Overview of Shape Theory

Alex Chigogidze

College of Staten Island, CUNY

August 27, 2012

• We now consider only metrizable compact spaces. For each such X there exists an ANE-sequence associated with it. In other words, there exists an inverse sequence $S_X = \{X_n, p_n^{n+1}, \omega\}$ such that $X = \lim S_X$.

- ▶ We now consider only metrizable compact spaces. For each such X there exists an ANE-sequence associated with it. In other words, there exists an inverse sequence $S_X = \{X_n, p_n^{n+1}, \omega\}$ such that $X = \lim S_X$.
- To see this embed X into the Hilbert cube \mathbb{I}^{ω} , fix a metric d on it and for each n choose a closed ANE-neighborhood X_n of X such that $d(x,X)<\frac{1}{n}$ for every point $x\in X_n$. We may assume that the sequence of X_n 's in decreeasing. Then this sequence together with inclusion maps forms an ANE-sequence.

- We now consider only metrizable compact spaces. For each such X there exists an ANE-sequence associated with it. In other words, there exists an inverse sequence $S_X = \{X_n, p_n^{n+1}, \omega\}$ such that $X = \lim S_X$.
- ▶ To see this embed X into the Hilbert cube \mathbb{I}^{ω} , fix a metric d on it and for each n choose a closed ANE-neighborhood X_n of X such that $d(x,X)<\frac{1}{n}$ for every point $x\in X_n$. We may assume that the sequence of X_n 's in decreeasing. Then this sequence together with inclusion maps forms an ANE-sequence.
- More sophisticated observation (Freudenthal): Any (n-dimensional) metrizable compactum is the limit of an inverse sequence consisting of (n-dimensional) ANE-compacta (even polyhedra) with surjective projections.

▶ Freudenthal's theorem is not valid for non-metrizable compact spaces. There exists a 1-dimensional compact space that cannot be represented as the limit space of an inverse spectrum consisting of metrizable ANE-compacta and surjective limit projections. Any compactum with 1 = dim X < ind X will serve as an example.

▶ By a morphism

$$\alpha \colon \mathcal{S}_{X} = \{X_{n}, p_{n}^{n+1}, \omega\} \to \mathcal{S}_{Y} = \{Y_{n}, q_{n}^{n+1}, \omega\}$$

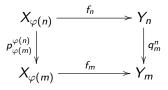
between two ANE-sequences we understand a system $(\varphi, \{f_n\})$, where $\varphi \colon \omega \to \omega$ is an increasing function and maps $f_n \colon X_{\varphi(n)} \to Y_n$ are such that $f_m \circ p_{\varphi(m)}^{\varphi(n)} \simeq q_m^n \circ f_n$ for every $m \le n$

By a morphism

$$\alpha \colon \mathcal{S}_{X} = \{X_{n}, p_{n}^{n+1}, \omega\} \to \mathcal{S}_{Y} = \{Y_{n}, q_{n}^{n+1}, \omega\}$$

between two ANE-sequences we understand a system $(\varphi, \{f_n\})$, where $\varphi \colon \omega \to \omega$ is an increasing function and maps $f_n \colon X_{\varphi(n)} \to Y_n$ are such that $f_m \circ p_{\varphi(m)}^{\varphi(n)} \simeq q_m^n \circ f_n$ for every $m \le n$

Here is the diagram (commutes homotopically!)



Suppose that we have two morphisms

$$\alpha = (\varphi, \{f_n\}) \colon \mathcal{S}_X = \{X_n, p_n^{n+1}, \omega\} \to \mathcal{S}_Y = \{Y_n, q_n^{n+1}, \omega\}$$

and

$$\beta = (\psi, \{g_n\}) \colon \mathcal{S}_X = \{X_n, p_n^{n+1}, \omega\} \to \mathcal{S}_Y = \{Y_n, q_n^{n+1}, \omega\}$$

between two ANE-sequences.

Suppose that we have two morphisms

$$\alpha = (\varphi, \{f_n\}) \colon \mathcal{S}_X = \{X_n, p_n^{n+1}, \omega\} \to \mathcal{S}_Y = \{Y_n, q_n^{n+1}, \omega\}$$

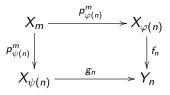
and

$$\beta = (\psi, \{g_n\}) \colon \mathcal{S}_X = \{X_n, p_n^{n+1}, \omega\} \to \mathcal{S}_Y = \{Y_n, q_n^{n+1}, \omega\}$$

between two ANE-sequences.

Let us introduce a homotopy relation between α and β . We say that $\alpha \simeq \beta$ if for each n there exists m such that $m \geq \varphi(n), \psi(n)$ and $f_n \circ p_{\varphi(n)}^m \simeq g_n \circ p_{\psi(n)}^m$.

Here is the diagram (commutes homotopically!)



▶ Suppose we have two morphisms $\alpha \colon \mathcal{S}_X \to \mathcal{S}_Y$ and $\beta \colon \mathcal{S}_Y \to \mathcal{S}_X$. We say that $\mathcal{S}_X \simeq \mathcal{S}_Y$ if $\alpha \circ \beta \simeq \mathrm{id}_{\mathcal{S}_Y}$ and $\beta \circ \alpha \simeq \mathrm{id}_{\mathcal{S}_X}$

- ▶ Suppose we have two morphisms $\alpha \colon \mathcal{S}_X \to \mathcal{S}_Y$ and $\beta \colon \mathcal{S}_Y \to \mathcal{S}_X$. We say that $\mathcal{S}_X \simeq \mathcal{S}_Y$ if $\alpha \circ \beta \simeq \mathrm{id}_{\mathcal{S}_Y}$ and $\beta \circ \alpha \simeq \mathrm{id}_{\mathcal{S}_X}$
- ▶ Turns out that the relation \simeq is an equivalence relation for ANE-sequences.

- ▶ Suppose we have two morphisms $\alpha \colon \mathcal{S}_X \to \mathcal{S}_Y$ and $\beta \colon \mathcal{S}_Y \to \mathcal{S}_X$. We say that $\mathcal{S}_X \simeq \mathcal{S}_Y$ if $\alpha \circ \beta \simeq \mathrm{id}_{\mathcal{S}_Y}$ and $\beta \circ \alpha \simeq \mathrm{id}_{\mathcal{S}_X}$
- ► Turns out that the relation ≃ is an equivalence relation for ANE-sequences.
- Two ANE-sequences associated with the same compactum are homotopy equivalent.

- ▶ Suppose we have two morphisms $\alpha \colon \mathcal{S}_X \to \mathcal{S}_Y$ and $\beta \colon \mathcal{S}_Y \to \mathcal{S}_X$. We say that $\mathcal{S}_X \simeq \mathcal{S}_Y$ if $\alpha \circ \beta \simeq \mathrm{id}_{\mathcal{S}_Y}$ and $\beta \circ \alpha \simeq \mathrm{id}_{\mathcal{S}_X}$
- ▶ Turns out that the relation \simeq is an equivalence relation for ANE-sequences.
- Two ANE-sequences associated with the same compactum are homotopy equivalent.
- ▶ We say that two compact spaces X and Y have the same shape (notation: Sh(X) = Sh(Y)) if X and Y have homotopy equivalent ANE- sequences associated with them.

- ▶ Suppose we have two morphisms $\alpha \colon \mathcal{S}_X \to \mathcal{S}_Y$ and $\beta \colon \mathcal{S}_Y \to \mathcal{S}_X$. We say that $\mathcal{S}_X \simeq \mathcal{S}_Y$ if $\alpha \circ \beta \simeq \mathrm{id}_{\mathcal{S}_Y}$ and $\beta \circ \alpha \simeq \mathrm{id}_{\mathcal{S}_X}$
- ▶ Turns out that the relation \simeq is an equivalence relation for ANE-sequences.
- Two ANE-sequences associated with the same compactum are homotopy equivalent.
- ▶ We say that two compact spaces X and Y have the same shape (notation: Sh(X) = Sh(Y)) if X and Y have homotopy equivalent ANE- sequences associated with them.
- Note that choice of ANE-sequences is irrelevant.

- ▶ Suppose A and B are compact subsets of the Hilbert cube \mathbb{I}^{ω} . Translating above definitions to this situation by a shape morphism from A to B we mean a sequence of maps $\mathbf{f} = \{f_n \colon \mathbb{I}^{\omega} \to \mathbb{I}^{\omega}\}$ with the following properties:
 - (*) for each neighborhood V of B there exists a neighborhood U of A and an integer N such that for each $n \geq N$, $f_n(U) \subset V$ and $f_n|U \simeq f_{n+1}|U$ in V.

- ▶ Suppose A and B are compact subsets of the Hilbert cube \mathbb{I}^{ω} . Translating above definitions to this situation by a shape morphism from A to B we mean a sequence of maps $\mathbf{f} = \{f_n \colon \mathbb{I}^{\omega} \to \mathbb{I}^{\omega}\}$ with the following properties:
 - (*) for each neighborhood V of B there exists a neighborhood U of A and an integer N such that for each $n \geq N$, $f_n(U) \subset V$ and $f_n|U \simeq f_{n+1}|U$ in V.
- ▶ If $\mathbf{f} = \{f_n\}$ and $\mathbf{g} = \{g_n\}$ are two shape morphisms from A to B then we say that \mathbf{f} and \mathbf{g} are homotopic if for any neighborhood V of B there exist a neighborhood U of A and an integer N such that for each $n \geq N$ we have $f_n | U \simeq g_n | U$ in V

Let us note that if we have two morphisms $\mathbf{f}: A \to B$ and $\mathbf{g}: B \to A$ such that $\mathbf{gf} \simeq \mathrm{id}_A$ and $\mathbf{fg} \simeq \mathrm{id}_B$, then Sh(A) = Sh(B) as defined above (routine verification - pen and paper).

- Let us note that if we have two morphisms $\mathbf{f}: A \to B$ and $\mathbf{g}: B \to A$ such that $\mathbf{gf} \simeq \mathrm{id}_A$ and $\mathbf{fg} \simeq \mathrm{id}_B$, then Sh(A) = Sh(B) as defined above (routine verification pen and paper).
- ▶ This definition does not depend on the given embedding of A (or B) into \mathbb{I}^{ω} .

- Let us note that if we have two morphisms $\mathbf{f}: A \to B$ and $\mathbf{g}: B \to A$ such that $\mathbf{gf} \simeq \mathrm{id}_A$ and $\mathbf{fg} \simeq \mathrm{id}_B$, then Sh(A) = Sh(B) as defined above (routine verification pen and paper).
- ▶ This definition does not depend on the given embedding of A (or B) into \mathbb{I}^{ω} .
- ▶ A good and simple exercise: if A and B are ANE's then Sh(A) = Sh(B) if and only if $A \simeq B$.