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1. INTRODUCTION

The motivation for the present work comes from a study of initial-
boundary value problems for the Navier-Stokes equations [G-S1, 2, 3].
These problems (or rather, their linearized versions) are degenerate
parabolic, and we had found a method to get rid of the degeneracy by
carrying the problems over to pseudo-differential non-degenerate parabolic
problems, where the results of the book [Gr2] could be used. However,
the solvability statements for parabolic problems formulated in [Gr2]
could be made more interesting and useful by some extra developments, in
particular a deeper analysis of the necessary compatibility conditions and
an inclusion of all values of the Sobolev space exponents, also those that
have an exceptional role in boundary value problems.

Since this study has an interest not only for the Navier—Stokes equa-
tions, but also more generally (e.g., whenever a reduction of a differential
operator problem leads to a parabolic pseudo-differential boundary value
problem), we decided to present it in a separate article.

We consider a problem

(i) d,u+Pou+Gu=f for (x,1)eQ=Rx1,
(ii) Tu=¢ for (x,t)eS=IxI, (L.1)

(i) ul,_¢o=uq for xeg,
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where Q is a smooth bounded open set in R” with boundary I, and [ is
an interval I=]0, b[, b< +o0. With notation as in Boutet de Monvel
[BM] (cf. also [Gr2]), P is a pseudo-differential operator on R” of order
d >0 having the transmission property at I, P, is its restriction to £, and
G is a singular Green operator of order and class <d:

G= Y Ky+G. (1.2)

0 j<d

Here y,u=(—i¢/0n)’ u|r, the K, are Poisson operators, and G’ is a term
that is well-defined on L2 The operators act in a C™ vector bundle E over
Q. T is a normal system of trace operators T, of orders j <d. We denote
P,+G=M. (2 could also be taken as an n-dimensional manifold with
boundary, as described in [BM ], [Gr2].) The pseudo-differential formula-
tion contains the usual parabolic differential operator problems as a special
case.
The associated L’-realization A4, defined by

Au=(Po+G)u, D(A)={ueHYQ, E)|Tu=0}, (1.3)

is also studied.

Our results contain a complete description of the necessary and sufficient
compatibility conditions on the data {f, ¢, u,} for solutions to exist in
specific spaces.

Here is an overview of the contents:

In Section 2, we recall the properties of Sobolev-Slobodetskii spaces that
we shall use, in particular the anisotropic spaces H"* of order r =0 in the
space variable x and of order s >0 in the time variable . The spaces H"""
over Q and S are particularly relevant for the problem (1.1).

In Section 3, we briefly recall the definition of the various pseudo-
differential boundary operators P,, G, K, T, and S entering in the theory,
and we establish their mapping properties in relation to the anisotropic
spaces H"".

Section 4 contains the definition of parabolicity (where, in particular, 4
is an even integer), and recalls the fundamental result of [Gr2] on the
existence and estimates for the resolvent R; = (A4 —4) '. We supply this
with a theorem on how to modify 4 by a finite rank ps.d.o. of order —oc
to get an operator with the spectrum lying in an arbitrary right half
plane {Re A>a}.

Section 5 gives a complete discussion of the compatibility conditions
needed to find a function ue H™* with given initial data ¢'u|,_, on
2 x {0} and boundary data T,u on S; they have to match at the “corner”
I'x{0}. We here allow non-local (pseudo-differential, normal) trace
operators T, extending results of Grisvard [Gri]; and for special values of
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r and s we give a new integral compatibility condition, equivalent in a
certain sense to that of [Gri], but invariantly formulated. Finally, we
extend the interpolation theorem of Grisvard to non-local trace operators,
showing that

[H4URQ, E), L2, E)],=H "4Q, E) for 6e]0,1[, (14)

where H’ is the space of functions u e H* such that those of the conditions
T,u=0 that make sense are valid (with a special interpretation for
s — % integer).

In Section 6, we derive the main result on the solvability of (1.1), namely
an existence and uniqueness theorem, for all r=0, of a solution
ue H +47d+1(Q E) (with estimates), for all sets of data

feH"Q, E),
Q= {(pj} c n Hr+d- Jo12r+d— l;2),"d(S’ _F‘l)’ (15)

O0<j<d

uge H'+4%(Q, E),

satisfying the appropriate compatibility conditions. (More precisely, the
estimates in the case /=R, depend on the lower bound of the spectrum
of A, cf. also Purmonen [Pu].)

Section 7 finally gives some complements to this, namely an extension of
the solvability to initial data u, in H*(Q, E), all s >0, a study of the con-
nection with holomorphic semigroup theory, and a proof of estimates for
the solutions of (1.1) with =0, ¢ =0,

lu() 0, , < Crisant "“"’"‘e'“"Iluoil,,sl”w forall t>0,r=s520. (1.6)

This holds for all o€ H%.,, when a, is less than the real lower bound of
the spectrum of A4; but we furthermore show that (1.6) can be obtained for
any a,, globally in ¢, for initial values u, in a suitable closed subspace V
of L*(Q, E) of finite codimension (depending on a,). This is seen by use of
the perturbation result from Section 4. We also get improved estimates for
data {£,0,0} with f valued in V.

2. ANISOTROPIC SOBOLEV-SLOBODETSKIT SPACES

We denote by £ a bounded open subset of R” with smooth boundary
0Q=T; or in some cases Q=R" = {xeR"|x,>0}, with dQ=R""",
whose points are denoted x' = (x,, .., x,_,). We write &, or ¢, for 0/dx;,
and D; or D, for —ié,, where i=(—1 )2, and we use the multiindex nota-
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tion D*= D} --- D with a = (a,, .., 2,) e N", etc, here [a| =2, + --- +a,.
For teR, [] denotes the largest integer <t The scalar product of x and
v in R” is written x -y, and the norm is |x| = (x-x)' 2. We shall use the
notation, also for xe C,

ey =(1+]x17)"

The restriction to the boundary is denoted y,:u — u|,. We denote by
A=(n, .. n,) the unit normal vector field defined near I, and we write
voDlf=7,f, where D,=3%7_nD; (In second order problems it is
customary to use the real definition, where D, is replaced by
¢,=37_, n;é, but the above definition, also used in [Gr2], gives more
convenient Green’s formulas in higher order cases.)

Let us first recall the classical Sobolev-Slobodetskii spaces, cf.
[So, SI, L-M]. Among several possibilities we have chosen to use the nota-
tion of Lions and Magenes [L-M] in the present paper (with some small
modifications), since we also refer to their presentation of the interpolation
theory. H'(R") (also called W5(R")) is the space of distributions v € #'(R")
for which Jell, = I[<S)>" 6(E)N,2gn, is finite; and H'(RQ) is the space of
restrictions u =r, v to 2, with norm

el g2y = el = inf{fjv]l, [ve H(R"), u=rou}. (2.1)

We denote by H,(Q2) the closed subspace of H’(R") consisting of the
elements supported in £2. Here H{(€2) coincides with H(2) as defined in
[L-M1, except when r=m+ 1/2, me N, where H'* V*(2) equals the space
called HZ'"%(R2) in [L-M]; also H ™ "*Q) deviates from that of
[L-M], when meN. For every re R, H((22) and H ~'(2) can be identified
with one another’s duals; and CJ(R2) is dense in Hy(Q2) and C*(22)n
H'(Q2) is dense in H'(Q2) (cf, e.g., [HI, Section 2.5]). The present spaces
have the interpolation property for all s, ¢ (real interpolation):

[H(R), H'(£2)],=H"~":*%(Q),
[HYQ), H)(2)],=H{ ©*%(@Q), for s>t,sandteR,0¢e]0,1[.
(2.2)

(This is shown in [L-M1] for s 2120 in the first line and for 05>t in
the second line (and for general indices avoiding the half-integers); and it
then ‘follows in full generality, e.g, by use of the homeomorphism
A,=0P((& > +1i,)) from H(R") to H* "(R") that sends H{(R" ) onto
H; "(R").) We recall the general interpolation inequality

lallpxe. 2, < C llully ® Ml for ueX, (2.3)
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where X and Y are Hilbert spaces with X < Y (continuous injection), X
dense in Y.
For r 20, r not integer, the norm in H'(R”") can also be described by

”u” ?H'(n") x>~ ”u“if[']mn)+ Z ”Dal ll” i{r_ [\J(rm)
x=[r]

> ullfomn+ 2 Nullly g (24)

Oglal<[r]

where the H, seminorm is defined for se R \N by

dx dy
el 35 (gemy = |DPu(x) - DPu(y) ——o—5re (25)
H (R") Iﬂ|§fs] Lh |x_y| 2(s—[s])

following Aronszajn [Ar] and Slobodetskii [S1]. (For integer r,
lull2 2~ Y <, ID?ul|32.) For r=0, the elements of Hy(€2) are identified
with the functions they define on Q (extended by zero on R™\Q). Then
when r— 1 is not integer, H{(£2) identifies with the closed subspace of
H'(R) of functions u such that y,u=0 for 0<j<r— 3 For r=m+3,
meN, H(Q) is a non-closed subspace of H'(£2) with a strictly stronger
norm, satisfying

. dx
g = N3+ [ 1D} 5 (26)

: 2r- [r "
Ja] = [r] 2 ISI(X, r)

This formula is valid generally for reR, .

The definitions are extended to I” by use of local coordinates, and they
generalize easily to vector valued functions and distributions.

We now consider the spaces in the case with an extra variable ¢ Let
be 10, «c], and denote 10, b[ =1, or I, for precision, @ xI=Q or Q,, and
I'xI=S8 or S,. When E is a vector bundle over 2, we denote by E its
lifting to Q (or to Q x I’ for other intervals /'), and use a similar notation
for liftings from I' to S, etc. The basic type of space to be used is the
anisotropic Sobolev space of order r in the x-variable and of order s in the
t-variable, where r and s> 0:

H"(Q, E)= L¥(I; H'(2, E)) n H*(I; LA, E)), with norm

2 /2.
Neell,.o = Clall 22, prry + N8l 2o 1202

eg.,forr,se]0,1[, @=R"xR, (2.7)
|u(x9 ’)—u(}’, I)|2
2 ~
a2, ~[ L ddy di

x, 1) —u(x, t)|?
L,,,;lu( ) — ulx, )| dx dt dt + |ull 3y

,t__rll+2:
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(Similar notation for spaces over I'). When E is a trivial bundle, eg.,
E=0QxC" we usually just write H"%(Q, E) as H™*(Q)", etc. (with N
omitted in case N =1). By use of local coordinates, of the inequality, valid
forO<r'<r, s =s(r—r')r,

EX7 =8 KDY TS C L AKEY + 1)), (28)

and of restriction and extension operators between spaces over R" and 2,
one can show that

Nl st an < Crosr 1l sy for 0<r' <r, s =s(r—r)/r. (2.9)

As shown in [L-M, Proposition 4.2.1], the spaces have the interpolation
property

[H"‘V(Q), Hp.o(Q)]o_:H(I—())r+()p.(l—-()ls +00(Q)
for r=2p=20,52020,0e]0,1[. (2.10)

The cases H""“(Q, E), where d is an even integer, are of special interest
for parabolic problems. In each of the spaces, the set of C > sections is
dense.

For precision, we sometimes use the notation for the restriction of a
function u(x, t) to t=1t, (most often for 1,=0)

rl()u=ull=10’ (211)

and we sometimes denote 2x {t,} =%, and I"'x {15} =T, instead of
just Q or I

We denote by H{;(Q) the closed subspace of H"*(£2x ]—oc, b[)
consisting of the functions supported in {¢>0}. It can be identified with a
subspace of H*(Q), closed if s — 1¢ N (then it is the subspace of functions
u with ro0/u=0 for j<s— 1), but not closed if s— {€N; and the norm is
equivalent to

obh dl
2 2 {s] .2 —_— o)
uu,||,,,((;'(g,z”u||,,,.,(Q,+J0 1 4l 2a) o (2.12)

These spaces coincide with the spaces called H"3(Q) in [L-M], when
s— 3¢ N. With the present definition, the spaces have unrestrictedly the
interpolation property

[HG(Q), Hig(Q)g= Hig, 70t 92 00()
for r2p20,520620,0€]0,1[, (2.13)

proved by a variant of the proof of [L-M, Proposition 4.2.1].
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The space H{;\(S) is defined analogously, and the concepts extend of
course to spaces of.sections in vector bundles.

One can also define spaces with negative exponents r and s, but since
this is quite complicated, we refrain from a systematic treatment (referring
to [L M]J).

The following statements are well-known (see, e.g., [L-M, Theorem 4.2.1
and Proposition 4.2.3]):

LEMMA 2.1, Ler r and seR,, and let a(x,t)e C“(Q). The mappings
a(x, t), D%, D!, vo, and r,, going from C*(Q) to C”(Q), C*(S), and
C "(Q(O,), respectively, extend to continuous mappings:

a(x, ty: H™(Q) - H(Q);
D*: H“(Q)—*H’ Ial.(r—lallv\’.’r(Q} for I‘>0, ,x, <r;

X

DI H™(Q) = HE 755-1(Q) for s>0,j<s;  (2.14)
'}'OIH"s(Q)—’H’ 1:2.(r - l,2).sn'r(S) f()r r>1/2:
roH(Q)» HY D7) for s> 12

The mappings v, and r, described here are surjective.
In particular, when s =r/q for some q >0, one has the continuity properties

a(x, 1): H*74(Q) — H""(Q);
D*: H™"4(Q) = H' -0y for r>0,|a|<r;

D!: H™"4(Q)— H"~#"4 J(Q) for r>0,j<r/q, (2.15)
voi HY " (Q)—» H™ V2U-t24%8)y  for r>1/2;
ro: H-"9(Q) — H ~4*(Q4)) for r>gq/2,

with yo and r, surjective.
On the spaces H"*(S), the differential operators and ry act in a similar
way.

When b= +oc, the mappings are of course just extended from mappings
defined on C*(Q..)n H*(Q.). A similar convention is used in the
following.

One has moreover the continuity and surjectiveness of the system of
trace operators (see, e.g., [L-M, Theorem 4.2.3 and its proof]):

m

() (Yo v} HYUQ) ~ [T Y/ 120 V2Y(S)

j=0

for r>m+1/2, (2.16)
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m
; r— f 02
{Fos s Fa@M J H Q) > [T H 7 43Ry
(") =0

for rig>m+1/2.

These operators have continuous right inverses. Also, r,u« is defined for
t>0 when ue H" 4(Q) with r/g>1; in fact, r,u (also called u(r)) depends
continuously on ¢,

H Q)= CI, H +*(Q)), (2.17)

as a special case of the general trace theorem (valid for X < Y densely and
continuously)

LYEX)AHYE Y) e COUL[X, Y]1,.). (2.18)

3. PSEUDO-DIFFERENTIAL BOUNDARY OPERATORS

Let us very briefly recall the structure of the operators entering in the
Boutet de Monvel calculus. (Cf Boutet de Monvel [BM], Grubb
[Grl, 2], or, e.g., Rempel and Schulze [R -S] for more details.)

First there are the pseudo-differential operators (ps.d.o.’s). Here one
looks at operators P of order d defined on R” (or on a neighborhood £
of Q) by the usual formula

Pu(x)=OP(p)u(x)=(2n)"" Jamt’"" *plx, &) a(g) de, (3.1)

where 4 is the Fourier transform of u, and where the symbol p(x, ) is a
C ™ function, developed in a series of terms p/(x, £) (j€ N) homogeneous
of degree d—j in ¢ for || =1, of which p is an asymptotic sum, in the
sense that

D(’.Dé(p(x,é)— 3 pf‘<.x,é))|<c<x)<cf>" WY forall 1,4, N,

0K j< N

with ¢(x) continuous in x and dependent on the indices. The truncated
operator P, on £ is defined by

Po=rgPeg, (3.2)

where e, denotes extension by zero on R”"\ and r,, denotes restriction
from R" to Q. To assure that Py has good continuity properties in the
Sobolev spaces over 2 (and in particular maps C () into C*()), P is
assumed to have the so-called transmission property at I this is in
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particular satisfied by operators composed of differential operators and
inverses of elliptic differential operators. We take the order d of P to be
integer.

The operators P, of order —<o are precisely the integral operators with
C* kernel on £, sometimes called smoothing operators or negligible
operators.

Sometimes P is given, with the help of local trivializations, as a mapping
between vector bundles. P: C*(Q., E) - C*(Q,, E’), where E and E’ are
C* vector bundles over Q, >, with E|;=E, E’'| ;= E'. Then we likewise
define P,: C=(R,E)—» C*(R2,E') by (3.2), where e, now denotes
extension by 0 on 2,\Q.

Pseudo-differential operators § over the (» — | )-dimensional manifold I
are defined from ps.d.o.’s on R” ™' with the help of local coordinates.

Poisson operators of order d< R {going from R” ™' to R”, } look basically
as follows:

Kv(x) = OPK(k) v(x) = (2n)* =" J e k(X x,, E)H(EYAE. (33)

R

Here & (called the symbol-kernel in [Gr2], it is the inverse Fourier trans-
form in &, of the symbol k(x', £) introduced in [BM]) satisfies estimates

IDE x7 DT DER(X', Xy EW 12 m,, S €(x')E HI7 1271 m e (3.4)

for all indices «, B, m, and m', and is an asymptotic series of quasi-
homogeneous terms

Fix,p'x,, p&y=p k(X x,, &) for x'2Luzl,

with k=, v K’ satisfying (3.4) with d replaced by d— N. The corre-
sponding terms in k are homogeneous in (&', £,) of degree d—1— for
|€'| = 1. Poisson operators going from I" to Q are defined from the ones
above with the help of local coordinates.

A trace operator of order de R, going from 2 to I, is an operator of the
form

Tu= Z Sk",’ku'f' T’u, (3.5)

O<ks! -1

where the vy, are the usual trace operators and the S, are pseudo-differen-
tial operators on I of order d - k, respectively, and T’ is a special kind of
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trace operator that in local coordinates (where Q and I are replaced by
R” and R” ') has the form

T'u(x') = OPT(f') u(x')

=@ [ e [T x,, £ x,) dx, 45 (36)

R 0

here #(&’, x,) stands for #,.  .u(x’, x,), and risa symbol-kernel with the
same properties as those of k described above, only with d— ! replaced by
d+3.

The number / in (3.5) is called the class of T, and T’ is then said to be
of class 0; T' is well-defined on L*(£2), whereas the sum Yo </ .1 Scyc¥
is only well-defined on H’(2) for r>/— 4. One assigns the symbol
So<ck<i—1 Selx’, &) E% to this sum. Trace operators going from Q to I are
defined from the ones above with the help of local coordinates.

A scalar trace operator T (3.5) is said to be normal when I=d+ 1 and
the coefficient S, is an invertible function. More generally, when 7 maps
sections in a vector bundle E over @ to sections in a vector bundle F over
I" (in particular, if T is matrix formed), normality means that /=d+ 1 and
the coefficient S, in the representation (3.5) is a surjective morphism (resp.
matrix) from E|, onto F. We shall also consider systems of trace operators
{T4, .. Ty} going from E to F,@ --- @F,, of orders {d,, .., d,,}; such a
system is said to be normal when all the orders are different, and each T,
is normal (in particular, the class of T 4 18 d;+ 1),

Finally, a singular Green operator G (sgo) of order deR and class
/e N on Q is an operator

Gu= Y  K.yu+Gu, (3.7)

Ogk<gi-1

where the K, are Poisson operators of order d — & and G’ has the form, in
local coordinates where 2 is replaced by R”,

G'u(x)=O0PG(§') u(x)

~@u | e fo‘” §(X, Xy, yo, &V UE, y,) dy, dE. (38)

Here the symbol-kernel §'(x', x,,, y,,, £’) (the inverse Fourier transform in
¢, and inverse co-Fourier transform in #, of the symbol g'(x', &', &,, 1,.))
satisfies estimates

1Dy D yu DL D% & (X' Xs Yur SNt h e
SC(X’)<€,>‘1 lel —m+m —k + k& (39)
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for all indices, and has an asymptotic expansion in a series of quasi-
homogeneous terms

gUx u xp ty,, uE)

=plIgN X,y E) for (E 2L,

such that g’ -3, _yg" satisfies (3.9) with d replaced by d—N. The
corresponding terms in g’ are homogeneous in (&', ¢,,n,) of degree
d—1—jfor |E'=1.

Again, the class | of G indicates how many of the classical traces it
contains. The term G’ is of class 0 and is defined on all of L*(Q). One
assigns the symbol Yo 4 </ ki(x', &)y to the sum Yo 4o/ oy Kis

Singular Green operators arise typically when Poisson and trace
operators are composed (as in G = KT); another source is the composition
of truncated ps.d.o.’s (cf. (3.2)), where

L(P,Q)=(PQ)o— PuQy (3.10)

is a singular Green operator.

The five types of operators P, S, K, T, and G introduced above have
the property that compositions among them again lead to operators
belonging to these types. They are usually considered together in systems,
generally of the form

Po+G K\ C*(Q E) C*(R,E)
o = : x - X , (3.11)
T S) C*([F) C*(I,F")

where E and E' are C* vector bundles over Q, F and F' are C™* vector
bundles over I. When such a system satisfies a certain ellipticity condition,
then it has a parametrix (or inverse) belonging to the calculus.

The operators have the continuity properties with respect to Sobolev
spaces expressed briefly in the formula

Po+G K\ H,E) H "4, E)
of = : x - x , (3.12)
T S) H 'Y} ,Fy H* ¢4 VI F')

where each entry is of order d; s =0 for P, Gand T; s—d>0 for G, T and
K; and G and T are of class <d. (More refined information is given in
[(BM], [Gr2], and later in this paper.) G and T do not have a meaning
on the full space L3R, E) unless their class is zero.
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In the treatment of parabolic problems, we use the above pseudo-
differential operators considered not only on Q but also on @ x I. For C*
functions, the operators are just defined as above with respect to x and
considered as constant in ¢, and this definition extends by continuity to
more general spaces. The operators can then be seen as special cases of
r-dependent pseudo-differential boundary operators (or more general
operators “acting in ¢ as well). We shall not study such a calculus
systematically here. Let us just mention one point, which is amply dis-
cussed in [Gr2] (cf, e.g., Definition 1.5.14 and Proposition 2.3.14 there),
namely that when the symbols of the above operators are considered as
7-dependent (where 7 is the variable in the Fourier transform with respect
to t) then one has to take the so-called regularity number v into account.
This is essentially the Holder continuity (generalized to include negative
values) of the strictly homogeneous principal symbols at ¢’ =0 (in suitable
symbol norms, as in (3.4) and (3.9)); and really good estimates are only
obtained when the regularity is =0.

For example, when G is of the form G =Kjy,, where K is a Poisson
(operator of order d with principal symbol-kernel %° then since the
L* R ) norm of k% is ¢(|¢'|~'2), G is of regularity d — 1. In this example,
G is of class 1 (as defined above). Generally, when G if of order d and class
I, the regularity v is >0 if and only if d> max{/— 3}, 0}; more presicely,

G has regularity v=min{d, d—/+1}. (3.13)

We do not explicitly use the regularity concept in the present paper, only
refer to it when it comes up naturally. The systems { P, + G, T} studied in
the sequel have regularity v> 3.

We shall now see how the various operators act in anisotropic Sobolev
spaces. To begin with something that is really different from differential
operators, consider Poisson operators.

PROPOSITION 3.1. Let K be a Poisson operator of order meR (cf. (3.3),
etc.), originally defined as an operator from C*(I') to C*(2) and extended,
as an operator that is constant in t, to map C*(S) into C*(Q). Then for any
rzmax{m, 3} and s>0, K extends to an operator with the continuity
property

K:H® V2%(8) ~ H "™3(Q), if m<i,  (3.14)
K:H7 VRCSUDenS) L grome msi0) i mz L (3.15)

Proof. 1t is known from [BM] that X is continuous,

K: H =V I') > H - ™(Q), (3.16)

SOS R7 2.5
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for r > m. When the t-variable is included, this readily gives the continuity
properties

K: LI H' V(D) LY H=™(Q)),

3.17
K: H*(I, H™ ~'2(I)) » H*(I; LY(Q)). ( :

When m < 3, this implies (3.14), since L*() is continuously imbedded in
H™ Y4(Q). When m>1, we get (3.15) from (3.17), when we furthermore
apply a version of (2.9) with @ replaced by I, r replaced by r — §,, and r’
taken equal to m— 1. |

Remark 3.2. The Poisson operators have a more refined structure than
what is apparent from (3.16). In fact, the operator K, considered in local
coordinates (where Q and I” are replaced by R”, and R" '), is continuous,

K: H:+r l/Z(Rn l)_’Hi’_m"’}(R’;)’ (318)

for all r and r' eR, where H'!“?!(R" ) stands for the space of restrictions
to R" of distributions U on R” satisfying

(EX“<EH" UE)e LA(RY) (3.19)

(cf., e.g., [Gr2, Theorem 2.5.1] for fixed u). For example, (3.18) implies
easily the following rule, allowing negative norms over the boundary:

“KU“ LZ(I; Hima o """(R’: ))

SC ol 24 12ge 1y, forall m’20,r'eR. (3.20)

One point of interest in this is that y; of any order can then be applied to
Kv, giving y;Kve L*(I; H"~'2-7~/R""")); in fact, y,K is a pseudo-
differential operator on I of order m + .

There are related (x’, x,)-anisotropic estimates for the other types of
pseudo-differential boundary operators, which we invoke whenever they
are needed. However, we refrain from a systematic analysis here of
estimates that are anisotropic in all three variables x', x,,, and ¢ at the same
time, in order to keep notations relatively simple. Actually, one can base
such an analysis on the considerations already made in [Gr2] concerning
u-dependent norms, for u? (or p™) there plays the same role as |t| here
(where t is the variable corresponding to ¢ by Fourier transformation).

For the other types of operators in the Boutet de Monvel calculus, one
finds

ProposITION 3.3. (1) Let P be a pseudo-differential operator on R" of
order me Z, having the transmission property at I'; define Py on C*(Q) by
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(3.2) and extend it to C*=(Q) as an operator that is constant in t. Then for
any rzmax{m,0} and any s>0, P, extends to an operator with the
continuity property

P, H™(Q)— H ~™%(Q), where s'=min{(r—m)s/r,s}. (3.21)

Here and below, (r —m) s/r is read as s when r =0. Similarly, when S is a
ps.d.o. of order meR on I, extended to an operator in C*(S) that is
constant in t, then S extends by continuity to a continuous operator

S: H™(S)—» H ~™*(S) (3.22)

when r, s, and s’ are as above.

(2) Let T be a trace operator of order meR and class leN,
T=30ckei—1 Sk7c+ T' (cf (3.5)), defined as an operator from C*=(Q) to
C*(S) that is constant in t. Let G be a singular Green operator of order
meR and class 1eN, G=3gci<i—1 Kive + G (¢f. (3.7)), defined as an
operator in C*(Q) that is constant in t. Let r >max{m+ 3,0} for T and
rzmax{m,0} for G; then for s20 and r>1—3%, T and G extend to
continuous operators

T:H™*(Q)— H = "~ V25(8), where
s'=min{(r—m— %) s/r, s}, if 1=0;

s'=min{(r—m—3)ys/r, (r=1+Y)s/r}, if 121,

G:H™™(Q)—»H ™ (Q),  where (32)
s'=min{(r —m) s/r,s}, if 1=0;
s'=min{(r—m)s/r, (r — 1+ %) s/r}, if =1
Proof. (1) S has the continuity property
S:H' () —» H ~™(I"), (3.24)

for all . When the r-variable is included, this gives the continuity
properties
S: LI H(D) - LX(I, H~ ™(I")),

(3.25)
S: H(I; H™(I')) » H*(I; LY(I")).
For m<0<r, we then get (3.22) by use of the fact that L*(I")c H™(I');
and for r2m >0, we use instead a version of (2.9) with § replaced by I
and r'=m.
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For P, [BM] shows that
Py H'(2) > H ~™(Q). (3.26)
As above, this gives the continuity properties, since r = m,
Po: LX(I; H'(Q)) - LY H - ™(R2)),

(3.27)
Py: HS(I; H™(R2)) = H*(I; LY(2)).

For m<0<r, we then get (3.21) by use of the fact that L%(Q)< H™(82),
and for r=m>=0, we use (2.9) with r'=m.

(2) Now consider T. For the terms S,y, we use that by Lemma 2.1,
v« maps H"*(Q) continuously into H" K- Vrir—k VDsin(§)  since
r>1—41>k+1 Then (3.22) gives that the Sy, are continuous:

Seve: H™(Q)—» HY = Vemm ADsr(g) - if k<im,

s (3.28)
Skyk: Hr,.t(Q) S Hrm- 12,(r —k -l,'Z)A‘_'r(S) !f k >m.

For the term T of class 0 it is known (cf, e.g., [Gr2, Proposition 2.5.2])
that in local coordinates

1T ull yyo. m-1:2gn-1, < C Jul LR, HORY ') forall seR. (3.29)
It follows, by application of & _ . to T'u and u and integration in t, that

177Ul 2g,; pro-m- vame 1y
< Clull 2m,. 3r. 1Ry forall oeR. (3.30)
When m < — 4, we use that (3.29) gives in particular, for o =m+ <0,
T ull LR ) < Cuj LYR" )
from which
T ul| HOS(R x R"~1) < C ul HOS(R xR")

follows as usual. This, together with (3.30) for o =r, shows the continuity
of

T -H” RxR")->H ™™ VZsRxR"™ Y when m< -1 (3.31)
When m > — 3, we have from (3.29) that

” T'u” l_i‘(nn—l) < C ||u|| HT*"z(R",)'
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Taking H” "~ "2 porms in the t-variable we find, by application of
(29) with r'=r —m— 1,

1T ull HO—m=1n R xR~ 1) S C |lul HS(R xR%)*
Together with (3.30) for ¢ =r, this shows the continuity of

T Hr,s(Rx Rr;)_)Hr——m—l/Z.(r—m—l/Z)s/r(R an~—1), when m= — %
(3.32)

(3.28), (3.31), and (3.32) together imply the statements on 7 in (3.23).

(3) The singular Green operator G is treated as follows. The terms
K, 7, satisfy, by Lemma 2.1 and Proposition 3.1,

Koyt H™(Q) > H == m=1m97(0) - if k43<m,

(3.33)
Ky H™(Q) » H'™™C=5=\25(0)  if k+4>m.
For G’ one has, by [BM], that G’ is continuous,
G H(Q)- H ™). (3.34)
Then one proceeds exactly as for P, obtaining
GLH™(Q) =~ H =m0 Q)  or om0,
G': H™(Q)— H ™ ™%(Q) for r>03 '

Taken together, the statements show (3.23). |

Remark 3.4. The various rules are a little complicated in the way one
distinguishes between the cases where s’ takes the most natural, propor-
tional value (s'= (r —m) s/r for P, G, and K; s’ = (r —m — %) s/r for T) and
the other cases. For P and K, this is linked directly with the order m of the
operator. But for G and T it is linked also with the class I; if
I>max{m+%,0}, the class takes over in the definition of s’. These cases
are precisely the ones with negative regularity v, as defined in (3.13) and in
[Gr2, Sects. 1.5, 2.3]; and the whole discussion could be formulated in
terms of the regularity concept analyzed in [Gr2].

In the direct calculations connected with parabolic pseudo-differential
problems, the operators are of positive regularity, so the proportional
values enter. However, the general statements above are needed in some
finer calculations, as in [G-S3].
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COROLLARY 3.5. Let ¢>0. For the operators considered in Proposi-
tions 3.1 and 3.3, one has in particular the continuity properties

K: H ~ V20 g8y, g omr(Q), where (3.36)
r'=min{(r - 1)/q, (r —m)/q};

Po: HM(Q) — Hr = mmint myarial( 0y, (3.37)

S: H™9(S) — H’ ~mminlt—mya.rig}(g). (3.38)

T H Q) — H= "~ '2(S),  where (3.39)

r=min{(r—m— })/q,r/q}, if 1=0;

r=min{(r—m—3)jq, (r—1+3)/q}, if 1]
G:H""(Q)— H ~™"(Q), where (3.40)

r'=min{(r—m)/gq,r/q}, if 1=0;

r'=min{(r—m)/q, (r—1+3)q}, if I=L

In all these statements, r > max{m, 0}; moreover, r> 1 in (3.36) and r>1— 3
in (3.39) and (3.40).

All the rules extend without difficulty to operators between vector
bundies.

4. PARAMETER-ELLIPTIC AND PARABOLIC PROBLEMS

The systems we consider are of the following kind: EF is an
N-dimensional C® vector bundle over 2, extended to a bundle E over a
neighborhood Q, of Q. There is given a pseudo-differential operator P of
order d (integer >0) in E having the transmission property at I', and a
singular Green operator G in E of order d and class <d. The boundary
condition is defined in terms of a column vector of trace operators
T={T,, .., Ts_,}, where the T, go from E to bundles F, over I" of fiber
dimension N; (N;>=0), with T, of order / and class <!+ 1, i.e., of the form

0<js!

with T of class 0. We denote Y¢_) N)=N"and Fo® --- ®F,_,=F. (The
zero-dimensional bundles over I have been included for notational
convenience—to avoid having to specify the subset of {O,..,d-—1}
consisting of the orders of the non-trivial trace operators.) Then we define:
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DEerINITION 4.1. (1) Let 8€R. The system

d it
= ("1 T, (1)

depending on the parameter y, is said to be parameter-elliptic when the
following properties hold (expressed in local coordinates):
i

(I) The principal interior symbol p°(x, &) + u‘e’ is bijective for

all x, all (£, u)eR"*! with &2+ |ul?> L.
(I1) The principal boundary symbol operator
po(xla Oa é,’ Dn).() + go(xl’ él& Dn) + #dei0> .
°(x, ¢, D,) '
HYR,)¥ - L}R,)¥xCV (4.2)

ao(x,’ é,’ H, Dn) = <

is a bijection for all x', all (&, u)eR”, with |&']>1, u>0.

(II1) For each >0, each x', the strictly homogeneous principal
boundary symbol operator a”(x’, &', u, D,) (coinciding with (4.2) for
|&'| = 1) converges in the operator norm for ¢ — 0 to a limit operator

a"(x',0, 1, D,): HYR ,)¥ - L} (R, )¥x CV, (4.3)

which is bijective.

(2) The time-dependent system {é,+ P,+G, T} is said to be
parabolic when {P,+u“”+G,T} is parameter-elliptic for all fe
[—n/2,n/2].

The above formulation is a version of Definitions 1.5.5 and 3.1.3 in
[Gr2]. One small difference is that we here consider the boundary symbol
operators as going from H*R,)" to L*R,)"xC" instead of from
FLR,) to L(R,)YxCY, which does not change the content of the
ellipticity property, as explained after Definition 3.1.3 there. Also, the
convergence in symbol norm, defined generally in [Gr2], coincides with
the convergence in operator norm in the present case.

We recall from [Gr2, Remark 1.5.10] that when (2) holds, 4 is even and
N’ = Nd/2.

We also recall from [Gr2, Lemma 1.5.7] that when (1) holds on
a ray, T is necessarily normal (the contribution from T to the limit
boundary symbol operator a”(x’, 0, u, D,) is the standard trace operator
{So070s - Ss_1.a_174_1}, where the S, are surjective vector bundle
morphisms).

One of the main results in the book [Gr2] is that the parameter-
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ellipticity implies resolvent estimates in the following way (cf. [Gr2,
Theorem 3.3.1, Corollary 3.3.2]):

THEOREM 4.2. Let P, G, and T be as defined in Definition 4.1, and let 8
be a value for which (1) holds. Let A be the associated L*-realization

Au=(Py+G)uy, D(A)={ue HYQ, E)| Tu=0}, (4.4)

and let R;=(A—2A)"" be the resolvent, ie., the solution operator for the

problem

(Po+G—2)u=f in Q,
Tu=0 on I,

(4.5)

defined for the 1€ C for which it exists as a bounded operator in LR, E).
There are an ¢ and a constant ry such that the resolvent exists on the rays
A=re?, r=r,, 0 €[0—c¢ 0+¢), satisfying for each se R, the estimate

IR fllerwa+ <AD™* IR, fllo
SCASfI+ <N flle)  for fe H (R, E). (4.6)

Moreover, the spectrum a(A) is discrete, and R; is holomorphic on C\g(A).

In particular, if {8,+ Py,+ G, T} is parabolic, the spectrum of A has a
real lower bound a,=min{Re 2| Aea(A)}> —oco and lies in a sectorial
region

¥ ={A|Red=ap} N {A| A <r, or larg A| <7/2 —&,}, 4.7)

for some £,>0, r, 20; and for any 6 >0, (4.6) holds (with C, depending on
d) in

Wy={i|Rei<a,—d}u{A||il=r +6
andarg Le [rj2—&,+6,3n/2+¢, —6}. (4.8)

The discreteness of the spectrum follows from the compactness of R, for
a constant ¢ in the resolvent set, and this compactness follows from the
continuity of R, as an operator from L}, E) to H(Q, E).

The points in the spectrum are eigenvalues of A4, but the eigenfunctions
need not form a basis of L(£2, E) (they do of course if 4 is selfadjoint). It
is of interest to know in the parabolic case whether one can remove the
eigenvalues in {Re 2<0} by a finite dimensional modification of 4. This
can in fact be done in a quite concrete way.
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THEOREM 4.3. Assume that parabolicity holds. Let {i,} be the sequence
of mutually distinct eigenvalues, ordered in such a way that

Rei,<Rei € ---<Re/,< ---; (4.9)
then Re i, —» oc. Let k'€ N. There is a decomposition of X = L*(Q) into
closed subspaces V and W such that

X=V+Ww, W has finite dimension,
D(A)=(D(A)n V) + W, (4.10)
ADAYN V) V and AW)c W,
and the operator A\, (with domain D(A) V) has the spectrum
o(Al) = {Ac}is i (4.11)
For any linear operator B in W, the operator Ay defined by
Agu=Av+Bw  for u=v+wwithveDA)nV,welW, (4.12)
has the spectrum
a(Ap)= { A}z w v a(B); (4.13)

and & = Ag— A is a ps.d.o. of order —c0 and finite rank (written explicitly
in (4.20-21) below). One can in particular choose B such that, e.g.,

o(Ag)c {AeC|Re A= Re 1}, or  o(Ag)={A}ssw- (4.14)

Proof. Let ¢ <Redy; then R,=(A4—c¢)""' is a compact operator in X
with spectrum equal to the set {y,=(l,—c) '}, .n={Red>0}. By a
theorem of F. Riesz (see, e.g.,, Riesz and Nagy [R-N, Sects. 77-80]), there
is an integer v, > 1 such that

Zo={ueX|(4o—R.)"u=0 for somen}={ue X|(uy— R,)*u=0},

Z, has finite dimension r,>v,, and Z, has the closed complement V,,
where

Vo= ) (o= R)"X=(uo— R)" X.

n=1

Clearly, Z, and V, are invariant under R,, and the spectrum of R,| vo 18
precisely the set {u,},. . The procedure is repeated, with
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Z;={ue Vj-l|(u,~—R(V)"u=0forsomen}
= {ue Vj—ll(/‘/_Rp)"’u=0},

until we arrive at the closed subspace

V=V 1= (—R)" (= R (o — R X, (415)

which is invariant under R, and has the complement W in X,
W=Z,+Z,+ - +2Z, , (4.16)

of dimension r=ry+r, + ---r,._,. W is likewise invariant under R.. The
spectrum of R, |, is the set {y; }x - Since A =R ' +¢, ¥V and W are also
invariant under A4 (in the sense expressed in (4.10)); and the spectrum of
Al is the set {4} s

Now define the perturbation 4, of A by (4.12). Clearly, Ag—4 is
bijective from D(A) to X if and only if both 4|, —i: D(4)nV =V and
B—2: W W are bijective, so (4.13) follows. We here have

Ag=A+(B—A)n=A4+Cr, (4.17)

where = is the projection of X onto W along ¥, and C is the linear operator
B— A|,, in W. By the ellipticity of 4, W lies in C*(Q, E), cf. (4.16). Since
R* is a resolvent associated with a normal elliptic pseudo-differential
boundary problem adjoint to the given one (cf. [Gr2, Sect. 1.6]), the space
v+, equal to

Vi={zeX[(fo—R})™ (f,— R¥)" - (A —RX)*z=0}, (4.18)

lies in C*(Q, E); it has dimension r like W. Then the projection n can be
written as

r

U= Z ay(u, z,) w), (4.19)

Sk=1

where the z, form a basis of V'* and the w; a basis of W, all C* functions.
It follows that A, — A can be written as

Su=(Ag—A)u=Crnu= Y culu,z,)w, (4.20)

k=1
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so it is an integral operator with C™ kernel

r

K, (x,y)= Z Cawi(x) Ze(¥), (4.21)

rk=1

hence a ps.d.o. of order —oc (a negligible, smoothing operator) in the
calculus.

For the last statement in the theorem, one takes B with spectrum in
{2eC|Re/i>=Re i, }, resp. with B=1, [ for some k, 2 k". |

When 4 is selfadjoint, vo=---=v,. =1, and Z,, .., Z,._, are the
eigenspaces associated with the eigenvalues A, .., 4, | for 4; so V is then
simply the closed span of the eigenspaces associated with the eigenvalues

{Aites

Remark 44. In the above construction, it is of interest to know
whether C = B— 4|, can be chosen with special properties, e.g., with much
lower rank than r, or with range in a special subspace of W. (Actually, one
could also let C map out of W; then it is 4|, + nC that determines the new
spectrum.) In particular, when the operators in W are expressed as
matrices in terms of a basis of W, one can ask whether C can be obtained
on the form C= EF, where E is a given (r x g)-matrix with g <r. Questions
of this kind are well known in control theory; see, e.g, Wonham
[W, Chap. 2] for an analysis of the possibility of choosing F such that

B=A|y+EF

has prescribed eigenvalues (pole assignment) or eigenvalues in a particular
set (pole shifting). (For example, if dim Z,= --- =dim Z,._, =1, then
d(B)c R, can be obtained by a C of rank 1!) In this connection, it is also
interesting to see what it takes to interpret C as a “boundary feedback”
term (cf. the articles of Lasiecka and Triggiani, e.g., [L-T], and a recent
analysis by Pedersen [Pe]; these works treat cases where the eigenvectors
form a basis).

5. COMPATIBILITY CONDITIONS

According to Lemma 2.1, both of the mappings 7, and r, are defined for
ue H"*(Q) when r> 4 and s> 4, with

YoU E Hr— 20— l,/Z):/’(S)’ roU € H 1:2) ’/J(Q(O))‘ (51 )

Here the restrictions to the “corner” I', = {xel,r=0} are defined
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according to Lemma 2.1, when (r — 1) s/r > 31, and (s — 1) r/s > 3, i.e., when
1/r+1/s <2, and then

, 12— ri2s
royou=7yorou€ H’ "I o))

by extension by continuity of the identity valid for smooth functions. So if
an initial-boundary value problem is considered, where both y,u and ryu
are prescribed,

ToU =@, rou=1u,

then in order to have solutions in H"*(Q) with 1/r+1/s<2, we must
necessarily prescribe the compatibility condition (or corner condition)

Fo® = Yol (5.2)

For the study of differential equations in higher order H"* spaces, one also
needs links between initial and boundary values of x and t-derivatives;
more, the larger r is.

The limiting cases 1/r+ 1/s=2 are not covered by Lemma 2.1. Also
when r and s are larger, there occur exceptional cases, now for the
derivatives of u. So in order to have solvability results for a full scale of
values of r, we must include these cases in the study.

In the following, we set

r/s =q, 1e., s=r/q;
then the limiting cases for the consideration of (5.2) are the cases
=(q+1)/2, s=(g+1)2q=(1/g+1)/2, where ge€R,.

Let us take a fixed ge R, and define the integral

l2

r ‘ lo(x', 1) —u(y)
.

ve Qo (|x’ — y|q+ 1)1 +n/q

1o, v1=]

tel

dydo.dt  (53)

x'ely

for functions ¢(x’, ) on S and v(y) on Q, (¢, is the surface measure on
T'). When this integral is finite, we say that ¢ and v coincide at I' ;). Related
integrals (in W;;’"2 spaces) appear in [Sa-S] and in [L-S-U, p. 317].

THEOREM S5.1. (1) There is a constant C, such that when ue
HE+D2@+ 0240 then youe H¥*'V*(S) and rque HV*(R,,) coincide at
I, with

I[you, rou] < C, |lu illq*'l).'ltqvl),za(Q)- (54)



PARABOLIC BOUNDARY PROBLEMS 279

(2) There is a constant C, such that if o € H¥>'*(S) andve H"*(Q,,,)
coincide at I, ie., I[¢,v] < oo, then there exists ue H@*+ /3@ + 120
such that you= @ and rou=v and

Ilu” 3{'«’ 1) 2.4q+ IIZM(Q)< C2(|I(p||§ﬂ2.12¢5) + ||Ui|i1":(91opl + 1[(pv U]) (55)

(3) In particular, when @ € H¥*'*(S), it coincides with O at I, if and
only if g€ HY>'(S). In that case, there exists ue H'Y 24+ 124(0) with
you=¢ and rqu=0, ie., ugH}gf W2l 20Q). If v is given in H §H(2y)),
then there exists ue H'@* 24 * V20 with you=0 and rou=rv.

Proof. 1n local coordinates, (5.3) takes the form

I[o,v]= [ f JR

“reR, “x'¢R" |
l‘P(xl, tl)_ U(}"s }’n)|2
(I =y 1+ yp 40t

dy dx' dt, (5.6)

and we shall show that when oe H¥*'?(R" "'xR,) and ve H"}R"),
I[ @, v] is finite if and only if the following integral introduced in Grisvard
(Gri] is finite:

) dx’ dt
Ilo.el=] lotv.n s, o &5
dx' d
=qf lo(x', 19) — v(x', T))? *a (5.7)
R"
Observe that for ¢ >0,
I_, | dy' dy,
! R (|X — V|94 yig )+
dy' ds
=03 [ 4 (5.8)

R (X = W[ ) e
When g > 1, we insert the following decomposition in (5.6):
e(x, 1) —=o(y, y,) =[x, ) —v(x’, 1Y) ] + [v(x’, ") —o(¥', y,) ]

The first bracket gives I'[@, v] in view of the first formulas in (5.7) and
(5.8), and the second bracket gives an integral satisfying
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P tgy ’ 2
” o(x’, £79) —v(y', y)l dy dx’ di

' ”.( )’ \q+)’z+l’)l+"‘/q

=J‘I |U(X’, xn) (.} V,,)I Z—l
("= )17+ yi+ xi) e

lo(x', x,) — o(y', y,)I?
gcf j n " dy dx
xeR” “1eR (lx'_.".'|q+|x"_y"|q)1/q+n/q 4

| |5(x) ~ 5(p)I?
<C 1B =51,
J.\'FR" ji'ek" |x_y|l+n dy X

< CI uvh;]\'l(n’:);

dy dx’ dx,

here & denotes an extension of v to H'“?(R"), depending linearly and
continuously on v, and we have used (2.4) and (2.5). This shows that

I[(pa l)] S Cl(ll[(ps U] + ”l’” f/z)’

(5.9)
I'Np, 1< CyIlp, el +livl},)  for g=1;

in this sense the two integrals are equivalent.
When ¢ < 1, we insert instead in (5.6)

o(x', t)—o(y, ya)=Lolx', )= oy, )]+ [e(y, 1) —e(y, »7)]
+ Lo(y, yi) —o(y', ya))
The third bracket gives I'[ @, v] by the second formulas in (5.7) and (5.8),

with 7=y, and x' interchanged with y’. The first two brackets give
integrals estimated by

N !’ 2
m Iw(XI o(y', 1)l dx’ dydr

— 0

<c”j""(X”)_‘p(y”)lzdx'dy'dt

X =y
<Ci llglwan,

” lo(y', ) —o(y', y¥)
)y I

‘2

dx’' dydt

- , _ ' 2
c “jlwy,tlz_z(zy,sn dy’ dt ds

VAN

< C llol forn;
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here we have replaced y, by s“¢ and used that s"¢~'<(|x'— y'|9+
s+0)"~'and s+t>|r—s| for 5,teR, . Then we can conclude (cf. (2.7))

I[(p; U] < CI](II[(P, U] + ”(P“ ‘2,/2_1;'2)3
I'f{o,v]1< CyIle, 0]+ ll0l;, 1)  for g<L (5.10)
In view of (5.9) and (5.10), the theorem can be carried over to [Gri,
Theorem 6.1] (with r= (g +1)/2,s=(q+ 1)/2q). More precisely, [Gri]
shows the equivalent version of (1) and the surjectiveness in (2); then the

estimate (5.5) follows. Now consider (3). Here we use that by (5.8), we
have in local coordinates

| 2

_ lo(x', t) ,
.01 =[] oy
dx' dt
= )| 5.11
e [ lote 012 = (5.11)
and hence (cf. (2.12))
el i]:’éz'""z ~ ol i,qu.l.ﬂz +1I[e,0], (5.12)

which shows the first statement. The second statement is then a special case
of (2), and the third statement is an analogous version with the roles of S
and Q,, interchanged. |i

The integral (5.3) has the advantage over (5.7) that it shows explicitly
the invariant character of the coincidence condition.
Concerning higher order spaces, we have when ue H""¢(Q),

@;=yueH /7lR- Mgy for 0K j<r— 13,
v,=0ue H " 7%(Q ) for 0<i<r/g—13,
so if j+lg <r— (g +1)/2, then necessarily
ro@,@,=y,v,e H =/ =@ D2 ). (5.13)
and if j+/lg=r—(q+1)/2, then, with y denoting a function in C(Q,)
that is 1 on a neighborhood of I,

1[0)¢;, Diyv] < .

A combination of the proof of Theorem 5.1 and the general trace
theorem [Gri, Theorem 7.1] now gives immediately
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THEOREM 5.2. Ler r>0, g>0. The mapping

quu: {{)’ju}0s1<r— 1.2y {’oaﬁu}oskm l,r’Z} (514)

is continuous and surjective from H""4(Q) to the space of vectors
P = {{(PJ}0<j<r- 1:2» {vl}()s/<r/q 1,’2} satisfying

e H' 1RSI NS)  for 0<j<r—172,
veH M9 Q,,)  for 0<i<rig—1/2,

15)
rodi@; =0 for jHlg<r—(q+1)/2,
18,9, DigvJ<o0  for j+lg=r—(q+1)/2,
provided with the norm || ®| defined by
”¢|I2= Z |I(Pj ” i{'—l—l'll' 112040 8)
O0sj<r 12
+ Z l.|vl|| i{'--lq 42(()‘0))
O<i<rig 172
+ Y 102} ¢,, Diyv,]; (5.16)

JHlg=r—(q+1)2
and # has a continuous right inverse in these spaces.

The theorem is easily generalized to vector valued functions and sections
in vector bundles.

We shall also need an extension of the theorem to the more general
trace operators occurring in the pseudo-differential calculus. Let T=
{To, .., T4_,} be a system of trace operators as defined in the beginning of
Section 4, and assume that T is normal (this holds in particular if
Definition 4.1 (1) is satisfied). It means that for each /, T, is of the form

T,= Y S,v,+T, (5.17)

0<j <!

where S, is a surjective morphism of E|, onto F, (the S, with j </ being
ps.d.o’s from E|, to F, of order /—j) and T, is of class 0. Setting pu=
{you, .., y4_,u} (the Cauchy data of u on I" with respect to the order d),
we write

T=Sp+T, where S is the matrix S=(Sy)o<s,<as (5.18)

here we have set S,;=0 for j>/, considered as ps.d.o.’s of order /— .
We first remove the term T’ by use of the following reduction introduced
in [Gr2, Lemma 1.6.8]): One can find an operator A (of the form
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A=1+G’, where G' is a s.g.o. of order and class 0), such that A is a
homeomorphism of H'(L2, E) onto itself for all >0, and

T=Sp+T =SpA. (5.19)

A then also defines a homeomorphism of H™*(Q, E) onto itself for all r >0,
s20. When T’ =0, we just take 4 =1

Now if S is the restriction to I” of a (matrix formed) differential operator
S on €, this first reduction suffices. Otherwise we need the following
considerations:

Representing a neighborhood 2 of /" as /'x ]—46, [, we can lift the
vector bundles F, to bundles F{ over 2 and the psd.o’s S, on I to
operators Sj; going from Elsto F ¢ (defined as “constant” in the variable
s€ ]—46. [ and then carried over to the neighborhood of I" in R”); and
after truncations in the normal direction, we can view the sections Sju as
extended by zero to all of Q. This is an extension to an extra variable s
carried out in exactly the same way as the extension to the r-variable
described in Proposition 3.3, so we get operators Sj that are continuous
from H'(Q, E) to H' ~'*/(Q, E) for r=1—j>0; for |- j<0 they are 0.
(Note that H'(I'x =8, 6[)=L*(]=06,6[; H(IN))n H'(]1-9, 8[; L*(N)).)
We remark here that the extended operators Sj, are not ps.d.o’s on 3
unless the S, are differential operators, in which case the extensions can be
chosen as differential operators also.

Altogether, we can write

Tu=7,8;xAu,  where S;= Y S;D/,
0<jg!

foreach /e{0,..,d—1}. (5.20)

THEOREM 5.3. Let d be an integer >1 and let r>0, ¢>0. Let E be a
vector bundle over Q of dimension N, and let T={T,, .., T,_,} be a system
of normal trace operators T; of order j, going from E to bundles F; over I
of dimensions N;> 0. Introduce A, S¢, F{, and y as explained above, so that
(5.20) holds. The mapping

u—Ju= {{Tj“}osjo 12, <d> {roaiu}0<l<r/q— 12} (5.21)

is continuous and surjective from the space H""9(Q, E) to the space of
vectors of sections @ = {{Q,} o< <+ 12 j<ar {Vi}o<i<rqg-1/2} SQtisfying

(l) @€ H ~/ 12,(r j— l,/Z)/q(S, f;) for 0 <j<r— 1/2,j< d,

(ii) ve H' - 92Q Ey for 0<li<r/g—1/2,

505 87:2-6
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(iii) rodl@, =T, for j+lg<r—(q+1)/2,j<d,
(iv) I[0,¢,, SixAv] <0 for j+lg=r—(q+1)/2,j<d;
(5.22)

provided with the norm @\ defined by

H(D”2= Z ||(p/||i,,-,-1'z.u /—12i.'q(5‘!:’)

0<j<r 172
j<d

L2
+ z [ 4= 92 g0, E)
Osl<rig—12

+ Y 12,0, S xAv,]; (5.23)

JHig=r-(g+1)2
j<d
and T has a continuous right inverse in these spaces.

Proof. The continuity of 7 follows from the continuity properties
established in Lemma 2.1, Proposition 3.3, and Theorem 5.2.

We show the surjectiveness as follows: As accounted for in [Gr2,
Lemma 1.6.1], we can supply S with a diagonal matrix S’ =(S})o<;<a
where the S, are morphisms of E| onto certain bundles Z, over I, such
that

S 4
S= (S’)’ understood as §=(5)o</j<ar 3= (gf’)
1]

is bijective from [To<,; .y H ~/(El;) t0 [To<,<a H ~'(F,® Z,); note that §
is triangular. Here, moreover, the “diagonal part”, gdiag = (6,1.3,1-)%,‘ j<ds 18
a homeomorphism from [Joc ;.4 Elf t0 [Tog,<s (F/®Z,). We can then
supply Sp with the normal trace operator S'p and compose with (5)~',
obtaining that

p=(§)"<ss,’;):H'(Q,E)—> [1 H ' YALLE).  (5.24)

O<i<d

The construction extends to the neighborhood 2 of I', giving operators S}/,
32 mapping into sections in Z{, F¢ @ Z¢, etc. We denote S;*=S;7D/. The
operators and bundles extend as usual to the r-variable also. We define
moreover T;=y; for j=d,d+1, ..

Let w,= Av, for each /. We want to construct we H""4(Q, E) such that
T Suvw=e,forj<r—3, j<d, and roydiw=w, for I <r/q— ;. In order to
use the surjectiveness in Theorem 5.2, we shall supply the given section
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={@o; s ‘Pd 1) in @, _o, .. a-1 F; with a section y = {wo’ s Wy} In

@j 0. ,, 1 , and sections y;€ E| for d<j<r—3, such that the
section -! {(p, } in E|, together with the ¢, for j>d and the w,
satisfy the full compatibility conditions in Theorem 5.2. This means that we
shall choose the ¥, such that rodiy,=7y,S;w, (possibly in the sense of
coincidence) holds for j+lg<r—(g+1)/2, j<d, and ro(}‘ft//1=ij, holds
for j+lg<r—(q+1)/2, j2d This is a purely differential operator
problem. If r/qg — (9 + 1)/2g ¢ N, the y; can be chosen according to (2.16ii)
with Q replaced by S. If r/qg — (¢ + 1)/2q € N, we apply (2.16ii) to the initial
data w, themselves to find a section W in E with r,é! W=w,, and then we
take Y, =7y,S;*W for j<d and y,=y,Wfor j=d, j+lg<r—(q+1)/2

Altogether, we can supply the @, with sections ; in Z, resp. in E| -, so
that the sections (S)~' {é!e, 'y}, {¥,};54 match the w, at the corner
Ty (cf. (5.24)). Then Theorem 5.2 shows the existence of w with initial
values w, and vertical Cauchy data (3)~! {@, ¥}, {¥,};54:and u=A""'w
solves the original problem.

The continuity of the right inverse follows automatically. [

Remark 54. The formulation of the compatibility condition (5.221iv)
refers to the auxiliary operator A. Here one could use instead that the T
may be written as

T)=9,P, (5.25)

where the P; are ps.d.o.’s in S{, defined on a neighborhood of 2 (going
from E to F ¥) and having the transmission property at I, as shown in
[BM]. Then (5.22 iv) can be written in the form

Méle, (Stx+P)vl<oo  for j+lg=r—(g+1)2. (526)

As a corollary, we get a complete description of the interpolation spaces
between L*(2, E) and {ue HYQ, E)| Tu=0}, for general pseudo-differen-
tial trace operators, extending the result of Grisvard [Gri] for differential
trace operators and the result of Grubb [Gr2, Theorem 4.4.2, Remark 4.4.3]
for trace operators (5.18) with S differential:

COROLLARY 5.5. Let d be an integer =1, and let T={T,, .., T,_,} be
a normal system of trace operators as in Theorem 5.3. Let

H(Q,E)={ue H(Q, E)| Tju=0for0< j<s— 3}
Jor se[0,d],s—3¢Z, (5.27)
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it is a closed subspace of H*(Q2, E); and let (with auxiliary definitions as in
Theorem 5.3.)

H Y VYQ E)={ue H**V(Q,E)|T,u=0for 0< j<k,
dist(x, I') ™' SeyAue LXQ, F)}  for k=0,.,d—1, (5.28)
it is provided with the norm defined by
Ml 3 2y = Nl 4 1o+ Bdist(x, 1) 712 SgxAull g py- (5:29)
Then for any 6¢€ 10, 1[,
[H4(Q, E), LA(Q,E)]g=H 4R, E). (5.30)

Proof. We use the following characterization of the interpolated space
(cf. [Gri, Definition 2.2]):

vel[X, Y], if and only if

| (531)
t=rou forsomeueL*(R_.;X)nH"R,;Y).

Here [X, Y], has the norm induced from L3R, ; X)nH"?(R,;Y) by
the mapping r,:

2 3 2 2
“UH [X.¥Yla " 1nf{ feall LYXR.:X) + ”u” HIMOR, ) |rou= U}. (532)

Thus in the present case the interpolated space consists of the initial
values v=rqu of functions ue H*"?(Q, E) with Tu=0. Theorem 5.3
applies with r=d, ¢=20d, to show that such v are described by the
properties

ve H-9%Q, E)= H' ~94Q, E),
To=0 for j<d-(q+1)2=(1-0)d—1/2, (5.33)
I0, StxAv) <o for j=(1—0)d—1/2.

The last statement, that enters only when (1 —6) d— 1/2€ N, means that
SixAve H (4, F3) (cf. Theorem 5.1), and can therefore be reformulated
as the statement that dist(x, I') "'* S¢yAue LX(L, E); cf. (2.6). 1

Remark 5.6. By the use of (5.25), one can also write
H*'"(Q,E)={ue H**"*(Q, E)| Tju=0for0< j <k,
dist(x, I') ™' (85 + Py)ue L*(Q, F%)}
for k=0,.,d—1. (5.34)
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6. SOLUTION OF PARABOLIC PROBLEMS
With the operators P, G, and T={T,, .., T,_,} defined as in Section 4,

we finally consider the time-dependent problem in the “cylinder” Q=Q x /
with “vertical” boundary S =I"x I and “bottom™ Q:

(i) C,u+Pou+Gu=yf for (x,1)eQ,
(ii) Tu=¢ for (x,1)eS, (6.1)
(1) roU=ul,_o=U for xef2

Here 7= 10, b[, b < . Let us for brevity denote

Po+G=M. (6.2)

Since &, is of order 1 and P and G are of order 4, it is natural to consider
the problem for u in spaces of the type H""“(Q, E); here the operators have
the continuity properties:

PQ, G: Hr+d,ml«»l(Q’ E)"’H"’/d(Q, E)’
TJ: Hrrdrid+ I(Qq E)- Hr+d i-12(r+d—j 1."2),"d(S’ fj)’ (63)
ro: H'+d"'/d+](Q, E)—’H’+d/2(9, E),
for all r>0, by Lemma 2.1 and Corollary 3.5 with g=d.

Recall that some of the bundles F; may have dimension 0, and are then
only included for notational convenience.

It is of course necessary for the solvability of (6.1) in H"**"+Y(Q, E)
that the boundary data ¢, match the initial value u, as described in
Theorem 5.3:

ro@,= T,ug for j<r+d—(d+1)2=r+d2-1/2;
I[e;, S xAuy] < for j=r+dR2-12
(the latter condition only occurs when r+ (d—1)/2 is one of the integers

Jj€{0,..,d—1} for which F; is nonzero). But now we furthermore have to
take the equation (6.1 i) into account. It implies, successively,

ai+lu=_Maiu+aif; 1=01,... (6.4)

Applying r, and T, here, we find that when u solves (6.1), one must
necessarily have

ro@t ;= 1ol Tyu=T,(— Mroélu+ryélf), (6.5)
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whenever these expressions have a sense. To formulate this as a condition
purely on the data {f, ¢, u,}, we define successively the functions on Q

uO=uy, W= MU 4ré'f,  for 1=0,1,..; (66)
then (6.5) gives rise to the compatibility conditions
Tu"=rellg,, (6.7)

applied when the expressions have a sense.
Altogether, we can formulate the complete compatibility requirements as
follows:

DEerFINITION 6.1. Let reR, . A set of data

feH " (Q, E),
Qe Hr ¥/ Urd= UG Fy for je{0,..,d—1}, (6.8)
uoe H*4%(Q, E),

is said to satisfy the compatibility condition for (6.1) of order r, when the
functions 4'” defined by (6.6) satisfy

roll@;=Tw'"  for j+ld<r+d/2—1/2 dimF,>0,
10,9, SixAu'"} < for j+id=r+d/2—1/2,dim F,>0;
in the latter expressions the auxiliary operators from Theorem 5.3 are used.

Here we have used that when the data satisfy (6.8), then r, &’ fis defined
for I<r/d—1 and lies in H" "~ “?(Q, E) by (2.16ii), so

e H *94Q, E),..,u"e H ~“**}Q, E), ... for I<r/d+1/2;
(6.10)

and moreover, the r-derivatives of the vertical data satisfy
ai(PjE H’ dd— - V2 (r—td— - lr'l)/d(s’ _Fj) (61 1)
Our main aim is to show that when the parabolicity condition in
Definition 4.1 is satisfied, then the problem (6.1) has a unique solution in
Hr+474+ (g E) for any set of data(6.8) satisfying the compatibility

condition of order r. First we establish an auxiliary result that is valid
regardless of parabolicity:

PROPOSITION 6.2. Let M= Py,+ G, where P is a ps.d.o. of order d>0
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having the transmission property, and G is a s.g.o. of order and class d. Let
r=0. For any set of data

EI{r,r/d , E ,
4 Q. £) (6.12)
up€ H' +9%(Q, E),
there is a function we H"**"7“+*Y(Q, E) such that
red'w=u"  for 0<I<r/d+1/2,
(6.13)

(0, +M)w—fe HiQ, E),

where the u"") are defined from f and uy by (6.6). Here w can be chosen so
that one has estimates

[wll 3-1r+d-'/d+l(Q, E) + ||((7, + M)w _f“ i’(’b')/d(Q’ E)

<A i]r-'/d(Q, T llatoll 31'+d/2(g, E))' (6.14)

Proof. When r/d— 3 is not integer, this is a simple application of the
surjectiveness in (2.16ii). Then l,= [r/d—1] is strictly less than r/d— 3,
and the u satisfy

u®e H'**(Q, E), ..,ut* Ve H ~hi-d2(Q F)
for lo=[r/d—1/2] (6.15)
According to (2.16 ii) there is a we H™**"7“*+1(Q, E) with initial values
rodtw=u",  for 1=0,.,l+1; (6.16)

and since w can be chosen to depend linearly and continuously on the data,
we obtain the estimate of the norm of w in (6.14) by inserting the formulas
defining the u). These formulas also show that f'= f—0d,w— Mw has
initial values

red' f'=0 for 1=0,..1, (6.17)

and since /'€ H""%(Q, E), this means that /' e H(;{“(Q, E). Here the Hy/*
norm is equivalent with the H""7¢ norm, so (6.14) follows.

When r/d—3eN (ie., r/d—%=1,), this argument does not work, since
ro 0°f is not well-defined. But here we can take recourse to another device:
Add an extra variable x,, , €R, to the space coordinates, and regard Q as
the boundary of 0 =Q xR +» £ as the boundary of @=Q xR, Since
r=d/2>0, fe H*"“(Q, E) is the boundary value according to (2.16i) of a
function fe H +V2U+V2d(3 F) and uge H * %8, E) is the boundary
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value of a function &,e H *%?* " E); and the new functions can be
chosen to depend linearly and continuously on the given functions. Note
that

H(Q, EY=L¥R,;H (2, E)nH (R, ; LAQ, E)),
H™(Q,E)=L*R,; H™(Q, E))nH'(R, ; LXQ, E)).

For the operator M extended to the new spaces we find the continuity
properties, by use of (2.9), much as in Proposition 3.3:

M:L*R,;H " YQ,E) - LR, ; H(Q, E)),

M:H'(R,; HYQ,E))-» H' (R, ; L%, E)),  and hence
M:H 4, E)- H(Q, E);  and similarly

M:H" 474 Y(Q, E) » H™(Q, E),

for r>0. Since (r+4)/d~3=1,+1/(2d) is not integer, we are now in a
situation where the first part of the proof can be applied. This gives a
function we H"*+ 4+ 120 +d+ 1245 £y such that

rodl=ad"  for 0<I<ly=[(r+%)d—-1],

j_ @’V:v —Mwe H:(;) 1:2,(r 4+ l,r'2),’d(Q" E"),

and then w=W|_ ., solves the original problem. The estimates follow by
restriction to x,,, =0, using that f—d,w— Mw can be regarded as an
element of

s 1/2}/(1({} x J—ec, b[, E)
supported in {t>0}. |

We can finally show:

THEOREM 6.3. Let P, G and T={T,,..,T,_,} be as defined in Sec-
tion 4, and assume moreover that the system {é,+ P, + G, T} is parabolic,
so in particular d is even and N' = Ndj2. Let r > 0. Consider systems of func-
tions {f, @, uy}, given as in (6.8) and satisfying the compatibility condition
of order r for (6.1).

(1) Let I=10,b[, where be )0, oc[. The evolution problem (6.1) has
a unique solution u in H*'(Q,, E), and the following estimates hold:
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If r— 1 is not integer, then there is a constant C,, such that

”u”ilv-:l,nloltgh‘l;'SC/,‘,< Z ||(pj”il'1(f—/ 1ard oD, F))
O0<j<d

NV + Tl a2 ,) (6.18)

If r—3% is integer, then, writing r=ld+k+3—d2 with leN and
kelo0,..,d—1},

. 2 2
||u|| LHJJ.JH(QN!.;) < C;,‘, ( Z ||(P,'” HI=d- 1 12leed-y L4, ) + “f” H"" (0. £)
0<j<d
+ HUOHi,ud:z(_Q‘E]'*'1[@:(0;(, ‘A)_XAM(“]),
(6.19)

where the last term vanishes if dim F, =0.

(2) Let I=10, o[, ie, b=oc. If the real lower bound a, of the
spectrum (cf. Theoremd4.2) is >0, then (6.1) has a unigue solution in
H*NQ.., E), satisfying (6.18) when r — 3¢ N, resp. (6.19) when r — e N.

If ay<0, let p>|ayl. When the given data {f, ¢, u,} are merely such
that (6.8) holds for {e *'f,e "@,uy}, and the compatibility condition of
order r for (6.1) is satisfied, then (6.1) has a unique solution u with
e "ue H*'(Q, E); and e ~*'u satisfies the estimates (6.18) resp. (6.19) in
terms of {e *'f, e *'p, u,}.

(3) For each r, the operator norm of the solution operator

Ry {0, uy) —u

is non-decreasing as a function of b. Thus the constants in (6.18), (6.19), can
be chosen such that C, , < C,., for b< b’ < oc; here b' = xc is included when
a,>0.

Proof. According to Proposition 6.2 there is a function w such that
rodlw=u""" for 0<l<r/d+1)2,
f'=f-08w—MweH{Q, E),

and (6.14) holds. Since the u""’ coincide with the 8¢, at I'x {0}, the new
boundary values

(p/l =9, Tyw
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coincide with 0 at I"x {0}. Then if we introduce the new unknown function
u' = u — w, the original problem is reduced to the problem
o +Mu'=f" in Q,
Tu'=¢’ on S, (6.20)

rou'=0 on £,

where

SEHGUQ.E)L  o'e ] Hig? ' P20+ ) 1S F)

0< j<d

Since the spaces H f‘o’{" interpolate well, we only have to solve this directly
in some particular cases. In fact, we let r =0, d, 24, .... Consider me N. For

r=md,
(P,I € H((6n)+ Dd j-12m+ 1 jid- l/2d(S’ f/) for each j’

which means that @je "+ 7 l2m+l Jid-124(§ F)) and the 0},
coincide with 0 at ¢ =0 for / < m (note that j/d+ 1/2d ¢ N). By Theorem 5.3,
there exists w' e H'"*4m+1(0 E) (depending continuously on ¢’) with
Tw=¢; for j=0,.,d-—1 and r, o'w' =0 for I/<m; in particular,
w e Hm+Vam+Y(Q E) and d,w' + Mw € HE™(Q, E). Denoting
u'—w' =v, we can then replace the problem by that of finding
ve Hm*dm+1(0 E) such that

v+ Mv=g 10,
Tv=0 on S, (6.21)
rov=0 on £,
where g=f'—0,w' — Mw'e H;'(',‘{""(Q, E). Here the formula (6.6) gives

v(0)= o =U(’")=0,

so we are in fact searching for a ve H{g)* ""“”* (Q, E). The problem (6.21)
can then be formulated as a problem in L%(]— oo, b[ ; L*(£, E)).

3,5(1) + Ab(1)= (1)  for te]—cc,bl, (6.22)

where ¥ and g are the extensions by 0 on R , and 4 is the realization of
M defined by the boundary condition Tv =0, cf. (4.4).

Now let us restrict the attention to the case where b= co and ay,>0. We
shall use the Laplace transform method as described in Lions and Magenes
[L-M, Chap. 4], with some precisions of the kind made in Agranovi¢ and
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Vishik [A-V]. When f(¢) is a function on R, and f'is its extension by zero
on R _, we denote by f(& + i) the Laplace transform

o
0

f"(é+m>=jne-'é‘""](r)dz=f e () di

(the Fourier transform of e ““f(r)); this notation will also be used for func-
tions valued in a Hilbert space X. We denote £+ in=p. In view of the
Paley-Wiener theorem, the space of functions f € L%R . ; X) carries over to
the space of X-valued functions f(&+ i) holomorphic in p=¢+in for
>0 and with ||f(é+ir])|| 12R:X) uniformly bounded in &; in fact the
following norms are equivalent:

sup | I7E+ il dn > 1/ 12m. vy (6.23)
E>0

Since &' f(t) carries over to p'f(p) by the Laplace transformation, we have
moreover

Y osup [ 1+l UFC Il dn =1 e, (624)

O<igk £>0°R

for ke N. Applying the Laplace transform to (6.22) (cf. [L-M, A-V]), we
find the equation

(A+ p)i(p)= g(p), (6.25)

p=~E&+in, where the given properties of g carry over to the informations,
by (6.24),

sup [ <P 1PN a1y d < 00, SUPJ. 18(P)| 3imai ) AN < .

¢>0*R E>0R
Since @3>0, A+ p has an inverse (A+p) '=R ,:L*R, E) » D(A) for
all p with Re p > 0, satisfying (4.6) there (with A= — p). Thus for Re p >0,
(6.25) is solved (uniquely in D(A)) by

8(p)=(A+p)~' &(p),

which is holomorphic in {Re p> 0}, satisfying, by (4.6),
sup | (<P 1 16(p) gy + 18P i 14, 1)

(>0

<Csup [ (<Y NP+ 18P St ) i
E>0

> | gl umimg £y (6.26)
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Let & be the inverse Laplace transform of §, then we conclude that it is
supported in {s>0} and its restriction v to R, lies in H{g)* """~ Y(Q, E),
with the norm estimated by the right hand side of (6.26).

This shows the solvability of (6.22), hence of (6.21), (6.20), and (6.1), for
r=md, meN (in the case b= oc, a,>0). So there is a unique solution in
H*'(Q, E) (at least) for any r. We shall show that it satisfies the estimates
(6.18), (6.19).

By interpolation between the values m=0, 1, 2, .., we get the continuity
of the solution operator & for (6.20),

P {fl, (p/}eH&)ri/d(Q’ E)X H H;J)d F-124rtvd .1/2),’:1(S, _F/)

0<j<d

—u'e Hig 4™ (Q, E), (6.27)

(0)

forall reR,, cf. (2.13).
Then we have for u=u'+w, cf. (6.14) and (6.27),
Neall 3gr - ara-1 S 2 W5 dra-r + 2 Wl G drae
2w y=drar + 2 Wl g vana-
(0}
<C(||f'|lf,'-'-d+||¢ Ify g omrorva - vavd 4 | f || 3grr a4 llhoil e+ a2)
SCilllg = Twlify g o r2eea ot || fll e at ol a2).
When r — 3¢ N, the H{y norms in the above estimates are like H°* norms,
and we get (6.18) by a simple use of continuity properties of T and (6.14).

Otherwise, let r=1d+k + 3 —d/2 for some /eN and ke {0, ..,d—1}. The
only nonstandard contribution is

2
low — Tiwl HE IR g By
2 (™ A 2 dr
~ o — Tewll ,,,d.d.z.,‘,:(s__“,+J0 16 (@, — Tew)| Tur

cf. (2.12). We have in local coordinates, using (5.8), (5.20), (6.9), and
(6.13),

dx' d
[ ] 1enes - Tonr, i 22
R, ‘R-!

. ! "y Nt
=c|j I Ia,(qfk(x . td) Y}W(xl,J)dl dy dx’ dt
te R x'eR" “'»sR (|x -—}’I +,V +t) /

__ Qe ) 2
<2, ”k/,wk(x 1) — S xAu (y()ll dy dx’ di
Y04+ ya+nttm

|5 T.w(x', t) "7Au“’(y)|2 ,
JJ.‘ (|i }l -+—y +1)1+n/d dde dl
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Thus

(T dx’ dt
J, | 16oule’s )= Tiwte', ) ==

< CoUI[ @4, S5 7Au" ]+ I[E Tyow, SE2Au"]).

The last term here is estimated by Ci(l|lugll g2+ | f ] yrre), since u'” =
ro 0w and w satisfies (6.14). Collecting the terms, we find (6.19).

If ¢, <0, and p > |ay|, then a replacement of u by u, =e *“'u carries (6.1)
over into the problem

éu,+(M+p)u,=f,,
Tu,=o,, (6.28)

rou‘,=u0,

where f,=e ?fand ¢,=e “¢. Then the statement in the theorem follows
immediately from the preceding case.

Finally, let b < oco. Here there are continuous extension operators from
H""Q,, E) to H""(Q_., E), mapping into functions supported in Q,,,
say (so that also exponential estimates are valid); and there are similar
extensions for the spaces over S,. We can then apply the preceding results
to the extended functions and restrict back to @, afterwards; this gives the
estimates (6.18)-(6.19).

To see that the norm of #, increases with b, we denote the norm of
{f, o, uo} indicated in the right hand side of (6.18) resp. (6.19) (taking the
square root) by N, (f, ¢, up). Then

| Al = SUP{ RS, @, uo)ll II"""(Qh,!:')le,r(.[,- 0, ug) <1 }

Let b’ > b; then for any set {f, ¢, u,} given over I, with N, ,(f, o, ug) <1,
there is a set {f', ¢’ u,} over I, extending {f, @, u,}, such that
N(f', @', ug) <1 (cf. (2.1)). Then
12,1 = sup{|R,(/. @, Uo)ll srrti0,. 1| N (S @5 ug) < 1}
= SUP{ | (S, @, ug)l H'-"J(Q,,,l_-:)l {_fs @, u()}
has ext. with N, (f", @', ug) < 1}
<sup{ 1%, (f', @, uy)ll Hrdi oy )| No (f' 0 up) <1}
= || Ry |-

When a,> 0, #__ also has a finite norm, so the case #' = oo can be included
then. |
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In a recent work, Purmonen [Pu] has treated a more general type of
parabolic pseudo-differential initial-boundary problems with &, entering in
higher powers, on the basis of the estimates in [Gr2], with a systematic
formulation in terms of exponentially weighted spaces (and with some
exceptional parameters).

7. EXTENSIONS AND COMPLEMENTS

Of special interest is the solution operator U: ug(x)+ u(x, t) for the
problem where f and ¢ are 0,

du+ Mu=0 in Q,
Tu=0 on S, (7.1)

r0u=u0 OnQ.

It is easy to show that the solutions of (7.1) are C* up to the vertical
boundary for ¢ > 0. In fact one has:

THEOREM 7.1. Let r=0, and let u be the solution of (6.1) for a set
of data {f, ¢, uy} according to Theorem63. If feC>(Qx1, E) and
@€llocj<a C(I'x L F)), then ue C*(2x1, E).

In particular, the solution operator U for (1.1) maps H¥*(Q, E) into
C*(Qx1E).

Proof. Let I=10,b[, and let Iy= [a,, bo], where 0 <ay<by<b; we
shall show that ue C*(22 x I, E). For this purpose, let {n,(f)},.~ be a
sequence of functions in C g () such that n,, ,n,=n,,, and 5, =1 for
all k. When u is the solution of (6.1) with data {f, @, ue}, then
ue H*44+1(Q, E), and n,u solves

G, +M)nu)=n,f+nu  inQ,
T(n,u)=n,o on S,
ro(’,ku)=0 OnQ

for each k, where n,fe), g, Hig/(Q, E) and n,0€lloc;<aNscr,

HS4(S, F)). Since noue H'*474+1(Q, E), we find by Theorem 6.3 that

nou€ Hg**"“**(Q, E). Now since n, is 1 on suppn,, i,

Co+Myme o u=n4 o [+ =0 o f + M s Mitt for each k.
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Then Theorem 6.3 gives successively

nue Hr+3d.r/d+ J(Q, E), o N UE Hr+(k+2)d,rw‘d+k+2(Q’ E), ...,

so we conclude that uis C* on @x1,. |

However, the smoothness at 1 =0 will of course depend on r.

In order to describe the compatibility condition of order r for {0, 0, u,},
we recall the definition of H%.(£2, E) in (5.27) and (5.28) for 0 <s<d (cf.
also (5.34)), and set, for me N, 0<s<d,

H7P(Q, E)={ue H™*(Q, E)|M*ue H}(Q, E)
forO<k<m, M™ue H(R, E)}. (7.2)

We note here that the spaces H?. ,,(£2, E) form a full interpolating family:

THEOREM 7.2. For all r>5>0 and all 6€ 0, 1[,

[H7(Q, E), H7 (@, E)]o=HG " **(Q, E). (7.3)

Proof. Let r=md for an integer m> 0. Then since I" is noncharac-
teristic for P (the principal symbol in local coordinates at the boundary is
of the form

PAUX, 0,8, E,) = 5,(x") &+ O(KE HCEDH )

with an invertible coefficient s,(x’')), the system {7, TM, .., TM™ '} is,
like 7, a normal system of trace operators, now of orders up to md— 1.
Corollary 5.5 shows (7.3) in this case for any s, and the statement for
general r follows from the reiteration property of the interpolation (cf. e.g.,
[L-M, Theorem 1.6.1]). |

Now it is clear from (6.6) and (6.7) that {0,0, u,} satisfies the com-
patibility condition of order r for (6.1) precisely when uye H';. (2, E). We
observe moreover that when u solves (7.1), u(t) is a well-defined element of
C™(Q, E) for each 1>0 by Theorem 7.1, and hence, since u(t,+1)is C*
for (x,1)e 2 x [0,b—1,[ and solves the problem (7.1) there with initial
value u(t,), one has that

u(to)e (| Hy (2, E)= CF (2, E) for 1,>0; (7.4)

520

here we have introduced the notation C§ (£, E) for the Fréchet space of
C* functions satisfying al/l compatibility conditions (6.7) with =0, ¢ =0.



298 GRUBB AND SOLONNIKOV

The problem (7.1) can be viewed more abstractly as a problem for
u(t): t+— D(A),

du(t)y+ Au(t)=0 for >0,

u(0)=u,. (75)
So far, we have solved it for u,e H%. (2, E) with 5> d/2 (and shown that
d,, applied at first in a Sobolev space sense, is really taken in a C™ sense
in ). But this can be extended down to s>0. We assume in the following
for simplicity that the real lower bound of the spectrum a, (as defined in
Theorem 4.2) is positive, since this can always be obtained by a reduction
as in (6.28). Then, in particular, 4 is bijective from D(4) to L*(%, E).
Moreover, 4 maps H{' V¥, E) homeomorphically onto H74,(L, E) for
all meN, and therefore one has by interpolation

A:H5 (Q, E) - HY (2, E)  homeomorphically, forall s>0. (7.6)

We also take I=R,, since the results for finite intervals can be deduced
from this case.

First, consider 0 < s < d/2. When u, is given in H%.(, E), let vy= A4 ~'u,;
it lies in H%%3(€2, E), and hence (7.5) with initial value v, has a (unique)
solution ve H>¥?+=32+s4( E); here r,v=v(t) is as in (7.4) for +>0.
Setting u = Ave HY>*=12+54(Q E), we see that it solves (7.5) with initial
value u,; the first line holds since the functions are in fact in C*(I; D(A™))
for any meN, and the initial value is assumed in the sense of (2.161i).

Next, let s=0. For ue L%(R, E) we can again take the solution v of the
problem (7.5) with initial value vo=A""uoe H4(Q, E), and then define
u=Av to be the solution with initial value u,. But here, since
ue H¥>2(Q, E) only, the initial value is (at first sight) assumed only in an
abstract sense. If M were a differential operator, we could use that M then
maps L*(I; HY*(R, E)) continuously into L*(I; H™ “*(Q, E)) so that, since
0,u= —Mu,

we LXI, H*(Q,E)) and  d,ue LI, H-"X2, E))
imply  ueC°I L¥(Q, E)),

cf. (2.18), with u(0)= Av(0)=u,. However, the present operators M =
P,+ G only map H'(R, E) into H ~%(Q, E) for r>[—1, where [ is the
class of the singular Green operator G; it can be any integer between 0 and
d. Other special arguments can be invoked when A is variational (ie., is a
realization of M defined from a coercive sesquilinear form, cf [Gr2,
Section 1.7]).
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At any rate, thanks to the fact that the resolvent satisfies the estimates
(4.6) not only in a halfplane {Re A<a,— 6}, but also on rays {i=re®}
with +0 =n/2 —¢, cf. (4.8), we can involve another theory that is valid for
all our realizations A, namely the theory of holomorphic semigroups (cf.,
e.g., Hille and Phillips [H-P], Friedman [F]; and [Gr2, Sect. 4.1]). Here
we define the family of bounded operators U(t) in L*(2, E) by

U(r) = J’ e #R;di for 1>0, U©0)=I, (7.7)

i
2n 73
where % is a curve in C going around the spectrum of A in the positive
sense (e.g., % can be the boundary of #; in (4.8)). U(¢) extends to an
operator valued holomorphic function of re {zeC\{0}||argz|<¢,},
where ¢, is as in (4.7). It is well known that (7.5) has the solution

u(t)=U(t)uge CUI; LX(Q, E))n C°(I; D(A))n C(I; LXK, E)); (1.8)

and the solution is unique in this space. As soon as 7> (), the solution is
very smooth; it is in fact holomorphic in {re C\{0}||arg | <¢,} with
values in D(A4™), for any m > 0.

Since A~ 'U(t)= U(t) A", the solution of the problem with initial value
vo=A ‘'ugis A 'U(t) uy; this must coincide with v(¢) constructed further
above, since v(t) is in CO(I; L3, E))n C*(I; D(A™)), all m, cf. (2.17).
Applying A, we see that the solution ue H¥*'%(Q, E) constructed above
equals the semigroup solution. In particular, ue C°(f; L8, E)).

Similarly, the solutions with more smooth initial data use H?. ,,(£2, E)
constructed above equal the semigroup solutions, so we can take advan-
tage of all the general results known in connection with holomorphic semi-
groups, when we study our solutions.

We only do this when it is useful to us, not for its own sake—for exam-
ple, the use of fractional powers 4°, which is customary in some treat-
ments, seems to be much too circumstantial, now that we already have a
solvability theory for a full scale of interpolating spaces H*. ,,(£2, E), s> 0.
(The precise characterization of the fractional powers 4 is a complicated
affair; see [Gr2, Sect. 4.4] for some partial results. Note that their domains,
at least in the selfadjoint case, are completely characterized by
Corollary 5.5 above, as the H5. ,, spaces.)

To sum up, we have shown:

THEOREM 7.3. Let ay>0, and let I=R,. For any s=0, any
uy e HY. , (Q, E), there is a solution of (1.5) in the space

ue H#2+=12+540 EYyn COR , ; HY (2, E))n C=(R, ; C £ ,(2, E));
(7.9)

SOS 8727
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in fact the solution is holomorphic in {te C\{0}||arg t| <&,} with values in
C% (2, E). The solution is unique in the space defined in (1.8); and for
s>dJ2 it is unique in H*'(Q, E).

For ay <0, there is a solution u such that similar statements hold for e~ *'u,
p>lag.

We can also obtain estimates of norms of u(¢) for 1 - 0.
THEOREM 74. Let r=2s520. Let a,>0, and let I=R_. There is a

constant C>0 such that when u(t) solves (7.5) with initial value
uo€ Hy (2, E), then

WOl s 0y SCE Y Nl s iy Sforall >0, (7.10)

When a, <0, the inequality holds with C replaced by Ce”*, where p > |a,|.

Proof. Let ay>0. It is well known from the semigroup theory (cf., e.g.,
[F, Sect.2.2]) that the L? operator norms of A™U(t) satisfy

|A7U()| < C,t ™™, forall >0, all meN. (7.11)
When m and ke N, m =k, then by (7.6) and (7.11),

NU(t) toll ypa, < C, | A™U(8) o]l 2= Cy | 4™ ~*U(t) A¥uo 2
S Cot ™ Jlugll wd »  for uge H%\(Q, E).
Interpolating between m and m + 1 and between k and k + 1, we find
NU(E) ttoll pymaze < C3t ™™ * gl pyaae,
for 0<o<d, u,eHY}(Q,E), (712)

which shows (7.10) when r — s is an integer multiple of d.

Now let r>s>0. Choose e ]0, 1[ and k integer such that r — s = 6kd.
Then in view of (2.3) and (7.12),

VT(E) sty , = V() ol g < C NU(E) g Sy NUCE) iz,

< Colt™ Jugl s ,)° Mol 1z = Cst ™~ gl ,»

which completes the proof of (7.10).
If a,<0, we replace U(¢) uy by e *'U(t) uy with p > |a,|, which solves
the analogous problem for 4 + p, cf. (6.28). {

Besides having an interest in themselves, these estimates are useful in the
treatment of nonlinear generalizations of the parabolic problems.

U(t) can of course be studied further—for its kernel structure and
asymptotic trace formulas see [Gr2].
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We end by showing some improvements concerning exponentially
decreasing solutions.

First, when a,>-0, we can shift M a little bit by replacing u by e 'u for
a, € ]0, ao[, so that M is replaced by M — a,, still an operator with positive
lower bound of the spectrum; thus the solutions satisfy

|U() gl 12 < Coe ™" Nl 2 forall 120,

N UG gl gy, < gt e Nlugllyy,  forall £>0, r>s>0.
(7.13)

It is perhaps more interesting that when a,<0, we can also get exponen-
tially decreasing solutions, now for u, in a subspace V of L*(L, E) of finite
codimension. In fact we can in both cases get solutions that decrease
exponentially as fast as we like, for u, in a subspace of finite codimension.

THEOREM 7.5. Let I=R, and let a, be a given real number. There is a
decomposition of X =L*(2, E) into closed subspaces V and W satisfying
(4.10), and an integral operator & with finite rank and C* kernel (of the
form (4.20)-(4.21)), such that the solution operator U, :uyg+— u for the
parabolic problem

S u+ Mu+ SLu=0 in Q,
Tu=0 on S, (7.14)
rou =1, on £
satisfies, for all r2s5=0,

IIU,(t)uOII,,rMSC,‘Mlt“"’”de“'"IIuOII,,sT‘M forall t>0. (7.15)

Proof. Ordering the mutually distinct eigenvalues as in (4.9), we let k'
be the first number such that Re 1,.>a,; then Theorem 4.3 provides us
with ¥V, W, and & such that the lower bound of the spectrum of
Ag=A+ % is >a,, when for B we take, e.g., B=(a, + 1)1 on W. Since &
is a negligible ps.d.o. (a ps.d.o. of order —o0), the principal part of the
operators is unchanged, and the parabolic theory applies to the problem
(7.14), defining a solution operator U, that can also be expressed as the
semigroup U,(t) solving

Ju(t)+ Agu(t)=0 for >0,
u(O) = Uy.

(7.16)

In particular, (7.15) follows from the discussion preceding the theorem. |



302 GRUBB AND SOLONNIKOV

COROLLARY 7.6. For any a, € R there is a closed subspace V of L*(2, E)
of finite codimension, such that the solutions u(t) of (7.1) (or (7.5)) with
initial values uye V satisfy, for all r2s >0,

lu(Oll < Croat "7 W™ Nugh s, Sforall ¢>0. (7.17)
Proof. We take V and Ag=A4+% as in Theorem 7.5. For 4 outside

c(A) U a(Ap), the resolvents (45—4)"! and (4 —1)"! coincide on V, in
view of (4.10) and the construction of 4. Thus for uge ¥,

U(t) u0=2—’nLeW(A —2) Vg di

=i'[ge"“(AB—i)‘luo di= U,(t) uo, (7.18)

where € goes around o(A4) v a(A4g). Then (7.17) follows from (7.15). §

We refer to Remark 44 for some observations concerning optimal
choices of &.
Also the results on the problem

du+Mu=f inQ,
Tu=0 on S, (7.19)
rou=0 on 2,
can be improved in this way. Take for simplicity a, =0, and choose V" and
& according to Theorem 7.5; then the solution u of

Ju+Mu+SPu=f inQ,
Tu=0 on §, (7.20)

rou=0 on £2,
with f given in Hj{%(Q, E), satisfies ue H{g;*"“*'(Q, E), with an estimate

llall Hig 4 Y0, F) <C, |If H"0.B) (7.21)

Here u is determined from f by Laplace transformation of the resolvent, as
described in the proof of Theorem 6.3. Now if f takes its values in ¥, more
precisely, if

feL’R,;H(2,E)nV)nH{'(R 5 V), (7.22)
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then X can be replaced by V in (6.24), and (4,+ p)~' coincides with
(A+ p)~'on V, so we find that u solves (7.19), and

ue LR, H * 42, E)aV)nH** ' (R, V). (7.23)

When a, is general, V and & are chosen such that Az;—a, has its
spectrum in {Re A>0}; then for any 6 <a,,
e ull HG437 10, £) <C, je’f Hig%0.6) (7.24)
We formulate the consequences for (7.19) in a theorem:
THEOREM 7.7. Let =R, and let a, be a given real number. There is a

closed subspace V of finite codimension, invariant under A in the sense that
A(D(AYn V)<V, such that when [ is given with

efel’(R,;H (2, EYnV)AnH/ R, ; V) (7.25)
for some r 20, 0 <a,, then the solution u of (7.19) satisfies
eue )R, ; H*4Q2,E)n V)" H* (R, ; V), (7.26)

and the estimate (7.24) holds. In particular, it holds with 6 =0 if a, 2 0.
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