
A graph approach to computing

nondeterminacy in substitutional dynamical

systems

Toke M. Carlsen and Søren Eilers

December 2002

1 Preliminaries

1.1 Introduction

Most elements in substitutional dynamical systems, given as doubly infinite
sequences, have unique pasts and futures in the sense that one one-sided
infinite subsequence determines the other. The importance of those elements
which do not have this property, the special elements, is well understood in
the theory of substitutions and the dynamical systems associated to them.

Determining K-groups of certain C∗-algebras we found (see [3]) an invari-
ant of flow equivalence — akin and related to the dimension groups considered
in [5] — of substitutional systems based on combinatorial and textual prop-
erties of the special elements. To investigate the invariant, we were naturally
lead to concern ourselves with computability of certain words and quantities
associated to the class of special elements associated to a given substitu-
tion, and failing to find algorithms meeting our needs in the literature, we
developed the approach presented in the present note. Our algorithm out-
puts a finite representation of each special word, and determines when such
representations are equivalent under tail equivalence, a naturally occurring
relation of importance in our invariant.

We wish to acknowledge [1], to which our work is closely related. Al-
though the ends and ambitions of the present note and [1] do not overlap,
the means seem to do. Our method was developed independently, but we
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recieved [1] before writing up this note. Although we have not attempted
to do so, the results in our Section 3 could most likely be developed using
the methods in [1], and vice versa. The series of reductions based on replac-
ing the substitutions in [1] is, however, computationally inconvenient for our
purposes. Our Section 4 has no analogue there.

1.2 Substitutions

We refer to [6], [5], and [13] for a thorough introduction to this subject and
shall here only lay out notation. Letting a denote a finite set or alphabet, we
denote by a

] the set of nonempty finite words in a. A substitution is simply
a map τ : a −→ a

]. We can extend τ to a
] or to

a
Z, aN0 , a−N (1)

(with N0 = {0, 1, . . . },−N = Z\N0) in the obvious way, and define powers
of τ recursively. To define the action of τ on a

Z we need to specify that
the word resulting from the substitution of the letter at index 0 of a doubly
infinite sequence x will be placed starting at index 0 in τ(x). We thus have

τ(y.x) = τ(y).τ(x)

where, as we will do in the following, we have used a dot to indicate the
position separating −N and N0. We denote the opposite substitution defined
by reversing each word τ(·) by τ−1. Finally, an |a|×|a|-matrixAAAτ is associated
to τ , counting at row b and column a the number of occurrences of b in τ(a).

We equip the sequence spaces mentioned in (1) with the product topology
from the discrete topology on a, and define σ : a

Z −→ a
Z by (σ(x))n = xn+1.

Maps of this type we will refer to as shift maps. A two-sided shift space is
a closed subset of a

Z which is mapped onto itself by σ. We shall refer to
such spaces by “X” with possible subscripts. Generally speaking, a one-sided

shift space is a closed subset of a
N0 or a

−N which is mapped into itself by
the unique shift map. We are only interested in those one-sided shift spaces
which can be produced from two-sided shift spaces by projection, and denote
these spaces by X+ and X−, respectively. There is a rich theory of shift spaces;
we refer to [8] and [7].

For −∞ ≤ i < j ≤ ∞ we use interval notation x[i,j] to denote the
(possibly infinite) subword of x corresponding to the indices between i and
j. We write x[i,j[ = x[i,j−1] when it makes sense and is convenient. Unless
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specified otherwise, we index finite words by nonnegative indices starting
with 0, and left or right infinite words by N0 or −N.

The language of a two-sided shift space is the subset of a
] ∪ {ε}, where ε

denotes the empty word, given by

L(X) = {x[i,j] | x ∈ X, i ≤ j ∈ Z}

where the interval notation should be obvious. Conversely, a subset G ⊆
a

]∪{ε} defines a shift space; the smallest shift space XG such that G ⊆ L(XG).
With G = {τn(a) | n ∈ N, a ∈ a} we arrive at the substitutional dynamical

systems denoted Xτ which will be our main concern in the present paper.
We single out two important properties of substitutions below. The no-

tation “A > 0” indicates that the matrix A has only positive entries.

Definition 1.1 A substitution τ is primitive if |a| > 1 and

∃n ∈ N : AAAn
τ > 0.

A substitution τ is aperiodic if |Xτ | = ∞.

It is decidable when a given substitution has these properties, cf. [11]
and [15]. Primitive and aperiodic substitutions yield minimal shift spaces:
all orbits {σn(x) | n ∈ Z} are dense in the product topology induded by
the discrete topology on a, cf. [13]. Consequently, there are no (ultimately)
σ-periodic words in Xτ , X

+
τ or X−

τ for such τ : if xk+n = xm+n for all n in the
various index sets, then k = m. Further, we have

Lemma 1.2 [[10], cf. [5, Corollary 10]] The map induced by τ on Xτ is
injective, when τ is primitive and aperiodic.

Example 1.3 The following substitutions are all primitive and aperiodic:

τ1 :1 7→ 12, 2 7→ 13, 3 7→ 123;

τ2 :0 7→ 003210, 1 7→ 00, 2 7→ 00, 3 7→ 00220;

τ3 :a 7→ aba, b 7→ baab;

τ4 :0 7→ 10, 1 7→ 0;

τ5 :a 7→ accdadbb, b 7→ acdcbadb, c 7→ aacdcdbb, d 7→ accbdadb;

τ6 :a 7→ accbbadd, b 7→ accdbabd, c 7→ aacbbcdd, d 7→ acbcdabd.
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The following notation is convenient. When w0, . . . , wn−1 is a finite list of
words in L(Xτ ), we define

[w0, . . . , wn−1]
+ = w0τ(w1) · · · τ

n−1(wn−1)τ
n(w0)τ

n+1(w1) · · · ∈ a
N0,

[wn−1, . . . , w0]
− = · · · τn+1(w1)τ

n(w0)τ
n−1(wn−1) · · · τ(w1)w0 ∈ a

−N.

1.3 Orbit classes and special elements

Definition 1.4 Let X be a two-sided shift space. We define three equiva-
lence relations on X in the following way:

(i) If there exists a n such that xm = yn+m for all m ∈ Z then we say that
x and y are orbit equivalent and write x ∼o y.

(ii) If there exist a n and a N such that xm = yn+m for all m > N then we
say that x and y are right tail equivalent and write x ∼r y.

(iii) If there exist a n and a N such that xm = yn+m for all m < N then we
say that x and y are left tail equivalent and write x ∼l y.

Notice that x ∼o y implies that x ∼r y, x ∼l y, so ∼r and ∼l induce
equivalence relations on X/∼o which we also will denote by ∼r and ∼l. We
call an orbit class [x] in X/∼o left or right special, respectively, if there exists
[y] ∈ X/∼o such that [x] 6= [y], but [x] ∼r [y] or [x] ∼l [y]. A left special word

x ∈ X is a representative of such an orbit class with the property that y ∈ X

exists with
x[−1] 6= y[−1] x[0,∞[ = y[0,∞[.

We say that the left special word x is adjusted if σ−n(y) is not left special
for any n ∈ N.

The symmetric definition defines a class of (adjusted) right special words.
Classical results ([13, p. 107], [2, Theorem 3.9]) give:

Theorem 1.5 When τ is aperiodic and primitive, then the number of (left
or right) special orbit classes is finite, but nonzero.

Note that as a consequence of this, there is always an adjusted special
word representing each special orbit class. Clearly this word is unique.
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A nice way of describing the structure of special words using the equiva-
lence relations ∼r and ∼l on X/∼o, suggested to us by an electronic exchange
with Charles Holton, is by means of a bipartite graph defined as follows. The
vertex set of the graph will be contained in the disjoint union of X/∼r and
of X/∼l, and for each orbit class [x]o with x a special element, we let an edge
connect A ∈ X/∼r with B ∈ X/∼l if [x]o ∈ A and [x]o ∈ B, and we label
that edge [x]o. Removing all vertices with no edges, we arrive at a bipartite
graph which we shall denote as the configuration graph of X. The theorem
above shows that this is a finite graph when the shift space arises from a
substitution. Examples are given in 4.7 below.

Using the fact that flow equivalence ([12]) on shift spaces is generated
by conjugacy and expansion (see [9, Lemma 2.1]) one easily sees that the
configuration graph, and hence the number of orbit or tail classes of special
elements, is a flow invariant.

Our paper is organized as follows. In Section 2, after having singled
out the class of elementary substitutions and explained how to reduce the
problem to this case, we associate certain graphs to such substitutions and
explain how they give rise to a class of adjusted left special words. We
also define a class of adjusted left special words arising from τ -periodic one-
sided words. In Section 3 we then proceed to prove that each adjusted left
special word is on the list generated in the previous section. The main
technical tool is the one-sided substitute for Lemma 1.2 which we shall be
able to derive from the work of Mossé ([10]). In Section 4 we describe an
algorithm for determining tail and orbit equivalence of the output of the
algorithm described and proved in the previous section. The paper ends
with a summary of the algorithm and a few remarks of relevance to related
work.

2 Collecting special elements

2.1 Elementary and simplifiable substitutions

We recall from [14, p. 17] that a substitution τ on the alphabet a is simplifiable

if it can be factored τ = f ◦ g for maps

f : b −→ a
] g : a −→ b

]

where |b| < |a|. We say that the substitution υ = g ◦ f is a simplification of
τ in this case. In case τ is not simplifiable, we call it elementary.
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It is decidable whether a substitution is simplifiable or elementary, cf.
[14, p. 17], and a succession of simplifications, ending with an elementary
substitution, can be computed in the simplifiable case. Composing the 2n
maps involved in a simplification in n steps to the elementary substitution
υ, we get f, g with the property

τn = f ◦ g υn = g ◦ f. (2)

This was used in [11] to provide an algorithm for deciding aperodicity by
reducing to the elementary case. We shall use a similar strategy to compute
the set of special elements for a given substitution, based on Proposition 2.2
below.

First, however, we need to concern ourselves with establishing our key
substitution properties for simplifications. Simplifications preserve aperiod-
icity – this is a key observation in [11] – but a simplification of a primitive
substitution may fail to be primitive. However, the following holds:

Lemma 2.1 If a primitive and aperiodic substitution τ is simplified to an
elementary substitution υ, then υ is primitive and aperiodic.

Proof: It follows easily that AAAτ and AAAυ are strongly shift equivalent, cf. [8].
Note further that AAAυ must be essential, as otherwise a letter could be deleted
from the alphabet. Applying [8, Proposition 4.5.10], we get the desired result.
�

Proposition 2.2 Let τ be a simplifiable substitution and let υ be an ele-
mentary simplification with maps f, g satisfying (2) above. The map induced
by f preserves orbit and tail equivalence, and maps the (left, right) special
orbits of Xυ bijectively onto the set of (left, right) special orbits of Xτ .

Proof: Clearly the maps induced by f and g preserve all three kinds of
equivalence. Note also that they are injective because of Lemma 1.2; in the
case of f because υ (and υn) is primitive by Lemma 2.1.

Clearly, then, both maps send special elements to special elements. Let
x1, . . . , xn be a choice of orbit inequivalent special words of Xτ , representing
all such orbit classes. We have that τ(x1), . . . , τ(xn) are orbit inequivalent
special words of Xτ , since τ is injective and Xτ is aperiodic. Hence each orbit
class of special elements is realized by a representative of the form f(g(xi)),
where g(xi) is special. �
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Example 2.3 The substitutions τ1, τ3, τ4, τ5 and τ6 are elementary, but τ2 is
simplifiable to

p 7→ ppqp, q 7→ pprrppppp, r 7→ pp

using f given by p 7→ 0, q 7→ 321, r 7→ 2 and g given by 0 7→ ppqp, 1 7→
pp, 2 7→ pp, 3 7→ pprrp.

2.2 NS-covers and their graphs

In the following, we assume that the alphabet a is equipped with some well-
ordering “>”; in the examples, we just use alphabetical or numerical order.

Let W be a finite set of nonempty words. By W×̂W we denote the set

{(v, w) | v, w ∈ W, v[|v|−1] > w[|w|−1]}

consisting of pairs of words from W which end in different letters, arranged
so that the word ending in the first letter according to “>” is first among
the two.

Definition 2.4 Let τ be a primitive and aperiodic substitution. We say
that the finite family W ⊆ L(Xτ ) is an NS-cover of τ (a nonsuffix cover) if

Cyl−(w) = {x ∈ Xτ | x[−|w|,−1] = w}, w ∈ W

forms a disjoint partition of Xτ , and if for every pair (v, w) ∈ W×̂W one can
write

τ(v) = tv′z τ(w) = uw′z (3)

where t, u, z ∈ L(Xτ ) with t, u 6= ε, and where either

(v′, w′) ∈ W×̂W (+)

or
(w′, v′) ∈ W×̂W. (−)

Not every primitive and aperiodic substitution posseses an NS-cover –
our example τ2 provides an example of this behavior as seen in Example 5.2
below. However, the following shall suffice for our purposes:
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Proposition 2.5 If a primitive and aperiodic substitution is elementary, it
posseses an NS-cover. Indeed, there is a computable integer n such that the
set

{w ∈ L(Xτ ) | |w| = n}

is an NS-cover.

Proof: By [14, Theorem 1.6, p. 126], the integer

p =
∑

a∈a

(|τ(a)| − 1) + max
a∈a

|τ(a)|

has the property that if words v, w ∈ L(Xτ ) end in different letters, and both
τ(v) and τ(w) have the suffix z, then |z| ≤ p.

By primitivity, one letter a ∈ a has the property |τ(a)| ≥ 2, and we may
find m such that a a τm(b) for every b ∈ a, and with

n = 2(p + 1) max{|τm(b)| | b ∈ a}

we thus have that a occurs p + 1 times in v if |v| = n. Thus

|τ(v)| ≥ p + 1 + |v| = p + n + 1

for each such v. In (3), this leaves n letters to read off v ′, w′ ending in different
letters, and at least one more letter to read off t, u. �

Implementation remark 2.6 In practice one finds that the value of n de-
termined above is often much larger than needed. It is hence recommendable
to simply try n = 1, n = 2, etc. until one reaches a sufficiently large length.

Example 2.7 For the substitutions considered in Example 2.8, the smallest
number n such that the set of all words in the associated language is an
NS-cover is

τ1 τ−1
1 υ2 υ−1

2 τ3 = τ−1
3 τ4 τ−1

4

2 3 3 4 1 4 2

Let now τ be a primitive and aperiodic substitution with an NS-cover
W. We define a multiply labeled graph Gτ,W of τ and W as follows. Choose
as vertex set Vτ,W = W×̂W and define for each (v, w) ∈ W×̂W a threefold
labeled edge

(v′, w′)
z,t,u
−→ (v, w),
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where v′, w′ and z, t, u are the (obviously unique) elements satisfying (3). Let
Eτ denote the set of all such edges with (v, w) ranging over W×̂W and define
labelings

L : E −→ L(Xτ ), L+ : E −→ L(Xτ ), L− : E −→ L(Xτ )

accordingly, associating z, t, u, respectively, to the edge in question. Finally,
we label any edge of Gτ by

L
′ : E −→ s = {+,−},

according to which of the alternatives in Definition 2.4 is met. We will need
to consider {+,−} as the group Z2, but find this notation more suggestive.

In the following definition, the essential part of a given graph is the
subgraph defined by deleting all vertices which do not have both incoming
and outgoing edges.

Definition 2.8 The graph Gτ,W is the essential part of (Vτ,W , Eτ,W) labeled
by the restrictions of the labelings.

Corollary 2.9 For every primitive and aperiodic substitution τ with an NS-
cover W, Gτ,W is a nonempty forest of cycles.

Proof: By construction, each vertex of Gτ has only one incoming edge. Since
Gτ is essential, each vertex has at least one, and thus exactly one, outgoing
edge. We conclude that Gτ is a forest of cycles. Since (Vτ , Eτ) defined above
has at least one cycle, so does Gτ . �

Example 2.10 For each substitution in Example 2.8 we state Gτ associated
to the NS-covers consisting of all words of a certain length, as found in
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Example 2.7. The graphs are decorated with L, L′.

τ1 : (21, 12)
3,+

--
(12, 13)

ε,+
mm

τ−1
1 : (321, 213)

21,+
--
(131, 213)

21,+
mm (132, 213)

1,−

��

υ2 : (ppp, ppq)
pp,− // (ppp, prr)

pp,−wwooooooooooo

(ppq, prr)

pp,+

hhPPPPPPPPPPPP

υ−1
2 : (pppq, pprr)

p,−

��

(pppp, pppq)

ppppp,−

��

τ3 : (a, b)

ε,+

��

τ4 : (1010, 1001)

0,−

��

τ−1
4 : (10, 01)

ε,−

��

Lemma 2.11 When W is an NS-cover for τ , then it is also an NS-cover
for τN for N ≥ 1. The underlying graph of GτN ,W is identical to the higher
power graph (Gτ,W)N , with edges representing paths on GτW of length N . It
is labeled by

L(e0, . . . , eN−1) = L(e0)τ(L(e1)) · · · τ
N−1(L(en−1)),

L
′(e0, . . . , eN−1) =

N−1∏

i=0

L
′(ei),

and

L±(e0, . . . , eN−1) = τN−1(LsN−1
(eN−1)) · · · τ(Ls1(e1))Ls0(e0),
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where si ∈ {+,−} is defined recursively by s0 = ± and si+1 = L
′(ei)si.

Proof: To see the first claim, note that when (v, w) ∈ W×̂W

τ 2(v) = τ(tv′z) = τ(t)τ(v′)τ(z) = τ(t)t′v′′z′τ(z),

τ 2(w) = τ(tw′z) = τ(u)τ(w′)τ(z) = τ(u)u′w′′z′τ(z),

where (v′, w′) and (v′′, w′′) are elements of W×̂W. This forms the basis of an
induction argument proving that W is an NS-cover for τN . The remaining
claims are straightforward. �

Proposition 2.12 There is an N such that GτN ,W is a forest of loops all
labeled + by L

′.

Proof: As seen in the proof of Corollary 2.9, Gτ,W is a forest of cycles. The
power m defined as the least common multiple of all the lengths of cycles
will lead to a graph with loops only. Then N = 2m will suffice. �

We shall say that N is a W-basic power of the primitive and aperiodic
substitution τ (relative to the NS-cover W) if GτN ,W meets the conditions of
Proposition 2.12. Our result above proves that every primitive and aperiodic
substitution with an NS-cover W has an W-basic power. Suppose further
that τ−1 has an NS-cover W ′. We say that N is an W,W ′-bibasic power if
N is W-basic for τ and W ′-basic for τ−1.

A class of left special words on bracket form can be read of the graph thus
associated to a W-basic substitution. Indeed, whenever (v, w) is a vertex in
the graph, e is the loop at that vertex, and whenever L(e) 6= ε we have that

τmN (v) = τN(m−1)(L+(e)) · · · τN(L+(e))L+(e)vL(e)τN (L(e)) · · · τN(m−1)(L(e))

τmN (w) = τN(m−1)(L−(e)) · · · τN (L−(e))L−(e)wL(e)τN (L(e)) · · · τN(m−1)(L(e))

are words growing to infinity in both directions, as L+(e) 6= ∅, L−(e) 6= ∅ by
definition of NS-covers. Thus both

[
N−1︷ ︸︸ ︷

ε, . . . , ε, L+(e)]−v.[L(e),
N−1︷ ︸︸ ︷

ε, . . . , ε]+

and

[

N−1︷ ︸︸ ︷
ε, . . . , ε, L−(e)]−w.[L(e),

N−1︷ ︸︸ ︷
ε, . . . , ε]+
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are elements of Xτ . Since v and w end in different letters, these elements are
left special. We shall denote the class of such left special words by SW (lat.
sinister). By considering opposite substitutions and reverting the output of
the procedure described above, we get a set of right special elements which
we denote by DW (lat. dexter).

Implementation remark 2.13 It is a theoretical convenience to work with
special words read off a graph associated to basic powers, but as a conse-
quence of our construction the words may also be read off graphs associated
to smaller powers, notably N = 1.

When the graph is no longer a forest of +-labeled loops, one proceeds as
follows. For each vertex (v, w) in Gτ,W , one follows outgoing edges

e0, . . . , en

until en ends at (v, w). One defines si ∈ {+,−} recursively by

s0 = +, si+1 = L
′(ei)si.

If sn = + one records

[Lsn
(en), . . . , Ls0(e0)]

−v.[L(e0), . . . , L(en)]+,

[L−sn
(en), . . . , L−s0(e0)]

−w.[L(e0), . . . , L(en)]+.

If sn = − one needs to consider

[L−sn
(en), . . . , L−s0(e0), Lsn

(en), . . . , Ls0(e0)]
−v.[L(e0), . . . , L(en)]+,

[Lsn
(en), . . . , Ls0(e0), L−sn

(en), . . . , L−s0(e0)]
−w.[L(e0), . . . , L(en)]+.

Obviously, we just get different – shorter – bracket representations of the
elements of SW this way.

Example 2.14 Reading off elements on the graphs found in Example 2.10
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we get

τ1 :SW2 = {[1, 13]−12.[ε, 3]+, [12, 12]−13.[ε, 3]+, [13, 1]−21.[3, ε]+, [12, 12]−12.[3, ε]+};

DW3 = {[12, 12]−.123[12, 23]+, [12, 12]−.312[13, 13]+,

[12, 12]−.131[23, 12]+, [1, 1]−.231[213, 312]+,

[1, 1]−.312[312, 213]+};

υ2 :SW3 = {[pqpppqp, pqpppqpppppp, pqp]−ppp.[pp, pp, pp]+,

[pqp, pqpppqp, pqpppqpppppp]−prr.[pp, pp, pp]+,

[pqpppqpppppp, pqp, pqpppqp]−ppq.[pp, pp, pp]+};

DW4 = {[ppppp, ppppp]−.qppp[qpp, pqpppqpppqpp]+,

[ppppp, ppppp]−.rrpp[pqpppqpppqpp, qpp]+,

[p, p]−.pppp[rrpppqpppqpppqpp, qpppqpppqpp]+,

[p, p]−.qppp[qpppqpppqpp, rrpppqpppqpppqpp]+};

τ3 :SW1 = ∅;

DW1 = ∅.

τ4 :SW4 = {[0, 0]−1010.[0, 0]+, [0, 0]−1001.[0, 0]+}

DW4 = ∅.

2.3 τ-periodic points

We call elements y ∈ X+ and x ∈ X− τ -periodic when τn(x) = x or τn(y) = y
for some n ≥ 1. Let a be the last letter of x and b the first letter of y. If
ab ∈ L(Xτ ), then because every finite subword of x.y is contained in τnk(ab)
for some k, we have that x.y ∈ Xτ . And if another τ -periodic word x′ ∈ X−

ends in a′ 6= a for which a′b ∈ L(Xτ ), then x.y and x′.y are left special
elements.

The class Sp of left special elements obtained this way is computable. For
a letter a ∈ a gives rise to a τ -periodic word precisely when τ n(a) begins or
ends in a, and there is a computable smallest integer N such that all possible
first and last letters are attained at some power n ≤ N . Furthermore, the
two-letter words of L(Xτ ) is computable.

Definition 2.15 For any NS-cover W we write

SpW = SW ∪ Sp.

13



The symmetric notation is applied to D as well.

We also note that such a left special element can be written on bracket
form. Indeed,

x.y = [
N−1︷ ︸︸ ︷

ε, . . . , ε, v]−a.b[w,
N−1︷ ︸︸ ︷

ε, . . . , ε]+

where τN(a) = va and τN(b) = bw. Note that v, w 6= ε by primitivity.

Example 2.16 Sp is empty for τ1, τ2, τ5, τ6, but

τ3 :Sp = {[ab]−a.a[ba]+, [baa]−b.a[ba]+};

Dp = {[ab]−a.a[ba]+, [ab]−a.b[aab]+};

τ4 :Dp = {[1]−0.0[10, ε]+, [1]−0.1[0, ε]+}.

3 The structure of special words

In the previous section we defined two classes of left special words which we
denoted by SW and Sp, respectively, and let SpW denote their union. In the
present section we are going to prove that SpW coincides with the set of left
special words.

3.1 Auxiliary results

The following is a one-sided substitute for Lemma 1.2. It is proved using
techniques from [10].

Lemma 3.1 For a primitive and aperiodic substitution τ , let x, y ∈ Xτ . If
τ(x) ∼r τ(y), then x ∼r y.

Proof: We first note, as in [10], that there exists M ∈ N such that

τM(a) = τM(b) ⇐⇒ τM−1(a) = τM−1(b)

for any a, b ∈ a. Since τ is primitive, we may choose M so large that an
element u ∈ Xτ has the property τM(u) = u. As a consequence of [10], cf. [5,
Corollary 12], we may choose x′, y′ ∈ Xτ such that

x ∼o τM−1(x′) y ∼o τM−1(y′).
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By assumption, τM (x′) ∼r τM (y′). We fix i, j ∈ Z such that τM (x′)[i+n] =
τM(y′)[j+n] for all n ∈ N0.

We define for each k ∈ N0

ak = |τM(x′
[0,k[)| − i bk = |τM(y′

[0,k[)| − j

and let A = {a0, a1, . . . }, B = {b0, b1, . . . }. Our first goal is to prove that
A ∩ [L,∞[= B ∩ [L,∞[ for an L ∈ N chosen according to Mossé’s two-
sided reckognizability property for τM . This property states that with eM

h =
|τM(u[0,h[)| and

u[eh−L,eh+L] = u[l−L,l+L]

then l ∈ {eM
k | k ∈ N0}, cf. [10, Définition 1.2]. Hence let k ∈ A, k ≥ L and

choose, using minimality, integers r, s such that

u[r,r+k+L+i] = x′
[0,k+L+i] u[s,s+k+L+j] = y′

[0,k+L+j].

Then

{h + eM
r + i | h ∈ {a0, . . . , ak+i+L}} = {eM

h | r ≤ h ≤ r + k + i + L}, (4)

and

{h + eM
s + j | h ∈ {b0, . . . , bk+j+L}} = {eM

h | s ≤ h ≤ s + k + j + L}. (5)

Choose by (4) h ∈ {r, . . . , r + k + i + L} such that eM
h = k + eM

r + i. Since

u[eM
h
−L,eM

h
+L] = u[eM

r +k+i−L,eM
r +k+i+L]

= τM (x′)[k+i−L,k+i+L]

= τM (y′)[k+j−L,k+j+L]

= u[eM
s +k+j−L,eM

s +k+j+L]

it follows by [10, Théoréme 3.1 bis] that eM
s + k + j = eM

h for some h, where
obviously s ≤ h ≤ s + k + j. Using (5) we get that k ∈ B, as required to
prove A ∩ [L,∞[⊆ B ∩ [L,∞[. The symmetric argument proves the other
inclusion.

Let

n = min{h ∈ N0 | ah ≥ L} m = min{h ∈ N0 | bh ≥ L}.
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By what we have already proved, {an, an+1, . . . } = {bm, bm+1, . . . }, so

τM (x′
[n+d]) = τM (x′)[an+d+i,an+d+1+i[

= τM (y′)[an+d+j,an+d+1+j[

= τM (y′)[bm+d+j,bm+d+1+j[

= τM (y′
[m+d])

for every d ∈ N0. By our initial assumption on M , also τM−1(x′
[n+d]) =

τM−1(y′
[m+d]). Consequently, x ∼r y, as desired. �

3.2 The main theorem

Lemma 3.2 Let τ be a primitive and aperiodic substitution with an NS-
cover W, and assume that N is a W-basic power for τ . Suppose that x1, x2 ∈
Xτ are elements of the form

xi = x̃ivi.x̃

where (v1, v2) ∈ W×̂W. Then there exist y1, y2 ∈ Xτ of the form

yi = ỹivi.ỹ

such that xi = σ−|L(e)|(τN (yi)), where e is the unique loop at (v1, v2) ∈ Gτ,W .

Proof: As a consequence of [10], cf. [5, Corollary 12], there exist wi ∈ Xτ ,
and integers mi with 0 ≤ mi < |τN((wi)[0])| such that

xi = σmi(τN (wi)).

We get that

(τN (w1))[m1,∞[ = (x1)[0,∞[ = (x2)[0,∞[ = (τN (w2))[m2,∞[

and since τN is also aperiodic and primitive, Lemma 3.1 applies to yield
ni ∈ Z such that

(w1)[n1,∞[ = (w2)[n2,∞[. (6)

We may and shall assume that among the pairs (n1, n2) ∈ Z
2 satisfying (6),

the sum n1 +n2 is minimal. For if (nj
1, n

j
2) satisfied (6) with nj

1 +nj
2 −→ −∞,

we could use the fact that there are no σ-periodic points in X+
τ to prove that
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nj
1 −nj

2 is constant and then conclude that w1 ∼o w2. This would lead to the
contradiction x1 ∼o x2.

Now by minimality

(w1)[n1−1] 6= (w2)[n2−1].

Choose `i ∈ Z and v1, v2 ∈ W such that

(wi)[`i,∞[ = viỹ

where ỹ = (w1)[n1,∞[ = (w2)[n2,∞[. Since we are working with a W-basic
power τN , we have

τN (viỹ) = tivizτ
N (ỹ),

and since this is a segment of xi, we get that z begins at index 0. Conse-
quently, (u1, u2) = (v1, v2). �

Theorem 3.3 Let τ be a primitive and aperiodic substitution with an NS-
cover W. If x ∈ Xτ is a left special word, then x ∈ SpW .

Proof: Choose a W-basic power τN . Let x1, x2 ∈ Xτ be given with (x1)[0,∞[ =
(x2)[0,∞[, but (x1)[−1] 6= (x2)[−1]. By definition of NS-covers, (xi) ∈ Cyl−(ui)
for some unique vi ∈ W. Note that after interchanging x1 and x2 if necessary,
we may assume that (v1, v2) ∈ W×̂W. Apply Lemma 3.2 to get yi with the
property stated there, and note that these elements are also left special and
satisfy that (yi) ∈ Cyl−(vi).

When z = ε, Lemma 3.2 can be iterated to get that

xi ∈
∞⋂

i=1

τ iN (Xτ ),

and this in turn implies that the xi are τ -periodic. When z 6= ε, Lemma 3.2
may be iterated to prove that

xi = [

N−1︷ ︸︸ ︷
ε, . . . , ε, ti]

−ui.[z,

N−1︷ ︸︸ ︷
ε, . . . , ε]+.

We note that this word lies in SW by construction. �

We note in passing that when L(e) 6= ε for all edges of GτN ,W the case
z = ε above does not occur and every left special word can be found in SW .
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4 Deciding tail and orbit equivalence

We have managed to generate all special words of an aperiodic and primitive
substitution. We have not yet, however, given an algorithm to decide which
special words are adjusted. Similarly, since our method may output two or
more elements which are orbit equivalent, or even identical, we have not yet
explained how to count the number of orbit classes of special words or to
compute the configuration graph. We solve these problems in the present
section.

4.1 A decidable relation

In this section we consider the following auxiliary relation, prove that it is
decidable on words on the form [v]−u.[w]+, and that it is closely related to
right tail equivalence.

Definition 4.1 Let τ be aperiodic and primitive, and consider x, y ∈ Xτ .
We write x ↪→ y when there exists n ∈ N0 such that x[0,∞[ = y[n,∞[.

We first see in Lemma 4.2 that it is decidable when [v]+ = ([w]+)[k,∞[ for
k up to a certain predefined integer, and then pass to general k in Lemma
4.3.

Lemma 4.2 Let τ be aperiodic and primitive, and let v, w ∈ L(Xτ )\{ε} and
0 ≤ k ≤ |w| be given. We have

[v]+ = ([w]+)[k,∞[

if and only if
v = w[k,|w|[τ(w[0,k[).

Proof: If the equality of words holds, we get

[v]+ = [w[k,|w|[τ(w[0,k[)]
+

= w[k,|w|[τ(w[0,k[)τ(w[k,|w|[τ(w[0,k[))τ
2(w[k,|w|[τ(w[0,k[)) · · ·

= w[k,|w|[τ(w)τ 2(w) · · · .
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In the other direction, first note that if [v]+ = [w]+[k,∞[ and 0 ≤ k ≤ |w|,

([v]+)[|v|+k,∞[ = τ([v]+)[k,∞[

= τ([w]+[k,∞[)[k,∞[

= τ([w]+)[k+|τ(w[0,k[)|,∞[

= [w]+[k+|τ(w[0,k[)|+|w|,∞[

= ([v]+)|τ(w[0,k[)|+|w|

using the assumption on k in the third step. Since otherwise a subword of v
would be σ-periodic, the two powers agree, so the length of v must coincide
with the length of w[k,|w|[τ(w[0,k[). Reading off letters from the left we get
equality of the words themselves. �

Lemma 4.3 Let τ be aperiodic and primitive, and consider v, w ∈ L(Xτ )\{ε}.
If [v]+ = ([w]+)[n,∞[ for some n ∈ N0 then

v = (τ i(w)τ i+1(w))[j,j+|v|[

where i ∈ N0 satisfies |τ i(w)| ≤ |v| ≤ |τ i+1(w)| and 0 ≤ j ≤ |τ i(w)|.

Proof: Write

n =

i−1∑

k=0

|τk(w)| + j

with j ∈ {0, . . . , |τ i(w)| − 1}. Then [w]+ = ([w]+)[n,∞[ = ([τ i(w)]+)[n+j,∞[,
and by Lemma 4.2 applied with τ i(w) in place of w we get that v is a subword
of τ i(w)τ i+1(w), and that

|v| = |τ i(w)| − j + |τ(τ i(w)[0,j[)|.

Since |τ(τ i(w)[0,j[)| ≥ j we have |v| ≥ |τ i(w)|, and since we have, for any
word u and any ` ≤ |u|,

` + |τ(u[`,|u|[)| ≥ |u|

we can apply this to u = τ i(w) and get that

|τ i+1(w)| = |τ(τ i(w)[0,j[)| + |τ(τ i(w)[j,|τ i(w)|[)|

= |v| − |τ i(w)| + j + |τ(τ i(w)[j,|τ i(w)|[)|

≥ |v|,

19



as desired. �

Note that when w and v are given in the lemma above, there is only a
finite number of i satisfying

|τ i(w)| ≤ |v| ≤ |τ i+1(w)|.

In fact, unless a letter a ∈ a exists with |τ(a)| = 1, i is uniquely determined.
Thus “↪→” becomes decidable for elements of Xτ given on the form [v]−u.[w]+.
To tie this in with right tail equivalence, we note:

Proposition 4.4 Let τ be aperiodic and primitive, and consider a finite set
B ⊆ Xτ which contains all left special words of Xτ . Then the equivalence
relation induced by ↪→ on B coincides with left tail equivalence.

Proof: Since the other implication is obvious, let x, x′ ∈ B and assume
that x ∼r x′ to find a series of elements in B, related by “↪→”, leading
from x to x′. More precisely, assume that x[m,∞[ = x′

[m′,∞[, where we may

and shall assume that the pair (m, m′) is chosen such that among pairs of
nonnegative integers with this property, m + m′ is least possible. If m = 0
or m′ = 0 we have x ↪→ x′ or x′ ↪→ x. If m, m′ > 0, we get by the minimality
assumption that x[m−1,∞[ 6= x′

[m′−1,∞[ holds, whence σm(x) is left special, and
thus x[m,∞[ = x′

[m′,∞[ = x′′
[0,∞[ with x′′ ∈ B. Consequently, x′′ ↪→ x and

x′′ ↪→ x′, proving the claim. �

Example 4.5 For τ4 our algorithm has produced a set

{[0, 0]−1010.[0, 0]+, [0, 0]−1001.[0, 0]+, [1]−0.0[10, ε]+, [1]−0.1[0, ε]+}

of special words which we enumerate x1, . . . , x4. Applying the results of the
present section to τ 2

4 we get that x1 ↪→ x2, x2 ↪→ x1, x3 ↪→ x1, x4 ↪→ x1, but
x3 6↪→ x4 and x4 6↪→ x3. This demonstrates that the symmetrized relation
induced by “↪→” is not an equivalence relation, and hence not the same as
right tail equivalence.

4.2 Deciding equivalences

Theorem 4.6 Let τ be a primitive and aperiodic substitution with an NS-
cover W, and with an NS-cover W ′ given for τ−1. On a finite set B with

SpW ∪ DpW ′ ⊆ B ⊆ Xτ
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of elements finitely presented on the form [v]−u.[w]+, right and left tail equiv-
alence, as well as orbit equivalence, is decidable. Furthermore, it is decidable
which special words are adjusted.

Proof: Let x = [v]−u.[w]+ and x′ = [v′]−u′.[w′]+ denote generic elements of
B. We have seen in Proposition 4.4 that right tail equivalence is generated by
a relation which is decidable by Lemma 4.3. By symmetry, the same is true
for left tail equivalence. To decide orbit equivalence, we first decide whether
the tail equivalences hold, noting that the algorithms described above provide
us with integers satisfying

([v]−)]−∞,l] = ([w′]−)]−∞,l′] ([w]+)[m,∞[ = ([w′]+)[m′,∞[.

Checking orbit equivalence is hence reduced to comparing finite segments
containing u and u′. The adjusted left special words are then those left
special words x with the property that y ↪→ x for each other left special
y ∈ B in the same orbit class. �

Example 4.7 Our algorithm leads to the following configuration data graphs:

τ1 : • • τ3 : • •

•

qqqqqqqqqqqqq

MMMMMMMMMMMMM • •

qqqqqqqqqqqqq •

• • τ4 : • •

τ2, υ2 : • • τ5, τ6 : • •

•

qqqqqqqqqqqqq • •

qqqqqqqqqqqqq •

•

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

• •

ppppppppppppp •

•

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

ppppppppppppp • •

NNNNNNNNNNNNN •

•

ppppppppppppp • •
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5 Conclusion

In conclusion, our algorithm is laid out as follows. We have implemented it
as a Java applet, see [4].

(a) Check that τ is aperiodic and primitive ([11],[15]).

(b) Decide whether τ is simplifiable or elementary ([14]).

(c) If τ is elementary, let υ = τ . If τ is simplifiable, compute a simplification
υ of τ ([14]).

(d) Compute an integer such that Wn is an NS-cover for υ (2.5).

(e) Compute graphs Gυ,Wn
and Gυ−1 ,Wn

and read off sets SW and DW ′ (2.8,
2.13).

(f) Compute sets Sp and Dp (2.15).

(g) Determine tail and orbit equivalence among elements in SpW∪DpW ′ (4.6).

(h) If τ 6= υ, transfer special elements back to the alphabet of τ (2.2).

Remark 5.1 Obviously steps (c) and (h) are redundant when τ is already
elementary. And as noted after the proof of Theorem 3.3, we may skip step
(f) and work directly with SW and DW ′ when L(e) 6= ε for all edges of GτN ,W

and G(τ−1)N ,W ′, when N is an W,W ′-bibasic power. This will always be the
case when τ is proper in the sense that there exists M ∈ N and letters r, l ∈ a

such that every word τM(a), a ∈ a begins in l and ends in r.

Example 5.2 Applying step (h) of the algorithm one gets that two of the
right special elements of τ4 are [00000]−.123000[12300, 012300012300012300]+

and [00000]−.2200[012300012300012300, 12300]+. This proves that τ4 has no
NS-cover, for since [00000]−1 and [00000]−2 are mapped to the same se-
quence under τ4, there are words of any length with this problematic behav-
ior.

Remark 5.3 Our paper [3] shows how finer data associated to special words
may be used to distinguish the flow classes of τ5 and τ6 even though their
configuration graphs coincide.
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