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Abstract A chain complex can be viewed as a representation of a certain quiver 
with relations, .Qcpx. The vertices are the integers, there is an arrow .q −→ q − 1 for 
each integer q, and the relations are that consecutive arrows compose to 0. Hence 
the classic derived category . D can be viewed as a category of representations of 
.Qcpx. 

It is an insight of Iyama and Minamoto that the reason . D is well behaved is that, 
viewed as a small category, .Qcpx has a Serre functor. Generalising the construction 
of . D to other quivers with relations which have a Serre functor results in the Q-
shaped derived category, . DQ. 

Drawing on methods of Hovey and Gillespie, we developed the theory of .DQ in 
three recent papers. This paper offers a brief introduction to . DQ, aimed at the reader 
already familiar with the classic derived category. 
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1 Introduction 

The classic derived category .D(A) of a ring provides a framework for homological 
algebra. Its objects are chain complexes, which can also be viewed as representa-
tions of a certain quiver with relations, .Qcpx, defined by Fig. 1 with the relations 
that consecutive arrows compose to 0. 

It is an insight of Iyama and Minamoto that the key property making .D(A) work 
is that, viewed as a small category, .Qcpx has a Serre functor; see [22], [23, sec. 
2]. Generalising the construction to other quivers with relations which have a Serre 
functor, or more generally to any suitable category Q which has a Serre functor, 
results in the Q-shaped derived category .DQ(A). See Setup 2.1 for the precise 
conditions imposed on Q. 

The Q-shaped derived category shares several attractive properties of . D(A); for  
instance, it is a compactly generated triangulated category. At the same time, varying 
Q provides the freedom to construct bespoke triangulated categories. For instance, 
if .Q = QN -cpx is defined by Fig. 1 with the relations that any N consecutive arrows 
compose to 0, then .DQ(A) is the derived category of N -complexes introduced in 
[21]. If Q is defined by Fig. 2 with the relations that consecutive arrows compose 
to 0, then .DQ(A) is the derived category of m-periodic complexes, which has the 
special feature that .Σ2m ∼= id where . Σ is the suspension functor. (The power 2m 
can be replaced by m if m is even, but if m is odd, then .Σm flips the sign of the 
differential.) One can also pick a more complicated Q, e.g. defined by Fig. 3 with 
mesh relations. 

· · · 2 1 0 −1 −2 · · ·  

Fig. 1 The linear quiver which underlies chain complexes and N -complexes 

0 

m− 1m− 2 

··· 

2 1 

Fig. 2 A cyclic quiver with m vertices 

· · ·  

◦ 

◦ 
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· · ·  

Fig. 3 The repetitive quiver .ZA3
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The construction of .DQ(A) draws heavily on methods of Hovey and Gillespie, 
in particular [19] and [8]. See [9], [10], [11], [20] for additional background. 

This paper offers a brief introduction to the theory of .DQ(A), which was 
developed in the papers [16], [17], [18]. Most sections begin with one or more items 
of abstract theory, followed by concrete implementations in the following standing 
examples.

• The category .Q = Qcpx defined by Fig. 1 with the relations that consecutive 
arrows compose to 0. Here .DQ(A) = D(A) is the classic derived category. 
(Up to now, .Qcpx denoted a quiver with relations. It will henceforth denote the 
corresponding small category; see 2.5.)

• The category .Q = QN -cpx defined by Fig. 1 with the relations that any N 
consecutive arrows compose to 0 for a fixed integer . N ⩾ 2. Here . DQ(A) =
DN(A) is the derived category of N -complexes. 

We end the introduction with a preview, which on its own can serve as an even 
briefer introduction to .DQ(A). The paper is divided into Sects. 3 through 6, and the 
preview covers Sects. 3 through 5. Section 6 contains two appendices on some key 
classes of categories: Frobenius, triangulated, and abelian model categories. 

Let . k be a hereditary noetherian commutative ring, A a .k-algebra, and Q a 
category satisfying the conditions in Setup 2.1, with . Q0 denoting the class of objects 
of Q. Note that Q is often defined by a quiver with relations; see 2.5. Let . Q,AMod
be the abelian category of .k-linear functors .Q −→ Mod(A) where .Mod(A) is the 
category of A-left modules. 

1.1 The Frobenius approach to .DQ(A) (preview of Sect. 3). This section 
constructs .DQ(A) in two different ways as the stable category of a Frobenius 
category. 

Section 3.1 For each .q ∈ Q0 and integer .i ⩾ 0, there are (co)homology functors 

. H
i[q] , H

[q]
i : Q,AMod −→ Mod(A).

For .i = 1 they generalise the classic homology functors . Hj : Ch(A) −→ Mod(A)

where .Ch(A) is the category of chain complexes over .Mod(A). The full subcategory 
of exact objects in .Q,AMod is 

. E = {X ∈ Q,AMod | H1[q](X) = 0 for each q ∈ Q0};

it generalises the exact complexes. The weak equivalences in .Q,AMod are 

. weq =
⌠

morphisms ϕ in Q,AMod

||||H
1[q](ϕ) and H

2[q](ϕ) are

isomorphisms for each q ∈ Q0

⎫
;
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they generalise the quasiisomorphisms of complexes. It may be unexpected that 
.H

1[q](ϕ) and .H2[q](ϕ) are both required to be isomorphisms in the formula, but this 
is necessary for the theory to work. 

Section 3.2 Let .Q,APrj and .Q,AInj be the full subcategories of projective, respec-
tively injective objects of . Q,AMod. The  semiprojective objects of .Q,AMod are 
the objects of . ⊥E , which is a Frobenius category with .Q,A Prj as its class of 
projective-injective objects. Here . ⊥ indicates a perpendicular full subcategory 
with respect to . Ext1, see  2.4. Semiprojective objects generalise semiprojective 
complexes. Similarly, the semiinjective objects of .Q,AMod are the objects of . E ⊥, 
which is a Frobenius category with .Q,A Inj as its class of projective-injective objects. 
Semiinjective objects generalise semiinjective complexes. 

Section 3.3 The Q-shaped derived category of A is obtained from .Q,AMod by 
formally inverting each weak equivalence, 

. DQ(A) = weq−1
Q,AMod .

There are equivalences of categories 

.

⊥E

Q,A Prj
∼= DQ(A) ∼= E ⊥

Q,A Inj
. (∗) 

Here .
⊥E

Q,A Prj and . E ⊥
Q,A Inj are the stable categories of the Frobenius categories .⊥E and 

. E ⊥. Hence they are triangulated categories, and in Sect. 3 of the paper, we view 
them as the de facto definition of .DQ(A). The equivalences permit the concrete 
computation of .Hom spaces in .DQ(A). For instance, 

. HomDQ(A)(X,X') ∼= Hom
Q,AMod(P, P ')

{ morphisms which factorise through a projective object } .

Here P and . P ' are semiprojective resolutions of X and . X'; that is, P and . P ' are 
semiprojective objects with weak equivalences .P −→ X and .P ' −→ X'. 

Section 3.4 Gives sample computations of the suspension functor of .DQ(A). 

1.2 The model category approach to .DQ(A) (preview of Sect. 4). This section 
constructs the projective and injective model category structures on . Q,AMod
and obtains .DQ(A) as the corresponding homotopy category where each weak 
equivalence has been formally inverted. 

Section 4.1 There are cotorsion pairs 

. (⊥E ,E ) , (Q,APrj, Q,AMod) , (E ,E ⊥) , (Q,AMod, Q,AInj)

in .Q,AMod.
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Section 4.2 There are two model category structures on . Q,AMod: The  projective 
and the injective model category structures. They arise by applying Hovey’s 
Theorem (Theorem 6.10 in Appendix 6.2) to the so-called Hovey triples 
.(⊥E ,E , Q,AMod) and .(Q,AMod,E ,E ⊥), which are obtained from the cotorsion 
pairs of Sect. 4.1. Both model category structures have the class .weq from 1.1 as 
their weak equivalences. Hence they have the same homotopy category: 

. Ho(Q,AMod) = weq−1
Q,AMod = DQ(A).

The equivalences .(∗) from 1.1 are now obtained from a theorem by Gillespie 
(Theorem 6.12). 

1.3 Compact, perfect, and strictly perfect objects in .DQ(A) (preview of 
Sect. 5). This section presents some classes of objects and some properties of 
.DQ(A). 

Section 5.1 .DQ(A) has full subcategories .Dc
Q(A), .Dperf

Q (A), .D s.perf
Q (A) of compact, 

perfect, and strictly perfect objects, which enjoy certain relations. A key property 
is that .DQ(A) is a compactly generated triangulated category generated by “stalk 
functors”, which send one object of .Q0 to A and all other objects to 0. 

2 Preliminaries 

Setup 2.1 This paragraph states the setup which will be assumed in the rest of the 
paper. Many of the results require less than the full setup, but we refer the reader to 
the original papers for specifics.

• k is a hereditary noetherian commutative ring.
• A is a k-algebra.
• Mod(k) is the category of k-modules, and Mod(A) is the category of A-left 

modules. 

Typical examples of k are Z or a field. If k = Z, then A is just a ring. Moreover,

• Q is a category satisfying the following conditions, mainly due to [6, thm.  
1.6]. Here Q0 denotes the class of objects of Q, and Q(−,−) denotes the 
homomorphism functor of Q. 

Preadditivity Q is k-preadditive; that is, each Hom set is equipped with a structure 
of k-module, and composition of morphisms is k-bilinear. 

Hom Finiteness Each Hom set in Q is a finitely generated projective k-module. 

Local Boundedness For each q ∈ Q0, the following sets are finite. 

.{p ∈ Q0 | Q(q, p) /= 0} , {p ∈ Q0 | Q(p, q) /= 0}
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Serre Functor There exists a k-linear automorphism S of Q, called the Serre 
functor, such that there are isomorphisms 

. Q(p, q) ∼= Homk
(
Q(q, Sp), k

)

which are natural in p, q ∈ Q0. 

Strong Retraction Q is equipped with decompositions of k-modules 

. Q(q, q) = (k · idq) ⊕ rq

for q ∈ Q0 such that 

(i) rq ◦ rq ⊆ rq , 
(ii) Q(p, q) ◦ Q(q, p) ⊆ rq for p /= q. 

Nilpotence The ideal in Q defined by 

. r(p, q) =
⌠

rq if p = q,

Q(p, q) if p /= q

for p, q ∈ Q0 is called the pseudoradical. It must satisfy  rN = 0 for some integer 
N ⩾ 1. 

These conditions are self dual in the sense that they hold for Q and Qop 

simultaneously. 

2.2 Remarks on condition “Strong retraction”.

• Condition “Strong retraction” requires a fixed, global choice of decompositions 
Q(q, q) = (k · idq) ⊕ rq , and the pseudoradical r depends on the choice.

• In condition “Strong retraction”, note that “p /= q” means “not equal” as opposed 
to “not isomorphic”. This implies that different objects of Q are non-isomorphic; 
see [17, rmk. 7.6].  

2.3 Cycles in Q. A cycle in the category Q is a diagram in Q, 

. q1 −→ q2 −→ · · · −→ qn−1 −→ qn,

with qn = q1 where each morphism is non-zero and belongs to the pseudoradical 
r. Note that this definition depends on the fixed, global choice of decompositions 
Q(q, q) = (k · idq) ⊕ rq ; see  2.2. 

2.4 The categories QMod and Q,AMod. The following categories will be used 
frequently.

• QMod = {k -linear functors Q −→ Mod(k)}. We think of this as the category of 
Mod(k)-valued representations of Q.
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• Q,AMod = {k-linear functors Q −→ Mod(A)}. We think of this as the category 
of Mod(A)-valued representations of Q. 

We list some properties of QMod and Q,AMod.

• They are abelian; indeed, they are Grothendieck categories by [17, prop. 3.12].

• They have enough projective objects by [17, prop. 3.12(a)] and enough injective 
objects by [13, thm. 1.10.1].

• They have set indexed limits and colimits by [31, chp. V, preamble and cor. 
X.4.4]. 

Note that [17, prop. 3.12(a)] even implies that QMod and Q,AMod have projective 
generators. 

The following notation will be used.

• The full subcategories of projective and injective objects of Q,AMod are denoted 
by Q,APrj and Q,AInj.

• The Hom and Ext functors of QMod are denoted by HomQ and Exti Q.

• The Hom and Ext functors of Q,AMod are denoted by HomQ,A and Exti Q,A.

• If Y is a class of objects in an abelian category A , then its left and right 
perpendicular full subcategories are 

. 
⊥Y = {X ∈ A | Ext1A (X,Y ) = 0} , Y ⊥ = {Z ∈ A | Ext1A (Y , Z) = 0}.

Finally, we also need tensor and Tor functors.

• There is a tensor product 

. − ⊗
Q

− : Qop Mod ×QMod −→ Mod(k),

see [26, p. 93]. Its ith left derived functor is 

. TorQi (−,−) : Qop Mod ×QMod −→ Mod(k).

2.5 Examples of Q. The category Q is often defined by a quiver with relations, 
whose category of Mod(A)-valued representations can then be identified with 
Q,AMod. See [1, secs. II.1 and II.2] for background on quivers with relations. 
Given a quiver, the free k-preadditive category is obtained by declaring the vertices, 
respectively the k-linear combinations of paths of the quiver, to be the objects, 
respectively the morphisms, of the category. Dividing by the ideal a defined by an 
admissible set of k-linear relations gives a new k-preadditive category, and this is a 
candidate for Q. A pseudoradical is defined by setting 

.r(p, q) = {k-linear combinations of paths from p to q of length ⩾ 1}/a(p, q).
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The conditions in Setup 2.1 apart from “Preadditivity” are far from automatic. In 
particular, the existence of a Serre functor is fairly special. 

However, there are many examples where Setup 2.1 is satisfied, and we mention 
the following in particular.

• Q = Qcpx is defined by Fig. 1 with the relations that consecutive arrows compose 
to 0. Then Q,AMod = Ch(A) where Ch(A) is the category of chain complexes 
and chain maps over Mod(A). The action of the Serre functor on objects is 
S(q) = q − 1.

• Q = QN -cpx is defined by Fig. 1 with the relations that any N consecutive arrows 
compose to 0 for a fixed integer N ⩾ 2. Then Q,AMod = ChN(A) where 
ChN(A) is the category of N -complexes and morphisms of N -complexes over 
Mod(A); see [24, secs. 0 and 1]. The action of the Serre functor on objects is 
S(q) = q − N + 1.

• Let Q be defined by Fig. 2 with the relations that consecutive arrows compose to 
0. Here m ⩾ 1 is a fixed integer. Then Q,AMod can be identified with the category 
of m-periodic chain complexes and chain maps over Mod(A). The action of the 
Serre functor on objects is S(q) = (q − 1) mod m.

• Let Q be defined by Fig. 3 modulo mesh relations; see [16, sec. 0.vii]. Then 
Q,AMod is a category not mentioned in standard textbooks. The action of the 
Serre functor on objects is given by reflection in a central horizontal line through 
Fig. 3 followed by translation by one vertex to the right. 

Finally, we give an example which is not based on a quiver. Assume that k is a field 
and let Λ be a finite dimensional self injective k-algebra.

• Let Q be a skeleton of ind(prj Λ), the category of indecomposable finitely 
generated projective Λ-left modules. Then Q,AMod can be identified with the 
category of Λop⊗

k 
A-left modules. The Serre functor is given by S(−) = DΛ⊗

Λ
− 

where DΛ = Homk(Λ, k). Note that the tensor product must be chosen with 
values in the skeleton Q of ind(prj Λ). 

3 The Frobenius Approach to DQ(A) 

This section constructs .DQ(A) in two different ways as the stable category of a 
Frobenius category.
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3.1 The Functors Hi 
[q] and H

[q] 
i , the Class E , and the Class 

weq 

3.1 The functors Hi[q] and H[q] 
i . Let q ∈ Q0 be given. The stalk functors at q are 

defined as follows; see [17, prop. 7.15].

• S〈q〉 =  Q(q,−)/r(q, −)

• S{q} =  Q(−, q)/r(−, q)  

They are objects of QMod, respectively Qop Mod; that is, they are k-linear functors 
Q −→ Mod(k), respectively Qop −→ Mod(k). If p ∈ Q0 then 

. S〈q〉(p) =
⌠

k for q = p,

0 for q /= p

by [17, lem. 7.10]. The functor S〈q〉 generalises the simple representation of Q at 
q known from quiver representation theory; see [30, def. 2.2(a)]. The functor S{q} 
generalises the simple representation of Qop at q. 

Now let q ∈ Q0 and i ∈ Z be given. Recalling the functors Exti Q and TorQ 
i 

from 2.4, the  i’th (co)homology functors at q are defined as follows; see [17, def. 
7.11].

• H
i[q](−) = Exti Q(S〈q〉, −)

• H
[q] 
i (−) = TorQ 

i (S{q}, −) 

They are k-linear functors Q,AMod −→ Mod(A). The values have A-structures 
induced by the A-structures of the arguments of the functors. 

3.2 The class E of exact objects. The full subcategory of exact objects in Q,AMod 
is

• E = {X ∈ Q,AMod | H1[q](X) = 0 for each q ∈ Q0} 
= {X ∈ Q,AMod | H[q] 

1 (X) = 0 for each q ∈ Q0}, 
see [17, thm. 7.1]. By the same theorem we have

• E = {X ∈ Q,AMod | Hi[q](X) = 0 for each i ∈ Z and each q ∈ Q0} 
= {X ∈ Q,AMod | H[q] 

i (X) = 0 for each i ∈ Z and each q ∈ Q0}. 
Combining the last bullet with the long exact Ext sequence for Hi[q] and the long 

exact Tor sequence for H[q] 
i makes it easy to see that

• E is a wide subcategory in the sense of 6.7 in Appendix 6.2.
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3.3 The class weq of weak equivalences. The class of weak equivalences in 
Q,A Mod is

• weq =
⌠

morphisms ϕ in Q,AMod

||||H
1[q](ϕ) and H2[q](ϕ) are 

isomorphisms for each q ∈ Q0

⎫

=
⌠

morphisms ϕ in Q,AMod

||||H
[q] 
1 (ϕ) and H[q] 

2 (ϕ) are 

isomorphisms for each q ∈ Q0

⎫
, 

see [17, thm. 7.2]. By the same theorem we have

• weq =
⌠

morphisms ϕ in Q,AMod

||||H
i[q](ϕ)is an isomorphism for 

each i ∈ Z and each q ∈ Q0

⎫

=
⌠

morphisms ϕ in Q,AMod

||||H
[q] 
i (ϕ) is an isomorphism for 

each i ∈ Z and each q ∈ Q0

⎫
. 

Perhaps surprisingly, weak equivalences are not in general characterised by H1[q](ϕ) 
alone being an isomorphism for each q ∈ Q0 or by H[q] 

1 (ϕ) alone being an 
isomorphism for each q ∈ Q0; see [17, exa. 8.21]. 

3.4 The functors Hi[q] and H[q] 
i , the class E , and the class weq for complexes. 

Let Q = Qcpx whence Q,AMod = Ch(A); see  2.5. An object X ∈ Q,AMod is a 
complex X =  · · ·  −→ X2 −→ X1 −→ X0 −→ X−1 −→ X−2 −→  · · ·  over Mod(A) 
and

• H
i[q](X) = Hq−i (X),

• H
[q] 
i (X) = Hq+i (X) 

for i ⩾ 1 where Hj is classic homology at degree j . It follows that

• E = {  exact complexes },
• weq = {  quasiisomorphisms }. 
Note that in this particular case, weak equivalences are in fact characterised 
by H1[q](ϕ) being an isomorphism for each q ∈ Q0 and by H[q] 

1 (ϕ) being an 
isomorphism for each q ∈ Q0. 

3.5 The functors Hi[q] and H[q] 
i , the class E , and the class weq for N -complexes. 

Let Q = QN -cpx whence Q,AMod = ChN(A); see  2.5. An object X ∈ Q,AMod is an 
N -complex X = · · · −→ X2 −→ X1 −→ X0 −→ X−1 −→ X−2 −→ · · ·  over Mod(A).
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Given q ∈ Q0 and an integer 0 < j  < N , there is a generalised homology group 
given by 

. jHq(X) = Ker(Xq −→ · · · −→ Xq−j )

Im(Xq+N−j −→ · · · −→ Xq)
,

see [24, def. 1.1]. The definition makes sense because Im ⊆ Ker since the 
composition Xq+N−j −→  · · ·  −→ Xq−j is 0 in the N -complex X. In these terms, 
for i ⩾ 1,

• H
i[q](X) = 

⎧⎨ 

⎩ 
N−1Hq−1− i−1 

2 N (X) for i odd, 

1Hq− i 
2 N (X) for i even,

• H
[q] 
i (X) = 

⎧⎨ 

⎩ 
N−1Hq+1+ i−1 

2 N (X) for i odd, 

1Hq+ i 
2 N (X) for i even. 

It follows that

• E = {N -exact N -complexes }; see [24, def. 1.1 and prop. 1.5].

• weq = {N -quasiisomorphisms }; see [21, def. 3.6] and [24, def. 1.1 and prop. 
1.5]. 

Note that an N -complex X is called N -exact if jHq(X) = 0 for each q ∈ Q0 and 

each integer 0 < j  < N . A morphism X ϕ−→ Y of N -complexes is called an N -
quasiisomorphism if jHq(ϕ) is an isomorphism for each q ∈ Q0 and each integer 
0 < j  < N . 

3.2 The Frobenius Categories ⊥E and E ⊥ 

3.6 The Frobenius categories ⊥E and E ⊥. The full subcategory E of exact 
objects was introduced in 3.2 and the notation ⊥ in 2.4. They permit the following 
definitions.

• The full subcategory of semiprojective objects is ⊥E .
• The full subcategory of semiinjective objects is E ⊥. 

These are all full subcategories of Q,AMod. Since ⊥E is defined as an Ext1 
Q,A-

perpendicular subcategory, it is closed under extensions in Q,AMod and satisfies 
Q,APrj ⊆ ⊥E . Extension closure implies that ⊥E is an exact category in a canonical 
way, see 6.1. The conflations are the short exact sequences in the abelian category 
Q,AMod which consist of objects from ⊥E .
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By [17, thm. 6.5] these statements can be strengthened to the first of the 
following, and the second is analogous. The notion of Frobenius category is 
explained in 6.2.

• ⊥E is a Frobenius category with Q,APrj as its class of projective-injective objects.

• E ⊥ is a Frobenius category with Q,AInj as its class of projective-injective objects. 

This is proved using the theory of model categories to which we shall return in 
Sect. 4.2. 

Giving a precise description of the objects in ⊥E and E ⊥ is in general difficult, 
but by [18, thm. E] we do have the following inclusions which are equalities if the 
left global dimension of A is finite.

• ⊥E ⊆ {X ∈ Q,A Mod | X(q) is projective for each q ∈ Q0}
• E ⊥ ⊆ {X ∈ Q,A Mod | X(q) is injective for each q ∈ Q0} 
3.7 The Frobenius categories ⊥E and E ⊥ for complexes. Let Q = Qcpx whence 
Q,AMod = Ch(A). Then

• We have 

. 
⊥E = { semiprojective complexes }

by [7, prop. 2.3.5] (which uses the term “DG-projective”). Semiprojective 
complexes were introduced in [4, sec. 2] under the name “special complexes 
of projectives”. They consist of projective modules by 3.6 and include all right 
bounded complexes of projective modules, in particular the projective resolution 
of each A-left module.

• We have 

. E ⊥ = { semiinjective complexes }

by [7, prop. 2.3.4] (which uses the term “DG-injective”). Semiinjective com-
plexes were also introduced in [4, sec. 2] under the name “special complexes of 
injectives”. They consist of injective modules by 3.6 and include all left bounded 
complexes of injective modules, in particular the injective resolution of each A-
left module. 

3.8 The Frobenius categories ⊥E and E ⊥ for N -complexes. Let Q = QN -cpx 

whence Q,AMod = ChN(A). Then

• The objects in ⊥E will be called semiprojective N -complexes. These N -
complexes were considered in [2, ex. 3.6] under the name “dg-projective 
N -complexes”. They consist of projective modules by 3.6 and include all right 
bounded N -complexes of projective modules by the lines immediately after [21, 
def. 3.16]. They are included in the K-projective N -complexes of [21, def. 3.16].
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• The objects in E ⊥ will be called semiinjective N -complexes. These N -
complexes consist of injective modules by 3.6 and include all left bounded 
N -complexes of injective modules by the lines immediately after [21, def. 3.16]. 
They are included in the K-injective N -complexes of [21, def. 3.16]. 

3.3 The Q-Shaped Derived Category DQ(A) 

3.9 The Q-shaped derived category DQ(A). The Q-shaped derived category of 
A is the homotopy category 

. DQ(A) = Ho(Q,AMod) = weq−1
Q,AMod

obtained from Q,AMod by formally inverting each weak equivalence. There are 
equivalences of categories 

. 

⊥E

Q,A Prj
∼= DQ(A) ∼= E ⊥

Q,A Inj
.

Here 
⊥E 

Q,A Prj and E ⊥ 

Q,A Inj are the stable categories of the Frobenius categories ⊥E and 

E ⊥; see  6.4. Hence they are triangulated categories, and in this part of the paper, we 
view them as the de facto definition of DQ(A). 

The equivalences are established using the theory of model categories; see 
Sect. 4.2. 

3.10 The Q-shaped derived category DQ(A) for complexes. Let Q = Qcpx 

whence Q,AMod = Ch(A). There is an equivalence of triangulated categories 

. DQ(A) ∼= D(A),

where D(A) is the classic derived category. To see this, note that the objects 

in DQ(A) ∼= 
⊥E 

Q,APrj are the semiprojective complexes by 3.7. The morphisms 
are chain maps modulo chain maps which factorise through a projective object. 
Such factorisations exist precisely for null homotopic chain maps, as one can 

see by amending the arguments in [14, p. 28]. Hence 
⊥E 

Q,A Prj is the category of 
semiprojective complexes and chain maps modulo chain homotopy, which by [4, 
p. 216] is triangulated equivalent to D(A). 

3.11 The Q-shaped derived category DQ(A) for N -complexes. Let Q = QN -cpx 

whence Q,AMod = ChN(A). There is an equivalence of triangulated categories 

.DQ(A) ∼= DN(A),
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where DN(A) is the derived category of N -complexes of [21, def. 3.6]. To see 

this, note that the objects in DQ(A) ∼= 
⊥E 

Q,A Prj are the semiprojective N -complexes 
from 3.8. The morphisms are morphisms of N -complexes modulo morphisms 
which factorise through a projective object. Such factorisations exist precisely for 
morphisms which are N -null homotopic, see [24, p. 8], as one can see by amending 

the proof of [21, thm. 2.3]. Hence 
⊥E 

Q,A Prj is the category of semiprojective N -
complexes and morphisms of N -complexes modulo N -chain homotopy, which by 
[21, thm. 3.17(i) and its proof] is triangulated equivalent to DN(A). Note that the 
proof rather than the formulation of [21, thm. 3.17(i)] shows that the semiprojective 
N -complexes suffice in this statement. 

3.4 The Suspension Functor of DQ(A) 

The stable category of a Frobenius category is triangulated. In particular, it has a 
suspension functor which can be computed as described in the last bullet point 
of 6.4. We will do the computation for .DQ(A) in our two standing examples, 
complexes and N -complexes, and also in the case of m-periodic complexes. 

3.12 The suspension functor for complexes. Let .Q = Qcpx whence . Q,AMod =
Ch(A). Consider the Frobenius category .⊥E and its stable category . 

⊥E
Q,A Prj . We  

will compute the action of the suspension functor . Σ on objects using 6.4. The  
computation will show that . Σ acts as one would expect from classic homological 
algebra: It shifts a complex one step against the direction of the differential and flips 
the sign of the differential. 

Let .P ∈ ⊥E be given. The following diagram shows a conflation . P −→ R −→ P '
in .⊥E with .R ∈ Q,APrj whence .ΣP = P '. 

. 

To see that .R ∈ Q,APrj, note that R is a direct sum of shifts of complexes of the 
form 

. · · · −→ 0 −→ P
id−→ P −→ 0 −→ · · ·
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with P a projective A-module, and each such is easily checked to be in .Q,A Prj. 
To see that the diagram shows a conflation in . ⊥E , we must first see that it shows 

a short exact sequence in .Q,AMod, and this is true because it is split exact in each 
degree. Secondly, we must see that .P,R, P ' ∈ ⊥E . This holds for P by definition, 
for . P ' because . P ' is isomorphic to a shift of P , and for R because .R ∈ Q,APrj. 

3.13 The suspension functor for N -complexes. Let .Q = QN -cpx whence 
.Q,AMod = ChN(A). Consider the Frobenius category .⊥E and its stable category 

.
⊥E

Q,A Prj . The action of the suspension functor . Σ on objects is computed in [21, p.  
693] using the method of 6.4. We will not show the full computation but give an 
example to illustrate that . Σ is not given by shifting. 

Let P be a projective A-module and consider P as an N -complex concentrated 
in degree 0. The following diagram shows a conflation .P −→ R −→ P ' in .⊥E with 
.R ∈ Q,APrj whence .ΣP = P '. 

degree 0 
↓ 

P =  · · ·  −→ 0 −→ 0 −→ 0 −→  · · ·  −→ 0 −→ P −→ 0 −→  · · ·  
↓ ↓ ↓ ↓ ↓ ↓ 1P ↓ 
R =  · · ·  −→ 0 −→ P 1P−→ P 1P−→  · · ·  1P−→ P 1P−→ P −→ 0 −→  · · ·  
↓ ↓ ↓ 1P ↓ 1P ↓ 1P ↓ ↓  
P ' =  · · ·  −→ 0 −→ P −→

1P 
P −→

1P 
· · ·  −→

1P 
P −→ 0 −→ 0 −→  · · ·  

↑ 
degree N − 1 

It is easy to check .R ∈ Q,APrj. To see that the diagram shows a conflation in . ⊥E , 
note that it clearly shows a short exact sequence and that .P,R, P ' ∈ ⊥E because 
.P,R, P ' are bounded complexes of projective modules; see 3.8. 

As shown by this example, there are categories Q which give considerably more 
complicated formulae for . Σ than the “shift plus sign flip” that applies to complexes 
in classic homological algebra. 

3.14 The suspension functor for m-periodic complexes. Let .m ⩾ 1 be an integer 
and let Q be defined by Fig. 2 modulo the relations that consecutive arrows compose 
to 0. Then .Q,AMod is the category of m-periodic chain complexes and chain maps. 

Consider the Frobenius category .⊥E and its stable category .
⊥E

Q,A Prj . 
The action of the suspension functor . Σ on objects can be computed by the same 

argument as in 3.12, and the conclusion is the same: . Σ shifts a complex one step 
against the direction of the differential and flips the sign of the differential. A slightly 
more elaborate argument shows that . Σ also shifts morphisms one step against the 
direction of the differential.
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It follows by m-periodicity that if m is even then .Σm ∼= id. If  m is odd, then 
.Σ2m ∼= id, where the additional factor 2 is necessary because .Σm flips the sign of 
the differential. 

4 The Model Category Approach to DQ(A) 

This section constructs the projective and injective model category structures on 
.Q,AMod and obtains .DQ(A) as the corresponding homotopy category where each 
weak equivalence has been formally inverted. 

4.1 Cotorsion Pairs in Q,AMod 

This section introduces four cotorsion pairs which are hereditary and functorially 
complete. See 6.8 for the relevant definitions. 

4.1 The cotorsion pair .(⊥E ,E ). The class . E of exact objects and its .Ext1-
perpendicular .⊥E were introduced in 3.2 and 3.6. They are both full subcategories 
of .Q,AMod.

• .(⊥E ,E ) is a cotorsion pair in .Q,AMod. It satisfies .⊥E ∩ E = Q,APrj and it is 
hereditary and functorially complete. 

These claims are proved in [17, thm. 4.4(a)] except functorial completeness. To 
prove this as well, observe that [17, proof of thm. 5.5] produces a set . S of objects of 
.Q,AMod such that .S ⊥ = E . This property is preserved by adding to . S a projective 
generator of .Q,AMod, which exists by 2.4. Hence .(⊥E ,E ) is functorially complete 
by [8, thm. 2.1]. See also [32, thm. 5.16]. 

4.2 The cotorsion pair .(Q,APrj, Q,AMod). Consider the category .Q,AMod and its 
full subcategory .Q,APrj of projective objects.

• .(Q,APrj, Q,AMod) is a cotorsion pair in .Q,AMod. It is hereditary and functorially 
complete. 

The hereditary property is immediate. To prove the remaining claims, observe 
that .Q,AMod has a projective generator P by 2.4. Hence . (Q,APrj, Q,AMod) =(⊥({P }⊥), {P }⊥)

is a functorially complete cotorsion pair by [8, thm. 2.1].  

4.3 The cotorsion pair .(E ,E ⊥). The class . E of exact objects and its .Ext1-
perpendicular .E ⊥ were introduced in 3.2 and 3.6. They are both full subcategories 
of .Q,AMod.

• .(E ,E ⊥) is a cotorsion pair in .Q,AMod. It satisfies .E ∩ E ⊥ = Q,AInj and it is 
hereditary and functorially complete.
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These claims are proved in [17, thm. 4.4(b)] except functorial completeness. To 
prove this as well, observe that [17, proof of thm. 5.9] verifies that . E satisfies 
conditions (1) and (2) of [17, thm. A.3]. Hence [17, proof of thm. A.3] implies 
that [32, cor. 5.17] applies to . E whence .(E ,E ⊥) is functorially complete. 

4.4 The cotorsion pair .(Q,AMod, Q,AInj). Consider the category .Q,AMod and its 
full subcategory .Q,AInj of injective objects.

• .(Q,AMod, Q,AInj) is a cotorsion pair in .Q,AMod. It is hereditary and functorially 
complete. 

The hereditary property is immediate. The remaining claims are proved in [32, cor. 
5.9]. To see that this result applies to .Q,AMod, observe that this category is, in the 
terminology of [32, cor. 5.9], exact of Grothendieck type. This holds by [32, text  
after def. 3.11 and prop. 3.13]. 

4.2 The Projective and Injective Model Category Structures 
on Q,AMod 

This section introduces two hereditary Hovey triples. It proceeds to study the 
ensuing so-called projective and injective model category structures on .Q,AMod. 
See 6.5, 6.6, and 6.9 for the relevant definitions. 

4.5 The Hovey triple .(⊥E ,E , Q,AMod). In the abelian category .Q,AMod,

• .(Cp,Wp,Fp) = (⊥E ,E , Q,AMod) is a hereditary Hovey triple. 

To see this, we check the conditions in 6.9.

• .Wp = E is wide by 3.2.

• We have .(Cp,Wp ∩ Fp) = (⊥E ,E ∩ Q,AMod) = (⊥E ,E ). This is a hereditary 
functorially complete cotorsion pair by 4.1.

• We have .(Cp ∩ Wp,Fp) = (⊥E ∩ E , Q,AMod) = (Q,APrj, Q,AMod) by 4.1. 
This is a hereditary functorially complete cotorsion pair by 4.2. 

4.6 The Hovey triple .(Q,AMod,E ,E ⊥). In the abelian category .Q,AMod,

• .(Ci ,Wi ,Fi ) = (Q,AMod,E ,E ⊥) is a hereditary Hovey triple. 

To see this, we check the conditions in 6.9.

• .Wi = E is wide by 3.2.

• We have .(Ci ,Wi ∩ Fi ) = (Q,AMod,E ∩ E ⊥) = (Q,AMod, Q,AInj) by 4.3. This  
is a hereditary functorially complete cotorsion pair by 4.4.

• We have .(Ci ∩ Wi ,Fi ) = (Q,AMod ∩E ,E ⊥) = (E ,E ⊥). This is a hereditary 
functorially complete cotorsion pair by 4.3.
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4.7 The projective model category structure on .Q,AMod. By Theorem 6.10, 
the hereditary Hovey triple .(Cp,Wp,Fp) = (⊥E ,E , Q,AMod) from 4.5 gives a 
model category structure .(weqp, cofp, fibp) on .Q,AMod, called the projective model 
category structure, which can be described as follows.

• .weqp consists of the compositions . πι where . π is an epimorphism with kernel in 
.Wp = E and . ι is a monomorphism with cokernel in .Wp = E . Note that 

. weqp = weq

by [17, thm. 7.2], where .weq is the class from 3.3.

• .cofp consists of the monomorphisms with cokernel in .Cp = ⊥E , that is, the 
monomorphisms with semiprojective cokernel; see 3.6.

• .fibp consists of all epimorphisms. 

Applying Theorem 6.12 to this model category structure gives the following, 
where the two first items recover the third bullet from 3.6, and the last item recovers 
the first equivalence of categories from 3.9.

• .Cp ∩ Fp = ⊥E is a Frobenius category.

• The class of projective-injective objects is .Cp ∩ Wp ∩ Fp = ⊥E ∩ E = Q,APrj, 
where we used 4.1.

• There is an equivalence of categories 

. 

⊥E

Q,APrj
∼= DQ(A),

where the right hand side is defined as 

. DQ(A) = Ho(Q,AMod) = weq−1
p Q,AMod = weq−1

Q,AMod,

the homotopy category of the projective model category structure on .Q,AMod. 

4.8 The injective model category structure on .Q,AMod. By Theorem 6.10, the  
hereditary Hovey triple .(Ci ,Wi ,Fi ) = (Q,AMod,E ,E ⊥) from 4.6 gives a model 
category structure .(weqi , cofi , fibi ) on .Q,AMod, called the injective model category 
structure, which can be described as follows.

• .weqi consists of the compositions . πι where . π is an epimorphism with kernel in 
.Wi = E and . ι is a monomorphism with cokernel in .Wi = E . Note that 

. weqi = weq

by [17, thm. 7.2], where .weq is the class from 3.3.

• .cofi consists of all monomorphisms.
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• .fibi consists of the epimorphisms with kernel in .Fi = E ⊥, that is, the 
epimorphisms with semiinjective kernel; see 3.6. 

Applying Theorem 6.12 to this model category structure gives the following, 
where the two first items recover the fourth bullet from 3.6, and the last item recovers 
the second equivalence of categories from 3.9.

• .Ci ∩ Fi = E ⊥ is a Frobenius category.

• The class of projective-injective objects is .Ci ∩ Wi ∩ Fi = E ∩ E ⊥ = Q,AInj, 
where we used 4.3.

• There is an equivalence of categories 

. 
E ⊥

Q,AInj
∼= DQ(A),

where the right hand side is defined as 

. DQ(A) = Ho(Q,AMod) = weq−1
i Q,AMod = weq−1

Q,AMod,

the homotopy category of the injective model category structure on .Q,AMod. 

4.9 The projective model category structure on complexes. Let . Q = Qcpx

whence .Q,AMod = Ch(A); see  2.5. The projective model category structure 
from 4.7 can be described as follows.

• .weqp = weq = { quasiisomorphisms }; see the fourth bullet in 3.4.

• .cofp consists of the monomorphisms whose cokernel is a semiprojective com-
plex; see the second bullet in 4.7 and the first bullet in 3.7.

• .fibp consists of all epimorphisms; see the third bullet in 4.7. 

This is the “standard model category structure” on chain complexes described in 
[20, def. 2.3.3]; see [20, prop. 2.3.4, prop. 2.3.9]. 

The corresponding homotopy category is the Q-shaped derived category, which 
for .Q = Qcpx is equivalent to the classic derived category: 

. Ho(Q,A Mod) = DQ(A) ∼= D(A),

see 3.9 and 3.10. 

4.10 The injective model category structure on complexes. Let . Q = Qcpx

whence .Q,AMod = Ch(A). The injective model category structure from 4.8 can 
be described as follows.

• .weqi = weq = { quasiisomorphisms }; see the fourth bullet in 3.4.

• .cofi consists of all monomorphisms; see the second bullet in 4.8.
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• .fibi consists of the epimorphisms whose kernel is a semiinjective complex; see 
the third bullet in 4.8 and the second bullet in 3.7. 

This is the “injective model category structure” on chain complexes described in 
[20, thm. 2.3.13]. 

The corresponding homotopy category is the Q-shaped derived category, which 
for .Q = Qcpx is equivalent to the classic derived category: 

. Ho(Q,A Mod) = DQ(A) ∼= D(A),

see 3.9 and 3.10. 

4.11 The projective and injective model category structures on N -complexes. 
Let .Q = QN -cpx whence .Q,AMod = ChN(A); see  2.5. The projective and injective 
model category structures from 4.7 and 4.8 can be described analogously to 4.9 
and 4.10. In either case we have

• .weq = {N -quasiisomorphisms }; see the last bullet in 3.5. 

The corresponding homotopy category is the Q-shaped derived category, which for 
.Q = QN -cpx is equivalent to the derived category of N -complexes: 

. Ho(Q,A Mod) = DQ(A) ∼= DN(A),

see 3.9 and 3.11. 

5 Compact, Perfect, and Strictly Perfect Objects in DQ(A) 

This section presents some classes of objects and some properties of .DQ(A). 

5.1 Compact, Perfect, and Strictly Perfect Objects 

5.1 Compact, perfect, and strictly perfect objects of Q,AMod. The full subcate-
gory of compact objects in DQ(A) is

• Dc 
Q(A) = {C ∈ DQ(A) | HomDQ(A)(C, −) respects set indexed coproducts}, 

see [25, def. 1.6]. 
Inspired by [3, def. I.2.1], the full subcategories of strictly perfect and perfect 

objects in DQ(A) were defined as follows in [18, def. 5.3]. The definitions should 
be read with an understanding that the category DQ(A) = weq−1 

Q,AMod has the 
same objects as Q,AMod.
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• D
s.perf 
Q (A) =

⌠
K ∈ DQ(A)

||||the set {q ∈ Q0 | K(q) /= 0} is finite, and each 

K(q) is a finitely generated projective A-module

⎫

• D
perf 
Q (A) =

⌠
X ∈ DQ(A)

||||
X ∼= K in DQ(A) for an 

object K ∈ D s.perf 
Q (A) ∩ ⊥E

⎫

By definition, Dc 
Q(A) and Dperf 

Q (A) are closed under isomorphisms in DQ(A). 

In general, D s.perf 
Q (A) is not closed under isomorphisms in DQ(A), and Dperf 

Q (A) 
is not the isomorphism closure of D s.perf 

Q (A) in DQ(A) because of the condition 

K ∈ D s.perf 
Q (A) ∩ ⊥E in the last bullet above. However, see Theorem 5.5. 

The rationale for the definition of perfect objects is the following two theorems. 

Theorem 5.2 ([18, thm. A])  In general we have D s.perf 
Q (A) /⊆ Dc 

Q(A). 

Theorem 5.3 ([18, thm. C])  There is an inclusion Dperf 
Q (A) ⊆ Dc 

Q(A), which is  

an equality if and only if Dperf 
Q (A) is thick. 

Theorem 5.3 motivates the following conjecture, which is well known to be true 
for D(A). 

Conjecture 5.4 There is an equality Dperf 
Q (A) = Dc 

Q(A). 

In some cases, the relation between the categories Dc 
Q(A), D

s.perf 
Q (A), and 

D
perf 
Q (A) simplifies as described by the following theorem. It applies in particular to 

D(A), which can be obtained as DQ(A) for the category Q = Qcpx which has no 
cycles. 

Theorem 5.5 ([18, thm. B])  Assume that Q has no cycles in the sense of 2.3 or 
that the left global dimension of A is finite. Then the following hold.

• D
s.perf 
Q (A) ⊆ Dc 

Q(A).

• D
perf 
Q (A) is the isomorphism closure of D s.perf 

Q (A) in DQ(A). 

Finally, DQ(A) always enjoys the following good property. 

Theorem 5.6 ([18, thm. D])  The category DQ(A) is compactly generated in the 
sense of [25, def. 1.7]. A set of compact generators is given by {Sq(A) | q ∈ Q0}, 
where the functor Sq(A) ∈ Q,AMod is defined by 

. 
(
Sq(A)

)
(−) = (

S〈q〉(−)
)⊗

k
A,

see 3.1. 

If Q is Qcpx or QN -cpx, then Q,AMod is Ch(A) or ChN(A), and Sq(A) is the 
complex or N -complex which has A placed in degree q and zeroes elsewhere. If
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Q = Qcpx then DQ(A) = D(A), see  3.10, and this set of compact generators is 
well known. 

6 Appendices 

This section contains two appendices on some key classes of categories: Frobenius, 
triangulated, and abelian model categories. 

6.1 Frobenius and Triangulated Categories 

6.1 Exact categories. The notion of exact category was introduced by Quillen; see 
[27, sec. 2] or [5, def. 2.1] for a more recent exposition. We will not reproduce the 
definition in full but merely say the following.

• An exact category is pair (F ,S ) where F is an additive category, S a class of  
so-called conflations.

• Each conflation is a diagram of the form f ' ϕ'
−→ f ϕ−→ f '' where ϕ' is a kernel of 

ϕ and ϕ is a cokernel of ϕ'.
• The conflations are subject to a list of axioms. 

The canonical example is that F is an extension closed subcategory of an abelian 
category A , and that S is the class of short exact sequences in A which have each 
term in F . In this case S is implicit in F , and we abuse terminology by saying 
that “F is an exact category”. 

6.2 Frobenius categories. Let (F ,S ) be an exact category.

• An object p ∈ F is projective if F (p, −) maps conflations to short exact 
sequences.

• There are enough projective objects if each f ∈ F permits a conflation f ' −→ 
p −→ f with p projective.

• There are dual definitions of injective objects and of enough injective objects.

• We say that (F ,S ) is a Frobenius category if it has enough projective and 
enough injective objects and the projective and injective objects coincide; see 
[14, sec. 2.1]. These are then referred to as projective-injective objects. 

As above, if F is given as an extension closed subcategory of an abelian category 
A , and S is the class of short exact sequence in A which have each term in F , 
then we abuse terminology by saying that “F is a Frobenius category”.
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A simple example is that F is mod(Λ), the category of finitely generated Λ-left 
modules where Λ is a finite dimensional self injective algebra over a field k, and 
that S is the class of all short exact sequences in F . 

6.3 Triangulated categories. An early reference for the definition of triangulated 
categories is [15, sec. I.1]; see also [14, sec. I.1.1]. We will not reproduce the 
definition in full but merely say the following.

• A triangulated category is a triple (D, Σ,Δ)  where D is an additive category, Σ

an automorphism of D called the suspension functor, and Δ a class of so-called 
triangles.

• Each triangle is a diagram of the form d ' δ'−→ d δ−→ d '' −→ Σd ' where δ' is a weak 
kernel of δ and δ is a weak cokernel of δ'.

• The triangles are subject to a list of axioms. 

A main example is D(A); see [15, sec. I.4] and [14, sec. I.3.3]. 

6.4 The stable category of a Frobenius category. Let (F ,S ) be a Frobenius 
category and let P be the full subcategory of projective-injective objects. The stable 
category F 

P is the naive quotient with the same objects as F and morphisms 

. Hom F
P

(f ', f ) = HomF (f ', f )

{ morphisms which factorise through an object of P} .

The stable category is a triangulated category in a canonical way by [14, thm.  
I.2.6]. We will not provide full details but merely say the following.

• A conflation f ' −→ f −→ f '' in F induces a triangle f ' −→ f −→ f '' −→ Σf ' in 
F 
P .

• Up to isomorphism, the suspension Σf of an object f is Σf = f ' where f −→ 
p −→ f ' is a conflation with p projective-injective. 

6.2 Abelian Model Categories 

6.5 Model categories. The notion of model category was introduced by Quillen; 
see [28, sec. I.1]. In this paper, we will use the updated definition of [20, def. 1.1.3]. 
We will not reproduce the definition in full but merely say the following.

• A model category is a quadruple (A , weq, cof, fib), where A is a category 
and (weq, cof, fib) are three classes of morphisms called the weak equivalences, 
cofibrations, and fibrations. The triple (weq, cof, fib) is often referred to as a 
model category structure on A .

• A trivial (co)fibration is a weak equivalence which is also a (co)fibration.
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• Using (weq, cof, fib), one can define the so-called cofibrant, fibrant, trivially 
cofibrant, and trivially fibrant objects. Objects which are both cofibrant and 
fibrant are called cofibrant-fibrant; they form the full subcategory Acf.

• There is a notion of homotopy, denoted ∼, which is an equivalence relation on 
each Hom set between cofibrant-fibrant objects, compatible with composition of 
morphisms. 

The homotopy category is 

. Ho(A ) = weq−1A ,

obtained from A by formally inverting each weak equivalence. Quillen’s fundamen-
tal theorem of model categories, [28, thm. 1’], states that the inclusion Acf →ͨ A 
induces an equivalence of categories 

. Acf/∼ ∼= Ho(A ).

There are at least two points to this: First, it shows that weq−1A exists without 
set theoretical issues, which could otherwise encumber its construction. Secondly, 
concrete computations may be more feasible in Acf/∼ than in weq−1A . 

6.6 Abelian model categories. An abelian model category, as defined by Hovey 
[19, def. 2.1], is a model category (A , weq, cof, fib) where A is an abelian 
category, such that the following hold.

• A morphism is a (trivial) cofibration if and only if it is a monomorphism with 
(trivially) cofibrant cokernel.

• A morphism is a (trivial) fibration if and only if it is an epimorphism with 
(trivially) fibrant kernel. 

6.7 Wide subcategories. Let A be an abelian category, W a full subcategory.

• W is wide if it is closed under summands and has the two-out-of-three property; 
that is, given a short exact sequence, if two of the objects are in the subcategory 
then so is the third. 

6.8 Cotorsion pairs. Let A be an abelian category, (X ,Y ) a pair of full 
subcategories. Recall that ⊥ denotes perpendicular full subcategories with respect 
to Ext1; see  2.4.

• (X ,Y ) is a cotorsion pair if X ⊥ = Y and X = ⊥Y .
• A cotorsion pair (X ,Y ) is functorially complete if each a ∈ A permits short 

exact sequences 

. 0 −→ y −→ x −→ a −→ 0 , 0 −→ a −→ y' −→ x' −→ 0,

which depend functorially on a and have x, x' ∈ X and y, y' ∈ Y .
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• A cotorsion pair (X , Y ) is hereditary if Ext⩾1 
A (X ,Y ) = 0. 

The notion of cotorsion pair is due to Salce, [29, p. 12]. See also [12, def. 2.2.1, lem.  
2.2.6, lem. 2.2.10], [19, def. 2.3]. 

6.9 Hovey triples. A Hovey triple in an abelian category is a triple (C , W ,F ) of 
full subcategories such that

• W is a wide subcategory,

• (C ,W ∩ F ) and (C ∩ W ,F ) are functorially complete cotorsion pairs. 

A Hovey triple is called hereditary if the cotorsion pairs (C , W ∩ F ) and (C ∩ 
W ,F ) are hereditary. See [8, thm. 2.2 and sec. 4], [19, thm. 2.2].  

Theorem 6.10 (Hovey; See [19, thm. 2.2 and def. 5.1]) Let A be an abelian 
category with set indexed limits and colimits and consider: 

(i) The class of abelian model categories of the form (A , weq, cof, fib), 
(ii) The class of Hovey triples (C ,W ,F ) in A . 

There is a bijection between (i) and (ii). If (A , weq, cof, fib) and (C ,W , F ) 
correspond under the bijection, then on the one hand,

• C consists of the cofibrant objects,

• C ∩ W consists of the trivially cofibrant objects,

• F consists of the fibrant objects,

• W ∩ F consists of the trivially fibrant objects,

• W consists of the trivial objects, that is, the objects w such that 0 −→ w is a weak 
equivalence. 

On the other hand,

• weq consists of the compositions πι  where π is an epimorphism with kernel in 
W and ι is a monomorphism with cokernel in W ,

• cof consists of the monomorphisms with cokernel in C ,

• fib consists of the epimorphisms with kernel in F . 

Remark 6.11 Note that in Theorem 6.10 the cofibrant-fibrant objects are

• Acf = C ∩ F . 

Theorem 6.12 (Gillespie; See [8, thm. 2.6(i) and prop. 4.2]) Let A be an abelian 
category with set indexed limits and colimits, (C ,W , F ) a hereditary Hovey triple 
in A , and (A , weq, cof, fib) the corresponding abelian model category under 
Theorem 6.10. Then

• Acf = C ∩ F is a Frobenius category. The conflations are the short exact 
sequences in A which have each term in C ∩ F ,

• The class of projective-injective objects of C ∩ F is C ∩ W ∩ F ,
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• The inclusion Acf = C ∩ W →ͨ A induces an equivalence of categories 

. 
C ∩ F

C ∩ W ∩ F
∼= weq−1A = Ho(A ).

In particular, Ho(A ) is triangulated; see 6.4. 

The final bullet can be viewed as an instance of Quillen’s fundamental theorem 
of model categories; see 6.5 and [28, thm. 1’].  
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