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2. Fourier expansions in higher dimensions

2.1 Multiple Fourier series.

The theory of Fourier expansions extends readily to higher dimensions. Here the com-
plex formulation is advantageous, because it gives simpler formulas (allowing a better
overview than when multiple products of cosines and sines occur everywhere).

Before presenting this, let us underline the fact that is put forward in [A04, Section
2.5], that any 2p-periodic function f that is square integrable on the interval [−p, p] can be
expanded in a Fourier series, with coefficients determined by the Euler formulas on page
39. Moreover, the Bessel inequality and Parseval identity hold for f . Special cases are
piecewise continuous functions, or just bounded (measurable) functions. It can be seen
directly from the Euler formulas that the Fourier coefficients are bounded in n, but the
Bessel inequality gives a still better information, namely that an → 0 and bn → 0 for
n → ∞.

Now recall the complex formulation in one variable: It is based on the Euler identity,
for x ∈ R:

(2.1)
eix = cos x + i sin x, hence

cos x = 1
2 (eix + e−ix), sin x = 1

2i
(eix − e−ix).

In the Fourier series of a 2p-periodic function f(x),

(2.2) f(x) = a0 +
∞
∑

n=1

(

an cos(nπ
p

x) + bn sin(nπ
p

x)
)

,

we can insert the replacements

(2.3)
cos(nπ

p
x) = 1

2
(ei nπ

p
x + e−i nπ

p
x),

sin(nπ
p

x) = 1
2i

(ei nπ
p

x − e−i nπ
p

x);

then

(2.4) sN (x) = a0 +

N
∑

n=1

(

an cos(nπ
p

x) + bn sin(nπ
p

x)
)

=

N
∑

m=−N

cmei mπ
p

x,

with

(2.5) c0 = a0, cn = 1
2(an − ibn), c−n = 1

2 (an + ibn).
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This justifies writing (2.2) as

(2.6) f(x) =

∞
∑

n=−∞

cnei nπ
p

x.

One has that

(2.7) cn =
1

2p

∫ p

−p

f(x)e−i nπ
p

x dx for all n ∈ Z,

which holds also when complex-valued functions f(x) are allowed (still with x ∈ R). The
Parseval identity is:

(2.8)
∞
∑

n=−∞

|cn|
2 =

1

2p

∫ p

−p

|f(x)|2 dx.

Theorem 1.2 says in the complex formulation that when f is PC1C with period 2p,
then:

(2.9)

(i) cn(f ′) = i
nπ

p
cn(f) for all n ∈ Z,

(ii)

∞
∑

n=−∞

|cn| < ∞,

and (iii) the Fourier series converges uniformly (and absolutely) to f .
It is not hard to extend the ideas to higher dimensions. For simplicity in the formulas

we now let p = π and leave to the reader to do the scaling when other lengths are needed.
On R

k with points denoted x = (x1, . . . , xk) we consider functions f(x) that have period
2π in each variable x1, . . . , xk. They are completely determined by their values on the cube
[−π, π]k. The elements of Z

k will be denoted n = (n1, . . . , nk), with length

(2.10) ‖n‖ =
√

n2
1 + · · · + n2

k .

The functions

(2.11) ein·x = ei(n1x1+...nkxk), n ∈ Z
k,

are 2π-periodic in each variable xj and satisfy

(2.12) (ein·x, eim·x) =

{

0 if n 6= m,

(2π)k if n = m,

when we use the scalar product (inner product)

(f, g) =

∫ π

−π

∫ π

−π

· · ·

∫ π

−π

f(x1, x2, . . . , xk)g(x1, x2, . . . , xk) dx1dx2 . . . dxk

=

∫

[−π,π]k
f(x)g(x) dx.
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For,

(ein·x, eim·x) =

∫ π

−π

ein1x1e−im1x1 dx1 · · ·

∫ π

−π

einkxke−imkxk dxk;

here if nj 6= mj for some j, the integral in xj gives a factor 0; on the other hand if nj = mj

for all j, each integral over [−π, π] contributes with a factor 2π.
It is shown on the basis of the one-dimensional result that a square integrable function

f(x) on ]−π, π]k, extended to be 2π-periodic in each variable x1, . . . , xk, can be expanded
in a Fourier series

(2.13)

f(x) ∼
∑

n∈Zk

cnein·x, where

cn =
1

(2π)k

∫

[−π,π]k
f(x)e−in·x dx,

in such a way that the partial sum

(2.14) sN (x) =
∑

max{|n1|,...|nk|}≤N

cnein·x

converges in the mean to f(x), in the sense that

(2.15)

∫

[−π,π]k
|f(x) − sN (x)|2 dx → 0 for N → ∞.

Here the following Parseval identity holds:

(2.16)
∑

n∈Zk

|cn|
2 =

1

(2π)k

∫

[−π,π]k
|f(x)|2 dx.

As a corollary to the Parseval identity we see that |cn| → 0 for ‖n‖ → ∞; this holds
under the mere assumption that f is square integrable on [−π, π]k. We give below some
information on uniform convergence.

For k = 2, the formulation with cosine and sine is found from the above by noting that

ei(n1x1+n2x2) = (cosn1x1 + i sin n1x1)(cos n2x2 + i sin n2x2).

For n1 and n2 ∈ N we can use this in the four terms

c(n1,n2)e
i(n1x1+n2x2) + c(n1,−n2)e

i(n1x1−n2x2)

+ c(−n1,n2)e
i(−n1x1+n2x2) + c(−n1,−n2)e

i(−n1x1−n2x2)

and regroup them as a linear combination of cosn1x1 cos n2x2, cos n1x1 sin n2x2,
sin n1x1 cos n2x2 and sinn1x1 sin n2x2. This is somewhat unmanageable, but it becomes
more manageable when we restrict the attention to functions that are odd in x1 as well as
x2; they only have sine terms

(2.17)
f(x) ∼

∑

n1,n2∈N

bn1,n2
sin n1x1 sinn2x2, with

bn1,n2
= −c(n1,n2) + c(n1,−n2) + c(n1,−n2) − c(−n1,−n2),
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since, in the calculation of (2.13), a cosine factor cosnixi integrated together with f in the
xi-variable gives 0. Here

bn1,n2
=

4

π2

∫ π

0

∫ π

0

f(x1, x2) sin n1x1 sin n2x2 dx1dx2.

Note however that when one differentiates a sine series, cosine comes in again.

There is a general result:

Theorem 2.1.

1◦ If f(x) is 2π-periodic in each coordinate, and C1, then for all n ∈ Z
k,

(2.18) cn
( ∂f

∂xj

)

= injcn(f), j = 1, . . . , k,

and the Parseval identity for the derivatives implies

(2.19)
∑

n∈Zk

‖n‖2|cn(f)|2 < ∞.

Moreover, if f is Cl for some l ≥ 1, then

(2.20)
∑

n∈Zk

‖n‖2l|cn(f)|2 < ∞.

2◦ For k = 2 or 3, if f(x) is 2π-periodic in each coordinate and Cl+2, then

(2.21)
∑

n∈Zk

‖n‖l|cn(f)| < ∞.

The estimate (2.21) implies that the Fourier series and it termwise differentiated series up

to order l are uniformly convergent.

Indications of proof. In 1◦, the identity in (2.18) is shown by integration by parts (in the

xj-variable) in the formula for cn( ∂f
∂xj

). Then the Parseval identity for ∂f
∂xj

implies the

convergence of the series
∑

n
|nj|

2|cn(f)|2. When we sum over j we find (2.19). When f

is Cl, this can be applied for any succession of l partial derivatives, showing that

∑

n∈Zk

|p(n1, . . . , nk)|2|cn(f)|2 < ∞

for any polynomial p of degree l. Since ‖n‖2l is bounded by a sum of squares of such
polynomials, the result (2.20) follows.

For 2◦, note that it is here a question of series with |cn| in the first power only. One
can show that the series

∑

n∈Zk\{0} ‖n‖
−4 is convergent for k = 2 and 3 (this is related to
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the fact that
∫

|x|≥1
|x|−4 dx < ∞ in dimensions < 4; see also Exercise E2.3). Then we can

do a trick as in the proof of Theorem 1.2:
∑

‖n‖≤N

‖n‖l|cn| =
∑

0<‖n‖≤N

‖n‖−2‖n‖l+2|cn|

≤ 1
2

(

∑

0<‖n‖≤N

‖n‖−4 +
∑

0<‖n‖≤N

‖n‖2(l+2)|cn|
2
)

≤ C,

for all N , where we for the last series use that (2.20) holds with l replaced by l + 2.
The estimate (2.21) implies uniform convergence of the termwise differentiated series

up to order l, since |ein·x| = 1, and

(2.22)
∂

∂xj

ein·x = inje
in·x,

so (2.21) (times a constant) is a majorizing series for all those termwise derived series. �

Remark 2.2.

(a) There is a result along the lines of 2◦ also in higher dimensions. One can show

that for general k, the series
∑

n∈Zk\{0} ‖n‖
−2k′

is convergent when 2k′ > k. Then when

the Fourier coefficients of f satisfy the estimate (2.20) with l replaced by l + k′, they will
satisfy (2.21), by a version of the above trick.

This is actually an example of Sobolev’s Theorem — prominent in the more advanced
theory — that says that functions with finite Sobolev norm of order l +k′, some k′ > k/2,
are in Cl (here the squareroot of (2.20) plays the role of the l’th Sobolev norm).

(b) In part 1◦ of Theorem 2.1, the formulas (2.18)–(2.19) can be shown under slightly
weaker assumptions. It suffices that f is continuous with square integrable first derivatives
defined in some reasonable sense. For example, if [−π, π]k is divided into a finite number of
polyedric subdomains, and the first derivatives of f are defined in each of these subdomains
and extend to continuous functions on their closures, then (2.18) and (2.19) hold. We can
call such derivatives piecewise continuous (although the notion could be defined also in
more general situations). Similarly, if f is Cl−1 and the l’th order derivatives are piecewise
continuous, then (2.20) holds.

In Theorem 2.1 2◦, it is then sufficient for (2.21) that f is Cl+1 with piecewise continuous
derivatives of order l + 2.

2.2 The wave equation with initial data on a rectangle.

Using Theorem 2.1, we can justify the solution formula for the two-dimensional wave
equation in [A04, Section 3.7] as follows (using the notation (x, y) for a point in R

2):

Theorem 2.3. 1◦ When f(x, y) is C2 and g(x, y) is C1 on M = [0, a]× [0, b], and f and

g are zero on the boundary ∂M = { (x, y) ∈ M | x = 0 or a, y = 0 or b }, then

(2.23)
∞
∑

m=1

∞
∑

n=1

(|Bmn| + |B∗
mn|) < ∞.

Then the series in (4) converges uniformly on M×[0,∞[ to a continuous function u(x, y, t)
satisfying the boundary condition u = 0 for (x, y) ∈ ∂M and the first initial condition u = f
for t = 0.
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2◦ When furthermore f(x, y) is C4 and g(x, y) is C3 on M , and

(2.24)
∂2f

∂x2
,
∂2f

∂y2
,
∂2g

∂x2
and

∂2g

∂y2
are 0 on ∂M,

then

(2.25)
∞
∑

m=1

∞
∑

n=1

(m2 + n2)(|Bmn| + |B∗
mn|) < ∞,

and u(x, y, t) is C2 on M × [0,∞[ and satisfies the wave equation and the initial- and

boundary conditions.

Proof. When f and g satisfy the hypotheses in 1◦, they extend to functions f∗ resp. g∗ on
R

2 that are odd in x with period 2a, and odd in y with period 2b, such that the extended
functions are in C1 on R

2 and the second derivatives of f∗ are piecewise continuous. The
Bmn are the coefficients in the sine expansion of f in two variables as in (2.17), so by
Theorem 2.1 2◦ with l = 0 and Remark 2.2(b), the series

∑

m,n |Bmn| is convergent. The
B∗

mn satisfy

(2.26) B∗
mn =

b∗mn

λmn

,

where the b∗mn are the coefficients in the sine expansion of g in two variables. By 1◦ of
Theorem 2.1,

(2.27)
∑

m,n∈N

(m2 + n2)|b∗mn|
2 < ∞.

Since λmn = cπ
√

m2

a2 + n2

b2
clearly satisfies

(2.28) c1(m
2 + n2)

1

2 ≤ λmn ≤ c2(m
2 + n2)

1

2

with positive constants c1 and c2, we conclude from (2.26) and (2.27) that the series of
|B∗

mn|
2 satisfies

(2.29)
∑

m,n∈N

(m2 + n2)2|B∗
mn|

2 < ∞.

From this we deduce as in the proof of Theorem 2.1 2◦ that

(2.30)
∑

m,n∈N

|B∗
mn| < ∞.

This completes the proof of (2.23), which implies uniform convergence as stated.
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When furthermore the hypotheses of 2◦ are satisfied, the extensions f∗ and g∗ are C3

on R
2 and the fourth-order derivatives of f∗ are piecewise continuous. It follows from

Theorem 2.1 2◦ and Remark 2.2(b) that

(2.30)
∑

m,n

(m2 + n2)|Bmn| < ∞,
∑

m,n

(m2 + n2)
1

2 |b∗mn| < ∞.

Using again (2.26) and (2.28) we conclude that (2.25) holds. Then the termwise differen-
tiated series up to order 2 converge uniformly on M × [0,∞[ , since each differentiation in
x or in y essentially gives a factor n or m, and each differentiation in t gives a factor λmn.
Thus the differential equation and the remaining initial condition can be verified. �

The conditions on f and g in the theorem are sufficient conditions — one can weaken
them a little and still get solvability — but at least they give some firm ground for the
claim that the described procedure gives a solution of the problem posed. (For example,
in Theorem 2.3 2◦, one can allow the fourth-order derivatives of f and the third-order
derivatives of g to be piecewise continuous on M .)

In Example 3.7.1, h(x) = x(1 − x) extends to an odd, 2-periodic function h∗ whose
first derivative is a continuous triangular function, and the second derivative is piecewise
constant, having jumps at the period points 2n, n ∈ Z. Then the odd, 2-periodic extension
of f(x, y) is C1 with piecewise continuous (in fact piecewise constant) second derivatives.
Here Theorem 2.3 1◦ gives that the series for u(x, y, t) converges uniformly (which is also
clear from the formulas), but (2.24) is not satisfied, and the differential equation holds
only in a generalized sense. (In a deeper analysis one can show that the solution is smooth
in large areas, but that the irregularities in the initial value propagate along characteristic
cones when when t increases.)

2.3 The heat equation with initial data on a rectangle.

The solution formulas for the heat problem [A04, page 161] can be checked in a similar
way. Here we find, as for the one-dimensional heat equation, that the solution becomes
C∞ as soon as t becomes positive.

Theorem 2.4. 1◦ When f(x, y) is C2 on M = [0, a]× [0, b], and is zero on the boundary

∂M , then

(2.31)
∑

m,n∈N

|Amn| < ∞,

and the series in (13) converges uniformly on M×[0,∞[ to a continuous function u(x, y, t)
satisfying the boundary condition u = 0 for (x, y) ∈ ∂M and the initial condition u = f
for t = 0.

2◦ Assume merely that f(x, y) is square integrable on M . Then the series in (13)
and all the termwise differentiated series of arbitrarily high order converge uniformly on

M × [ε,∞[ , for any ε > 0. In particular, the differential equation (11) and the boundary

condition (12) are verified for t > 0.

Proof. Part 1◦ is shown in the same way as in Theorem 2.3; the expansion coefficients of f
are now called Amn, and the hypotheses assure that the odd periodic extension of f is C1
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with piecewise continuous second derivatives, so that (2.31) holds and defines a majorizing
series for (13).

For part 2◦, we observe that when t ≥ ε, then

(2.32) e−λ2

mnt ≤ e−λ2

mnε ≤ e−c2

1
ε(m2+n2),

cf. (2.28). For any j, k, l ≥ 0, application of ∂j

∂xj
∂k

∂yk
∂l

∂tl termwise gives a series

(2.33) ±
∑

m,n∈N

Amn

(mπ

a

)j (nπ

b

)k
λ2l

mn

sin
cos

(
mπ

a
x)

sin
cos

(
nπ

b
y)e−λ2

mnt.

Since the |Amn| are bounded by a constant (cf. (2.16)ff.), this is majorized by a convergent
series

(2.34)
∑

m,n∈N

c′(m2 + n2)
1

2
j+ 1

2
k+le−c2

1
ε(m2+n2) < ∞,

where the convergence follows e.g. since (m2 + n2)
1

2
j+ 1

2
k+le−c2

1
ε(m2+n2) ≤ c′′(m2 + n2)−2.

Thus u is C∞ for t > 0. �

When f is merely square integrable, one can say that the initial condition is verified in
the sense that the series (13) for t = 0 converges in the mean to f on M .

2.4 The Poisson equation with zero boundary data.

For the solution of the Poisson equation on a rectangle put forward in [A04, Section
3.9], sufficient conditions for convergence can likewise be found from Theorem 2.1 ff. The
discussion goes rather similarly to that in Theorems 2.3–4:

When the odd periodic extension f∗ of f is C1 with piecewise continuous second deriva-
tives, the sinus coefficients Amn of f satisfy (2.31). Then since Emn = −Amn/λmn, one
has that

(2.35)
∑

m,n∈N

(m2 + n2)|Emn| < ∞,

so the differential equation can be verified by termwise differentiation, and u(x, y) is indeed
a solution of the problem; it lies in C2(M).

The solution found in Example 3.9.1 is a generalized solution, and the calculations in
Example 3.9.2 are quite formal (the series for u does not satisfy our criteria for termwise
differentiation of order 2).

In more advanced treatments of the various differential equations, the theory of Sobolev
spaces provides a more satisfactory framework than the spaces of Cl-functions.

2.5 Convergence analysis for the Laplace equation on a disk.

Consider the series solution established in [A04, Section 4.4] for the Laplace equation
on a disk with radius a, with a prescribed boundary value f . We shall show that when f
is merely square integrable, the series and all termwise differentiated series converge uni-
formly on the disks with the same center and radius < a. For simplicity in the formulation,
let us take a = 1 and leave the scaling to the general case to the reader.
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When f(θ) is square integrable on [0, 2π], its Fourier coefficients are bounded:

(2.36) |an| ≤ C, |bn| ≤ C, for all n.

Let ε ∈ ]0, 1[ . Then the series for u,

(2.37) u(r, θ) = a0 +
∑

n∈N

rn(an cos nθ + bn sin nθ)

has the majorizing series, when r ≤ 1 − ε:

(2.38)
∑

n≥0

C(1 − ε)n.

We can check termwise derivatives in r and θ, showing that each differentiation essentially
gives a factor n, so that the series after k differentiations is majorized by a series

(2.39)
∑

n≥0

C′(1 + n)k(1 − ε)n.

Why is this convergent? Apply for example the quotient criterion, or note that
(1 − ε)n = e−sn, where −s = ln(1 − ε) < 0; here since the exponential function wins
over any polynomial, (1 + n)ke−sn ≤ C′′(1 + n)−2 (as we have used before).

However, if we treat the (r, θ)-derivatives of u, we still have to worry about how the
information carries over to the (x, y)-derivatives (in the original coordinates), especially
how things fit together at r = 0. But there is another point of view that gives the (x, y)-
behavior directly:

When the Fourier series of f is written in the complex form

(2.40) f(θ) =
∞
∑

m=−∞

cmeimθ,

we get the series for u in the complex form, that we can reformulate further:

(2.41)

u(r, θ) =
∑

m∈Z

r|m|cmeimθ

=
∑

m≥0

cm(reiθ)m +
∑

m′>0

c−m′(re−iθ)m′

=
∑

m≥0

cm(x + iy)m +
∑

m′>0

c−m′(x − iy)m′

,

with bounded coefficients. Here, when (x, y) lies in the disk with radius 1 − ε, x + iy
and x − iy both have absolute value ≤ 1 − ε. Termwise differentiations in x and y give
polynomials in m resp. m′ as factors. Then we can again use series of the type in (2.39)
as majorizing series, and find that all termwise derived series are uniformly convergent on
the smaller disk. Thus u is C∞ there and satisfies ∆u = 0.
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E2. Exercises

Exercise E2.1. Consider the cosine-sine formulation of the Fourier expansion of a func-
tion f(x1, x2) that is 2π-periodic in each variable. You are asked to express the coefficients
of the functions cos n1x1 cos n2x2 and cos n1x1 sin n2x2 in terms of the coefficients cn in
the series in (2.13). What is the constant term?

Exercise E2.2. Answer Exercise 3.8.12 in [A04], with the additional point:
(d) Show that the differential equation is verified for z < c, when f(x, y) is square inte-
grable.

Exercise E2.3. In the following, we identify Z
2 with a subset of R

2, namely with the
points with integer coordinates (n1, n2).

(a) For each l ∈ N, show that there are 8l of these integer points (n1, n2) on the boundary
of the square [−l, l]× [−l, l], and that they satisfy

n2
1 + n2

2 ≥ l2.

(b) Show that there is a constant c such that

∑

|n1|≤l,|n2|≤l,(n1,n2)6=(0,0)

1

(n2
1 + n2

2)
2
≤

∑

1≤j≤l

c

l3

(c) Show that the series
∑

(n1,n2)∈Z2\{(0,0)}

1

(n2
1 + n2

2)
2

is convergent.


