common
to suppress the G-action from the notation and simply denote the principal bundle by
P M.
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