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This work contributes in two areas, with sharp results, to 
the current investigation of regularity of solutions of heat 
equations with a nonlocal operator P :

Pu + ∂tu = f(x, t), for x ∈ Ω ⊂ R
n, t ∈ I ⊂ R. (*)

1) For strongly elliptic pseudodifferential operators (ψdo’s) 
P on Rn of order d ∈ R+, a symbol calculus on Rn+1 is 
introduced that allows showing optimal regularity results, 
globally over Rn+1 and locally over Ω × I:

f ∈ H
(s,s/d)
p,loc (Ω × I) =⇒ u ∈ H

(s+d,s/d+1)
p,loc (Ω × I),

for s ∈ R, 1 < p < ∞. The H(s,s/d)
p are anisotropic Sobolev 

spaces of Bessel-potential type, and there is a similar result 
for Besov spaces.
2) Let Ω be smooth bounded, and let P equal (−Δ)a (0 <
a < 1), or its generalizations to singular integral operators 
with regular kernels, generating stable Lévy processes. With 
the Dirichlet condition suppu ⊂ Ω, the initial condition 
u|t=0 = 0, and f ∈ Lp(Ω × I), (*) has a unique solution 
u ∈ Lp(I; Ha(2a)

p (Ω)) with ∂tu ∈ Lp(Ω ×I). Here Ha(2a)
p (Ω) =

Ḣ2a
p (Ω) if a < 1/p, and is contained in Ḣ2a−ε

p (Ω) if a = 1/p, 
but contains nontrivial elements from daHa

p(Ω) if a > 1/p
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(where d(x) = dist(x, ∂Ω)). The interior regularity of u is 
lifted when f is more smooth.

© 2018 Elsevier Inc. All rights reserved.

0. Introduction

There is currently a great interest for evolution problems (heat equations)

Pu(x, t) + ∂tu(x, t) = f(x, t) on Ω × I, Ω open ⊂ R
n, I = ]0, T [ , (0.1)

where P is a nonlocal operator, as for example the fractional Laplacian (−Δ)a (0 <
a < 1) or other pseudodifferential operators (ψdo’s) or singular integral operators. For 
differential operators P , there are classical treatises such as Ladyzhenskaya, Solonnikov 
and Uraltseva [30] with Lp-methods, Lions and Magenes [33] with L2-methods, Fried-
man [11] with L2 semigroup methods, and numerous more recent studies. Motivated 
by the linearized Navier–Stokes problem, which can be reduced to the form (0.1) with 
nonlocal ingredients, the author jointly with Solonnikov treated such problems in [24]
(for L2-spaces) and [17] (for Lp-spaces). In those papers, the operator P fits into the 
Boutet de Monvel calculus [5,15,16,19], and is necessarily of integer order.

This does not cover fractional order operators, and the present paper aims to find 
techniques to handle (0.1) in fractional cases. Firstly, we treat ψdo’s without boundary 
conditions in Sections 2 and 3, where we introduce a systematic calculus that allows 
showing regularity results globally in Rn+1, and locally in arbitrary open subset Σ ⊂
R

n+1, in terms of anisotropic function spaces described in detail in Appendix A:

Theorem 0.1. Let P be a classical strongly elliptic ψdo P = OP(p(x, ξ)) on Rn of or-
der d ∈ R+. Let s ∈ R, 1 < p < ∞. Then P + ∂t maps H(s+d,s/d+1)

p (Rn×R) →
H

(s,s/d)
p (Rn×R).
1◦ Let u ∈ H

(r,r/d)
p (Rn×R) for some large negative r (this holds in particular if 

u ∈ E ′(Rn+1) or e.g. Lp(R; E ′(Rn))). Then

(P + ∂t)u ∈ H(s,s/d)
p (Rn×R) =⇒ u ∈ H(s+d,s/d+1)

p (Rn×R). (0.2)

2◦ Let Σ be an open subset of Rn+1, and let u ∈ H
(s,s/d)
p (Rn×R). Then

(P + ∂t)u|Σ ∈ H
(s,s/d)
p,loc (Σ) =⇒ u ∈ H

(s+d,s/d+1)
p,loc (Σ). (0.3)

The analogous result holds in Besov-spaces B(s,s/d)
p , and there is also a result in 

anisotropic Hölder spaces that can be derived from (0.3) by letting p → ∞.
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A celebrated example to which the above theorem applies is the fractional Laplacian

(−Δ)au = Op(|ξ|2a)u = F−1(|ξ|2aû(ξ)), also defined by

(−Δ)au(x) = cn,aPV

∫
Rn

u(x) − u(y)
|x− y|n+2a dy,

(0.4)

which has interesting applications in probability, finance, mathematical physics and dif-
ferential geometry. Along with (0.4), one considers more general translation-invariant 
singular integral operators

Pu(x) = PV

∫
Rn

(u(x) − u(x + y))k(y/|y|)
|y|n+2a dy, (0.5)

with k(y) even and positive on Sn−1 (cf. e.g. the survey of Ros-Oton [37]); they are 
infinitesimal generators of stable Lévy processes. Further generalizations with nonho-
mogeneous or nonsmooth kernels are also studied. When k ∈ C∞, the operator (0.5) is 
a ψdo of order 2a with positive homogeneous symbol p(ξ) even in ξ, and Theorem 0.1
applies with d = 2a.

We underline that the above regularity results apply not only to such operators, 
but also to x-dependent ψdo’s, and to ψdo’s with complex symbol, without special 
symmetries and with a different behavior at boundaries (no “transmission property”). 
(An example is the square-root Laplacian with drift (−Δ) 1

2 + b(x) · ∇.)
For (0.5), regularity questions for solutions of (0.1) have been treated recently by 

Leonori, Peral, Primo and Soria [32] in Lr(I; Lq(Ω))-spaces, by Fernandez-Real and 
Ros-Oton [10] in anisotropic Hölder spaces, and by Biccari, Warma and Zuazua [3] for 
(−Δ)a in Lp-spaces valued in local Sobolev spaces over Ω. Earlier results are shown e.g. 
in Felsinger and Kassmann [9] and Chang-Lara and Davila [7] (Hölder properties), and 
Jin and Xiong [28] (Schauder estimates); the references in the mentioned works give 
further information, also on related heat kernel estimates.

The second aim of our paper is to obtain a global result in Lp Sobolev spaces for 
the heat equation (0.1) for (−Δ)a or (0.5), with Dirichlet boundary condition on a 
bounded smooth domain Ω, giving a detailed description of the solution. By combining 
the characterization of the Dirichlet domain obtained in [21] with a semigroup theorem 
of Lamberton [31] put forward in [3], we show in Section 4:

Theorem 0.2. Let 1 < p < ∞. When P = (−Δ)a, or is an operator as in (0.5) with 
k ∈ C∞, and Ω ⊂ R

n is bounded smooth, then the evolution problem

Pu + ∂tu = f on Ω × I,

u = 0 on (Rn \ Ω) × I,

u = 0 for t = 0,

(0.6)
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has for any f ∈ Lp(Ω × I) a unique solution u(x, t) ∈ C0(I; Lp(Ω)), that satisfies:

u ∈ Lp(I;Ha(2a)
p (Ω)) ∩H1

p (I;Lp(Ω)). (0.7)

Here Ha(2a)
p (Ω) is the domain of the Dirichlet Lp-realization PDir,p of P and equals 

Ḣ2a
p (Ω) + V , where V = 0 if a < 1/p, V ⊂ Ḣ2a−ε

p (Ω) if a = 1/p, V ⊂ daH
a

p(Ω) if 
a > 1/p (here d(x) = dist(x, ∂Ω)).

For the time-dependent problem, this precision is new.
An application of Theorem 0.1 2◦ gives moreover:

Corollary 0.3. Let u be as in Theorem 0.2, and let r = 2a if a < 1/p, r = a + 1/p − ε if 
a ≥ 1/p (for some small ε > 0). Then for 0 < s ≤ r,

f ∈ H
(s,s/(2a))
p,loc (Ω × I) =⇒ u ∈ H

(s+2a,s/(2a)+1)
p,loc (Ω × I). (0.8)

For larger s, the local regularity (0.8) can be obtained via Theorem 0.1 2◦ if one knows 
on beforehand that u ∈ H

(s,s/(2a))
p (Rn × I).

Plan of the paper Section 1 gives some definitions and prerequisites. The definitions 
and properties of anisotropic Sobolev spaces (of Bessel-potential and Besov type) are 
collected in Appendix A. In Section 2 we show how an anisotropic symbol calculus can be 
introduced, that covers the operators P +∂t with a pseudodifferential P of order d ∈ R+. 
Section 3 gives the proofs of the global and local regularity stated in Theorem 0.1. In 
Section 4 we start by introducing some further prerequisites needed for the global results 
on a bounded smooth subset, and then give the proof of Theorem 0.2.

1. Preliminaries

We shall use the notation set up in [21], also used in [20,22], and will just list some 
important points here.

The function 〈ξ〉 equals (|ξ|2 + 1) 1
2 . The Fourier transform F is defined by û(ξ) =

Fu(ξ) =
∫
Rn e−ix·ξu(x) dx; it maps the Schwartz space S(Rn) of rapidly decreasing 

C∞-functions into itself, and extends by duality to the temperate distributions S ′(Rn).
A pseudodifferential operator (ψdo) P on Rn is defined from a symbol p(x, ξ) on 

R
n × R

n by

Pu = OP(p(x, ξ))u = (2π)−n

∫
eix·ξp(x, ξ)û dξ = F−1

ξ→x(p(x, ξ)Fu(ξ)), (1.1)

using the Fourier transform F . We refer to textbooks such as Hörmander [26], Taylor [45], 
Grubb [19] for the rules of calculus (in particular the definition by oscillatory integrals 
in [26]). The symbols p of order m ∈ R we shall use are generally taken to lie in the 
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symbol space Sm
1,0(Rn × R

n), consisting of C∞-functions p(x, ξ) such that ∂β
x∂

α
ξ p(x, ξ)

is O(〈ξ〉m−|α|) for all α, β, for some m ∈ R, with global estimates for x ∈ R
n (as in 

[26] start of Sect. 18.1, and [18]). P (of order m) then maps Hs
p(Rn) continuously into 

Hs−m
p (Rn) for all s ∈ R (cf. (1.4)). P is said to be classical when p moreover has an 

asymptotic expansion p(x, ξ) ∼
∑

j∈N0
pj(x, ξ) with pj homogeneous in ξ of degree m −j

for |ξ| ≥ 1, all j, and

p(x, ξ) −
∑

j<J
pj(x, ξ) ∈ Sm−J

1,0 (Rn × R
n), for all J. (1.2)

P is then said to be (uniformly) elliptic when |p0(x, ξ)| ≥ c|ξ|m for |ξ| ≥ 1, with c > 0. 
To these operators one can add the smoothing operators (mapping any Hs

p(Rn) into ⋂
t H

t
p(Rn)), regarded as operators of order −∞. Sm

1,0(Rn × R
n) will also be written 

Sm
1,0(R2n) for short.
Formula (1.1) will also be used in some cases of more general functions p for which 

the definition can be given a sense, for example in case of the symbol (〈ξ′〉 + iξn)t in 
(4.2), the anisotropic symbols in Definition 2.1, the symbol |ξ|a in Example 2.10.

Recall the composition rule: When PQ = R, then R has a symbol r(x, ξ) with the 
following asymptotic expansion, called the Leibniz product:

r(x, ξ) ∼ p(x, ξ)#q(x, ξ) =
∑
α∈Nn

0

Dα
ξ p(x, ξ)∂α

x q(x, ξ)/α!. (1.3)

We shall also define ψdo’s on Rn+1 with variables denoted (x, t), the dual variables 
denoted (ξ, τ). The symbols h(x, t, ξ, τ) may satisfy other types of estimates with respect
to (ξ, τ) than the Sm

1,0 estimates mentioned above. To distinguish between operators on 
R

n and Rn+1, we may write OPx(p(x, ξ)) resp. OPx,t(h(x, t, ξ, τ)).
The standard Sobolev spaces W s,p(Rn), 1 < p < ∞ and s ≥ 0, have a different 

character according to whether s is integer or not. Namely, for s integer, they consist of 
Lp-functions with derivatives in Lp up to order s, hence coincide with the Bessel-potential 
spaces Hs

p(Rn), defined for s ∈ R by

Hs
p(Rn) = {u ∈ S ′(Rn) | F−1(〈ξ〉sû) ∈ Lp(Rn)}. (1.4)

For noninteger s, the W s,p-spaces coincide with the Besov spaces, defined e.g. as follows: 
For 0 < s < 2,

f ∈ Bs
p(Rn) ⇐⇒ ‖f‖pLp

+
∫

R2n

|f(x) + f(y) − 2f((x + y)/2)|p
|x + y|n+ps

dxdy < ∞; (1.5)

and Bs+t
p (Rn) = (1 − Δ)−t/2Bs

p(Rn) for all t ∈ R. The Bessel-potential spaces are 
important because they are most directly related to Lp(Rn); the Besov spaces have other 
convenient properties, and are needed for boundary value problems in an Hs

p-context, 
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because they are the correct range spaces for trace maps (both from Hs
p and Bs

p-spaces); 
see e.g. the overview in the introduction to [16]. For p = 2, the two scales are identical, 
but for p �= 2 they are related by strict inclusions:

Hs
p ⊂ Bs

p when p > 2, Hs
p ⊃ Bs

p when p < 2. (1.6)

When working with operators of possibly noninteger order, it is much preferable to 
use the different notations for the two scales, rather than formulating results in the 
W s,p-scale, where the definition changes when s changes between integer and noninteger 
values, so that mapping properties risk not being optimal.

For any open subset Ω of Rn, one can define the local variants:

Hs
p,loc(Ω) = {u ∈ D′(Ω) | ψu ∈ Hs

p(Rn) for all ψ ∈ C∞
0 (Ω)},

Hs
p,comp(Ω) = {u ∈ Hs

p(Rn) | suppu compact ⊂ Ω},
(1.7)

and similar spaces with B.
In Appendix A we list anisotropic variants of the Bessel-potential and Besov scales 

with weights (d, 1), and explain their relation to Sobolev scales; this can also be read as 
a supplementing information on the isotropic case where d = 1.

Further notation from [21] is recalled in the start of Section 4 below where it is needed.

2. Anisotropic symbols

When P is a pseudodifferential operator on Rn of order d ∈ R, it is a well-known fact 
that if P is elliptic, the solutions u to the equation Pu(x) = g(x) on an open subset Ω
are d values more regular than g, e.g., g ∈ Hs

p,loc(Ω) implies u ∈ Hs+d
p,loc(Ω) for s ∈ R. 

(Cf. e.g. Seeley [42], Kohn and Nirenberg [29], Hörmander [25,26] and the exposition in 
Taylor [45]). It was one of the purposes of setting up the rules of symbol calculus to have 
easy access to such regularity results.

For the parabolic (heat operator) problem Pu(x, t) + ∂tu(x, t) = f(x, t) on Rn+1 it is 
not quite as well-known what there holds of regularity. In the differential operator case, 
when P is strongly elliptic, then P + ∂t and its solution operator belong to a natural 
class of anisotropic ψdo’s on Rn+1 where there are straightforward results. But if P is 
truly pseudodifferential, the symbol of P + ∂t does not satisfy all the estimates required 
in a standard ψdo calculus on Rn+1, but something weaker (see the discussion in [15,18]
in Remark 1.5.1ff and at the end of Section 4.1, with references). The operators were 
analyzed briefly in an L2-framework in [15,18], Sect. 4.2 (which focused on kernel esti-
mates). The mapping properties were extended to Lp-based spaces H(s,s/d)

p and B(s,s/d)
p

in [17] (cf. Th. 3.1(1) there), for operators P of integer order d, in connection with a 
study of boundary value problems in the Boutet de Monvel framework. This depended 
on a symbol calculus carried over from the calculus developed in the book [15,18], and 
relied on Lp-boundedness theorems of Lizorkin [35] and Yamazaki [47].
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In the present paper we are interested in heat problems with operators P of primarily 
noninteger order (such as (−Δ)a), not covered by [17]. There is the question of mapping 
properties of P +∂t, and of the existence of (approximate) solution operators under suit-
able parabolicity hypotheses, that allow showing regularity of solutions. In addition there 
is the question of local regularity, often shown by use of commutations with cut-off func-
tions. All this can be handled by setting up a systematic calculus, including composition 
rules. Let us now present the appropriate symbols and estimates.

In the following, d ∈ R+ is fixed. The basic anisotropic invertible symbol in the 
calculus is {ξ, τ}, with definition

{ξ, τ} ≡ (〈ξ〉2d + τ2)1/(2d), (2.1)

leading to the “order-reducing” operators

Θsu = OP({ξ, τ}s)u ≡ F−1
(ξ,τ)→(x,t)({ξ, τ}

sF(x,t)→(ξ,τ)u), (2.2)

for all s ∈ R. Then the anisotropic Bessel-potential spaces can be defined by

H(s,s/d)
p (Rn×R) = Θ−sLp(Rn+1); (2.3)

see more about such spaces and the related Besov family B(s,s/d)
p below in Appendix A.

Definition 2.1. Let m and ν ∈ R. The space Sm,ν
1,0 (R2n+1) of d-anisotropic (or 

just anisotropic) symbols of order m and with regularity number ν consists of the 
C∞-functions h(x, ξ, τ) on Rn × R

n × R satisfying the estimates

|∂β
x∂

α
ξ ∂

j
τh(x, ξ, τ)| ≤ Cα,β,j(〈ξ〉ν−|α| + {ξ, τ}ν−|α|){ξ, τ}m−ν−dj , (2.4)

for all indices α, β ∈ N
n
0 , j ∈ N0.

In particular, in case m = 0 and ν ≥ 0, the symbols satisfy

|∂β
x∂

α
ξ ∂

j
τh(x, ξ, τ)| ≤ Cα,β,j〈ξ〉−|α|{ξ, τ}−dj ≤ Cα,β,j〈ξ〉−|α|〈τ〉−j . (2.5)

These symbol classes are very similar to those introduced in [15,18], Section 2.1. The 
difference is that 〈ξ, μ〉 there has been replaced by the anisotropic {ξ, τ} here, and that 
the rule for differentiation in τ is that it lowers the order by dj instead of j (still without 
changing the regularity number). Therefore the symbols allow a very similar calculus.

Let us first show that some symbols of interest lie in these classes.

Lemma 2.2. 1◦ For s ∈ R, the estimates (2.4) are satisfied by {ξ, τ}s with ν = 2d, m = s.
2◦ Let p(x, ξ) be a ψdo symbol in Sm

1,0(R2n) for some m ∈ R. Then, considered as a 
symbol on R2n+1, constant in τ , it belongs to Sm,m

1,0 (R2n+1).
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3◦ Let p(x, ξ) be a ψdo symbol in Sd
1,0(R2n). Then h(x, ξ, τ) = p(x, ξ) + iτ satisfies the 

estimates (2.4) with ν = d, m = d, i.e., belongs to Sd,d
1,0 (R2n+1).

Moreover, if |p(x, ξ) + iτ | ≥ c(〈ξ〉d + |τ |) with c > 0, then (p(x, ξ) + iτ)−1 satisfies the 
estimates with ν = d, m = −d.

Proof. 1◦. Denote for short

〈ξ〉 = σ, {ξ, τ} = κ, (2.6)

and observe that

(σν−|α| + κν−|α|)κm−ν �
{
κm−|α| if ν ≥ 0,
σν−|α|κm−ν if ν ≤ 0.

(2.7)

For {ξ, τ} = (〈ξ〉2d + τ2)1/2d itself, we have that

∂ξj (〈ξ〉2d + τ2)1/2d = 1
2d (〈ξ〉2d + τ2)(1/2d)−12d〈ξ〉2d−1∂ξj 〈ξ〉 = κ1−2dσ2d−1∂ξj 〈ξ〉,

∂τ (〈ξ〉2d + τ2)1/2d = 1
2d (〈ξ〉2d + τ2)(1/2d)−12τ = cκ1−2dτ,

which satisfy the estimates with m = 1 and ν = 2d (note that ∂ξj 〈ξ〉 is bounded and 
〈τ〉 ≤ κ). Further differentiations give linear combinations of such expressions, where 
∂α
ξ produces a factor σ2d−|α| in at least one of the terms, whereas ∂j

τ only gives factors 
comparable with powers of κ. The weakest term in each expression is the one with the 
lowest power of σ; for ∂α

ξ ∂
j
τκ the power is 2d − |α|, so (2.4) holds with m = 1, ν = 2d.

For κs we use that its derivatives are linear combinations of products of κs−k (k ∈ N0) 
with expressions as above.

2◦. We have for all α:

|∂α
ξ p| ≤ C〈ξ〉m−|α| ≤ C(σm−|α| + κm−|α|)κm−m, (2.8)

showing the asserted estimates.
3◦. For p(x, ξ) + iτ we have that clearly |p + iτ | ≤ Cκd. Moreover, ∂α

ξ (p + iτ) satisfies 
the estimates (2.8) with m = d for |α| > 0, and ∂τ (p + iτ) = i, the higher derivatives 
being 0. This shows the first assertion.

For the second assertion, the given hypothesis shows that |(p(x, ξ) + iτ)−1| ≤ Cκ−d; 
then since the derivatives produce negative integer powers (p(x, ξ) + iτ)−k times deriva-
tives of p(x, ξ) + iτ , the assertion is seen using the first estimates. �

We have as in [15,18], Prop. 2.1.5:

Lemma 2.3. The product of two symbols of order and regularity m, ν resp. m′, ν′ is of 
order m′′ = m + m′ and regularity ν′′ = min{ν, ν′, ν + ν′}.
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Likewise, when h(x, ξ, τ) ∈ Sm,ν
1,0 (R2n+1) and h′(x, ξ, τ) ∈ Sm′,ν′

1,0 (R2n+1), then the 
Leibniz product

h′′(x, ξ, τ) ∼
∑

α∈Nn
0

1
α!D

α
ξ h(x, ξ, τ)∂α

xh
′(x, ξ, τ) (2.9)

belongs to Sm′′,ν′′

1,0 (R2n+1).

Proof. The first assertion is seen by use of the elementary fact that

((σ/κ)ν + 1)((σ/κ)ν
′
+ 1) ≤ 3(σ/κ)ν

′′
+ 1. (2.10)

(Details in the proof of [15,18], Prop. 2.1.6.) The second assertion now follows by appli-
cation of the first assertion to each term in the asymptotic series. �

Here the Leibniz product represents the symbol of the composition of OP(h) and 
OP(h′), as in [15,18], (2.1.56). Note that since the symbols are constant in t, there are 
only terms with x, ξ-derivatives.

Remark 2.4. The proofs in [18] are formulated in the framework of globally estimated 
ψdo’s of Hörmander [26], Sect. 18.1 (estimates in x ∈ R

n), whereas the proofs in [15] are 
based on a more pedestrian local ψdo calculus. The global calculus has the advantage 
that remainders of order −∞ are treated in a simpler way, and the Leibniz product has 
a precise meaning. We will take advantage of this fact in the following, and refer to [26]
and [23,18] for more detailed explanations.

Remark 2.5. A classical ψdo P of order d > 0 is said to be strongly elliptic, when the 
principal symbol p0(x, ξ) takes values in a sector Vδ = {z ∈ C | | arg z| ≤ π

2 − δ} for 
|ξ| ≥ 1, some 0 < δ < π

2 ; equivalently, Re p0(x, ξ) ≥ c0|ξ|d for |ξ| ≥ 1, with c0 > 0. (Recall 
that we take p0 to be homogeneous in ξ for |ξ| ≥ 1, and C∞.) It is not hard to choose 
the extension of the homogeneous function into |ξ| ≤ 1 to keep satisfying p0(x, ξ) ∈ Vδ, 
with min|ξ|≤1 Re p0(x, ξ) > 0. Then p0(x, ξ) + iτ satisfies |p0(x, ξ) + iτ | ≥ c(〈ξ〉d + |τ |)
with c > 0. The operators P + ∂t and symbols p + iτ are called parabolic in this case. 
See also the discussion in [15,18], Definition 1.5.3 ff.

In the parabolic case there is a parametrix symbol (symbol of an approximate inverse):

Lemma 2.6. Let h(x, ξ, τ) = p(x, ξ) + iτ , where p(x, ξ) is a classical strongly elliptic ψdo 
symbol of order d ∈ R+ on Rn. Then there is a parametrix symbol k(x, ξ, τ) such that 
(p + iτ)#k(x, ξ, τ) − 1 and k(x, ξ, τ)#(p + iτ) − 1 are in 

⋂
k∈N0

S−k,d−k
1,0 (R2n+1) (i.e., 

they are 0 modulo regularity d).

Proof. As noted in Remark 2.5, p has a principal symbol p0 that is nonvanishing and 
takes values in a closed subsector of {Re z > 0}, whereby p0+iτ and its inverse (p0+iτ)−1
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are as in Lemma 2.2 3◦. Here k0 = (p0 + iτ)−1 is the principal term in a parametrix 
symbol k for h. The construction of the remaining terms in a full parametrix symbol is 
a standard construction similar to the proof of [15,18], Th. 2.1.22. �

Now we shall account for the mapping properties of such operators between anisotropic 
Bessel-potential spaces (2.3). For isotropic standard ψdo’s this relies on Mihlin’s multi-
plier theorem, but for the present operators we need instead a Lizorkin-type multiplier 
theorem allowing separate estimates in different groups of coordinates; here we shall use 
the criterion of Yamazaki [47] (see the account of the various criteria in [23], Sect. 1.3):

Lemma 2.7 ([47]). Let n′ ∈ N. When a(y, η) on Rn′ × R
n′ satisfies

|∂β
y η

αj

j ∂αj
ηj
a(y, η)| ≤ Cβ,j , j = 1, . . . , n′, αj ≤ n′ + 1, |β| ≤ 1, (2.11)

then OP(a) is bounded in Lp(Rn′) for 1 < p < ∞.

It is a space-dependent variant of Lizorkin’s criterion. It will be used with n′ = n +1.

Theorem 2.8. Let h(x, ξ, τ) ∈ Sm,ν
1,0 (R2n+1) with ν ≥ 0. Then H = OP(h(x, ξ, τ)) is 

continuous:

OP(h(x, ξ, τ)) : H(s,s/d)
p (Rn×R) → H(s−m,(s−m)/d)

p (Rn×R), for all s ∈ R. (2.12)

Proof. By Lemma 2.3,

{ξ, τ}s−m#h(x, ξ, τ)#{ξ, τ}−s ∈ S
0,min{ν,2d}
1,0 (R2n+1). (2.13)

In view of (2.5), it satisfies (2.11) with n′ = n + 1, y = (x, t) and η = (ξ, τ), hence

H1 = Θs−mHΘ−s

is bounded in Lp(Rn+1). By the definition of the spaces in (2.3), it follows that (2.12)
holds. �

The proof is of course simpler for x-independent operators, where (2.13) is just a 
product.

As a corollary, we have:

Corollary 2.9. Under the hypotheses in Theorem 2.8, H also maps

OP(h(x, ξ, τ)) : B(s,s/d)
p (Rn×R) → B(s−m,(s−m)/d)

p (Rn×R), for all s ∈ R. (2.14)

Proof. This follows from (2.12) by use of real interpolation as in the third line of 
(A.7). �
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Example 2.10. Consider the operator H0 = (−Δ)a + ∂t = OP(|ξ|2a + iτ). Introducing 
the smooth positive modification [ξ] of |ξ|:

[ξ] is C∞ and ≥ 1/2 on R
n, [ξ] = |ξ| for |ξ| ≥ 1, (2.15)

and setting r(ξ) = |ξ|2a − [ξ]2a (supported for |ξ| ≤ 1) we can write H0 as

H0 = H ′
0 + R, H ′

0 = OP([ξ]2a + iτ), R = OP(r(ξ)). (2.16)

Here H ′
0 satisfies 3◦ of Lemma 2.2 with d = 2a, and R is smoothing in Rn, since its 

symbol is O(〈ξ〉−N ) for all N. Then

H ′
0 : H(s,s/(2a))

p (Rn×R) → H(s−2a,s/(2a)−1)
p (Rn×R), for all s ∈ R, (2.17)

by Theorem 2.8. For R, we note that

|{ξ, τ}s−2ar(ξ)û(ξ, τ)| ≤ C|{ξ, τ}sû(ξ, τ)|,

since 2a > 0, so R also has the continuity in (2.17) for all s. It follows that

H0 : H(s,s/(2a))
p (Rn×R) → H(s−2a,s/(2a)−1)

p (Rn×R), for all s ∈ R. (2.18)

There is the parametrix K ′
0 = OP(([ξ]2a + iτ)−1); it clearly maps continuously in the 

opposite direction of (2.18).
The mapping properties also hold with H-spaces replaced by B-spaces throughout.
A similar proof works for symbols p(ξ) that are positive for ξ �= 0 and homogeneous 

of degree 2a.

Example 2.11. Here are some other simple examples, to which the theory applies: P =
(−Δ + b(x) · ∇ + c(x))a of order 2a (fractional powers of a perturbed Laplacian), and 
P = (−Δ) 1

2 + b(x) · ∇ of order 1 (the square-root Laplacian with drift). The coefficients 
b(x) = (b1(x), . . . , bn(x)) and c(x) are taken smooth, real and bounded with bounded 
derivatives. The symbol |ξ| +ib(x) ·ξ is complex, with real part |ξ|, hence strongly elliptic, 
and |[ξ] + ib(x) · ξ + iτ | ≥ c(〈ξ〉 + |τ |) with c > 0. Another example is P = −Δ + (−Δ) 1

2 ; 
here d = 2.

Remark 2.12. There is an important work of Yamazaki [48] dealing with quasi-homogene-
ous ψdo’s (and para-differential generalizations), acting in associated quasi-homogeneous 
variants of the Triebel–Lizorkin spaces F s

p,q and Besov spaces Bs
p,q with 0 < p, q ≤ ∞; 

the spaces are defined by refined techniques involving dyadic decompositions in ξ-space 
(see also Triebel [46] for accounts of function spaces, and Schmeisser and Triebel [41]
for anisotropic variants). However, it seems that the ψdo’s in [48] do not include our 
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cases, since the symbol spaces require that high derivatives of the symbols are domi-
nated by 〈(ξ, τ)〉−N where any N is reached, in contrast to our estimates (2.4). (Cf. [48], 
Definition, pp. 157–158.)

Much of what is said above could also be carried through in cases where P is allowed 
to depend moreover on t (allowing a treatment of t-dependent heat equations); in par-
ticular, Lemma 2.6 could easily be generalized. We have kept P t-independent here in 
order to draw directly on the proofs in [18], and leave the t-dependent case for future 
investigations.

3. Parabolic regularity

Now we can show regularity and local regularity of solutions to parabolic heat equa-
tions.

Theorem 3.1. Consider a classical strongly elliptic ψdo P = OP(p(x, ξ)) of order d ∈ R+
on Rn. Let s ∈ R.

1◦ If u ∈ H
(s,s/d)
p (Rn×R) satisfies

(P + ∂t)u = f with f ∈ H(s,s/d)
p (Rn×R), (3.1)

then

u ∈ H(s+d,s/d+1)
p (Rn×R). (3.2)

2◦ The implication from (3.1) to (3.2) also holds if u merely satisfies u ∈ H
(r,r/d)
p (Rn×

R) for some large negative r (this holds in particular if u ∈ E ′(Rn+1) or e.g. u ∈
Lp(R; E ′(Rn))).

Similar statements hold with Hp replaced by Bp throughout.

Proof. Let k(x, ξ, τ) be a parametrix symbol according to Lemma 2.6. Then H = P +∂t
and K = OP(k(x, ξ, τ)) satisfy

KH = I + R1, where R1 = OP(r1), r1(x, ξ, τ) ∈
⋂

k
S−k,d−k

1,0 (R2n+1).

With the notation (2.6), we have that r1(x, ξ, τ) satisfies the estimates

|∂α
ξ ∂

j
τr1| ≤ C(σd−k−|α| + κd−k−|α|)κ−k−(d−k)−dj = C(σd−k−|α|κ−d−dj + κ−k−|α|−d−dj)

≤ C ′σd−k−|α|κ−d−dj ≤ C ′σ−|α|κ−d−dj when k ≥ d.

Hence r1 ∈ S−d,0
1,0 (R2n+1) (the lowest order we can assign with a nonnegative regularity 

number).
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Now if u and f are given as in 1◦, then

KHu = u + R1u,

where KHu = Kf ∈ H
(s+d,s/d+1)
p (Rn×R) since K is of order −d with regularity number 

d, and R1u ∈ H
(s+d,s/d+1)
p (Rn×R) since R1 is of order −d with regularity number 0, cf. 

Theorem 2.8. It follows that u ∈ H
(s+d,s/d+1)
p (Rn×R). This shows 1◦.

2◦. Recall that a distribution in E ′(Rn+1), i.e., with compact support in Rn+1, is of 
finite order, in particular lies in H−M

p (Rn+1) for some M ≥ 0. A distribution in E ′(Rn)
lies in H−M

p (Rn) for some M ≥ 0. Note moreover that

H−M
p (Rn+1) ⊂ H(r,r/d)

p (Rn×R),

with r = −M if d ≤ 1, r = −M/d if d ≥ 1. Also, Lp(R; H−M
p (Rn)) ⊂

H
(−M,−M/d)
p (Rn×R). So we can assume u ∈ H

(r,r/d)
p (Rn×R).

We use a bootstrap method, iterating applications of 1◦, as follows: If r ≥ s, the 
statement is covered by 1◦. If r < s, we observe that a fortiori f ∈ H

(r,r/d)
p (Rn×R). An 

application of 1◦ then gives the conclusion u ∈ H
(r+d,r/d+1)
p (Rn×R). Here if r1 = r+d ≥ s, 

we need only apply 1◦ to reach the desired conclusion. If r1 < s, we repeat the argument, 
concluding that u ∈ H

(r2,r2/d)
p (Rn×R) for r2 = r + 2d. The argument is repeated until 

rk = r + kd ≥ s.
The proofs in the scale of Bp-spaces follow by replacing Hp by Bp throughout. �
The conclusion is best possible, in view of the forward mapping properties in Theo-

rem 2.8 and Corollary 2.9.
We can also show a local regularity result.

Theorem 3.2. Let P be as in Theorem 3.1. Let s ∈ R, and let Σ be an open subset of 
R

n+1. If u ∈ H
(s,s/d)
p (Rn×R) satisfies

(P + ∂t)u|Σ ∈ H
(s,s/d)
p,loc (Σ), (3.3)

then u|Σ ∈ H
(s+d,s/d+1)
p,loc (Σ).

Proof. Notation as in Theorem 3.1 will be used. We have to show that for any (x0, t0) ∈
Σ, there is a function ψ ∈ C∞

0 (Σ) that is 1 on a neighborhood of (x0, t0) such that 
ψu ∈ H

(s+d,s/d+1)
p (Rn×R).

Let (x0, t0) ∈ Σ and let Bn
j = {x ∈ R

n | |x − x0| < r/j} and B1
j = {t ∈ R | |t − t0| <

r/j} for j = 1, 2, . . . , with r > 0 so small that Bn
1 ×B1

1 ⊂ Σ. For j ∈ N, define functions 
ψj such that

ψj(x, t) = ϕj(x)�j(t) ∈ C∞
0 (Σ) with

suppϕ ⊂ Bn, ϕ (x) = 1 on Bn , supp � ⊂ B1, � (t) = 1 on B1 .
(3.4)
j j j j+1 j j j j+1
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It is given that ψ1u ∈ H
(s,s/d)
p (Rn×R) and ψ1Hu ∈ H

(s,s/d)
p (Rn×R). Now

Hψ1u = ψ1Hu + [H,ψ1]u. (3.5)

The commutator [H, ψ1] = Hψ1 − ψ1H satisfies

[H,ψ1]u = �1(t)[P,ϕ1(x)]u + ϕ1(x)∂t�1(t)u,

where [P, ϕ1] is a ψdo in x of order d −1; in the calculus on Rn+1 it counts as an operator 
with symbol in Sd−1,d−1

1,0 , cf. Lemma 2.2 2◦.
If d ≤ 1, [P, ϕ1] also satisfies the estimates for an operator with symbol in S0,0

1,0 . Then 

both terms in the right-hand side of (3.5) are in H(s,s/d)
p (Rn×R), and an application of 

K to (3.5) shows that ψ1u ∈ H
(s+d,s/d+1)
p (Rn×R), as in the proof of Theorem 3.1.

If d > 1, [H, ψ1] is of positive order (with symbol in Sd−1,d−1
1,0 ), sending u into 

H
(s−d+1,s/d−1/d+1)
p (Rn ×R). Then we can only conclude by application of K that 

ψ1u ∈ H
(s+1,s/d+1/d)
p (Rn×R). Here we need to make an extra effort. Take ψ2 = ϕ2(x)�2(t)

as in (3.4). Now we can write, since ψ1ψ2 = ψ2,

Hψ2u = Hψ1ψ2u = ψ2Hψ1u+[H,ψ2]ψ1u = ψ2Hu+ψ2H(ψ1−1)u+[H,ψ2]ψ1u. (3.6)

In the final expression, the first term is in H(s,s/d)
p (Rn×R). In the second term, since 

ψ2(ψ1 − 1) = 0,

ψ2H(ψ1 − 1) = ϕ2(x)�2(t)P (ϕ1(x)�1(t)−ϕ1(x) +ϕ1(x)− 1) = ϕ2(x)�2(t)P (ϕ1(x)− 1),

where ϕ2P (ϕ1 − 1) is a ψdo in x of order −∞ so we can regard it as an opera-
tor with symbol in S0,0

1,0 . Then the term lies in H(s,s/d)
p (Rn×R). For the third term, 

[H, ψ2] = �2[P, ϕ2] + ϕ2∂t�2, where [P, ϕ2] enters as an operator with symbol in 
Sd−1,d−1

1,0 , and when this is applied to ψ1u ∈ H
(s+1,s/d+1/d)
p (Rn×R), we get a term 

in H(s+2−d,(s+2−d)/d)
p (Rn×R). If d ≤ 2, we see altogether that Hψ2u ∈ H

(s,s/d)
p (Rn×R), 

and an application of K as in Theorem 3.1 shows that ψ2u ∈ H
(s+d,s/d+1)
p (Rn×R), 

ending the proof.
If d > 2, we repeat the argument, first using that ψ3 = ψ3ψ2, leading to the infor-

mation that Hψ3u ∈ H
(s,s/d)
p (Rn×R) + H

(s+3−d,(s+3−d)/d)
p (Rn×R), next ψ4ψ3 = ψ4, 

and so on, until j ≥ d, so that Hψju ∈ H
(s,s/d)
p (Rn×R), and we can conclude that 

ψju ∈ H
(s+d,s/d+1)
p (Rn×R). �

By use of embedding theorems, we can also obtain a local regularity result in 
anisotropic Hölder spaces:

Theorem 3.3. Let P be as in Theorem 3.1. Let s > 0, and let u ∈ C(s,s/d)(Rn×R) ∩
E ′(Rn×R). If, for a bounded open subset Ω × I,
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(P + ∂t)u|Ω×I ∈ C
(s,s/d)
loc (Ω × I), (3.7)

then for small ε > 0, u|Ω×I ∈ C
(s+d−ε,(s−ε)/d+1)
loc (Ω × I).

Proof. Choose p so large that s − n/p > 0. In view of the first embedding in 
(A.15), (3.7) implies that (3.3) holds for Σ = Ω × I with s replaced by s − ε1
for ε1 > 0. Moreover, u ∈ H

(s−ε1,(s−ε1)/d)
p (Rn ×R). Then Theorem 3.2 shows that 

u|Ω×I ∈ H
(s−ε1+d,(s−ε1)/d+1)
p,loc (Ω × I). Taking ε1 < s − n/p, we can use the sec-

ond embedding in (A.15) to see that u is locally in the anisotropic Hölder space 
C

(s−n/p+d−ε1−ε2,(s−n/p−ε1−ε2)/d+1)
loc (Ω × I), for 0 < ε2 < s − n/p + d − ε1. Since p

can be taken arbitrarily large, the statement in the theorem follows. �
For the fractional Laplacian (−Δ)a and other related singular integral operators, 

Fernandez-Real and Ros-Oton showed in [10] a result comparable to Theorem 3.3, in 
cases where s and s/(2a) < 1:

u ∈ C
(s,s/(2a))(Rn × I), f ∈ C

(s,s/(2a))(Ω × I) =⇒ u ∈ C
(s+2a,s/(2a)+1)
loc (Ω × I). (3.8)

This is sharper by avoiding the subtraction by ε. On the other hand, our result expands 
the knowledge in many other directions, including that it allows not just s, s/(2a) < 1
but the values of s up to ∞, and it allows variable-coefficient operators, and does not 
require the symmetries entering in the definition of the fractional Laplacian, but just 
assumes that P + ∂t is parabolic. We think that a removal of ε would be possible in 
Theorem 3.3 too — by extending the action of our anisotropic ψdo’s (with symbols with 
finite regularity numbers) to anisotropic Hölder–Zygmund spaces.

[10] has in Cor. 3.8 and Rem. 6.4 some information on high spatial regularity of u
when f has high spatial regularity, assuming that the integral operator kernel has a 
correspondingly high regularity.

To our knowledge, the regularity results obtained above are new in several ways: by 
including all classical strongly elliptic ψdo’s P of positive real orders down to zero, and 
by including all p ∈ ]1, ∞[ , and all s ∈ R.

Observe the special cases:

Corollary 3.4. Let P and u be as in Theorem 3.1 2◦.
If u satisfies

(P + ∂t)u = f with f ∈ Lp(Rn×R), (3.9)

then u ∈ H
(d,1)
p (Rn × R) = Lp(R; Hd

p (Rn)) ∩ H1
p (R; Lp(Rn)). Conversely, u ∈

H
(d,1)
p (Rn×R) implies (3.9).
If u ∈ Lp(Rn×R) and Σ is an open subset of Rn+1, then

(P + ∂t)u|Σ ∈ Lp,loc(Σ) =⇒ u|Σ ∈ H
(d,1)
p,loc (Σ). (3.10)
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Note that in view of the embeddings (1.6), (A.8), we also have that (3.9) implies 
u ∈ Lp(R; Bd

p(Rn)) ∩ H1
p (R; Lp(Rn)) if p ≥ 2; but this cannot be inferred when p < 2. 

There are similar observations for (3.10).

4. A global estimate for the fractional Dirichlet heat equation

We shall not in this paper abord the question of possible extensions of the boundary 
value calculations of [17] to fractional-order situations. We will just turn to a basic global 
Lp-result for the fractional heat equation Pu +∂tu = f on Ω × I, with P equal to (−Δ)a
(0.4) or the generalization (0.5) with smooth k(y), and provided with a homogeneous 
Dirichlet condition. It will be obtained by combination of a functional analysis method 
put forward in [3] with detailed information from our earlier studies.

Recall first some notation from [21]:
The following subsets of Rn will be considered: Rn

± = {x ∈ R
n | xn ≷ 0} (where 

(x1, . . . , xn−1) = x′), and bounded C∞-subsets Ω with boundary ∂Ω, and their comple-
ments. Restriction from Rn to Rn

± (or from Rn to Ω resp. �Ω) is denoted r±, extension 
by zero from Rn

± to Rn (or from Ω resp. �Ω to Rn) is denoted e±. Restriction from R
n

+
or Ω to ∂Rn

+ resp. ∂Ω is denoted γ0.
We denote by d(x) a function of the form d(x) = dist(x, ∂Ω) for x ∈ Ω, x near ∂Ω, 

extended to a smooth positive function on Ω; d(x) = xn in the case of Rn
+.

Along with the spaces Hs
p(Rn) defined in (1.4), we have the two scales of spaces 

associated with Ω for s ∈ R:

Ḣs
p(Ω) = {u ∈ Hs

p(Rn) | suppu ⊂ Ω},
H

s

p(Ω) = {u ∈ D′(Ω) | u = r+U for some U ∈ Hs
p(Rn)};

(4.1)

here suppu denotes the support of u. The definition is also used with Ω = R
n
+. In most 

current texts, Hs

p(Ω) is denoted Hs
p(Ω) without the overline (that was introduced along 

with the notation Ḣp in [27,26]), but we prefer to use it, since it is makes the notation 
more clear in formulas where both types occur. We recall that Hs

p(Ω) and Ḣ−s
p′ (Ω) are 

dual spaces with respect to a sesquilinear duality extending the L2(Ω)-scalar product; 
1
p + 1

p′ = 1.
A special role in the theory is played by the order-reducing operators. There is a simple 

definition of operators Ξt
± on Rn, t ∈ R,

Ξt
± = OP(χt

±), χt
± = (〈ξ′〉 ± iξn)t; (4.2)

they preserve support in R
n

±, respectively. The functions (〈ξ′〉 ±iξn)t do not satisfy all the 
estimates for St

1,0(Rn×R
n), but lie in a space as in Definition 2.1 with d = 1, ν = 1, m = t, 

with (ξ, τ) replaced by (ξ′, ξn). There is a more refined choice Λt
± [16,21], with symbols 

λt
±(ξ) that do satisfy all the estimates for St

1,0(Rn × R
n); here λt

+ = λt
−. The symbols 

have holomorphic extensions in ξn to the complex halfspaces C∓ = {z ∈ C | Im z ≶ 0}; it 
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is for this reason that the operators preserve support in R
n

±, respectively. Operators with 
that property are called “plus” resp. “minus” operators. There is also a pseudodifferential 
definition Λ(t)

± adapted to the situation of a smooth domain Ω, cf. [21].
It is elementary to see by the definition of the spaces Hs

p(Rn) in terms of Fourier 
transformation, that the operators define homeomorphisms for all s: Ξt

± : Hs
p(Rn) ∼→

Hs−t
p (Rn), Λt

± : Hs
p(Rn) ∼→ Hs−t

p (Rn). The special interest is that the “plus”/“minus” 
operators also define homeomorphisms related to R

n

+ and Ω, for all s ∈ R: Ξt
+ : Ḣs

p(Rn

+) ∼→
Ḣs−t

p (Rn

+), r+Ξt
−e

+ : Hs

p(Rn
+) ∼→ H

s−t

p (Rn
+), with similar statements for Λt

±, and for Λ(t)
±

relative to Ω. Moreover, the operators Ξt
+ and r+Ξt

−e
+ identify with each other’s adjoints 

over Rn

+, because of the support preserving properties. There is a similar statement for 
Λt

+ and r+Λt
−e

+, and for Λ(t)
+ and r+Λ(t)

− e+ relative to the set Ω.
The special μ-transmission spaces were introduced by Hörmander [27] for p = 2, cf. 

[21]; we shall just use them here for μ = a:

Ha(s)
p (Rn

+) = Ξ−a
+ e+H

s−a

p (Rn
+) = Λ−a

+ e+H
s−a

p (Rn
+), s > a− 1/p′,

Ha(s)
p (Ω) = Λ(−a)

+ e+H
s−a

p (Ω), s > a− 1/p′;
(4.3)

they are the appropriate solution spaces for homogeneous Dirichlet problems for elliptic 
operators P having the a-transmission property (cf. [21]). Note that in (4.3), Ξ−a

+ is 
applied to functions with a jump at xn = 0 (when s > a + 1/p), this results in a 
singularity at xn = 0.

The ψdo P can be applied to functions in the spaces in (4.1) when they are extended 
by zero to all of Rn. This is already understood for the spaces Ḣs

p(Ω), but should be 
mentioned explicitly (by an indication with e+) for the spaces Hs

p(Ω). Also, when u ∈
Ḣs

p(Ω) and Pu is considered on Ω, it is most correct to indicate this by writing r+Pu. 
The indications e+ and r+ can be left out as an “abuse of notation”, when they are 
understood from the context; note however the importance of e+ in (4.3).

Recall from [21], Theorems 4.4 and 5.4:

Theorem 4.1. Let Ω be an open bounded smooth subset of Rn, let P be a ψdo on Rn

of the form (0.5) with k ∈ C∞(Sn−1) (in particular, P can be equal to (−Δ)a) for an 
a > 0. Let 1 < p < ∞, and let PDir,p stand for the Lp-Dirichlet realization on Ω, acting 
like r+P and with domain

D(PDir,p) = {u ∈ Ḣa
p (Ω) | r+Pu ∈ Lp(Ω)}; (4.4)

the operators are consistent for different p. Then

D(PDir,p) = Ha(2a)
p (Ω) = Λ(−a)

+ e+H
a

p(Ω). (4.5)

It satisfies (for any ε > 0):
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Ha(2a)
p (Ω)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

= Ḣ2a
p (Ω), if a < 1/p,

⊂ Ḣ2a−ε
p (Ω), if a = 1/p,

⊂ e+daH
a

p(Ω) + Ḣ2a
p (Ω), if a > 1/p, a− 1/p /∈ N,

⊂ e+daH
a

p(Ω) + Ḣ2a−ε
p (Ω), if a > 1/p, a− 1/p ∈ N.

(4.6)

More precisely, in the case a ∈ ]0, 1[ , the functions have in local coordinates where Ω is 
replaced by Rn

+ the following structure when a > 1/p:

u = w + xa
nK0ϕ, (4.7)

where w and ϕ run through Ḣ2a
p (Rn

+) and Ba−1/p
p (Rn−1), and K0 is the Poisson operator 

K0ϕ = F−1
ξ′→x′ [ϕ̂(ξ′)e+r+e−〈ξ′〉xn ].

Proof. When P is defined by (0.5) with a smooth k, it is the ψdo with symbol p(ξ)
equal to the Fourier transform of the kernel function k(y/|y|)|y|−n−2a. (For P = (−Δ)a, 
k equals the constant cn,a.) The symbol is a function homogeneous of degree 2a, smooth 
positive for ξ �= 0, and even: p(−ξ) = p(ξ). The L2-Dirichlet realization PDir,2 can be 
defined variationally from the sesquilinear form

Q(u, v) = 1
2

∫
R2n

(u(x) − u(y))(v̄(x) − v̄(y))k((x− y)/|x− y|)
|x− y|n+2a dxdy (4.8)

considered for u, v ∈ Ḣa(Ω). As accounted for in Ros-Oton [37], it satisfies a Poincaré 
inequality over Ω so that the selfadjoint operator in L2(Ω) induced by the Lax–Milgram 
lemma is a bijection from its domain to L2(Ω). The explanation in [37] is formulated for 
real functions, but the operator defined in L2(Ω, C) is real in the sense that it maps real 
functions to real functions, and it can be retrieved from the definition on L2(Ω, R) by 
linear extension.

Since p(ξ) is even and homogeneous of degree 2a, it satisfies the condition in [21] for 
having the a-transmission property, and since it is positive, it has factorization index 
a (since a+ = a− in [21], (3.3)–(3.4)). Then, considering its action in Lp-spaces, the 
description of the domain in (4.5) follows from [21], Th. 4.4 with m = 2a, μ0 = a, 
s = 2a. The consistency for various p holds as a general property of pseudodifferential 
operators. The statement (4.6) is from [21], Th. 5.4, with μ = a, s = 2a.

The information (4.7) is a consequence of the proof given there; let us give a direct 
explanation here: It is well-known that when 1/p < a < 1 +1/p, the functions v ∈ H

a

p(Rn
+)

have a first trace γ0v ∈ B
a−1/p
p (Rn−1), and that v − Kγ0v ∈ Ḣa

p (Rn

+), when K is 
a continuous right inverse of γ0. In fact, the functions v ∈ H

a

p(Rn
+) are exactly the 

functions of the form v = g + Kϕ, where g runs through Ḣa
p (Rn

+) and ϕ runs through 

B
a−1/p
p (Rn−1). Take as K the Poisson operator K0,

K0ϕ = F−1
ξ′→x′ [ϕ̂(ξ′)e+r+e−〈ξ′〉xn ] = F−1

ξ→x[ϕ̂(ξ′)(〈ξ′〉 + iξn)−1]. (4.9)
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Now to describe Ha(2a)
p (Rn

+) = Ξ−a
+ e+H

a

p(Rn
+), we use that

Ξ−a
+ K0ϕ = F−1

ξ→x[(〈ξ′〉 + iξn)−aϕ̂(ξ′)(〈ξ′〉 + iξn)−1] = cax
a
nK0ϕ,

cf. [21], (2.5) and (5.16). Moreover, Ξ−a
+ Ḣa

p (Rn

+) = Ḣ2a
p (Rn

+). This shows the represen-
tation in (4.7). (We are using the formulas from [21] with [ξ′] replaced by 〈ξ′〉, which 
works equally well, as shown there.) �

We underline that for a > 1/p, D(PDir,p) contains not only Ḣ2a
p (Ω), but also functions 

of the form e+daz with z ∈ H
a

p(Ω), not in H
s

p(Ω) for s > a. (On the interior, the functions 
are in H2a

p,loc(Ω), by elliptic regularity.)
The operators PDir,p are bijective for all p; for p = 2 this holds since the sesquilinear 

form defining PDir,2 has positive lower bound by the Poincaré inequality, and for the 
other p it follows in view of [20], Th. 3.5, on the stability of kernels and cokernels when 
spaces change.

Next, we will describe PDir,p from a functional analysis point of view. We already have 
the definition of PDir,2 from the sesquilinear form (4.8). The associated quadratic form 
Q(u, u) is denoted Q(u),

Q(u) = 1
2

∫
R2n

|u(x) − u(y)|2k((x− y)/|x− y|)
|x− y|n+2a dxdy on Ḣa

p (Ω). (4.10)

In view of the positivity, −PDir,2 generates a strongly continuous semigroup e−tPDir,2

of contractions in L2(Ω, R).
We shall now see that the form Q(u, v) is a so-called Dirichlet form, as defined in 

Davies [8] and Fukushima, Oshima and Takeda [12]. This is observed e.g. in Bogdan, 
Burdzy and Chen [4] for a related form defining the regional fractional Laplacian. It 
means that Q has the Markovian property (cf. [12], pp. 4–5):

Definition 4.2. A closed nonnegative symmetric form E(u, v) with domain D(E) ⊂
L2(Ω, R) is said to be Markovian, if for any ε > 0 there exists a function ϕε on R
taking values in [−ε, 1 + ε] with ϕε(t) = t on [0, 1] and 0 ≤ ϕε(t) − ϕε(s) ≤ t − s when 
t > s, such that

u ∈ D(E) =⇒ ϕε ◦ u ∈ D(E) and E(ϕεu, ϕεu) ≤ E(u, u). (4.11)

There is an equivalent definition with ϕε ◦ u in (4.11) replaced by min{max{u, 0}, 1}.
We can choose ϕε to be C∞ on R (but not in C∞

0 (R) as written in [4]), then it is 
clear that (4.11) holds for E = Q.

The interest of the Markovian property here is that then the semigroup e−tPDir,2

extends for each p ∈ ]1, ∞[ to a semigroup Tp(t) that is contractive in Lp-norm and 
bounded holomorphic ([12] Th. 1.4.1 and [8] Th. 1.4.1); with infinitesimal generators 
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that are consistent for varying p. The generator of Tp(t) is in fact −PDir,p, since the 
latter is bijective from its domain to Lp(Ω), and the operators −PDir,p are consistent for 
varying p.

As pointed out in [3], one can use the existence of these extensions to Lp to apply a 
theorem of Lamberton [31] giving information on the heat equation solvability.

Theorem 4.3. Let P and Ω be as in Theorem 4.1, with 0 < a < 1, and let I = ]0, T [ for 
some T > 0. The Dirichlet evolution problem

Pu + ∂tu = f on Ω × I,

u = 0 on (Rn \ Ω) × I,

u = 0 for t = 0,

(4.12)

has for any f ∈ Lp(Ω × I) a unique solution u(x, t) ∈ C0(I; Lp(Ω)), which satisfies:

u ∈ Lp(I;Ha(2a)
p (Ω)) ∩H1

p (I;Lp(Ω)). (4.13)

Here Ha(2a)
p (Ω) is the domain of PDir,p, as described in detail in Theorem 4.1.

Proof. In (4.12) it is tacitly understood that u identifies with a function on Rn × I

vanishing for x ∈ R
n \ Ω, in order for the ψdo to be defined on u.

As accounted for above, the operator PDir,2 satisfies the hypotheses for the operator 
−A studied in [31], namely that A generates a bounded holomorphic semigroup for p = 2, 
and induces bounded holomorphic semigroups Tp(t) in Lp(Ω) that are contractions for 
all p ∈ ]1, ∞[ , and are consistent with the case p = 2. Then, according to [31] Th. 1, the 
problem

(∂t −A)u = f on I, u|t=0 = 0, (4.14)

has for any f ∈ Lp(Ω × I) a solution u(x, t) ∈ C0(I; Lp(Ω)) such that

‖∂tu‖Lp(Ω×I) + ‖Au‖Lp(Ω×I) ≤ C‖f‖Lp(Ω×I). (4.15)

The bound on the first term shows that u ∈ H1
p (I; Lp(Ω)). Since ‖Pv‖Lp(Ω) ≥

C ′‖v‖
H

a(2a)
p (Ω) for all v(x) ∈ D(PDir,p), the bound on the second term shows that 

u ∈ Lp(I; Ha(2a)
p (Ω)).

The uniqueness of the solution is accounted for e.g. in [32]. �
The regularity in (4.13) is optimal for f ∈ Lp(Ω × I).
In view of the general rules (1.6), the theorem implies that the solution also satisfies 

u ∈ Lp(I; Ba(2a)
p (Ω)) when p ≥ 2, but hits a larger space than Lp(I; Ba(2a)

p (Ω)) when 
p < 2.
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For P = (−Δ)a, Biccari, Warma and Zuazua [3] used [31] to show semi-local variants 
of (4.13): u ∈ Lp(I; W 2a,p

loc (Ω)) with ∂tu ∈ Lp(I × Ω) when p ≥ 2 or a = 1
2 ; and it 

holds with W 2a,p
loc (Ω) replaced by B2a

p,2,loc(Ω) when p < 2, a �= 1
2 (there is an embedding 

Hs
p ⊂ Bs

p,2 for such p).
When f has a higher regularity, we can use Theorem 3.2 to get a local result:

Theorem 4.4. Let u be the solution of (4.12) defined in Theorem 4.3, and let r = 2a if 
a < 1/p, r = a +1/p −ε if a ≥ 1/p (for some small ε > 0). Then u ∈ H

(r,r/(2a))
p (Rn×I), 

vanishing for x /∈ Ω.
If f ∈ H

(s,s/(2a))
p,loc (Ω × I) for some 0 < s ≤ r, then u ∈ H

(s+2a,s/(2a)+1)
p,loc (Ω × I).

Proof. Since e+H
a

p(Ω) = Ḣa
p (Ω) for a < 1/p, and is contained in Ḣ1/p−ε

p (Ω) when 

a ≥ 1/p, Ha(2a)
p (Ω) = Λ−a

+ e+H
a

p(Ω) ⊂ Ḣr
p(Ω), where r is as defined in the theorem. 

Note that r ≤ 2a, and that Ha(2a)
p (Ω) ⊂ Ḣ

a+1/p−ε
p (Ω) in any case.

Thus, when u is a solution as in Theorem 4.3, u ∈ H
(r,r/(2a))
p (Rn × I), vanishing for 

x /∈ Ω.
In view of the initial condition u|t=0 = 0, the extension by zero for t < 0 lies in 

H
(r,r/(2a))
p (Rn× ] −∞, T [ ). We can moreover extend our function for t ≥ T to a function 

in H(r,r/(2a))
p (Rn×R), and denote the fully extended function ũ. Observe that the values 

of f̃ = (P + ∂t)ũ are consistent with the values of f on Ω × I, since P acts only in the 
x-direction and ∂t is local.

Now if f ∈ H
(s,s/(2a))
p,loc (Ω × I) for some 0 < s ≤ r, we can apply Theorem 3.2, and 

conclude that u ∈ H
(s+2a,s/(2a)+1)
p,loc (Ω × I). �

For higher values of s, Theorem 3.2 gives that if u ∈ H
(s,s/(2a))
p (Rn × I) and f ∈

H
(s,s/(2a))
p,loc (Ω ×I), then u ∈ H

(s+2a,s/(2a)+1)
p,loc (Ω ×I), but the global prerequisite on u may 

not be easy to obtain.

Remark 4.5. In comparison with the result of [10], Cor. 1.6, in anisotropic Hölder spaces, 
our study in H(s,s/(2a))

p -spaces has the advantage that the regularity in t of the solution 
of the Dirichlet problem is lifted by a full step 1 in Theorem 4.3, whereas [10] obtains a 
C1−ε-estimate in t.

Also for the interior regularity we observe a better lifting in t-derivatives, namely that 
when a < 1/p, t-derivatives of order 2 are controlled in Theorem 4.4 (taking s = 2a). 
Since 0 < a < 1, this holds for p sufficiently close to 1. For the Hölder estimates in [10], 
Th. 1.1, second t-derivatives are not reached (cf. (3.8) above).

Remark 4.6. Theorem 4.1 is also valid for x-dependent strongly elliptic ψdo’s P of order 
2a with even symbol. Then PDir,2 is defined from the sesquilinear form (Pu, v)L2(Ω) on 
C∞

0 (Ω), extended by closure to Ḣa
2 (Ω), and the PDir,p are consistent with this by (4.4). 
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A variant of Theorem 4.3 can be shown for p = 2 by techniques from Lions and Magenes 
[33] vol. 2 (we shall explain details elsewhere), but for p �= 2, other methods are needed.

Appendix A. Anisotropic Bessel-potential and Besov spaces

In this Appendix we present the appropriate anisotropic generalizations of Bes-
sel-potential and Besov spaces. We just give a summary of the essentially well-known 
facts that are needed for the parabolic operator P + ∂t on Rn × R with a ψdo P on Rn

of positive order. Let d ∈ R+ and p ∈ ]1, ∞[ . This material is taken from the appendix 
of [17], with small modifications and less focus on cases where d is integer.

For m, d ∈ N, the anisotropic Sobolev spaces W (dm,m)
p (Rn×R) are defined by

W (dm,m)
p (Rn×R) = Lp

(
R;Hdm

p (Rn)
)
∩Hm

p

(
R;Lp(Rn)

)
= {u(x, t) ∈ Lp(Rn+1) | F−1

(ξ,τ)→(x,t)(〈ξ〉
dm + 〈τ〉m)û) ∈ Lp(Rn+1) }

= {u(x, t) ∈ Lp(Rn+1) | Dα
xD

j
tu ∈ Lp(Rn+1) for |α| + dj ≤ dm }.

(A.1)

For the generalization to noninteger and negative values of the Sobolev exponents, we 
observe that if we define {ξ, τ} and Θs = OPx,t({ξ, τ}s) as in (2.1), (2.2), then

W (dm,m)
p (Rn×R) = Θ−dmLp(Rn+1). (A.2)

This is seen by use of Lizorkin’s criterion [35], cf. (2.11) above, applied to the operators 
with symbol (〈ξ〉dm + 〈τ〉m){ξ, τ}−dm and {ξ, τ}dm(〈ξ〉dm + 〈τ〉m)−1.

Clearly, ΘsΘt = Θs+t for s, t ∈ R.
More generally, one can now define with d ∈ R+, for any s ∈ R,

H(s,s/d)
p (Rn×R) = Θ−sLp(Rn+1); (A.3)

it is an anisotropic generalization of the Bessel-potential spaces Hs
p(Rn), and clearly 

H
(dm,m)
p (Rn×R) = W

(dm,m)
p (Rn×R) for m, d ∈ N. Here we follow the notation of 

Schmeisser and Triebel, cf. e.g. [41] and its references, deviating from another extensively 
used notation L(s,s/d)

p (Rn×R) (as in Lizorkin [34,35], Nikolskĭı [36], Besov, Il’in and 
Nikolskĭı [2], . . . ), where the spaces are often called Liouville spaces. See also Sadosky 
and Cotlar [38]. These spaces fit together in complex interpolation (by an anisotropic 
variant of the proof for Hs

p(Rn+1) spaces, cf. Calderón [6], Schechter [39], and Schmeisser 
and Triebel [40], Rem. 4):

[H(s0,s0/d)
p (Rn×R), H(s1,s1/d)

p (Rn×R)]θ = H(s2,s2/d)
p (Rn×R),

s2 = (1 − θ)s0 + θs1, for s0, s1 ∈ R, θ ∈ ]0, 1[ . (A.4)

Another generalization of the W (dm,m)
p spaces is the scale of anisotropic Besov spaces 

B
(s,s/d)
p (Rn×R), that can be defined as follows:
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‖u‖p
B

(s,s/d)
p (Rn×R)

= ‖u‖pLp
+

∫
R2n+2

( |u(x, t) − u(y, t)|p
|x− y|n+ps

+ |u(x, t) − u(x, t′)|p
|t− t′|1+ps/d

)
dxdydtdt′

for s ∈ ]0, 1[ ;

B(s+r,(s+r)/d)
p (Rn×R) = Θ−rB(s,s/d)

p (Rn×R), for r ∈ R, s ∈ ]0, 1[ .

(A.5)

The norm can also be described in terms of dyadic decompositions (see e.g. [41]), or, 
for s > 0, by a generalization of the integral formula in (A.5) involving higher order 
differences as in (1.5) (see e.g. Besov [1], Solonnikov [43], and [30], [2]). These spaces 
arise from the W (dm,m)

p (Rn×R) spaces by real interpolation (cf. Grisvard [13, I.9]), when 
m, d ∈ N:

(
W (dm,m)

p (Rn×R), Lp(Rn+1)
)
θ,p

= B((1−θ)dm,(1−θ)m)
p (Rn×R); θ ∈ ]0, 1[ . (A.6)

Moreover, one has for all d ∈ R+, all s0, s1, s ∈ R with s0 �= s1, all p0, p1, p ∈ ]1, ∞[ with 
p0 �= p1, all θ ∈ ]0, 1[ , setting s2 = (1 − θ)s0 + θs1, 1

p2
= 1−θ

p0
+ θ

p1
(cf. [13] and [41, 3.2]):

(
B(s0,s0/d)

p (Rn×R), B(s1,s1/d)
p (Rn×R)

)
θ,p

= B(s2,s2/d)
p (Rn×R),

[B(s0,s0/d)
p (Rn×R), B(s1,s1/d)

p (Rn×R)]θ = B(s2,s2/d)
p (Rn×R),(

H(s0,s0/d)
p (Rn×R), H(s1,s1/d)

p (Rn×R)
)
θ,p

= B(s2,s2/d)
p (Rn×R),(

H(s,s/d)
p0

(Rn×R), H(s,s/d)
p1

(Rn×R)
)
θ,p2

= H(s,s/d)
p2

(Rn×R).

(A.7)

The Bessel-potential spaces and Besov spaces are interrelated by

B(s,s/d)
p (Rn×R) ⊂ H(s,s/d)

p (Rn×R) ⊂ B(s−ε,(s−ε)/d)
p (Rn×R) for p ≤ 2;

H(s,s/d)
p (Rn×R) ⊂ B(s,s/d)

p (Rn×R) ⊂ H(s−ε,(s−ε)/d)
p (Rn×R) for p ≥ 2;

(A.8)

for s ∈ R, any ε > 0; and B(s,s/d)
p �= H

(s,s/d)
p when p �= 2.

For both types, one has the identification of dual spaces (with 1
p + 1

p′ = 1 as usual):

H(s,s/d)
p (Rn×R)∗ � H

(−s,−s/d)
p′ (Rn×R) and

B(s,s/d)
p (Rn×R)∗ � B

(−s,−s/d)
p′ (Rn×R), for s ∈ R.

(A.9)

For positive s, the spaces can moreover be described in the following way:

(i) H(s,s/d)
p (Rn×R) = Lp

(
R;Hs

p(Rn)
)
∩Hs/d

p

(
R;Lp(Rn)

)
, s ≥ 0;

(ii) B(s,s/d)
p (Rn×R) = Lp

(
R;Bs

p(Rn)
)
∩Bs/d

p

(
R;Lp(Rn)

)
, s > 0;

(A.10)

cf. Grisvard [13,14]. The anisotropic Sobolev–Slobodetskĭı spaces W (s,s/d)
p (Rn×R) are 

defined from the isotropic ones by (cf. e.g. Solonnikov [44])
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W (s,s/d)
p (Rn×R) = Lp

(
R;W s

p (Rn)
)
∩W s/d

p

(
R;Lp(Rn)

)
, s ≥ 0;

thus W (s,s/d)
p = H(s,s/d)

p when s and s/d ∈ N,

W (s,s/d)
p = B(s,s/d)

p when s and s/d ∈ R+ \ N.
(A.11)

(Note that the W (s,s/d)
p spaces do not always interpolate well. Moreover, when e.g. s ∈ N, 

s/d /∈ N, one has a space where the x-regularity is Hs
p-type, the t-regularity is Bs/d

p -type; 
for p �= 2 it is not one of the spaces in (A.10), cf. also (1.6).)

Observe that differential operators have the effect, for any s ∈ R,

Dα
xD

j
t H

(s,s/d)
p (Rn×R) → H(s−m,(s−m)/d)

p (Rn×R) and

Dα
xD

j
t B

(s,s/d)
p (Rn×R) → B(s−m,(s−m)/d)

p (Rn×R), for |α| + dj ≤ m.
(A.12)

This follows for the Bessel-potential spaces by Lizorkin’s criterion (cf. (2.11)) applied to 
ξατ j{ξ, τ}−m; it is seen for the Besov spaces e.g. from the definition by difference norms, 
or by interpolation.

The spaces are defined over open subsets of Rn+1 by restriction; here the cylindrical 
subsets Σ = Ω × I with Ω open ⊂ R

n and I an open interval of R are particularly 
interesting. We use the notation

H
(s,s/d)
p (Ω × I) = rΩ×IH

(s,s/d)
p (Rn×R), B

(s,s/d)
p (Ω × I) = rΩ×IB

(s,s/d)
p (Rn×R),

H
(s,s/d)
p,loc (Ω × I) = {u ∈ D′(Ω × I) | ψu ∈ H

(s,s/d)
p (Ω × I) for any ψ ∈ C∞

0 (Ω × I)},
(A.13)

and similar spaces B(s,s/d)
p,loc (Ω × I), W (s,s/d)

p (Ω × I), W (s,s/d)
p,loc (Ω × I). Much of the above 

information, e.g. (A.7), (A.8), (A.10), carries over to the scales in the first line.
Let us also define anisotropic Hölder spaces. For k ∈ N0, 0 < σ < 1, the usual Hölder 

space of order s = k+ σ over Ω ⊂ R
n, in our notation C

s(Ω), is provided with the norm

‖u‖Cs(Ω) =
∑

|α|≤k
‖Dαu‖L∞ +

∑
|α|=k

supx,x′∈Ω
|Dαu(x) −Dau(x′)|

|x− x′|σ .

Integer values of s will be included in the scale by defining C
k(Ω) for k ∈ N0 as the 

space of bounded continuous functions with bounded continuous derivatives up to order 
k on Ω. (Then we have C

s(Ω) ⊂ C
s1(Ω) whenever s > s1 ≥ 0. There is a more refined 

choice of slightly larger spaces for k ∈ N0, the Hölder–Zygmund spaces, that fits better 
with interpolation theory, but which we shall not need here, since we only show results 
“with a loss of ε”.)

We then define the anisotropic Hölder space over Ω × I (I ⊂ R) for s > 0 by:

C
(s,s/d)(Ω × I) = L∞(I;Cs(Ω)) ∩ C

s/d(I;L∞(Ω)), when s > 0. (A.14)
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(Note that Cs/d(I; L∞(Ω)) = L∞(Ω; Cs/d(I)).) In view of the well-known embedding 
properties for isotropic spaces, we have with ε > 0:

C
(s,s/d)(Ω × I) ⊂ H

(s−ε,(s−ε)/d)
p (Ω × I) and B

(s−ε,(s−ε)/d)
p (Ω × I),

when s > 0,

H
(s,s/d)
p (Ω × I) and B

(s,s/d)
p (Ω × I) ⊂ C

(s−n/p−ε,(s−n/p−ε)/d)(Ω × I),

if s− n/p− ε > 0;

(A.15)

in the first inclusion we assume Ω × I to be bounded. Both inclusions are shown by 
comparing the spaces via (A.10) and (A.14). The first inclusion follows immediately 
from the isotropic case. For the second inclusion we can use that for small positive 
ε1 < s:

H
(s,s/d)
p (Ω × I) ⊂ H

ε1/d

p (I;Hs−ε1
p (Ω)) ∩H

(s−ε1)/d
p (I;Hε1

p (Ω))

⊂ L∞(I;Hs−ε1
p (Ω)) ∩H

(s−ε1)/d
p (I;L∞(Ω)),

in order to relate to (A.14) (and similarly for B-spaces); this is allowed since 
〈τ〉ε1/d〈ξ〉s−ε1 and 〈τ〉(s−ε1)/d〈ξ〉ε1 are ≤ c(〈ξ〉2d + τ2)s/(2d).

There is also the local version:

C
(s,s/d)
loc (Ω×I) = {u ∈ D′(Ω×I) | ψu ∈ C

(s,s/d)(Ω×I) for any ψ ∈ C∞
0 (Ω×I)}. (A.16)
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