Symbolic Dynamics: A discourse into formal
languages

Torben Vaarby Laursen

September 28, 1999

1 Introduction

Let A denote an alphabet, i.e. a finite collection of symbols. The Kleene closure
of A is the collection of all finite words made up of symbols from .4. The Kleene
closure of A is denoted A*. A language L over A is some (possibly infinite)
subset L C A*.

We will be concerned with various kinds of languages and their properties.
Throughout the text we will try to draw parallels to Symbolic Dynamics where
appropriate. The main application is syntax analysis of computer languages.

2 Languages

For a given alphabet, 4, there are uncountably languages over A. To see this
note that 4* must be countable since we can arrange the words according to
length. Hence the set of languages over A, that is the powerset of A* must be
uncountable.

This means that we cannot ever characterise all forms of languages in a
positive manner. The best we can hope for is to define a large class of interesting
languages in a constructive way.

Remark 1 The Kleene closure of an alphabet is the same as the language of
the full shift, i.e. A* = B(A%).

2.1 Characterizations of languages

Languages are usually characterised in two ways: Grammars and Finite State
Machines (also called automata). Grammars were originally developed by Noah
Chomsky as a way of specifying structure in natural languages [2]. Around
1960 his ideas spread to computer science because they offered a natural way
of specifying the syntax of programming languages. In this paper we will only
concern ourselves with grammars, even though the theory of sofic shifts have
borrowed heavily from automata theory.

2.2 Grammars

Grammars offer a way of specifying the allowed words of a language. In partic-
ular we are interested in the set of syntactically correct Pascal (or some other
fixed, but arbitrary computer language) programs. A compiler is a computer
program which reads a source program in some computer language and trans-
lates it into object code which can be executed on a particular machine. How
does the compiler know whether the program it reads adheres to the rules of
the language, i.e. is syntactically correct? Grammars provides a framework for
answering such questions.
In Pascal one can assign values to variables using the following syntax:

X := 2+48;

Here the variable x is assigned the value 10. In a more abstract way we can
define an assignment as

Assignment — Identifier := Expression ;

)

where the — denotes “can take the form” and Identifier and Expression have

definitions of their own. For instance

Identifier — Letter String
Letter —

Letter — a

Letter — Z

String — €

String — Letter String
String — Digit String

That is, a identifier is a string of length at least one which begins with either a
letter or the underscore character and otherwise can be made up of digits and
letters. This also illustrates the use of grammars as a precise way of specifying
syntax. The description in natural language of an identifier is not entirely clear
(it might not even be correct).

1=, ;, a, etc. are called terminals whereas Identifier, Expression, etc. are
called Nonterminals. A line such as

Assignment —» Identifier := Expression ;

is called a production rule. We are now ready to give a formal definition of a
grammar.

Definition 2 A grammar G is a tuple (S, N, T, P) where S € N and NNT = {.
S is the start symbol, N is a set of nonterminals, T is a set of terminal symbols
and P is a set of production rules which takes the following form

a—f3 ao,fe(NUT), |a|>1.

Each of the sets N, T, P has to be finite.

Remark 3 We can think of T" as an alphabet. T is often a set of tokens, that is a
set of atoms with regards to meaning. For example, in programming languages,
the symbols of the alphabet are the ascii characters, these form into tokens,
such as the reserved words if and else for instance. In symbolic dynamics we
have a similar construction in the higher block shifts where the symbols in the
higher block alphabet are made up of strings of the symbols in the underlying
alphabet. The similarity is very shallow though, since tokens can have different
length and do not have to overlap progressively.

2.3 Language of a grammar

The allowed words of a grammar can be found by starting with the startsymbol
and use the production rules repeatedly until one ends up with a string consisting
only of terminal symbols. Note that we naturally insist that the left hand side
of a production rule is nonempty. Let = be the relation on (N UT)* defined by

vad = (36 whenever « — € P and v,0 € (NUT)*
Let =* denote the reflexive and transitive closure of =, that is

v =Ty
v =>*pif y=>d§and § =* 7

Definition 4 The language L(G) of a grammar G is the set

L) = {weT" | S =" w).

3 Types of languages

We are interested in two questions. Given a language L can we find a grammar
G which generates L, that is L = L(G)? And for a given grammar G are we able
to decide whether a word w € L(G)? According to the introduction the answer
to the first question is no. The set of languages which can be generated by a
grammar is called type 0 languages, but since grammars are finite constructions,
there are only countable many type 0 languages.

The answer to the second question is also somewhat depressingly negative. It
is in general undecidable whether a word can be generated by a type 0 grammar.
That means we cannot necessarily make a compiler for a type 0 language, since
we are not in general able to discern between correct and incorrect programs.

If we place restrictions on the form production rules may take, things are
looking a little better.

We define type 1 languages to be the languages generated by grammars
where the production rules all have the form

a—pB a,Be(NUT), |8 >l > 1.

We note that this means we cannot generate the empty string, since the right
hand side of a production has to be longer than the left hand side, which is
non-empty. To allow the empty string as a word in the language we can add
the production rule

S —e

along with the condition that the startsymbol S must not occur on any right
hand sides of production rules.

Let w € T* with |w| = n. Then it can be shown that deciding whether
w € L(G) in the worst case takes O(2") time.

While this is clearly computable it is far too slow to have any use in practice.
Hence we are looking for further restrictions on the grammar. It turns out that
if we restrict ourselves to having only nonterminals on the left hand side of
productions we get what we need.

Definition 5 A conteztfree grammar is a grammar where the productions have
the following form:

a—f3 a€N, Be(NUT)"

A contextfree language is one generated by a contextfree grammar.

Example 6 The language {a™b" | n € N} over {a,b} is contextfree since it is
generated by the grammar

S — N

N — ab

N — aNb
Note that we do not allow the empty string, hence the introduction of the
nonterminal N.

Remark 7 Contextfree languages are also called type 2 languages. Technically
we should not allow empty right hand sides, but it can be shown [3] that all it
does is allowing the empty string as part of the language.

It takes O(n‘/g) time to determine whether a word belongs to a contextfree
language, which still is a bit slow. If we further restrict the production rules we
can achieve linear time:

Definition 8 A regular language is one generated by a grammar where the
productions only can have the following two forms:

a — wp
a — w

where o, 8 € N and w € T™*.

Unfortunately, this class is too restrictive to describe the constructs of most
programming languages. As an example regular languages only have finite mem-
ory. That means we cannot describe arbitrarily deep nesting (for instance bal-
anced parentheses).

But how does one go about determining whether a given language is con-
textfree or regular?

3.1 Characterisation of regular and contextfree languages

Theorem 9 Let L be a regular language. There exists n € N such that if z € L
with |z| > n then z has the form wvw, where |uv| < n and |v| > 1. Furthermore
wolw € L for all i > 0.

For a proof see [3]. That means that all “long” words in a regular language
contains a substring which can be repeated arbitrarily many times. Hence if
one wants to show that a language is not regular one assumes that it has the
property described in the theorem. Then for some long word z one shows that
regardless of the form z = wvw has, uv'w for some i violates the rules of the
grammar. For instance it can be shown that the language {a™b" | n € N} over
{a, b} is not regular in this manner.

Theorem 10 Let L be a contextfree language. There exists n € N such that if
z € L with |z| > n then z has the form wvwzy where lvwz| < n and |vz| > 1.
Furthermore wv'wx'y € L for all i > 0.

That is, words longer than a certain fixed length contains two parts which can
be repeated arbitrarily (but equally) many times. Note that one of the parts
may be empty.

The theorem can be used to show that the language {ww | w € {a,b}*} is
not contextfree.

4 Further reading

Chomsky’s original account can be found in [2]. Today it is mostly of histor-
ical interest. The use of formal languages and automata in compiler design is
splendidly covered by the book [1]. The style is informal, but thorough. A
more formal account of the issues touched upon in this paper (but without any
references to symbolic dynamics) can be found in [3]. The interplay between

languages and various models of computation (i.e. the automata) is the main
theme of the book.

References

[1] Alfred V. Aho, Revi Sethi and Jeffrey D. Ullman, Compilers: Principles,
Techniques, and Tools, Addison-Wesley 1986.

[2] Noah Chomsky, Three Models for the description of Language, IRE Trans-
actions on Information Theory, 2:3 (1956), pp. 118-124.

[3] J. Hopcroft and J Ullman, Introduction to Automata Theory, Languages
and Computation, Addison-Wesley 1979.

