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SOLUTION OF THE CLASSROOM TEST

Exercise E14.

We are considering the differential equation for (t, yyy) ∈ R
3:

yyy′ = fff(yyy), where fff(yyy) =

(

ey1 − 1 − 2y2
3y1 − 4y2

)

with the initial condition
yyy(t0) = ηηη.

(a). Since all the entering functions are C∞-functions, the conditions for applying Theorem
S1 are satisfied; this assures that for any ηηη ∈ R

2, t0 ∈ R, there exists a unique maximal
solution ϕϕϕ(t) defined on an open interval containing t0. As in Theorem S4.2 we use the
notation ]c∗, d∗[ for the interval.

The possible ways of behavior of the solution for t → d∗ are given in Corollary S4.3.
Since the open set where (t, yyy) runs is D = R

3, the boundary ∂D is the empty set. Then
(a) and (c) in Corollary S4.3 cannot happen. Therefore (b) happens, |t| + |ϕϕϕ(t)| → ∞ for
t→ d∗. If d∗ is finite, it is |ϕϕϕ(t)| that goes to ∞.

(b). That 000 is a critical point means that fff(000) = 000. We see by insertion of yyy = 000 that

fff(000) =

(

e0 − 1 − 2 · 0
3 · 0 − 4 · 0

)

=

(

0
0

)

= 000.

(c). Taylor’s formula for the exponential function gives that for y1 in an interval [−k, k]
(with k > 0),

ey1 = 1 + y1 + 1
2y

2
1 + o(y2

1) = 1 + y1 + h(y1),

where |h(y1)| ≤ c|y1|
2 for some c > 0. Then

ey1 − 1 = y1 + h(y1).

Now we can write

fff(yyy) =

(

ey1 − 1 − 2y2
3y1 − 4y2

)

=

(

y1 + h(y1) − 2y2
3y1 − 4y2

)

= Ayyy + ggg(yyy),

where

A =

(

1 −2
3 −4

)

, ggg(yyy) =

(

h(y1)
0

)

.
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2 SOLUTION OF THE CLASSROOM TEST

The eigenvalues of the matrix A are determined as the roots of

pA(λ) = (1 − λ)(−4 − λ) − (−2)3 = λ2 + 3λ+ 2,

they are found to have the negative values −1 and −2. Moreover, for |y1| ≤ k,

|ggg(yyy)|

|yyy|
=

|h(y1)|

|y1| + |y2|
≤
c|y1|

2

|y1|
= c|y1| → 0 for yyy → 000.

Then the assumptions of Theorem 4.3 in the book are satisfied, so it follows that the
null-solution is asymptotically stable.

(Comment. It is also OK to indicate h(y1) by the explicit series 1
2!
y2
1 + 1

3!
y3
1 + . . . , as long

as one can show that h(y1)/(|y1| + |y2|) → 0 for yyy → 0. L’Hospital’s rule can be used.

Some people have tried to use Theorem 4.3 with matrix

(

0 −2
3 −4

)

and remainder
(

ey1 − 1
0

)

; here the eigenvalues of the matrix do have negative real part, but the remainder

does not have the needed limit property, since (ey1 − 1)/y1 → 1 for y1 → 0.)

Exercise E15.

We are considering the differential equation for (t, yyy) ∈ R
4:

yyy′ = Ayyy, where A =





5 0 1
0 2 0
−1 0 7



 .

(a). The eigenvalues of A are determined as the roots of the polynomial

pA(λ) = det(A− λE) = (5 − λ)(2 − λ)(7 − λ) − 1 · (2 − λ) · (−1)

= (2 − λ)((5 − λ)(7 − λ) + 1) = (2 − λ)(λ2 − 12λ+ 36) = (2 − λ)(λ− 6)2.

Here 2 is a simple root, 6 a double root.
For λ = 2, the eigenvectors are found as the nontrivial solutions of





3 0 1
0 0 0
−1 0 5



yyy = 000,

and it is seen that they are multiples of the vector (0, 1, 0). So the eigenspace is spanned
by this vector, and it is the same as the generalized eigenspace X1 for λ = 2, since the
eigenvalue is simple.

For λ = 6, the eigenvectors are found as the nontrivial hsolutions of





−1 0 1
0 −4 0
−1 0 1



yyy = 000,
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and it is seen that they are multiples of the vector (1, 0, 1). So the eigenspace is spanned
by this vector. Since λ = 6 has multiplicity 2, the generalized eigenspace has dimension 2,
and another vector in it is found by calculating

(A− 6E)2 =





−1 0 1
0 −4 0
−1 0 1









−1 0 1
0 −4 0
−1 0 1



 =





0 0 0
0 16 0
0 0 0



 ,

and finding a solution of (A − 6E)2yyy = 0 that is linearly independent of (1, 0, 1); here we
can for example take (1, 0, 0). The generalized eigenspace X2 is then the span of (1, 0, 1)
and (1, 0, 0), and, even simpler, it is the span of (1, 0, 0) and (0, 0, 1).

(b). To find the fundamental matrix etA we use the formulas on page 66 of the book. For
vvv1 ∈ X1, vvv1 = (0, x2, 0)

etAvvv1 = e2tvvv1 =





0
e2tx2

0



 .

For vvv2 ∈ X2, vvv2 = (x1, 0, x3),

etAvvv2 = e6t(E + t(A− 6E))vvv2 = e6t





1 − t 0 t
0 1 − 4t 0
−t 0 1 + t









x1

0
x3





=





(1 − t)e6t 0 te6t

0 0 0
−te6t 0 (1 + t)e6t









x1

0
x3



 .

Adding the formulas, we find

etA





x1

x2

x3



 =





(1 − t)e6t 0 te6t

0 e2t 0
−te6t 0 (1 + t)e6t









x1

x2

x3



 ,

so

etA =





(1 − t)e6t 0 te6t

0 e2t 0
−te6t 0 (1 + t)e6t



 .

(c). To find a solution of the nonhomogeneous problem

yyy′ = Ayyy +





0
et

0



 , yyy(0) =





1
1
1



 ,

we use that this is the sum of the solution ϕϕϕ of the homogeneous problem with the given
initial value and the solution ψψψ of the nonhomogeneous problem which is 000 at t = 0. The
first function is

ϕϕϕ(t) = etA





1
1
1



 =





e6t

e2t

e6t



 .
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The second function is

ψψψ(t) =

∫ t

0

e(t−s)A





0
es

0



 ds =





0
∫ t

0
e2(t−s)es ds

0



 ;

here
∫ t

0

e2(t−s)es ds = e2t
[

−e−s
]t

0
= e2t − et.

Then we find the solution to be:

ϕϕϕ+ψψψ =





e6t

2e2t − et

e6t



 .

(Comment. If we exchange the second and third coordinate, the matrix gets the form





5 1 0
−1 7 0
0 0 2



 ,

and it is seen clearly how the problem breaks up into two easy problems, for (x1, x2) resp.
x3. One could answer the problem using this transformation.)


