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Introduction

It is a very great honor for me to give this talk, and to receive tomorrow
the promotion to Honorary Doctor in Mathematics at the University of
Lund.

As such, I have some very fine predecessors:

Ivan Georgievich Petrovskĭı (Steklov Institute in Moscow) in 1968;

Laurent Schwartz (Ecole Polytechnique in Paris) in 1981;

Peter Lax (Courant Institute in New York) in 2008.

In the following I shall try to describe some ingredients of the
development in the area of Mathematics that has always ocuupied me.
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1. Functions, spaces, operators

First a few mathematical concepts, that I hope will be reasonbly well
explained.

It is common knowledge what a real
function is: y = f (x), as in the graphic
illustration here:

If there is a derivative f ′(x) (the slope of
the tangent) at each x , we have another
function y = f ′(x) that we can also draw:

Now we go to a higher abstract level.

Let us view functions as elements of a function space. Consider, instead
of a single function f , a collection of functions, which together form a
space. For example: The space C 0(I ) of all functions f (x) defined for x
in an interval I and continuous there. It is a linear space, meaning that
when f and g belong there, so does any linear combination: af + bg ,

(af + bg)(x) = af (x) + bg(x).
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Another example is C 1(I ), the space of functions on I that moreover
have a continuous derivative f ′. It is also a linear space. One moreover
defines C k(I ) as the space where repeated differentiation — up to k
times — gives continuous functions. C∞(I ) is the space of functions that
have continuous derivatives of all orders.

We can also pass to functions of several variables f (x1, x2, . . . , xn) where
x = (x1, . . . , xn) runs in a suitable subset Ω of Rn. Here one can study
derivatives with respect to each coordinate xj , the partial derivatives.
And one can define the space C 0(Ω) of continuous functions on Ω, and
spaces C k(Ω) of functions with continuous derivatives on Ω up to order
k.

There are lots of other interesting function spaces used by
mathematicians. For example Lp(Ω), consisting of functions f on Ω such
that

∫
Ω
|f (x)|p dx exists. (Here Lebesgue’s measure theory is needed.)

And then one can define further spaces, consisting of those functions f in
Lp(Ω) that have some derivatives in Lp(Ω) in a generalized (“weak”)
sense. This was used already in the early half of the 1900’s, but became
more transparent when Laurent Schwartz developed Distribution Theory
around 1950.
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The Distribution Theory allowed for still more general spaces, and gave
an extremely useful setting for the application of Fourier Transformation,
invented in the 1800’s and particularly appreciated by physicists.

As you see, there are lots of examples of function spaces (collections of
single functions). Now I turn to the next abstract level, introducing:
Operators between function spaces.

Basic example: When f is in C 1(I ), the
passage from f to the derived function f ′

can be viewed as a mapping ∂ from C 1(I )
to C 0(I ):

∂ : f 7→ f ′ goes from C 1(I ) to C 0(I ).

This mapping respects the linearity:
∂(af + bg) = a∂f + b∂g . Therefore it is
called a linear operator.

Also in general, we can define linear operators going from one function
space defined over I to another, or from one function space defined over
Ω to another.
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Important examples are the differential operators built up from ∂, for
example the powers ∂k , where one applies ∂ again, k times.
Combinations of such operators are called ordinary differential
operators; the order of the operator is the highest power that occurs.

For functions on Ω ⊂ Rn. we have the partial derivatives ∂1, . . . , ∂n,
where ∂j stands for the derivative with respect to the variable xj . The
combinations of such operators are called partial differential operators.

A very important example is the Laplace operator

∆: u 7→ ∆u = ∂2
1u + · · ·+ ∂2

nu.

It enters in three basic equations:

−∆u(x) = f (x) on Ω, the Laplace equation,

∂tu(x , t)−∆u(x , t) = f (x , t) on Ω× R, the heat equation,

∂2
t u(x , t)−∆u(x , t) = f (x , t) on Ω× R, the wave equation,

describing physical problems. One wants to find solutions u for given f .
For example, the heat equation describes how the temperature develops
in a container, but it is also used in financial theory, wrapped up in a
stochastic formulation.
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One asks for: existence of solution? Uniqueness? Moreover if f has a
singularity, for example a jump, how does this effect u? Spectral
questions, eigenvalues?

Another type of examples of operators are integral operators, both for
functions on I and for functions on Ω,

(Qu)(x) =

∫
Ω

K (x , y)u(y) dy .

Differential equations often have integral operators as solution operators.

I shall now leave the detailed explanation, and tell the continued story
more as an overview, with “namedropping”, both concerning
mathematical concepts and the people involved in developing them.
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2. The Fourier transform and pseudo-differential operators

A very important operator is the Fourier transformation F , it is an
integral operator. It is invertible from the space L2(Rn) onto itself, and
the inverse operator has very much the same structure. It has been used
much, both in physics and mathematics, and the mathematical rigor was
perfected when Schwartz’ Distribution Theory came into the picture.
The success of F is due to the fact that it turns differential operators
into multiplication operators.

When u(x) ∈ L2(Rn), we denote Fu = û(ξ), again a function on Rn,
where the variable is now denoted ξ = (ξ1, . . . , ξn).

The differential operator ∂j is turned into multiplication by iξj :

F(∂ju) = iξj û(ξ) (here i =
√
−1).

For example, F(∆u) = −(ξ2
1 + · · ·+ ξ2

n)û(ξ), and therefore:

−∆u = f ⇐⇒ (ξ2
1 + · · ·+ ξ2

n)û = f̂ .

Similarly, the differential operator P =
∑n

j,k=1 ajk∂j∂k is turned into the
multiplication by the polynomial p(ξ) = −

∑
ajkξjξk ;

F(Pu) = p(ξ)û(ξ).
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p(ξ) is called the symbol of P. Multiplication operators are much easier
to work with than differential operators.

The idea can be generalized: Take a function p(ξ) that is not necessarily
a polynomial, and define the pseudodifferential operator P = p(D) by

p(D)(u) = F−1(p(ξ)û(ξ)), also called Op(p)u.

This is the simple basic idea of pseudodifferential operators!!!

But there are of course complications in the usage. The equation

p(ξ)û(ξ) = f̂ (ξ) has the solution û(ξ) = 1
p(ξ) f̂ (ξ);

therefore

p(D)u(x) = f (x) is solved by u(x) = Op( 1
p(ξ) )f (x).

This is OK when p(ξ) 6= 0 for all ξ. But how is it understood when p(ξ)
is zero for some values of ξ?
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When p is not zero anywhere, the solution operator Op( 1
p(ξ) ) is itself a

pseudodifferential operator. This gives a unified theory where both the
operator and its inverse belong to the class of operators; both differential
operators and integral operators belong there.

When p does have zeroes, it is still possible to do something. There are
refined interpretations of Op( 1

p(ξ) ) (so-called fundamental solutions) in

very general cases.

The next question is: What if we let p depend on x also? This is natural,
since differential operators in general have x-dependent coefficients.
This was answered in the 1960’s and further developed through the rest
of the century, by the introduction of pseudodifferential operators,
applied to increasingly difficult problems. The general formula is

p(x ,D)u = Op(p(x , ξ))u = 1
(2π)n

∫
e ix·ξp(x , ξ)û(ξ) dξ

= 1
(2π)n

∫ ∫
e i(x−y)·ξp(x , ξ)u(y) dydξ,

under suitable requirements on the symbols p(x , ξ).
The construction is due to Kohn and Nirenberg (New York) and
Hörmander (Lund) around 1965 (with preceding insights by Mihlin,
Calderon, Zygmund and others).
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Ps.d.o.s are particularly useful when p is not zero on a large set. This
goes especially for elliptic operators, generalizing the Laplacian ∆.
But for the hyperbolic case, for problems generalizing the wave problem

∂2
t u(x , t)−∆u(x , t) = 0, t > 0,

u(x , 0) = u0(x), t = 0,

the ps.d.o. construction was not enough; here the symbol −τ 2 + |ξ|2 of
the operator vanishes on infinite conical surfaces, and 1/(−τ 2 + |ξ|2) is
too singular.
For this, Hörmander introduced Fourier Integral Operators

Au(x) = 1
(2π)n

∫ ∫
e iϕ(x,y ,ξ)a(x , y , ξ)u(y) dydξ,

with phase functions ϕ(x , y , ξ) generalizing (x − y) · ξ.
The questions one asks are not just about existence and uniqueness of
solutions, but also for example about regularity properties of the
solutions.
For the wave problem, a singularity (for example a jump or kink) in the
initial function u0(x), leads to singularities in the solution u(x , t) on
cones in space-time.
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Fourier Integral Operators are able to detect how singularities in the data
lead to singularities in the solutions. This was perfected with the concept
of the Wavefront set, a kind of spectral resolution of the singularity.

The Fourier Integral Operators were created around 1971 by Hörmander,
who also introduced the Wavefront set. At the same time there was a
related construction by Japanese mathematicians Sato, Kawai and
Kashiwara in complex function theory. Also Duistermaat (coauthor of
Hörmander) and Maslov (Russian mathematician with related ideas)
should be mentioned.

Through the next many years, large classes of equations were solved, and
operators were classified and analysed in detail. This very successful
theory, often called Microlocal Analysis, was developed much further in
many directions; it involved a large number of researchers throughout the
world, including a strong group here at Lund University.
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3. Nonlinear problems

The Microlocal Analysis was particularly successful for linear partial
differential equations (PDE). But there is an even larger field of nonlinear
PDE, where the unknown function and its derivatives are tied together in
a nonlinear way; and here many other tricks are needed.

For a given nonlinear equation, there
is often a simplified linear version,
whose solvability is a first step in the
analysis of the given problem.
Sometimes, Microlocal Analysis is
useful, sometimes other methods.

Nonlinear equation: F (u,∆u) = 0,

for example −∆u = f (u),

linearized as −∆u = cu.

For example, I worked in the ’90s with a Russian colleague Solonnikov on
the Navier-Stokes equations (describing how fluids move); this was based
on a crucial use of pseudodifferential methods in the linearized case.
Another example is: Nonlinear wave equations.

On the other hand, on nonsmooth domains, direct integration methods
(not passing via the Fourier transform) could sometimes handle problems
more efficiently. For example in free boundary problems, where one has
to find an unknown interface between two regions, it is vital to allow
nonsmoothness.
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Now there is a vast diversity of nonlinear problems, and some people
preferred problems that could be attacked “walking in from the street”.
(I remember a conversation with Vazquez in the mid-80s.)
This is also a way to attract young researchers, without forcing them to
start learning the full microlocal machinery.

It seems to be a tendency in the recent past to start research on a less
theoretical level. Important textbooks preparing graduate students for
working in PDE leave out (or hide) the use of Distribution theory, and
mention Fourier transformation just as a side remark.

Pseudodifferential operators and Fourier Integral Operators did not (as I
would have expected) become part of “what everyone should know” – at
least not in many research communities.
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4. Nonlocal operators

I have mentioned two NON-issues: non-linearity and non-smoothness.
There has recently arisen a vivid interest in one more, namely in certain
non-local operators on Rn. They are used in the same role at differential
operators but are more difficult since they “smear out” the result to the
full space (in contrast to the way a differential operator acts on a
function u(x) such that the effect at a point x is only felt in the
neighborhood of the point).

A nonlocal operator that has attracted much attention is the fractional
Laplacian (−∆)a, 0 < a < 1, for instance the square root (−∆)

1
2 . They

come up in geometry and physics, and also in finance and probability
theory: They are generators of the so-called Lévy processes, which are of
interest since they apparently give better predictions for stock options.

The standard heat equation ∂tu −∆u = 0 is here replaced by the
fractional “heat equation” ∂tu + (−∆)au = 0.
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The fractional Laplacian can be defined as an integral operator:

(−∆)au(x) = cn,aPV

∫
Rn

u(y)

|x − y |n+2a
dy , (1)

but it also belongs to pseudodifferential operators:

(−∆)au = Op(|ξ|2a)u = F−1(|ξ|2aû(ξ)). (2)

Working with (1), one can stay within real functions and real integral
operator methods. Working with (2) necessarily requires that one
ventures into complex functions and Fourier transform methods.

In the papers after 2000 on this operator, everybody in nonlinear PDE
used (1). There was an celebrated trick of Caffarelli and Silvestre 2007
relating (−∆)a to a differential operator in one more variable.

I got interested when they treated a question on bounded subsets Ω of
Rn, the “homogeneous Dirichlet problem”

(−∆)au = f on Ω, u = 0 on Rn \ Ω. (3)

Two young Spaniards Ros-Oton and Serra showed in 2012 that the
solution u for bounded f has the form d(x)av(x), where v ∈ C t(Ω) for a
small t > 0, and d(x) = dist(x , ∂Ω). They claimed that this regularity,
important for nonlinear problems where f is replaced by f (u), had not
been shown before.
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The story, very briefly: They were essentially right. From the point of
view of (2), there was a pseudodifferential theory of Vishik and Eskin
from the ’60s, but it does not cover their result.

In 2013 I was reading some unpublished notes of Hörmander from ’65 on
boundary problems. For the problem (3) with a smooth Ω, they
contained some central arguments for showing the form u = dav with
higher regularity of v when f is more regular.

I set out to develop and complete the theory, combining it with my own
work on pseudodifferential boundary problems through the years.

Ros-Oton and Serra contacted me when they saw my work, and we have
had many good discussions. They say that their methods can only handle
relatively low regularity situations.

In addition, my methods allow x-dependent operators, for which not
much has been done in their community.

I am in touch with many more people now, give talks on the theory at
international meetings, and lectured recently on it at a PhD-school in
Germany.
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The latest development is integration-by-parts formulas.
Just to exhibit a piece of math, let me show you the Pohozaev identity,
for real solutions u of the equation (3) with (−∆)a replaced by a more
general operator P = Op(p(x , ξ)), and f replaced by a nonlinear
right-hand side f (u). Let F =

∫
f dx .

−2n

∫
Ω

F (u) dx + n

∫
Ω

f (u) u dx = Γ(1 + a)2

∫
∂Ω

(x · ν) s0γ0( u
da )2 dσ

+

∫
Ω

(
Op(ξ · ∇ξp)− Op(x · ∇xp)

)
u u dx .

—————

It is nice to produce new results, but my hope is most of all that such
efforts can bridge the gap between the various communities: Making
tools from Microlocal Analysis generally available, rather than see them
being left out (in view of their complicatedness).
The more tools we have, the better problems we can solve.
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To end the talk, I will show
a nice graphical illustration
of Mathematics that I have
always liked. It was drawn
by Anatol Fomenko, a
Russian mathematician in
algebraic geometry,
showing the formidable
constructions that
challenge those who work
in his field:
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