BANACH EMBEDDING PROPERTIES
OF NON-COMMUTATIVE L*-SPACES
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ABSTRACT. Let N and M be von Neumann algebras. It is proved that LP(N) does
not Banach embed in LP(M) for A infinite, M finite, 1 < p < 2. The following
considerably stronger result is obtained (which implies this, since the Schatten p-class
C)p embeds in LP(N) for N infinite).

Theorem. Let 1 < p < 2 and let X be a Banach space with a spanning set (z;;) so
that for some C > 1,
(i) any row or column is C-equivalent to the usual (*-basis,
(i) (@ig,ji) is C-equivalent to the usual (P-basis, for any i1 < is < --- and j1 < j2 <

Then X is not isomorphic to a subspace of LP(M), for M finite. Complements on
the Banach space structure of non-commutative LP-spaces are obtained, such as the
p-Banach-Saks property and characterizations of subspaces of L?(M) containing ¢P
isomorphically. The spaces LP(N) are classified up to Banach isomorphism, for A/
infinite-dimensional, hyperfinite and semifinite, 1 < p < oo, p # 2. It is proved that
there are exactly thirteen isomorphism types; the corresponding embedding properties
are determined for p < 2 via an eight level Hasse diagram. It is also proved for all
1 < p < oo that LP(N) is completely isomorphic to LP(M) if NV and M are the
algebras associated to free groups, or if A" and M are injective factors of type III, and
Iy for 0 < A\, X < 1.
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1. INTRODUCTION

Let A be a finite von Neumann algebra and 1 < p < 2. Our main theorem yields that
C) is not linearly isomorphic to a subspace of LP(N') (where C, denotes the Schatten
p-class). It follows immediately that for any infinite von Neumann algebra M, LP(M)
is not isomorphic to a subspace of LP(N), since C), is then isomorphic to a subspace of

LP(M).

Remarks. 1. (Added December 2001.) This result has subsequently also been extended
to the case 0 < p < 1 by the third named author of the present paper and Q. Xu [SX].
2. It is proved in [S1] that also C}, does not embed in LP(N) for any 2 < p < co.

For N a semi-finite von-Neumann algebra and 7 a faithful normal semi-finite trace on
N, LP(7) denotes the non-commutative L? space associated with (N, 7) (see e.g., [FK]).
The particular choice of trace 7 is unimportant, for if 5 is another such trace, L?(3) is
isometric to LP(7). We also denote this (isometrically unique) Banach space by LP(N).

Given C' > 1 and non-negative reals a and b, let a £ b denote the equivalence relation
£a < b < Ca. Sequences (z;) and (y;) in Banach spaces X and Y respectively all called
C-equivalent if

n n
C
=1 =1

(Equivalently, there exists an invertible linear map T : [x;] — [y;] with [|T]|, |77 < C,

for all n and scalars aq,... ,q, .

where [z;] denotes the closed linear span of (z;).) (z;) is called unconditional if there is
a constant u so that for any n and scalars ¢y, ... ,¢, and 1, ... , &, with |g;| =1 for all 7,
IS0 eicixil] < ull Y- ¢xi|| (then one says (x;) is u-unconditional). The usual (P-basis
refers to the unit vector basis (e;) of 7, where e;(i) = 0,; for all ¢ and j.

Our main result goes as follows.

Theorem 1.1. Let N be a finite von Neumann algebra, 1 < p < 2, and let (z;;) be an
infinite matriz in LP(T) where T is a fized faithful normal tracial state on N'. Assume
for some C' > 1 that every row and column of (x;;) is C-equivalent to the usual (*-basis

and that (z;, ;. )52, is unconditional, whenever iy < iy < --- and j; < jo < ---. Then



there exist i1 <1y < -+ and j1 < jo < -+ so that setting yy, = x;, ;. for all k, then

(1.2) lim n_l/pH Zy;
i=1

n— 00

=0
Lp(7)

for all subsequences (y;,) of (yk)-

Corollary 1.2. Let p and N be as in 1.1. Let X be a Banach space spanned by an

infinite matriz of elements (x;;) so that for some A > 1,

(i) every row and column of (x;;) is A\-equivalent to the usual (* basis

(i) (@i, )02, is A-equivalent to the usual (P-basis, for all iy < iy < --- and j; < j2 <

Then X is not Banach isomorphic to a subspace of LP(1). In particular, C, does not
embed in LP(T).

The Corollary yields its final statement since the standard matrix units (z;;) for C,
satisfy (i) and (ii) with A = 1.

To see why 1.1 = 1.2, suppose to the contrary that 7' : X — X' C LP(T) were
an isomorphic embedding, where X is as in 1.2. Then (T'z;;) satisfies the hypotheses of
1.1 with C = \||T|| [|T~"||. However if (it), (jx) satisfies the conclusion of Theorem 1.1,
(Tw;, j,) and hence (z;, j,) cannot be equivalent to the usual ¢P-basis, a contradiction.

Let Rad C}, denote the “Rademacher unconditionalized version” of C, (1 < p < 00).
That is, letting (r;;) be an independent matrix of {1, —1}-valued random variables with
P(ri;j =1) = P(r;; = —1) = £ for all i, 7, and letting (c;;) be a matrix of scalars with

only finitely many non-zero terms, then
(1.3) [(cij)[Iradc, = B ll(rij(w)eij)lle, -

Corollary 1.3. Let p and N be as in 1.1. Then Rad C, is not isomorphic to a subspace
of LP(T).

Proof. The standard matrix units basis (z;;) of Rad C), also satisfies the hypotheses of
Corollary 1.2 with A = 1. O

Corollary 1.3 yields new information in the classical, commutative case of L”. (Through-
out, LP refers to LP on the unit interval, endowed with Lebesgue measure; i.e., LP =

LP(N) where N' = L* acting on L? via multiplication.) This also reveals a remarkable
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difference in the structure of LP-spaces, p < 2 or p > 2, for Rad C), is isometric to a
subspace of L? for 2 < p < oo (cf. Theorem 5 of [L-P]). Also, let us note that Rad C,
is isometric to a subspace of L? (C},) for 1 < p < 2, so we obtain an unconditional-
ized version of C), in L(M) which also does not embed in L?(N), for N finite, where
M = L>*® B(H). (Throughout, L?(X) refers to the Bochner-Lebesgue space L?(X, m),
where m is Lebesgue measure.)

It is a classical result of C.A. McCarthy that C, does not “locally” embed in L?, for
1 < p < oo [McC]. Corollary 1.2 yields an “infinite” dimensional proof of this result for
1 < p < 2, as well as the apparently new discovery that also Rad C), does not locally

embed in L, for these p. To see this, we give the following.

Definition. Let 1 <p < oo, n € N, and A > 1. A finite-dimensional Banach space X is

called a A-GC}'-space provided there is an (n X n)-matrix (z;;) spanning X so that
(i) any row and column of (z;;) is A-equivalent to the usual ¢2-basis
(ii) (wi,j,)re, is A-equivalent to the usual (2, basis for any m,
1< < - <itp<nand 1<ji<p<- - <jn<n.
An infinite-dimensional space X is called a \-GC)-space provided it admits a spanning
matrix (z;;) satisfying (i) and (ii) of Corollary 1.2; finally X is called a GC)-space if it
is a A-GC)-space for some A > 1.

C refers to the n?-dimensional Schatten p-class consisting of n X n matrices in the
Cp norm; “G” stands for “Generalized”. For example, Rad C} is a 1-GC} space. The
next result yields that A\-G'C}-spaces cannot be uniformly embedded in L?, hence in
particular, we recapture the classical fact mentioned above that LP does not contain
C}’s uniformly. (For isomorphic Banach spaces X and Y, d(X,Y) = inf{[|T| \T7Y T

is a surjective isomorphism from X to Y'}).
Corollary 1.4. Let 1 <p <2 and A > 1. Define:

Bax =inf{d(X,Y) : X is a \-GC}-space and Y C LP} .
Then lim,,_,o Bp ) = 00.

Proof. Suppose this were false. Then we could choose A > 1 and X, X5, ... subspaces of

L? so that X, is a A-GCp-space for all n. Choose then (zf;) an n X n matrix of elements
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of X, satisfying (i) and (ii) of the definition, for all n. Let My, denote the linear space

of all infinite matrices of scalars with only finitely many non-zero entries. Let U be a

free ultrafilter on N. Define a semi-norm || - || on My by
(1.4) el = Lim | 3 ezal| -
It is easily checked that || - || is indeed a semi-norm; let W be its null space; W =

{(cij) € Moo : ||(ci;)|| = 0}, and let X denote the completion of (Mo, || - ||)/W. It
follows easily that X is a A-GC)-space. By standard ultraproduct techniques, it follows
that X is finitely representable in LP. But then (since ultraproducts of (commutative)
LP(p) spaces are (commutative) LP(v) spaces and any separable subspace of an LP(v)
space is isometric to a subspace of L?), X isometrically embeds in LP. This contradicts
Corollary 1.2. O

Remark. Theorem 1.1 may easily be extended to the case of general finite von Neumann
algebras A/, and not just the finite, o-finite ones covered by its statement. Corollaries 1.2
and 1.3 also hold in this setting, as well as the general formulations of Theorems 4.1
and 4.2. Indeed, in general, one has that L?(N) is isometrically isomorphic to L?(T)
for some semi-finite faithful normal trace 7 on A'. Let (x;;) be a matrix of elements of
LP(7) satisfying the assumptions of Theorem 1.1, and let P be the supremum of all the
support projections of x;; and z7;, i,j = 1,2,.... Then P is a o-finite projection in N,
and thus PN P is both finite and o-finite. Moreover all the x;;’s belong to LP (PN P, 7') =
PLP(N,7)P, where 7" = 7|PN'P. But in turn, LP(PN P, 7') is isometrically isomorphic
to LP(PN'P,7") for some faithful finite normal trace 77 on PN'P. This reduces the
proof of Theorem 1.1 in the case of general finite von Neumann algebras, to those with

a finite trace.

We now give a description of the results and proof-order of the paper.

If a matrix satisfies the hypotheses of Theorem 1.1, then every row and column has
the property that the p' powers of absolute values of the terms form a uniformly in-
tegrable sequence. We develop the basic technical tools to explain and exploit this, in
Section 2, through the device of the p-modulus of an element of LP(N') with respect to
a normal tracial state 7 on N'. We give several useful inequalities for this modulus in

Lemma 2.3. Although many of these can be obtained from the literature (e.g., [FK]),
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we give full proofs for the sake of completeness. We also obtain equivalences for relative
weak compactness in L'(N') in terms of uniform integrability in Proposition 2.5, and a
useful non-commutative truncation equivalence for general p, in Corollary 2.7.

We give technical information concerning general unconditional sequences in LP(N)
for p < 2 in Lemmas 3.1-3.3, yielding in particular the following definitive equivalences
obtained in Corollaries 3.4 and 3.5. Let (f,) be a bounded unconditional sequence in
LP(N). Then the following are equivalent.

1. (fn) has no subsequence equivalent to the usual (P basis.
2. (|ful?) is uniformly integrable.
3. limy, oo VP00 [0y = O for all subsequences (fL) of (fn).

The proof of Theorem 1.1 is then completed, using the standard ultraproduct con-
struction of the finite ultrapower of a finite von Neumann algebra A, and a result
giving the connection between its associated L” space and the Banach ultrapower of
LP(N) (Lemma 3.6). For recent structural results on ultrapowers of LP(N) for arbitrary
von Neumann algebras A/, see [Ray].

Section 4 yields results considerably stronger than Theorem 1.1. The arguments here
do not use the ultraproduct construction in Section 3, and are thus more elementary
(but also more delicate). Theorem 4.2 gives the following result (which immediately
implies Theorem 1.1).

If a semi-normalized matriz in LP(N') is such that all columns and “generalized”
diagonals are unconditional while all rows are u-unconditional for some fixed u, then
three alternatives occur: Either some column has an (P-subsequence, or (P ’s are finitely
represented in the terms of the rows, or the matriz has a “generalized diagonal” (yx)
satisfying (1.2) of Theorem 1.1.

This result is a fundamental step in the proof of the main result of section 4, Theo-
rem 4.1, which yields that if p =1 or if p > 1 and N is hyperfinite, the unconditionality
assumption in 4.2 may be dropped. In addition to 4.1, its proof uses results from Banach
space theory. The case p > 1 also uses recent non-commutative martingale inequalities
(see [SF], [PX1]). The case p = 1 uses techniques from [R1], which yield results for se-

quences in the preduals of arbitrary von Neumann algebras which may be of independent
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interest (see Lemmas 4.8 and 4.9). The proof in this case also requires an apparently
new elementary finite disjointness result (Lemma 4.10B).

(We have followed the referee’s suggestion in rewriting the beginning of section 4,
inverting the order of Theorems 4.1 and 4.2 from the earlier version of this work.)

Section 5 contains rather quick applications of our main results and the techniques
of their proofs. For example, Proposition 5.1 asserts that neither the Row nor Column
operator spaces completely embed in the predual of a finite von Neumann algebra; this
is a quick consequence of our main result. Theorem 5.4 shows that for 1 < p < 2
and N finite, a subspace of LP(N') contains ¢?’s uniformly iff it contains an almost
disjointly supported sequence (which of course is then almost isometric to /7), extending
the previously known commutative case [R2]). We give the concepts of the p-Banach-
Saks and strong p-Banach-Saks properties in Definition 5.5, and extend the classical
results of Banach-Saks [BS] and Szlenk [Sz| in Proposition 5.6. This result also yields
that for p and N as above, a weakly null sequence in L?(N') has the property that every
subsequence has a strong p-Banach-Saks subsequence if and only if the p* powers of
absolute values of its terms are uniformly integrable.

The main result of Section 6 shows that there are precisely thirteen Banach isomor-
phism types among the spaces L(N') for N hyperfinite semi-finite, 1 < p < oo, p # 2.
The embedding properties of the various types for p < 2 are given in an eight-level
Hasse diagram, in Theorem 6.2. This work completes the classification and embedding
properties of the type I case given in [S2]. The main work in establishing this Theorem
is found in the non-embedding results given in Theorems 6.3 and 6.9; we also give a new
proof of a non-embedding result in the type I case, established in [S2], in our Proposi-
tion 6.5. The most delicate of these is Theorem 6.9, which yields that if M is a type 1,
von-Neumann algebra, and L?(M) embeds in L?(N), then also N' must have a type Il
or type III summand (1 < p < 2). Of course this reduces directly to the case where
M is the hyperfinite type Il factor; the proof requires our Theorem 4.1, and also rests
upon recent discoveries of M. Junge [J] and Pisier-Xu [PX2].

Our methods do not cover the following case, which remains a fascinating open prob-
lem: Is it so that the predual of a type III von-Neumann algebra does not Banach embed

in the predual of one of type I1,7 In fact, we do not know if the predual of the injective
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type Il factor can be Banach isomorphic to the predual of an injective type III-factor.
We show in Theorem 7.2 that such factors cannot in general be distinguished by the
Banach space isomorphism class (or even operator space isomorphism class) of their
preduals. Letting R, denote the Powers injective factor of type III, and R, denote
the Araki-Woods injective factor of type III;, we show that (R,). is completely iso-
morphic to (Rs)« for all 0 < A < 1. (For a von Neumann algebra A, N, denotes its
predual, also denoted here by L'(N').) Thus there are uncountably many isomorphi-
cally distinct injective factors, all of whose preduals are completely isomorphic. We also
show in Theorem 7.2 that there are uncountably many isomorphically distinct injective
type IIp-factors, all of whose preduals are completely isomorphic to (Ry)sx.

We show in Theorem 7.3 that the famous open isomorphism problem for free group
von Neumann algebras cannot be resolved by the Banach (or even operator) space struc-
ture of the predual. Namely, we prove that the preduals of the L(F},)’s are all completely
isomorphic, for 2 < n < oo, where F), is the free group on n generators and L(F,) its
associated von Neumann algebra. This extends the result of A. Arias [Ar|, showing that
the L(F,)’s themselves are completely isomorphic as operator spaces. The proof of The-
orem 7.3 relies basically on the deep result of D. Voiculescu that L(F,) =2 My (L(Fx))
as von Neumann algebras, for £ =2,3,... (cf. [Vo] or [VDN]).

The results in Section 7 also extend to the case of the non-commutative spaces LP(N),
for 1 < p < oo (see Theorem 7.5). These isomorphism results (as well as the “positive”
isomorphism results in Section 6) rely on the operator space version of the so-called
Pelczyniski decomposition method (see Lemma 6.13). Thus, one actually shows for
von Neumann algebras N and M, that each of the spaces L?(N') and L?(M) is com-
pletely isometric to a completely contractively complemented subspace of the other, and
also (e.g., in the free group case M = L(Fy)), that say L?(M) also has the property
that (LP(M) & --- @ LP(M) & - -+ ) completely contractively factors through LP(M),
which then implies the operator space isomorphism of these two spaces. Thus the proofs
of these operator space isomorphism results are actually based on natural isometric

embedding properties of the L?(N') spaces themselves.

Remark. (Added December 2001.) Some of the results of this Memoir have been an-
nounced in [HRS].
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2. THE MODULUS OF UNIFORM INTEGRABILITY AND WEAK COMPACTNESS IN L!(N)

Let N be a finite von Neumann algebra, acting on a Hilbert space H. Let P = P(N)
denote the set of all (self-adjoint) projections in A/. We shall assume that N is endowed
with a faithful normal tracial state 7, which is atomless. That is, for all P € P with
P #0, thereisa Q@ < P, Q € P, with 0 < 7(Q) < 7(P). (Equivalently, 0 # @ # P,
since 7 is faithful.)

These assumptions cause no loss in generality. Indeed, if A has a faithful normal trace
7, then simply replace N by N = N®L>, where N is equipped with the atomless trace
v = 7®m, with m the trace on L> given by integration with respect to Lebesgue measure
on [0,1]. N is (x-isomorphic to) a subalgebra of A, and hence LP(N) is isometric to a

subspace of LP(N), so we may as well assume our space X in Theorem 1.1 is already

contained in L?(N).

Now if M C N is a MASA, it follows easily that also 7| M is atomless. Indeed, were
this false, we could choose P # 0, P € M so that 0 < Q < P, () € M implies Q =0 or
(Q = P. But then choosing Q € P(N), 0 < Q < P with 0 < 7(Q) < 7(P), we obtain
that if M is the von Neumann algebra generated by M and @), M is also commutative
and M # M, a contradiction.

Definition 2.1. Given f € N, = L'(7), we define the modulus of uniform integrability
of f as the function on RT, ¢ = w(f,e) given by

(2.1) w(f,e) =sup{7r(|fP|), P€ P, 7(P) <e}.
We also define the lower modulus of f, ¢ — w(f,e), as

(2.2) w(f,e) =sup{|r(fP)|: PP, 7(P)<e}.

To handle the case p # 1 in our Main Theorem, we also use the following p-moduli.
(When 7 is fixed, we set ||f|l, = [[fllzo(y = (7(If|P)/P. Also, for f € N, we set
[fllso = [1f]la-)

Definition 2.2. Let 0 < p < oo and f € LP(r). The p-modulus of f, w,(f,-), the

symmetric p-modulus of f, wy(f,-), and the spectral p-modulus of f, @,(f,-) are given,
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for0<e <1, by

(2.3) wy(f,e) =supf{||fPl,: P €P, 7(P) <e},
(2.4) wy(f,e) =sup{||PfP|,: PP, 7(P)<e},

25 (he) =sund ( [ paeeraw)” 7o (o0 < |

where for g self-adjoint, E, denotes the spectral measure for g.

It is trivial that all these moduli are increasing (i.e., non-decreasing) functions on
R*, which are continuous at 0, thanks to the assumption that f € LP(r). Actually,
the assumption that 7 is atomless yields that w,(f,-), w(f,-) and w;(f,-) are absolutely
continuous on [0, 1].

We now give some basic properties of these moduli. The most important of these is
that several of them reduce to the uniform integrability modulus given in Definition 2.1.

In particular, we obtain for f € LP(7) and ¢ > 0 that

wy(f,e) Swp(f*,e) = wy(f,e) = (W f P )P < 2wp(If ) -
For any f affiliated with A/, we let ¢ — pu(f,t) denote the decreasing rearrangement
of | fl on [0,1]; u(f,t) =inf{r > 0: 70 Ejp((r,00)) < t}.

Lemma 2.3. Let 1 <p<oo, f,g € LP(1), and € > 0.

(2.6) wp(f +9,8) <wp(f,8) +wplg,e)

and
wy(f+g,8) Swy(f,e) +wylg,e) -
If [ is self-adjoint, then

w(f:6) = wp(f.2) = @I P,e)
= max{||fP||,: Pf=fP, PEP, andr(P)=¢}

= (/0 1(ft) dt) "

(2.8) w(f,e) <2w(f,e) when p=1.
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In general,
wy(fr€) Swp(f,e) = wp(f¢)

2.9
(2.9) = wy(If],€) = @(If P, e)"” < 2w3(f,€)

and in case p =1,

(2.10) w(f,e) <w(f,e) <dw(f,e) .

Finally, let r = e7'/?||f||,. There exists a spectral projection P for |f| so that fP € N
with

(2.11) [fPlloc < and [|[f(I = P)[l, <@p(f,€) < wplfye) -

The case p > 1 uses the following classical submajorization inequality, due to H. Weyl
[W].

Sublemma. Let f and g be decreasing non-negative functions on (0,1] so that

/wa(t)dtg/omg(t)dt forall 0 <x<1.
Then also
/xfp(t)dtg/xgp(t)dt forall 1 <p<oo,
0 0
all 0 < x < 1.

Remarks. 1. This follows easily from the corresponding “discrete” formulation, cf. [GK].
Also, the result holds in greater generality; one does not need the functions to be non-

negative, and moreover the conclusion generalizes to assert that

/ (Pof(t)dg/ Dog(t)dt forall 0 <z <1
0 0

all continuous convex functions ®.

2. All the assertions of Lemma 2.3 hold for semi-finite von Neumann algebras A
that are atomless (i.e., have no minimal projections), endowed with a faithful normal
trace 7. Several of its assertions can also be deduced from results in [FK] and [CS]. For
example, once one proves the equality of the first and last terms in (2.7), one may apply
Lemma 4.1 of [FK] to obtain several of the other equalities in (2.7), for p = 1; one then
has that w(T,e) = ®.(T) in the notation of [FK], and some other results in Lemma 2.3
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follow from Theorem 4.4 of [FK]. However we prefer to give a “self-contained” treatment,

in part because we take the modulus w(f, £) as the primary concept in our development.

Proof of Lemma 2.3. Let p, f,g and € be as in the statement. (2.6) is a trivial conse-
quence of the fact that || - ||, is a norm (i.e., the triangle inequality). Also, we easily
obtain that

(2.12) wy(f,e) < wp(f,€) = wp(lfl€)
(2.13) wp(fr€) < wp(fye)

and in case p =1,

(2.14) w(f,e) <wl(f,e) .

Indeed, if P € P, then
(2.15) |fP| = (Pf*fP)"/? = (P|f|’P)'/* = | |f|P|

which immediately yields the equality in (2.12). Since compression reduces the LP(7)

norm, we have
(2.16) IPfPll, = |1P(fP)Pl, < [lf Pl

which gives the inequality in (2.12). If 0 < 7 and 7 o Ej5((r,00)) < &, then setting
P = Ejp((r,)),

1/p
(217) ( [ wae Eg®) = |I11P], <l
yielding the inequality in (2.13). (2.14) is trivial, since for any P € P,
(2.18) r(fP) <7 fP)) =Pl -

For the non-trivial assertions of the Lemma, we need the following basic identities (cf.
[FK], [CS]).

00 1
(2.19) ||f||;g:/0 tpdToE|f(t)§/0 P (fo) dt

(The final inequality is also an equality, but this follows from the conclusion of our
Lemma.)

Now let f be self-adjoint. Let N'(f) denote the von Neumann algebra generated by f,
and let M be a MASA contained in N with N'(f) € M. Then by our initial remarks,
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7| M is atomless. Let us identify (as we may), M and 7| M with an atomless probability
space (Q,S,v). It follows that we may choose a countably generated o-subalgebra S
of § so that f is Sp-measurable and also v|S, is atomless. Denote the corresponding
von-Neumann algebra by: L*>®(v|Sy) = M.

It then follows that (€2, Sy, V) is measure-isomorphic to ([0, 1], B, m) (where B denotes
the Borel subsets of [0,1] and m denotes Lebesgue measure on B), and moreover the
measure-isomorphism may be so chosen that the “random-variable” f is carried over to
the decreasing function ¢t — u(f,t) (cf. Lemma 4.1 of [CS]). It now follows that

(2.20) /0 WP(f, 1) dt < () -

Indeed, it follows that there exists a set S € Sy with v(S) = x and [(|f[Pdv =
T(|XsfIP) = [y uP(f,t)dt (where Xg may be interpreted as the projection in M, ob-

tained via multiplication). Now we define a quantity 5 (depending on z) by

(2.21) p=sup{[[fe]i: v eN, [Yl]e <1, |7(P)| < 2}

We are going to prove that there exists a G € P(M,) with 7(G) = = and

(2.22) T(IfG) = (IfIG) = 5.

Note that the first equality in (2.22) is trivial, since G <> f. But then all the equalities in
(2.7) for the case p = 1, follow immediately, for we have also that then |f|G = G|f|G =
|GfG| and so trivially 7(|f|G) < w(|f|,z) < B and 7(|f|G) < wi(f,z) < B; of course
also w(f,xz) < /3, hence by (2.22), 5 = w(f, x). Moreover by the argument for (2.20) and
(2.22) we have that 8 = 7(|f|G) = [; p(f,t)dt.

Before proving this basic claim, let us see why it also yields (2.7) for p > 1 (via the
Sublemma). Still keeping = fixed, assume 0 < x < ¢ < 1, and suppose P € P with
7(P) < . Now setting g = |fP|, g is self-adjoint and “supported” on P, whence it
easily follows that p(g,t) =0 for t > «.

But now we obtain that

(2.23) / " g, ) dt < / "l 0y dt
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Indeed,
| gty < wlg.) = wlrpo
= sup{|7(fPQE)| s 9 € N, [[¢lloo < 1} (by duality)
<p

(since PQ € N, ||PQ|lo < 1, and |[7(PQ)| < 7(Q) < x).
Now (temporarily) unfixing x, we also have that (2.23) holds for x > ¢, since u(g,t) =
0 for all t > £. Thus the Sublemma yields that

(2.25) [ g nas [ wiria.
0 0
Hence in view of (2.19),
(2.26) I£PI < [ werityar.
0
and so at last
€ 1/p
(227) st < ([wa)
0
Of course (2.20) combined with (2.27) now yields that
£ 1/p
(22) alre) = ([ woa)
0

and now all the equalities in (2.7) follow for p > 1 as well.

We now establish (2.22). Using the polar decomposition of f and duality, we have
that

B =sup{|T(fvo)| : ¥, ¢ €N, [[¢]loo; Il < 1 and |7(¥)] < 2}
(2.29) = sup{7(|f[¢): ¥ €N, 0 <+ <1, 7(¢p) <}
=sup{7(|fl¥) v e M,0<¢ <1, 7(¢) <z} .

The last equality follows by a conditional expectation argument from classical probability
theory.

Indeed, given 0 < ¢ < 1 in N with 7(¢)) < &, there exists a unique ¢ € M, such that

(2.30) 7(g) = 7(g1p) for all g€ L'(M,) .

It follows that then 0 < ¢ < 1 and 7(¢)) < z; this yields the desired equality.
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Now let K be defined:
(2.31) K={peMy:0<9yp<1land () <z}.
Then K is a weak™ compact convex set, thus
(2.32) K =w"—7to{y: ¢ € ExtK}
and moreover

(2.33) B =sup{7(|fly):p € Ext K} .

Now we claim that if ¢ € Ext K, ¢ is a projection. To see this, again identifying M,
with L>(Q, Sy, v|Sy), we regard ¢ as an Sy-measurable function on . Were ¢ not a
projection, we could choose 0 < § < % so that setting F' = {w € Q: 6 < p(w) <1—46},
then p(F) > 0. Since p is atomless, choose a measurable E C F with u(F) = su(E).

Now define g by

d J

Then g #0, 7(g) =0, and 0 < p £ ¢ < 1. But then 7(p £ g) <&, hence ¢ + g € K and
Y= W, contradicting the fact that ¢ € Ext K. (For a proof of this claim in a
more general setting, see [CKS].)

We finally observe that the supremum in (2.29) is actually attained, thanks to the
w*-compactness of K. But it then follows that this is attained at an extreme point of
K, i.e., there indeed exists a G € P(M,) with 7(G) = =z, satisfying (2.22).

We may now also easily obtain (2.8). Letting f = f™ — f~ where f*- f~ = 0 and
T, f~ >0, we have (by the proof of (2.7))

w(f,e) = sup{r(|f|P): P € P(My), 7(P) < e}
=sup{7(f*P)+7(f P): P e P(M,), 7(P) <e}
< 2sup{|7(fP)|: P € P(My), 7(P) <&}
< 2w(f,¢)

The first equality in (2.9) follows from the fact that for a general f affiliated with A,
there exists a unitary U in N with f = U|f| (thanks to the finiteness of N'). But then
|f| and |f*| are unitarily equivalent, which yields that p(f,t) = pu(f*,t) for all ¢, and

(2.35)

hence the desired equality follows by the final equality in (2.7).
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It remains to prove the last inequalities in (2.9) and (2.10), and the final statement

of the lemma. Let f = g+ ih with ¢g and h self-adjoint (and so in L?(7)). Then
(2 36) (.Up(f, 6) S wp(ga 6) + (.Up(h,, 6) by (26)
. =wy(g,€) +wy(h,e) by (2.7) .

But if ¢ = ¢ or h, then

(2.37) wy(w,e) < wy(f,e) .

Indeed, if P € P, 7(P) < ¢, then PfP = PgP + iPhP. But PgP and PhP are both
self adjoint, hence ||PpP||, < |PfP||,, yielding (2.37). Of course (2.36) and (2.37) yield
the final inequality in (2.9). Similarly, in case p =1,
w(f,e) <wl(g,e) +w(h,e) by (2.6)
(2.38) < 2uw(g,e) +2w(h,e) by (2.8)
< 4w(f¢)

since we also have for ¢ = g or h, that w(p,e) < w(f,e) (by an argument similar to that
for (2.37)).

To obtain the final assertion of the lemma, let » = u(f,€), and let E = Ejz. Now if

£ =71(F[r,00)) then since

(2.39) E([r,00)) = \{E([s,00)) : s <1},

we have ¢ < Z. Thus

(2.40) e < T”sg/ " dr o E(1) g/ # dro E(t) = |IfI .
[r,00) [0,00)

Hence

(2.41) r<e 1,

Now also by the definition of r, 7(E(r, c0)) < ¢, and so
(2.42) T([fIP Ero0)) = / tPdr o E(t) < @,(f, )" .
(r,00)

Finally, let f = U|f| be the polar decomposition of f. In particular, U is a partial
isometry belonging to A'. Then P = E([0,r]) satisfies (2.11). Indeed, fP = U|f|P and
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Il 1f|P]lso < 7, so also ||U|f|P||le < r, and

IULfI(I = P)llp < AT = P)llp = (7| f P Eroc) "
<@,(f.2) by (242). O

Remarks. 1. We have given a self-contained proof of the basic inequality (2.27) for the
sake of completeness. An alternate deduction may be obtained as follows. The remarks
preceding (2.20) actually yield that for any g € L*(7), ||gll, = [|n(g,)|l,- Let f be as
in the proof of (2.27) and fix a P € P with 7(P) = . We apply this observation to
g = fP. First, Proposition 1.1 of [CS] yields that for any 0 < z < 1,

AUURﬂﬁséﬁU@Mwa.

Hence applying the Sublemma and the observation,
1 1
I N ey R
0 0
= / pP(f,t) dt
0

which of course yields (2.26) and hence (2.27).

2. Rather than making use of the measure isomorphism of (2, Sy, v|Sy) with ([0, 1], B, m),
one can use the following more elementary procedure, in demonstrating (2.20). Let r =
p(f,x). Then it follows that setting P = E|7((r, 00)), 7(P) < x and 7(Ejs([r, 0))) > .
Using that 7| M is atomless, choose @ € P(M) with @ < Ejs({r}) so that 7(Q)+7(P) =
x. Then

T(If(P+Q)F) =7(fP(P+Q))

:TT(Q)-i-/( )tpdTOEm(t)

Z/Omu”(f,t) dt .

Here, the first two equalities are trivial; however the third one follows by a direct ele-
mentary (but somewhat involved) argument. (We are indebted to Ken Davidson for this
Remark.)

We next use the modulus of uniform integrability to establish a criterion for relative

weak compactness.
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Definition 2.4. A subset W of L*(7) is called uniformly integrable if

lim sup w(f,e) =0 .
E*)Ofew

Comment. The assumption that 7 is atomless implies uniformly integrable subsets are
bounded in L'(7). In fact, it then follows that if W satisfies that sup .y w(f,e0) < oo
for some £y > 0, W is bounded.

Proposition 2.5. Let (f,) be a given sequence in L* (7). The following are equivalent
(i) (fn) is relatively weakly compact in L*(7).
(ii) (fn) is uniformly integrable.
) (|fn]) is relatively weakly compact.
) (fn) is bounded in L'(7) and lim._,osup, @1 (fn, &) = 0.
)

(v) For all e > 0, there exists an r < oo so that for all n,

(i

(iv

dLl(T)(fTL?TBa(N)) <e.

Moreover if (f,) is bounded in L*(7) and

(2.43) n = limsupw(f,e) >0,

there exists a sequence Py, Py, ... of pairwise orthogonal projections in P and ny < ny <
- so that

(2.44) 7 (fo P2)| > g for all k .

Remark. B,(N) denotes the closed unit ball of N; thus r-B,(N) = {f e N ||f]|loo < 7}
For W C L*(r) and f € LY(7), dpiy(f, W) = inf{||f — w|; : w € W} by definition.
Our proof of (iv) = (v) reduces, via the proof of Lemma 2.3, to a standard truncation

argument in the case of commutative A/

Proof. Once (i) < (ii) is established, the other equivalences in this Proposition follow

easily from 2.3. Indeed, we have by the equalities in (2.9) that

;g%sgpw(fmt) = ;g%sgpwﬂfnl,é‘) )

whence we have the equivalence of (i)—(iii). Now trivially (ii)) = (iv) since &;(f,¢) <

w(f,e) for any f € L'(7) and € > 0 (see (2.11)). Suppose first that (f,) satisfies (v).
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Then given £ > 0, for each n we may choose 1, € N, |[tn||oc < 7, with

(2.45) 1 fo = Yullpin <2 -

But then for any J < ¢,
(2.46) W(fn,0) Sw(fn — Un, ) + w(thn,d) <e+71d .

Hence lim 5_, sup, w(f,, ) < &, proving (ii). On the other hand, suppose (iv) holds.
Let £ > 0, and choose § > 0 so that

(2.47) @01(fn,0) <e forall n.

Also, let M = sup || ful|11(r). Then setting r = 6='M, it follows by the final statement
of Lemma 2.3 that for each n, we may choose v, € r B, N' with

||’¢}n - fn“Ll(T) < ‘Dl(f, 5) <ée,

proving (iv) = (v).
To prove the equivalences of (i) and (ii), we use the following classical criterion due

to C. Akemann [A]: A bounded set W in the predual of a von-Neumann algebra M is

relatively compact if and only if for any sequence Py, Ps, ... of disjoint projections in
M,
(2.48) lim sup |Pj(w)|=0.

IO wew

Now suppose first that (f,,) is not relatively weakly compact; then choosing disjoint

Pj’s as in the above criteria, we obtain that
(2.49) lim sup |7(P;f,)| =8 >0 .
J—0 n
But lim 7(P;) = 0, since the P;’s are disjoint. It follows immediately that

(2.50) limsup w(f,,e) >4,

e—=0 ,

which together with (2.10), proves that (ii) = (i).
Finally, to show that (i) = (ii), assume instead that n > 0, where 7 is given in
(2.43). It now suffices to demonstrate the final assertion of 2.5, for then (f,) is not

relatively weakly compact by Akemann’s criterion. Let 0 < e <n with 7 —¢ > 1. By
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(2.43), choose n; with

1
(2.51) w<fm,§) Sn—c.
Then choose (by (2.10) of Lemma 2.3), @, € P with 7(Q;) < 1/2 and
—¢
(2.52) 7(fu Q)] > 1= .

Since f,, is integrable, {f,,} is uniformly integrable, so we may choose 0 < g5 < 1 so
that

(2.53) W(fny,e2) <

Do ™

Next by (2.43), choose ny > ny with

(2.54) W(fny,e2) >n—c.

(It is easily seen, thanks to the uniform integrability of finite sets in L'(7), that in fact
n= limgﬁgmnﬂww(fn, £); thus we may insure that n, may be chosen larger than n;.)
Again using (2.54) and (2.10), choose @, € P with 7(Q2) < 5 and

(2.55) |ﬂﬂ4@ﬂ>”;5.

Then choose €3 < &9 so that

(2.56) W(fn,y,e3) <

Do ™

Continuing by induction, we obtain n; < ny < ---, 1 =¢; > ey > ---, and projections
Q1,Qs, ... in P so that for all k,

(2.57) T(Qr) < 5
(2:58) A frusnn1) < 5
and

(2.59) 7 @i) > T

4
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Now set P, = Qr A (Ajsk(1 — Q;)), for k = 1,2,.... Evidently the P;’s are pairwise
orthogonal. For each 7, let Q; = Q; — P,. Now by subadditivity of 7,
ez 7@ - (1-r - @)
j>i

> 7(Qi) — Y 7(Q) -

§>i
But
€j
2 Q) <D 55 < s ) 5 by (257
>t j>i J>t
< E€i41
Hence we have
(2.60) Q) < 3 7(Qy) < i
j>i
Thus by (2.58),
- €
(261) ||fanz||1 S w(fni76i+1) < 5 .

Hence

7 (Fai ) = 17(fu: Qi = Qi)

n—e €
— - by (2.61
1 5 y (2.61)

v
a3

O

Remark. The proof of the implication (i) = (ii) itself, may quickly be achieved, using
instead Theorem 3.5 of [DSS].

The following result is an immediate consequence of 2.5.

Corollary 2.6. A subset of L'(7) is relatively weakly compact if and only if it is uni-
formly integrable.

Proof. Let W be the subset, and suppose first W is relatively weakly compact, yet
lim, o sup ey w(f, €) €' > 0. Then for each n, choose f, € W with w(frr37) > N— 55
It follows immediately that also lim._,osup, w(f,,€) = 71, hence (f,) is not relatively

weakly compact by Proposition 2.5. If W is uniformly integrable, then W is bounded,
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and then W is relatively weakly compact by Akemann’s criterion, (stated preceding
(2.48)). 0

Remark. Suppose ||fi||1 < 1 for all i, and (f;) satisfies (2.43). Letting the ny < ny < ---
be as in the proof of 2.5, we show in Section 3, using arguments in [R1], that there exists
a subsequence (f!) of (f,,) so that (f!) is %—equivalent to the usual ¢'-basis, with also
[f] %—complemented in L'(7). Hence (f;) has a subsequence equivalent to the ¢'-basis,

so of course (f;) is not relatively weakly compact.

We note finally a consequence of the proof of 2.5, valid for all 1 < p < oo and arbitrary

(not necessarily atomic) finite von Neumann algebras.

Corollary 2.7. Let 1 < p < oo, let M be a finite von Neumann algebra endowed with
a faithful normal tracial state T, and let W be a bounded subset of LP(7). Then the

following are equivalent.
(i) {Jw|P: w € W} is uniformly integrable.
(i) lime o sup ey @p(f,€) = 0.

(iii) lim, o gw(r) =0,

where the function gw is defined by

(2.62) gw (1) = sup dppy(w, 7 By(M)) for r>0.
weW

Proof. (i) = (ii) follows immediately from the (obvious) inequality @,(f,¢) < wy(f,¢)
(stated as part of (2.11) in Lemma 2.3).

(ii) = (iii). Assume that |w||, < M for all w € W. For r sufficiently large, define
e(r)=¢e>0hy
(2.63) r=c VPN .
Let f € W. Since e Y/?||f|l, < r, by the final assertion of Lemma 2.3, we may choose P
a spectral projection for |f| so that

(2.64) fPerB,(M) and [|f(I - P)|, <&(f,e) .

It follows immediately that

(2.65) gw (r) < sup @,(f,€) .
few
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Thus (iii) holds by (ii), since £(r) — 0 as 7 — oco. (Note also that the final assertion of
2.3 does not involve the “atomless” hypothesis, since @,(f,¢) is defined in terms of the

spectral measure for |f].)
(iii) = (i). Given f € W and € > 0, choose ¢ € r - B,(M) with

(2.66) 1f =l <z
Then for any ¢ < ¢,
(2.67) wWy(f,0) Swp(f —1,0) +wyp(,0) <e+r10d .

Hence lim 5_, sup rep wWp(f,9) < €, proving that (i) holds, since £ > 0 is arbitrary and
wy(fyt) = (w(|fIP,))/? for any f and t, by (2.9) of Lemma 2.3. O

3. PROOF OF THE MAIN THEOREM

We first assemble some preliminary lemmas, perhaps useful in a wider context. A
and 7 are assumed to be as in Section 2. Let r,7s,... denote the Rademacher functions
on [0, 1]; equivalently, an independent sequence of {1, —1}-valued random variables (r;)
with P(r; =1) = P(r; = —1) = 1 for all j.

Lemma 3.1. Let 1 < p < 2 and (f,) be a bounded unconditional basic sequence in
LP(1), so that (| fi|P)%, is uniformly integrable. Then limy, oo YP|| fi+- -+ fullor) =
0.

Remark. Recall from the introduction that a sequence (z,) in a Banach space is called

unconditional if there is a constant « so that

(3.1) {len;azczxz < UHZEn;cm

Cy...,Cq and g, ..., a, with |oz] = 1 for all 7 .

(x,,) is called u-unconditional if (3.1) holds.

} for all n and scalars

Proof of 3.1. Suppose (f,) is u-unconditional. Then (f,) is u-equivalent to (f, ® 7,)
in LP(N®L™), so it suffices to prove the same conclusion for (f, ® r,) instead. Let
f =1 ®m, where m is Lebesgue measure on [0,1). We may also assume without loss of

generality that || f,||z»(-) < 1 for all n. Now let € > 0, and choose § > 0 so that
(3.2) w(|fa|?,0) < e foralln
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(using that (|f,|") is uniformly integrable). By the final statement of Lemma 2.3, we
may by (3.2) choose for each j a P; € P = P(N) so that f;P; € N with

1

(3.3) 1fiPjlloo < 5 and £ =Pyl <e.
Then fixing n,
3.4 H @7y
(3.4) ;f ®7il|
But
(3.5) H Zfipi ® 1y

i=1

since || fiP;||oo < 3 for all 4.
On the other hand, since L?(M) is type p with type p constant 1 for any von-Neumann
algebra M,

SH P @
y <l SRen],

<H P @
piy S | 2 AP En]

Hif;fz-(f—a)@m )

n 1/p
< (Z e a-)nipm)
=1

<en'? by (3.3).

(This fact follows by Clarkson’s inequalities — see the discussion in the proof of the

(3.6)

next lemma.) We thus have that

1/2
1/p n —
.0 o fr] < i e =
by (3.5) and (3.6). Since £ > 0 is arbitrary, the conclusion of the lemma follows. O

Remarks. 1. It follows easily from the above proof that in fact if (f,,) satisfies the
hypothesis of 3.1, then lim, oo 7~ Y?|| f{ 4+ - -+ f1]|, = 0 uniformly over all subsequences
(1) of fy.

2. The proof of Lemma 3.1 yields the following quantitative result. Fiz e > 0, and let
(f;) be a bounded sequence in LP(T) so that there exists anr < 0o with dpp(r)(fj, 7 Ba N) <
e for all j. Then lim ,_, FE,n~"/7| > i1 Tj(w) fillery < e. Indeed, for each j, choose
@; € T By N with || f; — ¢llze(r) < €. Then fixing n, (3.4)—(3.6) yield

HZfi@)?“iL(ﬂ)SHZ%@ﬁ +HZ — i) Qr;
i=1 =1
< ry/n+ent/?

LP(B)
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Hence lim ,,_,on /7| Soii fi @ rilloes) < € as desired. O

We next give a criterion for a finite or infinite sequence in L?(7) to be equivalent to

the usual ¢P basis.

Lemma 3.2. Letu > 1,6 > 0,1 <p <2, and f1,..., [, elements of B,(L*(N)) be
given so that (f;)"_, is u-unconditional. Assume there exist pairwise orthogonal projec-
tions Py,..., P, in P so that

(3.8) T(|P;fiPyl") > 0" forall 1<j<mn.
Then (f;)?_, is C-equivalent to the usual 7 basis, where C' = u\/367".

Proof. We first note that (using interpolation), LP(7) satisfies Clarkson’s inequalities:

for all z,y € LP(7),
(3.9) [z +yllp + llz = yll; < 202l + lyll7) -

It follows immediately by induction on n that LP(7) is type p with constant one; that

is, for any zy,...,z, in LP(7),

1 n
ZHixli---iang:/ |3 e,
Av+ 0 =1
< (Xlaly) -
i=1

Now let scalars aj, ... ,a, be given, and let f =>""  a;f;. We obtain from (3.10) that

P
dw
P

(3.10)

since (f;) is u-unconditional,

n 1/p
(3.11) I < u( o)
=1

Now fix w and set f, = >  a;r;(w)f;. Then

(3.12) 1£alle > 1P LBy

Jj=1

Thus integrating over w and again using unconditionality,

1 1
||f||§zJ/ £ l|P dew
0
(3.13) o
= 52/0 1P fuPjll}dw by (3.12).
]:
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But fixing 7, since LP(7) is cotype 2 with constant at most 3'/2,

1 1 p/2
[ inpigs > o (S inwsn)

(3.14) .1
= 3p/2

1
3p/2

| Pja; f P55
> L by (3.8).

Thus in view of (3.13),

oP &
(3.15) 191> s (S ho)

j=1

so (3.11) and (3.15) now imply the conclusion of Lemma 3.2.

O

Our last preliminary result yields an estimate for equivalence to the /2 basis in terms

of p-moduli.

Lemma 3.3. Let0 <e <n/2,n>1,and fi1,..., fn € By LP(7) be such that (fi,...

7f’I'L)

is u-unconditional and there are 6y > 09 > -+ > 6, > 0 so that for all 1 < j < n and

all k with j <k (if j <n)
(3.16) wp(fj,0;) >n and wy(fj, 06 + Opy1 +---+9,) <
Then (fi, ..., fn) is C-equivalent to the (P basis where

C’gu\/g(g—f:)l )

Proof. By Lemma 2.3, (see (2.9)), we have, fixing 1 < j < n, that

(3.17) wp (3183 > 5 -
Hence we may choose (); € P with
n
(3.18) 1Q;£;Qilly > 5 and 7(Q;) < & .
Define projections F; and Qj by
k>j
Then

(3.20) QifiQ; = PifiPj+ Q,; [;P; + Q, 1;Q; -

DN ™M
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Now we have by subadditivity of 7 that 7(A;-;(1 —Qk)) > 1 — >, dk, and so again
by subadditivity,

Thus 7(Q;) < > k> Or. Hence we have

1G5 < 103 F5ll < (f Z(sk)

(3.21) e
_wI,(f],Zék) <5 by (3.16)).

k>j

By the same argument,
~ £

(3.22) 195 £iQslly < 5 -
Thus from (3.18), (3.20), (3.21) and (3.22), we obtain

n
(3.23) 125 fiPillp = 5 — ¢ -
Of course P, ..., P, are pairwise orthogonal; hence Lemma 3.2 now immediately yields
the conclusion of 3.3. O

Lemma 3.3 immediately yields an infinite dimensional conclusion as well. Combining

this and Lemma 3.1 we obtain the following definitive result.

Corollary 3.4. Let (f,) be a bounded unconditional sequence in LP(7), 1 <p < 2. The

following are equivalent:
(a) (fn) has a subsequence equivalent to the usual (P basis.

(b) (|ful?) is not uniformly integrable.

Proof. (a) = (b) follows immediately from Lemma 3.1. Assume that (b) holds and
also assume without loss of generality that ||f,||, < 1 for all n. Then by Lemma 3.1,

(3.24) nd:eflin% sup wy(fn, ) > 0.
E— n
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Now Lemma 3.3 yields that there is a subsequence (f)) of (f,) so that

(3.25) (fl)is U equivalent to the ¢7 basis,
n
where ¢ is an absolute constant.

Indeed, fix 0 < e < 7. Choose 0; < 1 and n; so that
(3.26) Wp(fny,01) >n—c.
Suppose n; < --- < n; and d; > 02 --- > d; chosen so that
Wy (fors Gi1 + -+ 6;) < % forall 1<i<j.

By continuity of the functions ¢ — w,(f,,,t) for i < j and the fact that f,, € L?(r),

choose d;4; < §; so that
(3.27) Wy (Fuss Oig1 + o+ 05+ 0,41) < % forall 1<i<j.
Then choose ;4 < 5j+1 and nj41 > n; so that

(3.28) Wp(frjsrs0j1) > —€ .
This completes the inductive choice of ny < ng < ---.

Setting f;. = fn,, then (f{,..., f!) satisfies the hypotheses of Lemma 3.3 for all n, and
hence (f}) is uv/3(Z — ) '-equivalent to the (7 basis by 3.3. By taking ¢ small enough,
we obtain ¢ < 7 in (3.25). O

Remark. The hypothesis that (f,) is unconditional may be omitted when p = 1, as
pointed out in the remark following the proof of Corollary 2.6. Also, it’s not hard to
show that the sequence (f!) constructed above has its closed linear span complemented
in LP(7). Finally, it follows from known (rather non-trivial) results that if 1 < p <
oo and N is hyperfinite, then every semi-normalized weakly null sequence in LP(N)
has an unconditional subsequence. Indeed, assuming (as we may) that N acts on a
separable Hilbert space, L?(N') has an unconditional finite dimensional decomposition
(see [SF], [PX1]), which yields the above statement. Thus also in the hyperfinite case,
the hypothesis that (f,,) is unconditional may be omitted. We do not know, however, if

this is so for general N.

Corollary 3.5. Let (f,) be a bounded unconditional sequence in LP(7), 1 <p < 2. The

following are equivalent.
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(a) For every subsequence (f) of (fn)

=0.

lim n~ /7
n—oo

Lp(T)

o
i=1
(b) (|fnl?) is uniformly integrable.

Proof. Both implications are proved by contradiction. (a) = (b): Assume (b) is false.
Then by Corollary 3.4 there exists a subsequence (f,) equivalent to the usual /P-basis.

In particular

>0.
Lr(T)

lim infn /7
n—oo

S H
=1

which contradicts (a).
(b) = (a). This follows from Lemma 3.1, since condition (b) implies that (|f!])? is
uniformly integrable for any subsequence (f!) of (f,). O

We now turn to the proof of the Main Theorem. First we give some preliminary
results concerning ultrapowers of Banach spaces and the standard construction of the
ultrapower of a finite von Neumann algebra (cf. [McD], [V]).

Fix U a free ultrafilter on N. For a given Banach space X, let /*°(X) denote the set

of bounded sequences in X, under the norm ||(z,)|| = sup,, ||z,||, and set
(3.29) Ey ={(z,) € (>(X): lienlnj |xn]] =0} .

Then Xy, the ultrapower of X with respect to U, is given by
(3.30) Xy =0>*(X)/Ey .

Now fix N a finite von Neumann algebra with a normal faithful tracial state 7, and
define Iy by

(3.31) Iy = {(z,) € *°(N) : lim (2} 2,,) =0} .

nel
Then Iy is a norm-closed two-sided ideal in £°°(X); we define NV (a different object
than AMy!) by

(3.32) NY = 1>(N) /Iy .
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Then by the references cited above, N'V is a W*-algebra (i.e., an abstract von Neumann

algebra) with a normal faithful tracial state 7 given by

(3.33) u(w(@a)) = lim 7(z,)

where 7 : (*°(N) — NV is the quotient map.
The next result yields that LP(NY) may be regarded as a subspace of the Banach
space ultrapower LP(N)Y.

Lemma 3.6. Let 1 < p < oo and letY, denote the closure of {*°(N') in the Banach space
(>°(LP(N)). Then 7 has a unique extension to a bounded linear map 7 : Y, — LP(N'V).
Moreover, for (x,) € Yy,

(3.34) 17 (@) lzrry = lim flza [ 1oery -

Fixing p as in 3.6 and letting p : ¢*(LP(N)) — LP(N)Y be the quotient map,
Lemma 3.6 yields there is a unique isometric embedding i : LP(NY) — LP(N)Y so

that the following diagram commutes:
LP(NY)

/|

(3.35) Y, = LPN)Y

Proof. Since 7 is a *-homomorphism of ¢*(N') onto NV, we have for any continuous
function f : [0,00) — C and any z = (z,,) € {*°(N),

(3.36) ™ ((f(wnzn))nts) = f(x(@)7(2)) .

Applying this to f(t) = |t|P/?, we get by the trace formula (3.33) that

(3.37) 17 (@) oy = lim flnl| o) -
In particular,
17 (@) Loy < sUP (|20 22 (r)

(3.38)
= [z oo o)) -
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Thus 7 extends by continuity to a contraction 7 : Y, — LP(NY). Now let z = (z,)
belong to Y, and let £ > 0. Then choose y = (y,,) in ¢>°(N) so that

(3.39) [l = Yllezrovy <e -
It follows from (3.39) that

(3.40) 17 @) ey = 17 @)oo | < &
and
(3.41) i {|2n | 2oy =l lyalooen | <€

Since (3.37) holds, replacing “z” by “y” in its statement, we have from (3.40) and (3.41)
that

< 2¢.

(3.42) 17 (@) |2y — T [l 2o
Since € > 0 is arbitrary, (3.34) holds for all x = (z,,) in Y. O

Lemma 3.7. Let 1 < p < 2, and let (x;;) be an infinite matriz in LP(N) so that for
some C' > 1, each row and each column of (x;;) is C-equivalent to the usual (*-basis.

Then for every free ultrafilter U on N

(3.43) sup lim dpo(r) (245, 7 Bo(N)) = 0 as r — o0
jEN 1ceU

Proof. Define for each j € N a function g; : Rt — R* by

9j(r) = sup dpo(r) (i, 7 Bo(N)) -

)

For fixed j, (2;5)2; is C-equivalent to the usual ¢2-basis, so by Corollary 3.4 and Corol-
lary 2.7, (|z;;[P)2, is uniformly integrable and
(3.44) Thﬁrg(J gi(r)=0.

Now (3.44) implies that (z;;)2, belongs to Y,. Let 7 be as in the statement of Lemma 3.6
and define z; by

7y =7 ((a)%)) € PV
Now we claim that

(3.45) (z,) is C-equivalent to the ¢*-basis.
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Indeed, using the hypotheses of Theorem 1.1 and Lemma 3.6, we have for any n and

=||7 CiTyi
Lr(ry) H ((; ’ ]>i:1>

scalars c¢q,... ,c,, that

n
| > e
i=1

Now define g : Rt — R* by

g9(r) = sup drs(z,) (25, rB,(NY)) .
j
Again by (3.45) and Corollary 3.4, (|7;|P)$2, is uniformly integrable in LP(7y), so by

Corollary 2.7 we have that

(3.46) lim g(r) =0.

T—>00
Now let £ > 0. Since 7 is a quotient map of /*°(N') onto NV, it follows that fixing j,
there exists for every r > 0, (y;;)32, € 7 B,(N) so that
2 = 7 (i) 2| Lo(roy < g(r) +¢ .
Hence by Lemma 3.6,
lim [[2ij — Yl o) < g(r) +e,
which implies that

im dpp(ry (@55, 7 Bo(N)) < g(r) + ¢ .

€U
Hence by (3.46)
lim sup(sup 1imde(T)(xij,rBa(N))) <e.
r—00 jeN €U

Since € > 0 was arbitrary, we get (3.43). O

Proof of Theorem 1.1. Let 1 < p < 2, and let (x;;) be as in Theorem 1.1, and let U be
a free ultrafilter on N. Put

(3.47) h(r) = sup ljrg drery(zij, 7 Bo(N)), reR; .

JzE
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Then h : R" — R* is a decreasing function and by (3.43)

(3.48) rlgl;) h(r)=0.

We claim that (3.47) and (3.48) imply that for a suitable choice of natural numbers
11 <19 < --- one has

(3.49) (|2 51")72, is uniformly integrable.

To prove (3.49) put for j € N
J
(3.50) G =G

r=1
where for j,r € N,
1
(351) Gj,r = {Z €N | de(T)(l'i]’,TBa(N)) < h(?”) + ;} .
By (3.47) each G, € U, and hence also G € U for all j € N. Since U is a free ultrafilter,
each G is infinite, so we can choose successively 7; < iy < --- such that 7; € G; for all
j. Put y; =y 5, j € Nand W = {y;, j € N}, and put as in Corollary 2.7
(3.52) gw(r) = sup die(ry(Yj, 7 Bo(N)) reRt.
je
To prove (3.49) we just have to show that gy (r) — 0 when r — oo (cf. Corollary 2.7).
Let € > 0. By (3.48) we can choose ry € N such that
1
(3.53) h(rg) + — <e.
To
When j > rg, i; € G; C G;,,. Hence by (3.51) and (3.53)
(3.54) drer)(yj, mo Ba(N)) < €, Jj=>ro .
Since N' = J,., 7 Ba(N) is dense in LP(7) we have for every j € N,
lim dre@ry(yj, 7 Bo(N)) = 0.
Hence, we may choose r; > rg, such that

(355) de(T)(yj,’f'l Ba(/\[)) <e€, ] = 1, RN A B 1.

By (3.54) and (3.55), gw(r) < ¢ for all r > r;. This shows that lim, ,., gw(r) = 0 and
hence by Corollary 2.7, (|y;|?)$2, is uniformly integrable, i.e., (3.49) holds. Thus by the
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assumption that (y;) is unconditional, Corollary 3.5 yields that for any subsequence (y)
of (y;),

n
i ~1/p ! =
(3.56) nlgﬁlon z;y] e 0.
]:
Putting now j, = k, we have y, = x;, ;, and Theorem 1.1 follows. O

4. IMPROVEMENTS TO THE MAIN THEOREM

We obtain here results that are stronger than the Main Theorem. In particular,
Theorem 4.2 is also needed in Section 6 (specifically, for the proof of Theorem 6.9). The
arguments in this section do not use the ultraproduct construction and technique of
Section 3. They are in a sense more elementary, and also more delicate, than those of
the previous section.

We use the following terminology: given a matrix (z;;), a sequence (x;, ;. ) of elements
of the matrix is called a generalized diagonal if iy < io < --+ and j; < jo < ---. Aset W
(or matrix (z;;)) in a Banach space is called semi-normalized if there are 0 < 6 < K < 0o
with § < ||Jw]] < K for all w € W.

The main result of this section goes as follows.

Theorem 4.1. Let N be a finite von-Neumann algebra, 1 < p < 2, and (x;;) be an
infinite semi-normalized matriz in LP(N). Say that (x;;) satisfies triple-alternatives

provided one of the following three possibilities hold.

I. Some column has a subsequence equivalent to the usual P basis.
II. There is a C > 1 so that for all n, there exists a row which contains n elements
C'-equivalent to the usual (P basis.

III. There is a generalized diagonal (yi) so that

n
>y
=1

for all subsequences (y.) of (y;).

n-/P —0 as n— o0

p

Assume that every generalized diagonal is a basic sequence. Then (x;;) satisfies triple

alternaties provided any of the following hold:

(i) p=1.
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(i) 1 < p, every column is an unconditional basic sequence and
(iia) there is a A > 1 so that every row is a A-basic sequence.

(iii) 1 < p, N is hyperfinite, every column is a basic sequence, and ii(a) holds.

It remains an open question if (x;;) satisfies triple alternatives when 1 < p < 2, and
N is not hyperfintie but still the remaining conditions in (iii) holds. Our proof of 4.1
yields that under these assumptions, the following three alternatives hold: 11 or 111 of
Theorem 4.1, or
I'. There is a C > 1 and a column so that for all n, the column contains n elements
C'-equivalent to the usual P basis.

We first prove a fundamental special case of 4.1, which also immediately yields our

main theorem (Theorem 1.1).

Theorem 4.2. Let N, p, and (x;;) be as in the first sentence of Theorem 4.1. Then
(wij) satisfies triple-alternatives provided every column and generalized diagonal is un-

conditional and there is a uw > 1 so that every row is u-unconditional.

To recover the Main Theorem from Theorem 4.2, let (z;;) be as in the hypotheses of
the Main Theorem, and simply note that Alternatives I and II of 4.1 are impossible, since
otherwise one would obtain a constant A so that the ¢2 and ¢2 bases are A-equivalent

for all n. Alternative III now yields the conclusion of the Main Theorem.

Remark. (Added December 2001.) Although we couldn’t see how to obtain an ultra-
product proof of Theorem 4.2, Yves Raynaud subsequently succeeded in doing so (un-

published notes at this time).

Let us say that the rows of (x;;) contain (P -sequences if condition II of 4.1 holds,
with a similar definition for the columns. Since obviously we can interchange rows and
columns in the statement of 4.2, we then obtain the following immediate consequence of
Theorem 4.1:

Theorem 4.1'. Let N, p and (r;;) be as in the first sentence of Theorem 4.1. Assume
that every generalized diagonal is a basic sequence, and that any of the following hold:
(i) p=1.
(ii) 1 < p and there is a u > 1 so that every row and column is u-unconditional.
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(i) 1 < p, N is hyperfinite, and there is a X > 1 so that every row and column is a

A-basic sequence.
Then one of the following three alteratives holds:

I. Some column or some row has a subsequence equivalent to the usual /P basis.
II. Both the rows and the columns contain (¥ -sequences.

ITI. Condition I1I of 4.1 holds.

Remark. (Added December 2001.) The third named author of the present paper and
Q. Xu have subsequently also obtained a result analogous to Theorem 4.1’ for 0 < p < 1.

PROOF OF THEOREM 4.2

We may assume without loss of generality that ||z;;||, < 1 for all i and j. We introduce

the following notation, for all ¢ > 0 and all 7,7 =1,2,....

(4.1) wij(e) = wy(wij, )
(4.2) wi(e) = Slz%pwij(é‘)-

Now assume that Case I of Theorem 4.1 does not occur. We then have by Corollary 3.4

(and Lemma 2.3) that (|z;;|?)$2, is uniformly integrable for all j, and hence

(4.3) limw;(e) =0 forall j.

e—0

We now use the following (hopefully intuitive) convention. A set of rows R of (z;;) is
identified withaset 7 C {1,2,...}viaR ={R;:i € J} where R; = {z;; : j =1,2,...}
for all i € J. Columns are just identified with j € N; ie., j ~ Cj = {z;;: 1 =1,2,... }.

Case II. There is an > 0 and an infinite set of rows 7 so that for all further infinite
sets of rows J' C J, all § > 0, and all columns jg, there is a column j > j, so that
(4.4) {i e J :w;j(0) >n} is infinite.

Intuitively, the final statement means that looking down the j* column of the sub-

matrix with rows J’, then infinitely many of the moduli w; ;j(0) are bigger than 7.
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We shall show that Case II yields II of Theorem 4.1. In fact, we shall show that then,

via Lemma 3.3,
for every n, there exists a row R; and elements z;;,,... ,%;;, in
(4.5)

n

. . Tu : :
R;, j1 <+ < jn, with (245, );_; —-equivalent to the ¢/ basis.
n

Let Jp be the initial set of rows satisfying Case II. Let §; = 1/2, and choose j; so that

def

(4.6) J ={i € Jp : wi;, (61) > n} if infinite.
Next, using (4.3), choose J, < d; so that
(4.7) wi, (5) < % ,
and choose § < d,. Now using the assumptions of Case II, choose j» > j; so that
(4.8) N d:ef{i € J1 : wij,(62) > n} is infinite.

For the general inductive step, suppose n > 1, infinite /; D --- D J, 1 and j; < --- <
Jn1, 01 > 09 > 8y > -+ > 0,1 > 0,_1 > 0 have been chosen so that forall 1 < ¢ < n—1,
wj,(0p41) < sand dpp1 + -+ 01 < 6¢41. Using (4.3), choose 0 < &, < 8,_1 so that
wj, 1 (6,) < %5 then choose 0 < 4, < 6n so that also 6,41 + -+ d, < dqq for all
1 <?¢<n—1. We thus have that

(4.9) Wj[(5g+1+"'+6n)<g forall 1</<n-—1.

Then choose j,, > j7,—1 so that

def

(4.10) TIn ={i € Tp—1 1 wij, (6,) >n} is infinite.

This completes the inductive construction. Now fix n, let i € J,,, and let f; = z;;, for
1 <k <n. Then (f1,..., fn) satisfies the assumption of Lemma 3.3. Indeed, the f;’s
are u-unconditional by hypothesis, and for each k, 1 < k <n
(411) Wijp, ((Sk) = wp(fk, (Sk) >n
and
(4.12)

wp(fk,5m+5m+1+---+5n)gwjk(5m+5m+1+---+5n)<§ for k<m<n.

Thus (x5, )}, satisfies the conclusion of (4.5) in view of Lemma 3.3, proving Case II of
4.1 holds.
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We now suppose that Case II does not hold, i.e., we have

Case III. For all n > 0 and infinite sets of rows 7, there exists an infinite set of rows

J' C J,ad >0, and a column j so that for all columns j > j,
(4.13) wi;(6) < n for all but finitely many i' € J' .

(Note that we get j > j instead of j > j by just replacing j by j+ 1).

Intuitively, the final statement means that now, looking down the j* column of the
submatrix with rows J', then all but finitely many of the moduli wy ;(§) are no bigger
than 7.

We shall now construct iy < iy < --- and j; < jo < --- so that

(4.14) lim sup w;, j,(e) =0 .

e—0 k

Thus we obtain that (|z;,;,|?)72, is uniformly integrable, and hence Case III of Theo-
rem 4.1 holds by Corollary 3.5.
We first claim that we may choose infinite sets of rows J; D Jo D -+, columns

j1 < jo < ---, and numbers 1 > 4y, % > 09, % > d3--- so that for all &,
1
(4.15) for all j > ji, wi;(dx) < 5 for all but finitely many i € 7}, .

Indeed, first choose J; an infinite set of rows, 71 € N and d; > 0 so that for all j > 71,
(4.13) holds, where J' = J, n=1/2, and 6, = J.

Now suppose Ji, ji, and &), have been chosen. Setting n = 1/2%*! choose an infinite
Ji+1 C Tk, j > jr and a 0 > 0 so that for all j > j, (4.13) holds for J' = Ji+1. Now
simply let 0,1 = min{d, 2714, k+r1} Since the functions w; are non-decreasing, we
have that also for all j > j, w;;(k11) < 1/2F+! for all but finitely many ¢ € Jyy1. This
completes the inductive construction, with (4.15) holding for all k.

Now choose i1 € J; with w;, j,(61) < 1/2. Then also for all but finitely many i € 73,
Wiy (01) < 1/2 and w; j,(02) < 1/4. Hence we can choose iy > iy (iy € J2), with

1
(4.16) Wiy j (61) < 5 and Wiy js (02) <

A~ =

But we can also choose 0 < g9 < §, so that

(4.17) wiy j, (€2) <

A~ =
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Thus also
1
(4'18) wi2,j2(62) < Z :
Now suppose i; < --- < 7, and 0; = €1,...,, have been chosen so that ¢; < ¢; for
all 7 <n and
1 .
(4.19) Wiy g (€1) < 5 forall 1<k<n, 1<i<n.

Now by (4.15), choose i,41 > ip

—~

iny1 € Tnsi1) so that
1
(4.20) Win i1 jnis (02) < B forall 1</<n+1.

This is possible, since for each ¢, w; ;. (6,) < 1/2¢ for all but finitely many i € J,, ;.

Again, since the ¢,’s are smaller than the d,’s,

1
(4.21) Wi i1 inst (E2) < o forall 1</<n.

Finally, choose €,,1 < 6,11 so that

(4.22) Wiy g, (Ent1) < ) forall 1</<n.
Again, we also have
1
(423) win+17jn+l (6n+1) S 2n+1 *
This completes the inductive construction of iy < i5 < --- and £y,e9,.... Then for
each 7, we have
1
(4.24) sup Wiy, (53) < o5 -
k
It then follows immediately that (4.14) holds, since if € < &;, then also
1
(4.25) supw, j, () < = .
k ’ 20
This completes the proof of Theorem 4.2, in view of the comment after (4.14). O

PROOF OF THEOREM 4.1

We use theorems from Banach space theory and of course Theorem 4.2. To obtain
the case p > 1, of Theorem 4.1 we require the following remarkable result, due to Brunel
and Sucheston ([BrS1], [BrS2|; see also [G]). (A sequence (z;) of non-zero elements

in a Banach space is called B-suppression unconditional if for all n, scalars cq,... ,c,,
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and F' C {1,...,n}, [| X ;cpcaill < Bl X 5c cjajll. Tt is easily seen that if (z;) is A-
suppression unconditional, it is 2A-unconditional over real scalars and 4\-unconditional
over complex scalars. Actually, a neat result of Kaufman-Rickert yields that such a

sequence is mA-unconditional (over complex scalars) [KR].)

Lemma 4.3. Let (x,) be a semi-normalized weakly null sequence in a Banach space X,
and let ¢ > 0. Then there exists a subsequence (y;) of (x;) so that for any k < j; < j, <

coe < gk, (4.2, is (14-¢)-suppression unconditional (and hence 7(14-¢)-unconditional).

Remarks. 1. Actually, the results of Brunel-Sucheston yield much more than this. They
obtain that under the hypotheses of Lemma 4.3, there exists a Banach space E with a
suppression 1-unconditional semi-normalized basis (e;) and a basic subsequence (y;) of

(z;) so that:

(i) (ej) is isometrically equivalent to all of its subsequences and
(i) for all £ > 0 and k large enough, and any k < j; < -+ < jor, (y;,)2, is (1 + )-
equivalent to (eq,. .., e).
In the standard Banach space terminology, (e;) is called a subsymmetric basis for E,
and a spreading model for (x;).

2. A classical result of Bessaga-Pelczynski yields that any seminormalized weakly
null sequence in a Banach space has a basic subsequence (in fact, for every ¢ > 0, a
subsequence which is (1 + ¢)-basic). However it is obtained in [MR] that there exists
a normalized weakly null sequence in a certain Banach space with no unconditional
subsequence, and in [GM] that there exists an (infinite dimensional) reflexive Banach
space with no (infinite) unconditional basic sequences at all. Thus in a sense, Lemma 4.3

is the best possible positive result in this direction.

We now give consequences of this lemma that are needed for Theorem 4.1. The first

one follows from Lemma 3.1 and Lemma 4.3.

Corollary 4.4. Let 1 < p < 2 and (f,) be a weakly null sequence in LP(T) so that
(|filP)22, is uniformly integrable. Then there is a subsequence (f!) of (fi) so that

2

lim nfl/”||51y1 + -t 5nyn||Lp(7-) =0

n—0o0
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uniformly over all subsequences (y;) of (f]) and all choices (g;) of scalars with |e;| < 1

for all j.

Remark. The result shows (and also follows from): any spreading model for (f;) is not

equivalent to the (P-basis.

Proof of 4.4. We may assume without loss of generality that || f;||, < 1 for all j. Let
e > 0 be such that 7(1 +¢) < 4, and choose (y;) a subsequence of (f;) satisfying the
conclusion of Lemma 4.3. Let (r;) denote the Rademacher functions on [0, 1] (as defined
in Section 3), set N = N®L>®, and let g; = y;®r;j for all j. Then (g;) is 2-unconditional

(over complex scalars) and of course (|g;|?) is also uniformly integrable in L' (N'), whence

by Lemma 3.1,
(4.26) Tim 0= 2[|gy + - + gall oy = 0 -
Let € > 0, and choose N so that if n > NN, then
-1/ . e 2
(4.27) g1+t gall o < 7o
and
(4.28) n Y71 +logyn) < % .
Now fix n, and choose k with
(4.29) 2l <p < 2h.
Of course then
(4.30) E<1+logyn.
Now if €1,... ,¢, are given scalars of modulus at most one, then
n n
4.31 H ” < 16H - .
( ) Z €Y Lo = Z gj Lo (A7)
j=k+1 j=k+1
Indeed, yky1,... ,Yn is 4-unconditional by the conclusion of Lemma 4.3 (since n — k <

n < 2%), yielding (4.31). On the other hand,

k
(4.32) H S e
=1

<kE<1+1 by (4.30).
oy S S 1 logyn by (1.30)
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Thus we have

nfl/p < nfl/P

p

n
E :5jyj
J=1

k
Z £5Y; Hp +n P
j=1

n
E : €5Y;
+1 b

i=k

n
> i

< n~YP(1 4 log, n) + 8n~1/P

(4.33) e )
5 n
<5ro| Sl
<5 +8n ;gg ot
-2 2

(The last inequality holds by (4.27); the next to the last by (4.28) and the fact that (g;)
is 1-unconditional over real scalars.) The uniformity of the limit over all subsequences
of (y;) follows from the fact that the limit in (4.26) is uniform over all subsequences of

(9:), thanks to the proof of Lemma 3.1. O]

We next note a general consequence of Lemma 4.3, which follows from ultraproducts.

Corollary 4.5. Let X be a uniformly convexr Banach space and let A > 1, ¢ > 0, and k
be given. Then there is ann > k so that for any A-basic sequence (x4, ... ,x,) in X, there
exist 1 < ji < jo < -+ < ji so that (xj,,...,x;,) is suppression (1 + €)-unconditional

(and hence w(1 + ¢)-unconditional).

Proof. Suppose the conclusion were false. Then we could find for every n > k, an

) of elements in X so that (z7,...,z") is A-basic, yet no k terms

n-tuple (z7,...,z" , T

»Un
are suppression (1 + ¢)-unconditional. By homogeneity, we may assume that |[z}|| = 1
for all n and 7 < n. Now let U be a non-trivial ultrafilter on N and let X;; denote
the ultrapower of X with respect to U. (That is, we let Ej denote the subspace of
(>*(X) consisting of all bounded sequences (z;) in X with lim;ey ||2;|| = 0, and then set
Xy = 0>°(X)/Ey.) Since X is uniformly convex, so is X;;. Now define a sequence (Z,)

n

in Xy by &; = m(7)

set 27 = 0 if n < j. It then follows that (;) is also A-basic and normalized; since X, is

oo

o ,, for all j, where 7 : (*°(z) — X, is the quotient map and we

reflezive, (z;) is weakly null. But then by Lemma 4.3, there exist k terms Tj,,... ,T;,

of this sequence with (Z;,)%_, (1 + £)-suppression unconditional. Standard ultraproduct
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techniques yield that n > 0 given, there exists an n > j; so that (%;,...,%;,) is
(1 + n)-equivalent to («7,...,2% ) and hence the latter is (1 +n) (1 + §)-suppression
unconditional. Of course we have a contradiction if (1 +7)(1+5) <1+e. O

Proof of Theorem 4.1 (ii) and (iii). We use the same notations and assumptions as in
the proof of Theorem 4.2 (e.g., we assume that ||z;;||, < 1 for all 7 and j). Assume that
Case I of 4.1 does not occur. Then again we have that (|z;;?)$2, is uniformly integrable
for all j, and hence Case II of 4.1 holds, by the proof of Theorem 4.2. This is also the
case under assumption (iii) of Theorem 4.1. For suppose to the contrary that for some
i, (fj)d:ef(xij) has the property that (|f;[) is not uniformly integrable. Then setting
gj = fj ®r; in LP(N) (as defined in the proof of Corollary 4.4), (g;) is unconditional
and again (|g;|?) is not uniformly integrable, hence there exist n; < ny < --- with
(9n;) equivalent to the usual (P-basis, by Corollary 3.4). But (fy,) has an unconditional
subsequence (f;) by [SF], [PX1]. Of course then (f]) is equivalent to (g7) d:ef(f]’- ®r1;), a

') is equivalent to the ¢7 basis.

subsequence of (g, ), whence (f]

Now replace the entire matrix (z;;) by (Z;;) d:ef(xij@)rij) in L?(N) (where N' = NQL>®),
where 7;; is just a “renumbering” of (r;) via N x N (precisely, let ¢ : N x N — N be
a bijection, and set r;; = ryi;)). Now wy(zij,€) = wy(Tij,€) for all 4,7, and &; hence
assuming Case II in the proof of Theorem 4.2 occurs, we have that Alternative II holds
for the matrix (Z;;). But then since LP(N) is uniformly convex, IT holds for (x;;) itself, by
Corollary 4.5. Indeed, let C' be as in Il of 4.1, let k£ be given. Choose n > k satisfying the
conclusion of 4.5 for X = LP(N) (with 7(1 +¢) < 4, say). Choose i and my < --- < my,
with (7;)7_, C-equivalent to the £ basis where we set x; = Zj,, and ¥; = Tjn, for all
j. Then choose j; < ---ji with (xj,) 4-unconditional. But then (x;,) is 8-equivalent to
(Z;,), and is hence 8C-equivalent to the ¢, basis.

If Case II in the proof of 4.2 does not occur, we have by Case III that there exists
a generalized diagonal (z;, ;. )o, of (z;;) so that (|Z;, ;,|[")s2, is uniformly integrable.
Hence immediately, (|z;, j, [?)o2, is uniformly integrable, and so by Corollary 4.4, (z;, j,)
has a subsequence (yx) (which is of course also a generalized diagonal) satisfying 11T of
4.1. This completes the proof of Theorem 4.1 (ii). O

To obtain 4.1 (i), we need two further “Banach” properties of preduals of von Neumann

algebras. The first one holds in complete generality.
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Lemma 4.6. Let M be a von-Neumann algebra, and let (f,) be a bounded sequence
in M. such that (f,) is not relatively weakly compact. Then (f,) has a subsequence

equivalent to the (' -basis.

We give a “quantitative” proof of this result at the end of this section, using the case
for commutative N established in [R1]. In fact, Lemma 4.6 is due to H. Pfitzner [Pf].
However, the second result we need is a “localization” of our proof, which does not seem
to follow directly from previously known material. This result yields that given k£ and 7,
then for n sufficiently large, if n elements of B,(N,) (N finite) have mass at least 7 on
pairwise orthogonal projections, then k of these are C-equivalent to the £}-basis. Here,

C depends only on 7, n on k and 1. To make this more manageable, let us simply say

that n elements fi,..., fn of the predual of a von-Neumann algebra M are n-disjoint
provided there exist pairwise orthogonal projections Py, ... , P, in M such that
(4.34) |PAPIL > 7 forall i

(Here, if P € M and f € M., PfP is defined by: (T, PfP) = (PTP, f) for all T € M.
Also, || - ||; denotes the predual norm on M..) (We shall also say fi,..., f, are disjoint
provided there are pairwise orthogonal projections P, ... , P, in M with f; = P, f; P; for
all i. Evidently if the f;’s are normalized, they are disjoint iff they are 1-disjoint.)

Lemma 4.7. Given n > 0, then if C' > %, then for all k > 1, there is an n > k so that
for any von-Neumann algebra N and n-disjoint elements f1,..., fn in By(N.), there
exist j; < -+ < ji with (f;,)¥, C-equivalent to the (} basis.

We delay the proof of this result, and complete the proof of Theorem 4.1, i.e., the case
p = 1. Again we make the same assumptions and use the same notation as in the proof
of 4.2. Now suppose that Alternative I of Theorem 4.1 does not occur. We now have,
immediately from Proposition 2.5 and Lemma 4.6, that ()32, is uniformly integrable
for all 7, and hence again Alternative II holds, by the proof of 4.1. Now again assume
Case IT of the proof 4.1 holds. Then the proof of 4.111 yields that for all n, there exists
arow i and j; < --- < j, so that (fy)y_, is 3-disjoint, where f = x;;, for all k.

Indeed, we obtain there (following formula (4.3)), that for all n, there is a sequence

(fi,-.., fn) satisfying the assumptions of Lemma 3.3 (for n > 0 and 0 < ¢ < ) except
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for the u-unconditionality assumption. But the proof of Lemma 3.3 yields precisely that
(fi,-.., fa) is 2 —¢ disjoint; the unconditionality assumption was only used, in invoking
Lemma 3.2. Of course we may choose ¢ = £, and so (fi,..., f,) is then Z-disjoint.
Then Lemma 4.7 immediately yields Case IT of Theorem 4.1. Finally, assuming Case 11
of the proof of 4.2 does not occur, we obtain again from the proof of Case III that there
exists a generalized diagonal (gj) of (x;;) with (g) uniformly integrable. Hence there
exists a weakly convergent subsequence (f;) of (gx), by Proposition 2.5. But since we
assume the generalized diagonals of (x;;) are basic sequences, (f;) must be weakly null.

Now Corollary 4.4 immediately yields Case III of Theorem 4.1. O

Remark. The case p = 1 of Theorem 4.1 may be alternatively formulated as follows

(with essentially no assumptions at all on the matrix (z;;)).

Theorem 4.1(i)". Let N be a finite von-Neumann algebra and let (x;;) be an infinite

semi-normalized matriz in N,. Then one of the following holds.

I. Some column has a subsequence equivalent to the usual ¢* basis.
II. There is a C > 1 so that for all n, there exists a row with n elements C-equivalent
to the usual (} basis.

III. Some generalized diagonal of () is weakly convergent.

It remains to prove Lemma 4.7. This is an immediate consequence of the following
two results, which in turn follow from the techniques in [R1]. (We denote the “predual

norm” of a general von-Neumann algebra by || - ||;.)

Lemma 4.8. Let N be an arbitrary von-Neumann algebra, and fi, fa,... be a finite or
infinite sequence in N with ||fi|l1 < 1 for all i. Assume there are pairwise orthogonal

projections Py, Py, ... in N and 0 < e < 6 <1 so that for all i,

(4.35) |PifiPillL =2 0 and Z 1P fiPilh < €.

J#i
Then fi, fa,... is Fls equivalent to the usual basis of (' (resp. L) if the sequence has n
terms).

Lemma 4.9. Let k > 1 and 0 < € < 1 be giwen. There is an n > k so that given

any von Neumann algebra N, fi,..., fo € By(N,), and pairwise orthogonal projections
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Py, ..., P, in N, there exist j; < jo < -+ < i so that for all 1 <i <k,
(4.36) Do IPL Sl <.
r#i

Remark. We obtain that we may choose n = k* where ¢ = [1/¢] + 1.

Proof of Lemma 4.7. Let C' > % and choose 0 < ¢ < n with n%e < C. Let n be as in
Lemma 4.9, fi,..., f, as in the hypotheses of 4.7, and choose ji, ..., ji satisfying the
conclusion of 4.9. Then (f;,)¥_, is C-equivalent to the ¢} basis by Lemma 4.8. O

Proof of Lemma 4.8. Let n < oo be less than or equal to the number of terms in the

sequence, and let c¢q,... , ¢, be given scalars with

(4.37) D el =1.
=1

Let g = Y ", ¢;fi. Since the P;’s are pairwise orthogonal, we have that

(4.38) lgll = 1P Pl -
=1
Now fixing j,
IPigP;lls > |Pic; fiP+ P; > cifiPyll
(4.39) 7
> |0 = leil 1P Pyl

i#]
by (4.35) and the triangle inequality. Hence using (4.38) and (4.39),

lglls > " leslo = > > el 1P £ Pyl
j=1

j=1 i#j

(4.40) "
=6 -y lal Y IIPfiPill by (4.37)
i=1 j#i
>0 —¢ by (4.37) and (4.35).
This completes the proof. O

We finally deal with Lemma 4.9. This result follows from the simplest possible setting:
N = (% the fi’s are in (1T (i.e., the positive part of N, = 1), and the orthogonal
projections P; correspond to multiplication by Xy for all 4. That is, we finally have the

following elementary disjointness result.
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Lemma 4.10. A. Let fi, fo,... be a bounded infinite subset of (**, and let e > 0. There
exist ng < ng < --- so that for all 7,
(4.41) > fulng) <e.

J#i
B. Let k € N and € > 0 be given. There exists an N > k so that given fi,..., fn €
B, l%, there exist ny < ny < -++ < ny, so that for all 1 <i <k, (4.41) holds.

Remark. Part A is a special case of Lemma 1.1 of [R1]. Part B appears to be new. We
obtain in fact that we may let N = k* where ¢ = [1/¢] + 1.

Proof of Lemma 4.9. Let ¢ > 0 and N be as in the conclusion of 4.10B. Let the f;’s and
P;’s be as in the statement of 4.9. For each i, define f; in €' by fi(j) = ||P;f: P for
all 1 <5 < N. Then

N
(4.42) Y IB P =11 fll < I fill <1
7j=1
for all .. Now the conclusion of B yields 7; < --- < ji so that
(4.43) > Filg) <e forall 1<i<k.
r#i
Then f;,,..., fj, satisfies the conclusion of Lemma 4.9. O

At last, we give the proof of Lemma 4.10.
We first prove A, using an argument due to J. Kupka [Ku]. We then adapt this
argument to obtain Part B. We regard elements of /'t as finite measures on subsets of N

and use the notation: f(E) =3, f(j) for f € (' and E C N. Thus, the conclusion
of A may be restated: There exists an infinite M C N so that

(4.44) fi(M ~{i}) <e forall ie M.

Let Ny, Ns, ... be pairwise disjoint infinite subsets of N with N = U;il N;.
Case I. For each i, there exists n; € N; so that

(4.45) fn (N~ N <€

It then follows that M = {ny,n,, ...} satisfies (4.44). Indeed, for all i,

(446) {nl,ng, ey 1, M1y - - } CN~ Nz
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since the N; are disjoint, so (4.44) follows from (4.45) and (4.46).

Case II. Case [ fails. Thus we may choose 7; so that
(447) f](N ~ N“) 2 ¢ for all ] € Ni1 .

Now repeat the same procedure; let M; = N;,, and choose M, M?, ... disjoint infinite
subsets of M, with M, = [J72, M. If Case I fails for My, we will obtain M, d:efo (for

some j) so that
(448) fj(Ml ~ MQ) Z ¢ for all ] € M2 .

Again divide up Ms. This “failure of Case I” must terminate before ¢ steps, where
I fjll1 < le for all j. Indeed, otherwise, we finally obtain N = My D M; D My D -+ M,
and a j € M, with

(4.49) fi(M;—y ~ M;) > ¢ forall i,
whence ||f;]| > le, a contradiction.

Proof of Part B. Let £ = [1/e] + 1 and let N = k. Let then fi,..., fx € B.({X)
be given. Of course the conclusion of Part B may be restated: There exists an M C
{1,..., N} with #M =k so that (4.44) holds.

Let Ni,..., N, be disjoint subsets of {1,..., N}, each of cardinality k"', and just
repeat the argument for Part A, Case I. If Case I fails, we repeat again the rest of the
argument: that is, we find 4; satisfying (4.47) and set M; = N;,. Now we just choose
M}, ... MF disjoint subsets of M, each of cardinality k*~2; if Case I fails for M, we
continue as before, with M, satisfying (4.48) and My C M, #M, = k*=2. If Case I
fails for ¢ steps, we obtain finally {1,... ,N} = My D> M; D --- M, with #M; = k*~
for all ¢, so #M, = 1; and for j the unique number of M, (4.49) holds, whence again
|| fj]| > €e > 1, a contradiction. O

Let us say that a finite or infinite sequence (f;) satisfying the hypotheses of Lemma 4.8
is (0, ¢)-relatively disjoint. It then follows from arguments in [R1] that the closed linear
span of such a sequence is K-complemented in N, where K depends only on § and
€. Indeed, let W denote the closed linear span of the f;’s; let P, P,,... be as in the
statement of 4.8, and let g; = P; f;P; for all j, then let Z denote the closed linear span

of the g;’s. Of course then Z is isometric to ¢* (or £}, if the sequence has n terms). We
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may easily define a contractive projection R : N, — Z as follows. For each j, choose by

duality an element ¢; € N of norm one with ¢; = Pjp;P; and

(4.50) (05,950 = llgjllr -
(Note that 1 > ||g;|l > ¢ for all j.) Then define
(4.51) R(f) =Y e DllgillT"g;

for f € V.. Next, define an operator U : W — Z by

(4.52) U eifi) =Y ¢

for all ¢;’s with ) |¢;| < co. Then Lemma 4.8 yields that U is invertible with
(4.53) U <(6—e)".

Now a simple computation yields that

(4.54) U (w) — R(w)|| < §||U(w)|| for all we W .

It then follows that R|WW is an isomorphism mapping W onto Z, with

(4.55) i) < [(1-2) o -2] LK.

Finally, Qd:ef(R|W)_1R is thus a projection from AN, onto W, with ||Q| < K. Tt
then follows that the elements satisfying the conclusion of Lemma 4.7 have a “well-
complemented” linear span.

We also obtain finally, a quantitative proof of Lemma 4.6, yielding also the result of

H. Pfitzner [Pf] that the preduals of von Neumann algebras have Pelczyiiski’s property
(V).

Lemma 4.6". Let N be an arbitrary von Neumann algebra, and W be a subset of B, N,
s0 that there exists a sequence Pi, Py, ... of orthogonal projections in N with
- def
(4.56) lim ; sup [(Pj,w)|=n> 0.
weW

Then given C' > %, there exists a sequence wy, ws, ... in W which is C-equivalent to the

usual (*-basis, with closed linear span C-complemented in N,.
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Remark. By Akemann’s criterion [A], it thus follows that any bounded non-relatively
weakly compact subset of N, contains a sequence equivalent to the ¢!-basis, with com-

plemented span. This is an equivalent formulation of property (V*).

Proof. Tt follows easily that we may choose (f;) a sequence in W and ny < ny < --- so
that

Then given 0 < ¢ < 7' <7, Lemma 4.10A yields a subsequence (f}) of (f;) so that (f}) is
(1, e)-relatively disjoint. Finally, since 7' may be arbitrarily close to n and € arbitrarily

small, we deduce from Lemma 4.8 and (4.55) that given C' > %, (f!) may be chosen

2

C-equivalent to the ¢*-basis with span C-complemented in N,. O

5. COMPLEMENTS ON THE BANACH/OPERATOR SPACE STRUCTURE OF
LP(N')-SPACES

We give here several applications of our main result, and the techniques used in its
proof. For the first one, we let Row (resp. Col) denote the operator row (resp. column)
space. We also follow the notation in [Pi2]: for a given operator space X, X°P (the
“opposite” of X) denotes the following operator space: if X C B(H) and (z;;) is an
element of K ®,, X, regarded as a matrix, then X°P d:ef{(xji) : (z45) € K ®gp X}, where
K denotes the space of compact operators on ¢ and K ®g, X denotes the spatial tensor
product of K and X. One then has that Row" = Row®® = Col.

Proposition 5.1. Let N be a finite von Neumann algebra. Then neither Row nor Col

is completely isomorphic to a subspace of L'(N).

Proof. Suppose to the contrary that there exists an X C LY(N) with X completely
isomorphic to Row. But then X°° C L'(N°P) is completely isomorphic to Col. Let
then M = N°PQAN. M is again a finite von-Neumann algebra, and now X°°®X is a
subspace of L' (M); that is, Col ® Row is completely isomorphic to a subspace of L'(M).

But Col ® Row is (completely isometric to) Cy; this contradicts our main result. O

Remark. An operator space X is called homogeneous if every bounded linear operator

on X is completely bounded; X is called Hilbertian if it is Banach isomorphic to a
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Hilbert space. The above argument then yields the following generalization (since Row

is indeed a homogeneous Hilbertian operator space).

Proposition. Let X be an infinite dimensional Hilbertian homogeneous operator space
so that X* is completely isomorphic to X°P, and let N be a finite von Neumann algebra.

Then X is not completely isomorphic to a subspace of L'(N).

To obtain this, first observe that the hypotheses yield that X* ®,, X is Banach
isomorphic to K. Hence X*®X is Banach isomorphic to C;. But X*®X is completely
isomorphic to X°°®X by hypothesis; as above, if we then assume that X C L'(N), we
obtain that C; Banach embeds in L'(M), again contradicting our main result. O

Our next result yields characterizations of those subspaces of LP(N') which contain
7 isomorphically (1 < p < 2, N finite). We have need of the following concept. (For
isomorphic Banach spaces X and YV, d(X,Y) = inf{||T|||IT7" : T : X — YV isa

surjective isomorphism).

Definition 5.2. Let 1 < p < oco. A Banach space X is said to contain (2 ’s if there is a
C > 1 so that for all n, there ezists a subspace X,, of X with d(X,, ) < C.

ny tn

A remarkable result of J.L. Krivine yields that if a Banach space contains ¢?’s, it
contains them almost isometrically ([Kr]; cf. also [R3], [L]). That is, then for every
¢ and n, one can choose X,, C X with d(X,,/) < 1+ . (Of course the famous
Dvoretzky theorem yields that every infinite dimensional Banach space contains (2’s
almost isometrically; also the case p = 1 or oo in Krivine’s Theorem was established
previously by Giesy-James [GJ].)

We also need the following natural notion.

Definition 5.3. Let N be a von Neumann algebra and 1 < p < 0o. A sequence (g,)
in LP(N) is called disjointly supported provided there exists a sequence Py, P, ... of
pairwise orthogonal projections in N so that g; = Pjg;P; for all j. A semi-normalized
sequence (f,) in LP(N) is called almost disjointly supported if there exists a disjointly
supported sequence (g;) in LP(N) so that lim, o0 || fn — gnllze(vy) = 0.

Of course a disjointly supported sequence of non-zero elements spans a subspace iso-

metric to /7. A standard elementary perturbation argument then yields that an almost
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disjointly supported sequence in LP(N) has, for every £ > 0, a subsequence spanning a
subspace (1 + ¢)-isomorphic to /7. The next result yields in particular that for A finite,
and 1 < p < 2, subspaces of LP(N) which are isomorphic to 7 always contain almost

disjointly supported sequences.

Theorem 5.4. Let 1 < p < 2 and N be a finite von Neumann algebra; let T be a faithful
normal tracial state on N'. Let X be a closed linear subspace of LP(N'). The following

assertions are equivalent.

X contains a subspace isomorphic to (P.

X contains (P’s.

{|z|P : & € Bu(X)} is not uniformly integrable.

SUD fep, (x) Wp( [ €) = SUPsep, (x) Wp(f,e) =1 for all e > 0.
The p and 1 norms on X are not equivalent (in case p > 1).

X contains an almost disjointly supported sequence.

No Ot R W=

For alle > 0, X contains a subspace (1 + £)-isomorphic to (P.

Remarks. 1. This result is established for the commutative case in [R2]; the case p > 2
is also valid, and follows (with some extra work for assertion 5) from the results in [S1].
Again, the commutative case for p > 2 is immediate from the classical work of Kadec-

Pelczyniski [KP]. Also, condition 5 may be replaced by the following one, valid also for
p=1:

5. The p and q quasi-norms are not equivalent on X for all 0 < g < p.

Added December 2001: The same result has subsequently been established in [SX] for
all p with 0 < p < 1.

2. The equivalences of 1, 5, 6 and 7 of Theorem 5.4 follow also from recent work of
N. Randrianantoanina, which establishes these also for semi-finite von-Neumann algebras
N and 1 < p < oo, p#2 ([Ral] and [Ra2]).

3. (Added December 2001). Recent work of Y. Raynaud and Q. Xu yields that the
equivalences 1, 2, 6, and 7 hold for arbitrary von Neumann algebras A" and 1 < p < oo
(see Theorem 5 of [RayX] and its proof).
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Proof. We show 1 — 2 — 4 — 6 — 7 — 1,4 = 3 = 2, and
4 = 5 = 3incasep > 1. Of course 1 = 2 and 7 = 1 are trivial. So is
4 = 3, in virtue of Lemma 2.3.

2 = 4. Fix § > 0. Choosing an “almost isometric” copy of /£ in X by Krivine’s
theorem, we shall show that for n large enough, one of the natural basis elements f; of
this copy is such that @,(f;,d) is almost equal to 1.

Define A by

(5.1) A =sup{@,(z,0):x e X, ||z|| <1} .

Let C' > 1, and using Krivine’s theorem, choose fi,..., f, € B,(X) with (f1,..., fn)

C-equivalent to the /2 basis. In particular, we have that

(5.2) H zn:ifi

Again by the final assertion of Lemma 2.3, we may choose for each i a ¢; € N so that

1
> —n!? for all choices of + .
p  C

(5.3) [$illoo <077 and || f; — il < @p(fir ) < X

Thus letting 3 be as in the proof of Lemma 3.1, again we have
1
anl/p <> fi@rillong by (5.2)

(54) I @ rilliagey + 1 3o = ) @ il
<57V 4 ant/r
by (5.3) and the fact that LP(3) is type p with constant one.

Thus

1 1
5.5 — <\
) C ™ puimd 1 S
Since C' > 1 and n are arbitrary, we obtain that A\ = 1, proving 2 — 4.
4 = 6. We first note that assuming 4, then given 1 > ¢ > 0, we may choose f € X

with || f]|, = 1 and P € P(N) with 7(P) < £ so that
(5.6) IfPllp>1—¢ and ||f(I-P)|, <e.

Indeed, choose f in X of norm one so that @,(f,e) > 1 —¢. Then choose P a spectral
projection for |f| with ||fP|, > (1 — &?)}/P. But then since P commutes with |f],

(5.7) IfPll; = 7(fPPP) and |[f(I = P)|[} = ([f["(I = P)),
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(5.8) L>7([fPP)+7([fIPI = P)) > (L =)+ [[f(L = P)[};
(5.9) L>7(|fPP)+7([f|P(I = P))

>1=eP+ | f(I =P},

so || f(I — P)||, < € as desired. Now since |f| and |f*| are unitarily equivalent in NV, we

also obtain the existence of a ) € P(N) with 7(Q) < ¢ so that

(5.10) 1Qfll, > 1= and [|If(7 - Q)ll, <e .

Then let R = PV ). We have

(5.11) 7(R) <2¢ and |f — RfR| <2¢.

Indeed, the first estimate is trivial; but
f~RfR=f(I-R)+(I-R)fR=f(I-P)I-R)+(-R)I-Q)fR

and so (5.11) follows from (5.6) and (5.10).

Now using that for £ > 0, f of norm 1 in X and R may be chosen satisfying (5.11) we
choose inductively fi, fo,... in X of norm one, 1 > §; > d3 > --- > 0, and Q1,Q>, . ..
in P(N) so that for all 7,

1 d;
(5.12) 1fi = QifiQills < 57 and 7(@y) < 55
1
(5.13) wp( s 0j41) < 55 -
To see this is possible, just choose §; = 1/2, then choose f; and @); thanks to (5.11).
Suppose f1, ..., fa, and §, chosen. By uniform integrability of {|f,|’}, choose 8,11 < d,

so that wy(fn, 0ny1) < 1/2"T1. Then choose f, 11 and Q,,,; satisfying (5.12) for j = n+1.
Now define projections P; and Qj by (3.19). The P;’s are orthogonal and by the
argument for the last part of Proposition 2.5, fixing j, we have

) 1
(514) (@) < ];T(Qk) < i ; o5 by (5.12)

< 6j+1 .

Hence

. . 1
1Q; fill, < wp(fj75j+1) = wy(fj,0511) < 5
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(by (5.13)) and also

~ 1
1£Qillp < wp(fs,541) < >

Hence
~ 1 ~ 1
(5.15) 193 £5Qilly < 55 and [|Q;f;Qllp < 55 -
Hence finally we have by (5.12) and (5.15),
3 .
(5.16) 1fi = BifiFyll < o5 forall j.

Thus (f;) is almost disjointly supported, proving that 6 holds.
6 — 7 is a standard perturbation argument in Banach space theory. Assuming 6
holds, we may choose a normalized disjointly supported sequence (g,) in LP(N) and a

sequence (f,) in X so that

(517) S g~ fully < o0

But now (g,) is 1-equivalent to the ¢P-basis, and a simple perturbation argument gives
that given ¢ > 0, there is an N so that (f,)n>n is (1 + €)-equivalent to the ¢* basis.
(Thus (f,,) is “almost isometrically equivalent” to the ¢7 basis.)

3 = 2. We have that if p = 1, X contains a subspace isomorphic to ¢! by
Lemma 4.6, so assume p > 1. We may choose a sequence (f,) of norm-1 elements of X,

01 > 0y > --+ with §, — 0 and n > 0 so that
(5.18) Wy(fn,0n) >n forall n .

By passing to a subsequence, we may assume without loss of generality that (f,) is

weakly convergent, with weak limit f, say. But

(519) wp(fn _f7 571) Z Wp(fm(sn) _wp(fa 6n)
and hence
(5.20) Lim 00wy (fr — f,00) > 17 .

That is, we have now obtained a weakly null sequence (g,) in X so that

(5.21) (lgn|?) is not uniformly integrable.
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By Corollary 3.4, after passing to a subsequence of (g,), we may assume

(5.22) (gn ® ry,) is C-equivalent to the usual (P-basis in LP(/3) for some C'.

Now Lemma 4.3 yields that for all n, there exist m; < my < .-+ < m, so that
Jmys- -+ » Gm, 18 4-unconditional, and hence
(5.23) (gm; )i is 4C-equivalent to the ¢2-basis.

This proves that 2 holds. Now assume p > 1.
4 = 5. Let ¢ > 0 and choose f € X with ||f]|, =1 and P € P(N) with 7(P) < ¢
so that (5.6) holds. Then of course

(5.24) |f(I—P)li<e.

Now letting > + - =1,

(5.25) IFPIl < [IfIlLIIP]ly < €9 by Hélder’s inequality.
Thus
(5.26) | fllL <&+,

Since ||f|l, =1 and € > 0 is arbitrary, 5 holds.
5 = 3. Suppose 5 holds, yet 3 were false. Choose 0 < 9 so that

(5.27) o(f,0) g% for all f € By(X) .

Let f € X, [[f][, = 1. By the last statement of Lemma 2.3, choose P a spectral
projection for |f| so that fP € A/ with

(5.28) 17T~ P)ly < 5 and [[fPlle <67
Then

o < IFPIE=r(IfPP) (since P &> |7])
(5.29) = r(|fI1fPP)

_1
< [Iflhd*" 7 .
That is,

(5.30) Ifll > 2Pt
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(5.30) yields that ||g||, < Cl|g[|: for all ¢ € X; i.e., 5 does not hold, a contradiction.

This completes the proof of the theorem. O

The final result of this section deals with the Banach-Saks property.

Definition 5.5. Let X be a Banach space, and 1 < p < oo.

(a) Let (x,) be a weakly null sequence in X. (z,,) is called

(i) a Banach-Saks sequence if

(5.31) lim n~' | ) "y
j=1

n—o0

=0 for all subsequences (y;) of (z;) .

(ii) a p-Banach-Saks sequence if
(5.32)

n
there is a C' < 0o so that Tim ,_.on /P Zyj

i=1

< C for all subsequences (y;) of (z;).
(iii) @ strong p-Banach-Saks sequence if

D
7j=1

(b) X is said to have the Banach-Saks property (resp. the p-Banach-Saks property)

(5.33) lim n~'/7 = 0 for all subsequences (y;) of (z;).
n—o00

(resp. the strong p-Banach-Saks property) if every weakly null sequence in X has a
Banach-Saks (resp. p-Banach-Saks) (resp. strong p-Banach-Saks) subsequence.

The classical paper of Banach-Saks [BS] yields that commutative LP spaces have the
p-Banach-Saks property, for 1 < p < 2; the fact that L'-spaces have the Banach-
Saks property was proved later by Szlenk [Sz]. Our last result yields in particular a
generalization to the spaces L?(N'), N finite. Most of its assertions follow very quickly

from our previous results.

Proposition 5.6. Let N be a finite von-Neumann algebra and 1 < p < 2.

1. LY(N) has the Banach-Saks property and LP(N') has the p-Banach-Saks property.
2. A weakly null sequence (f,) in LP(N) has a strong p-Banach-Saks subsequence if
(|ful?) is uniformly integrable. If (|fn|P) is not uniformly integrable, (f,) has a
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subsequence (f),

) so that for some ¢ > 0 and all subsequences (y;) of (f}),

n
S 2.
j=1

3. A closed linear subspace X of LP(N') has the strong p-Banach-Saks property if and

(5.34) limn /7

only if X has no subspace isomorphic to (P.

Proof. Corollary 4.4 together with Proposition 2.5 yields that L'(N) has the Banach-
Saks property. It also yields the first assertion in 2. Suppose (|f,|?) is not uniformly
integrable and assume (without loss of generality) that || f,||, < 1 for all n. Applying

Corollary 3.4 and Lemma 4.3, we may choose a subsequence (f}) of (f,) so that for some
C>1,

(5.35) (f] @ ry,) is C-equivalent to the usual ¢P-basis.
and
(5.36) (fos-- ,ff%k) is 4-unconditional for all £ < ny < ng < -+ < ng .

Suppose (y;) is a subsequence of (f}). Then it follows that for all £,
(5.37) (Yk41s - -+ > Yyor) is (4C)-equivalent to the /7, -basis.

Let n be a “large” integer and choose k£ with

(5.38) 2kl <n < 28,
Then
a (n — k)P
(5.39) H 3wz b 630).
j=k+1
Thus
i n—k)/» n —log,n — 1)/7
Ga0) || Y] 2 A ke B UE gy
7j=1
Hence
. _ & 1
(5.41) lim ,0on /7 ;yj T
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This completes the proof of assertion 2 of the Proposition. But we also have that

(5.42) H zn: |,

< 4C(n — k)P by (5.37),

j=k+1
and so
(5.43) HZyj < 4C(n —logyn)'? +logyn+1,
. p
7j=1
thus
(5.44) i, oon 7( 3 Tyl <4C
- p
7j=1

This proves that L?(N') has the p-Banach-Saks property, for any weakly null sequence
(fn) in LP(N) either has (| f,|?) uniformly integrable (and hence a strong p-Banach-Saks
subsequence), or a subsequence (f}) as above.

The final assertion of the Proposition follows immediately from Theorem 5.4 and

assertion 2. O

Remark. Of course Hilbert space has the 2-Banach Saks property. Actually, it can be
shown that LP(N') has the 2-Banach Saks property for p > 2 and N finite, and this is
best possible (in general). Indeed, if (f;) is a weakly null sequence in LP(N), then if
| fill, = 0, (f;) trivially has a p-Banach Saks subsequence; the same is true if (f;) has
a subsequence equivalent to the ¢P-basis (and of course a p-Banach Saks sequence is a
2-Banach Saks sequence). Otherwise, combining arguments in [S1] Theorem 2.4 with
the arguments in Proposition 5.6, we see that there exists a subsequence (f!) of (f;)

j
such that its all subsequences (y,,) are 2-Banach Saks.

We conclude this section with a brief discussion of the following open

Problem. Let 1 < p < 2 and (f,) be a seminormalized weakly null sequence in L?(N)
(N a finite von Neumann algebra) such that (|f,[?) is not uniformly integrable. Does

(fn) have a subsequence equivalent to the usual ¢ basis?

As pointed out previously, the answer is affirmative if (f,,) has an unconditional subse-
quence. Actually, it can be proved that if (f,,) satisfies the hypotheses of this Problem, it

has a subsequence (f]) which dominates the (P-basis and moreover has spreading model
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equivalent to the (P-basis. (The last assertion follows immediately from our proof of
Proposition 5.6.) It may then be shown that the above Problem is equivalent to the

following one (in which the hypothesis concerning (|f,|?) no longer enters).

Problem’. Let (f,) be a seminormalized basic sequence in L?(N'), p and N as above.
Does (f,) have a subsequence (f!) which is dominated by the (P-basis? i.e., such that
>_c;f; converges in LP(N) whenever 7 |c;|P < 00?

6. THE BANACH ISOMORPHIC CLASSIFICATION OF THE SPACES LP(N) FOR N/

HYPERFINITE SEMI-FINITE

We first fix some notation. Let 1 < p < co. Welet S, = (P,~, C2), (= LP(®M,)x).
To avoid confusion, we denote by L, ®, X the Bochner space L,(X,m), where m
is Lebesgue measure and X is a Banach space. Thus e.g., L, ®, C, = L,(C,) =
LP(L*®(m)®B(£?)). R denotes the hyperfinite type II factor, and L?(R) ®, C, denotes
LP(R&B(£?)) (so RQB(¢?) is the hyperfinite type Il factor).

The main motivating result of this section is as follows.

Theorem 6.1. Let N be a hyperfinite semi-finite infinite dimensional von-Neumann
algebra, and let 1 < p < oo, p # 2. Then LP(N) is (completely) isomorphic to precisely

one of the following thirteen Banach spaces.
by Sps Ly, Gy S80Ly, CoLy, Ly®yS,, Cpd(Ly®S5)
LP(R), Ly Cp, Cp@L(R), L'(R)®(L,®,Cp), L(R)®pCy.

Theorem 6.1 is an immediate consequence of the following finer result concerning

embeddings.

Theorem 6.2. Let 1 <p < 2. If N isasin 6.1, then LP(N) is (completely) isomorphic
to one of the thirteen spaces in the tree in Figure 1. If X #Y are listed in the tree, then
X is Banach isomorphic to a subspace of Y if and only if X can be joined to Y through

a descending branch (in which case X is completely isometric to a subspace of Y ).

Remark. In the language of graph theory, Theorem 6.2 asserts that the tree in Figure 1

is the Hasse diagram for the partially ordered set consisting of the equivalence classes of
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lPrR) ® Lp®p Cp

LP® ®pCy

FIGURE 1

LP(N') under Banach isomorphism (over A as in 6.1), with the order relation: [X] < [Y]

provided X is isomorphic to a subspace of Y.

Parts of Theorem 6.2 require previously known results, some of which are very recent.
It is established in [S2] that the first nine spaces in the list in Theorem 6.1 are isomor-
phically distinct when p = 1, and exhaust the list of the possible Banach isomorphism
types of LP(N') for N type I (M asin 6.1), p # 2.

Theorem 6.2 yields the new result in the type I case: L, ®, C, does not embed in
Cp®(L,®,S,) for 1 <p < 2; (another new result in this case, that C), does not embed
in L, ®, S,, follows immediately from Corollary 1.2); the other embedding results stated
in 6.2 for the type I case are given in [S2]. We give here a new proof of the particular

case that L, ®, S, does not embed in L, ® C,, using the Main Result of this paper.
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We first proceed with the non-embedding results required for Theorem 6.2. The

following theorem is crucial.

Theorem 6.3. Let N be a finite von Neumann algebra and 1 < p < 2. Then L, ®, C,
is not isomorphic to a subspace of C, @& LP(N).

We now fix 1 < p < 2 for the remainder of this section.
We first require

Lemma 6.4. Let T : L, — C), be a given bounded linear operator, and let € > 0. Then
there exists an f € L, with f {1, —1}-valued so that ||Tf|| < e.

Sublemma. The conclusion of 6.4 holds, replacing C, by (* in its hypotheses.

Proof. Fix n a positive integer. Using the generalized parallelogram identity,

n 9 n
ave|[T Y+ 1) [ = Do T Cxpaze 1)
j=1

j=1
6.1 -
(6.1) <IN X 1 12
j=1
_ s N 5 1
= TP = TP -
It follows that we may choose 7; = 1 for all j so that
n
T
(6.2) HT<Z ”JX[Ji,i>> < “LHL
j=1 R (T
Now simply choose n so that ”f;”l <eandlet f = Z?Zl MiX[i=L iy- O
p 2 n 'n

n

Proof of Lemma 6.4. Let (e;;) be the matrix units basis for C,, and define for each n,
(6.3) H,=le;:1<i<nandl1<j<ocorl<i<ooandl<j<n].

Let P, be the natural basis projection onto H,; i.e., B, : C, — C), is the projection with
P,(e;;) = 0if e;; ¢ Hy, Po(eij) = e if e;; € Hy, (so ||P,|| < 2). Then H, is isomorphic
to £2, so by the sub-lemma we may choose f,, in L? with f, {1, —1}-valued and

1
(6.4) IPTFl < 5
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We claim that
(6.5) Tim [|Tfull =0 .

Of course (6.5) yields the conclusion of the Lemma. Suppose (6.5) were false. It follows
that (f,,) has a subsequence (f}) so that

(6.6) (Tf!) is equivalent to the usual (P-basis
and
(6.7) (f!) converges weakly in L* .

((6.6) follows because (f;) may be chosen to be a small perturbation of a “block-off-
diagonal sequence”, by 6.4).

Of course (f),) converges weakly in L? as well, hence (T'f!) also converges weakly, a
contradiction when p = 1 since then (T'f!) is equivalent to the ¢'-basis.

When p > 1, letting f be the weak limit of (f,,), we have that T'f = 0 since T'f) — 0
weakly. Moreover ||f|l < 2, so letting f = fI — f for all n, (f)) is a uniformly
bounded weakly null sequence in L? with (T'f)) = (Tf)) equivalent to the ¢P-basis.
Finally, since (") is also semi-normalized in LP, (f) has a subsequence (g,) equivalent
to the usual /2-basis. (Indeed, we may choose (g,) equivalent to the /?-basis in L?-norm,
and unconditional. But then since L” has cotype 2, (g,) is equivalent to the ¢?-basis in

the LP-norm). Still, (T'g,) is equivalent to the /P-basis; this is impossible since p < 2. [
We now apply our Main Result and Lemma 6.4, to give the

Proof of Theorem 6.3. Suppose to the contrary that N is a finite von Neumann algebra
and T : L, ®,C, — C, & LP(N) is an isomorphic embedding. Of course we may assume
that ||T]| = 1; let e = ||T~'||~!. Thus we have

(6.8) I7F] = el f]l forall feL,®,C,.

Let P be the projection of C, ® LP(N) onto C), with kernel LP(N), and set Q =1 — P.
Also, for each 7 and 7, let @;; be the natural projection of L, ®, C, onto the space

(6.9) E;E{f®e: feLy).



64

(As before, e;; denotes the 7, 7' matrix unit for C,. Visualizing C), as matrices of scalars

and L, ®, C, as all matrices (f;;) of functions in L, with

Il = ([ 1w, dw)l/p <o,

then Q;;((fre)) = fij ® e;j. Ejj is just the space of matrices with all entries zero except
in the 75" slot). Now fix i and j. Of course E;; is isometric to L.
Thus by Lemma 6.4, we may choose f;; € L, with f;; {1, —1}-valued so that
€

(6.10) |1PT fij ® e5]] < Sitit?

Now letting X = [fi; ®e;; 1 ¢,7 =1,2,...], then X is a 1-GC), space, in the terminology
of the Introduction. That is, every row and column of (f;; ® e;;) is 1-equivalent to the
¢? basis, while every generalized diagonal is 1-equivalent to the ¢? basis. Hence X is not

isomorphic to a subspace of LP(N') by our Main Theorem (i.e. Corollary 1.2). However
(6.11) QT|X is an isomorphic embedding.

Indeed, if x = " ¢;;(fi; ® e;;) with only finitely many c¢;;’s non zero, and ||z|| = 1, then
le;j| < 1 for all @ and j (since the Q;;’s are contractive and || f;;|] = 1 for all ¢ and j),
and so

IPTzl| < max e YT (fi @ e)l

1]

<X w3

i=1 j=1

(6.12)

using (6.10) and our assumption that 7" is a contraction. Hence
€
(6.13) QT z|| > 3 by (6.8).
This proves (6.11), and completes the proof by contradiction. a

Our localization result, Corollary 1.4, and the preceding proof, yield an alternate proof

of the following result, obtained in [S2].

Proposition 6.5. L” ®, S, is not isomorphic to a subspace of Cp, @ L,,.
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Proof. We have that L?®),S), is (linearly isometric to) (,~, L, ®,C}'),. Thus it suffices
to prove that

(6.14) lim A\, = oo
n—o0
where
(6.15) A = inf{d(L, ®, C}',Y) : Y is a subspace of C;, @ L}

and “d” denotes the Banach Mazur distance-coefficient (defined just preceding Corol-
lary 1.4).

Now fix n, and let T": L, ®, C; =Y C C, ® L, be an isomorphic embedding onto Y,
with

(6.16) IT||=1 and [|TY| <2)\, .
Using the notation and reasoning in the proof of Theorem 6.3, and setting e = 1/(2A,,),

we may choose for each ¢ and j with 1 <4, <n, a {1, —1}-valued f;; € L? satisfying
(6.10). We thus obtain that ||PT|X]|| < /2 by (6.12). Hence for all x € X,

1 1
(6.17) Q1) = (55~ 5 ) lell = g5l

using also (6.16). That is, setting Z = QT'(X), we have that

(6.18) d(X,Z) < 4\, .

Now X is a 1-GC}'-space; thus

(6.19) 4\, > B, forall n

(in the notation of Corollary 1.4), so (6.14) holds by Corollary 1.4. O

We also require the following rather deep result, due to M. Junge [J].
Theorem 6.6. C, is isomorphic to a subspace of LP(R) for all p < q < 2.

Finally, we require the following (unpublished) result, due to G. Pisier and Q. Xu
[PX2].

Lemma 6.7. Let X be a (closed linear) subspace of L, ®, C,. Then either X embeds

in L, or (P embeds in X.
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For the sake of completeness, we sketch a proof. First, we give an important, quick

consequence of these last two results.
Corollary 6.8. LP(R) is not isomorphic to a subspace of L, ®, C,.

Proof. By Theorem 6.6, it suffices to prove that C, does not embed in L, ®, C, if
p < ¢ < 2. If C; did embed, then since it does not embed in L,, it would have a
subspace isomorphic to /2, by Lemma 6.7. However it is a standard fact that every
infinite-dimensional subspace of C), is either isomorphic to £* or contains a subspace
isomorphic to /7, a contradiction. O

We next sketch the proof of Lemma 6.7 (which also yields the above mentioned stan-
dard fact).

Let (x;;) be a given matrix in a linear space X. Call a sequence (f;) in X a generalized

block diagonal of (z;;) if there exist i < iy < --- and j; < jp < --- so that for all &,
(6.20) Je € w55 i <0 < ipgq and J < J < Jpga] -

Now if (fi) is a generalized block diagonal of the matrix (e;;) consisting of non-zero
terms, e;; the matrix units for C), (as above), then (fi/|fx||) is isometrically equivalent
to the (P-basis. But then it follows immediately that if (g;;) is any matrix of elements

of L and if (f;) is a normalized generalized block diagonal of (g;; ® e;;) (in LP ®, C})

consisting of non-zero terms, (fy) is also isometrically equivalent to the ¢’-basis. Indeed,

for any scalars ¢y, ¢, ... with only finitely many non-zero terms, and any 0 < w < 1,
(6.21) 1D eifilie, =Dl [fiw)] .
Hence

(6.22) 1D eifillr = / 1D cifi@)lle, dw="7 "l .

Now fix n, and let H,, be the subspace of C, defined in the proof of Lemma 6.4 (specif-
ically, in (6.3)). Standard results yield that L? ®, H,, embeds in L? (actually, L” ®, H,
is isomorphic to L? if p > 1), and of course I ® P, is a projection onto L? ®, H,, with
I @ P,|| <2 (P, as defined in the proof of 6.4). Now let X be as in Lemma 6.7, and

suppose X does not embed in L,. Then for each n, we may choose an z, € X with

1
(6.23) |zn]| =1 and ||[(I ® P,)z,|| < o
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But it follows that for any f € L, ®, C),
(6.24) (I®P,)(f)—f as n—o0.

A standard travelling hump argument now yields g;;’s in L” and a normalized generalized

block diagonal (fi) of (gi; ® e;;) and a subsequence (z7) of (x;) so that

1
(6.25) |z, — frll < 5 for all & .
It follows immediately that (z}) is equivalent to the ¢P-basis. O

Remark. The last part of this proof also yields the fact (due to Y. Friedman [F]) that if
X is an infinite-dimensional subspace of C), then X is isomorphic to ¢? or /7 embeds in
X. Indeed, assuming X is not isomorphic to ¢2, then since H,, is isomorphic to £2, we
obtain for each n and z,, € X with ||z,|| = 1 and || P,z,|| < 3. Again we then obtain a
normalized block diagonal (fx) of (e;;) and a subsequence (%) of (z;) satisfying (6.25),

and then (z}) is equivalent to the ¢7 basis.

We now give the last and perhaps most delicate of the needed non-embedding results;

its proof requires the refined version of our Main Result given by Theorem 4.2.

Theorem 6.9. Let N be a finite von Neumann algebra. Then LP(R) ®, C, is not
isomorphic to a subspace of LP(N') & (L, ®, C}).

We first give some notation used in the proof. As always, e;;’s denote the matrix units
for C,. Thus LP(R) ®, C, = LP(R®B((*)) = the closed linear span of the elementary
tensors f ® e;j, f € LP(R), i and j arbitrary. We denote also the norm on L?(R) ®, C,
as || - ||,- If X is a closed linear subspace of LP(R),

(6.26) X®,C, ¥ ®e;:0eX, i, jEN

(where the closed linear span above is taken in LP(R) ®, C,). Next, we need expressions
for the norm on LP(R) ® Row, LP(R)® Column. We easily see that given z1,...,z, in
LP(R), then for any 7,

p

n n 1/2
(6.27) H Zl‘j & €ij = H <Z :L'J:U;>
j=1 P =1
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and

n n 1/2
(6.28) H ij & €i = H <Z :U;l‘])
j=1 P =1

Evidently (6.27) and (6.28) show that if we consider a matrix of the form (z;; ® e;;)

p

with z;; non-zero elements of LP(R) for all 7 and j, then all rows and columns of this
matrix are l-unconditional sequences.
The next result is really a “localization” of Lemma 3.1 (and could be formulated

instead for L?(N'), N any finite von Neumann algebra).

Lemma 6.10. Let X be a closed linear subspace of LP(R) containing no subspace iso-

morphic to (P. Then given € > 0, there is an N so that given anyn > N and x4,... ,x,

in B,(X),

n 1/2 n 1/2
6.29 n_l/pH ( x@f) H <e and n_l/pH ( xfx,) H <e.

Proof. Let 7 be the normal faithful tracial state in R. By Theorem 5.4, {|z|F : x €
B,(X)} is uniformly integrable. Let n > 0, to be decided later. Choose § > 0 so that

(6.30) w(|zlP,d) < nP forall x € B,(X) .

Let z1,...,x, be elements of B,(X). By the final assertion of Lemma 2.3 (following

(2.10)), we may choose for each j a P; € P(R) so that x;P; € R with

(6.31) 12 Plloc <07 and ||z;(I — P))|l, <n.

[(X o)
j=1 P

Then

by (6.27)

n
Z_ p
7j=1

IS mnoal,+[Sat-rron)|
i=1 j=1

Since (z;(1 — P;) ® e1;)}_, is 1-unconditional and LP(R) ®, C, is type p with constant

(6.32)

p

one,

Sl (1— P @ ey, < (an P) ||p)

7=1

(6.33)
< nn'/? by (6.31) .
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Now
n i n p/2 1/p
H > wiP@ey| = T(Z %ij}‘) ]
j=1 Pl N=1
(6.34) AL 1/2
< T<Z ijjx;> (since p < 2)
L =1

< n'?257YP by (6.31).
Thus (6.32)—(6.34) yield that

(6.35) n~4/P

n 1/2
(Y as)
7=1

Evidently we now need only take n < £; then choose N so that N-G=2)g-1/p < %; the

identical argument for (z7z;)" ; now yields that (6.29) holds for all n > N. O

1
S 77+ 11 6_1/1) .
p ne 2

We may now easily obtain our final needed preliminary result. (See the Remark
following Theorem 4.1 for the definition of: the rows or columns of a matrix contain

P
(P -sequences. )

Corollary 6.11. Let X be a closed linear subspace of LP(R) containing no subspace
isomorphic to (7, and let (x;;) be a seminormalized matriz whose terms lie in X. Then
the matriz (v;; @ e;;) in X ®, C, has the following properties:

(i) Neither the rows nor the columns contain ¥ -sequences.

(ii) Every row and column is 1-unconditional.

(iii) Every generalized diagonal is equivalent to the usual (P basis.

Proof. (i) follows immediately from Lemma 6.10 and (6.27), and the latter also im-
mediately yields (ii). If (f;) is a generalized diagonal of the matrix, then there exist
projections Py, Py, ..., Q1,Q2,... in RRB((?) so that the P;’s and the Q,’s are pair-
wise orthogonal, with f; = P;f;Q; for all j. (That is, (f;) is “right and left disjointly

supported”.) It then follows that for any n and scalars ¢y, ... , ¢y,

n n 1/p
(630 [Sas] = (Slerisg)
p= j=1

which immediately yields (iii) since (z;; ® €;;) is semi-normalized. O
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We are finally prepared for the

Proof of Theorem 6.9. Let p < ¢ < 2 and let X be a subspace of L?(R) so that X is
isomorphic to C, (using Junge’s result, formulated as Theorem 6.6 above). We claim
that X ®, C, is not isomorphic to a subspace of LP(N) & (L, ®, C,) (which of course
proves Theorem 6.9). Suppose to the contrary that T : X ®, C, — L?(N) & (L, ®, C,)
is an isomorphic embedding. Assume without loss of generality that ||T|| = 1. Let € > 0
be chosen so that ||T'f]| > || f|| for all f € X ®, C,. Let P denote the projection of
LP(N) & (L, ®, Cp) onto LP(N), with kernel L, ®, Cp; and set Q = I — P. Now fix
i and j. Then of course X ® e;; is isometric to X. Thus by Lemma 6.7, QT'|(X ® e;;)
cannot be an isomorphic embedding (that is, C;, does not embed in L, ®, C,). Hence

we may choose x;; € X with

£
(6.37) lzill =1 and QT (zi; ® ey)|| < Gz -
Now let YV = [z;; ® ;5 : 4,5 = 1,2,...]. Since % does not embed in X, the conclusion

of Corollary 6.11 holds for the matrix (z;; ® €;;).
It follows from (6.37) that

€
(6.38) lRTY]I <5 -
Hence we obtain that
€
(6.39) IPT(W)I = 5llyll forall y et .

Thus Y is isomorphic to a subspace Z of LP(N). Let z;; = PT(x;; ® e;5) for all i and j.
Now since PT|Y is an isomorphism, Corollary 6.11 yields that there is a u so that every
row and column of (z;;) is u-conditional, every generalized diagonal of (z;;) is equivalent
to the (P-basis, yet neither the rows nor the columns of (z;;) contain ¢2-sequences. This

is impossible by Theorem 4.2. O

The following result is an immediate consequence of Theorem 6.9 and known structural

results for von-Neumann algebras.

Corollary 6.12. Let N', M be von Neumann algebras so that M has a direct summand
of type Il or of type IIL. If L?(M) is Banach isomorphic to a subspace of LP(N'), then
also N has a direct summand of type Il or of type III.



71

Proof. The hypotheses imply (via known results, cf. [HS]) that R® B(¢?) is isomorphic to
a von Neumann subalgebra of M, which is the range of a normal conditional expectation,
whence LP(R) ®, C), is completely isometric to a subspace of L?(M). Since L?(R) ® C,
is separable, we can assume without loss of generality that A/ acts on a separable Hilbert
space. Then if N fails the conclusion, there exists a finite von Neumann algebra N so
that A is isomorphic to a subalgebra of N'@(L®°®B(£?)), and hence L?(N) is completely
isometric to a subspace of L?(N) @ (L, ®,C,). But then L?(M) does not Banach embed

in LP(N), since LP(R) ®, C), does not embed in LP(N) & (L, ®,C,) by Theorem 6.9. O

Remark. Of course Corollary 6.8 (i.e., the results of Junge and Pisier-Xu cited above)
also immediately yields that if M and N are von Neumann algebras so that M has
a type II; summand, and L?(M) embeds in LP(N), then N must have also have a
summand of type II or type III. Combining these two results, we have that if LF(M)
is Banach isomorphic to a subspace of LP(N) and M has no type III summand, then
N has a direct summand of type at least as large as these of the summands of N'. Tt
remains a most intriguing problem to see if one can eliminate the non-type III summand

hypothesis in this statement.

“positive” results

We now complete the proof of Theorem 6.2. We shall formulate the
in the language of operator spaces; the reader unfamiliar with the relevant terms may just
ignore the adjective “complete” in all the statements, for of course all positive operator
space claims imply the pure Banach space ones. Given operator spaces X and Y, let us
say that X completely contractively factors through Y if X is completely isometric to a
subspace X' of Y such that there exists a completely contractive projection mapping Y
onto X'. Equivalently, there exist complete contractions U : X — Y and V : Y — X

such that V o U = Ix, Iy the identity operator on X, that is,
Y
/N
(6.40) X - X

Now we easily see that

(6.41) (L (R)@® L*(R) @ --+), completely contractively factors through L?(R) .
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Indeed, simply let P, P5,... be pairwise orthogonal non-zero projections in R. As is

well known, then P;RP; is isomorphic to R and hence P;LP(R)P; is completely isometric

to LP(R) for all i; then the map on LP(R) defined by f — > P, fP; witnesses (6.41).
Since R®R is isomorphic to R,

(6.42) LP(R) ®, L’(R) o LP(R®R) is completely isometric to LP(R) .

Using (6.41) and (6.42), we may now easily see that if ¥ is immediately below X in
the tree (and lying on a branch), then X completely contractively factors through Y.
Using the notation X < Y to mean that X completely contractively factors through
Y, we see, e.g., that L, < LP(R) = L, ®,C" < LP(R) ®,C" < LP(R) ®, L*(R),

whence

Ly ®p Sp = <@(Lp Qp C}f)) = <@ Ly ®p LP(R)> < L*(R) ,
n=1 p n=1 p
ie.,
(6.43) L,®,S, < L*(R) .

Writing X ~ Y to mean: X is completely isometric to Y, we have
(644)  C@ (L8 5) S C@®Ly® C, o (L0 C) @ (L ®Cy) # L, ® C,

(where we use (P-direct sums).
X &Y if X is the level 7 space and Y is the level 8 space, since the same argument
for (6.41) yields also

(6.45) (F®) @, C) @ ((R) 8, C,) &+ ) <5 (R) ®, C, .

The reader may now easily check that the remaining “positive” assertions on the tree.
For the far deeper negative assertions, let us use the notation: X < Y to mean that
the Banach space X is not isomorphic to a subspace of Y.

Now suppose X # Y are on the tree and Y cannot be connected to X by a descending
branch; we claim that X 4 Y.
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It suffices to prove this assertion by showing by induction on 7 = 2,3,... that X lies
at level j and for any Z and X' on the tree in FIGURE 1,
(6.46) there is a k > j so that Y is at the &' level, but if Z is at a higher
level than k, connected to Y, then X is connected to Z
and moreover if X' is connected to X with

level X’ < j, then X' is connected to Y
or

(6.47) Y is at the (j — 1)*" level, but if Y is connected to Z at level k > j
with Z # X, then X is connected to Z and moreover if 7 is connected

to X with level Z < j, then Z is connected to Y.

j=2.5,% L, is classical (and also follows from our Corollary 1.4). L, + C, since
l, — L, if p < q<2but l;, £ C,.

j=3. Cy % LP(R), the main result of the paper.

j=4. L,®,S, # C,® L, by Proposition 6.5.

j=5. LP(R) ¥ L, ®, C, by Corollary 6.8.

j=6. L,®,C,% C,®LP(R) by Theorem 6.3.

j = 7. There is no Y satisfying (6.46) or (6.47).

j = 8. Theorem 6.9 gives the one required non-embedding result.

This completes the proof of the final statement of Theorem 6.2. It remains to prove the
first statement. This follows via the known type-decomposition and structure of hyper-
finite von-Neumann algebras, and the following operator space version of the Pelczynski
decomposition method (whose proof is exactly as Pelczynski’s proof for the Banach space
case [P]; see also p.54 of [LT] and [Ar]).

Lemma 6.13. Let X and Y be operator spaces so that
(i) each completely factors through the other
and so that either
(ii) X is completely isomorphic to X & X and Y is completely isomorphic to Y @Y

or
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(ii') X is completely isomorphic to (X @ X & ---), for some q € [1, 00].
Then X and Y are completely isomorphic.

(We say that X completely factors through Y if X is completely isomorphic to a

completely complemented subspace of Y.)

Corollary 6.14. If (X & X & --+), completely factors through the operator space X,
then X is completely isomorphic to (X @ X @ ---),.

End of the proof of Theorem 6.2. (X & X @ ---), completely contractively factors
through X for all of the 13 spaces X listed in Theorem 6.2 (applying (6.41), (6.45), and
the analogous results for C), L,, and L, ®, C,). Thus the conclusion of 6.14 applies.

Now let N be as in the statement of Theorem 6.2. If A/ is type I, then by the results in
[S2] LP(N) is completely isomorphic to one of the first nine spaces listed in Theorem 6.1,
so assume that A is not type I. Then we have that

N:M®MII @N’Hoo )

where for each i, N; = {0} or N is a hyperfinite von Neumann algebra of type i, so that

also N1, ® N, # 0.
Now suppose that A is finite. It then follows from work of A. Connes [C2] that

(6.48) Nt @ Ny, is isomorphic to a von-Neumann subalgebra of R .

Indeed, by disintegration and Proposition 6.5 of [C2], any finite hyperfinite von Neumann
algebra (with separable predual) is a countable ¢*°-direct sum of von Neumann algebras
of the form ARB, where A is abelian and B is either M,, for some n < oo or R. But such
an algebra ARB can be realized as a sub-algebra of R; since also RQR is isomorphic
to R, and (R@® R @ -+ )p= is (isomorphic to) a von Neumann subalgebra of R, (6.48)
holds. Since Ny, # 0, we have by the above discussion that also

(6.49) R is isomorphic to a von-Neumann subalgebra of A .
Thus, we have that if A or B equals N or R, then

(6.50) A is (isomorphic to) a subalgebra of B, which is

the range of a normal conditional expectation.
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Now if (6.49) holds for any two von Neumann algebras A and B, then L?(A) com-
pletely contractively factors through L?(B). Thus by Lemma 6.13 and Corollary 6.14
applied to X = LP(R), we obtain that L?(N') is isomorphic to LP(R).

Now if M. # 0, again using the deep results in [C2], Nj is (isomorphic to)
M@B((?) where M is a finite hyperfinite von Neumann algebra, whence letting A
and B equal N or RQB((?), (6.48) holds, whence L?(N) is completely isomorphic to
LP(R) ®, C, again by Lemma 6.13 and Corollary 6.14 applied to L?(R) ®, C,.

Now assume Ny = {0}, so Ny, # {0}, and suppose N is infinite; since Ny = {0},
we must have that N7 is infinite. But then by the classification of the L? spaces of type I
algebras, we have that L”(N7) is completely isomorphic to either C,, L, ® C,, C, & Ly,
or Cp ® (Lp ®p Sp).

But C,®L,®LP(R) and C, & (L, ®, S,) ® LP(R) are both completely isomorphic to
C, ® L?(R), by our analysis of the finite case. Hence LP(N) is completely isomorphic
either to C, @ LP(R) or to (L, ®, C,) & LP(R), completing the entire proof. O

7. LP(N)-ISOMORPHISM RESULTS FOR AN A TYPE III HYPERFINITE OR A FREE

GROUP VON NEUMANN ALGEBRA

We first formulate the results of this section for the case of preduals of von Neumann
algebras NV, i.e., L}(N), and then show they hold also for the spaces LP(N) for 1 < p <
00, as in the preceding sections. The following result is an immediate consequence of

Corollary 6.12. We prefer to give a quick proof just using Corollary 1.2.

Theorem 7.1. Let N be a factor of type II, and let M be a factor of type Il or type
III. Then the preduals N, and M, are not Banach space isomorphic.

[

Proof. By the assumptions M is a properly infinite von Neumann algebra, i.e., M =
M®B(#?) as von Neumann algebras (where ® is the standard von Neumann algebra
tensor product). In particular M, is isometrically isomorphic to M, ®, C; for some
crossnorm 7y on the algebraic tensor product M, ® C', and therefore C'; imbeds isomet-

rically in M,. By Corollary 1.2, C'; does not Banach space imbed in N,. O

It would be interesting to know, whether a type Il -factor and a type III-factor can be

distinguished by the Banach space isomorphism classes of their preduals. (As noted in
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the Introduction, we do not know the answer for the special case of injective factors.) In
[C1] Connes introduced a subclassification of factors of type III into factors of type III,,
where A can take any value in the closed interval [0, 1]. Theorem 7.2 below shows that the
number A in this classification cannot be determined by the Banach space isomorphism
class (or even operator space isomorphism class) of the predual. Recall from [C2] and
[H], that for each A € (0, 1], there is up to von Neumann algebra isomorphism only one
injective factor of type III, acting on a separable Hilbert space. For 0 < A < 1 it is the

Powers factor
o0

R)\ = ®(M2(C)7 90/\)

n=1

where ) is the state on the 2 X 2 complex matrices given by

Tl T A 1
25\ ) = ——T11 + ——T2
To1 Lo 14+ A 14+ A

and for A = 1 it is the Araki-Woods factor R4, which can be obtained (up to von Neumann-

isomorphism) as the tensor product of two Powers factors

R = Ry, ®R),

10g A1
log A2

provided ¢ Q. On the hand there are uncountably many injective factors of type
III, acting on a separable Hilbert space (cf. [C1], [C2]). We will consider the predual
of a von Neumann algebra as an operator space with the standard dual operator space

structure (cf. [Bl]).

Theorem 7.2. Let for 0 < A <1, Ry denote the Powers factor of type I1I\ and let R
denote the Araki-Woods factor of type III.
(a) For every A € (0,1) the predual (Ry). is completely isomorphic to (Ruo)«.
(b) There is an uncountable family (N;)icr of mutually non-isomorphic (in the von Neu-
mann algebra sense) injective type I11y-factors on a separable Hilbert space for which

(N7« is completely isomorphic to (Rug)s-

Remark. In [ChrS], Christensen and Sinclair proved that all injective infinite dimensional
factors acting on separable Hilbert space are completely isomorphic. This does not imply
that their preduals are completely isomorphic. Indeed the unique injective type II;-factor

R and the unique injective type I, -factor R®B(¢{*) have non-isomorphic preduals by
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Theorem 7.1. Theorem 7.2 as well as the results in [ChrS] are based on the completely

bounded version of the Pelczynski decomposition method stated as Lemma 6.13 above.

Proof of Theorem 7.2. (a) Let 0 < A < 1 and put N' = Ry, M = R,. Since N is a
properly infinite von Neumann algebra, there exist two isometries u, uy € N, such that

uyuj and wupul are two orthogonal projections with sum 1. Define now
PN —->NON by O(z) = (ujz,usx)
and
VNN =N by ¥(r,y)=(u,z+ uy)

Then ® o U = idyga and ¥ o ® = idyy. Since ® and ¥ are normal (i.e., continuous) in
the w*-topologies on N and N’ & N') and also are completely bounded maps, it follows
that N, ~, N, @ N,. Similary we have M, ~4, M, & M,. Thus the pair (M., N,)
satisfies (ii) in Lemma 6.13. We next check condition (i) in Lemma 6.13.

Since Ry, = R\®R. as von Neumann algebras (cf. [C1, Sect.3.6]), we can without
loss of generality assume that M = N®P where P = R,,. Let ¢ be a normal faithful
state on P and define

TN —=>NQP by n(z) =21,

and let p : NP — N be the left slice map given by ¢, i.e., the unique normal linear
map N®P — N for which

plz®y)=plyr, reN,yeP.

Thus ||7|les = ||plles = 1 and p o7 = idy. Hence idy, has a completely bounded
factorization through M,, i.e., N, is cb-isomorphic to a c¢b-complemented subspace of
M.,. To prove the converse, we use that if ¢ is a normal faithful state on the III;-factor
M = Ry and o = o/ is the moduluar automorphism associated with ¢ at ¢, = —%,
then the crossed product Ry, X, Z is a factor of type III, (cf. [HW, proof of Lemma
2.9]). Moreover injectivity of R, implies that the crossed product is injective (cf. [C2]).
Hence Ry Xo Z = R) as von Neumann algebras, so in this part of the proof we may
assume that M x, Z = N. Further, after identifying M with its natural imbedding in
the crossed product, we have that A is generated as a von Neumann algebra by M and

a certain unitary group {u" | n € Z} coming from the crossed product construction (cf.
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[C1]). Let i : M < M x4Z be the imbedding and let ¢ : M x,Z — i(M) be the unique
normal faithful conditional expectation of M X, Z onto i(M) for which ¢(u") = 0, for
n € Z ~ {0} (see again [C1]). Then i and & are normal maps and i ! oc 0 = idy, so
as above, we obtain that M, is cb-isomorphic to a cb-complemented subspace of N,.
Hence a) follows from Lemma 6.13.

(b) Put again M = R, and let G C R be a dense countable subgroup. Let ¢ be
a normal faithful state on R, and put N' = Ry X, G where a : G — Aut(M) is the
restriction of the modular automorphism group (o7 )ier to G. It follows from [C1] (see
the proof of [HW, Lemma 2.9]) that Ng is a factor of type IIly, which is also injective
(by [C2]). Moreover T'(Ng) = G, where T' is Connes 7-invariant. Hence G' # G’ implies,
that Ng and Ng are not von Neumann-algebra isomorphic. It is easy to check, that
there are uncountably many dense countable subgroups of R. Put P = Ng®R.,. Since
R®Ry ~ R, for 0 < A < 1, we have PRy = P, 0 < A < 1, which by [C1, Theorem

3.6.1] implies that P is a factor of type III;. Since P is also injective we have
Ne®Ry £ Ryo = M

as von Neumann algebras. As in the proof of (a), it now follows, that M, is cb-isomorphic
to a cb-complemented subspace of (Ng).. Moreover, since M %, G is a crossed product
with respect to a discrete group, there is again an embedding ¢ : M — M x, G and a
normal faithful conditional expectation ¢ : M x, G — (M), and the rest of the proof
of (b) follows now exactly as in the proof of (a). O

Let L(F},) denote the von Neumann algebra associated with the free group F,, on n
generators. Then for 2 < n < oo L(F},,) is a factor of type II;. It is a long standing open
problem to decide whether these II;-factors are isomorphic as von Neumann algebras.
Due to work of Voiculescu, Dykema and Radulescu, it is known that either these factors
are all isomorphic or L(F,,) ¥ L(F,,) whenever 2 < ny,ny < oo and n; # ng (cf.
[VDN]). In [Ar] Arias proved that the von Neumann algebras L(F,,), 2 < n < oo are
isomorphic as operator spaces. We show below, that also their preduals are isomorphic
as operator spaces. While Arias’ proof uses mainly group theoretical considerations,
the proof of Theorem 7.3 below relies on one rather deep result of Voiculescu, that
L(Fy) = My(L(F)) as von Neumann algebras for k = 2,3,... (cf. [Vo] or [VDN]).
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Theorem 7.3. L(F),). is cb-isomorphic to L(Fy)« forn=2,3,....

Proof. Let n € N, n > 2 and put N' = L(F,,) and M = L(F,,). Since F, is isomorphic to
a subgroup of F, and vice versa, N is von Neumann-algebra isomorphic to a subfactor
N1 of M and M is von Neumann-algebra isomorphic to a subfactor M of N (see [Ar]
for details). Moreover, let 754 and 7y be the unique normal faithful tracial states on
M and N respectively. Then there is a unique normal faithful conditional expectation

onto

e : M ——= N preserving the trace 7y (resp. a unique normal faithful conditional
expectation &’ : N onto, M, preserving the trace 7xr). As in the proof of Theorem 7.2,
this implies that X = M, and Y = N, satisfy condition (i) in Lemma 6.13. We next
prove that (ii') in Lemma 6.13 is satisfied with ¢ = 1. Since M = L(Fy) is a II;-factor,
we can choose a sequence of orthogonal projections (p;)$2, in M, such that 7(p;) = 27"
and > 2, p; = 1 (convergence in the strong operator topology). By Voiculescu’s result
quoted above, L(Fy,) = Myi(L(Fy)) for i = 1,2,... as von Neumann-algebras, which
implies that p; Mp; =2 M as von Neumann-algebras.

Indeed, Voiculescu’s result yields that there are orthogonal equivalent projections
G1,--- ,Qoi in M with 23;1 ¢; = 1 so that ¢y M¢q, = M. It follows (by uniqueness of
Tm) that 7(¢;) = 7(gy), for all j and j', and so 7(¢;) = 27" Since also T\ (F;) = 27°
and M is a finite factor, ¢; and p; are equivalent, and hence p;Mp;, = s Mq = M as
desired.

Put

Q=MSEMSD - )p = MA™ .

Then (@ is a von Neumann algebra isomorphic to (); = 269 p; Mp;, which is a von Neu-
mann subalgebra of M. Moreover, there is a 7)-preserving normal faithful conditional
expectation ¢” : M onto, Q1. Hence @, is cb-isomorphic to a cb-complemented sub-
space of M,. Put as above X = M,. Then Q, = (X & X & --- ) as operator spaces.
Hence we have shown that (X & X & ---)n completely factors through X, so X and
(X ® X @ --)pn are completely isomorphic by Corollary 6.14. This proves (ii’) iin
Lemma 6.13 with ¢ = 1. Hence X = M, and Y = N, are completely isomorphic. O

In the rest of this section, we will show how Theorem 7.2 and Theorem 7.3 can

be generalized to the non-commutative LP-spaces associated with the von Neumann
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algebras in question. In [Ko], Kosaki proved, that the abstract LP-spaces LP(M), 1 <
p < oo associated with a o-finite (= countably decomposable) von Neumann algebra
M, can be obtained by the complex interpolation method applied to the pair (M, M,)
with the imbedding M < M, given by the map v — z¢, x € M, for a fixed normal
faithful state ¢ on M. Assume next that A is a von Neumann subalgebra of M and
e : M — N is a normal faithful conditional expectation of M onto A. By replacing
¢ by ¢ oe, we can assume, that the state ¢ used in Kosaki’s imbedding is e-invariant.
Next, the adjoint of ¢ defines an imbedding of A, in M, and i*, the adjoint of the
inclusion map i : N' — M defines a cb-contraction of M, onto N,. Moreover, we have
the following commuting diagram:

T

N 5 M. 5N
where the vertical arrows are the Kosaki inclusions with respect to ¢1ar, ¢ and @i
respectively. By the complex interpolation method we now get contractions i, : L?(N) —
LP(M) and g, : LP(M) — LP(N), such that the following diagram commutes:

Ty
L”(l/\/') o, L”(l/\/l) =, L”(l/\/)

NS M SN
Further, if we consider LP(N') and L?(M) as operator spaces with the operator spaces
structure introduce by Pisier in [Pil], we get that i, and ¢, are complete contractions.

Hence we have proved:

Lemma 7.4. Let M be a o-finite von Neumann algebra, and N' C M a sub von Neu-
mann algebra, which is the range of a normal faithful conditional expectation ¢ : M —
N. Then for every1 < p < oo, LP(N) is cb-isometrically isomorphic to a ch-contractively
complemented subspace of LP(M).

Lemma 7.4 implies that the proofs of Theorem 7.2 and Theorem 7.3 can be repeated
almost word for word to cover the LP-case. Note that the argument for N, & N, ~ N,
and M, & M, ~ M, in the beginning of Theorem 7.2 also works for the LP-spaces,
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when LP(N) (resp. LP(M)) are equipped with the natural left M-module structure

(resp.

left M-module structure). Hence we get:

Theorem 7.5. Let Ry, 0 < A < 1 and Ry, be as in Theorem 7.2 and let 1 < p < o0.

Then

(a) LP(Ry) ~cp LP(Ry)-

(b) There is an uncountable family of mutually non-isomorphic (in the von Neumann

algebra sense) injective type Illy-factors on a separable Hilbert space, for which

LP(N;) =, LP(Ry) for alli € 1.
(c) For everyn € N, n > 2, LP(L(F,)) = LP(L(Fx)).
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