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Extension theory for elliptic partial
differential operators with pseudodifferential

methods
Gerd Grubb

Abstract This is a short survey on the connection between general exten-
sion theories and the study of realizations of elliptic operators A on smooth
domains in Rn, n ≥ 2. The theory of pseudodifferential boundary problems has
turned out to be very useful here, not only as a formulational framework, but
also for the solution of specific questions. We recall some elements of that the-
ory, and show its application in several cases (including new results), namely
to the lower boundedness question, and the question of spectral asymptotics
for differences between resolvents.

8.1 Introduction

The general theory of extensions of a symmetric operator (or a dual pair

of operators) in a Hilbert space, originating in the mid-1900’s, has been

applied in numerous works to ordinary differential equations (ODE),

and also in a (smaller) number of works to partial differential equations

(PDE).

There is a marked difference between the two cases: In ODE, the

playground for boundary conditions is usually finite-dimensional vector

spaces, where linear conditions can be expressed by the help of matrices.

Moreover, the domains of differential operators defined by closure in L2-

based Hilbert spaces can usually all be expressed in terms of functions

with the relevant number of absolutely continuous derivatives.

In contrast, boundary conditions for PDE (in space dimensions n ≥ 2)

are prescribed on infinite-dimensional vector spaces. Moreover, the do-

mains of differential operators in L2-based spaces will contain functions

with distribution derivatives, not continuous and possibly highly irreg-

ular.

Whereas extensions of ODEs can usually be described in terms of
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222 G. Grubb

matrices, the tools to interpret extensions in PDE cases are therefore

much more complicated. We shall give a survey of some tools devel-

oped through the years, and their applications, emphasizing the use of

pseudodifferential operators.

Outline In Section 8.2 we recall the basic issues of elliptic bound-

ary value problems. Pseudodifferential operators (ψdo’s) are introduced

in Section 8.3, and Section 8.4 introduces pseudodifferential boundary

operators (ψdbo’s). In Section 8.5 we recall the elements of a general

abstract extension theory, and in Section 8.6 we show how this is imple-

mented for realizations Ã of an elliptic operator A on a domain Ω ⊂ Rn.

Section 8.7 focuses on the resolvent formulas that can be obtained via

the general theory. In the last sections we go through several cases where

pseudodifferential techniques have proved extremely useful (some of the

results here are quite recent): In Section 8.8 it is the question of whether

lower boundedness holds simultaneously for a realization Ã and the op-

erator L over the boundary that enters in the corresponding boundary

condition; the new results deal with unbounded domains. In Section 8.9

it is the question of showing Weyl-type spectral asymptotics formulas

for differences between resolvents. The results there go back to the early

theory, and Section 8.10 presents some additional new results.

8.2 Elliptic boundary value problems

In the following we use the customary multi-index notation for dif-

ferential operators: ∂ = ∂x = (∂1, . . . , ∂n), ∂j = ∂xj = ∂/∂xj , and

D = Dx = (D1, . . . , Dn), Dj = Dxj
= −i∂/∂xj ; then ∂α = ∂α1

1 · · · ∂αn
n ,

Dα = Dα1
1 · · ·Dαn

n , for α ∈ Nn
0 ; here |α| = α1 + · · ·+ αn.

A differential operator of order m > 0,

A =
∑

|α|≤m

aα(x)D
α

is said to be elliptic, resp. strongly elliptic, on a set U ⊂ Rn, when the

principal symbol

am(x, ξ) =
∑

|α|=m

aα(x)ξ
α

satisfies

am(x, ξ) �= 0, resp. Re am(x, ξ) > 0,
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Extension theory with pseudodifferential methods 223

for x ∈ U , ξ ∈ Rn \ {0}. As a basic example, the Laplacian Δ = ∂2
1 +

· · ·+∂2
n has principal symbol (and symbol) equal to −|ξ|2, so it is elliptic,

and −Δ is strongly elliptic. The Laplacian has been studied for several

hundred years, and the problems around it solved by explicit solution

formulas. It is the cases with variable (x-dependent) coefficients, and

domains more general than simple geometric figures, that have been a

challenge in more modern times.

The problem

Au = f (8.1)

for a given function f on a subset Ω of Rn usually has infinitely many

solutions. To get a problem with unique solvability, we must adjoin extra

conditions such as suitable boundary conditions. We can consider A with

a domain consisting of the functions satisfying the boundary condition,

as an operator Ã acting between suitable spaces.

Then the question of existence of a solution corresponds to the ques-

tion of whether Ã is surjective, and the question of uniqueness of a solu-

tion corresponds to the question of whether Ã is injective. In this way, the

question of solvability of differential equations is turned into a question

of properties of specific operators. The operator point of view became

particularly fruitful when it was combined with appropriate scales of

function spaces, such as the Sobolev spaces, [Sobolev, 1950], and with

Distribution theory, [Schwartz, 1950].

When Ω is a smooth open subset of Rn with boundary ∂Ω = Σ, we

refer to the standard L2-Sobolev spaces, with the following notation:

Hs(Rn) (s ∈ R) has the norm ‖v‖s = ‖F−1(〈ξ〉sFv)‖L2(Rn); here F is

the Fourier transform

F : u(x) �→ (Fu)(ξ) = û(ξ) =

∫
Rn

e−ix·ξu(x) dx,

and 〈ξ〉 = (1 + |ξ|2) 1
2 . Next, with rΩ denoting restriction to Ω,

Hs(Ω) = rΩH
s(Rn),

provided with the norm ‖u‖s = inf{‖v‖s | v ∈ Hs(Rn), u = rΩv}.
Moreover,

Hs
0(Ω) = {u ∈ Hs(Rn) | suppu ⊂ Ω},

closed subspace of Hs(Rn); it identifies with the antidual space of

H−s(Ω) (the space of antilinear, i.e., conjugate linear, functionals), with
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224 G. Grubb

a duality consistent with the L2 scalar product. For s equal to a nonneg-

ative integer k, Hk
0 (Ω) is usually written Hk

0 (Ω). Spaces over the bound-

ary, Hs(Σ), are defined by local coordinates from Hs(Rn−1), s ∈ R.
(There are many equally justified equivalent choices of norms there; one

can choose a particular norm when convenient.) When s > 0, there are

dense continuous embeddings

Hs(Σ) ⊂ L2(Σ) ⊂ H−s(Σ),

and there is an identification of H−s(Σ) with the antidual space of

Hs(Σ), such that the duality (ϕ, ψ)−s,s coincides with the L2(Σ)-scalar

product when the elements lie there. Detailed explanations are found in

many books, e.g. [Lions and Magenes, 1968; Hörmander, 1963; Grubb,

2009]. (There is a difference of notation: For k ∈ N, the spaces denoted

H
k+ 1

2
0 (Ω) in [Lions and Magenes, 1968] are not the same as ourH

k+ 1
2

0 (Ω)

that are consistent with [Hörmander, 1963]; the latter have the best du-

ality and interpolation properties.)

Consider the case where A is defined on a smooth open subset Ω of

Rn and has coefficients in C∞(Ω), and assume that A is elliptic on Ω.

The results in this case are a model for results under weaker smoothness

hypotheses. One defines the maximal realization Amax as the operator

acting like A in the distribution sense with domain

D(Amax) = {u ∈ L2(Ω) | Au ∈ L2(Ω)};

it is a closed, unbounded operator in L2(Ω). The minimal realization

Amin is defined as the closure of A acting on C∞
0 (Ω) (the compactly

supported C∞-functions on Ω). When Ω is bounded, or is unbounded

and there are suitable bounds on the coefficients of A,

D(Amin) = Hm
0 (Ω).

The formal adjoint A′ of A is the differential operator acting as follows:

A′u =
∑

|α|≤m

Dα(aα(x)u).

By definition, A′
min and Amax are adjoints of one another (as unbounded

operators in L2(Ω)).

The linear operators Ã satisfying

Amin ⊂ Ã ⊂ Amax

are called realizations of A.

Generally, Amax is far from being injective, whereas Amin is far from
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Extension theory with pseudodifferential methods 225

being surjective, but it may be possible to find realizations Ã that are

bijective from D(Ã) to L2(Ω).

We see that the theory of distributions (which in this context was

preceded by the definition of differential operators acting in the weak

sense) allows defining operators representing the action of A in a gen-

eralized sense. Here invertibility can sometimes be achieved by methods

of functional analysis. A fundamental example is the Dirichlet problem

(where γ0u = u|Σ)

Au = f in Ω, γ0u = ϕ on Σ, (8.2)

for a strongly elliptic second-order operator having Re(Av, v) ≥
c‖v‖2L2(Ω) with c > 0 for v ∈ C∞

0 (Ω). By use of the so-called Lax-Milgram

lemma one could define a realization Aγ of A with D(Aγ) ⊂ H1
0 (Ω), such

that Aγ : D(Aγ)→ L2(Ω) bijectively. (Details are found in many books,

e.g. [Grubb, 2009], Ch. 12.)

But then the question was: How close is A−1
γ to solving the problem

in a more classical sense? Second-order derivatives have a meaning on

H2(Ω), by closure of the definition on C2(Ω), so one can ask:

• If f ∈ L2(Ω), is u ∈ H2(Ω)?

• More generally, if f ∈ Hk(Ω) for some k ∈ N0, is u ∈ Hk+2(Ω)?

The answer was first found for the behavior of u in the interior of Ω:

Indeed, when f ∈ Hk(Ω), u is in Hk+2 over subsets of Ω with positive

distance from the boundary. This is the so-called interior regularity.

There remained the question of regularity at the boundary. It was an-

swered positively in [Nirenberg, 1955] and by Ladyzhenskaya (see the

account in [Ladyzhenskaya, 1985]). This was followed up by research on

higher-order operators A and more general boundary conditions Tu = ϕ

(possibly vector valued), where results on interior regularity and regular-

ity at the boundary were established under suitable conditions. Besides

ellipticity of the operator A one needs a condition on how the bound-

ary condition fits together with A. Some authors called it the “cover-

ing condition” or the “complementing condition”, but the name “the

Shapiro-Lopatinskĭı condition” (after [Shapiro, 1953; Lopatinskii, 1953])

has been more generally used. It is also customary to call the system

{A, T} elliptic when it holds (this was suggested in [Hörmander, 1963];

we return to a motivation in Section 8.4). A fundamental reference in

this connection is in [Agmon, Douglis and Nirenberg, 1959] that col-

lects and expands the knowledge on elliptic boundary value problems.

An important point of view was to obtain so-called “à priori estimates”
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226 G. Grubb

(estimates of a Sobolev norm on u by norms on Au and Tu plus a lower

order norm on u), shown for smooth functions at first, and extended to

the considered solution.

Important monographs exposing the theories and the various authors’

own contributions were written by [Agmon, 1965; Lions and Magenes,

1968]; the latter moreover contains valuable information on the sur-

rounding literature. The early theory is exposed in [Courant and Hilbert,

1953, 1962].

In the works at that time, although the striving to show existence of

a solution operator was always in the picture, the emphasis was more

on showing qualitative properties of the unknown function u in terms of

properties of the given data f and ϕ, regardless of whether u could be

described by an operator acting on {f, ϕ} or not.

Direct machinery to construct approximate solution operators in gen-

eral came into the picture with the advent of pseudodifferential methods.

8.3 Pseudodifferential operators

One of the few cases where an elliptic differential operator has an ex-

plicit solution operator is the case of I − Δ on Rn, whose action can

be described by (1−Δ)u = F−1
(
(1 + |ξ|2)Fu

)
, where F is the Fourier

transform, and whose solution operator is

Op
( 1

1 + |ξ|2
)
u = F−1

( 1

1 + |ξ|2Fu
)
.

A variable-coefficient elliptic differential operator on Rn can also be de-

scribed by the help of the Fourier transform,

Au =
∑

|α|≤m

aα(x)D
αu =

∑
|α|≤m

aα(x)F−1(ξαFu)

= F−1a(x, ξ)Fu = Op(a(x, ξ))u,

where a(x, ξ) =
∑

|α|≤m aα(x)ξ
α is the symbol. But even when the sym-

bol satisfies a(x, ξ) �= 0 for all x, ξ, the operator

Op(a(x, ξ)−1) = F−1a(x, ξ)−1F

is not an exact inverse. Nevertheless, it is useful in the discussion of

solutions, since one can show that

Op(a(x, ξ))Op(a(x, ξ)−1) = I +R,
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Extension theory with pseudodifferential methods 227

where the remainder R is of order −1 (lifts the exponent of a Sobolev

space by 1).

A thorough treatment of Op(a(x, ξ)−1) and suitable generalizations

that come closer to being an inverse of A (such “almost-inverses”

are called parametrices) was obtained with the invention of pseudo-

differential operators, ψdo’s. Some of the initiators were [Mihlin, 1948;

Calderón and Zygmund, 1957; Seeley, 1965; Kohn and Nirenberg, 1965;

Hörmander, 1965, 1971].

General ψdo’s are defined from general symbols p(x, ξ) as

Op(p(x, ξ))u = F−1p(x, ξ)Fu = (2π)−n

∫
Rn

eix·ξp(x, ξ)û(ξ) dξ;

here p(x, ξ) is required to belong to a suitable class of functions.

Not only do the operators make sense on Rn where the Fourier trans-

form acts, they are also given a meaning on manifolds, by use of coordi-

nate change formulas and cutoff functions. The theory is not altogether

easy; it uses concepts from distribution theory in a refined way. More-

over, it is not exact but qualitative in many statements, so it can be

something of a challenge to derive good results from its use. A fine

achievement is that it leads to Fredholm operators, when applied to

elliptic operators on compact manifolds. Here one is just a small step

away from having invertible operators; this can sometimes be achieved

by relying on additional knowledge of the situation.

A so-called “classical” ψdo is an operator defined from a symbol that

has an asymptotic series expansion in homogeneous terms (a polyhomo-

geneous symbol):

p(x, ξ) ∼
∑
j∈N0

pm−j(x, ξ), where

pm−j(x, tξ) = tm−jpm−j(x, ξ) for |ξ| ≥ 1, t ≥ 1.

It is said to be of order m, and Op(p) maps Hs to Hs−m for all s ∈
R. pm is called the principal symbol, and p is said to be elliptic when

pm(x, ξ) �= 0 for |ξ| ≥ 1. Here one has that

Op(p)Op(p′) = Op(pp′) +R1 = Op(pmp′m′) +R2,

where R1 and R2 are of order m + m′ − 1. In this way, the principal

part dominates the behavior. When p is elliptic, the principal part of a

parametrix is found as p−1
m (for |ξ| ≥ 1, extended smoothly to ξ ∈ Rn).

Also the notation p0 is used for the principal symbol.
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228 G. Grubb

There exist many different symbol classes with generalizations of the

above properties, designed for particular purposes.

The very attractive feature of classical ψdo’s is that they form a scale

of operators of all integer orders, including differential operators among

those of positive order, and including parametrices and inverses of el-

liptic differential operators among those of negative order. Moreover, it

is an “algebra”, in the sense that the elements by composition (and by

addition) lead to other classical ψdo’s.

The calculus is explained in the original papers and in several subse-

quent books such as [Treves, 1980; Hörmander, 1985]; a detailed intro-

duction can be also found in [Grubb, 2009, Chapters 7–8].

The ψdo theory gives (after one has done the work to set it up) an

easy proof of interior regularity of solutions to elliptic problems.

8.4 Pseudodifferential boundary operators

When an elliptic differential operator A is considered on a subset of Rn

or on a manifold with boundary — let us here for simplicity just consider

the case of a smooth bounded open subset Ω of Rn — we must impose

boundary conditions to get uniquely solvable problems. Let us assume

that we are in a case where the boundary condition Tu = ϕ together

with (8.1) gives a uniquely solvable problem; here T is a trace operator

mapping functions on Ω into M -tuples of functions on Σ = ∂Ω. We can

formulate this in terms of matrices:⎛⎝A

T

⎞⎠ : C∞(Ω) →
C∞(Ω)

×
C∞(Σ)M

has an inverse

(
R K

)
:

C∞(Ω)
×

C∞(Σ)M
→ C∞(Ω).

(8.3)

Here K is called a Poisson operator; it solves the semi-homogeneous

problem

Av = 0 in Ω, T v = ϕ on Σ.

The operator R solves the other semi-homogeneous problem

Aw = f in Ω, Tw = 0 on Σ.
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Extension theory with pseudodifferential methods 229

In a closer analysis of R, we can write it as a sum of two terms:

R = Q+ +G, (8.4)

where Q is the ψdo A−1 on Rn, Q+ is its truncation r+Qe+ to Ω, and G

is a supplementing operator adapted to the specific boundary condition,

called a singular Green operator (s.g.o.). The operator e+ stands for

extension by 0 (to functions on Rn), and the operator r+ stands for

restriction to Ω.

The calculus of pseudodifferential boundary operators (ψdbo’s) was

initated by Boutet de Monvel [Boutet de Monvel, 1971], who introduced

operator systems encompassing both the systems
(
A
T

)
and their solution

operators
(
R K

)
. The original presentation is somewhat brief, and

was followed up by extended expositions, in the detailed book [Rempel

and Schulze, 1982], which elaborated the index theory, and in the pa-

per [Grubb, 1984a] which completed some proofs of composition rules

(with new points of view), and showed spectral asymptotic estimates for

singuar Green operators. The book [Grubb, 1996, also 1986 edition] de-

veloped a calculus of parameter-dependent ψdbo’s, leading to resolvent

and heat operator constructions. The recent book [Grubb, 2009] gives a

full introduction to the theory.

In the systematic calculus of Boutet de Monvel one considers systems

(called Green operators):

A =

(
P+ +G K

T S

)
:
C∞(Ω)N

×
C∞(Σ)M

→
C∞(Ω)N

′

×
C∞(Σ)M

′
,

where

• P is a ψdo on Rn, satisfying the so-called transmission condition at

Σ (always true for operators stemming from elliptic differential oper-

ators);

• P+ = r+Pe+ is the truncation to Ω (the transmission condition as-

sures that P+ maps C∞(Ω) into C∞(Ω));

• T is a trace operator from Ω to Σ, K is a Poisson operator from Σ to

Ω, S is a ψdo on Σ;

• G is a singular Green operator, e.g. of the type KT .

The composition of two such systems is again a system belonging to the

calculus.

The operators extend to act on Sobolev spaces. For T and G there is a

condition expressing which differential trace operators γju = (∂/∂n)ju|Σ
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230 G. Grubb

that enter: T or G is said to be of class r when only γj ’s with j < r

enter; and then they act on Hs(Ω) for s > r− 1
2 . The class 0 case is the

case where they are purely integral operators, well-defined on L2(Ω).

All entries can be matrix-formed. They are defined in local coordi-

nates by formulas involving Fourier transformation and polyhomoge-

neous symbols. The idea is as follows: In local coordinates at the bound-

ary, where Ω and Σ are replaced by Rn
+ = {x ∈ Rn | xn > 0} and

Rn−1 (with points x′ = (x1, . . . , xn−1)), the system has for each (x′, ξ′)
a boundary symbol operator acting in the xn-variable:

a(x′, ξ′, Dn) =

⎛⎝p(x′, 0, ξ′, Dn) + g(x′, ξ′, Dn) k(x′, ξ′, Dn)

t(x′, ξ′, Dn) s(x′, ξ′)

⎞⎠ :

Hm(R+)
N

×
CM

→
L2(R+)

N′

×
CM′

(8.5)

Here m is the order of the operator. Each entry in a acts in a specific

way. E.g., when the matrix is
(
A
T

)
in (8.3), the boundary symbol operator

is the model operator obtained by freezing the coefficients at x′ and

replacing derivatives Dα
x′ by their Fourier transforms (ξ′)α (with respect

to x′ ∈ Rn−1). The principal boundary symbol operator a0(x′, ξ′, Dn) is

formed of the top order terms. The principal boundary symbol operator

for
(
R K

)
is the inverse of the principal boundary symbol operator for(

A
T

)
. (For (8.5), g and t must be of class ≤ m.)

From the boundary symbol operator one defines a full operator by

applying the ψdo definition in the x′-variable,

Op′(a(x′, ξ′, Dn))u = (2π)1−n

∫
eix

′·ξ′a(x′, ξ′, Dn)(Fy′→ξ′u(y
′, xn)) dξ

′.

The symbols have asymptotic series of terms that are homogeneous in

(ξ′, ξn) (different rules apply to the different ingredients, and we must

refer to the mentioned references for further details). One then defines

A to be elliptic, when

(a) P is elliptic, i.e. its principal symbol p0(x, ξ) is invertible at each

(x, ξ) with |ξ| ≥ 1,

(b) the principal boundary symbol operator a0(x′, ξ′, Dn) is invertible

at each (x′, ξ′) with |ξ′| ≥ 1.

For a system
(
A
T

)
formed of an elliptic differential operator A and

a differential trace operator T , (b) is precisely the old covering/-

complementing/Shapiro-Lopatinskĭı condition for {A, T}.
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Extension theory with pseudodifferential methods 231

In the elliptic case, one can construct a parametrix B0 from the in-

verses of the symbols in (a)–(b), such that AB0 − I and B0A − I have

order ≤ −1, and the construction can be refined to give errors of arbi-

trarily low order. With supplementing information it can be possible to

obtain an inverse.

For example, there holds a a solvability theorem for an elliptic dif-

ferential operator problem as in (8.3), formulated in this framework as

follows:

Theorem 8.1 Let Ω ⊂ Rn be a smooth, bounded open set, denote

∂Ω = Σ, and let A =
∑

|α|≤2m aα(x)D
α with aα ∈ C∞(Ω) be elliptic on

Ω, i.e.,
∑

|α|=2m aα(x)ξ
α �= 0 for x ∈ Ω, ξ ∈ Rn \ {0}. Let T = (Tj)

m
j=1

be a column vector of trace operators Tj = γ0Bj, where the Bj are

differential operators of order mj with C∞-coefficients, 0 ≤ m1 < · · · <
mm ≤ 2m − 1. (Then T is of class r = mm + 1 ≤ 2m.) Assume that

{A, T} is elliptic.

The operator A =
(
A
T

)
defines a continuous mapping

A =

(
A

T

)
:H2m+s(Ω)→

Hs(Ω)
×∏m

j=1 H
2m+s−mj− 1

2 (Σ)
, s > r − 2m− 1

2 , (8.6)

and there is a system B =
(
R K

)
(a parametrix) belonging to the

calculus and continuous in the opposite direction, such that

AB =

(
I 0
0 I

)
+R1, BA = I +R2,

R1 :

Hs(Ω)
×∏m

j=1 H
2m+s−mj− 1

2 (Σ)
→

Hs′(Ω)
×∏m

j=1 H
2m+s′−mj− 1

2 (Σ)

R2 : H
2m+s(Ω) → H2m+s′(Ω)

for all s as in (8.6), all s′ ≥ s. Here K is a row vector of Poisson opera-

tors (Kj)
m
j=1 of orders −mj, and R = Q+ +G, where Q is a parametrix

of A on a neighborhood of Ω, and G is a singular Green operator.

The operator A in (8.6) is Fredholm for each s, with the same finite

dimensional kernel and cokernel in C∞ for all s.

If A is bijective, the inverse belongs to the calculus (and is of the same

form as B).

When r = 2m, the lower limit for s is − 1
2 ; cases where it is < − 1

2

occur for example for the Dirichlet problem, where r = m, and s can go

down to −m − 1
2 . It is useful to know that the Poisson operator K in
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fact has the mapping property

K :

m∏
j=1

H2m+s−mj− 1
2 (Σ)→ H2m+s(Ω)

for all s ∈ R. The trace operator T is called normal, when γ0Bj =

bjγmj
+
∑

k<mj
Bjkγk with an invertible coefficient bj for each j. (More

general normal boundary value problems are described below in Section

8.9.)

For example, for a second-order strongly elliptic operator with a

Dirichlet condition, the operator in the theorem maps as follows:

A =

(
A

γ0

)
: H2+s(Ω)→

Hs(Ω)
×

H
3
2
+s(Σ)

for s > − 3
2 ,

with parametrices and solution operators continuous in the opposite

direction.

Elliptic operators A of odd order occur mainly as square matrix-

formed operators, and there is a similar theorem for such cases, where

also the Bj can be matrix-formed. Operators of Dirac-type are a promi-

nent first-order example. The matrix case is also interesting for even-

order operators. The results can moreover be worked out for operators

defined on manifolds, acting in vector bundles. (See e.g. [Grubb, 1974],

on the even-order case, for notation and the appropriate definition of

normal boundary conditions.)

8.5 Extension theories

We shall now recall some elements of the functional analysis theory of

extensions of given operators. This has a long history, with prominent

contributions from [von Neumann, 1929; Friedrichs, 1934; Krein, 1947;

Vishik, 1952; Birman, 1956], and others. The present author made a

number of contributions in [Grubb, 1968, 1970, 1971, 1973, 1974], com-

pleting the preceding theories and working out applications to elliptic

boundary value problems; further developments are found e.g. in [Grubb,

1983, 1984a], and in recent works.

At the same time there was another, separate development of abstract

extension theories, where the operator concept gradually began to be re-

placed by the concept of relations. This development has been aimed pri-

marily towards applications to ODE, however including operator-valued
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such equations and Schrödinger operators on Rn; keywords in this con-

nection are: boundary triples theory, Weyl-Titchmarsh m-functions and

Krĕın resolvent formulas. Cf. e.g. [Kochubei, 1975; Vainerman, 1980;

Lyantze and Storozh, 1983; Gorbachuk and Gorbachuk, 1991; Derkach

and Malamud, 1991; Arlinskii, 1999; Malamud and Mogilevski, 2002;

Derkach, Hassi, Malamud and de Snoo, 2006; Brüning, Geyler and Pan-

krashkin, 2008], and their references. In later years there have also been

applications to elliptic boundary value problems, cf. e.g. [Amrein and

Pearson, 2004; Kopachevski and Krein, 2004; Behrndt and Langer, 2007;

Ryzhov, 2007; Brown, Marletta, Naboko and Wood, 2008; Gesztesy and

Mitrea, 2008], and references therein. See also Chapters 3, 6 and 7.

The connection between the two lines of extension theories has been

clarified in a recent work [Brown, Grubb and Wood, 2009].

At this point we should also mention the recent efforts for problems

on nonsmooth domains: [Posilicano and Raimondi, 2009; Grubb, 2008;

Gesztesy and Mitrea, 2008, 2011; Abels, Grubb and Wood]; here [Grubb,

2008; Gesztesy and Mitrea, 2011; Abels, Grubb and Wood] use [Grubb,

1968].

In the following, we shall use the notation from [Grubb, 1968, 1970,

1971, 1973, 1974] and [Brown, Grubb and Wood, 2009].

Let there be given a pair Amin, A
′
min of closed, densely defined oper-

ators in a Hilbert space H, such that the following holds:

Amin ⊂ (A′
min)

∗ =: Amax, A′
min ⊂ (Amin)

∗ =: A′
max.

Let M = {Ã | Amin ⊂ Ã ⊂ Amax}. Write Ãu as Au, when Ã ∈M.

We assume that there is given an operator Aγ ∈ M, the reference

operator, with 0 ∈ �(Aγ) (the resolvent set); then

Amin ⊂ Aγ ⊂ Amax, A′
min ⊂ A∗

γ ⊂ A′
max.

The case where Amin = A′
min and Aγ is selfadjoint, is called the sym-

metric case.

Let Z = kerAmax, Z
′ = kerA′

max, and define the basic non-orthogonal

decompositions

D(Amax) = D(Aγ)+̇Z, D(A′
max) = D(A∗

γ)+̇Z ′,

denoted u = uγ + uζ = prγ u + prζ u, where prγ = A−1
γ Amax, with a

similar notation with primes.

By prX u = uX we denote the orthogonal projection from H to X.

The injection X ↪→ H is denoted iX (it is the adjoint of prX : H → X).
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There holds an “abstract Green’s formula” for u ∈ D(Amax), v ∈
D(A′

max):

(Au, v)− (u,A′v) = ((Au)Z′ , vζ′)− (uζ , (A
′v)Z). (8.7)

It can be used to show that when Ã ∈M, and we define

V = prζ D(Ã), W = prζ′ D(Ã∗),

then

{{uζ , (Au)W } | u ∈ D(Ã)} is a graph,

defining an operator T from D(T ) ⊂ V to W .

Theorem 8.2 [Grubb, 1968] There is a 1–1 correspondence between

the closed operators Ã ∈ M and the closed densely defined operators

T : V → W , where V ⊂ Z, W ⊂ Z ′ (arbitrary closed subspaces), such

that Ã corresponds to T : V →W if and only if

D(Ã) = {u ∈ D(Amax) | prζ u ∈ D(T ), (Au)W = T prζ u}. (8.8)

In this correspondence, V = prζ D(Ã), W = prζ′ D(Ã∗), and

• Ã∗ corresponds analogously to T ∗ : W → V .

• ker Ã = kerT ; ran Ã = ranT + (H �W ).

• Ã is bijective if and only if T is so, and then

Ã−1 = A−1
γ + iV T

−1 prW .

One also has

D(Ã) = {u = v+A−1
γ (Tz+f)+z | v ∈ D(Amin), z ∈ D(T ), f ∈ Z�W},

where v, z and f are uniquely determined from u.

The result builds on the works [Krein, 1947; Birman, 1956] (for selfad-

joint operators) and [Vishik, 1952], and completes the latter: In Vishik’s

paper, the Ã were set in relation to operators over the nullspaces going in

the opposite direction of our T ’s, and the results were focused on those

Ã’s that have closed range (the so-called normally solvable realizations).

Our analysis covered all closed Ã.

The condition in (8.8)

(Au)W = T prζ u (8.9)

can be viewed as an “abstract boundary condition”.
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When λ ∈ �(Aγ), one can do the same construction for the operators

shifted by subtraction of λ. We denote

Zλ = ker(Amax − λ), Z ′̄
λ = ker(A′

max − λ̄),

and have the decompositions (where prλγ = (Aγ − λ)−1(Amax − λ))

D(Amax) = D(Aγ)+̇Zλ, u = uλ
γ + uλ

ζ = prλγ u+ prλζ u,

with a similar notation with primes.

Corollary 8.3 Let λ ∈ �(Aγ). For the closed Ã ∈ M, there is a 1–1

correspondence

Ã− λ←→
{
Tλ : Vλ →Wλ̄, closed, densely defined

with Vλ ⊂ Zλ, Wλ̄ ⊂ Z ′̄
λ
, closed subspaces.

Here D(Tλ) = prλζ D(Ã), Vλ = D(Tλ), Wλ̄ = prλ̄ζ′ D(Ã∗), and D(Ã)

consists of the functions u ∈ D(Amax) such that uλ
ζ ∈ D(Tλ) and

Tλuλ
ζ = ((A− λ)u)Wλ̄

.

Moreover,

• ker(Ã− λ) = kerTλ; ran(Ã− λ) = ranTλ + (H �Wλ̄).

• Ã− λ is bijective if and only if Tλ is so, and when λ ∈ �(Ã)∩ �(Aγ),

(Ã− λ)−1 = (Aγ − λ)−1 + iVλ
(Tλ)−1 prWλ̄

.

This gives a Krĕın-type resolvent formula for any closed Ã ∈M with

�(Ã) ∩ �(Aγ) �= ∅.
The relation between T and Tλ was determined in [Grubb, 1974] in the

symmetric case, for real λ, and the proof given there extends immediately

to the general situation (as shown in [Brown, Grubb and Wood, 2009]):

For λ ∈ �(Aγ), define

Eλ = I + λ(Aγ − λ)−1, it has the inverse Fλ = I − λA−1
γ ,

and similarly E′λ̄ = I + λ̄(A∗
γ − λ̄)−1 has the inverse F ′λ̄ = I − λ̄(A∗

γ)
−1

on H. Then EλFλ = FλEλ = I, E′λ̄F ′λ̄ = F ′λ̄E′λ̄ = I on H.

Moreover, Eλ and E′λ̄ restrict to homeomorphisms

Eλ
V : V

∼→ Vλ, E′λ̄
W : W

∼→Wλ̄,

with inverses Fλ
V resp. F ′λ̄

W . In particular, D(Tλ) = Eλ
V D(T ).

The operator families derived from Eλ are related to what was called
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a gamma-field in other works from the 1970’s and onwards, as a simple

special case.

Theorem 8.4 Let Gλ
V,W = − prW λEλiV ; then

(E′λ̄
W )∗TλEλ

V = T +Gλ
V,W .

In other words, T and Tλ are related by the commutative diagram

Vλ
� ∼

Eλ
V

V

Wλ̄

Tλ

� ∼
(E′λ̄

W )∗
� W

T+Gλ
V,W

�

D(Tλ) = Eλ
V D(T ).

In [Brown, Grubb and Wood, 2009] we moreover showed how the

study relates to studies of boundary triples and M -functions by other

researchers (as referred to in the start of this section; more references

are given in [Brown, Grubb and Wood, 2009]):

Let V = Z, W = Z ′, then, with H = Z ′, K = Z, the mappings(
Γ1u

Γ0u

)
=

(
(Au)Z′

uζ

)
: D(Amax)→ H×K,

(
Γ′
1v

Γ′
0v

)
=

(
(A′v)Z
vζ′

)
: D(A′

max)→ K×H,

form a boundary triple: Both mappings
(
Γ1

Γ0

)
and

(Γ′
1

Γ′
0

)
are surjective,

their kernels are D(Amin) resp. D(A′
min), and they satisfy the Green’s

formula

(Amaxu, v)− (u,A′
maxv) = (Γ1u,Γ

′
0v)H − (Γ0u,Γ

′
1v)K,

which is a rewriting of (8.7).

Here one can consider a boundary condition

Γ1u = TΓ0u, (8.10)

where we allow T to be unbounded (closed densely defined) from K to

H; it defines a restriction Ã of Amax by D(Ã) = {u ∈ D(Amax) | Γ0u ∈
D(T ),Γ1u = TΓ0u}. Then it is customary to define an M -function as

follows:
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Definition 8.5 For λ ∈ �(Ã), M(λ) : ran(Γ1 − TΓ0) → K is the

operator satisfying

M(λ)(Γ1x− TΓ0x) = Γ0x, for all x ∈ ker(Amax − λ) = Zλ.

The analysis in [Brown, Grubb and Wood, 2009] showed that M(λ) is

a holomorphic family of operators in L(H,K). On the other hand, when

Ã and its boundary condition (8.10) are considered from the point of

view of extensions [Grubb, 1968, 1970, 1971, 1973, 1974] recalled further

above, Ã is the operator corresponding to T : Z → Z ′ by Theorem 8.2.

Then we find moreover, in terms of the λ-dependent families introduced

in that context:

M(λ) = −(T +Gλ
Z,Z′)−1 = −Fλ

Z (T
λ)−1(F ′λ̄

Z′)∗, when λ ∈ �(Ã)∩ �(Aγ).

This gives the Krĕın resolvent formula in the form

(Ã− λ)−1 = (Aγ − λ)−1 − iZλ
Eλ

ZM(λ)(E′λ̄
Z′)∗ prZ ′̄

λ
.

For the case of general V and W , we could likewise construct an M -

function from W to V for λ ∈ �(Ã), and establish a Krĕın resolvent

formula around it. The following result is shown in [Brown, Grubb and

Wood, 2009]:

Theorem 8.6 Let Ã correspond to T : V →W . For λ ∈ �(Ã) there is

a well-defined holomorphic family M(λ) ∈ L(W,V ):

M(λ) = prζ
(
I − (Ã− λ)−1(Amax − λ)

)
A−1

γ iW .

When λ ∈ �(Ã) ∩ �(Aγ), then

M(λ) = −(T +Gλ
V,W )−1 = −Fλ

V (T
λ)−1(F ′λ̄

W )∗,

and

(Ã− λ)−1 = (Aγ − λ)−1 − iVλ
Eλ

V M(λ)(E′λ̄
W )∗ prWλ̄

.

To have both Tλ (for λ ∈ �(Aγ)) and M(λ) (for λ ∈ �(Ã)) available

is an advantage, since ker(Ã − λ) = kerTλ and ran(Ã − λ) = ranTλ +

(H � Wλ̄) give straightforward eigenvalue information at the poles of

M(λ) in �(Aγ).

Remark The name M -function is consistent with the notation in some

papers that [Brown, Grubb and Wood, 2009] refers to, but possibly di-

verges from others (one could also use the longer name Weyl-Titchmarsh

function). There is a recent publication [Malamud, 2010] that exposes

related resolvent formulas on the basis of [Malamud and Mogilevski,
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2002]. (Let us remark that [Malamud, 2010] gives the impression that

only separate surjectiveness of Γ0 and Γ1 is assumed in [Brown, Grubb

and Wood, 2009]; this is not so.)

8.6 Implementation of the abstract set-up for
elliptic operators

We shall now recall how the abstract theory is applied to a concrete

choice of elliptic operator A. Here Amax and Amin are defined as in

Section 8.2; they are closed operators in H = L2(Ω). In [Grubb, 1968]

general even-order operators were considered, and the reference opera-

tor (called Aγ in Section 8.5) was taken to represent a general normal

boundary condition. To simplify our explanation, we shall here just con-

sider a second-order strongly elliptic operator A and let Aγ stand for the

Dirichlet realization, mentioned after (8.2). We have by elliptic regular-

ity that D(Aγ) = H2(Ω) ∩H1
0 (Ω), and we can assume that (a constant

has been added to A such that) the lower bound m(Aγ) is positive. The

lower bound m(P ) of an operator P is defined by

m(P ) = inf{Re(Pu, u) | u ∈ D(P ), ‖u‖ = 1} ≥ −∞; (8.11)

when it is finite, P is said to be lower bounded.

The trace operator γ0 defines a continuous mapping Hs(Ω) →
Hs− 1

2 (Σ) for s > − 1
2 . We shall also need a more advanced fact, namely

that, as shown by Lions and Magenes (see e.g. [Lions and Magenes,

1968]), γ0 extends to a mappingD(Amax)→ H− 1
2 (Σ), and defines home-

omorphisms

γZ : Z
∼→ H− 1

2 (Σ), γZ′ : Z ′ ∼→ H− 1
2 (Σ),

where Z and Z ′ are the nullspaces of Amax and A′
max (not contained

in Hs(Ω) for s > 0). The inverse of γZ is consistent with the Poisson

operatorKγ solving the semi-homogeneous Dirichlet problems (8.2) with

f = 0, in the sense that

Kγ = iZγ
−1
Z .

Similarly, the inverse γ−1
Z′ is consistent with the Poisson solution operator

K ′
γ solving the Dirichlet problem for A′ with f = 0, K ′

γ = iZ′γ−1
Z′ .

Moreover, with λ-dependence,

Kλ
γ = iZλ

γ−1
Zλ

, K ′λ̄
γ = iZ ′̄

λ
γ−1
Z ′̄

λ

,
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solve the semi-homogeneous Dirichlet problems for A− λ, A′ − λ̄, when

λ ∈ �(Aγ).

For a closed subspace V ⊂ Z, let X = γ0V ⊂ H− 1
2 (Σ). Here we

denote the restriction of γ0 by γV ;

γV : V
∼→ X, (8.12)

with a similar notation for Y = γ0W and λ-dependent cases. The map

γV : V
∼→ X has the adjoint γ∗

V : X∗ ∼→ V . Here X∗ denotes the antidual

space of X, with a duality coinciding with the scalar product in L2(Σ)

when applied to elements that come from L2(Σ). The duality is written

(ψ,ϕ)X∗,X .

We denote

Kγ,X = iV γ
−1
V : X → V ⊂ H; (8.13)

it is a Poisson operator when X = H− 1
2 (Σ).

Now a given T : V → W is carried over to a closed, densely defined

operator L : X → Y ∗ by the definition

L = (γ−1
W )∗Tγ−1

V , D(L) = γV D(T );

it is expressed in the diagram

V
∼
γV

� X

W

T

� ∼
(γ−1

W
)∗
� Y ∗

L

�

There is a similar definition in the λ-dependent case.

Before formulating the results in a theorem, we shall interpret the ab-

stract boundary condition (8.9) defining the realization Ã, as a concrete

condition in terms of L.

A has a Green’s formula (for sufficiently smooth u, v)

(Au, v)Ω − (u,A′v)Ω = (ν1u, γ0v)Σ − (γ0u, ν
′
1v)Σ, (8.14)

where

ν1 = sγ1, ν′1 = s̄γ1 +A′γ0,

with a nonvanishing smooth function s and a suitable first-order differ-

ential operator A′ on Σ.

Let λ ∈ �(Aγ). In addition to the Poisson operators Kλ
γ resp. K ′λ̄

γ
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solving the Dirichlet problems for A− λ resp. A′ − λ̄, we shall need the

Dirichlet-to-Neumann operators

Pλ
γ0,ν1

= ν1K
λ
γ , P ′λ̄

γ0,ν′
1
= ν′1K

′λ̄
γ ,

that map the Dirichlet boundary value into the Neumann boundary

value for null-solutions. By the composition rules for ψdbo’s, they are

pseudodifferential operators of order 1; moreover, it is known that Pλ
γ0,ν1

is elliptic.

Theorem 8.7 Define the reduced Neumann trace operator Γ by

Γ = ν1 − P 0
γ0,ν1

γ0 = ν1A
−1
γ Amax : D(Amax)→ H

1
2 (Σ).

It is continuous and surjective, and vanishes on Z. With the analogous

definition for A′ one has the reduced Green’s formula:

(Au, v)− (u,A′v) = (Γu, γ0v) 1
2 ,− 1

2
− (γ0u,Γ

′v)− 1
2 ,

1
2
,

valid for all u ∈ D(Amax), v ∈ D(A′
max). In particular,

(Au,w) = (Γu, γ0w) 1
2 ,− 1

2
, when u ∈ D(Amax), w ∈ Z ′. (8.15)

For λ ∈ �(Aγ) we similarly define

Γλ = ν1 − Pλ
γ0,ν1

γ0 = ν1(Aγ − λ)−1(Amax − λ),

Γ′λ̄ = ν1 − P ′λ̄
γ0,ν′

1
γ0 = ν′1(A

∗
γ − λ̄)−1(A′

max − λ̄),

continuous and surjective from D(Amax) resp. D(A′
max) to H

1
2 (Σ); then

there holds a reduced Green’s formula

(Au, v)− (u,A′v) = (Γλu, γ0v) 1
2 ,− 1

2
− (γ0u,Γ

′λ̄v)− 1
2 ,

1
2
,

for u ∈ D(Amax), v ∈ D(A∗
max).

Here D(Amax) is provided with the graph-norm.

Now let Ã be a closed operator lying between Amin and Amax, so

Ã ∈M. The abstract boundary condition (8.9) for Ã may be written:

(Au,w) = (Tuζ , w), all w ∈W. (8.16)

The left-hand side equals (Γu, γ0w) 1
2 ,− 1

2
by (8.15). The right-hand side

equals

(Tuζ , w) = (Tγ−1
V γ0u, γ

−1
W γ0w) = (Lγ0u, γ0w)Y ∗,Y ,

by definition of L (it is used that when uζ ∈ V , uζ = γ−1
V γV uζ =

γ−1
V γ0u).
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Hence (8.16) may be rewritten as

(Γu, γ0w) 1
2 ,− 1

2
= (Lγ0u, γ0w)Y ∗,Y , all w ∈W. (8.17)

The injection iY : Y → H− 1
2 (Σ) has the adjoint i∗Y : H

1
2 (Σ) → Y ∗

that sends a functional ψ on H− 1
2 (Σ) over into a functional i∗Y ψ on Y

by:

(i∗Y ψ,ϕ)Y ∗,Y = (ψ,ϕ) 1
2 ,− 1

2
for all ϕ ∈ Y.

Then (8.17) may be rewritten as

i∗Y Γu = Lγ0u,

or, when we use that Γ = ν1 − P 0
γ0,ν1

γ0,

i∗Y ν1u = (L+ i∗Y P
0
γ0,ν1

)γ0u. (8.18)

This is the boundary condition derived from (8.9), when Ã corresponds

to T : V →W by Theorem 8.2, carried over to L : X → Y ∗ by (8.12).

Then Theorem 8.2 implies:

Theorem 8.8 There is a 1–1 correspondence between the closed opera-

tors Ã ∈M and the closed densely defined operators L : X → Y ∗, where

X and Y are closed subspaces of H− 1
2 (Σ), such that Ã corresponds to

L : X → Y ∗ if and only if D(Ã) consists of the functions in D(Amax)

for which

γ0u ∈ D(L), i∗Y ν1u = (L+ i∗Y P
0
γ0,ν1

)γ0u. (8.19)

In this correspondence, X = γ0D(Ã), Y = γ0D(Ã∗), and

• Ã∗ corresponds analogously to L∗ : Y → X∗.

• ker Ã = iV γ
−1
V kerL; ran Ã = γ∗

W ranL+(H�W ), cf. (8.12), (8.13).

• Ã is bijective if and only if L is so, and then

Ã−1 = A−1
γ + iV γ

−1
V L−1γ∗

W prW = A−1
γ +Kγ,XL−1(K ′

γ,Y )
∗. (8.20)

Theorems 8.7 and 8.8 are from [Grubb, 1968], except that we have

modified the notation a little.

In [Brown, Grubb and Wood, 2009], the subspace cases are treated

with insertion of an isometry Λ 1
2
: L2(Σ)

∼→ H− 1
2 (Σ), that allows replac-

ing X and Y by closed subspaces X1 and Y1 of L2(Σ), identified with

their dual spaces; then i∗Y is replaced by an orthogonal projection prY1
.
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In the case where Y = H− 1
2 (Σ), i.e., W = Z ′, the map i∗Y is superflu-

ous, and the second condition in (8.19) takes the form

ν1u = (L+ P 0
γ0,ν1

)γ0u.

When also X = H− 1
2 (Σ), we say that Ã represents a Neumann-type

condition

ν1u = Cγ0u; here C = L+ P 0
γ0,ν1

on D(L).

In this case, L can act like a pseudodifferential operator, namely when

C (in the condition ν1u = Cγ0u) is a differential or pseudodifferential

operator.

Let us consider a slightly different set-up where C is a given first-order

differential or pseudodifferential operator on Σ, and we define Ã by

D(Ã) = {u ∈ D(Amax) | ν1u = Cγ0u}, (8.21)

where γ0 and ν1 are considered as mappings from D(Amax) to H− 1
2 (Σ)

resp. H− 3
2 (Σ). We shall discuss the corresponding operator L : X → Y ∗.

Since {γ0u, ν1u} maps H2(Ω) onto H
3
2 (Σ)×H

1
2 (Σ), D(L) = γ0D(Ã) ⊃

H
3
2 (Σ). Then since H

3
2 (Σ) is dense in H− 1

2 (Σ), X = H− 1
2 (Σ). By use

of Green’s formula (8.14) it is checked that the adjoint Ã∗ extends the

realization of A′ with domain consisting of the functions v ∈ H2(Ω)

satisfying

ν′1v = C∗γ0v,

so also Y = H− 1
2 (Σ). Thus we are in the case of Neumann-type boundary

conditions, so by comparison with (8.6), it is seen that L acts like C −
P 0
γ0,ν1

.

The domain D(L) equals {ϕ ∈ H− 1
2 (Σ) | (C − P 0

γ0,ν1
)ϕ ∈ H

1
2 (Σ)};

it may not be easy to determine more exactly. Note that L is used as

a map from its domain in H− 1
2 (Σ) to H+ 1

2 (Σ), although it acts like a

ψdo of order 1.

One case is clear, though: If C − P 0
γ0,ν1

is elliptic of order 1, then

Lϕ ∈ H
1
2 (Σ) implies ϕ ∈ H

3
2 (Σ); in this case D(L) = H

3
2 (Σ). Moreover,

D(Ã) ⊂ H2(Ω). A check of the boundary symbol rules shows that this

is precisely the case where the system {A, ν1 −Cγ0} is elliptic. Here we

have:

Theorem 8.9 Let C be a first-order differential or pseudodifferen-

tial operator on Σ and define the realization Ã of A by (8.21). Then if
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C − P 0
γ0,ν1

is elliptic, the operator L : X → Y ∗ corresponding to Ã by

Theorem 8.8 acts like C − P 0
γ0,ν1

and has

X = Y = H− 1
2 (Σ), D(L) = H

3
2 (Σ).

Moreover, D(Ã) ⊂ H2(Ω). Related statements hold for the adjoint Ã∗.

A Robin condition ν1u = bγ0u, with a smooth function b(x) on Σ, is

elliptic, since L acts like b−P 0
γ0,ν1

, where P 0
γ0,ν1

is elliptic of order 1 and

b is of order 0.

In the case of Theorem 8.9, when L is bijective, the formula (8.20) has

the form

Ã−1 = A−1
γ +KγL

−1(K ′
γ)

∗, (8.22)

where all ingredients belong to the ψdbo calculus: Kγ is a Poisson op-

erator, L−1 is a ψdo on Σ, (K ′
γ)

∗ is a trace operator of class 0, and the

composition KγL
−1(K ′

γ)
∗ is a singular Green operator (of class 0). A−1

γ

is the sum Q+ + G of a truncated ψdo Q on Rn and a singular Green

operator, as in (8.4).

Realizations defined by boundary conditions of the type ν1u = Cγ0u

are studied by means of quasi-boundary triples techniques for selfadjoint

A in Theorem 6.24 ff.; here C is a selfadjoint bounded operator in L2(Σ)

and D(Ã) ⊂ H
3
2 (Ω).

When A is of order 2m, there is a Green’s formula generalizing (8.14),

where γ0 is replaced by an m-vector γ = {γ0, . . . , γm−1}, and ν1 and ν′1
are replaced by m-vectors of trace operators of orders m, . . . , 2m − 1,

mapping into products of Sobolev spaces of different orders over Σ. One

then gets vector versions of the reduced Neumann trace operators Γ and

Γ′, with matrix-formed versions of the Dirichlet-to-Neumann pseudod-

ifferential operators, but the basic mechanisms in the interpretation are

the same. There are interesting cases of subspaces X,Y of the products

of Sobolev spaces over Σ, where ellipticity considerations are relevant.

Details are given in [Grubb, 1968]–[Grubb, 1974] and [Brown, Grubb

and Wood, 2009].

8.7 Resolvent formulas

When λ ∈ �(Aγ), there is a similar representation of Ã − λ in terms

of a boundary condition defined from an operator Lλ acting over the

boundary. Here it is of particular interest to find the connection between
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L and Lλ, just as we found the connection between T and Tλ. It turns

out that the relation between L and Lλ is simpler: They both go from

X to Y ∗, whereas T resp. Tλ map between different spaces due to the

shift from Z to Zλ. This holds, since

D(L) = γ0D(Ã) = γ0D(Ã− λ) = D(Lλ), X = D(L) = D(Lλ),

with similar statements for D(L∗), D((Lλ)∗) and Y . Then we have:

V
∼
Eλ

V

� Vλ
∼

γVλ

� X

W

T+Gλ
V,W

� ∼
(F ′λ̄

W )∗
� Wλ̄

Tλ

� ∼
(γ∗

W
λ̄
)−1
� Y ∗

Lλ

�

The horizontal maps compose as γVλ
Eλ

V = γV , (γ∗
Wλ̄

)−1(F ′λ̄
W )∗ =

(γ∗
W )−1, so

Lλ = γ−1
V (T +Gλ

V,W )(γ∗
W )−1.

In terms of Lλ, the boundary condition reads (analogously to (8.18)):

i∗Y ν1u = (Lλ + i∗Y P
λ
γ0,ν1

)γ0u, γ0u ∈ D(L). (8.23)

Since D(Ã− λ) = D(Ã) is at the same time defined by the boundary

condition i∗Y ν1u = (L + i∗Y P
0
γ0,ν1

)γ0u for γ0u ∈ D(L), we have that

Lλ + i∗Y P
λ
γ0,ν1

= L+ i∗Y P
0
γ0,ν1

on D(L), so

Lλ = L+ i∗Y (P
0
γ0,ν1

− Pλ
γ0,ν1

) on D(L).

The last formula is convenient, since P 0
γ0,ν1

− Pλ
γ0,ν1

can be shown to be

bounded from H− 1
2 (Σ) to H

1
2 (Σ); hence Lλ is a perturbation of L by a

bounded operator.

Also the general M -function defined in Section 8.5 carries over to an

M -function on the boundary, a holomorphic family of operatorsML(λ) ∈
L(Y ∗, X) defined for λ ∈ �(Ã).

The results are collected in the following theorem:

Theorem 8.10 Let Ã correspond to T : V → W as in Theorem 8.2,

carried over to L : X → Y ∗ as in Theorem 8.8. For λ ∈ �(Aγ) it is also

described by the boundary condition (8.23), and there holds:

(i) For λ ∈ �(Aγ), P
0
γ0,ν1

− Pλ
γ0,ν1

∈ L(H− 1
2 (Σ), H

1
2 (Σ)) and

Lλ = L+ i∗Y (P
0
γ0,ν1

− Pλ
γ0,ν1

) on D(L).
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(ii) For λ ∈ �(Ã), there is a related M -function ∈ L(Y ∗, X),

ML(λ) = γ0
(
I − (Ã− λ)−1(Amax − λ)

)
A−1

γ iW γ∗
W .

(iii) For λ ∈ �(Ã) ∩ �(Aγ),

ML(λ) = −(Lλ)−1 = −
(
L+ i∗Y (P

0
γ0,ν1

− Pλ
γ0,ν1

)iX
)−1

,

and we have the Krĕın-type resolvent formulas:

(Ã− λ)−1 − (Aγ − λ)−1 = Kλ
γ,X(Lλ)−1(K ′λ̄

γ,Y )
∗

= −Kλ
γ,XML(λ)(K

′λ̄
γ,Y )

∗.

In the case of a Neumann-type boundary condition as in (8.21), Lλ =

C − Pλ
γ0,ν1

on D(Lλ) = D(L).

8.8 Applications of pseudodifferential methods I:
Conditions for lower boundedness

The formulas we have shown so far use the terminology of ψdbo’s mainly

as a way to indicate what the ingredients in certain operator compo-

sitions are. The next question to consider is how properties of Ã are

reflected in properties of L. Part of the analysis can be carried out with

methods of functional analysis, but there also exist problems that are

solved most efficiently by involving deeper pseudodifferential principles.

An example of how functional analytic and pseudodifferential methods

are useful together, is the question of lower boundedness inequalities.

We here restrict the attention to the symmetric set-up where A is

formally selfadjoint (so Amax = A∗
min) and Aγ is selfadjoint; methods

for extending the results to nonsymmetric set-ups are found in [Grubb,

1974]. We assume that Aγ has positive lower bound m(Aγ) (cf. (8.11)).

In the symmetric case, the general extensions Ã can of course be

nonsymmetric (since Amax is so). Let us speak of the “selfadjoint case”

when only selfadjoint Ã ’s are considered.

In the following, we assume throughout that Ã corresponds to T : V →
W as in Theorem 8.2, and to L : X → Y ∗ as in Theorem 8.8. The lower

boundedness problem is the problem of how information on lower bounds

on Ã is related to similar information on T or L. The following was shown

in [Grubb, 1970] (together with studies of coerciveness estimates):

Theorem 8.11 In the symmetric set-up with Aγ selfadjoint positive,

let Ã correspond to T : V →W as in Theorem 8.2.
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1◦ If V ⊂ W and T has a lower bound m(T ) satisfying m(T ) >

−m(Aγ), then m(Ã) ≥ m(T )m(Aγ)/(m(T ) +m(Aγ)).

2◦ Assume that Aγ is the Friedrichs extension of Amin. If m(Ã) >

−∞, then V ⊂W and m(T ) ≥ m(Ã).

In the selfadjoint case these rules go back to [Birman, 1956], preceded

by sesquilinear form results of [Krein, 1947]. For studies where m(Aγ) is

only assumed ≥ 0, see Chapter 3.

The properties of T are easily translated to similar properties of L

using the homeomorphism (8.6); here when X ⊂ Y , we set

m− 1
2
(L) = inf{Re(Lϕ,ϕ)Y ∗,Y | ϕ ∈ D(L), ‖ϕ‖− 1

2
= 1}, (8.24)

for some choice of norm ‖ϕ‖− 1
2
on H− 1

2 (Σ) . (One can let γZ be an isom-

etry, to carry numerical information over between T and L. Sometimes

qualitative objects such as the sign of m− 1
2
(L) are sufficiently interest-

ing.) To take Aγ as the Friedrichs extension of Amin means that it is

taken as the Dirichlet realization.

In 1◦ we see that the statement “m(T ) > −∞ =⇒ m(Ã) > −∞”

holds under the additional assumption that m(T ) > −m(Aγ); there is a

nontrivial question of when that assumption can be removed. In [Grubb,

1974] it was shown that when Aγ is the Friedrichs extension and A−1
γ

is a compact operator, then m(T ) > −∞ does imply m(Ã) > −∞. This

same result was also announced in [Gorbachuk and Mikhailets, 1976] for

the selfadjoint case.

In the application to boundary value problems, we therefore have from

this early result that lower boundedness of Ã and L hold simultaneously

when we consider problems on bounded domains Ω, for then A−1
γ is

indeed compact.

For unbounded domains, the question has, to our knowledge, remained

unsolved up until recently. The question is closely connected with the

comparison of T with Tλ as in Theorem 8.4. Indeed, as shown in [Grubb,

1974]:

Proposition 8.12 Let Gλ
V,W be as defined in Theorem 8.4. The prop-

erty

m(Gμ
Z,Z)→∞ for μ→ −∞, μ ∈ R, (8.25)

is necessary and sufficient for the validity of

m(T ) > −∞ =⇒ m(Ã) > −∞ (8.26)

for general closed Ã ∈M.
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The question was also studied later in [Derkach and Malamud, 1991]

who worked out an analysis that generalizes Proposition 8.12 and gives

further conditions for the validity of the conclusion from m(T ) to m(Ã).

However this did not capture elliptic problems on unbounded domains

(n ≥ 2).

Because of the recent interest in the analysis of extensions, we have

considered the problem again, and found a solution in [Grubb, 2012] for

exterior domains (complements in Rn of bounded domains).

Theorem 8.13 Let Ω be the complement of a smooth bounded set Ω−
in Rn, and let A be symmetric and uniformly strongly elliptic on Ω with

coefficients in C∞
b (Ω), and with a positive lower bound for Aγ . In the

application of the extension theory to this situation, (8.25) holds, and

hence also (8.26).

Here C∞
b (Ω) stands for the C∞-functions that are bounded with

bounded derivatives.

The proof relies on the “translation” of abstract operators Ã to con-

crete operators defined by boundary conditions. Indeed, it turns out

that the lower bound of Gμ
Z,Z behaves like the lower bound m− 1

2
(Qμ)

(cf. (8.24)) of Qμ = P 0
γ0,ν1

−Pμ
γ0,ν1

. Then the deep part of the proof lies

in setting the operator Qμ in relation to the analogous operator for the

interior domain Ω−, Q
μ
−, which does have the desired property, in view

of our knowledge of problems on bounded domains. The point is to show

that |((Qμ − Qμ
−)ϕ, ϕ)| is bounded by c‖ϕ‖2− 1

2

uniformly for μ → −∞,

so that addition of Qμ − Qμ
− to Qμ

− does not violate the growth of the

lower bound. This goes by a delicate application of the ψdbo calculus.

Details are in [Grubb, 2012].

Let us mention that there is a considerably easier result that holds

regardless of boundedness of ∂Ω and only requires some uniformity in

the estimates of coefficients of the operators, namely preservation of

coerciveness inequalities (G̊arding inequalities). We here assume that Ω

is a subset of Rn with smooth boundary, admissible as defined in [Grubb,

1996] (besides bounded domains, this allows exterior domains, perturbed

halfspaces and other cases that can be covered with a finite system of

local coordinates of a relatively simple kind). Moreover, we assume that

A is uniformly strongly elliptic on Ω with coefficients in C∞
b (Ω). The

result is that then Ã satisfies a G̊arding inequality (with c > 0, k ∈ R)

Re(Ãu, u) ≥ c‖u‖21 − k‖u‖20, u ∈ D(Ã),
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if and only if X ⊂ Y and L satisfies an inequality

Re(Lϕ,ϕ) ≥ c′‖ϕ‖2
H

1
2 (Σ)

− k′‖ϕ‖2
H− 1

2 (Σ)
, ϕ ∈ D(L). (8.27)

In the case of differential or pseudodifferential Neumann-type bound-

ary conditions, the inequality (8.27) for L holds precisely when the

pseudodifferential operator it acts like, is strongly elliptic. Details for

bounded sets are in [Grubb, 1970] for realizations of 2m-order opera-

tors; the extension to unbounded sets is shown in [Grubb, 2012] — the

argumentation just involves standard trace theorems and interpolation

inequalities.

8.9 Applications of pseudodifferential methods II:
Spectral asymptotics

In the symmetric set-up, when Ω is bounded, the eigenvalues of the

selfadjoint operator Aγ form a sequence λj going to ∞ on R. In [Weyl,

1912] appeared the famous estimate for A = −Δ, for n = 2, 3, m = 2:

λj(Aγ)− c0j
m/n is o(jm/n) for j →∞,

where c0 is a constant defined from the volume of Ω; the eigenvalues are

repeated according to multiplicities. Equivalently, the counting function

N(t;Aγ) (counting the number of eigenvalues in [0, t]), and the eigen-

values μj of the inverse A−1
γ , satisfy

N(t;Aγ)− cAt
n/m is o(tn/m) for t→∞,

μj(A
−1
γ )− c

m/n
A j−m/n is o(j−m/n) for j →∞,

where

cA = (2π)−n

∫
x∈Ω, a0(x,ξ)<1

dxdξ

(and c0 = c
−m/n
A ). The estimates have been shown for general n and

sharpened since then, with more precision on the remainder, and the

validity has been extended to general elliptic operators A and boundary

conditions, and to elliptic pseudodifferential operators P on compact

manifolds. These improvements have a long history that we shall not try

to account for here in detail; they are interesting not only because of the

results but even more because of the refined theories that were invented

in connection with the proofs (for example: Fourier integral operators).
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See e.g. [Hörmander, 1968, 1971; Brüning, 1974; Seeley, 1978; Ivrii, 1982,

1984, 1991; Safarov and Vassiliev, 1997].

We shall here be concerned with a slightly different question, namely

the spectral behavior of the difference between the resolvents of two

realizations of A.

It is shown in [Birman, 1962] for second-order symmetric uniformly

strongly elliptic operators A that the singular numbers sj(B) =

μj(B
∗B)

1
2 of the compact operator B = Ã−1 − A−1

γ satisfy an upper

estimate:

sj(Ã
−1 −A−1

γ ) ≤ Cj−2/(n−1), for all j, (8.28)

when Ã is a selfadjoint realization of A defined by a Neumann or Robin

condition. In other words, Ã−1 − A−1
γ belongs S(n−1)/2,∞, where Sp,∞

is the space of compact operators B for which sj(B) is O(j−
1
p ) (often

called a weak Schatten class). It is particularly interesting that Birman

showed this not just for interior, but also for exterior domains, and under

low smoothness assumptions.

We note in passing that the estimate (8.28) implies that

Ã−1 −A−1
γ ∈ Cp for p > (n− 1)/2, (8.29)

where Cp is the p-th Schatten class (consisting of the operators B such

that(sj(B))j∈N ∈ �p(N)); but this is less informative than (8.28).

One of the fundamental ingredients in these studies is embedding

properties, more precisely the knowledge that an operator B that is

continuous from L2(Ω) to Hs(Ω) for some s > 0 (Ω bounded smooth

⊂ Rn) is compact in L2(Ω) and belongs to Sn/s,∞. However, this alone

only gives upper bounds on the behavior of singular numbers. To get

Weyl-type limit properties one must know more about the differential

or pseudodifferential structure of the operators.

The estimate (8.28) was sharpened to a Weyl-type asymptotic esti-

mate in [Birman and Solomyak, 1977, 1980]; the latter showed a general

principle for the spectrum of a ratio of two quadratic forms, implying

that

sj(Ã
−1 −A−1

γ )j2/(n−1) → c, for j →∞, (8.30)

for interior and exterior smooth domains.

Prior to this, a far-reaching result had been shown in [Grubb, 1974],

Section 8: We consider a symmetric, strongly elliptic 2m-order operator

acting in an N -dimensional vector bundle E over a smooth compact

Riemanninan manifold Ω with boundary Σ, assuming that the Dirichlet
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realization Aγ is invertible. Let AB be a selfadjoint invertible realization

defined by a normal boundary condition∑
k≤j

Bjkγku = 0, j = 0, 1, . . . , 2m− 1,

where the Bjk are differential operators of order j−k from E|Σ to given

vector bundles Fj over Σ (with dimFj ≥ 0); normality of the boundary

condition means that the Bjj are surjective morphisms. (That A acts in

the vectorbundle E means that it is locally (N ×N)-matrix-formed. In

the scalar case, N = 1 and the Fj are 0- or 1-dimensional, with Bjj an in-

vertible function when dimFj = 1. Ellipticity of the boundary condition

requires in particular that
∑

j dimFj = mN .) Denote ⊕j>mFj = F 1.

Theorem 8.14 Let T : V → V be the operator corresponding to AB by

Theorem 8.2. There exists an isometry J : L2(Σ, F
1)

∼→ V with inverse

J−1 = J∗ (in the ψdbo calculus), such that

T1 = J∗TJ

acts like an elliptic invertible ψdo T in F 1 of order 2m, and D(T1) =
{ϕ ∈ L2(Σ, F

1) | T ϕ ∈ L2(Σ, F
1)} = H2m(Σ, F 1). Here T1 has the same

spectrum as T , and its eigenvectors are mapped to the corresponding

eigenvectors of T1 by the isometry J . Moreover,

A−1
B −A−1

γ = iV JT −1
1 J∗ prV , (8.31)

whereby the positive resp. negative eigenvalues satisfy

μ±
j (A

−1
B −A−1

γ ) = μ±
j (T1−1) for all j.

It follows that with constants determined from the principal symbols,

N ′±(t;A−1
B −A−1

γ ) = C±t(n−1)/(2m) +O(t(n−1)/(2m)) for t→∞,

μ±
j (A

−1
B −A−1

γ ) = (C±)2m/(n−1)j−2m/(n−1) +O(j−(2m+1)/(n−1));

(8.32)

here N ′±(t;S) indicates the number of positive, resp. negative eigenval-

ues of S outside the interval ]− 1/t, 1/t[ .

The two statements in (8.32) are equivalent, cf. e.g. [Grubb, 1996],

Lemma A.5. They follow from [Hörmander, 1968] for elliptic ψdo’s, when

the principal symbol eigenvalues of T are simple; this restriction is re-

moved by results of [Ivrii, 1982]. See also Theorem 8.17 below.

We have recently checked that the proof extends to exterior domains,

for uniformly strongly elliptic systems.
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The fine estimates with remainders depend on the ellipticity of the

ψdo. For simple Weyl-type estimates, the ellipticity hypothesis is re-

moved in [Birman and Solomyak, 1977], showing that

sj(P )jk/n → c(p0) for j →∞

holds for any classical ψdo P of order −k < 0 on a compact manifold of

dimension n. They even allowed a certain nonsmoothness of the homoge-

neous principal symbol, both in x and ξ, needing only a little more than

continuity. In the elliptic case, there are recent works of Ivrii dealing

with remainder estimates under weak smoothness hypotheses.

In [Grubb, 1984a] an effort was made to increase the accessibility of the

ψdbo calculus by publishing an introduction to it with several improve-

ments, and showing as a main result that any singular Green operator of

negative order and class 0 has a Weyl-type spectral asymptotics formula:

Theorem 8.15 Let G be a classical singular Green operator of or-

der −k < 0 and class 0 on an n-dimensional compact manifold with

boundary. It has a spectral asymptotics behavior

sj(G)jk/(n−1) → c(g0) for j →∞, (8.33)

where c(g0) is a constant defined from on the principal symbol of G.

This was moreover used to show asymptotic formulas generalizing

(8.30), both for interior and exterior domains, followed up in another

study [Grubb, 1984b] including also the dependence on a spectral pa-

rameter λ. Indeed, we have as an immediate corollary of Theorem 8.15,

also for nonselfadjoint cases:

Corollary 8.16 Let A be elliptic of order 2m with invertible Dirichlet

realization and let AB be an invertible realization defined by a normal

elliptic boundary condition. For any positive integer N , A−N
B −A−N

γ is a

singular Green operator of order −2mN and class 0, and hence satisfies

sj(A
−N
B −A−N

γ )j2mN/(n−1) → cN for j →∞, (8.34)

for a constant cN defined from the principal symbols.

Also exterior domains are considered in [Grubb, 1984a,b], where (8.34)

is shown for realizations of second-order operators and their iterates. The

results apply of course to resolvents by replacement of A by A−λ; the λ-

dependence is studied in [Grubb, 1984b]. It is seen that the ψdbo theory

provides a forceful tool for such questions, and we strongly recommend

its use.
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8.10 New spectral results

Spectral estimates of resolvent differences have been taken up in recent

papers [Alpay and Behrndt, 2009; Behrndt, Langer, Lobanov, Lotore-

ichik and Popov, 2010; Behrndt, Langer and Lotoreichik] for second-

order operators and [Malamud, 2010] for 2m-order operators with nor-

mal boundary conditions, based on boundary triples methods. Here

Schatten class and weak Schatten class estimates are shown, relying

on such estimates for Sobolev space embeddings.

We have returned to the subject in [Grubb, 2011a] where we, besides

showing new results on perturbations of essential spectra, have reformu-

lated and extended results in [Grubb, 1984a] on estimates like (8.34),

including general differences and exterior domains. The central ingredi-

ent is the estimate (8.33) for singular Green operators, plus the fact that

s.g.o.s give their essential contribution in a small neighborhood of the

boundary, also for exterior domains, allowing cutoffs eliminating infinity.

An inspection of the results of [Grubb, 1974] shows that the spectral

estimates in Theorem 8.14 can be further sharpened by use of results of

[Ivrii, 1982]:

Theorem 8.17 In the setting of Theorem 8.14, assume in addition

that the principal symbol of T satifies Ivrii’s conditions (H±) from [Ivrii,

1982] (the bicharateristics through points of T ∗(Σ) \ 0 are nonperiodic

except for a set of measure zero). Then there are constants C±
1 such that

N ′±(t;A−1
B −A−1

γ ) = C±t(n−1)/(2m) + C±
1 t(n−2)/(2m) + o(t(n−2)/(2m)).

The proof is a direct application of [Ivrii, 1982] Th. 0.2 to T .
The formula (8.31) is a special type of Krĕın resolvent formula with

isometries, valid for selfadjoint realizations, but the analysis in [Grubb,

1974] also implies Krĕın formulas in the nonselfadjoint cases. Namely,

Th. 6.4 there shows how T : V →W is represented by a realization L1 of

a ψdo L acting between vector bundles over Σ, and here AB is elliptic if

and only if L is elliptic (Cor. 6.10). In the invertible elliptic case, formula

(8.20) then takes the form

A−1
B −A−1

γ = iV γ
−1
V ΦL−1

1 Ψ∗(γ∗
W )−1 prW ,

with L1 acting like −(B10 + B11Pγ,χ)Φ (notation explained in [Grubb,

1974]); the right-hand side is a composition of a Poisson operator, an

elliptic ψdo and the adjoint of a Poisson operator, all of mixed order. Its

s-numbers can be studied by reduction to an elliptic ψdo over Σ, where

Ivrii’s sharp results can be used.
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Let us just demonstrate this for second-order operators, for the for-

mula (8.22), with L−1 elliptic of order −1: Denote Ã−1 − A−1
γ = S.

Then

sj(S)
2 = sj(KγL

−1(K ′
γ)

∗)2 = μj(KγL
−1(K ′

γ)
∗K ′

γ(L
−1)∗K∗

γ)

= μj(L
−1(K ′

γ)
∗K ′

γ(L
−1)∗K∗

γKγ),

where we used the general rule μj(B1B2) = μj(B2B1). Both operators

P1 = K∗
γKγ and P ′

1 = (K ′
γ)

∗K ′
γ are selfadjoint positive elliptic ψdo’s of

order −1 (cf. e.g. [Grubb, 2011b, proof of Theorem 4.4]). Let P2 = P
1
2
1 ,

then we continue the calculations as follows:

sj(S)
2 = μj(L

−1P ′
1(L

−1)∗P1) = μj(P2L
−1P ′

1(L
−1)∗P2) = μj(P3),

where P3 = P2L
−1P ′

1(L
−1)∗P2 is a selfadjoint positive elliptic ψdo on Σ

of order −4. Applying Ivrii’s theorem to P−1
3 , we conclude:

Theorem 8.18 For the operator considered in Theorem 8.9, the s-

numbers satisfy

N ′(t; Ã−1 −A−1
γ ) = Ct(n−1)/2 +O(t(n−2)/2).

Moreover, if the principal symbol of P−1
3 satifies Ivrii’s condition from

[Ivrii, 1982] (the bicharateristics through points of T ∗(Σ) \ 0 are non-

periodic except for a set of measure zero), there is a constant C1 such

that

N ′(t; Ã−1 −A−1
γ ) = Ct(n−1)/2 + C1t

(n−2)/2 + o(t(n−2)/2).

Sharpened asymptotic formulas can also be obtained for differences

between resolvents of two realizations that both differ from the Dirich-

let realization, by use of the analysis in [Grubb, 1968] with a general

invertible realization Aβ as reference operator.

To give another example of applications of the ψdbo theory, the fol-

lowing result is found straightforwardly as a consequence of [Grubb,

1984a]:

Theorem 8.19 Let AB and AB′ be elliptic invertible realizations of

A such that B and B′ map into the same bundles and have the same

principal part. Then A−1
B −A−1

B′ is a singular Green operator of order

−2m− 1 (since its principal part is zero), and hence, by (8.33),

sj(A
−1
B −A−1

B′ )j
(2m+1)/(n−1) → c for j →∞.
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The singular Green operator will be of a still lower order −2m− r if

the first r > 1 terms in the symbols of B and B′ coincide.

Example 8.20 As a special case, we can compare two Robin condi-

tions for a second-order operator A:

Ã1 defined by ν1u = b1γ0u,

Ã2 defined by ν1u = b2γ0u;

b1, b2 ∈ C∞(Σ). When regarded from the point of view of Theorem 8.19,

these are normal boundary conditions ν1u− Biγ0u = 0, where B1 = b1
and B2 = b2 considered as first-order operators have principal part 0,

so the boundary operators have the same principal part. Then the s.g.o.

Ã−1
1 − Ã−1

2 is of order −3, and by (8.33),

sj(Ã
−1
1 − Ã−1

2 )j3/(n−1) → c for j →∞. (8.35)

In [Behrndt, Langer, Lobanov, Lotoreichik and Popov, 2010] upper

estimates are shown for this difference in the case A = −Δ− λ, namely

Schatten class estimates of sj(Ã
−1
1 − Ã−1

2 ) as in (8.29) with (n − 1)/2

replaced by (n− 1)/3.

In case the bi are C∞, the result is covered by (8.35) as explained

above. However, the bi in [Behrndt, Langer, Lobanov, Lotoreichik and

Popov, 2010] are allowed to be nonsmooth, namely to be in L∞(Σ),

which goes outside the range covered by the smooth ψdbo theory.

This led us to investigate how far we could push the proof of asymp-

totic estimates (8.35) to make them valid for nonsmooth choices of bi.

The outcome is published in [Grubb, 2011b], where it is shown that

(8.35) holds for symmetric second-order strongly elliptic operators on

smooth domains, when b1 and b2 are piecewise Cε on Σ, having jumps

at a smooth hypersurface.

The Schatten class estimates have been followed up by [Behrndt,

Langer and Lotoreichik] in a study of selfadjoint realizations; see also

Chapter 6 in this volume.

Unsolved questions of asymptotic estimates lie primarily in the range

of situations with limited smoothness. Resolvent formulas have been

studied in such general cases, [Posilicano and Raimondi, 2009; Grubb,

2008] for C1,1-domains, [Gesztesy and Mitrea, 2008, 2011] for Lipschitz

and quasi-convex domains, [Abels, Grubb and Wood] for a class of do-

mains containing C3/2+ε, with a nonsmooth generalization of ψdbo’s. To

our knowledge, spectral asymptotic estimates have not yet been worked
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out for such resolvent differences. Some upper estimates are in selfadjoint

cases known from [Birman, 1962].

A problem with a different flavor is the case of a mixed boundary con-

dition, such as prescribing for −Δ the Dirichlet condition on a part Σ−
of the boundary and a Neumann-type condition on the other part Σ+.

Here there is a jump in the order of the boundary condition. The domain

of the realization is contained in H
3
2−ε(Ω) only for ε > 0, so the mixed

problem is not covered by those boundary triples methods that require

the domain to be in H
3
2 (Ω). Spectral upper estimates are known from

[Birman, 1962]. A spectral asymptotic estimate was obtained recently in

[Grubb, 2011c], based on somewhat intricate applications of results on

nonstandard pseudodifferential operators.

There are also other questions that can benefit from pseudodifferential

methods, for example the study of spectral asymptotics of the nonelliptic

Krĕın-like extensions, cf. [Grubb, 2012].
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