
Chapter 2

Differentiable manifolds

The recognition that, in classical mechanics as well as in special relativity, space-time
events can be labeled, at least locally on a cosmological scale, by a continuum of three
space coordinates and one time coordinate leads naturally to the concept of a 4-dimensional
manifold as the basis of theories of space-time. Trajectories of moving particles in space-
time are described by curves on the manifold. The requirement of being able to associate a
velocity to a moving particle at each instant of time leads to the notion of tangent vectors,
which in turn necessitates the presence of a differentiable structure on space-time.

In this chapter we introduce the above mentioned basic notions. Besides forming the
basis of the whole area of differential geometry it turns out that these concepts have a great
variety of other applications in physics, as is exemplified by the usefulness of considering
the phase space of a classical mechanical system as a differentiable manifold.

2.1 Manifolds

Let M be a set and U = {Uα | α ∈ I} a covering of M , i.e. Uα ⊆ M , α ∈ I, and

⋃

α∈I

Uα = M .

A set of mappings {xα | α ∈ I}, xα : Uα → Rn, where n is fixed, is called a CN -atlas

on M , N ∈ N ∪ {0,∞}, if for all α, β ∈ I:

i) xα maps Uα bijectively onto xα(Uα),

ii) xα(Uα ∩ Uβ) is an open subset of R
n. In particular, xα(Uα) ⊆ R

n is open.

iii) If Uα ∩ Uβ 6= ∅, the overlap function

xαβ ≡ xα ◦ x−1
β : xβ(Uα ∩ Uβ) → xα(Uα ∩ Uβ)

is CN , i.e. it is N times continuously differentiable.
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Definition 2.1 A CN -manifold is a pair (M, {xα | α ∈ I}), where {xα | α ∈ I} is a CN -
atlas on M . A mapping x : U → R

n is called a coordinate system on (M, {xα | α ∈ I}), or
just on M , and U is called a coordinate patch on M , if {xα | α ∈ I} ∪ {x} is a CN -atlas on
M .

Remark 2.2 Two CN -atlases {xα | α ∈ I} and {xα | α ∈ J} on M are equivalent if
{xα | α ∈ I ∪ J} is a CN -atlas on M . An equivalence class of CN -atlases on M is called a
CN -structure on M . Thus equivalent atlases determine the same CN -structure on M .

A C0-manifold is called a topological or a continuous manifold. A differentiable manifold

is a CN -manifold, where N ≥ 1, and correspondingly we refer to a CN -structure, where
N ≥ 1, as a differentiable structure. A C∞-manifold is also called a smooth manifold. In
order to equip the set of tangent vectors to a differentiable manifold with a differentiable
structure (see section 1.4) we need N ≥ 2. For simplicity we assume in the following that
N = ∞ unless otherwise explicitly stated. We shall, however, also encounter Lipschitz

manifolds, also called C1−-manifolds, defined as above by requiring the overlap functions
to satisfy a Lipschitz condition instead of the differentiability requirement in iii).

The concepts and constructions associated to a smooth manifold to be developed in the
following will generally only depend on the differentiable structure defined by its atlas. We
shall therefore subsequently make no distinction between an atlas and the differentiable
structure which it represents.

An atlas {xα | α ∈ I} on M induces a unique topology on M by the requirement that
each Uα be an open set in M and each xα be a homeomorphism from Uα (with induced
topology from M) onto xα(Uα).

It is easy to see that equivalent atlases yield the same topology on M , and that

O ⊆ M is open ⇔ xα(O ∩ Uα) ⊆ R
n is open ∀α ∈ I .

We shall always consider M as a topological space with the so defined topology, which
we henceforth assume to be Hausdorff and connected.

Example 2.3 1) The atlas {x = idRn} defines a differentiable structure on R
n, referred to

as the standard differentiable structure, and whose corresponding topology is the standard
one.

2) The (n − 1)-dimensional unit sphere is defined as Sn−1 ≡ {x ∈ R
n | |x| = 1}, where

| · | denotes the Euclidean norm on R
n.

The atlas {x1, x2} consisting of two stereo-graphic projections w.r.t. two antipodal
points defines what we call the standard differentiable structure on Sn−1 and the corre-
sponding topology is easily seen to be the one induced from R

n.
If the two antipodal points are N = (0, . . . , 0, 1) and S = (0, . . . , 0,−1), we have

x1(r) = x1(r1, . . . , rn) = 1
1−rn

(r1, . . . , rn−1), |r| = 1, rn 6= 1 ,

x2(r) = x2(r1, . . . , rn) = 1
1+rn

(r1, . . . , rn−1), |r| = 1, rn 6= −1 ,

x−1
1 (u) = 1

|u|2+1
(2u, |u|2 − 1) , u ∈ R

n−1 ,

x−1
2 (u) = 1

|u|2+1
(2u, 1 − |u|2) , u ∈ R

n−1
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Figure 2.1: The stereo-graphic projection

and
x12(u) = x21(u) =

u

|u|2
, u ∈ R

n−1 \ {0} .

3) Given a smooth manifold M with atlas {xα | α ∈ I} and an open set U ⊆ M , it
is clear that {xα

∣∣
Uα∩U

| α ∈ I}, where xα

∣∣
Uα∩U

denotes the restriction of xα to Uα ∩ U ,
constitutes an atlas on U and that the corresponding topology on U equals the induced
topology from M . We say that U with the so defined differentiable structure is an open

submanifold of M .
4) Given, in addition to M as above, a second smooth manifold N with atlas {yβ : Vβ →

R
m | β ∈ J} it is easy to see that {xα×yβ | α ∈ I, β ∈ I}, where xα×yβ : Uα×Vβ → R

n+m

is defined by
(xα × yβ)(u, v) = (xα(u), yβ(v)) ,

is an atlas on M × N . We call M × N with the so defined differentiable structure the
product manifold of M and N .

By repeated application of this construction we obtain e.g. the n-torus T n as the
product of n copies of the circle, T n = S1 × . . . × S1.

2.2 Maps

Let (M, {xα : Uα → R
n | α ∈ I}), (N, {yβ : Vβ → R

m | β ∈ J}) be smooth manifolds.

Definition 2.4 A continuous mapping F : M → N is called a Cr-mapping, r ≥ 1, if for all
α ∈ I, β ∈ J such that Uα ∩ F−1(Vβ) 6= ∅ the coordinate representation of F with respect
to xα and yβ, given by

yβ ◦ F ◦ x−1
α : xα(Uα ∩ F−1(Vβ)) → yβ(Vβ) ,

is Cr. A C1-mapping will also be called a differentiable mapping and a C∞-mapping is called
a smooth mapping or simply a map.
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Figure 2.2: Coordinate representation of a map

It is easy to see that a continuous mapping F : M → N is Cr if and only if for each
p ∈ M there exist coordinate systems x : U → R

n and y : V → R
m around p and F (p),

respectively, such that y ◦ F ◦ x−1 is Cr.
Likewise, it follows that F : M → N is a Cr-mapping if there exists an open covering

U of M such that F
∣∣
U

is Cr for each U in U . Given a third manifold O and Cr-mappings
F : M → N and G : N → O it follows immediately from Definition 2.4 and standard
results on differentiable functions of several real variables that G ◦ F : M → O is also C r.

Definition 2.5 A homeomorphism F : M → N is a diffeomorphism if both F and F −1

are smooth.

Definition 2.6 A curve in M is a mapping γ : I → M , where I ⊆ R is an interval. In
case I is not open then γ is called a Cr-curve if it can be extended to a Cr-mapping on an
open interval containing I.

We let
Cr(M) = {f : M → R | f is Cr} .

and use the notation C(M) instead of C∞(M).

Example 2.7 1) Let x : U → R
n be a coordinate system, and let xi : U → R denote the

i’th coordinate function. Then clearly xi is a smooth function on U .
2) Let again x : U → R

n be a coordinate system. For p ∈ U let ϕ0 : x(U) → R be
a smooth function which equals 1 in some neighborhood A ⊆ x(U) of x(p) and vanishes
outside a neighborhood B of x(p) such that A ⊆ B ⊆ B ⊆ x(U), say A and B are balls
centered at x(p) with sufficiently small radii.
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Then the function ϕ : M → R defined by

ϕ(q) =

{
ϕ0(x(q)) for q ∈ U

0 for q ∈ M \ U

is smooth on M since it obviously is smooth on the open sets U and M \ B, which cover
M . Such a function is called a localization function at p in U .

Clearly, for any neighborhood U of p one may find a coordinate system x : U → R
n and

an associated localization function ϕ at p in U . Thus, given any smooth function f : U → R

we obtain a smooth function ϕ · f : M → R which agrees with f on a neighborhood of p
and vanishes outside U by setting

ϕ · f(q) =

{
ϕ(q)f(q) for q ∈ U

0 for q /∈ U .

We shall exploit the existence of such functions frequently in the following.

2.3 Tangent vectors

Let γ : I → M be a C1-curve in M and let t0 ∈ I. The tangent vector to γ at t0 is the
linear mapping γ̇|t0 : C1(M) → R , also denoted by γ̇(t0) , defined by

γ̇|t0 (f) =
d f ◦ γ

dt

∣∣∣
t0

. (2.1)

That is to say, we define a tangent vector in terms of its action as a directional derivative
on functions as expressed by the right-hand side of the above equation. If γ(t0) = p we say
that γ̇|t0 is a tangent vector to γ at p or with base point p. The tangent space TpM to M
at p consists of all tangent vectors with base point p:

TpM =
{
γ̇|t0 | γ : I → M C1-curve with γ(t0) = p

}
. (2.2)

Thus TpM is a subset of the vector space of functions from C1(M) into R. We shall
next show that, in fact, TpM is an n-dimensional subspace.

If x : U → R
n is a coordinate system around p with p = x−1(u1, . . . , un), let γ1, . . . , γn

be the coordinate curves through p, that is

γi(t) = x−1(u1, . . . , ui−1, ui + t, ui+1, . . . , un) (2.3)

for t ∈] − ε,+ε[, ε sufficiently small (see Fig.1.3).

We set ∂
∂xi

∣∣∣
p

= γ̇i|0 , such that

∂f

∂xi
(p) ≡

∂

∂xi

∣∣∣
p

(f) =
∂ f ◦ x−1

∂ui

∣∣∣
x(p)

. (2.4)
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Figure 2.3: Coordinate curves

For a differentiable curve γ with γ(t0) = p we then have

γ̇|t0 (f) =
d f ◦ γ

dt

∣∣
t0

=
d f ◦ x−1 ◦ x ◦ γ

dt

∣∣
t0

=
n∑

i=1

∂ f ◦ x−1

∂ui

∣∣∣
x(p)

·
d xi ◦ γ

dt

∣∣∣
t0

=
n∑

i=1

d xi ◦ γ

dt

∣∣∣
t0

∂f

∂xi
(p) , f ∈ C1(M) ,

that is

γ̇|t0 =

n∑

i=1

d xi ◦ γ

dt

∣∣∣
t0

∂

∂xi

∣∣∣
p

, (2.5)

yielding γ̇|t0 as a linear combination of the ∂
∂xi |p.

On the other hand, given a1, . . . , an ∈ R, let γ be given by

γ(t) = x−1(u1 + a1t, . . . , un + ant)

for t ∈] − ε,+ε[, ε sufficiently small. Then

γ̇|0(f) =
d f ◦ x−1(u1 + ta1, . . . , un + ant)

dt

∣∣∣
0

=
∑

i

ai ∂f ◦ x−1

∂ui

∣∣∣
x(p)

=
∑

i

ai ∂f

∂xi
(p) , f ∈ C1(M) ,

that is γ̇|0 =
∑n

i=1 ai ∂
∂xi

∣∣∣
p

. Together with (2.5) this shows that TpM is a vector space

spanned by
(

∂
∂x1 , . . . , ∂

∂xn

)
p
≡

(
∂

∂x1

∣∣∣
p
, . . . , ∂

∂xn

∣∣∣
p

)
.
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Clearly, a tangent vector vp = γ̇|t0 at p acts on C1-functions f defined on any open
neighborhood U of p by formula (2.1), that is vp can be regarded as a tangent vector at
p on U . This yields a canonical isomorphism between TpM and TpU . In the following we
shall identify TpM and TpU by this isomorphism. We may then rewrite (2.5) as

vp =

n∑

i=1

vp(x
i)

∂

∂xi

∣∣∣
p

. (2.6)

Moreover, in order to show that
(

∂
∂x1 , . . . , ∂

∂xn

)
p

is a linearly independent set we note

that, if
n∑

i=1
ai ∂

∂xi

∣∣∣
p

= 0, then

0 =
n∑

i=1

ai ∂xj

∂xi
(p) = aj , j = 1, . . . , n ,

since
∂xj

∂xi
(p) =

∂xj ◦ x−1

∂ui

∣∣∣
x(p)

=
∂uj

∂ui

∣∣∣
x(p)

= δij ≡

{
1 if i = j

0 if i 6= j
.

Thus we have shown

Theorem 2.8 For each coordinate system x at p ∈ M the set
(

∂
∂x1 , . . . , ∂

∂xn

)
p

is a basis of

the real vector space TpM .

Note that TpM actually consists of tangent vectors to smooth curves, and it would
make no difference to restrict attention to smooth curves in the definition (2.2) of TpM
and to let tangent vectors act only on smooth functions.

2.4 The tangent bundle

Define
TM =

⋃

p∈M

TpM (disjoint union)

and π : TM → M by
π(vp) = p for vp ∈ TpM .

Given an atlas {xα : Uα → R
n} on M there is an induced atlas {x̃α : Ũα → R

2n} on TM
given by Ũα = π−1(Uα) and

x̃α(vp) = (xα(p), vp(x
1
α), . . . , vp(x

n
α)) , (2.7)

We note that by (2.6) vp(x
1
α), . . . , vp(x

n
α) are the coordinates of the vector vp in the basis(

∂
∂x1

α
, . . . , ∂

∂xn
α

)
p
. It follows, in particular, that

∂

∂xi
α

=

n∑

j=1

∂xj
β

∂xi
α

∂

∂xj
β

on Uα ∩ Uβ , (2.8)

7



and therefore by (2.7) and (2.6)

x̃βα(u, v) =

(
xβα(u) ,

∂xβ

∂xα
(x−1

α (u)) · v

)
=

(
xβα(u) ,

∂xβα

∂u
· v

)
(2.9)

for (u, v) ∈ x̃α(Ũα ∩ Ũβ) = xα(Uα ∩Uβ)×R
n, and where

∂xβα

∂u
is the Jacobi matrix of xβα.

Thus we have shown that {x̃α} is a C∞-atlas and hence defines a C∞-structure on TM .
The mapping π : TM → M is smooth, since

xα ◦ π ◦ x̃−1
β (u, v) = xα ◦ x−1

β (u) , (2.10)

and the mapping hα : Uα × R
n → π−1(Uα) defined by

hα(p, v) =

n∑

i=1

vi ∂

∂xi
α

∣∣∣
p

(2.11)

is a diffeomorphism, since

x̃α ◦ hα ◦ (xα × idRn)−1(u, v) = (u, v) (2.12)

for (u, v) ∈ Uα × R
n. The inverse of hα is given by

h−1
α (vp) = (p, vp(x

1
α), . . . , vp(x

n
α)) (2.13)

for vp ∈ TpM , p ∈ Uα.
Note also that

π ◦ hα = prUα
, (2.14)

where the latter denotes the projection onto Uα, and that for each p ∈ Uα the mapping
(hα)p : R

n → TpM given by
(hα)p(v) = hα(p, v)

is an isomorphism, since
(

∂
∂x1

α
, . . . , ∂

∂xn
α

)
p

is a basis of TpM .

The triple τ(M) = (TM, π,M) is called the tangent bundle over M . The diffeomor-
phisms hα are called local trivialisations of τ(M).

Exercises

Exercise 1 Let V be a vector space of finite dimension n. Show that the set of linear
isomorphisms from V onto R

n is an atlas on V . We call the corresponding differentiable
structure on V the standard one.

For u, v ∈ V , let ϕu,v be the straight line through u directed along v,

ϕu,v(t) = u + tv , t ∈ R .

Show that the mapping v 7→ φ̇u,v(0) is an isomorphism from V onto TuV . We shall always
identify V with TuV by this mapping.
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Exercise 2 The real projective space RP n is by definition the set of lines through 0 in
R

n+1, i.e.
RP n = {ṽ | v ∈ R

n+1 \ {0}} ,

where ṽ denotes the line through 0 parallel to v.
For α = 1, . . . , n + 1 let Uα = {ṽ | v = (v1, . . . , vn+1) ∈ R

n+1 , vα 6= 0}, and define
xα : Uα 7→ R

n by
xα(ṽ) = v−1

α (v1, . . . , vα−1, vα+1, . . . , vn+1) .

Show that {x1, . . . , xn+1} is an atlas on RP n. This atlas defines the standard differentiable
structure on RP n.

Prove that the mapping F : S1 7→ RP 1 defined by

F (cos θ, sin θ) = (cos(
θ

2
), sin(

θ

2
))̃ , θ ∈ [0, 2π] ,

is a diffeomorphism.

Exercise 3 a) Show that the group GL(n) of invertible n× n-matrices is an open subset
of the vector space M(n) of all n × n-matrices, that is GL(n) is an open submanifold of
M(n).

b) Verify that inversion g 7→ g−1 and multiplication (g, h) → gh are differentiable maps
(from GL(n) to GL(n) and from GL(n) × GL(n) to GL(n), respectively).

This means that GL(n) is a Lie group according to the following

Definition A group G equipped with a differentiable structure is called a Lie group

if inversion and multiplication are both differentiable maps, from G to G and from G × G
to G, respectively. (It can be shown by use of the implicit function theorem that it is
sufficient that multiplication be differentiable.)

c) Show that, if G is a Lie group, then inversion is a diffeomorphism of G, and that for
fixed g ∈ G the mappings Lg : h 7→ gh and Rg : h 7→ hg, called left and right multiplication
by g, respectively, are diffeomorphisms of G.

Exercise 4 Let M be a smooth manifold of dimension n and let FpM denote the set of
all (ordered) bases of TpM , also called frames at p, for p ∈ M . Set

FM =
⋃

p∈M

FpM ,

and define πF : FM → M by πF (e) = p for e ∈ FpM , p ∈ M .
Given an atlas {xα : Uα → R

n | α ∈ I} on M , we define kα : Uα × GL(n) → FM for
α ∈ I, such that kα(p, b) is obtained by rotating the coordinate basis ( ∂

∂x1
α
, . . . , ∂

∂xn
α
)p at p

by the matrix b, whose matrix elements we denote by bij. That is

kα(p, b) =




n∑

j=1

bj1
∂

∂xj
α

, . . . ,

n∑

j=1

bjn
∂

∂xj
α




p

≡

(
∂

∂x1
α

, . . . ,
∂

∂xn
α

)

p

· b .

a) Show that kα maps Uα×GL(n) bijectively onto π−1
F (Uα) and that {x̂α|α ∈ I}, where

x̂α = (x × idGL(n)) ◦ k−1
α ,
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is an atlas defining a C∞-structure on FM (where GL(n) has been identified canonically
with an open subset of R

n2
).

b) Show that πF is a smooth mapping, and that the mapping

(e, b) 7→ e · b ≡ (

n∑

j=1

bj1ej , . . . ,

n∑

j=1

bjnej)

from FM × GL(n) to FM is smooth and satisfies

i) (e · b1) · b2 = e · (b1b2) , for e ∈ FM , b1, b2 ∈ GL(n) ,

ii) For fixed e ∈ FpM the mapping b → e · b is bijective from GL(n) onto FpM .

The properties listed above amount to showing that (FM,πF ,M) is a principal GL(n)-
bundle, called the frame bundle over M , according to the following

Definition Let G be a Lie group and M a smooth manifold. A principal G-bundle

over M is a triple (P, π,M), where π : P → M is a smooth surjective map, together with
a smooth map (a, g) → a · g from P × G to P such that

i) (a · g1) · g2 = a · (g1g2) , for a ∈ P, g1, g2 ∈ G ,

ii) For fixed a ∈ π−1(p) the mapping g → a · g is bijective from G onto π−1(p).

In addition, it is required that there exists an open covering {Uα | α ∈ I} of M , and
diffeomorphisms kα : Uα ×G → π−1(Uα), called local trivialisations, fulfilling kα(p, g1g2) =
kα(p, g1) · g2 , p ∈ Uα , g1, g2 ∈ G.

A mapping (a, g) → a · g from P ×G to P fulfilling i) above is called a G-action on P ,
which is said to be free, resp. transitive, on π−1(p), if injectivity, resp. surjectivity, holds
in ii), instead of bijectivity. In this language a principal G-bundle is given by a smooth
surjective map P

π
→ M together with a smooth G-action on P , which is free and transitive

on each fiber π−1(p) , p ∈ M , subject to the requirement of local triviality. It is common
to suppress the G-action from the notation and simply denote the principal bundle by
P

π
→ M .
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