
TILTING IN Q-SHAPED DERIVED CATEGORIES

SIRA GRATZ, HENRIK HOLM, PETER JØRGENSEN, AND GREG STEVENSON

Abstract. The main result of this paper is that there is sometimes a triangulated

equivalence between DQ(A), the Q-shaped derived category of an algebra A, and
D(B), the classic derived category of a different algebra B. By construction, DQ(A)
consists of Q-shaped diagrams of A-modules for a suitable small category Q. Our result

concerns the case where Q consists of shifts of indecomposable projective modules over
a self-injective Z-graded algebra Λ.

A notable special case is the result by Iyama, Kato, and Miyachi that DN (A), the
N -derived category of A, is triangulated equivalent to D

(
TN−1(A)

)
, the classic derived

category of TN−1(A), which denotes upper diagonal (N − 1) × (N − 1)-matrices over

A. Several other special cases will also be discussed.

1. Introduction

The main result of this paper, Theorem A below, is that there is sometimes a triangulated
equivalence

DQ(A) ∼= D(B).

On the left hand side, DQ(A) is the Q-shaped derived category of an algebra A which by
construction consists of Q-shaped diagrams of A-modules for a suitable small category
Q. On the right hand side, D(B) is the classic derived category of a different algebra
B. Theorem A concerns the case where Q consists of shifts of indecomposable projective
modules over a self-injective Z-graded algebra Λ.

A notable special case is the following triangulated equivalence, originally due to [6, prop.
4.11] with a precursor appearing in [8, thm. 3.1].

(1.1) DN (A) ∼= D
(
TN−1(A)

)
On the left hand side, DN (A) is the derived category of N -complexes of A-modules in
which the composition of any N consecutive differentials is zero; see [6, def. 3.6]. On the
right hand side, TN−1(A) is upper diagonal (N − 1)× (N − 1)-matrices over A.

The category DQ(A) was defined and investigated in [4] and [5] building on ideas by
Iyama and Minamoto [7, sec. 2]; see [3] for a brief introduction. If Q is given by Figure 1
with the relations that any two consecutive arrows compose to zero, then DQ(A) is equal
to the classic derived category D(A). On the other hand, if Q is given by a single vertex

· · · 2 1 0 −1 −2 · · ·

Figure 1. The category underlying chain complexes and N -complexes is
given by this diagram with suitable relations.
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and a loop squaring to zero, then DQ(A) is the derived category of differential A-modules,
which is very far from being equivalent to a classic derived category. This paper concerns
an intermediate situation which we now describe. The following setup is due to Yamaura
[11, sec. 3.1].

• k is an algebraically closed field.

• Λ is a finite dimensional self-injective k-algebra which is Z-graded, concentrated
in non-negative degrees, and has Λ0 of finite global dimension.

• T is the graded right module
⊕`−1

i=0 Λ(i)≤0 over Λ where ` is the maximal degree
in which Λ is non-zero.

• P1, . . ., Pn are representatives up to isomorphism of the indecomposable projective
right modules over Λ. The Pi are canonically Z-graded.

• Q is the category {Pi(j) | 1 ≤ i ≤ n and j ∈ Z} where (j) denotes the j’th graded
shift.

Under this setup, Q is a category for which the Q-shaped derived category makes sense,
see Remark 2.2.2, and we prove the following.

Theorem A (=Theorem 3.2.2). Setting Γ = HomGr Λ(T, T ), where GrΛ is the stable
category of Z-graded right modules over Λ, we have the triangulated equivalence

DQ(A) ∼= D(Γ⊗k A).

The theorem is established by finding a tilting object in DQ(A) with endomorphism ring
Γ⊗k A. This builds on [11, prop. 3.3], which shows that T is a tilting object of GrΛ.

To obtain the equivalence (1.1) as a special case of Theorem A, set Λ = k[X]/(XN )
with X in degree 1. Then Q is the category given by Figure 1 with the relations that
any N consecutive arrows compose to zero, so DQ(A) is DN (A), the derived category of
N -complexes. Moreover, Γ is TN−1(k) so Γ⊗k A is TN−1(A) and Theorem A gives (1.1).
Different choices of Λ provide many other small categories Q, and several other special
cases of Theorem A will be discussed in Section 4. Section 2 contains some preliminary
material, and Section 3 proves Theorem A (= Theorem 3.2.2).
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Foundation (grant DNRF156), a Research Project 2 from the Independent Research Fund
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AUFF-F-2020-7-16).

2. Preliminaries

2.1. Graded rings and modules. Let R be a graded ring, by which we mean a Z-graded
ring. We denote by ModR and GrR the categories of right modules and graded right
modules respectively. We use modR and grR to denote their respective subcategories of
finitely presented objects and finitely presented projective objects in these categories are
denoted by projR and projZR.

Given a graded R-module M we can form the shifted module M(i) with M(i)j = Mi+j .
The category GrR is enriched in graded abelian groups via, for graded R-modules M and
N ,

homGrR(M,N) =
⊕
i∈Z

HomGrR(M,N(i)).
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In the special case that R is non-negatively graded, i.e. R =
⊕

i≥0Ri then given

M ∈ GrR the subgroup M≥n =
⊕

i≥nMi is a graded submodule for any n ∈ Z. This gives
rise to truncation functors

GrR
(−)≥n //

(−)≤n

// GrR

where M≥n =
⊕

i≥nMi and M≤n = M/M≥n+1, which correspond to the right and left
adjoints respectively

Gr≥nR
//

oo
(−)≥n

GrR and Gr≤nR
oo (−)≤n

// GrR

for the inclusions of the full subcategories Gr≥nR and Gr≤nR consisting of those graded
modules living in the obvious degrees (we allow ourselves here to use the same notation
for these functors even though they have different targets).

2.2. Our standing hypotheses and setup. Let us now fix the setting we will work
in. Throughout we work over an algebraically closed field k. The assumption that k is
algebraically closed is only required to apply [11, Theorem 3.3], i.e. the other results are
valid over any field k. We let Λ be a finite dimensional graded k-algebra, {e0, . . . , en} a
complete set of primitive orthogonal idempotents for Λ0, and we set

` = sup Λ = max{i | Λi 6= 0}.

We assume that Λ is concentrated in non-negative degrees.
We write the simple module corresponding to ei as Si and it has projective cover Pi.

The simples and projectives are naturally graded modules and we view them as such. We
note that the Si are concentrated in degree 0 and, restricting the action of Λ to Λ0, are
precisely the simple Λ0-modules. Moreover, Pi is the base change of the corresponding
projective Λ0-module to Λ.

Associated to Λ is the companion category C with set of objects Z and morphisms
C(i, j) = Λj−i with composition induced by the multiplication on Λ. The idempotent
completion of C is the full subcategory

Q = {Pi(j) | 1 ≤ i ≤ n and j ∈ Z}

of GrΛ and both of these categories are Morita equivalent to projZ Λ i.e.

GrΛ = ModC = ModQ.

Let us denote by r the radical of Q (in the sense of [10]), which is also the radical of Λ
interpreted through the above lens. We denote the k-dual of a vector space V by V ∗, in
particular we denote the dual of Λ by Λ∗.

Proposition 2.2.1. The category Q has the following properties:

(1) it is k-linear and all morphism spaces are finite dimensional;
(2) it is locally bounded, i.e. for each q ∈ Q the functors Q(q,−) and Q(−, q) are

non-zero on only finitely many objects;
(3) given q 6= q′ ∈ Q we have a vector space decomposition Q(q, q) = k · idq ⊕r(q, q)

and Q(q′, q) ◦Q(q, q′) ⊆ r(q, q);
(4) there is an N such that rN = 0;
(5) if Λ is self-injective then Q has a Serre functor given by S = (−)⊗Λ Λ∗, i.e. there

is a natural isomorphism Q(−, ?) ∼= Homk(Q(?, S(−)), k).
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Proof. Viewing Q as the idempotent completion of C the first four statements are evident.
After all, Λ is a finite dimensional algebra over k and so Λi = 0 for |i| � 0 which gives (1)
and (2), as well as (4) since r is identified with the Jacobson radical of Λ (we note that the
Jacobson radical is automatically gradable in our setting, see for instance [2, Corollaries 4.4
and 4.5]). Again, since Λ is non-negatively graded, for q 6= q′ the vector space Q(q, q′)
consists of homogeneous elements of positive degree and so is certainly contained in the
radical and so (3) follows too.

Now let us suppose that Λ is self-injective. Then S is a well-defined endofunctor of Q
and is an equivalence. In fact, S is an autoequivalence on all of projZ Λ. In this latter
category we have

hom(Λ, S(Λ(i))) = hom(Λ,Λ∗(i)) ∼= Λ∗(i)

and taking degree 0 components gives

HomGr Λ(Λ, S(Λ(i))) = (Λ∗)i = (Λ−i)
∗ = HomGr Λ(Λ(i),Λ)∗.

This natural isomorphism then extends to arbitrary finitely generated projectives by
additivity. �

Remark 2.2.2. The point is that, provided Λ is self-injective, Q satisfies [3, Setup 1.1]
and so we are in a situation where we can consider the Q-shaped derived category.

2.3. Change of base. We continue with the setup as above, so Λ is a non-negatively
graded k-algebra and we associate to it categories C and Q.

Let A be a k-algebra. Then we can consider the graded ring Λ⊗k A, where the grading
is induced by the one from Λ. Given a small k-linear category D we let ModD denote the
category of right D-modules

ModD = [Dop,Mod k]k

i.e. the category of k-linear functors from Dop to Mod k. We can form the base change of
D to A denoted D⊗k A which is the category with the same objects as D and for d, d′ ∈ D

(D⊗k A)(d, d′) = D(d, d′)⊗k A

with the obvious composition induced by the composition of D and multiplication of A.
As usual, we will drop the k from the subscript when it is clear (and we feel like it). We
have an obvious equivalence

Mod(D⊗A) ∼= [Dop,ModA]k

between modules over the base change of D to A and k-linear functors from Dop to ModA
(this is just the hom-tensor adjunction).

Remark 2.3.1. The category [Dop,ModA]k is denoted by Dop,AMod in [3].

Lemma 2.3.2. Let A be a k-algebra. There are equivalences of categories

Mod(Q⊗A) ∼= Gr(Λ⊗A) ∼= Mod(C⊗A).

Proof. The category Gr(Λ⊗A) has projZ(Λ⊗A) as a set of finitely presented projective
generators and so

Gr(Λ⊗A) ∼= Mod(projZ(Λ⊗A)).

Now projZ(Λ⊗A) is Morita equivalent to the full subcategory consisting of the rank 1 free
modules Λ⊗A(i) for i ∈ Z (the former being the additive closure of the latter). We have

HomGr(Λ⊗A)(Λ⊗A(i),Λ⊗A(j)) ∼= (Λ⊗A)j−i = Λj−i ⊗A = (C⊗A)(i, j)
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i.e. the category of rank 1 free modules is nothing but C ⊗ A, which gives the second
equivalence in the statement. Since C and Q are Morita equivalent so are Q⊗A and C⊗A
and so we are done. �

Notation 2.3.3. The structure map k −→ A induces a functor Q = Q ⊗ k i−→ Q ⊗ A.
This gives rise to the base change functor

i∗ : ModQ −→ ModQ⊗A

which is just, up to the canonical equivalences, the usual base change functor induced
by the map Λ −→ Λ ⊗ A of graded rings. As usual i∗ has adjoints i∗ a i∗ a i! which
automatically, by the above, are similarly compatible with the equivalence to graded
modules. We emphasize that, since we are working over a field k, the base change functor
i∗ is exact—indeed, Λ⊗A is free over Λ.

We understand completely the maps between objects of Gr(Λ⊗A) coming from grΛ.

Lemma 2.3.4. Let M be a finitely presented graded Λ-module. There is a natural
isomorphism homΛ⊗A(i∗(M), i∗(−)) ∼= homΛ(M,−) ⊗ A. In particular, taking the 0th
degree pieces gives the analogous statement for the usual morphisms.

Proof. One reduces, as usual, to checking on finite rank free modules where the statement
is clear. �

3. The Q-shaped derived category

We refer to the survey [3] for an introduction to Q-shaped derived categories. In
particular, we follow Section 2 of loc. cit. to give an interpretation of these categories
which will be convenient for us.

We continue with our standard setup as in Section 2.2, with the additional hypothesis
that Λ is self-injective. For q ∈ Q we denote by Sq (this would be S{q} in the notation of
[3]) the simple module concentrated at q. Noting that q = Pi(j) for some 1 ≤ i ≤ n and
j ∈ Z one sees that under the equivalence ModQ = GrΛ the simple Sq is just Si(j). We
are led to consider the class, for a k-algebra A,

E = EA = {M ∈ Mod(Q⊗A) | Ext1
Q(Sq,M) = 0 ∀ q ∈ Q}

where we consider M as a Q-module via the restriction functor i∗ induced by i : Q −→
(Q⊗A) as in Notation 2.3.3, and we drop the dependence on our fixed k-algebra A from
the notation as indicated.

3.1. Base change and generators.

Lemma 3.1.1. There are equalities

E = {M ∈ Mod(Q⊗A) | i∗M ∈ ProjZ Λ}
= {M ∈ Mod(Q⊗A) | i∗M ∈ ProjΛ}

Proof. By [4] Theorem 7.1 and Definition 4.1 the class E consists of those modules whose
projective dimension over Q is finite. This is just asking for finite projective dimension
as a graded Λ-module and, because Λ is self-injective, this implies projectivity. One
then notes that projectivity is independent of whether or not we consider the grading (cf.
[9, Corollary 3.3.7]). �
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We can consider the cotorsion pair that E generates and that it cogenerates. We denote
the right and left Ext1-perpendiculars of E using ⊥1, e.g.

E⊥1 = {N ∈ Mod(Q⊗A) | Ext1(M,N) = 0 ∀M ∈ E }.

By [4, Theorem 6.5] both ⊥1E and E⊥1 are Frobenius categories. As in [3, Section 4] we
can describe the Q-shaped derived category as

⊥1E = DQ(A) = E⊥1

where the underline denotes, as usual, the stable category. In particular, DQ(A) is algebraic
and the above provides a pair of differential graded enhancements.

Remark 3.1.2. If we take A = k so (Q⊗A) = Q then we see that E = ProjZ Λ = InjZ Λ
is the full subcategory of projective, and equivalently injective, graded modules. Hence
E⊥1 = GrΛ = ⊥1E . In particular, DQ(k) = GrΛ.

Lemma 3.1.3. For every M ∈ ModQ we have i∗M ∈ ⊥1E .

Proof. Let N ∈ E i.e. i∗N is projective, and hence injective, over Q. So we have

RHomQ⊗A(i∗M,N) ∼= RHomQ(M, i∗N) = HomQ(M, i∗N)

is concentrated in degree 0 (recall that i∗ is exact). �

Proposition 3.1.4. The base change functor i∗ : ModQ −→ Mod(Q ⊗ A) induces a
triangulated coproduct preserving functor i∗ : GrΛ −→ DQ(A).

Proof. By the previous lemma the image of i∗ is contained in ⊥1E . As always, i∗ sends
projectives to projectives and, as we have already noted, it is exact. Thus it descends to
an exact functor between the stable categories. It only remains to make the identification
⊥1E = DQ(A). �

Remark 3.1.5. It follows that i∗ : GrΛ −→ DQ(A) has a right adjoint. We observe that
it is induced by stabilizing i∗. Indeed, we can of course restrict i∗ to ⊥1E and i∗ sends
projectives to projectives.

Let us now understand something about the image of i∗.

Lemma 3.1.6. The functor i∗ preserves compacts and the image of i∗ generates DQ(A).

Proof. As observed in Remark 3.1.5 we have an explicit description of the right adjoint
of i∗ as the functor induced on the stable categories by i∗. Since i∗ preserves coproducts
so does the functor it descends to. Hence i∗ preserves compacts. By [5] the category
DQ(A) is compactly generated by the set of objects {i∗Sq | q ∈ Q} and so the image of i∗

generates. �

3.2. Tilting. In this section we will make the additional assumption that the ring Λ0 has
finite global dimension. We can then consider the graded Λ-module

T =

`−1⊕
i=0

Λ(i)≤0,

where ` is the maximal degree in which Λ is non-trivial, which Yamaura [11] has shown
gives a tilting object for GrΛ. This induces a tilting object for the Q-shaped derived
category of any k-algebra A.
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Notation 3.2.1. Given chain complexes X and Y with values in some k-linear abelian
category we will denote the hom-complex, which is a complex of k-vector spaces, by
hom(X,Y ).

Theorem 3.2.2. The object i∗T ∈ DQ(A) is a tilting object with endomorphism ring
HomGr Λ(T, T )⊗k A. Thus, setting Γ = HomGr Λ(T, T ), we have that

DQ(A) ∼= D(Γ⊗k A)

is the derived category of a ring.

Proof. As mentioned, by Yamaura’s work, we already know that T is a compact generator
for GrΛ. We then learn from Lemma 3.1.6 that i∗T is a compact generator for DQ(A) and
so it remains to compute the derived endomorphism ring RHomDQ(A)(i

∗T, i∗T ). We need
to show that RHomDQ(A)(i

∗T, i∗T ) has cohomology precisely Γ⊗A in degree 0.

Let T̃ be a complete graded projective-injective resolution for T over Λ, which is moreover

chosen to be degree-wise finitely presented. We already know that the complex hom(T̃ , T ),
which computes the cohomology of the derived endomorphism ring in GrΛ, has cohomology
HomGr Λ(T, T ) concentrated in degree 0.

Now let us apply the tensor product functor. Because − ⊗k A is exact the complex

i∗T̃ remains an exact complex of graded projectives over Λ ⊗ A. Thus it is a complete
projective resolution for i∗T in the Frobenius category ⊥1E . In particular, we may
compute the cohomology groups HomDQ(A)(i

∗T,Σji∗T ) = Hom⊥1E (i∗T,Σji∗T ) of the
derived endomorphism ring of i∗T in DQ(A) by the cohomology of the hom-complex

hom(i∗T̃ , i∗T ) as follows

H∗ hom(i∗T̃ , i∗T ) = H∗ hom(T̃ , T )⊗k A ∼= HomGr Λ(T, T )⊗k A
where the first identification is an instance of Lemma 2.3.4, using that i∗T is concentrated

in degree 0 and T̃ has finitely presented terms. This completes the proof of the theorem. �

Remark 3.2.3. In fact, in the proof above i∗T̃ remains totally acyclic: for any graded
projective Λ⊗A-module P we have

hom(i∗T̃ , P ) ∼= hom(T̃ , i∗P )

which is acyclic, because i∗P is projective over Λ.

4. Examples

There are many examples where one can apply Theorem 3.2.2. We content ourselves
here with presenting a couple of illustrative cases (some of which inspired this work).

4.1. Mesh categories of type A. The graded ring Λ = Λn in question is the preprojective
algebra of type An, which is graded by giving the original copy of kAn degree 0 and the
doubled arrows degree 1. That is to say, we have

1
α1 //oo
β1

2
α2 //oo
β2

· · ·
αn−2 //oo
βn−2

n− 1
αn−1 //oo
βn−1

n

with relations β1α1, αn−1βn−1, and βi+1αi+1 − αiβi for 1 ≤ i ≤ n − 2, where we write
paths as compositions of arrows i.e. they should be read from right to left, and we assign
the α’s degree 0 and the β’s degree 1. The category Q then has objects (i, j) for 1 ≤ i ≤ n
and j ∈ Z and is precisely the mesh algebra of type An, i.e. it is the full subcategory of
indecomposable objects of Db(kAn).
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The algebra Λn satisfies our hypotheses: it is non-negatively graded, self-injective, and
Λ0 has finite global dimension. Thus, for any k-algebra A we have an equivalence

DQn
(A) ∼= D(Γn ⊗A)

for Γn some finite dimensional algebra. It turns out, see [11, Section 4.2], that the algebra
Γn is the Auslander algebra of kAn−1 (with linear orientation). Let us spell out explicitly
the three smallest examples.

Example 4.1.1. The algebra Λ1 is just k viewed as a Z-graded ring concentrated in
degree 0. Thus Q1 is the k-linearization of

· · · i− 1 i i+ 1 · · ·
i.e. we get a category with object set Z and all morphism spaces are trivial except for the
endomorphism rings which are all k. In this case DQ1

(A) = 0, for instance taking A = k
we have DQ1

(k) = Gr k = 0.

Example 4.1.2. If we take n = 2 then Λ is the graded algebra

1
α //oo
β

2

with square-zero relations and β in degree 1. Thus Q2 is the k-linear category

(2,−1)

$$

(2, 0)

##

(2, 1)

!!
· · ·

<<

(1, 0)

;;

(1, 1)

;;

· · ·

again with all square-zero relations. Reindexing, we see that this is the category defining
chain complexes, or equivalently it is the category associated to the graded algebra k[x]/x2

with x of degree 1. In this case Γ2 = k and we obtain DQ2
(A) ∼= D(A). This example is

discussed extensively in [3].

Example 4.1.3. If we take n = 3 then Q3 is the following category

(3,−1)

$$

(3, 0)

##

(3, 1)

!!
· · ·

<<

""

(2, 0)

;;

##

(2, 1)

;;

##

· · ·

(1, 0)

::

(1, 1)

;;

(1, 2)

==

with the usual mesh relations (that is, squares anticommute and the top and bottom fringes
are square-zero). In this diagram, the upward pointing arrows correspond to generators of
Λ of degree 0 and the downward arrows correspond to generators of Λ of degree 1. The
algebra Γ3 is the Auslander algebra of kA2, i.e. it is kA3/J

2 where J is the radical. This
is derived equivalent to kA3, its Koszul dual, and so we instead work with kA3 below.

The theorem then tells us that DQ3
(A) = D(kA3 ⊗ A). In particular, DQ(A) has a

number of semiorthogonal decompositions into copies of D(A), i.e. the subject of the
previous example. This could be interpreted as follows: there are numerous ways in which
one can find full subcategories of Q3 which are isomorphic to Q2, such that this choice
gives rise to a semiorthogonal decomposition of DQ3

(A) into the copy of DQ2
(A) = D(A)
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induced by fully faithful inclusion of Q2 and the corresponding localization, which is a
copy of D(kA2 ⊗A). Essentially, Q3 is spliced together from copies of Q2 and the different
decompositions of DQ3(A) reflect how these copies of Q2 interact.

One could, or perhaps even should, compare this to the case of N -complexes. Recall
that N -complexes over A are another name for objects of GrA[x]/xn where x has degree 1.
From, for instance, a 4-complex we can obtain three different chain complexes by writing
x4 as x · x3, x2 · x2, and x3 · x and this gives three different notions of cohomology for such
a gadget. It turns out these describe the derived category of 4-complexes: it is equivalent
to D(kA3 ⊗A). Through this lens, Q3 is a different way of encoding the same interactions
between three chain complexes.

In general, the Auslander algebra of An−1 is directed and so DQn
(A) always admits

semiorthogonal decompositions into pieces equivalent to D(A).

4.2. Exterior algebras. Let Λn denote the exterior algebra on n-generators with its
standard grading, and let Qn denote the associated k-linear category. In this case Qn has
object set Z, because Λn is local, and so coincides with the companion category Cn.

The algebra Γn = HomGr Λn(T, T ) is, as in [11, Example 3.16], given by the (algebra
corresponding to the) full subcategory of Qn on 0, . . . , n− 1. For any k-algebra A we get
equivalences

DQ(A) ∼= D(Γn ⊗A) ∼= D(Γ′n ⊗A)

where Γ′n is the Beilinson algebra on n vertices, which is given by the quiver

0

x0

  

xn−1

??
...

1

x0

  

xn−1

??
...

2 ··· n− 2

x0

%%

xn−1

99
...

n− 1

with commutativity relations xixj = xjxi at each pair of consecutive vertices. This is just
the Koszul dual of the Koszul algebra Γn given by swapping anticommutativity relations
for commutativity ones. This explains the derived equivalence between Γn⊗A and Γ′n⊗A.
In particular, if A is commutative we obtain an equivalence DQ(A) ∼= D(Pn−1

A ) via the

standard tilting object for Pn−1
A coming from the twisting sheaves (Beilinson’s original

derived equivalence [1] over a field generalizes directly to an arbitrary commutative base
ring).
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