Alex Chigogidze

College of Staten Island, CUNY

August 27, 2012

Categorical Definition of Shape

- Let us define the category SHAPE.
 - (i) Objects are compact spaces.
 - (ii) Morphism $\alpha \colon X \to Y$ is defined as a map

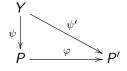
$$\alpha \colon \bigcup \{ [Y, P] \colon P \in ANE \} \to \bigcup \{ [X, P] \colon P \in ANE \}$$

satisfying the following conditions:

- (a) If P is an ANE compactum, then $\alpha([Y, P]) \subset [X, P]$.
- (b) If P, P' are compact ANE's and $\psi \in [Y, P]$, $\psi' \in [Y, P']$ and $\varphi \in [P, P']$ are such that $\varphi \circ \psi \simeq \psi'$, then $\varphi \circ \alpha(\psi) \simeq \alpha(\psi')$.

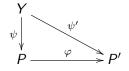
Categorical Definition of Shape

Here is condition (b) in terms of diagrams: Homotopy commutativity of the following diagram

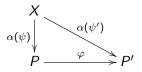


Categorical Definition of Shape

Here is condition (b) in terms of diagrams:
 Homotopy commutativity of the following diagram



homotopy commutativity of the diagram



- ▶ Chapman's Complement Theorem: Let A and B are Z-sets in the Hilbert cube \mathbb{I}^{ω} . Then the following conditions are equivalent:
 - (i) Sh(A) = Sh(B).
 - (b) $\mathbb{I}^{\omega} \setminus A$ is homeomorphic to $\mathbb{I}^{\omega} \setminus B$.

- ▶ Chapman's Complement Theorem: Let A and B are Z-sets in the Hilbert cube \mathbb{I}^{ω} . Then the following conditions are equivalent:
 - (i) Sh(A) = Sh(B).
 - (b) $\mathbb{I}^{\omega} \setminus A$ is homeomorphic to $\mathbb{I}^{\omega} \setminus B$.
- Proof is complicated and involves full machinery of the infinite-dimensional topology as presented in previous talks.

- ▶ Chapman's Complement Theorem: Let A and B are Z-sets in the Hilbert cube \mathbb{I}^{ω} . Then the following conditions are equivalent:
 - (i) Sh(A) = Sh(B).
 - (b) $\mathbb{I}^{\omega} \setminus A$ is homeomorphic to $\mathbb{I}^{\omega} \setminus B$.
- Proof is complicated and involves full machinery of the infinite-dimensional topology as presented in previous talks.
- Let us at least discuss some key ideas of the proof.

Let us see how existence of a homeomorphism $h \colon \mathbb{I}^{\omega} \setminus A \to \mathbb{I}^{\omega} \setminus B$ defines a shape morphism from A to B. Recall that A is a Z-set in \mathbb{I}^{ω} which guarantees that there is a homotopy $H \colon \mathbb{I}^{\omega} \times [0,1] \to \mathbb{I}^{\omega}$ such that:

- Let us see how existence of a homeomorphism
 h: I^ω \ A → I^ω \ B defines a shape morphism from A to B.
 Recall that A is a Z-set in I^ω which guarantees that there is a homotopy H: I^ω × [0,1] → I^ω such that:
- (*) H(x,0) = x for any $x \in \mathbb{I}^{\omega}$ and

- Let us see how existence of a homeomorphism
 h: I^ω \ A → I^ω \ B defines a shape morphism from A to B.
 Recall that A is a Z-set in I^ω which guarantees that there is a homotopy H: I^ω × [0,1] → I^ω such that:
- (*) H(x,0) = x for any $x \in \mathbb{I}^{\omega}$ and

- Let us see how existence of a homeomorphism
 h: I^ω \ A → I^ω \ B defines a shape morphism from A to B.
 Recall that A is a Z-set in I^ω which guarantees that there is a homotopy H: I^ω × [0,1] → I^ω such that:
- (*) H(x,0) = x for any $x \in \mathbb{I}^{\omega}$ and
- $\blacktriangleright \ (\star\star) \ \ H(\mathbb{I}^{\omega},(0,1]) \subset \mathbb{I}^{\omega} \setminus A.$
- ▶ This homotopy defines a sequence $\alpha = \{f_n\}$ of maps of \mathbb{I}^{ω} into itself as follows:

$$f_n(x) = h \circ F(x, \frac{1}{n}), \quad x \in \mathbb{I}^{\omega},$$

which turns out is a shape morphism $\alpha: A \to B$.

▶ Claim. For each neighborhood G of A in \mathbb{I}^{ω} there exist a neighborhood U of A in \mathbb{I}^{ω} and a number $t_0 \in (0,1]$ such that $H(U,[0,t_0]) \subset G$.

- ▶ Claim. For each neighborhood G of A in \mathbb{I}^{ω} there exist a neighborhood U of A in \mathbb{I}^{ω} and a number $t_0 \in (0,1]$ such that $H(U,[0,t_0]) \subset G$.
- ▶ Consider the set $H^{-1}(G)$. This is a neighborhood of $A \times \{0\}$ in $\mathbb{I}^{\omega} \times [0,1]$ (by (*)).

- ▶ Claim. For each neighborhood G of A in \mathbb{I}^{ω} there exist a neighborhood U of A in \mathbb{I}^{ω} and a number $t_0 \in (0,1]$ such that $H(U,[0,t_0]) \subset G$.
- ▶ Consider the set $H^{-1}(G)$. This is a neighborhood of $A \times \{0\}$ in $\mathbb{I}^{\omega} \times [0,1]$ (by (*)).
- ▶ Choose a neighborhood U of A in \mathbb{I}^{ω} and a number $t_0 \in (0,1]$ (i.e. a $[0,t_0)$ is a neighborhood of $\{0\}$ in [0,1]) such that

$$U \times [0, t_0] \subset H^{-1}(G)$$

- ▶ Claim. For each neighborhood G of A in \mathbb{I}^{ω} there exist a neighborhood U of A in \mathbb{I}^{ω} and a number $t_0 \in (0,1]$ such that $H(U,[0,t_0]) \subset G$.
- ▶ Consider the set $H^{-1}(G)$. This is a neighborhood of $A \times \{0\}$ in $\mathbb{I}^{\omega} \times [0,1]$ (by (*)).
- ▶ Choose a neighborhood U of A in \mathbb{I}^{ω} and a number $t_0 \in (0,1]$ (i.e. a $[0,t_0)$ is a neighborhood of $\{0\}$ in [0,1]) such that

$$U \times [0, t_0] \subset H^{-1}(G)$$

Clearly

$$H(U\times [0,t_0])\subset H(H^{-1}(G))=G.$$

Let us now go back to the homeomorphism $h \colon \mathbb{I}^{\omega} \setminus A \to \mathbb{I}^{\omega} \setminus B$. Take a neighborhood V of B in \mathbb{I}^{ω} .

- Let us now go back to the homeomorphism $h \colon \mathbb{I}^{\omega} \setminus A \to \mathbb{I}^{\omega} \setminus B$. Take a neighborhood V of B in \mathbb{I}^{ω} .
- ▶ Then $H^{-1}(V \setminus B) \cup A$ is a neighborhood of A in \mathbb{I}^{ω} .

- Let us now go back to the homeomorphism $h \colon \mathbb{I}^{\omega} \setminus A \to \mathbb{I}^{\omega} \setminus B$. Take a neighborhood V of B in \mathbb{I}^{ω} .
- ▶ Then $H^{-1}(V \setminus B) \cup A$ is a neighborhood of A in \mathbb{I}^{ω} .
- ▶ By Claim, there exist a neighborhood U of A in \mathbb{I}^{ω} and a number $t_0 \in (0,1]$ such that $H(U,[0,t_0]) \subset H^{-1}(V \setminus B) \cup A$.

- Let us now go back to the homeomorphism
 h: I^ω \ A → I^ω \ B. Take a neighborhood V of B in I^ω.
- ▶ Then $H^{-1}(V \setminus B) \cup A$ is a neighborhood of A in \mathbb{I}^{ω} .
- ▶ By Claim, there exist a neighborhood U of A in \mathbb{I}^{ω} and a number $t_0 \in (0,1]$ such that $H(U,[0,t_0]) \subset H^{-1}(V \setminus B) \cup A$.
- ▶ Take N such that $\frac{1}{N} < t_0$, then $f_n | U \simeq f_{n+1} | U$ in V for any $n \ge N$.

▶ This shows that the sequence $\alpha = \{f_n\}$, where

$$f_n(x) = h \circ F(x, \frac{1}{n}), \quad x \in \mathbb{I}^{\omega},$$

indeed defines a shape morphism $\alpha \colon A \to B$.

▶ This shows that the sequence $\alpha = \{f_n\}$, where

$$f_n(x) = h \circ F(x, \frac{1}{n}), \quad x \in \mathbb{I}^{\omega},$$

indeed defines a shape morphism $\alpha \colon A \to B$.

Similarly,

$$g_n(x) = h^{-1} \circ G(x, \frac{1}{n}), \quad x \in \mathbb{I}^{\omega},$$

where $G: \mathbb{I}^\omega \times [0,1] \to \mathbb{I}^\omega$ is a homotopy associated with the Z-set B, defines a shape morphism $\beta\colon B \to A$.

▶ Why $\beta \alpha \simeq \mathrm{id}_A$?

- ▶ Why $\beta \alpha \simeq \mathrm{id}_A$?
- ▶ For a neighborhood U of A we need to find a neighborhood V of A and an integer N such that $g_n \circ f_n \simeq \mathrm{id}_V$ in U for each $n \geq N$.

- ▶ Why $\beta \alpha \simeq \mathrm{id}_A$?
- ▶ For a neighborhood U of A we need to find a neighborhood V of A and an integer N such that $g_n \circ f_n \simeq \mathrm{id}_V$ in U for each $n \geq N$.
- ▶ Choose a neighborhood W of B and $\epsilon_1 > 0$ such that $h^{-1}(W \setminus B) \subset U$ and $h^{-1}G_t(W) \subset U$ for each t with $0 < t \le \epsilon_1$.

- ▶ Why $\beta \alpha \simeq \mathrm{id}_A$?
- ▶ For a neighborhood U of A we need to find a neighborhood V of A and an integer N such that $g_n \circ f_n \simeq \mathrm{id}_V$ in U for each $n \geq N$.
- ▶ Choose a neighborhood W of B and $\epsilon_1 > 0$ such that $h^{-1}(W \setminus B) \subset U$ and $h^{-1}G_t(W) \subset U$ for each t with $0 < t \le \epsilon_1$.
- Also choose a neighborhood $V \subset U$ of A and ϵ_2 , $0 < \epsilon_2 \le \epsilon_1$ such that $hF_t(V) \subset W$ for each t with $0 < t \le \epsilon_2$.

▶ Then for $n \ge \frac{1}{\epsilon_2}$ we have

$$g_n f_n | V = h^{-1} G_{\frac{1}{n}} h F_{\frac{1}{n}} | V \simeq h^{-1} h F_{\frac{1}{n}} | V = F_{\frac{1}{n}} | V \simeq \mathrm{id}_V$$
 in U

▶ Then for $n \ge \frac{1}{\epsilon_2}$ we have

$$g_n f_n | V = h^{-1} G_{\frac{1}{n}} h F_{\frac{1}{n}} | V \simeq h^{-1} h F_{\frac{1}{n}} | V = F_{\frac{1}{n}} | V \simeq \operatorname{id}_V$$
 in U

▶ The first homotopy comes from homotopy $G_{\frac{1}{n}}|W$ to id_W via $G_t|W$, $0 \leq t \leq \frac{1}{n}$.

▶ Then for $n \ge \frac{1}{\epsilon_2}$ we have

$$g_n f_n | V = h^{-1} G_{\frac{1}{n}} h F_{\frac{1}{n}} | V \simeq h^{-1} h F_{\frac{1}{n}} | V = F_{\frac{1}{n}} | V \simeq \mathrm{id}_V$$
 in U

- ▶ The first homotopy comes from homotopy $G_{\frac{1}{n}}|W$ to id_W via $G_t|W$, $0 \leq t \leq \frac{1}{n}$.
- ▶ The second homotopy comes from homotopy $F_{\frac{1}{n}}|V|$ to id $_V$ via $F_t|V|$, $0 \le t \le \frac{1}{n}$.

How to construct a homeomorphism from a shape isomorphism?

- How to construct a homeomorphism from a shape isomorphism?
- ▶ This is a difficult part of Chapman's Theorem. Proof is complicated and uses facts we discussed yesterday Z-set unkniotting theorem for \mathbb{I}^{ω} -manifolds, etc.