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Abstract. Let N and M be von Neumann algebras. It is proved that Lp(N ) does
not Banach embed in Lp(M) for N in�nite, M �nite, 1 � p < 2. The following
considerably stronger result is obtained (which implies this, since the Schatten p-class
Cp embeds in Lp(N ) for N in�nite).

Theorem. Let 1 � p < 2 and let X be a Banach space with a spanning set (xij) so
that for some C � 1,
(i) any row or column is C-equivalent to the usual `2-basis,

(ii) (xik;jk ) is C-equivalent to the usual `p-basis, for any i1 < i2 < � � � and j1 < j2 <

� � � .
Then X is not isomorphic to a subspace of Lp(M), for M �nite. Complements on
the Banach space structure of non-commutative Lp-spaces are obtained, such as the
p-Banach-Saks property and characterizations of subspaces of Lp(M) containing `p

isomorphically. The spaces Lp(N ) are classi�ed up to Banach isomorphism, for N
in�nite-dimensional, hyper�nite and semi�nite, 1 � p < 1, p 6= 2. It is proved that
there are exactly thirteen isomorphism types; the corresponding embedding properties
are determined for p < 2 via an eight level Hasse diagram. It is also proved for all
1 � p < 1 that Lp(N ) is completely isomorphic to Lp(M) if N and M are the
algebras associated to free groups, or if N and M are injective factors of type III� and
III�0 for 0 < �, �0 � 1.
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1. Introduction

Let N be a �nite von Neumann algebra and 1 � p < 2. Our main theorem yields that

Cp is not linearly isomorphic to a subspace of Lp(N ) (where Cp denotes the Schatten

p-class). It follows immediately that for any in�nite von Neumann algebra M, Lp(M)

is not isomorphic to a subspace of Lp(N ), since Cp is then isomorphic to a subspace of

Lp(M).

Remarks. 1. (Added December 2001.) This result has subsequently also been extended

to the case 0 < p < 1 by the third named author of the present paper and Q. Xu [SX].

2. It is proved in [S1] that also Cp does not embed in Lp(N ) for any 2 < p <1.

For N a semi-�nite von-Neumann algebra and � a faithful normal semi-�nite trace on

N , Lp(�) denotes the non-commutative Lp space associated with (N ; �) (see e.g., [FK]).

The particular choice of trace � is unimportant, for if � is another such trace, Lp(�) is

isometric to Lp(�). We also denote this (isometrically unique) Banach space by Lp(N ).

Given C � 1 and non-negative reals a and b, let a
C� b denote the equivalence relation

1
C
a � b � Ca. Sequences (xj) and (yj) in Banach spaces X and Y respectively all called

C-equivalent if


 nX
i=1

�ixi




 C�



 nX

i=1

�iyi




 for all n and scalars �1; : : : ; �n :(1.1)

(Equivalently, there exists an invertible linear map T : [xi] ! [yi] with kTk; kT�1k � C,

where [xi] denotes the closed linear span of (xi).) (xj) is called unconditional if there is

a constant u so that for any n and scalars c1; : : : ; cn and "1; : : : ; "n with j"ij = 1 for all i,

kPn
i=1 "icixik � ukP cixik (then one says (xj) is u-unconditional). The usual `p-basis

refers to the unit vector basis (ej) of `p, where ej(i) = Æji for all i and j.

Our main result goes as follows.

Theorem 1.1. Let N be a �nite von Neumann algebra, 1 � p < 2, and let (xij) be an

in�nite matrix in Lp(�) where � is a �xed faithful normal tracial state on N . Assume

for some C � 1 that every row and column of (xij) is C-equivalent to the usual `2-basis

and that (xik;jk)
1
k=1 is unconditional, whenever i1 < i2 < � � � and j1 < j2 < � � � . Then
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there exist i1 < i2 < � � � and j1 < j2 < � � � so that setting yk = xik;jk for all k, then

lim
n!1

n�1=p



 nX

i=1

y0i





Lp(�)

= 0(1.2)

for all subsequences (y0k) of (yk).

Corollary 1.2. Let p and N be as in 1.1. Let X be a Banach space spanned by an

in�nite matrix of elements (xij) so that for some � � 1,

(i) every row and column of (xij) is �-equivalent to the usual `2 basis

(ii) (xin;jn)1n=1 is �-equivalent to the usual `p-basis, for all i1 < i2 < � � � and j1 < j2 <

� � � .
Then X is not Banach isomorphic to a subspace of Lp(�). In particular, Cp does not

embed in Lp(�).

The Corollary yields its �nal statement since the standard matrix units (xij) for Cp

satisfy (i) and (ii) with � = 1.

To see why 1.1 =) 1.2, suppose to the contrary that T : X ! X 0 � Lp(�) were

an isomorphic embedding, where X is as in 1.2. Then (Txij) satis�es the hypotheses of

1.1 with C = �kTk kT�1k. However if (ik); (jk) satis�es the conclusion of Theorem 1.1,

(Txik;jk) and hence (xik;jk) cannot be equivalent to the usual `p-basis, a contradiction.

Let RadCp denote the \Rademacher unconditionalized version" of Cp (1 � p < 1).

That is, letting (rij) be an independent matrix of f1;�1g-valued random variables with

P (rij = 1) = P (rij = �1) = 1
2

for all i; j, and letting (cij) be a matrix of scalars with

only �nitely many non-zero terms, then

k(cij)kRadCp
= E!k(rij(!)cij)kCp :(1.3)

Corollary 1.3. Let p and N be as in 1.1. Then RadCp is not isomorphic to a subspace

of Lp(�).

Proof. The standard matrix units basis (xij) of RadCp also satis�es the hypotheses of

Corollary 1.2 with � = 1.

Corollary 1.3 yields new information in the classical, commutative case of Lp. (Through-

out, Lp refers to Lp on the unit interval, endowed with Lebesgue measure; i.e., Lp =

Lp(N ) where N = L1 acting on L2 via multiplication.) This also reveals a remarkable
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di�erence in the structure of Lp-spaces, p < 2 or p > 2, for RadCp is isometric to a

subspace of Lp for 2 < p < 1 (cf. Theorem 5 of [L-P]). Also, let us note that RadCp

is isometric to a subspace of Lp (Cp) for 1 � p < 2, so we obtain an unconditional-

ized version of Cp in Lp(M) which also does not embed in Lp(N ), for N �nite, where

M = L1
B(H). (Throughout, Lp(X) refers to the Bochner-Lebesgue space Lp(X;m),

where m is Lebesgue measure.)

It is a classical result of C.A. McCarthy that Cp does not \locally" embed in Lp, for

1 � p <1 [McC]. Corollary 1.2 yields an \in�nite" dimensional proof of this result for

1 � p < 2, as well as the apparently new discovery that also RadCp does not locally

embed in Lp for these p. To see this, we give the following.

De�nition. Let 1 � p <1, n 2 N , and � � 1. A �nite-dimensional Banach space X is

called a �-GCn
p -space provided there is an (n� n)-matrix (xij) spanning X so that

(i) any row and column of (xij) is �-equivalent to the usual `2n-basis

(ii) (xik;jk)
m
k=1 is �-equivalent to the usual `pm basis for any m,

1 � i1 < � � � < im � n and 1 � j1 < j2 < � � � < jm � n :

An in�nite-dimensional space X is called a �-GCp-space provided it admits a spanning

matrix (xij) satisfying (i) and (ii) of Corollary 1.2; �nally X is called a GCp-space if it

is a �-GCp-space for some � � 1.

Cn
p refers to the n2-dimensional Schatten p-class consisting of n � n matrices in the

Cp norm; \G" stands for \Generalized". For example, RadCn
p is a 1-GCn

p space. The

next result yields that �-GCn
p -spaces cannot be uniformly embedded in Lp, hence in

particular, we recapture the classical fact mentioned above that Lp does not contain

Cn
p 's uniformly. (For isomorphic Banach spaces X and Y , d(X; Y ) = inffkTk kT�1k : T

is a surjective isomorphism from X to Y g).
Corollary 1.4. Let 1 � p < 2 and � � 1. De�ne:

�n;� = inffd(X; Y ) : X is a �-GCn
p -space and Y � Lpg :

Then limn!1 �n;� = 1.

Proof. Suppose this were false. Then we could choose � � 1 and X1; X2; : : : subspaces of

Lp so that Xn is a �-GCn
p -space for all n. Choose then (xnij) an n�n matrix of elements
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of Xn, satisfying (i) and (ii) of the de�nition, for all n. Let M00 denote the linear space

of all in�nite matrices of scalars with only �nitely many non-zero entries. Let U be a

free ultra�lter on N . De�ne a semi-norm k � k on M00 by

k(cij)k = lim
n2U

k
X

cijx
n
ijk :(1.4)

It is easily checked that k � k is indeed a semi-norm; let W be its null space; W =

f(cij) 2 M00 : k(cij)k = 0g, and let X denote the completion of (M00; k � k)=W . It

follows easily that X is a �-GCp-space. By standard ultraproduct techniques, it follows

that X is �nitely representable in Lp. But then (since ultraproducts of (commutative)

Lp(�) spaces are (commutative) Lp(�) spaces and any separable subspace of an Lp(�)

space is isometric to a subspace of Lp), X isometrically embeds in Lp. This contradicts

Corollary 1.2.

Remark. Theorem 1.1 may easily be extended to the case of general �nite von Neumann

algebrasN , and not just the �nite, �-�nite ones covered by its statement. Corollaries 1.2

and 1.3 also hold in this setting, as well as the general formulations of Theorems 4.1

and 4.2. Indeed, in general, one has that Lp(N ) is isometrically isomorphic to Lp(�)

for some semi-�nite faithful normal trace � on N . Let (xij) be a matrix of elements of

Lp(�) satisfying the assumptions of Theorem 1.1, and let P be the supremum of all the

support projections of xij and x�ij, i; j = 1; 2; : : : . Then P is a �-�nite projection in N ,

and thus PNP is both �nite and �-�nite. Moreover all the xij's belong to Lp(PNP; � 0) =

PLp(N ; �)P , where � 0 = � jPNP . But in turn, Lp(PNP; � 0) is isometrically isomorphic

to Lp(PNP; � 00) for some faithful �nite normal trace � 00 on PNP . This reduces the

proof of Theorem 1.1 in the case of general �nite von Neumann algebras, to those with

a �nite trace.

We now give a description of the results and proof-order of the paper.

If a matrix satis�es the hypotheses of Theorem 1.1, then every row and column has

the property that the pth powers of absolute values of the terms form a uniformly in-

tegrable sequence. We develop the basic technical tools to explain and exploit this, in

Section 2, through the device of the p-modulus of an element of Lp(N ) with respect to

a normal tracial state � on N . We give several useful inequalities for this modulus in

Lemma 2.3. Although many of these can be obtained from the literature (e.g., [FK]),
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we give full proofs for the sake of completeness. We also obtain equivalences for relative

weak compactness in L1(N ) in terms of uniform integrability in Proposition 2.5, and a

useful non-commutative truncation equivalence for general p, in Corollary 2.7.

We give technical information concerning general unconditional sequences in Lp(N )

for p < 2 in Lemmas 3.1{3.3, yielding in particular the following de�nitive equivalences

obtained in Corollaries 3.4 and 3.5. Let (fn) be a bounded unconditional sequence in

Lp(N ). Then the following are equivalent.

1. (fn) has no subsequence equivalent to the usual `p basis.

2. (jfnjp) is uniformly integrable.

3. limn!1 n�1=pkPn
i=1 f

0
ikLp(�) = 0 for all subsequences (f 0n) of (fn).

The proof of Theorem 1.1 is then completed, using the standard ultraproduct con-

struction of the �nite ultrapower of a �nite von Neumann algebra N , and a result

giving the connection between its associated Lp space and the Banach ultrapower of

Lp(N ) (Lemma 3.6). For recent structural results on ultrapowers of Lp(N ) for arbitrary

von Neumann algebras N , see [Ray].

Section 4 yields results considerably stronger than Theorem 1.1. The arguments here

do not use the ultraproduct construction in Section 3, and are thus more elementary

(but also more delicate). Theorem 4.2 gives the following result (which immediately

implies Theorem 1.1).

If a semi-normalized matrix in Lp(N ) is such that all columns and \generalized"

diagonals are unconditional while all rows are u-unconditional for some �xed u, then

three alternatives occur: Either some column has an `p-subsequence, or `pn's are �nitely

represented in the terms of the rows, or the matrix has a \generalized diagonal" (yk)

satisfying (1.2) of Theorem 1.1.

This result is a fundamental step in the proof of the main result of section 4, Theo-

rem 4.1, which yields that if p = 1 or if p > 1 and N is hyper�nite, the unconditionality

assumption in 4.2 may be dropped. In addition to 4.1, its proof uses results from Banach

space theory. The case p > 1 also uses recent non-commutative martingale inequalities

(see [SF], [PX1]). The case p = 1 uses techniques from [R1], which yield results for se-

quences in the preduals of arbitrary von Neumann algebras which may be of independent
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interest (see Lemmas 4.8 and 4.9). The proof in this case also requires an apparently

new elementary �nite disjointness result (Lemma 4.10B).

(We have followed the referee's suggestion in rewriting the beginning of section 4,

inverting the order of Theorems 4.1 and 4.2 from the earlier version of this work.)

Section 5 contains rather quick applications of our main results and the techniques

of their proofs. For example, Proposition 5.1 asserts that neither the Row nor Column

operator spaces completely embed in the predual of a �nite von Neumann algebra; this

is a quick consequence of our main result. Theorem 5.4 shows that for 1 � p < 2

and N �nite, a subspace of Lp(N ) contains `pn's uniformly i� it contains an almost

disjointly supported sequence (which of course is then almost isometric to `p), extending

the previously known commutative case [R2]). We give the concepts of the p-Banach-

Saks and strong p-Banach-Saks properties in De�nition 5.5, and extend the classical

results of Banach-Saks [BS] and Szlenk [Sz] in Proposition 5.6. This result also yields

that for p and N as above, a weakly null sequence in Lp(N ) has the property that every

subsequence has a strong p-Banach-Saks subsequence if and only if the pth powers of

absolute values of its terms are uniformly integrable.

The main result of Section 6 shows that there are precisely thirteen Banach isomor-

phism types among the spaces Lp(N ) for N hyper�nite semi-�nite, 1 � p <1, p 6= 2.

The embedding properties of the various types for p < 2 are given in an eight-level

Hasse diagram, in Theorem 6.2. This work completes the classi�cation and embedding

properties of the type I case given in [S2]. The main work in establishing this Theorem

is found in the non-embedding results given in Theorems 6.3 and 6.9; we also give a new

proof of a non-embedding result in the type I case, established in [S2], in our Proposi-

tion 6.5. The most delicate of these is Theorem 6.9, which yields that if M is a type II1

von-Neumann algebra, and Lp(M) embeds in Lp(N ), then also N must have a type II1

or type III summand (1 � p < 2). Of course this reduces directly to the case where

M is the hyper�nite type II1 factor; the proof requires our Theorem 4.1, and also rests

upon recent discoveries of M. Junge [J] and Pisier-Xu [PX2].

Our methods do not cover the following case, which remains a fascinating open prob-

lem: Is it so that the predual of a type III von-Neumann algebra does not Banach embed

in the predual of one of type II1? In fact, we do not know if the predual of the injective
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type II1 factor can be Banach isomorphic to the predual of an injective type III-factor.

We show in Theorem 7.2 that such factors cannot in general be distinguished by the

Banach space isomorphism class (or even operator space isomorphism class) of their

preduals. Letting R� denote the Powers injective factor of type III� and R1 denote

the Araki-Woods injective factor of type III1, we show that (R�)� is completely iso-

morphic to (R1)� for all 0 < � < 1. (For a von Neumann algebra N , N� denotes its

predual, also denoted here by L1(N ).) Thus there are uncountably many isomorphi-

cally distinct injective factors, all of whose preduals are completely isomorphic. We also

show in Theorem 7.2 that there are uncountably many isomorphically distinct injective

type III0-factors, all of whose preduals are completely isomorphic to (R1)�.

We show in Theorem 7.3 that the famous open isomorphism problem for free group

von Neumann algebras cannot be resolved by the Banach (or even operator) space struc-

ture of the predual. Namely, we prove that the preduals of the L(Fn)'s are all completely

isomorphic, for 2 � n � 1, where Fn is the free group on n generators and L(Fn) its

associated von Neumann algebra. This extends the result of A. Arias [Ar], showing that

the L(Fn)'s themselves are completely isomorphic as operator spaces. The proof of The-

orem 7.3 relies basically on the deep result of D. Voiculescu that L(F1) �= Mk(L(F1))

as von Neumann algebras, for k = 2; 3; : : : (cf. [Vo] or [VDN]).

The results in Section 7 also extend to the case of the non-commutative spaces Lp(N ),

for 1 < p <1 (see Theorem 7.5). These isomorphism results (as well as the \positive"

isomorphism results in Section 6) rely on the operator space version of the so-called

Pe lczy�nski decomposition method (see Lemma 6.13). Thus, one actually shows for

von Neumann algebras N and M, that each of the spaces Lp(N ) and Lp(M) is com-

pletely isometric to a completely contractively complemented subspace of the other, and

also (e.g., in the free group case M = L(F1)), that say Lp(M) also has the property

that (Lp(M)� � � � � Lp(M)� � � � )`p completely contractively factors through Lp(M),

which then implies the operator space isomorphism of these two spaces. Thus the proofs

of these operator space isomorphism results are actually based on natural isometric

embedding properties of the Lp(N ) spaces themselves.

Remark. (Added December 2001.) Some of the results of this Memoir have been an-

nounced in [HRS].
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2. The modulus of uniform integrability and weak compactness in L1(N )

Let N be a �nite von Neumann algebra, acting on a Hilbert space H. Let P = P(N )

denote the set of all (self-adjoint) projections in N . We shall assume that N is endowed

with a faithful normal tracial state � , which is atomless. That is, for all P 2 P with

P 6= 0, there is a Q � P , Q 2 P, with 0 < �(Q) < �(P ). (Equivalently, 0 6= Q 6= P ,

since � is faithful.)

These assumptions cause no loss in generality. Indeed, ifN has a faithful normal trace


, then simply replace N by ~N = N �
L1, where ~N is equipped with the atomless trace


 = �
m, withm the trace on L1 given by integration with respect to Lebesgue measure

on [0; 1]. N is (�-isomorphic to) a subalgebra of ~N , and hence Lp(N ) is isometric to a

subspace of Lp( ~N ), so we may as well assume our space X in Theorem 1.1 is already

contained in Lp( ~N ).

Now if M� N is a MASA, it follows easily that also � jM is atomless. Indeed, were

this false, we could choose P 6= 0, P 2 M so that 0 � Q � P , Q 2 M implies Q = 0 or

Q = P . But then choosing Q 2 P(N ), 0 � Q � P with 0 < �(Q) < �(P ), we obtain

that if fM is the von Neumann algebra generated by M and Q, fM is also commutative

and fM 6= M, a contradiction.

De�nition 2.1. Given f 2 N� = L1(�), we de�ne the modulus of uniform integrability

of f as the function on R+ , "! !(f; ") given by

w(f; ") = supf�(jfP j); P 2 P; �(P ) � "g :(2.1)

We also de�ne the lower modulus of f , "! !(f; "), as

!(f; ") = supfj�(fP )j : P 2 P; �(P ) � "g :(2.2)

To handle the case p 6= 1 in our Main Theorem, we also use the following p-moduli.

(When � is �xed, we set kfkp = kfkLp(�) = (�(jf jp))1=p. Also, for f 2 N , we set

kfk1 = kfkN .)

De�nition 2.2. Let 0 < p < 1 and f 2 Lp(�). The p-modulus of f , !p(f; �), the

symmetric p-modulus of f , !sp(f; �), and the spectral p-modulus of f , ~!p(f; �) are given,
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for 0 � " � 1, by

!p(f; ") = supfkfPkp : P 2 P; �(P ) � "g ;(2.3)

!sp(f; ") = supfkPfPkp : P 2 P; �(P ) � "g ;(2.4)

~!p(f; ") = sup

��Z
(r;1)

tpd(� Æ Ejf j(t))
�1=p

: � Æ Ejf j((r;1)) � "

�
(2.5)

where for g self-adjoint, Eg denotes the spectral measure for g.

It is trivial that all these moduli are increasing (i.e., non-decreasing) functions on

R+ , which are continuous at 0, thanks to the assumption that f 2 Lp(�). Actually,

the assumption that � is atomless yields that !p(f; �), !(f; �) and !sp(f; �) are absolutely

continuous on [0; 1].

We now give some basic properties of these moduli. The most important of these is

that several of them reduce to the uniform integrability modulus given in De�nition 2.1.

In particular, we obtain for f 2 Lp(�) and " > 0 that

!sp(f; ") � !p(f
�; ") = !p(f; ") = (!(jf jp; "))1=p � 2!sp(jf j; ") :

For any f aÆliated with N , we let t ! �(f; t) denote the decreasing rearrangement

of jf j on [0; 1]; �(f; t) = inffr � 0 : � Æ Ejf j((r;1)) � tg.

Lemma 2.3. Let 1 � p <1, f; g 2 Lp(�), and " > 0.

!p(f + g; ") � !p(f; ") + !p(g; ")(2.6)

and

!sp(f + g; ") � !sp(f; ") + !sp(g; ") :

If f is self-adjoint, then

!p(f; ") = !sp(f; ") = (!(jf jp; "))1=p

= maxfkfPkp : Pf = fP; P 2 P; and �(P ) = "g

=

�Z "

0

�p(f; t) dt

�1=p
(2.7)

and

!(f; ") � 2!(f; ") when p = 1 :(2.8)
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In general,

!sp(f; ") � !p(f; ") = !p(f
�; ")

= !p(jf j; ") = (!(jf jp; "))1=p � 2!sp(f; ")
(2.9)

and in case p = 1,

!(f; ") � !(f; ") � 4!(f; ") :(2.10)

Finally, let r = "�1=pkfkp. There exists a spectral projection P for jf j so that fP 2 N
with

kfPk1 � r and kf(I � P )kp � ~!p(f; ") � !p(f; ") :(2.11)

The case p > 1 uses the following classical submajorization inequality, due to H. Weyl

[W].

Sublemma. Let f and g be decreasing non-negative functions on (0; 1] so thatZ x

0

f(t) dt �
Z x

0

g(t) dt for all 0 < x � 1 :

Then also Z x

0

f p(t) dt �
Z x

0

gp(t) dt for all 1 < p <1 ;

all 0 < x � 1.

Remarks. 1. This follows easily from the corresponding \discrete" formulation, cf. [GK].

Also, the result holds in greater generality; one does not need the functions to be non-

negative, and moreover the conclusion generalizes to assert thatZ x

0

� Æ f(t) d �
Z x

0

� Æ g(t) dt for all 0 < x � 1

all continuous convex functions �.

2. All the assertions of Lemma 2.3 hold for semi-�nite von Neumann algebras N
that are atomless (i.e., have no minimal projections), endowed with a faithful normal

trace � . Several of its assertions can also be deduced from results in [FK] and [CS]. For

example, once one proves the equality of the �rst and last terms in (2.7), one may apply

Lemma 4.1 of [FK] to obtain several of the other equalities in (2.7), for p = 1; one then

has that !(T; ") = �"(T ) in the notation of [FK], and some other results in Lemma 2.3
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follow from Theorem 4.4 of [FK]. However we prefer to give a \self-contained" treatment,

in part because we take the modulus !(f; ") as the primary concept in our development.

Proof of Lemma 2.3. Let p; f; g and " be as in the statement. (2.6) is a trivial conse-

quence of the fact that k � kp is a norm (i.e., the triangle inequality). Also, we easily

obtain that

!sp(f; ") � !p(f; ") = !p(jf j; ")(2.12)

~!p(f; ") � !p(f; ")(2.13)

and in case p = 1,

!(f; ") � !(f; ") :(2.14)

Indeed, if P 2 P, then

jfP j = (Pf �fP )1=2 = (P jf j2P )1=2 =
�� jf jP ��(2.15)

which immediately yields the equality in (2.12). Since compression reduces the Lp(�)

norm, we have

kPfPkp = kP (fP )Pkp � kfPkp(2.16)

which gives the inequality in (2.12). If 0 � r and � Æ Ejf j((r;1)) � ", then setting

P = Ejf j((r;1)), �Z
(r;1)

tp d� Æ Ejf j(t)
�1=p

=


 jf jP



p
� !p(f; t) ;(2.17)

yielding the inequality in (2.13). (2.14) is trivial, since for any P 2 P,

j�(fP )j � �(jfP j) = kfPk1 :(2.18)

For the non-trivial assertions of the Lemma, we need the following basic identities (cf.

[FK], [CS]).

kfkpp =

Z 1

0

tp d� Æ Ejf j(t) �
Z 1

0

�p(f; t) dt :(2.19)

(The �nal inequality is also an equality, but this follows from the conclusion of our

Lemma.)

Now let f be self-adjoint. Let N (f) denote the von Neumann algebra generated by f ,

and let M be a MASA contained in N with N (f) � M. Then by our initial remarks,
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� jM is atomless. Let us identify (as we may), M and � jM with an atomless probability

space (
;S; �). It follows that we may choose a countably generated �-subalgebra S0
of S so that f is S0-measurable and also �jS0 is atomless. Denote the corresponding

von-Neumann algebra by: L1(�jS0) = M0.

It then follows that (
;S0; �) is measure-isomorphic to ([0; 1];B; m) (where B denotes

the Borel subsets of [0; 1] and m denotes Lebesgue measure on B), and moreover the

measure-isomorphism may be so chosen that the \random-variable" f is carried over to

the decreasing function t! �(f; t) (cf. Lemma 4.1 of [CS]). It now follows thatZ x

0

�p(f; t) dt � !pp(f; x) :(2.20)

Indeed, it follows that there exists a set S 2 S0 with �(S) = x and
R
S
jf jp d� =

�(j�Sf jp) =
R x
0
�p(f; t) dt (where �S may be interpreted as the projection in M0 ob-

tained via multiplication). Now we de�ne a quantity � (depending on x) by

� = supfkf k1 :  2 N ; k k1 � 1; j�( )j � xg :(2.21)

We are going to prove that there exists a G 2 P(M0) with �(G) = x and

�(jfGj) = �(jf jG) = � :(2.22)

Note that the �rst equality in (2.22) is trivial, since G$ f . But then all the equalities in

(2.7) for the case p = 1, follow immediately, for we have also that then jf jG = Gjf jG =

jGfGj and so trivially �(jf jG) � !(jf j; x) � � and �(jf jG) � !s1(f; x) � �; of course

also !(f; x) � �, hence by (2.22), � = !(f; x). Moreover by the argument for (2.20) and

(2.22) we have that � = �(jf jG) =
R x
0
�(f; t) dt.

Before proving this basic claim, let us see why it also yields (2.7) for p > 1 (via the

Sublemma). Still keeping x �xed, assume 0 < x � " � 1, and suppose P 2 P with

�(P ) � ". Now setting g = jfP j, g is self-adjoint and \supported" on P , whence it

easily follows that �(g; t) = 0 for t > ".

But now we obtain that Z x

0

�(g; t) dt �
Z x

0

�(f; t) dt :(2.23)
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Indeed, Z x

0

�(g; t) dt � !(g; x) = !(fP; x)

= supfkfPQk1 : �(Q) � xg
= supfj�(fPQ')j : ' 2 N ; k'k1 � 1g (by duality)

� �

(2.24)

(since PQ 2 N , kPQk1 � 1, and j�(PQ)j � �(Q) � x).

Now (temporarily) un�xing x, we also have that (2.23) holds for x > ", since �(g; t) =

0 for all t > ". Thus the Sublemma yields thatZ "

0

�p(g; t) dt �
Z "

0

�p(f; t) dt :(2.25)

Hence in view of (2.19),

kfPkpp �
Z "

0

�p(f; t) dt ;(2.26)

and so at last

!p(f; ") �
�Z "

0

�p(f; t) dt

�1=p

:(2.27)

Of course (2.20) combined with (2.27) now yields that

!p(f; ") =

�Z "

0

�p(f; t) dt

�1=p

;(2.28)

and now all the equalities in (2.7) follow for p > 1 as well.

We now establish (2.22). Using the polar decomposition of f and duality, we have

that

� = supfj�(f ')j :  ; ' 2 N ; k k1; k'k1 � 1 and j�( )j � xg
= supf�(jf j ) :  2 N ; 0 �  � 1; �( ) � xg
= supf�(jf j ) :  2 M; 0 �  � 1; �( ) � xg :

(2.29)

The last equality follows by a conditional expectation argument from classical probability

theory.

Indeed, given 0 �  � 1 in N with �( ) � x, there exists a unique ~ 2 M0 such that

�(g ) = �(g ~ ) for all g 2 L1(M0) :(2.30)

It follows that then 0 � ~ � 1 and �( ~ ) � x; this yields the desired equality.
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Now let K be de�ned:

K = f 2 M0 : 0 �  � 1 and �( ) � xg :(2.31)

Then K is a weak* compact convex set, thus

K = !� � cof' : ' 2 ExtKg(2.32)

and moreover

� = supf�(jf j') : ' 2 ExtKg :(2.33)

Now we claim that if ' 2 ExtK, ' is a projection. To see this, again identifying M0

with L1(
;S0; �jS0), we regard ' as an S0-measurable function on 
. Were ' not a

projection, we could choose 0 < Æ < 1
2

so that setting F = f! 2 
 : Æ � '(!) � 1� Æg,
then �(F ) > 0. Since � is atomless, choose a measurable E � F with �(F ) = 1

2
�(E).

Now de�ne g by

g =
Æ

2
�
E � Æ

2
�
F�E :(2.34)

Then g 6= 0, �(g) = 0, and 0 � '� g � 1. But then �('� g) � ", hence '� g 2 K and

' = ('+g)+('�g)
2

, contradicting the fact that ' 2 ExtK. (For a proof of this claim in a

more general setting, see [CKS].)

We �nally observe that the supremum in (2.29) is actually attained, thanks to the

!�-compactness of K. But it then follows that this is attained at an extreme point of

K, i.e., there indeed exists a G 2 P(M0) with �(G) = x, satisfying (2.22).

We may now also easily obtain (2.8). Letting f = f+ � f� where f+ � f� = 0 and

f+; f� � 0, we have (by the proof of (2.7))

!(f; ") = supf�(jf jP ) : P 2 P(M0); �(P ) � "g
= supf�(f+P ) + �(f�P ) : P 2 P(M0); �(P ) � "g
� 2 supfj�(fP )j : P 2 P(M0); �(P ) � "g
� 2!(f; ")

(2.35)

The �rst equality in (2.9) follows from the fact that for a general f aÆliated with N ,

there exists a unitary U in N with f = U jf j (thanks to the �niteness of N ). But then

jf j and jf �j are unitarily equivalent, which yields that �(f; t) = �(f �; t) for all t, and

hence the desired equality follows by the �nal equality in (2.7).
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It remains to prove the last inequalities in (2.9) and (2.10), and the �nal statement

of the lemma. Let f = g + ih with g and h self-adjoint (and so in Lp(�)). Then

!p(f; ") � !p(g; ") + !p(h; ") by (2.6)

= !sp(g; ") + !sp(h; ") by (2.7) :
(2.36)

But if ' = g or h, then

!sp('; ") � !sp(f; ") :(2.37)

Indeed, if P 2 P, �(P ) � ", then PfP = PgP + iPhP . But PgP and PhP are both

self adjoint, hence kP'Pkp � kPfPkp, yielding (2.37). Of course (2.36) and (2.37) yield

the �nal inequality in (2.9). Similarly, in case p = 1,

!(f; ") � !(g; ") + !(h; ") by (2.6)

� 2!(g; ") + 2!(h; ") by (2.8)

� 4!(f; ")

(2.38)

since we also have for ' = g or h, that !('; ") � !(f; ") (by an argument similar to that

for (2.37)).

To obtain the �nal assertion of the lemma, let r = �(f; "), and let E = Ejf j. Now if

�" = �(E[r;1)) then since

E([r;1)) =
^
fE([s;1)) : s < rg ;(2.39)

we have " � �". Thus

rp" � rp�" �
Z
[r;1)

tp d� Æ E(t) �
Z
[0;1)

tp d� Æ E(t) = kfkpp :(2.40)

Hence

r � "�1=pkfkp :(2.41)

Now also by the de�nition of r, �(E(r;1)) � ", and so

�(jf jpE(r;1)) =

Z
(r;1)

tpd� Æ E(t) � ~!p(f; ")
p :(2.42)

Finally, let f = U jf j be the polar decomposition of f . In particular, U is a partial

isometry belonging to N . Then P = E([0; r]) satis�es (2.11). Indeed, fP = U jf jP and
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k jf jPk1 � r, so also kU jf jPk1 � r, and

kU jf j(I � P )kp � k jf j(I � P )kp = (�(jf jpE(r;1))
1=p

� ~!p(f; ") by (2.42).

Remarks. 1. We have given a self-contained proof of the basic inequality (2.27) for the

sake of completeness. An alternate deduction may be obtained as follows. The remarks

preceding (2.20) actually yield that for any g 2 Lp(�), kgkp = k�(g; �)kp. Let f be as

in the proof of (2.27) and �x a P 2 P with �(P ) = ". We apply this observation to

g = fP . First, Proposition 1.1 of [CS] yields that for any 0 < x � 1,Z x

0

�(fP; t) dt �
Z x

0

�(f; t)�(P; t) dt :

Hence applying the Sublemma and the observation,

kfPkpp =

Z 1

0

�(fP; t)p dt �
Z 1

0

(�(f; t)�(P; t))p dt

=

Z "

0

�p(f; t) dt

which of course yields (2.26) and hence (2.27).

2. Rather than making use of the measure isomorphism of (
;S0; �jS0) with ([0; 1];B; m),

one can use the following more elementary procedure, in demonstrating (2.20). Let r =

�(f; x). Then it follows that setting P = Ejf j((r;1)), �(P ) � x and �(Ejf j([r;1))) � x.

Using that � jM is atomless, choose Q 2 P(M) withQ � Ejf j(frg) so that �(Q)+�(P ) =

x. Then

�(jf(P +Q)jp) = �(jf jp(P +Q))

= r�(Q) +

Z
(r;1)

tp d� Æ Ejf j(t)

=

Z x

0

�p(f; t) dt :

Here, the �rst two equalities are trivial; however the third one follows by a direct ele-

mentary (but somewhat involved) argument. (We are indebted to Ken Davidson for this

Remark.)

We next use the modulus of uniform integrability to establish a criterion for relative

weak compactness.
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De�nition 2.4. A subset W of L1(�) is called uniformly integrable if

lim
"!0

sup
f2W

!(f; ") = 0 :

Comment. The assumption that � is atomless implies uniformly integrable subsets are

bounded in L1(�). In fact, it then follows that if W satis�es that supf2W !(f; "0) <1
for some "0 > 0, W is bounded.

Proposition 2.5. Let (fn) be a given sequence in L1(�). The following are equivalent

(i) (fn) is relatively weakly compact in L1(�).

(ii) (fn) is uniformly integrable.

(iii) (jfnj) is relatively weakly compact.

(iv) (fn) is bounded in L1(�) and lim"!0 supn ~!1(fn; ") = 0.

(v) For all " > 0, there exists an r <1 so that for all n,

dL1(�)(fn; rBa(N )) < " :

Moreover if (fn) is bounded in L1(�) and

� = lim
"!0

sup
n
!(fn; ") > 0 ;(2.43)

there exists a sequence P1; P2; : : : of pairwise orthogonal projections in P and n1 < n2 <

� � � so that

j�(fnkPk)j >
�

5
for all k :(2.44)

Remark. Ba(N ) denotes the closed unit ball ofN ; thus r�Ba(N ) = ff 2 N : kfk1 � rg.
For W � L1(�) and f 2 L1(�), dL1(�)(f;W ) = inffkf � wk1 : w 2 Wg by de�nition.

Our proof of (iv) =) (v) reduces, via the proof of Lemma 2.3, to a standard truncation

argument in the case of commutative N .

Proof. Once (i) , (ii) is established, the other equivalences in this Proposition follow

easily from 2.3. Indeed, we have by the equalities in (2.9) that

lim
"!0

sup
n
!(fn; t) = lim

"!0
sup
n
!(jfnj; ") ;

whence we have the equivalence of (i){(iii). Now trivially (ii) =) (iv) since ~!1(f; ") �
!(f; ") for any f 2 L1(�) and " > 0 (see (2.11)). Suppose �rst that (fn) satis�es (v).
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Then given " > 0, for each n we may choose  n 2 N , k nk1 � r, with

kfn �  nkL1(�) < " :(2.45)

But then for any Æ < ",

!(fn; Æ) � !(fn �  n; Æ) + !( n; Æ) < "+ rÆ :(2.46)

Hence lim Æ!0 supn !(fn; Æ) � ", proving (ii). On the other hand, suppose (iv) holds.

Let " > 0, and choose Æ > 0 so that

~!1(fn; Æ) < " for all n :(2.47)

Also, let M = sup kfnkL1(�). Then setting r = Æ�1M , it follows by the �nal statement

of Lemma 2.3 that for each n, we may choose  n 2 r BaN with

k n � fnkL1(�) � ~!1(f; Æ) < " ;

proving (iv) =) (v).

To prove the equivalences of (i) and (ii), we use the following classical criterion due

to C. Akemann [A]: A bounded set W in the predual of a von-Neumann algebra M is

relatively compact if and only if for any sequence P1; P2; : : : of disjoint projections in

M,

lim
j!1

sup
w2W

jPj(w)j = 0 :(2.48)

Now suppose �rst that (fn) is not relatively weakly compact; then choosing disjoint

Pj's as in the above criteria, we obtain that

lim
j!1

sup
n
j�(Pjfn)j = Æ > 0 :(2.49)

But lim �(Pj) = 0, since the Pj's are disjoint. It follows immediately that

lim
"!0

sup
n
!(fn; ") � Æ ;(2.50)

which together with (2.10), proves that (ii) =) (i).

Finally, to show that (i) =) (ii), assume instead that � > 0, where � is given in

(2.43). It now suÆces to demonstrate the �nal assertion of 2.5, for then (fn) is not

relatively weakly compact by Akemann's criterion. Let 0 < " < � with �
4
� " > �

5
. By
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(2.43), choose n1 with

!

�
fn1 ;

1

2

�
> � � " :(2.51)

Then choose (by (2.10) of Lemma 2.3), Q1 2 P with �(Q1) � 1=2 and

j�(fn1Q1)j > � � "

4
:(2.52)

Since fn1 is integrable, ffn1g is uniformly integrable, so we may choose 0 < "2 < 1 so

that

!(fn1; "2) <
"

2
:(2.53)

Next by (2.43), choose n2 > n1 with

!(fn2; "2) > � � " :(2.54)

(It is easily seen, thanks to the uniform integrability of �nite sets in L1(�), that in fact

� = lim"!0 lim n!1!(fn; "); thus we may insure that n2 may be chosen larger than n1.)

Again using (2.54) and (2.10), choose Q2 2 P with �(Q2) � "2
22

and

j�(fn2Q2)j > � � "

4
:(2.55)

Then choose "3 < "2 so that

!(fn2; "3) <
"

2
:(2.56)

Continuing by induction, we obtain n1 < n2 < � � � , 1 = "1 > "2 > � � � , and projections

Q1; Q2; : : : in P so that for all k,

�(Qk) � "k
2k

(2.57)

!(fnk; "k+1) <
"

2
(2.58)

and

j�(fnkQk)j > � � "

4
:(2.59)
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Now set Pk = Qk ^ (^j>k(1 � Qj)), for k = 1; 2; : : : . Evidently the Pk's are pairwise

orthogonal. For each i, let ~Qi = Qi � Pi. Now by subadditivity of � ,

�(Pi) � �(Qi)�
�

1� �
^
j>i

(1�Qj)

�
� �(Qi)�

X
j>i

�(Qj) :

But X
j>i

�(Qj) �
X
j>i

"j
2j
< "i+1

X
j>i

1

2j
by (2.57)

< "i+1 :

Hence we have

�( ~Qi) �
X
j>i

�(Qj) < "i+1 :(2.60)

Thus by (2.58),

kfni ~Qik1 � !(fni; "i+1) <
"

2
:(2.61)

Hence

j�(fniPi)j = j�(fniQi � fni
~Qi)j

� � � "

4
� "

2
by (2.61)

� �

5
:

Remark. The proof of the implication (i) =) (ii) itself, may quickly be achieved, using

instead Theorem 3.5 of [DSS].

The following result is an immediate consequence of 2.5.

Corollary 2.6. A subset of L1(�) is relatively weakly compact if and only if it is uni-

formly integrable.

Proof. Let W be the subset, and suppose �rst W is relatively weakly compact, yet

lim"!0 supf2W !(f; ")
def
= � > 0. Then for each n, choose fn 2 W with !(fn;

1
2n

) > �� 1
2n

.

It follows immediately that also lim"!0 supn !(fn; ") = �, hence (fn) is not relatively

weakly compact by Proposition 2.5. If W is uniformly integrable, then W is bounded,
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and then W is relatively weakly compact by Akemann's criterion, (stated preceding

(2.48)).

Remark. Suppose kfik1 � 1 for all i, and (fi) satis�es (2.43). Letting the n1 < n2 < � � �
be as in the proof of 2.5, we show in Section 3, using arguments in [R1], that there exists

a subsequence (f 0i) of (fni) so that (f 0i) is 5
�
-equivalent to the usual `1-basis, with also

[f 0i ]
5
�
-complemented in L1(�). Hence (fi) has a subsequence equivalent to the `1-basis,

so of course (fi) is not relatively weakly compact.

We note �nally a consequence of the proof of 2.5, valid for all 1 � p <1 and arbitrary

(not necessarily atomic) �nite von Neumann algebras.

Corollary 2.7. Let 1 � p < 1, let M be a �nite von Neumann algebra endowed with

a faithful normal tracial state � , and let W be a bounded subset of Lp(�). Then the

following are equivalent.

(i) fjwjp : w 2 Wg is uniformly integrable.

(ii) lim"!0 supf2W ~!p(f; ") = 0.

(iii) limr!1 gW (r) = 0,

where the function gW is de�ned by

gW (r) = sup
w2W

dLp(�)(w; rBa(M)) for r > 0 :(2.62)

Proof. (i) =) (ii) follows immediately from the (obvious) inequality ~!p(f; ") � !p(f; ")

(stated as part of (2.11) in Lemma 2.3).

(ii) =) (iii). Assume that kwkp � M for all w 2 W . For r suÆciently large, de�ne

"(r) = " > 0 by

r = "�1=pM :(2.63)

Let f 2 W . Since "�1=pkfkp � r, by the �nal assertion of Lemma 2.3, we may choose P

a spectral projection for jf j so that

fP 2 r Ba(M) and kf(I � P )kp � ~!p(f; ") :(2.64)

It follows immediately that

gW (r) � sup
f2W

~!p(f; ") :(2.65)
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Thus (iii) holds by (ii), since "(r) ! 0 as r !1. (Note also that the �nal assertion of

2.3 does not involve the \atomless" hypothesis, since ~!p(f; ") is de�ned in terms of the

spectral measure for jf j.)
(iii) =) (i). Given f 2 W and " > 0, choose  2 r � Ba(M) with

kf �  kLp(�) < " :(2.66)

Then for any Æ < ",

!p(f; Æ) � !p(f �  ; Æ) + !p( ; Æ) < "+ rÆ :(2.67)

Hence lim Æ!0 supf2W !p(f; Æ) � ", proving that (i) holds, since " > 0 is arbitrary and

!p(f; t) = (!(jf jp; t))1=p for any f and t, by (2.9) of Lemma 2.3.

3. Proof of the Main Theorem

We �rst assemble some preliminary lemmas, perhaps useful in a wider context. N
and � are assumed to be as in Section 2. Let r1; r2; : : : denote the Rademacher functions

on [0; 1]; equivalently, an independent sequence of f1;�1g-valued random variables (rj)

with P (rj = 1) = P (rj = �1) = 1
2

for all j.

Lemma 3.1. Let 1 � p < 2 and (fn) be a bounded unconditional basic sequence in

Lp(�), so that (jfijp)1i=1 is uniformly integrable. Then limn!1 n�1=pkf1 + � � �+fnkLp(�) =

0.

Remark. Recall from the introduction that a sequence (xn) in a Banach space is called

unconditional if there is a constant u so that�


 nX
i=1

�icixi




 � u



 nX

i=1

cixi




� for all n and scalars

c1; : : : ; cn and �1; : : : ; �n with j�ij = 1 for all i :

(3.1)

(xn) is called u-unconditional if (3.1) holds.

Proof of 3.1. Suppose (fn) is u-unconditional. Then (fn) is u-equivalent to (fn 
 rn)

in Lp(N �
L1), so it suÆces to prove the same conclusion for (fn 
 rn) instead. Let

� = � 
m, where m is Lebesgue measure on [0; 1). We may also assume without loss of

generality that kfnkLp(�) � 1 for all n. Now let " > 0, and choose Æ > 0 so that

!(jfnjp; Æ) � " for all n(3.2)
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(using that (jfnjp) is uniformly integrable). By the �nal statement of Lemma 2.3, we

may by (3.2) choose for each j a Pj 2 P = P(N ) so that fjPj 2 N with

kfjPjk1 � 1

Æ
and kfj(I � Pj)kpp � " :(3.3)

Then �xing n,


 nX
i=1

fi 
 ri





Lp(�)

�



 nX

i=1

fiPi 
 ri





Lp(�)

+



 nX

i=1

fi(I � Pi)
 ri





Lp(�)

:(3.4)

But 


 nX
i=1

fiPi 
 ri





Lp(�)

�



 nX

i=1

fiPi 
 ri





L2(�)

�
p
n

Æ
(3.5)

since kfiPik1 � 1
Æ

for all i.

On the other hand, since Lp(M) is type p with type p constant 1 for any von-Neumann

algebra M, 


 nX
i=1

fi(I � Pi)
 ri





Lp(�)

�
� nX

i=1

kfi(I � Pi)kpLp(�)
�1=p

� "n1=p by (3.3).

(3.6)

(This fact follows by Clarkson's inequalities | see the discussion in the proof of the

next lemma.) We thus have that

lim
n!1

n�1=p



 nX

i=1

fi 
 ri





Lp(�)

� lim
n!1

n1=2

Æn1=p
+ " = "(3.7)

by (3.5) and (3.6). Since " > 0 is arbitrary, the conclusion of the lemma follows.

Remarks. 1. It follows easily from the above proof that in fact if (fn) satis�es the

hypothesis of 3.1, then limn!1 n
�1=pkf 01 + � � �+f 0nkp = 0 uniformly over all subsequences

(f 0n) of fn.

2. The proof of Lemma 3.1 yields the following quantitative result. Fix " > 0, and let

(fj) be a bounded sequence in L
p(�) so that there exists an r <1 with dLp(�)(fj; rBaN ) <

" for all j. Then lim n!1E!n
�1=pkPn

j=1 rj(w)fjkLp(�) � ". Indeed, for each j, choose

'j 2 rBaN with kfj � 'jkLp(�) � ". Then �xing n, (3.4){(3.6) yield


 nX
i=1

fi 
 ri





Lp(�)

�



 nX

i=1

'i 
 ri





Lp(�)

+



 nX

i=1

(fi � 'i)
 ri





Lp(�)

� r
p
n+ "n1=p :
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Hence lim n!1n
�1=pkPn

i=1 fi 
 rikLp(�) � " as desired.

We next give a criterion for a �nite or in�nite sequence in Lp(�) to be equivalent to

the usual `p basis.

Lemma 3.2. Let u � 1, Æ > 0, 1 � p < 2, and f1; : : : ; fn elements of Ba(Lp(N )) be

given so that (fi)
n
i=1 is u-unconditional. Assume there exist pairwise orthogonal projec-

tions P1; : : : ; Pn in P so that

�(jPjfjPjjp) � Æp for all 1 � j � n :(3.8)

Then (fi)
n
i=1 is C-equivalent to the usual `pn basis, where C = u

p
3 Æ�1.

Proof. We �rst note that (using interpolation), Lp(�) satis�es Clarkson's inequalities:

for all x; y 2 Lp(�),

kx + ykpp + kx� ykpp � 2(kxkpp + kykpp) :(3.9)

It follows immediately by induction on n that Lp(�) is type p with constant one; that

is, for any x1; : : : ; xn in Lp(�),X
A_�

k � x1 � � � � � xnkpp =

Z 1

0




 nX
i=1

ri(!)xi




p
p
d!

�
� nX

i=1

kxikpp
�
:

(3.10)

Now let scalars a1; : : : ; an be given, and let f =
Pn

i=1 aifi. We obtain from (3.10) that

since (fi) is u-unconditional,

kfkp � u

� nX
i=1

jaijp
�1=p

:(3.11)

Now �x ! and set f! =
Pn

i=1 airi(!)fi. Then

kf!kpp �
nX
j=1

kPjf!Pjkpp :(3.12)

Thus integrating over ! and again using unconditionality,

kfkpp �
1

up

Z 1

0

kf!kpp d!

� 1

up

nX
j=1

Z 1

0

kPjf!Pjkpp d! by (3.12).

(3.13)
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But �xing j, since Lp(�) is cotype 2 with constant at most 31=2,Z 1

0

kPjf!Pjkpp d! �
1

3p=2

�X
i

kPjaifiPjk2p
�p=2

� 1

3p=2
kPjajfjPjkpp

� 1

3p=2
jajjpÆp by (3.8).

(3.14)

Thus in view of (3.13),

kfkpp �
Æp

up3p=2

� nX
j=1

jajjp
�
;(3.15)

so (3.11) and (3.15) now imply the conclusion of Lemma 3.2.

Our last preliminary result yields an estimate for equivalence to the `pn basis in terms

of p-moduli.

Lemma 3.3. Let 0 < " < �=2, n � 1, and f1; : : : ; fn 2 Ba Lp(�) be such that (f1; : : : ; fn)

is u-unconditional and there are Æ1 � Æ2 � � � � � Æn > 0 so that for all 1 � j � n and

all k with j < k (if j < n)

!p(fj; Æj) > � and !p(fj; Æk + Æk+1 + � � �+ Æn) <
"

2
:(3.16)

Then (f1; : : : ; fn) is C-equivalent to the `pn basis where

C � u
p

3
��

2
� "
��1

:

Proof. By Lemma 2.3, (see (2.9)), we have, �xing 1 � j � n, that

!sp(fj; Æj) >
�

2
:(3.17)

Hence we may choose Qj 2 P with

kQjfjQjkp > �

2
and �(Qj) � Æj :(3.18)

De�ne projections Pj and ~Qj by

Pj = Qj ^
^
k>j

(1�Qk) and ~Qj = Qj � Pj :(3.19)

Then

QjfjQj = PjfjPj + ~QjfjPj +Qjfj ~Qj :(3.20)
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Now we have by subadditivity of � that �(
V

k>j(1 � Qk)) � 1 �Pk>j Æk, and so again

by subadditivity,

�(Pj) � �(Qj)�
�

1� �

�^
k>j

1�Qk

��
� �(Qj)�

X
k>j

Æk :

Thus �( ~Qj) <
P

k>j Æk. Hence we have

k ~QjfjPjkp � k ~Qjfjkp � !p

�
f �j ;
X
k>j

Æk

�

= !p

�
fj;
X
k>j

Æk

�
� "

2
by (3.16)).

(3.21)

By the same argument,

kQjfj ~Qjkp � "

2
:(3.22)

Thus from (3.18), (3.20), (3.21) and (3.22), we obtain

kPjfjPjkp � �

2
� " :(3.23)

Of course P1; : : : ; Pn are pairwise orthogonal ; hence Lemma 3.2 now immediately yields

the conclusion of 3.3.

Lemma 3.3 immediately yields an in�nite dimensional conclusion as well. Combining

this and Lemma 3.1 we obtain the following de�nitive result.

Corollary 3.4. Let (fn) be a bounded unconditional sequence in Lp(�), 1 � p < 2. The

following are equivalent:

(a) (fn) has a subsequence equivalent to the usual `p basis.

(b) (jfnjp) is not uniformly integrable.

Proof. (a) =) (b) follows immediately from Lemma 3.1. Assume that (b) holds and

also assume without loss of generality that kfnkp � 1 for all n. Then by Lemma 3.1,

�
def
= lim

"!0
sup
n
!p(fn; ") > 0 :(3.24)
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Now Lemma 3.3 yields that there is a subsequence (f 0n) of (fn) so that

(f 0n) is
cu

�
-equivalent to the `p basis,(3.25)

where c is an absolute constant.

Indeed, �x 0 < " < �
2
. Choose Æ1 � 1 and n1 so that

!p(fn1; Æ1) > � � " :(3.26)

Suppose n1 < � � � < nj and Æ1 > Æ2 � � � > Æj chosen so that

!p(fni; Æi+1 + � � �+ Æj) <
"

2
for all 1 � i < j :

By continuity of the functions t ! !p(fni ; t) for i < j and the fact that fnj 2 Lp(�),

choose �Æj+1 < Æj so that

!p(fni; Æi+1 + � � �+ Æj + �Æj+1) <
"

2
for all 1 � i � j :(3.27)

Then choose Æj+1 � �Æj+1 and nj+1 > nj so that

!p(fnj+1; Æj+1) > � � " :(3.28)

This completes the inductive choice of n1 < n2 < � � � .
Setting f 0k = fnk , then (f 01; : : : ; f

0
n) satis�es the hypotheses of Lemma 3.3 for all n, and

hence (f 0n) is u
p

3(�
2
� ")�1-equivalent to the `p basis by 3.3. By taking " small enough,

we obtain c � 7 in (3.25).

Remark. The hypothesis that (fn) is unconditional may be omitted when p = 1, as

pointed out in the remark following the proof of Corollary 2.6. Also, it's not hard to

show that the sequence (f 0n) constructed above has its closed linear span complemented

in Lp(�). Finally, it follows from known (rather non-trivial) results that if 1 < p <

1 and N is hyper�nite, then every semi-normalized weakly null sequence in Lp(N )

has an unconditional subsequence. Indeed, assuming (as we may) that N acts on a

separable Hilbert space, Lp(N ) has an unconditional �nite dimensional decomposition

(see [SF], [PX1]), which yields the above statement. Thus also in the hyper�nite case,

the hypothesis that (fn) is unconditional may be omitted. We do not know, however, if

this is so for general N .

Corollary 3.5. Let (fn) be a bounded unconditional sequence in Lp(�), 1 � p < 2. The

following are equivalent.
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(a) For every subsequence (f 0n) of (fn)

lim
n!1

n�1=p



 nX

i=1

f 0i





Lp(�)

= 0 :

(b) (jfnjp) is uniformly integrable.

Proof. Both implications are proved by contradiction. (a) =) (b): Assume (b) is false.

Then by Corollary 3.4 there exists a subsequence (f 0n) equivalent to the usual `p-basis.

In particular

lim inf
n!1

n�1=p



 nX

i=1

f 0i





Lp(�)

> 0 :

which contradicts (a).

(b) =) (a). This follows from Lemma 3.1, since condition (b) implies that (jf 0nj)p is

uniformly integrable for any subsequence (f 0n) of (fn).

We now turn to the proof of the Main Theorem. First we give some preliminary

results concerning ultrapowers of Banach spaces and the standard construction of the

ultrapower of a �nite von Neumann algebra (cf. [McD], [V]).

Fix U a free ultra�lter on N . For a given Banach space X, let `1(X) denote the set

of bounded sequences in X, under the norm k(xn)k = supn kxnk, and set

EU = f(xn) 2 `1(X) : lim
n2U

kxnk = 0g :(3.29)

Then XU , the ultrapower of X with respect to U , is given by

XU = `1(X)=EU :(3.30)

Now �x N a �nite von Neumann algebra with a normal faithful tracial state � , and

de�ne IU by

IU = f(xn) 2 `1(N ) : lim
n2U

�(x�nxn) = 0g :(3.31)

Then IU is a norm-closed two-sided ideal in `1(X); we de�ne N U (a di�erent object

than NU !) by

N U = `1(N )=IU :(3.32)
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Then by the references cited above, N U is a W �-algebra (i.e., an abstract von Neumann

algebra) with a normal faithful tracial state �U given by

�U (�(xn)) = lim
n2U

�(xn)(3.33)

where � : `1(N ) ! N U is the quotient map.

The next result yields that Lp(N U) may be regarded as a subspace of the Banach

space ultrapower Lp(N )U .

Lemma 3.6. Let 1 � p <1 and let Yp denote the closure of `
1(N ) in the Banach space

`1(Lp(N )). Then � has a unique extension to a bounded linear map ~� : Yp ! Lp(N U).

Moreover, for (xn) 2 Yp,

k~�((xn))kLp(�U ) = lim
n2U

kxnkLp(�) :(3.34)

Fixing p as in 3.6 and letting � : `1(Lp(N )) ! Lp(N )U be the quotient map,

Lemma 3.6 yields there is a unique isometric embedding i : Lp(N U) ! Lp(N )U so

that the following diagram commutes:

Lp(N U)

~� i

�
�
�
��7

?
- Lp(N )UYp

.

(3.35)

Proof. Since � is a �-homomorphism of `1(N ) onto N U , we have for any continuous

function f : [0;1) ! C and any x = (xn) 2 `1(N ),

� ((f(x�nxn))1n=1) = f(�(x�)�(x)) :(3.36)

Applying this to f(t) = jtjp=2, we get by the trace formula (3.33) that

k�(x)kLp(�U ) = lim
n2U

kxnkLp(�) :(3.37)

In particular,

k�(x)kLp(�U ) � sup
n
kxnkLp(�)

= kxk`1(Lp(N )) :
(3.38)
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Thus � extends by continuity to a contraction ~� : Yp ! Lp(N U). Now let x = (xn)

belong to Yp, and let " > 0. Then choose y = (yn) in `1(N ) so that

kx� yk`1(Lp(N )) < " :(3.39)

It follows from (3.39) that��� k�(x)kLp(�U ) � k�(y)kLp(�U )

��� < "(3.40)

and ��� lim
n2U

kxnkLp(�) � lim
n2U

kynkLp(�)
��� < " :(3.41)

Since (3.37) holds, replacing \x" by \y" in its statement, we have from (3.40) and (3.41)

that ��� k�(x)kLp(�U ) � lim
n2U

kxnkLp(�)
��� < 2" :(3.42)

Since " > 0 is arbitrary, (3.34) holds for all x = (xn) in Yp.

Lemma 3.7. Let 1 � p < 2, and let (xij) be an in�nite matrix in Lp(N ) so that for

some C � 1, each row and each column of (xij) is C-equivalent to the usual `2-basis.

Then for every free ultra�lter U on N

sup
j2N

lim
i2U

dLp(�)(xij; rBa(N )) ! 0 as r!1(3.43)

Proof. De�ne for each j 2 N a function gj : R+ ! R+ by

gj(r) = sup
i
dLp(�)(xij; rBa(N )) :

For �xed j, (xij)
1
i=1 is C-equivalent to the usual `2-basis, so by Corollary 3.4 and Corol-

lary 2.7, (jxijjp)1i=1 is uniformly integrable and

lim
r!1

gj(r) = 0 :(3.44)

Now (3.44) implies that (xij)
1
i=1 belongs to Yp. Let ~� be as in the statement of Lemma 3.6

and de�ne xj by

xj = ~�
�

(xij)
1
i=1

�
2 Lp(N U) :

Now we claim that

(xj) is C-equivalent to the `2-basis.(3.45)
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Indeed, using the hypotheses of Theorem 1.1 and Lemma 3.6, we have for any n and

scalars c1; : : : ; cn, that


 nX
j=1

cjxj





Lp(�U )

=



~�

 � nX
j=1

cjxij

�1
i=1

!



Lp(�U )

= lim
i2U




 nX
j=1

cjxij





Lp(�)

by (3.34)

C�
�X

jcjj2
�1=2

:

Now de�ne g : R+ ! R+ by

g(r) = sup
j
dLp(�U )(xj; rBa(N U)) :

Again by (3.45) and Corollary 3.4, (jxjjp)1j=1 is uniformly integrable in Lp(�U), so by

Corollary 2.7 we have that

lim
r!1

g(r) = 0 :(3.46)

Now let " > 0. Since � is a quotient map of `1(N ) onto N U , it follows that �xing j,

there exists for every r > 0, (yij)
1
i=1 2 rBa(N ) so that

kxj � �((yij)
1
i=1)kLp(�U ) < g(r) + " :

Hence by Lemma 3.6,

lim
i2U

kxij � yijkLp(�) < g(r) + " ;

which implies that

lim
i2U

dLp(�)(xij; rBa(N )) < g(r) + " :

Hence by (3.46)

lim sup
r!1

�
sup
j2N

lim
i2U

dLp(�)(xij; rBa(N ))

�
� " :

Since " > 0 was arbitrary, we get (3.43).

Proof of Theorem 1.1. Let 1 � p < 2, and let (xij) be as in Theorem 1.1, and let U be

a free ultra�lter on N . Put

h(r) = sup
j

lim
i2U

dLp(�)(xij; rBa(N )); r 2 R+ :(3.47)
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Then h : R+ ! R+ is a decreasing function and by (3.43)

lim
r!1

h(r) = 0 :(3.48)

We claim that (3.47) and (3.48) imply that for a suitable choice of natural numbers

i1 < i2 < � � � one has

(jxij ;jjp)1j=1 is uniformly integrable.(3.49)

To prove (3.49) put for j 2 N

Gj =

j\
r=1

Gj;r(3.50)

where for j; r 2 N ,

Gj;r =

�
i 2 N j dLp(�)(xij; rBa(N )) < h(r) +

1

r

�
:(3.51)

By (3.47) each Gj;r 2 U , and hence also Gj 2 U for all j 2 N . Since U is a free ultra�lter,

each Gj is in�nite, so we can choose successively i1 < i2 < � � � such that ij 2 Gj for all

j. Put yj = xij ;j, j 2 N and W = fyj; j 2 Ng, and put as in Corollary 2.7

gW (r) = sup
j2N

dLp(�)(yj; rBa(N )) ; r 2 R+ :(3.52)

To prove (3.49) we just have to show that gW (r) ! 0 when r !1 (cf. Corollary 2.7).

Let " > 0. By (3.48) we can choose r0 2 N such that

h(r0) +
1

r0
< " :(3.53)

When j � r0, ij 2 Gj � Gj;r0. Hence by (3.51) and (3.53)

dLp(�)(yj; r0 Ba(N )) < " ; j � r0 :(3.54)

Since N =
S

r>0 rBa(N ) is dense in Lp(�) we have for every j 2 N ,

lim
r!1

dLp(�)(yj; rBa(N )) = 0 :

Hence, we may choose r1 � r0, such that

dLp(�)(yj; r1 Ba(N )) < " ; j = 1; : : : ; r0 � 1 :(3.55)

By (3.54) and (3.55), gW (r) < " for all r � r1. This shows that limr!1 gW (r) = 0 and

hence by Corollary 2.7, (jyjjp)1j=1 is uniformly integrable, i.e., (3.49) holds. Thus by the
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assumption that (yj) is unconditional, Corollary 3.5 yields that for any subsequence (y0j)

of (yj),

lim
n!1

n�1=p



 nX

j=1

y0j





Lp(�)

= 0 :(3.56)

Putting now jk = k, we have yk = xik;jk and Theorem 1.1 follows.

4. Improvements to the Main Theorem

We obtain here results that are stronger than the Main Theorem. In particular,

Theorem 4.2 is also needed in Section 6 (speci�cally, for the proof of Theorem 6.9). The

arguments in this section do not use the ultraproduct construction and technique of

Section 3. They are in a sense more elementary, and also more delicate, than those of

the previous section.

We use the following terminology: given a matrix (xij), a sequence (xik;jk) of elements

of the matrix is called a generalized diagonal if i1 < i2 < � � � and j1 < j2 < � � � . A set W

(or matrix (xij)) in a Banach space is called semi-normalized if there are 0 < Æ � K <1
with Æ � kwk � K for all w 2 W .

The main result of this section goes as follows.

Theorem 4.1. Let N be a �nite von-Neumann algebra, 1 � p < 2, and (xij) be an

in�nite semi-normalized matrix in Lp(N ). Say that (xij) satis�es triple-alternatives

provided one of the following three possibilities hold.

I. Some column has a subsequence equivalent to the usual `p basis.

II. There is a C � 1 so that for all n, there exists a row which contains n elements

C-equivalent to the usual `pn basis.

III. There is a generalized diagonal (yk) so that

n�1=p



 nX

i=1

y0i





p
! 0 as n!1

for all subsequences (y0i) of (yi).

Assume that every generalized diagonal is a basic sequence. Then (xij) satis�es triple

alternaties provided any of the following hold:

(i) p = 1.
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(ii) 1 < p, every column is an unconditional basic sequence and

(iia) there is a � � 1 so that every row is a �-basic sequence.

(iii) 1 < p, N is hyper�nite, every column is a basic sequence, and ii(a) holds.

It remains an open question if (xij) satis�es triple alternatives when 1 < p < 2, and

N is not hyper�ntie but still the remaining conditions in (iii) holds. Our proof of 4.1

yields that under these assumptions, the following three alternatives hold: II or III of

Theorem 4.1, or

I0. There is a C � 1 and a column so that for all n, the column contains n elements

C-equivalent to the usual `pn basis.

We �rst prove a fundamental special case of 4.1, which also immediately yields our

main theorem (Theorem 1.1).

Theorem 4.2. Let N , p, and (xij) be as in the �rst sentence of Theorem 4.1. Then

(xij) satis�es triple-alternatives provided every column and generalized diagonal is un-

conditional and there is a u � 1 so that every row is u-unconditional.

To recover the Main Theorem from Theorem 4.2, let (xij) be as in the hypotheses of

the Main Theorem, and simply note that Alternatives I and II of 4.1 are impossible, since

otherwise one would obtain a constant � so that the `pn and `2n bases are �-equivalent

for all n. Alternative III now yields the conclusion of the Main Theorem.

Remark. (Added December 2001.) Although we couldn't see how to obtain an ultra-

product proof of Theorem 4.2, Yves Raynaud subsequently succeeded in doing so (un-

published notes at this time).

Let us say that the rows of (xij) contain `pn-sequences if condition II of 4.1 holds,

with a similar de�nition for the columns. Since obviously we can interchange rows and

columns in the statement of 4.2, we then obtain the following immediate consequence of

Theorem 4.1:

Theorem 4.10. Let N , p and (xij) be as in the �rst sentence of Theorem 4.1. Assume

that every generalized diagonal is a basic sequence, and that any of the following hold:

(i) p = 1.

(ii) 1 < p and there is a u � 1 so that every row and column is u-unconditional.
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(iii) 1 < p, N is hyper�nite, and there is a � � 1 so that every row and column is a

�-basic sequence.

Then one of the following three alteratives holds:

I. Some column or some row has a subsequence equivalent to the usual `p basis.

II. Both the rows and the columns contain `pn-sequences.

III. Condition III of 4.1 holds.

Remark. (Added December 2001.) The third named author of the present paper and

Q. Xu have subsequently also obtained a result analogous to Theorem 4.10 for 0 < p < 1.

Proof of Theorem 4.2

We may assume without loss of generality that kxijkp � 1 for all i and j. We introduce

the following notation, for all " > 0 and all i; j = 1; 2; : : : .

!ij(") = !p(xij; ")(4.1)

!j(") = sup
i
!ij(") :(4.2)

Now assume that Case I of Theorem 4.1 does not occur. We then have by Corollary 3.4

(and Lemma 2.3) that (jxijjp)1i=1 is uniformly integrable for all j, and hence

lim
"!0

!j(") = 0 for all j :(4.3)

We now use the following (hopefully intuitive) convention. A set of rows R of (xij) is

identi�ed with a set J � f1; 2; : : : g viaR = fRi : i 2 J g where Ri = fxij : j = 1; 2; : : :g
for all i 2 J . Columns are just identi�ed with j 2 N ; i.e., j � Cj = fxij : i = 1; 2; : : :g.

Case II. There is an � > 0 and an in�nite set of rows J so that for all further in�nite

sets of rows J 0 � J , all Æ > 0, and all columns j0, there is a column j > j0 so that

fi 2 J 0 : !i;j(Æ) > �g is in�nite.(4.4)

Intuitively, the �nal statement means that looking down the jth column of the sub-

matrix with rows J 0, then in�nitely many of the moduli !i;j(Æ) are bigger than �.
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We shall show that Case II yields II of Theorem 4.1. In fact, we shall show that then,

via Lemma 3.3,8<:
for every n, there exists a row Ri and elements xij1 ; : : : ; xijn in

Ri, j1 < � � � < jn, with (xijk)
n
k=1

7u

�
-equivalent to the `pn basis.

(4.5)

Let J0 be the initial set of rows satisfying Case II. Let Æ1 = 1=2, and choose j1 so that

J1
def
=fi 2 J0 : !ij1(Æ1) > �g if in�nite.(4.6)

Next, using (4.3), choose �Æ2 < Æ1 so that

!j1(�Æ2) <
"

2
;(4.7)

and choose Æ2 < �Æ2. Now using the assumptions of Case II, choose j2 > j1 so that

J2
def
=fi 2 J1 : !ij2(Æ2) > �g is in�nite.(4.8)

For the general inductive step, suppose n > 1, in�nite J1 � � � � � Jn�1 and j1 < � � � <
jn�1, Æ1 > �Æ2 > Æ2 > � � � > �Æn�1 > Æn�1 > 0 have been chosen so that for all 1 � ` < n�1,

!j`(
�Æ`+1) <

"
2

and Æ`+1 + � � � + Æn�1 < �Æ`+1. Using (4.3), choose 0 < �Æn < Æn�1 so that

!jn�1(�Æn) < "
2
; then choose 0 < Æn < �Æn so that also Æ`+1 + � � � + Æn < �Æ`+1 for all

1 � ` < n� 1. We thus have that

!j`(Æ`+1 + � � �+ Æn) <
"

2
for all 1 � ` � n� 1 :(4.9)

Then choose jn > jn�1 so that

Jn def
=fi 2 Jn�1 : !ijn(Æn) > �g is in�nite.(4.10)

This completes the inductive construction. Now �x n, let i 2 Jn, and let fk = xijk for

1 � k � n. Then (f1; : : : ; fn) satis�es the assumption of Lemma 3.3. Indeed, the fi's

are u-unconditional by hypothesis, and for each k, 1 � k � n

!ijk(Æk) = !p(fk; Æk) > �(4.11)

and

!p(fk; Æm + Æm+1 + � � �+ Æn) � !jk(Æm + Æm+1 + � � �+ Æn) <
"

2
for k < m � n :

(4.12)

Thus (xijk)
n
k=1 satis�es the conclusion of (4.5) in view of Lemma 3.3, proving Case II of

4.1 holds.
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We now suppose that Case II does not hold, i.e., we have

Case III. For all � > 0 and in�nite sets of rows J , there exists an in�nite set of rows

J 0 � J , a Æ > 0, and a column j so that for all columns j � j,

!i0j(Æ) � � for all but �nitely many i0 2 J 0 :(4.13)

(Note that we get j � j instead of j > j by just replacing j by j+ 1).

Intuitively, the �nal statement means that now, looking down the jth column of the

submatrix with rows J 0, then all but �nitely many of the moduli !i0;j(Æ) are no bigger

than �.

We shall now construct i1 < i2 < � � � and j1 < j2 < � � � so that

lim
"!0

sup
k
!ik;jk(") = 0 :(4.14)

Thus we obtain that (jxikjk jp)1k=1 is uniformly integrable, and hence Case III of Theo-

rem 4.1 holds by Corollary 3.5.

We �rst claim that we may choose in�nite sets of rows J1 � J2 � � � � , columns

j1 < j2 < � � � , and numbers 1 � Æ1,
1
2
� Æ2,

1
3
� Æ3 � � � so that for all k,

for all j � jk, !ij(Æk) � 1

2k
for all but �nitely many i 2 Jk :(4.15)

Indeed, �rst choose J1 an in�nite set of rows, j1 2 N and Æ1 > 0 so that for all j � j1,

(4.13) holds, where J 0 = J , � = 1=2, and Æ1 = Æ.

Now suppose Jk, jk, and Æk have been chosen. Setting � = 1=2k+1, choose an in�nite

Jk+1 � Jk, j > jk and a Æ > 0 so that for all j � j, (4.13) holds for J 0 = Jk+1. Now

simply let Æk+1 = minfÆ; 2�1Æk; 1
k+1
g. Since the functions !i` are non-decreasing, we

have that also for all j > j, !ij(Æk+1) � 1=2k+1 for all but �nitely many i 2 Jk+1. This

completes the inductive construction, with (4.15) holding for all k.

Now choose i1 2 J1 with !i1;j1(Æ1) � 1=2. Then also for all but �nitely many i 2 J2,

!i;j2(Æ1) � 1=2 and !i;j2(Æ2) � 1=4. Hence we can choose i2 > i1 (i2 2 J2), with

!i2;j2(Æ1) �
1

2
and !i2;j2(Æ2) �

1

4
:(4.16)

But we can also choose 0 < "2 � Æ2 so that

!i1;j1("2) �
1

4
:(4.17)
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Thus also

!i2;j2("2) �
1

4
:(4.18)

Now suppose i1 < � � � < in and Æ1 = "1; : : : ; "n have been chosen so that "j � Æj for

all j � n and

!ik;jk("i) �
1

2i
for all 1 � k � n; 1 � i � n :(4.19)

Now by (4.15), choose in+1 > in (in+1 2 Jn+1) so that

!in+1;jn+1(Æ`) �
1

2`
for all 1 � ` � n + 1 :(4.20)

This is possible, since for each `, !i;jn+1(Æ`) � 1=2` for all but �nitely many i 2 Jn+1.

Again, since the "`'s are smaller than the Æ`'s,

!in+1;jn+1("`) �
1

2`
for all 1 � ` � n :(4.21)

Finally, choose "n+1 � Æn+1 so that

!i`;j`("n+1) � 1

2n+1
for all 1 � ` � n :(4.22)

Again, we also have

!in+1;jn+1("n+1) � 1

2n+1
:(4.23)

This completes the inductive construction of i1 < i2 < � � � and "1; "2; : : : . Then for

each i, we have

sup
k
!ik;jk("i) �

1

2i
:(4.24)

It then follows immediately that (4.14) holds, since if " � "i, then also

sup
k
!ik;jk(") �

1

2i
:(4.25)

This completes the proof of Theorem 4.2, in view of the comment after (4.14).

Proof of Theorem 4.1

We use theorems from Banach space theory and of course Theorem 4.2. To obtain

the case p > 1, of Theorem 4.1 we require the following remarkable result, due to Brunel

and Sucheston ([BrS1], [BrS2]; see also [G]). (A sequence (xj) of non-zero elements

in a Banach space is called �-suppression unconditional if for all n, scalars c1; : : : ; cn,
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and F � f1; : : : ; ng, kPj2F cjxjk � �kPn
j21 cjxjk. It is easily seen that if (xj) is �-

suppression unconditional, it is 2�-unconditional over real scalars and 4�-unconditional

over complex scalars. Actually, a neat result of Kaufman-Rickert yields that such a

sequence is ��-unconditional (over complex scalars) [KR].)

Lemma 4.3. Let (xn) be a semi-normalized weakly null sequence in a Banach space X,

and let " > 0. Then there exists a subsequence (yj) of (xj) so that for any k � j1 < j2 <

� � � < j2k , (yji)
2k

i=1 is (1+")-suppression unconditional (and hence �(1+")-unconditional).

Remarks. 1. Actually, the results of Brunel-Sucheston yield much more than this. They

obtain that under the hypotheses of Lemma 4.3, there exists a Banach space E with a

suppression 1-unconditional semi-normalized basis (ej) and a basic subsequence (yj) of

(xj) so that:

(i) (ej) is isometrically equivalent to all of its subsequences and

(ii) for all " > 0 and k large enough, and any k � j1 < � � � < j2k , (yji)
2k

i=1 is (1 + ")-

equivalent to (e1; : : : ; e2k).

In the standard Banach space terminology, (ej) is called a subsymmetric basis for E,

and a spreading model for (xj).

2. A classical result of Bessaga-Pe lczy�nski yields that any seminormalized weakly

null sequence in a Banach space has a basic subsequence (in fact, for every " > 0, a

subsequence which is (1 + ")-basic). However it is obtained in [MR] that there exists

a normalized weakly null sequence in a certain Banach space with no unconditional

subsequence, and in [GM] that there exists an (in�nite dimensional) re
exive Banach

space with no (in�nite) unconditional basic sequences at all. Thus in a sense, Lemma 4.3

is the best possible positive result in this direction.

We now give consequences of this lemma that are needed for Theorem 4.1. The �rst

one follows from Lemma 3.1 and Lemma 4.3.

Corollary 4.4. Let 1 � p < 2 and (fn) be a weakly null sequence in Lp(�) so that

(jfijp)1i=1 is uniformly integrable. Then there is a subsequence (f 0i) of (fi) so that

lim
n!1

n�1=pk"1y1 + � � �+ "nynkLp(�) = 0
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uniformly over all subsequences (yi) of (f 0i) and all choices ("j) of scalars with j"jj � 1

for all j.

Remark. The result shows (and also follows from): any spreading model for (fj) is not

equivalent to the `p-basis.

Proof of 4.4. We may assume without loss of generality that kfjkp � 1 for all j. Let

" > 0 be such that �(1 + ") � 4, and choose (yj) a subsequence of (fj) satisfying the

conclusion of Lemma 4.3. Let (rj) denote the Rademacher functions on [0; 1] (as de�ned

in Section 3), set ~N = N �
L1, and let gj = yj
rj for all j. Then (gj) is 2-unconditional

(over complex scalars) and of course (jgjjp) is also uniformly integrable in L1( ~N ), whence

by Lemma 3.1,

lim
n!1

n�1=pkg1 + � � �+ gnkLp( ~N ) = 0 :(4.26)

Let " > 0, and choose N so that if n � N , then

n�1=pkg1 + � � �+ gnkLp( ~N ) <
"

16
(4.27)

and

n�1=p(1 + log2 n) <
"

2
:(4.28)

Now �x n, and choose k with

2k�1 � n < 2k :(4.29)

Of course then

k � 1 + log2 n :(4.30)

Now if "1; : : : ; "n are given scalars of modulus at most one, then


 nX
j=k+1

"jyj





Lp(N )

� 16



 nX
j=k+1

gj





Lp( ~N )

:(4.31)

Indeed, yk+1; : : : ; yn is 4-unconditional by the conclusion of Lemma 4.3 (since n � k <

n < 2k), yielding (4.31). On the other hand,


 kX
j=1

"jyj





Lp(N )

� k � 1 + log2 n by (4.30).(4.32)
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Thus we have

n�1=p



 nX

j=1

"jyj





p
� n�1=p




 kX
j=1

"jyj



p

+ n�1=p



 nX
j=k+1

"jyj





p

� n�1=p(1 + log2 n) + 8n�1=p



 nX
j=k+1

gj





Lp( ~N )

� "

2
+ 8n�1=p




 nX
j=1

gj





Lp( ~N )

� "

2
+
"

2
= " :

(4.33)

(The last inequality holds by (4.27); the next to the last by (4.28) and the fact that (gj)

is 1-unconditional over real scalars.) The uniformity of the limit over all subsequences

of (yi) follows from the fact that the limit in (4.26) is uniform over all subsequences of

(gi), thanks to the proof of Lemma 3.1.

We next note a general consequence of Lemma 4.3, which follows from ultraproducts.

Corollary 4.5. Let X be a uniformly convex Banach space and let � � 1, " > 0, and k

be given. Then there is an n � k so that for any �-basic sequence (x1; : : : ; xn) in X, there

exist 1 � j1 < j2 < � � � < jk so that (xj1; : : : ; xjk) is suppression (1 + ")-unconditional

(and hence �(1 + ")-unconditional).

Proof. Suppose the conclusion were false. Then we could �nd for every n � k, an

n-tuple (xn1 ; : : : ; x
n
n) of elements in X so that (xn1 ; : : : ; x

n
n) is �-basic, yet no k terms

are suppression (1 + ")-unconditional. By homogeneity, we may assume that kxni k = 1

for all n and i � n. Now let U be a non-trivial ultra�lter on N and let XU denote

the ultrapower of X with respect to U . (That is, we let EU denote the subspace of

`1(X) consisting of all bounded sequences (xj) in X with limj2U kxjk = 0, and then set

XU = `1(X)=EU .) Since X is uniformly convex, so is XU . Now de�ne a sequence (~xj)

in XU by ~xj = �(xnj )1n=1, for all j, where � : `1(x) ! XU is the quotient map and we

set xnj = 0 if n < j. It then follows that (~xj) is also �-basic and normalized; since XU is

re
exive, (~xj) is weakly null. But then by Lemma 4.3, there exist k terms ~xj1; : : : ; ~xjk

of this sequence with (~xji)
k
i=1 (1 + "

2
)-suppression unconditional. Standard ultraproduct
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techniques yield that � > 0 given, there exists an n > jk so that (~xj1; : : : ; ~xjk) is

(1 + �)-equivalent to (xnj1 ; : : : ; x
n
jk

) and hence the latter is (1 + �) (1 + "
2
)-suppression

unconditional. Of course we have a contradiction if (1 + �)(1 + "
2
) < 1 + ".

Proof of Theorem 4.1 (ii) and (iii). We use the same notations and assumptions as in

the proof of Theorem 4.2 (e.g., we assume that kxijkp � 1 for all i and j). Assume that

Case I of 4.1 does not occur. Then again we have that (jxijjp)1i=1 is uniformly integrable

for all j, and hence Case II of 4.1 holds, by the proof of Theorem 4.2. This is also the

case under assumption (iii) of Theorem 4.1. For suppose to the contrary that for some

i, (fj)
def
=(xij) has the property that (jfjjp) is not uniformly integrable. Then setting

gj = fj 
 rj in Lp( ~N ) (as de�ned in the proof of Corollary 4.4), (gj) is unconditional

and again (jgjjp) is not uniformly integrable, hence there exist n1 < n2 < � � � with

(gnj) equivalent to the usual `p-basis, by Corollary 3.4). But (fnj) has an unconditional

subsequence (f 0j) by [SF], [PX1]. Of course then (f 0j) is equivalent to (g0j)
def
=(f 0j 
 rj), a

subsequence of (gnj), whence (f 0j) is equivalent to the `p basis.

Now replace the entire matrix (xij) by (~xij)
def
=(xij
rij) in Lp( ~N ) (where ~N = N �
L1),

where rij is just a \renumbering" of (rj) via N � N (precisely, let ' : N � N ! N be

a bijection, and set rij = r'(i;j)). Now !p(xij; ") = !p(~xij; ") for all i; j, and "; hence

assuming Case II in the proof of Theorem 4.2 occurs, we have that Alternative II holds

for the matrix (~xij). But then since Lp(N ) is uniformly convex, II holds for (xij) itself, by

Corollary 4.5. Indeed, let C be as in II of 4.1, let k be given. Choose n � k satisfying the

conclusion of 4.5 for X = Lp(N ) (with �(1 + ") � 4, say). Choose i and m1 < � � � < mn

with (~xj)
n
j=1 C-equivalent to the `pn basis where we set xj = ximj

and ~xj = ~ximj
for all

j. Then choose j1 < � � � jk with (xji) 4-unconditional. But then (xji) is 8-equivalent to

(~xji), and is hence 8C-equivalent to the `pk basis.

If Case II in the proof of 4.2 does not occur, we have by Case III that there exists

a generalized diagonal (~xin;jn)1n=1 of (xij) so that (j~xin;jnjp)1n=1 is uniformly integrable.

Hence immediately, (jxin;jnjp)1n=1 is uniformly integrable, and so by Corollary 4.4, (xin;jn)

has a subsequence (yk) (which is of course also a generalized diagonal) satisfying III of

4.1. This completes the proof of Theorem 4.1 (ii).

To obtain 4.1 (i), we need two further \Banach" properties of preduals of von Neumann

algebras. The �rst one holds in complete generality.
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Lemma 4.6. Let M be a von-Neumann algebra, and let (fn) be a bounded sequence

in M� such that (fn) is not relatively weakly compact. Then (fn) has a subsequence

equivalent to the `1-basis.

We give a \quantitative" proof of this result at the end of this section, using the case

for commutative N established in [R1]. In fact, Lemma 4.6 is due to H. P�tzner [Pf].

However, the second result we need is a \localization" of our proof, which does not seem

to follow directly from previously known material. This result yields that given k and �,

then for n suÆciently large, if n elements of Ba(N�) (N �nite) have mass at least � on

pairwise orthogonal projections, then k of these are C-equivalent to the `1k-basis. Here,

C depends only on �, n on k and �. To make this more manageable, let us simply say

that n elements f1; : : : ; fn of the predual of a von-Neumann algebra M are �-disjoint

provided there exist pairwise orthogonal projections P1; : : : ; Pn in M such that

kPifiPik1 � � for all i :(4.34)

(Here, if P 2 M and f 2 M�, PfP is de�ned by: hT; PfP i = hPTP; fi for all T 2 M.

Also, k � k1 denotes the predual norm on M�.) (We shall also say f1; : : : ; fn are disjoint

provided there are pairwise orthogonal projections P1; : : : ; Pn in M with fi = PifiPi for

all i. Evidently if the fi's are normalized, they are disjoint i� they are 1-disjoint.)

Lemma 4.7. Given � > 0, then if C > 1
�
, then for all k � 1, there is an n � k so that

for any von-Neumann algebra N and �-disjoint elements f1; : : : ; fn in Ba(N�), there

exist j1 < � � � < jk with (fji)
k
i=1 C-equivalent to the `1k basis.

We delay the proof of this result, and complete the proof of Theorem 4.1, i.e., the case

p = 1. Again we make the same assumptions and use the same notation as in the proof

of 4.2. Now suppose that Alternative I of Theorem 4.1 does not occur. We now have,

immediately from Proposition 2.5 and Lemma 4.6, that (xij)
1
j=1 is uniformly integrable

for all i, and hence again Alternative II holds, by the proof of 4.1. Now again assume

Case II of the proof 4.1 holds. Then the proof of 4.1II yields that for all n, there exists

a row i and j1 < � � � < jn so that (fk)
n
k=1 is �

3
-disjoint, where fk = xijk for all k.

Indeed, we obtain there (following formula (4.3)), that for all n, there is a sequence

(f1; : : : ; fn) satisfying the assumptions of Lemma 3.3 (for � > 0 and 0 < " < �
2
) except
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for the u-unconditionality assumption. But the proof of Lemma 3.3 yields precisely that

(f1; : : : ; fn) is �
2
�" disjoint; the unconditionality assumption was only used, in invoking

Lemma 3.2. Of course we may choose " = �
6
, and so (f1; : : : ; fn) is then �

3
-disjoint.

Then Lemma 4.7 immediately yields Case II of Theorem 4.1. Finally, assuming Case II

of the proof of 4.2 does not occur, we obtain again from the proof of Case III that there

exists a generalized diagonal (gk) of (xij) with (gk) uniformly integrable. Hence there

exists a weakly convergent subsequence (fj) of (gk), by Proposition 2.5. But since we

assume the generalized diagonals of (xij) are basic sequences, (fj) must be weakly null.

Now Corollary 4.4 immediately yields Case III of Theorem 4.1.

Remark. The case p = 1 of Theorem 4.1 may be alternatively formulated as follows

(with essentially no assumptions at all on the matrix (xij)).

Theorem 4.1(i)00. Let N be a �nite von-Neumann algebra and let (xij) be an in�nite

semi-normalized matrix in N�. Then one of the following holds.

I. Some column has a subsequence equivalent to the usual `1 basis.

II. There is a C � 1 so that for all n, there exists a row with n elements C-equivalent

to the usual `1n basis.

III. Some generalized diagonal of (xij) is weakly convergent.

It remains to prove Lemma 4.7. This is an immediate consequence of the following

two results, which in turn follow from the techniques in [R1]. (We denote the \predual

norm" of a general von-Neumann algebra by k � k1.)

Lemma 4.8. Let N be an arbitrary von-Neumann algebra, and f1; f2; : : : be a �nite or

in�nite sequence in N� with kfik1 � 1 for all i. Assume there are pairwise orthogonal

projections P1; P2; : : : in N and 0 < " < Æ � 1 so that for all i,

kPifiPik1 � Æ and
X
j 6=i

kPjfiPjk1 � " :(4.35)

Then f1; f2; : : : is
1

Æ�" equivalent to the usual basis of `1 (resp. `1n if the sequence has n

terms).

Lemma 4.9. Let k � 1 and 0 < " < 1 be given. There is an n � k so that given

any von Neumann algebra N , f1; : : : ; fn 2 Ba(N�), and pairwise orthogonal projections
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P1; : : : ; Pn in N , there exist j1 < j2 < � � � < jk so that for all 1 � i � k,X
r 6=i

kPjrfjiPjrk1 < " :(4.36)

Remark. We obtain that we may choose n = k` where ` = [1="] + 1.

Proof of Lemma 4.7. Let C > 1
�

and choose 0 < " < � with 1
��" < C. Let n be as in

Lemma 4.9, f1; : : : ; fn as in the hypotheses of 4.7, and choose j1; : : : ; jk satisfying the

conclusion of 4.9. Then (fji)
k
i=1 is C-equivalent to the `1k basis by Lemma 4.8.

Proof of Lemma 4.8. Let n < 1 be less than or equal to the number of terms in the

sequence, and let c1; : : : ; cn be given scalars with
nX
i=1

jcij = 1 :(4.37)

Let g =
Pn

i=1 cifi. Since the Pj's are pairwise orthogonal, we have that

kgk1 �
nX
j=1

kPjgPjk1 :(4.38)

Now �xing j,

kPjgPjk1 � kPjcjfjPj + Pj
X
i 6=j

cifiPjk1

� jcjjÆ �
X
i6=j

jcij kPjfiPjk1
(4.39)

by (4.35) and the triangle inequality. Hence using (4.38) and (4.39),

kgk1 �
nX
j=1

jcjjÆ �
nX
j=1

X
i6=j

jcij kPjfiPjk1

= Æ �
nX
i=1

jcij
X
j 6=i

kPjfiPjk1 by (4.37)

� Æ � " by (4.37) and (4.35).

(4.40)

This completes the proof.

We �nally deal with Lemma 4.9. This result follows from the simplest possible setting:

N = `1n , the fi's are in `1+n (i.e., the positive part of N� = `1n), and the orthogonal

projections Pi correspond to multiplication by �fig for all i. That is, we �nally have the

following elementary disjointness result.
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Lemma 4.10. A. Let f1; f2; : : : be a bounded in�nite subset of `1+, and let " > 0. There

exist n1 < n2 < � � � so that for all i,X
j 6=i

fni(nj) < " :(4.41)

B. Let k 2 N and " > 0 be given. There exists an N � k so that given f1; : : : ; fN 2
Ba `1+N , there exist n1 < n2 < � � � < nk so that for all 1 � i � k, (4.41) holds.

Remark. Part A is a special case of Lemma 1.1 of [R1]. Part B appears to be new. We

obtain in fact that we may let N = k` where ` = [1="] + 1.

Proof of Lemma 4.9. Let " > 0 and N be as in the conclusion of 4.10B. Let the fi's and

Pi's be as in the statement of 4.9. For each i, de�ne ~fi in `1+ by ~fi(j) = kPjfiPjk1 for

all 1 � j � N . Then

NX
j=1

kPjfiPjk1 = k ~fik1 � kfik1 � 1(4.42)

for all i. Now the conclusion of B yields j1 < � � � < jk so thatX
r 6=i

~fji(jr) < " for all 1 � i � k :(4.43)

Then fj1 ; : : : ; fjk satis�es the conclusion of Lemma 4.9.

At last, we give the proof of Lemma 4.10.

We �rst prove A, using an argument due to J. Kupka [Ku]. We then adapt this

argument to obtain Part B. We regard elements of `1+ as �nite measures on subsets of N

and use the notation: f(E) =
P

j2E f(j) for f 2 `1+ and E � N . Thus, the conclusion

of A may be restated: There exists an in�nite M � N so that

fi(M � fig) < " for all i 2M :(4.44)

Let N1; N2; : : : be pairwise disjoint in�nite subsets of N with N =
S1

j=1Nj.

Case I. For each i, there exists ni 2 Ni so that

fni(N � Ni) < " :(4.45)

It then follows that M = fn1; n2; : : : g satis�es (4.44). Indeed, for all i,

fn1; n2; : : : ; ni�1; ni+1; : : : g � N � Ni(4.46)
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since the Ni are disjoint, so (4.44) follows from (4.45) and (4.46).

Case II. Case I fails. Thus we may choose i1 so that

fj(N � Ni1) � " for all j 2 Ni1 :(4.47)

Now repeat the same procedure; let M1 = Ni1 , and choose M1
1 ;M

2
1 ; : : : disjoint in�nite

subsets of M1 with M1 =
S1

j=1M
j
1 . If Case I fails for M1, we will obtain M2

def
= M j

1 (for

some j) so that

fj(M1 �M2) � " for all j 2M2 :(4.48)

Again divide up M2. This \failure of Case I" must terminate before ` steps, where

kfjk1 < `" for all j. Indeed, otherwise, we �nally obtain N = M0 � M1 � M2 � � � �M`

and a j 2M` with

fj(Mi�1 �Mi) � " for all i ;(4.49)

whence kfjk � `", a contradiction.

Proof of Part B. Let ` = [1="] + 1 and let N = k`. Let then f1; : : : ; fN 2 Ba(`1+N )

be given. Of course the conclusion of Part B may be restated: There exists an M �
f1; : : : ; Ng with #M = k so that (4.44) holds.

Let N1; : : : ; Nk be disjoint subsets of f1; : : : ; Ng, each of cardinality k`�1, and just

repeat the argument for Part A, Case I. If Case I fails, we repeat again the rest of the

argument: that is, we �nd i1 satisfying (4.47) and set M1 = Ni1 . Now we just choose

M1
1 ; : : : ;M

k
1 disjoint subsets of M1, each of cardinality k`�2; if Case I fails for M1, we

continue as before, with M2 satisfying (4.48) and M2 � M1, #M2 = k`�2. If Case I

fails for ` steps, we obtain �nally f1; : : : ; Ng = M0 � M1 � � � �M` with #Mi = k`�i

for all i, so #M` = 1; and for j the unique number of M`, (4.49) holds, whence again

kfjk � `" > 1, a contradiction.

Let us say that a �nite or in�nite sequence (fi) satisfying the hypotheses of Lemma 4.8

is (Æ; ")-relatively disjoint . It then follows from arguments in [R1] that the closed linear

span of such a sequence is K-complemented in N�, where K depends only on Æ and

". Indeed, let W denote the closed linear span of the fi's; let P1; P2; : : : be as in the

statement of 4.8, and let gj = PjfjPj for all j, then let Z denote the closed linear span

of the gj's. Of course then Z is isometric to `1 (or `1n if the sequence has n terms). We
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may easily de�ne a contractive projection R : N� ! Z as follows. For each j, choose by

duality an element 'j 2 N of norm one with 'j = Pj'jPj and

h'j; gji = kgjk1 :(4.50)

(Note that 1 � kgjk1 � Æ for all j.) Then de�ne

R(f) =
X

h'j; fikgjk�11 gj(4.51)

for f 2 N�. Next, de�ne an operator U : W ! Z by

U(
X

cjfj) =
X

cjgj(4.52)

for all cj's with
P jcjj <1. Then Lemma 4.8 yields that U is invertible with

kU�1k � (Æ � ")�1 :(4.53)

Now a simple computation yields that

kU(w)�R(w)k � "

Æ
kU(w)k for all w 2 W :(4.54)

It then follows that RjW is an isomorphism mapping W onto Z, with

k(RjW )�1k �
h�

1� "

Æ

�
(Æ � ")

i�1 def
= K :(4.55)

Finally, Q
def
=(RjW )�1R is thus a projection from N� onto W , with kQk � K. It

then follows that the elements satisfying the conclusion of Lemma 4.7 have a \well-

complemented" linear span.

We also obtain �nally, a quantitative proof of Lemma 4.6, yielding also the result of

H. P�tzner [Pf] that the preduals of von Neumann algebras have Pe lczy�nski's property

(V �).

Lemma 4.60. Let N be an arbitrary von Neumann algebra, and W be a subset of BaN�

so that there exists a sequence P1; P2; : : : of orthogonal projections in N with

lim j sup
w2W

jhPj; wij def= � > 0 :(4.56)

Then given C > 1
�
, there exists a sequence w1; w2; : : : in W which is C-equivalent to the

usual `1-basis, with closed linear span C-complemented in N�.
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Remark. By Akemann's criterion [A], it thus follows that any bounded non-relatively

weakly compact subset of N� contains a sequence equivalent to the `1-basis, with com-

plemented span. This is an equivalent formulation of property (V �).

Proof. It follows easily that we may choose (fi) a sequence in W and n1 < n2 < � � � so

that

lim jhPnj ; fjij � � :(4.57)

Then given 0 < " < �0 < �, Lemma 4.10A yields a subsequence (f 0j) of (fj) so that (f 0j) is

(�0; ")-relatively disjoint. Finally, since �0 may be arbitrarily close to � and " arbitrarily

small, we deduce from Lemma 4.8 and (4.55) that given C > 1
�
, (f 0i) may be chosen

C-equivalent to the `1-basis with span C-complemented in N�.

5. Complements on the Banach/operator space structure of

Lp(N )-spaces

We give here several applications of our main result, and the techniques used in its

proof. For the �rst one, we let Row (resp. Col) denote the operator row (resp. column)

space. We also follow the notation in [Pi2]: for a given operator space X, Xop (the

\opposite" of X) denotes the following operator space: if X � B(H) and (xij) is an

element of K 
op X, regarded as a matrix, then Xop def
=f(xji) : (xij) 2 K 
sp Xg, where

K denotes the space of compact operators on `2 and K
spX denotes the spatial tensor

product of K and X. One then has that Row� = Rowop = Col.

Proposition 5.1. Let N be a �nite von Neumann algebra. Then neither Row nor Col

is completely isomorphic to a subspace of L1(N ).

Proof. Suppose to the contrary that there exists an X � L1(N ) with X completely

isomorphic to Row. But then Xop � L1(N op) is completely isomorphic to Col. Let

then M = N op �
N . M is again a �nite von-Neumann algebra, and now Xop
̂X is a

subspace of L1(M); that is, Col 
̂Row is completely isomorphic to a subspace of L1(M).

But Col 
̂Row is (completely isometric to) C1; this contradicts our main result.

Remark. An operator space X is called homogeneous if every bounded linear operator

on X is completely bounded; X is called Hilbertian if it is Banach isomorphic to a
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Hilbert space. The above argument then yields the following generalization (since Row

is indeed a homogeneous Hilbertian operator space).

Proposition. Let X be an in�nite dimensional Hilbertian homogeneous operator space

so that X� is completely isomorphic to Xop, and let N be a �nite von Neumann algebra.

Then X is not completely isomorphic to a subspace of L1(N ).

To obtain this, �rst observe that the hypotheses yield that X� 
op X is Banach

isomorphic to K. Hence X�
̂X is Banach isomorphic to C1. But X�
̂X is completely

isomorphic to Xop
̂X by hypothesis; as above, if we then assume that X � L1(N ), we

obtain that C1 Banach embeds in L1(M), again contradicting our main result.

Our next result yields characterizations of those subspaces of Lp(N ) which contain

`p isomorphically (1 � p < 2, N �nite). We have need of the following concept. (For

isomorphic Banach spaces X and Y , d(X; Y ) = inffkTk kT�1k : T : X ! Y is a

surjective isomorphism).

De�nition 5.2. Let 1 � p � 1. A Banach space X is said to contain `pn's if there is a

C � 1 so that for all n, there exists a subspace Xn of X with d(Xn; `
p
n) � C.

A remarkable result of J.L. Krivine yields that if a Banach space contains `pn's, it

contains them almost isometrically ([Kr]; cf. also [R3], [L]). That is, then for every

" and n, one can choose Xn � X with d(Xn; `
p
n) < 1 + ". (Of course the famous

Dvoretzky theorem yields that every in�nite dimensional Banach space contains `2n's

almost isometrically; also the case p = 1 or 1 in Krivine's Theorem was established

previously by Giesy-James [GJ].)

We also need the following natural notion.

De�nition 5.3. Let N be a von Neumann algebra and 1 � p < 1. A sequence (gn)

in Lp(N ) is called disjointly supported provided there exists a sequence P1; P2; : : : of

pairwise orthogonal projections in N so that gj = PjgjPj for all j. A semi-normalized

sequence (fn) in Lp(N ) is called almost disjointly supported if there exists a disjointly

supported sequence (gj) in Lp(N ) so that limn!1 kfn � gnkLp(N ) = 0.

Of course a disjointly supported sequence of non-zero elements spans a subspace iso-

metric to `p. A standard elementary perturbation argument then yields that an almost
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disjointly supported sequence in Lp(N ) has, for every " > 0, a subsequence spanning a

subspace (1 + ")-isomorphic to `p. The next result yields in particular that for N �nite,

and 1 � p < 2, subspaces of Lp(N ) which are isomorphic to `p always contain almost

disjointly supported sequences.

Theorem 5.4. Let 1 � p < 2 and N be a �nite von Neumann algebra; let � be a faithful

normal tracial state on N . Let X be a closed linear subspace of Lp(N ). The following

assertions are equivalent.

1. X contains a subspace isomorphic to `p.

2. X contains `pn's.

3. fjxjp : x 2 Ba(X)g is not uniformly integrable.

4. supf2Ba(X) !p(f; ") = supf2Ba(X) ~!p(f; ") = 1 for all " > 0.

5. The p and 1 norms on X are not equivalent (in case p > 1).

6. X contains an almost disjointly supported sequence.

7. For all " > 0, X contains a subspace (1 + ")-isomorphic to `p.

Remarks. 1. This result is established for the commutative case in [R2]; the case p > 2

is also valid, and follows (with some extra work for assertion 5) from the results in [S1].

Again, the commutative case for p > 2 is immediate from the classical work of Kadec-

Pe lczy�nski [KP]. Also, condition 5 may be replaced by the following one, valid also for

p = 1:

50. The p and q quasi-norms are not equivalent on X for all 0 < q < p.

Added December 2001: The same result has subsequently been established in [SX] for

all p with 0 < p < 1.

2. The equivalences of 1, 5, 6 and 7 of Theorem 5.4 follow also from recent work of

N. Randrianantoanina, which establishes these also for semi-�nite von-Neumann algebras

N and 1 � p <1, p 6= 2 ([Ra1] and [Ra2]).

3. (Added December 2001). Recent work of Y. Raynaud and Q. Xu yields that the

equivalences 1, 2, 6, and 7 hold for arbitrary von Neumann algebras N and 1 � p <1
(see Theorem 5 of [RayX] and its proof).
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Proof. We show 1 =) 2 =) 4 =) 6 =) 7 =) 1, 4 =) 3 =) 2, and

4 =) 5 =) 3 in case p > 1. Of course 1 =) 2 and 7 =) 1 are trivial. So is

4 =) 3, in virtue of Lemma 2.3.

2 =) 4. Fix Æ > 0. Choosing an \almost isometric" copy of `pn in X by Krivine's

theorem, we shall show that for n large enough, one of the natural basis elements fi of

this copy is such that ~!p(fi; Æ) is almost equal to 1.

De�ne � by

� = supf~!p(x; Æ) : x 2 X; kxk � 1g :(5.1)

Let C > 1, and using Krivine's theorem, choose f1; : : : ; fn 2 Ba(X) with (f1; : : : ; fn)

C-equivalent to the `pn basis. In particular, we have that


 nX
i=1

�fi




p
� 1

C
n1=p for all choices of � :(5.2)

Again by the �nal assertion of Lemma 2.3, we may choose for each i a  i 2 N so that

k ik1 � Æ�1=p and kfi �  ik � ~!p(fi; Æ) � � :(5.3)

Thus letting � be as in the proof of Lemma 3.1, again we have

1

C
n1=p � k

X
fi 
 rikLp(�) by (5.2)

� k
X

 i 
 rikL2(�) + k
X

(fi �  i)
 rikLp(�)
� Æ�1=p

p
n + �n1=p

(5.4)

by (5.3) and the fact that Lp(�) is type p with constant one.

Thus

1

C
� 1

Æ1=pn
1

p
� 1

2

� � :(5.5)

Since C > 1 and n are arbitrary, we obtain that � = 1, proving 2 =) 4.

4 =) 6. We �rst note that assuming 4, then given 1 > " > 0, we may choose f 2 X
with kfkp = 1 and P 2 P(N ) with �(P ) < " so that

kfPkp > 1� " and kf(I � P )kp < " :(5.6)

Indeed, choose f in X of norm one so that ~!p(f; ") > 1� ". Then choose P a spectral

projection for jf j with kfPkp > (1� "p)1=p. But then since P commutes with jf j,
kfPkpp = �(jf jpP ) and kf(I � P )kpp = �(jf jp(I � P )) ;(5.7)
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whence

1 � �(jf jpP ) + �(jf jp(I � P )) � (1� ") + kf(I � P )kpp(5.8)

1 � �(jf jpP ) + �(jf jp(I � P ))(5.9)

� 1� "p + kf(I � P )kpp ;
so kf(I � P )kp < " as desired. Now since jf j and jf �j are unitarily equivalent in N , we

also obtain the existence of a Q 2 P (N ) with �(Q) < " so that

kQfkp > 1� " and kf(I �Q)kp < " :(5.10)

Then let R = P _Q. We have

�(R) < 2" and kf �RfRk < 2" :(5.11)

Indeed, the �rst estimate is trivial; but

f � RfR = f(I � R) + (I � R)fR = f(I � P )(I � R) + (I � R)(I �Q)fR

and so (5.11) follows from (5.6) and (5.10).

Now using that for " > 0, f of norm 1 in X and R may be chosen satisfying (5.11) we

choose inductively f1; f2; : : : in X of norm one, 1 > Æ1 > Æ2 > � � � > 0, and Q1; Q2; : : :

in P(N ) so that for all j,

kfj �QjfjQjkp < 1

2j
and �(Qj) � Æj

2j
(5.12)

!p(fj; Æj+1) <
1

2j
:(5.13)

To see this is possible, just choose Æ1 = 1=2, then choose f1 and Q1 thanks to (5.11).

Suppose f1; : : : ; fn, and Æn chosen. By uniform integrability of fjfnjpg, choose Æn+1 < Æn

so that !p(fn; Æn+1) < 1=2n+1. Then choose fn+1 and Qn+1 satisfying (5.12) for j = n+1.

Now de�ne projections Pj and ~Qj by (3.19). The Pj's are orthogonal and by the

argument for the last part of Proposition 2.5, �xing j, we have

�( ~Qj) �
X
k>j

�(Qk) � Æj+1

X
k>j

1

2k
by (5.12)

< Æj+1 :

(5.14)

Hence

k ~Qjfjkp � !p(f
�
j ; Æj+1) = !p(fj; Æj+1) <

1

2j
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(by (5.13)) and also

kfj ~Qjkp � !p(fj; Æj+1) <
1

2j
:

Hence

k ~QjfjQjkp < 1

2j
and kQjfj ~Qjkp < 1

2j
:(5.15)

Hence �nally we have by (5.12) and (5.15),

kfj � PjfjPjk � 3

2j
for all j :(5.16)

Thus (fj) is almost disjointly supported, proving that 6 holds.

6 =) 7 is a standard perturbation argument in Banach space theory. Assuming 6

holds, we may choose a normalized disjointly supported sequence (gn) in Lp(N ) and a

sequence (fn) in X so that X
kgn � fnkp <1 :(5.17)

But now (gn) is 1-equivalent to the `p-basis, and a simple perturbation argument gives

that given " > 0, there is an N so that (fn)n�N is (1 + ")-equivalent to the `p basis.

(Thus (fn) is \almost isometrically equivalent" to the `p basis.)

3 =) 2. We have that if p = 1, X contains a subspace isomorphic to `1 by

Lemma 4.6, so assume p > 1. We may choose a sequence (fn) of norm-1 elements of X,

Æ1 > Æ2 > � � � with Æn ! 0 and � > 0 so that

!p(fn; Æn) > � for all n :(5.18)

By passing to a subsequence, we may assume without loss of generality that (fn) is

weakly convergent, with weak limit f , say. But

!p(fn � f; Æn) � !p(fn; Æn)� !p(f; Æn)(5.19)

and hence

lim n!1!p(fn � f; Æn) � � :(5.20)

That is, we have now obtained a weakly null sequence (gn) in X so that

(jgnjp) is not uniformly integrable.(5.21)
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By Corollary 3.4, after passing to a subsequence of (gn), we may assume

(gn 
 rn) is C-equivalent to the usual `p-basis in Lp(�) for some C.(5.22)

Now Lemma 4.3 yields that for all n, there exist m1 < m2 < � � � < mn so that

gm1
; : : : ; gmn is 4-unconditional, and hence

(gmi
)ni=1 is 4C-equivalent to the `pn-basis.(5.23)

This proves that 2 holds. Now assume p > 1.

4 =) 5. Let " > 0 and choose f 2 X with kfkp = 1 and P 2 P(N ) with �(P ) < "

so that (5.6) holds. Then of course

kf(I � P )k1 < " :(5.24)

Now letting 1
p

+ 1
q

= 1,

kfPk1 � kfkpkPkq � "1=q by H�older's inequality.(5.25)

Thus

kfk1 < "+ "1=q :(5.26)

Since kfkp = 1 and " > 0 is arbitrary, 5 holds.

5 =) 3. Suppose 5 holds, yet 3 were false. Choose 0 < Æ so that

~!p(f; Æ) � 1

2
for all f 2 Ba(X) :(5.27)

Let f 2 X, kfkp = 1. By the last statement of Lemma 2.3, choose P a spectral

projection for jf j so that fP 2 N with

kf(I � P )kp � 1

2
and kfPk1 � Æ�1=p :(5.28)

Then

1

2p
� kfPkpp = �(jf jpP ) (since P $ jf j)

= �(jf j jf jp�1P )

� kfk1Æ1�
1

p :

(5.29)

That is,

kfk1 � 2�1=pÆ
1

p
�1 def

= C :(5.30)
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(5.30) yields that kgkp � Ckgk1 for all g 2 X; i.e., 5 does not hold, a contradiction.

This completes the proof of the theorem.

The �nal result of this section deals with the Banach-Saks property.

De�nition 5.5. Let X be a Banach space, and 1 < p <1.

(a) Let (xn) be a weakly null sequence in X. (xn) is called

(i) a Banach-Saks sequence if

lim
n!1

n�1



 nX

j=1

yj




 = 0 for all subsequences (yj) of (xj) :(5.31)

(ii) a p-Banach-Saks sequence if

there is a C <1 so that lim n!1n
�1=p




 nX
j=1

yj




 � C for all subsequences (yj) of (xj).

(5.32)

(iii) a strong p-Banach-Saks sequence if

lim
n!1

n�1=p



 nX

j=1

yj




 = 0 for all subsequences (yj) of (xj).(5.33)

(b) X is said to have the Banach-Saks property (resp. the p-Banach-Saks property)

(resp. the strong p-Banach-Saks property) if every weakly null sequence in X has a

Banach-Saks (resp. p-Banach-Saks) (resp. strong p-Banach-Saks) subsequence.

The classical paper of Banach-Saks [BS] yields that commutative Lp spaces have the

p-Banach-Saks property, for 1 < p � 2; the fact that L1-spaces have the Banach-

Saks property was proved later by Szlenk [Sz]. Our last result yields in particular a

generalization to the spaces Lp(N ), N �nite. Most of its assertions follow very quickly

from our previous results.

Proposition 5.6. Let N be a �nite von-Neumann algebra and 1 < p < 2.

1. L1(N ) has the Banach-Saks property and Lp(N ) has the p-Banach-Saks property.

2. A weakly null sequence (fn) in Lp(N ) has a strong p-Banach-Saks subsequence if

(jfnjp) is uniformly integrable. If (jfnjp) is not uniformly integrable, (fn) has a
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subsequence (f 0n) so that for some c > 0 and all subsequences (yj) of (f 0j),

limn�1=p



 nX

j=1

yj




 � c :(5.34)

3. A closed linear subspace X of Lp(N ) has the strong p-Banach-Saks property if and

only if X has no subspace isomorphic to `p.

Proof. Corollary 4.4 together with Proposition 2.5 yields that L1(N ) has the Banach-

Saks property. It also yields the �rst assertion in 2. Suppose (jfnjp) is not uniformly

integrable and assume (without loss of generality) that kfnkp � 1 for all n. Applying

Corollary 3.4 and Lemma 4.3, we may choose a subsequence (f 0n) of (fn) so that for some

C � 1,

(f 0n 
 rn) is C-equivalent to the usual `p-basis.(5.35)

and

(f 0n1; : : : ; f
0
n
2k

) is 4-unconditional for all k � n1 < n2 < � � � < n2k :(5.36)

Suppose (yj) is a subsequence of (f 0j). Then it follows that for all k,

(yk+1; : : : ; yk+2k) is (4C)-equivalent to the `p
2k

-basis.(5.37)

Let n be a \large" integer and choose k with

2k�1 � n < 2k :(5.38)

Then 


 nX
j=k+1

yj




 � (n� k)1=p

4C
by (5.37) :(5.39)

Thus 


 nX
j=1

yj





p
� (n� k)1=p

4C
� k � (n� log2 n� 1)1=p

4C
� log2 n� 1 :(5.40)

Hence

lim n!1n
�1=p




 nX
j=1

yj





p
� 1

4C
:(5.41)
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This completes the proof of assertion 2 of the Proposition. But we also have that


 nX
j=k+1

yj





p
� 4C(n� k)1=p by (5.37);(5.42)

and so 


 nX
j=1

yj





p
� 4C(n� log2 n)1=p + log2 n + 1 ;(5.43)

thus

lim n!1n
�1=p




 nX
j=1

yj





p
� 4C :(5.44)

This proves that Lp(N ) has the p-Banach-Saks property, for any weakly null sequence

(fn) in Lp(N ) either has (jfnjp) uniformly integrable (and hence a strong p-Banach-Saks

subsequence), or a subsequence (f 0n) as above.

The �nal assertion of the Proposition follows immediately from Theorem 5.4 and

assertion 2.

Remark. Of course Hilbert space has the 2-Banach Saks property. Actually, it can be

shown that Lp(N ) has the 2-Banach Saks property for p > 2 and N �nite, and this is

best possible (in general). Indeed, if (fj) is a weakly null sequence in Lp(N ), then if

kfjkp ! 0, (fj) trivially has a p-Banach Saks subsequence; the same is true if (fj) has

a subsequence equivalent to the `p-basis (and of course a p-Banach Saks sequence is a

2-Banach Saks sequence). Otherwise, combining arguments in [S1] Theorem 2.4 with

the arguments in Proposition 5.6, we see that there exists a subsequence (f 0j) of (fj)

such that its all subsequences (yn) are 2-Banach Saks.

We conclude this section with a brief discussion of the following open

Problem. Let 1 < p < 2 and (fn) be a seminormalized weakly null sequence in Lp(N )

(N a �nite von Neumann algebra) such that (jfnjp) is not uniformly integrable. Does

(fn) have a subsequence equivalent to the usual `p basis?

As pointed out previously, the answer is aÆrmative if (fn) has an unconditional subse-

quence. Actually, it can be proved that if (fn) satis�es the hypotheses of this Problem, it

has a subsequence (f 0n) which dominates the `p-basis and moreover has spreading model
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equivalent to the `p-basis. (The last assertion follows immediately from our proof of

Proposition 5.6.) It may then be shown that the above Problem is equivalent to the

following one (in which the hypothesis concerning (jfnjp) no longer enters).

Problem0. Let (fn) be a seminormalized basic sequence in Lp(N ), p and N as above.

Does (fn) have a subsequence (f 0n) which is dominated by the `p-basis? i.e., such thatP
cjf

0
j converges in Lp(N ) whenever

P jcjjp <1?

6. The Banach isomorphic classification of the spaces Lp(N ) for N
hyperfinite semi-finite

We �rst �x some notation. Let 1 � p <1. We let Sp = (
L1

n=1C
n
p )p (= Lp(�Mn)1).

To avoid confusion, we denote by Lp 
p X the Bochner space Lp(X;m), where m

is Lebesgue measure and X is a Banach space. Thus e.g., Lp 
p Cp = Lp(Cp) =

Lp(L1(m) �
B(`2)). R denotes the hyper�nite type II factor, and Lp(R)
p Cp denotes

Lp(R�
B(`2)) (so R�
B(`2) is the hyper�nite type II1 factor).

The main motivating result of this section is as follows.

Theorem 6.1. Let N be a hyper�nite semi-�nite in�nite dimensional von-Neumann

algebra, and let 1 � p <1, p 6= 2. Then Lp(N ) is (completely) isomorphic to precisely

one of the following thirteen Banach spaces.

`p ; Sp ; Lp ; Cp ; Sp � Lp ; Cp � Lp ; Lp 
p Sp ; Cp � (Lp 
p Sp)

Lp(R) ; Lp 
p Cp ; Cp � Lp(R) ; Lp(R)� (Lp 
p Cp) ; Lp(R)
p Cp :

Theorem 6.1 is an immediate consequence of the following �ner result concerning

embeddings.

Theorem 6.2. Let 1 � p < 2. If N is as in 6.1, then Lp(N ) is (completely) isomorphic

to one of the thirteen spaces in the tree in Figure 1. If X 6= Y are listed in the tree, then

X is Banach isomorphic to a subspace of Y if and only if X can be joined to Y through

a descending branch (in which case X is completely isometric to a subspace of Y ).

Remark. In the language of graph theory, Theorem 6.2 asserts that the tree in Figure 1

is the Hasse diagram for the partially ordered set consisting of the equivalence classes of
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p

Sp

Cp

Lp

Sp    Lp+

Cp    Lp+
Lp      Sp

+
p

          Sp
+

pCp    Lp+

Lp      Cp
+

p

L
p

 ( )

L
p

 ( )Cp   +

L
p

 ( ) + Lp      Cp
+

p

1.

2.

3.

4.

5.

6.

7.

8.
L

p
 ( )  Cp

+
p

Figure 1

Lp(N ) under Banach isomorphism (over N as in 6.1), with the order relation: [X] � [Y ]

provided X is isomorphic to a subspace of Y .

Parts of Theorem 6.2 require previously known results, some of which are very recent.

It is established in [S2] that the �rst nine spaces in the list in Theorem 6.1 are isomor-

phically distinct when p = 1, and exhaust the list of the possible Banach isomorphism

types of Lp(N ) for N type I (N as in 6.1), p 6= 2.

Theorem 6.2 yields the new result in the type I case: Lp 
p Cp does not embed in

Cp� (Lp
p Sp) for 1 � p < 2; (another new result in this case, that Cp does not embed

in Lp
pSp, follows immediately from Corollary 1.2); the other embedding results stated

in 6.2 for the type I case are given in [S2]. We give here a new proof of the particular

case that Lp 
p Sp does not embed in Lp � Cp, using the Main Result of this paper.
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We �rst proceed with the non-embedding results required for Theorem 6.2. The

following theorem is crucial.

Theorem 6.3. Let N be a �nite von Neumann algebra and 1 � p < 2. Then Lp 
p Cp

is not isomorphic to a subspace of Cp � Lp(N ).

We now �x 1 � p < 2 for the remainder of this section.

We �rst require

Lemma 6.4. Let T : Lp ! Cp be a given bounded linear operator, and let " > 0. Then

there exists an f 2 Lp with f f1;�1g-valued so that kTfk < ".

Sublemma. The conclusion of 6.4 holds, replacing Cp by `2 in its hypotheses.

Proof. Fix n a positive integer. Using the generalized parallelogram identity,

av�




T nX
j=1

��[ j�1
n

; j
n
)




2
2

=
nX
j=1

kT (�[ j�1
n

; j
n
))k22

� kTk2
nX
j=1

k�[ j�1
n

; j
n
)k2p

= kTk2 n

n2=p
= kTk2 1

n2=p�1
:

(6.1)

It follows that we may choose �j = �1 for all j so that


T� nX
j=1

�j�[ j�1
n

; j
n
)

�



2
� kTk
n

1

p
� 1

2

:(6.2)

Now simply choose n so that kTk

n
1
p�

1
2

< " and let f =
Pn

j=1 �j�[ j�1
n

; j
n
).

Proof of Lemma 6.4. Let (eij) be the matrix units basis for Cp, and de�ne for each n,

Hn = [eij : 1 � i � n and 1 � j <1 or 1 � i <1 and 1 � j � n] :(6.3)

Let Pn be the natural basis projection onto Hn; i.e., Pn : Cp ! Cp is the projection with

Pn(eij) = 0 if eij =2 Hn, Pn(eij) = eij if eij 2 Hn (so kPnk � 2). Then Hn is isomorphic

to `2, so by the sub-lemma we may choose fn in Lp with fn f1;�1g-valued and

kPnTfnk � 1

2n
:(6.4)
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We claim that

lim
n!1

kTfnk = 0 :(6.5)

Of course (6.5) yields the conclusion of the Lemma. Suppose (6.5) were false. It follows

that (fn) has a subsequence (f 0n) so that

(Tf 0n) is equivalent to the usual `p-basis(6.6)

and

(f 0n) converges weakly in L2 :(6.7)

((6.6) follows because (f 0n) may be chosen to be a small perturbation of a \block-o�-

diagonal sequence", by 6.4).

Of course (f 0n) converges weakly in Lp as well, hence (Tf 0n) also converges weakly, a

contradiction when p = 1 since then (Tf 0n) is equivalent to the `1-basis.

When p > 1, letting f be the weak limit of (fn), we have that Tf = 0 since Tf 0n ! 0

weakly. Moreover kfk1 � 2, so letting f 00n = f 0n � f for all n, (f 00n) is a uniformly

bounded weakly null sequence in Lp with (Tf 00n) = (Tf 0n) equivalent to the `p-basis.

Finally, since (f 00n) is also semi-normalized in Lp, (f 00n) has a subsequence (gn) equivalent

to the usual `2-basis. (Indeed, we may choose (gn) equivalent to the `2-basis in L2-norm,

and unconditional. But then since Lp has cotype 2, (gn) is equivalent to the `2-basis in

the Lp-norm). Still, (Tgn) is equivalent to the `p-basis; this is impossible since p < 2.

We now apply our Main Result and Lemma 6.4, to give the

Proof of Theorem 6.3. Suppose to the contrary that N is a �nite von Neumann algebra

and T : Lp
pCp ! Cp�Lp(N ) is an isomorphic embedding. Of course we may assume

that kTk = 1; let " = kT�1k�1. Thus we have

kTfk � "kfk for all f 2 Lp 
p Cp :(6.8)

Let P be the projection of Cp � Lp(N ) onto Cp with kernel Lp(N ), and set Q = I � P .

Also, for each i and j, let Qij be the natural projection of Lp 
p Cp onto the space

Eij
def
=ff 
 eij : f 2 Lpg :(6.9)
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(As before, eij denotes the i; jth matrix unit for Cp. Visualizing Cp as matrices of scalars

and Lp 
p Cp as all matrices (fij) of functions in Lp with

k(fij)k =

�Z
k(fij(w))kpCp dw

�1=p

<1 ;

then Qij((fk`)) = fij 
 eij. Eij is just the space of matrices with all entries zero except

in the ijth slot). Now �x i and j. Of course Eij is isometric to Lp.

Thus by Lemma 6.4, we may choose fij 2 Lp with fij f1;�1g-valued so that

kPTfij 
 eijk < "

2i+j+2
:(6.10)

Now letting X = [fij 
 eij : i; j = 1; 2; : : : ], then X is a 1-GCp space, in the terminology

of the Introduction. That is, every row and column of (fij 
 eij) is 1-equivalent to the

`2 basis, while every generalized diagonal is 1-equivalent to the `p basis. Hence X is not

isomorphic to a subspace of Lp(N ) by our Main Theorem (i.e. Corollary 1.2). However

QT jX is an isomorphic embedding.(6.11)

Indeed, if x =
P
cij(fij 
 eij) with only �nitely many cij's non zero, and kxk = 1, then

jcijj � 1 for all i and j (since the Qij's are contractive and kfijk = 1 for all i and j),

and so

kPTxk � max
i;j

jcijj
X
i;j

kT (fij 
 eij)k

�
1X
i=1

1X
j=1

"

2i+j+2
=
"

2

(6.12)

using (6.10) and our assumption that T is a contraction. Hence

kQTxk � "

2
by (6.8).(6.13)

This proves (6.11), and completes the proof by contradiction.

Our localization result, Corollary 1.4, and the preceding proof, yield an alternate proof

of the following result, obtained in [S2].

Proposition 6.5. Lp 
p Sp is not isomorphic to a subspace of Cp � Lp.
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Proof. We have that Lp
pSp is (linearly isometric to) (
L1

n=1 Lp
pC
n
p )p. Thus it suÆces

to prove that

lim
n!1

�n = 1(6.14)

where

�n = inffd(Lp 
p C
n
p ; Y ) : Y is a subspace of Cp � Lpg(6.15)

and \d" denotes the Banach Mazur distance-coeÆcient (de�ned just preceding Corol-

lary 1.4).

Now �x n, and let T : Lp
pC
n
p ! Y � Cp�Lp be an isomorphic embedding onto Y ,

with

kTk = 1 and kT�1k � 2�n :(6.16)

Using the notation and reasoning in the proof of Theorem 6.3, and setting " = 1=(2�n),

we may choose for each i and j with 1 � i; j � n, a f1;�1g-valued fij 2 Lp satisfying

(6.10). We thus obtain that kPT jXk � "=2 by (6.12). Hence for all x 2 X,

kQT (x)k �
�

1

2�n
� "

2

�
kxk =

1

4�n
kxk(6.17)

using also (6.16). That is, setting Z = QT (X), we have that

d(X;Z) � 4�n :(6.18)

Now X is a 1-GCn
p -space; thus

4�n � �n;1 for all n(6.19)

(in the notation of Corollary 1.4), so (6.14) holds by Corollary 1.4.

We also require the following rather deep result, due to M. Junge [J].

Theorem 6.6. Cq is isomorphic to a subspace of Lp(R) for all p < q < 2.

Finally, we require the following (unpublished) result, due to G. Pisier and Q. Xu

[PX2].

Lemma 6.7. Let X be a (closed linear) subspace of Lp 
p Cp. Then either X embeds

in Lp or `p embeds in X.
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For the sake of completeness, we sketch a proof. First, we give an important, quick

consequence of these last two results.

Corollary 6.8. Lp(R) is not isomorphic to a subspace of Lp 
p Cp.

Proof. By Theorem 6.6, it suÆces to prove that Cq does not embed in Lp 
p Cp if

p < q < 2. If Cq did embed, then since it does not embed in Lp, it would have a

subspace isomorphic to `p, by Lemma 6.7. However it is a standard fact that every

in�nite-dimensional subspace of Cp is either isomorphic to `2 or contains a subspace

isomorphic to `p, a contradiction.

We next sketch the proof of Lemma 6.7 (which also yields the above mentioned stan-

dard fact).

Let (xij) be a given matrix in a linear space X. Call a sequence (fk) in X a generalized

block diagonal of (xij) if there exist i1 < i2 < � � � and j1 < j2 < � � � so that for all k,

fk 2 [xij : ik � i < ik+1 and jk � j < jk+1] :(6.20)

Now if (fk) is a generalized block diagonal of the matrix (eij) consisting of non-zero

terms, eij the matrix units for Cp (as above), then (fk=kfkk) is isometrically equivalent

to the `p-basis. But then it follows immediately that if (gij) is any matrix of elements

of LP and if (fk) is a normalized generalized block diagonal of (gij 
 eij) (in Lp 
p Cp)

consisting of non-zero terms, (fk) is also isometrically equivalent to the `p-basis. Indeed,

for any scalars c1; c2; : : : with only �nitely many non-zero terms, and any 0 � w � 1,

k
X

cjfj(w)kpCp =
X

jcjjp jfj(w)jp :(6.21)

Hence

k
X

cjfjkp =

Z
k
X

cjfj(w)kpCp dw =
X

jcjjp :(6.22)

Now �x n, and let Hn be the subspace of Cp de�ned in the proof of Lemma 6.4 (specif-

ically, in (6.3)). Standard results yield that Lp 
p Hn embeds in Lp (actually, Lp 
p Hn

is isomorphic to Lp if p > 1), and of course I 
 Pn is a projection onto Lp 
p Hn with

kI 
 Pnk � 2 (Pn as de�ned in the proof of 6.4). Now let X be as in Lemma 6.7, and

suppose X does not embed in Lp. Then for each n, we may choose an xn 2 X with

kxnk = 1 and k(I 
 Pn)xnk < 1

2n
:(6.23)



67

But it follows that for any f 2 Lp 
p Cp,

(I 
 Pn)(f) ! f as n!1 :(6.24)

A standard travelling hump argument now yields gij's in Lp and a normalized generalized

block diagonal (fk) of (gij 
 eij) and a subsequence (x0j) of (xj) so that

kx0k � fkk < 1

2k
for all k :(6.25)

It follows immediately that (x0k) is equivalent to the `p-basis.

Remark. The last part of this proof also yields the fact (due to Y. Friedman [F]) that if

X is an in�nite-dimensional subspace of Cp, then X is isomorphic to `2 or `p embeds in

X. Indeed, assuming X is not isomorphic to `2, then since Hn is isomorphic to `2, we

obtain for each n and xn 2 X with kxnk = 1 and kPnxnk < 1
2n

. Again we then obtain a

normalized block diagonal (fk) of (eij) and a subsequence (x0j) of (xj) satisfying (6.25),

and then (x0k) is equivalent to the `p basis.

We now give the last and perhaps most delicate of the needed non-embedding results;

its proof requires the re�ned version of our Main Result given by Theorem 4.2.

Theorem 6.9. Let N be a �nite von Neumann algebra. Then Lp(R) 
p Cp is not

isomorphic to a subspace of Lp(N )� (Lp 
p Cp).

We �rst give some notation used in the proof. As always, eij's denote the matrix units

for Cp. Thus Lp(R) 
p Cp = Lp(R�
B(`2)) = the closed linear span of the elementary

tensors f 
 eij, f 2 Lp(R), i and j arbitrary. We denote also the norm on Lp(R)
p Cp

as k � kp. If X is a closed linear subspace of Lp(R),

X 
p Cp
def
=[x
 eij : x 2 X; i; j 2 N ](6.26)

(where the closed linear span above is taken in Lp(R)
pCp). Next, we need expressions

for the norm on Lp(R)
Row, Lp(R)
 Column. We easily see that given x1; : : : ; xn in

Lp(R), then for any i, 


 nX
j=1

xj 
 eij





p

=



� nX

j=1

xjx
�
j

�1=2



p

(6.27)
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and 


 nX
j=1

xj 
 eji





p

=



� nX

j=1

x�jxj

�1=2



p
:(6.28)

Evidently (6.27) and (6.28) show that if we consider a matrix of the form (xij 
 eij)

with xij non-zero elements of Lp(R) for all i and j, then all rows and columns of this

matrix are 1-unconditional sequences.

The next result is really a \localization" of Lemma 3.1 (and could be formulated

instead for Lp(N ), N any �nite von Neumann algebra).

Lemma 6.10. Let X be a closed linear subspace of Lp(R) containing no subspace iso-

morphic to `p. Then given " > 0, there is an N so that given any n � N and x1; : : : ; xn

in Ba(X),

n�1=p



� nX

i=1

xix
�
i

�1=2



p
� " and n�1=p




� nX
i=1

x�ixi

�1=2



p
� " :(6.29)

Proof. Let � be the normal faithful tracial state in R. By Theorem 5.4, fjxjp : x 2
Ba(X)g is uniformly integrable. Let � > 0, to be decided later. Choose Æ > 0 so that

!(jxjp; Æ) � �p for all x 2 Ba(X) :(6.30)

Let x1; : : : ; xn be elements of Ba(X). By the �nal assertion of Lemma 2.3 (following

(2.10)), we may choose for each j a Pj 2 P(R) so that xjPj 2 R with

kxjPjk1 � Æ�1=p and kxj(I � Pj)kp � � :(6.31)

Then 


� nX
j=1

xjx
�
j

�1=2



p

=



 nX

j=1

xj 
 e1j





p

by (6.27)

�



 nX

j=1

xjPj 
 e1j





p

+



 nX

j=1

xj(I � Pj)
 e1j





p
:

(6.32)

Since (xj(I � Pj)
 e1j)
n
j=1 is 1-unconditional and Lp(R) 
p Cp is type p with constant

one,
nX
j=1

kxj(I � Pj)
 e1jkp �
� nX

j=1

kxj(I � Pj)kpp
�1=p

� �n1=p by (6.31) :

(6.33)
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Now 


 nX
j=1

xjPj 
 e1j





p

=

"
�

� nX
j=1

xjPjx
�
j

�p=2
#1=p

�
"
�

� nX
j=1

xjPjx
�
j

�#1=2
(since p < 2)

� n1=2Æ�1=p by (6.31).

(6.34)

Thus (6.32){(6.34) yield that

n�1=p



� nX

j=1

xjx
�
j

�1=2



p
� � +

1

n
1

p
� 1

2

Æ�1=p :(6.35)

Evidently we now need only take � � "
2
; then choose N so that N�( 1

p
� 1

2
)Æ�1=p � "

2
; the

identical argument for (x�ixi)
n
i=1 now yields that (6.29) holds for all n � N .

We may now easily obtain our �nal needed preliminary result. (See the Remark

following Theorem 4.1 for the de�nition of: the rows or columns of a matrix contain

`pn-sequences.)

Corollary 6.11. Let X be a closed linear subspace of Lp(R) containing no subspace

isomorphic to `p, and let (xij) be a seminormalized matrix whose terms lie in X. Then

the matrix (xij 
 eij) in X 
p Cp has the following properties:

(i) Neither the rows nor the columns contain `pn-sequences.

(ii) Every row and column is 1-unconditional.

(iii) Every generalized diagonal is equivalent to the usual `p basis.

Proof. (i) follows immediately from Lemma 6.10 and (6.27), and the latter also im-

mediately yields (ii). If (fi) is a generalized diagonal of the matrix, then there exist

projections P1; P2; : : : , Q1; Q2; : : : in R�
B(`2) so that the Pj's and the Qj's are pair-

wise orthogonal, with fj = PjfjQj for all j. (That is, (fj) is \right and left disjointly

supported".) It then follows that for any n and scalars c1; : : : ; cn,


 nX
j=1

cjfj





p

=

� nX
j=1

jcjjpkfjkpp
�1=p

;(6.36)

which immediately yields (iii) since (xij 
 eij) is semi-normalized.



70

We are �nally prepared for the

Proof of Theorem 6.9. Let p < q < 2 and let X be a subspace of Lp(R) so that X is

isomorphic to Cq (using Junge's result, formulated as Theorem 6.6 above). We claim

that X 
p Cp is not isomorphic to a subspace of Lp(N ) � (Lp 
p Cp) (which of course

proves Theorem 6.9). Suppose to the contrary that T : X 
p Cp ! Lp(N )� (Lp 
p Cp)

is an isomorphic embedding. Assume without loss of generality that kTk = 1. Let " > 0

be chosen so that kTfk � "kfk for all f 2 X 
p Cp. Let P denote the projection of

Lp(N ) � (Lp 
p Cp) onto Lp(N ), with kernel Lp 
p Cp; and set Q = I � P . Now �x

i and j. Then of course X 
 eij is isometric to X. Thus by Lemma 6.7, QT j(X 
 eij)

cannot be an isomorphic embedding (that is, Cq does not embed in Lp 
p Cp). Hence

we may choose xij 2 X with

kxijk = 1 and kQT (xij 
 eij)k < "

2i+j+2
:(6.37)

Now let Y = [xij 
 eij : i; j = 1; 2; : : : ]. Since `p does not embed in X, the conclusion

of Corollary 6.11 holds for the matrix (xij 
 eij).

It follows from (6.37) that

kQT jY k < "

2
:(6.38)

Hence we obtain that

kPT (y)k � "

2
kyk for all y 2 Y :(6.39)

Thus Y is isomorphic to a subspace Z of Lp(N ). Let zij = PT (xij 
 eij) for all i and j.

Now since PT jY is an isomorphism, Corollary 6.11 yields that there is a u so that every

row and column of (zij) is u-conditional, every generalized diagonal of (zij) is equivalent

to the `p-basis, yet neither the rows nor the columns of (zij) contain `pn-sequences. This

is impossible by Theorem 4.2.

The following result is an immediate consequence of Theorem 6.9 and known structural

results for von-Neumann algebras.

Corollary 6.12. Let N ;M be von Neumann algebras so that M has a direct summand

of type II1 or of type III. If Lp(M) is Banach isomorphic to a subspace of Lp(N ), then

also N has a direct summand of type II1 or of type III.
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Proof. The hypotheses imply (via known results, cf. [HS]) thatR�
B(`2) is isomorphic to

a von Neumann subalgebra ofM, which is the range of a normal conditional expectation,

whence Lp(R)
p Cp is completely isometric to a subspace of Lp(M). Since Lp(R)
Cp

is separable, we can assume without loss of generality that N acts on a separable Hilbert

space. Then if N fails the conclusion, there exists a �nite von Neumann algebra ~N so

thatN is isomorphic to a subalgebra of ~N�(L1 �
B(`2)), and hence Lp(N ) is completely

isometric to a subspace of Lp( ~N )�(Lp
pCp). But then Lp(M) does not Banach embed

in Lp(N ), since Lp(R)
pCp does not embed in Lp( ~N )� (Lp
pCp) by Theorem 6.9.

Remark. Of course Corollary 6.8 (i.e., the results of Junge and Pisier-Xu cited above)

also immediately yields that if M and N are von Neumann algebras so that M has

a type II1 summand, and Lp(M) embeds in Lp(N ), then N must have also have a

summand of type II or type III. Combining these two results, we have that if Lp(M)

is Banach isomorphic to a subspace of Lp(N ) and M has no type III summand, then

N has a direct summand of type at least as large as these of the summands of N . It

remains a most intriguing problem to see if one can eliminate the non-type III summand

hypothesis in this statement.

We now complete the proof of Theorem 6.2. We shall formulate the \positive" results

in the language of operator spaces; the reader unfamiliar with the relevant terms may just

ignore the adjective \complete" in all the statements, for of course all positive operator

space claims imply the pure Banach space ones. Given operator spaces X and Y , let us

say that X completely contractively factors through Y if X is completely isometric to a

subspace X 0 of Y such that there exists a completely contractive projection mapping Y

onto X 0. Equivalently, there exist complete contractions U : X ! Y and V : Y ! X

such that V Æ U = IX , IX the identity operator on X, that is,

Y

�
�
��

U

X

A
A
AU
V

-IX
X

.

(6.40)

Now we easily see that

(Lp(R)� Lp(R)� � � � )p completely contractively factors through Lp(R) :(6.41)
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Indeed, simply let P1; P2; : : : be pairwise orthogonal non-zero projections in R. As is

well known, then PiRPi is isomorphic to R and hence PiL
p(R)Pi is completely isometric

to Lp(R) for all i; then the map on Lp(R) de�ned by f !P
PifPi witnesses (6.41).

Since R�
R is isomorphic to R,

Lp(R)
p L
p(R)

def
= Lp(R�
R) is completely isometric to Lp(R) :(6.42)

Using (6.41) and (6.42), we may now easily see that if Y is immediately below X in

the tree (and lying on a branch), then X completely contractively factors through Y .

Using the notation X
cc
,! Y to mean that X completely contractively factors through

Y , we see, e.g., that Lp
cc
,! Lp(R) =) Lp 
p C

n
p

cc
,! Lp(R)
p C

n
p

cc
,! Lp(R)
p L

p(R),

whence

Lp 
p Sp =

� 1M
n=1

(Lp 
p C
n
p )

�
p

cc
,!
� 1M

n=1

Lp 
p L
p(R)

�
p

cc
,! Lp(R) ;

i.e.,

Lp 
p Sp
cc
,! Lp(R) :(6.43)

Writing X � Y to mean: X is completely isometric to Y , we have

Cp � (Lp 
p Sp)
cc
,! Cp � Lp 
p Cp

cc
,! (Lp 
 Cp)
 (Lp 
 Cp) � Lp 
 Cp(6.44)

(where we use `p-direct sums).

X
cc
,! Y if X is the level 7 space and Y is the level 8 space, since the same argument

for (6.41) yields also�
(Lp(R)
p Cp)� (Lp(R)
p Cp)� � � �

�
cc
,! Lp(R)
p Cp :(6.45)

The reader may now easily check that the remaining \positive" assertions on the tree.

For the far deeper negative assertions, let us use the notation: X 6,! Y to mean that

the Banach space X is not isomorphic to a subspace of Y .

Now suppose X 6= Y are on the tree and Y cannot be connected to X by a descending

branch; we claim that X 6,! Y .
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It suÆces to prove this assertion by showing by induction on j = 2; 3; : : : that X lies

at level j and for any Z and X 0 on the tree in Figure 1,

there is a k � j so that Y is at the kth level, but if Z is at a higher(6.46)

level than k, connected to Y , then X is connected to Z

and moreover if X 0 is connected to X with

level X 0 < j, then X 0 is connected to Y

or

Y is at the (j � 1)st level, but if Y is connected to Z at level k � j(6.47)

with Z 6= X, then X is connected to Z and moreover if Z is connected

to X with level Z < j, then Z is connected to Y .

j = 2. Sp 6,! Lp is classical (and also follows from our Corollary 1.4). Lp 6,! Cp since

`q ,! Lp if p < q < 2 but `q 6,! Cp.

j = 3. Cp 6,! Lp(R), the main result of the paper.

j = 4. Lp 
p Sp 6,! Cp � Lp by Proposition 6.5.

j = 5. Lp(R) 6,! Lp 
p Cp by Corollary 6.8.

j = 6. Lp 
p Cp 6,! Cp � Lp(R) by Theorem 6.3.

j = 7. There is no Y satisfying (6.46) or (6.47).

j = 8. Theorem 6.9 gives the one required non-embedding result.

This completes the proof of the �nal statement of Theorem 6.2. It remains to prove the

�rst statement. This follows via the known type-decomposition and structure of hyper-

�nite von-Neumann algebras, and the following operator space version of the Pe lczy�nski

decomposition method (whose proof is exactly as Pe lczy�nski's proof for the Banach space

case [P]; see also p.54 of [LT] and [Ar]).

Lemma 6.13. Let X and Y be operator spaces so that

(i) each completely factors through the other

and so that either

(ii) X is completely isomorphic to X �X and Y is completely isomorphic to Y � Y

or
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(ii0) X is completely isomorphic to (X �X � � � � )q for some q 2 [1;1].

Then X and Y are completely isomorphic.

(We say that X completely factors through Y if X is completely isomorphic to a

completely complemented subspace of Y .)

Corollary 6.14. If (X � X � � � � )p completely factors through the operator space X,

then X is completely isomorphic to (X �X � � � � )p.

End of the proof of Theorem 6.2. (X � X � � � � )p completely contractively factors

through X for all of the 13 spaces X listed in Theorem 6.2 (applying (6.41), (6.45), and

the analogous results for Cp, Lp, and Lp 
p Cp). Thus the conclusion of 6.14 applies.

Now let N be as in the statement of Theorem 6.2. If N is type I, then by the results in

[S2] Lp(N ) is completely isomorphic to one of the �rst nine spaces listed in Theorem 6.1,

so assume that N is not type I. Then we have that

N = NI �NII1 �NII1 ;

where for each i, Ni = f0g or Ni is a hyper�nite von Neumann algebra of type i, so that

also NII1 �NII1 6= 0.

Now suppose that N is �nite. It then follows from work of A. Connes [C2] that

NI �NII1 is isomorphic to a von-Neumann subalgebra of R :(6.48)

Indeed, by disintegration and Proposition 6.5 of [C2], any �nite hyper�nite von Neumann

algebra (with separable predual) is a countable `1-direct sum of von Neumann algebras

of the form A�
B, where A is abelian and B is either Mn for some n <1 or R. But such

an algebra A�
B can be realized as a sub-algebra of R; since also R�
R is isomorphic

to R, and (R�R � � � � )`1 is (isomorphic to) a von Neumann subalgebra of R, (6.48)

holds. Since NII1 6= 0, we have by the above discussion that also

R is isomorphic to a von-Neumann subalgebra of N :(6.49)

Thus, we have that if A or B equals N or R, then

A is (isomorphic to) a subalgebra of B, which is(6.50)

the range of a normal conditional expectation.
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Now if (6.49) holds for any two von Neumann algebras A and B, then Lp(A) com-

pletely contractively factors through Lp(B). Thus by Lemma 6.13 and Corollary 6.14

applied to X = Lp(R), we obtain that Lp(N ) is isomorphic to Lp(R).

Now if NII1 6= 0, again using the deep results in [C2], NII1 is (isomorphic to)

M�
B(`2) where M is a �nite hyper�nite von Neumann algebra, whence letting A
and B equal N or R �
B(`2), (6.48) holds, whence Lp(N ) is completely isomorphic to

Lp(R)
p Cp again by Lemma 6.13 and Corollary 6.14 applied to Lp(R)
p Cp.

Now assume NII1 = f0g, so NII1 6= f0g, and suppose N is in�nite; since NII1 = f0g,
we must have that NI is in�nite. But then by the classi�cation of the Lp spaces of type I

algebras, we have that Lp(NI) is completely isomorphic to either Cp, Lp 
 Cp, Cp � Lp,

or Cp � (Lp 
p Sp).

But Cp�Lp�Lp(R) and Cp� (Lp
p Sp)�Lp(R) are both completely isomorphic to

Cp � Lp(R), by our analysis of the �nite case. Hence Lp(N ) is completely isomorphic

either to Cp � Lp(R) or to (Lp 
p Cp)� Lp(R), completing the entire proof.

7. Lp(N )-isomorphism results for N a type III hyperfinite or a free

group von Neumann algebra

We �rst formulate the results of this section for the case of preduals of von Neumann

algebras N , i.e., L1(N ), and then show they hold also for the spaces Lp(N ) for 1 < p <

1, as in the preceding sections. The following result is an immediate consequence of

Corollary 6.12. We prefer to give a quick proof just using Corollary 1.2.

Theorem 7.1. Let N be a factor of type II1 and let M be a factor of type II1 or type

III. Then the preduals N� and M� are not Banach space isomorphic.

Proof. By the assumptions M is a properly in�nite von Neumann algebra, i.e., M �=
M�
B(`2) as von Neumann algebras (where �
 is the standard von Neumann algebra

tensor product). In particular M� is isometrically isomorphic to M� 

 C1 for some

crossnorm 
 on the algebraic tensor product M�
C1, and therefore C1 imbeds isomet-

rically in M�. By Corollary 1.2, C1 does not Banach space imbed in N�.

It would be interesting to know, whether a type II1-factor and a type III-factor can be

distinguished by the Banach space isomorphism classes of their preduals. (As noted in
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the Introduction, we do not know the answer for the special case of injective factors.) In

[C1] Connes introduced a subclassi�cation of factors of type III into factors of type III�,

where � can take any value in the closed interval [0; 1]. Theorem 7.2 below shows that the

number � in this classi�cation cannot be determined by the Banach space isomorphism

class (or even operator space isomorphism class) of the predual. Recall from [C2] and

[H], that for each � 2 (0; 1], there is up to von Neumann algebra isomorphism only one

injective factor of type III� acting on a separable Hilbert space. For 0 < � < 1 it is the

Powers factor

R� =
1O
n=1

(M2(C ); '�)

where '� is the state on the 2� 2 complex matrices given by

'�

�
x11 x12
x21 x22

�
=

�

1 + �
x11 +

1

1 + �
x22

and for � = 1 it is the Araki-Woods factorR1, which can be obtained (up to von Neumann-

isomorphism) as the tensor product of two Powers factors

R1 �= R�1
�
R�2

provided log �1
log �2

=2 Q . On the hand there are uncountably many injective factors of type

III0 acting on a separable Hilbert space (cf. [C1], [C2]). We will consider the predual

of a von Neumann algebra as an operator space with the standard dual operator space

structure (cf. [Bl]).

Theorem 7.2. Let for 0 < � < 1, R� denote the Powers factor of type III� and let R1

denote the Araki-Woods factor of type III1.

(a) For every � 2 (0; 1) the predual (R�)� is completely isomorphic to (R1)�.

(b) There is an uncountable family (Ni)i2I of mutually non-isomorphic (in the von Neu-

mann algebra sense) injective type III0-factors on a separable Hilbert space for which

(Ni)� is completely isomorphic to (R1)�.

Remark. In [ChrS], Christensen and Sinclair proved that all injective in�nite dimensional

factors acting on separable Hilbert space are completely isomorphic. This does not imply

that their preduals are completely isomorphic. Indeed the unique injective type II1-factor

R and the unique injective type II1-factor R�
B(`2) have non-isomorphic preduals by
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Theorem 7.1. Theorem 7.2 as well as the results in [ChrS] are based on the completely

bounded version of the Pe lczy�nski decomposition method stated as Lemma 6.13 above.

Proof of Theorem 7.2. (a) Let 0 < � < 1 and put N = R�, M = R1. Since N is a

properly in�nite von Neumann algebra, there exist two isometries u1; u2 2 N , such that

u1u
�
1 and u2u

�
2 are two orthogonal projections with sum 1. De�ne now

� : N ! N �N by �(x) = (u�1x; u
�
2x)

and

	 : N �N ! N by 	(x; y) = (u; x+ u2y)

Then � Æ 	 = idN�N and 	 Æ � = idN . Since � and 	 are normal (i.e., continuous) in

the !�-topologies on N and N �N ) and also are completely bounded maps, it follows

that N� �cb N� � N�. Similary we have M� �cb M� �M�. Thus the pair (M�;N�)

satis�es (ii) in Lemma 6.13. We next check condition (i) in Lemma 6.13.

Since R1 �= R� �
R1 as von Neumann algebras (cf. [C1, Sect.3.6]), we can without

loss of generality assume that M = N �
P where P �= R1. Let ' be a normal faithful

state on P and de�ne

� : N ! N �
P by �(x) = x
 1 ;

and let � : N �
P ! N be the left slice map given by ', i.e., the unique normal linear

map N �
P ! N for which

�(x
 y) = '(y)x ; x 2 N ; y 2 P :

Thus k�kcb = k�kcb = 1 and � Æ � = idN . Hence idN� has a completely bounded

factorization through M�, i.e., N� is cb-isomorphic to a cb-complemented subspace of

M�. To prove the converse, we use that if ' is a normal faithful state on the III1-factor

M = R1 and � = �'t0 is the moduluar automorphism associated with ' at t0 = � 2�
log �

,

then the crossed product R1 o� Z is a factor of type III� (cf. [HW, proof of Lemma

2.9]). Moreover injectivity of R1 implies that the crossed product is injective (cf. [C2]).

Hence R1 o� Z �= R� as von Neumann algebras, so in this part of the proof we may

assume that Mo� Z = N . Further, after identifying M with its natural imbedding in

the crossed product, we have that N is generated as a von Neumann algebra by M and

a certain unitary group fun j n 2 Zg coming from the crossed product construction (cf.
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[C1]). Let i : M ,!Mo�Z be the imbedding and let " : Mo�Z! i(M) be the unique

normal faithful conditional expectation of Mo� Z onto i(M) for which "(un) = 0, for

n 2 Zr f0g (see again [C1]). Then i and " are normal maps and i�1 Æ " Æ i = idM, so

as above, we obtain that M� is cb-isomorphic to a cb-complemented subspace of N�.

Hence a) follows from Lemma 6.13.

(b) Put again M = R1 and let G � R be a dense countable subgroup. Let ' be

a normal faithful state on R1 and put N = R1 o� G where � : G ! Aut(M) is the

restriction of the modular automorphism group (�'t )t2R to G. It follows from [C1] (see

the proof of [HW, Lemma 2.9]) that NG is a factor of type III0, which is also injective

(by [C2]). Moreover T (NG) = G, where T is Connes �-invariant. Hence G 6= G0 implies,

that NG and NG0 are not von Neumann-algebra isomorphic. It is easy to check, that

there are uncountably many dense countable subgroups of R. Put P = NG �
R1. Since

R1 �
R� ' R1 for 0 < � < 1, we have P �
R�
�= P, 0 < � < 1, which by [C1, Theorem

3.6.1] implies that P is a factor of type III1. Since P is also injective we have

NG �
R1 �= R1 = M
as von Neumann algebras. As in the proof of (a), it now follows, thatM� is cb-isomorphic

to a cb-complemented subspace of (NG)�. Moreover, since Mo�G is a crossed product

with respect to a discrete group, there is again an embedding i : M!Mo� G and a

normal faithful conditional expectation " : Mo� G ! i(M), and the rest of the proof

of (b) follows now exactly as in the proof of (a).

Let L(Fn) denote the von Neumann algebra associated with the free group Fn on n

generators. Then for 2 � n � 1 L(Fn) is a factor of type II1. It is a long standing open

problem to decide whether these II1-factors are isomorphic as von Neumann algebras.

Due to work of Voiculescu, Dykema and Radulescu, it is known that either these factors

are all isomorphic or L(Fn1) 6�= L(Fn2) whenever 2 � n1; n2 � 1 and n1 6= n2 (cf.

[VDN]). In [Ar] Arias proved that the von Neumann algebras L(Fn), 2 � n � 1 are

isomorphic as operator spaces. We show below, that also their preduals are isomorphic

as operator spaces. While Arias' proof uses mainly group theoretical considerations,

the proof of Theorem 7.3 below relies on one rather deep result of Voiculescu, that

L(F1) �= Mk(L(F1)) as von Neumann algebras for k = 2; 3; : : : (cf. [Vo] or [VDN]).
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Theorem 7.3. L(Fn)� is cb-isomorphic to L(F1)� for n = 2; 3; : : : .

Proof. Let n 2 N , n � 2 and put N = L(Fn) and M = L(F1). Since Fn is isomorphic to

a subgroup of F1 and vice versa, N is von Neumann-algebra isomorphic to a subfactor

N1 of M and M is von Neumann-algebra isomorphic to a subfactor M1 of N (see [Ar]

for details). Moreover, let �M and �N be the unique normal faithful tracial states on

M and N respectively. Then there is a unique normal faithful conditional expectation

" : M onto��! N1 preserving the trace �M (resp. a unique normal faithful conditional

expectation "0 : N onto��! M, preserving the trace �N ). As in the proof of Theorem 7.2,

this implies that X = M� and Y = N� satisfy condition (i) in Lemma 6.13. We next

prove that (ii0) in Lemma 6.13 is satis�ed with q = 1. Since M = L(F1) is a II1-factor,

we can choose a sequence of orthogonal projections (pi)
1
i=1 in M, such that �(pi) = 2�i

and
P1

i=1 pi = 1 (convergence in the strong operator topology). By Voiculescu's result

quoted above, L(F1) �= M2i(L(F1)) for i = 1; 2; : : : as von Neumann-algebras, which

implies that piMpi �= M as von Neumann-algebras.

Indeed, Voiculescu's result yields that there are orthogonal equivalent projections

q1; : : : ; q2i in M with
P2i

j=1 qj = 1 so that q1Mq1 �= M. It follows (by uniqueness of

�M) that �(qj) = �(qj0), for all j and j 0, and so �(q1) = 2�i. Since also �M(Pi) = 2�i

and M is a �nite factor, q1 and pi are equivalent, and hence piMpi �= q1Mq1 �= M as

desired.

Put

Q = (M�M� � � � )`1 = M�
`1 :

Then Q is a von Neumann algebra isomorphic to Q1 =
P� piMpi, which is a von Neu-

mann subalgebra of M. Moreover, there is a �M-preserving normal faithful conditional

expectation "00 : M onto��! Q1. Hence Q� is cb-isomorphic to a cb-complemented sub-

space of M�. Put as above X = M�. Then Q� = (X �X � � � � )`1 as operator spaces.

Hence we have shown that (X � X � � � � )`1 completely factors through X, so X and

(X � X � � � � )`1 are completely isomorphic by Corollary 6.14. This proves (ii0) iin

Lemma 6.13 with q = 1. Hence X = M� and Y = N� are completely isomorphic.

In the rest of this section, we will show how Theorem 7.2 and Theorem 7.3 can

be generalized to the non-commutative Lp-spaces associated with the von Neumann
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algebras in question. In [Ko], Kosaki proved, that the abstract Lp-spaces Lp(M), 1 <

p < 1 associated with a �-�nite (= countably decomposable) von Neumann algebra

M, can be obtained by the complex interpolation method applied to the pair (M;M�)

with the imbedding M ,! M� given by the map x ! x', x 2 M, for a �xed normal

faithful state ' on M. Assume next that N is a von Neumann subalgebra of M and

" : M ! N is a normal faithful conditional expectation of M onto N . By replacing

' by ' Æ ", we can assume, that the state ' used in Kosaki's imbedding is "-invariant.

Next, the adjoint of " de�nes an imbedding of N� in M� and i�, the adjoint of the

inclusion map i : N !M de�nes a cb-contraction of M� onto N�. Moreover, we have

the following commuting diagram:

N i�! M "�! N?y ?y ?y
N�

"��! M�
i��! N�

where the vertical arrows are the Kosaki inclusions with respect to '1N , ' and '1N

respectively. By the complex interpolation method we now get contractions ip : Lp(N ) !
Lp(M) and "p : Lp(M) ! Lp(N ), such that the following diagram commutes:

N i�! M "�! N?y ?y ?y
Lp(N )

ip�! Lp(M)
"p�! Lp(N )?y ?y ?y

N�
"��! M�

i��! N :

Further, if we consider Lp(N ) and Lp(M) as operator spaces with the operator spaces

structure introduce by Pisier in [Pi1], we get that ip and "p are complete contractions.

Hence we have proved:

Lemma 7.4. Let M be a �-�nite von Neumann algebra, and N � M a sub von Neu-

mann algebra, which is the range of a normal faithful conditional expectation " : M!
N . Then for every 1 < p <1, Lp(N ) is cb-isometrically isomorphic to a cb-contractively

complemented subspace of Lp(M).

Lemma 7.4 implies that the proofs of Theorem 7.2 and Theorem 7.3 can be repeated

almost word for word to cover the Lp-case. Note that the argument for N� � N� � N�

and M� �M� � M� in the beginning of Theorem 7.2 also works for the Lp-spaces,
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when Lp(N ) (resp. Lp(M)) are equipped with the natural left M-module structure

(resp. left N -module structure). Hence we get:

Theorem 7.5. Let R�, 0 < � < 1 and R1 be as in Theorem 7.2 and let 1 � p < 1.

Then

(a) Lp(R�) �cb L
p(R1).

(b) There is an uncountable family of mutually non-isomorphic (in the von Neumann

algebra sense) injective type III0-factors on a separable Hilbert space, for which

Lp(Ni) �cb L
p(R1) for all i 2 I.

(c) For every n 2 N, n � 2, Lp(L(Fn)) �cb L
p(L(F1)).
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