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ABSTRACT. While the Yoneda embedding and its generalizations have been studied ex-
tensively in the literature, the so-called tensor embedding has only received little attention.
In this paper, we study the tensor embedding for closed symmetric monoidal categories and
show how it is connected to the notion of geometrically purity, which has recently been in-
vestigated in works of Enochs, Estrada, Gillespie, and Odabaşı. More precisely, for a Gro-
thendieck cosmos—that is, a bicomplete Grothendick category V with a closed symmet-
ric monoidal structure—we prove that the geometrically pure exact category (V ,E⊗) has
enough relative injectives; in fact, every object has a geometrically pure injective envelope.
We also show that for some regular cardinal λ, the tensor embedding yields an exact equiv-
alence between (V ,E⊗) and the category of λ-cocontinuous V-functors from Presλ(V) to
V , where the former is the full V-subcategory of λ-presentable objects in V . In many cases
of interest, λ can be chosen to be ℵ0 and the tensor embedding identifies the geometrically
pure injective objects in V with the (categorically) injective objects in the abelian category
of V-functors from fp(V) to V . As we explain, the developed theory applies e.g. to the cat-
egory Ch(R) of chain complexes of modules over a commutative ring R and to the category
Qcoh(X) of quasi-coherent sheaves over a (suitably nice) scheme X.

1. INTRODUCTION

By the Gabriel–Quillen Embedding Theorem, see [44, Thm. A.7.1], any small exact cat-
egory admits an exact full embedding, which also reflects exactness, into some abelian cat-
egory. Hence any small exact category is equivalent, as an exact category, to an extension-
closed subcategory of an abelian category. Actually, the same is true for many large exact
categories of interest. Consider e.g. the category R-Mod of left R-modules equipped with
the pure exact structure, Epure, where the “exact sequences” (the conflations) are directed
colimits of split exact sequences in R-Mod. The exact category (R-Mod,Epure) admits two
different exact full embeddings into abelian categories. One is the Yoneda embedding,

(R-Mod,Epure)−→ [(R-mod)op,Ab]0 given by M 7−→ HomR(−,M)|R-mod ;

the other is the so-called tensor embedding,

(R-Mod,Epure)−→ [mod-R,Ab]0 given by M 7−→ (−⊗R M)|mod-R . (]1)

Here “mod” means finitely presentable modules and [X ,Ab]0 denotes the category of ad-
ditive functors from X to the category Ab of abelian groups. For a detailed discussion and
proofs of these embeddings we refer to [28, Thms. B.11 and B.16].

We point out some important and interesting generalizations of the Yoneda embedding,
mentioned above, that can be found in the literature and have motivated this work.

(∗) Any locally finitely presentable (= locally ℵ0-presentable) abelian1 category C can be
equipped with the categorically pure exact structure, Eℵ0 , consisting of exact se-
quences 0→ X→ Y→ Z→ 0 in C for which the sequence

0−→ HomC(C,X)−→ HomC(C,Y)−→ HomC(C,Z)−→ 0
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is exact in Ab for every finitely presentable (= ℵ0-presentable) object C ∈ C. In this
case, the Yoneda functor,

(C,Eℵ0)−→ [fp(C)op,Ab]0 given by X 7−→ HomC(−,X)|fp(C) ,
is an exact full embedding whose essential image is the subcategory of flat functors
(= directed colimits of representable functors). Furthermore, the Yoneda embedding
identifies the pure projective objects in C (= the objects in C that are projective rel-
ative to the exact structure Eℵ0 ) with the projective objects in [fp(C)op,Ab]0. These
results can be found in Cravley-Boevey [16, (1.4) and §3], but see also Lenzing [32].

Note that for C =R-Mod the categorically pure exact structure Eℵ0 coincides with
the pure exact structure Epure mentioned previously; see [28, Thm. 6.4]. One advan-
tage of the identifications provided by the Yoneda embedding is that C is equivalent
to the category of flat unitary modules over a (non-unital) ring with enough idempo-
tents. For further applications of this embedding see for example [6] and [43].

More generally, if C is a locally λ-presentable abelian category, where λ is a reg-
ular cardinal, then it can be equipped with a categorically pure exact structure, Eλ,
which is defined similarly to Eℵ0 and treated in [2] by Adámek and Rosický (see
also the discussion preceding Setup 3.3). Also in this case, the Yoneda functor

(C,Eλ)−→ [Presλ(C)op,Ab]0 given by X 7−→ HomC(−,X)|Presλ(C) ,

is an exact full embedding, where Presλ(C) is the category of λ-presentable objects.

(∗∗) The Yoneda embeddding has also been studied in the context of enriched categories.
Let V be a locally λ-presentable base and let C be a locally λ-presentable V-category
in the sense of Borceux, Quinteiro, and Rosický [9, Dfns. 1.1 and 6.1]. Denote by
Presλ(C) the full V-subcategory of λ-presentable objects in C, in the enriched sense
[9, Dfn. 3.1], and let [Presλ(C)op,V] be the V-category of V-functors from Presλ(C)op

to V . In [9, (proof of) Thm. 6.3] it is shown that the Yoneda V-functor

ϒ : C −→ [Presλ(C)op,V] given by X 7−→ C(−,X)|Presλ(C)

is fully faithful with essential image:

Ess. Imϒ = λ-Flat(Presλ(C)op,V) = λ-Cont(Presλ(C)op,V) .
Here λ-Flat(Presλ(C)op,V) is the V-subcategory of [Presλ(C)op,V] consisting of λ-
flat V-functors, in the enriched sense, and λ-Cont(Presλ(C)op,V) is the V-subcategory
of λ-continuous V-functors, that is, V-functors that preserve λ-small V-limits.

In contrast to the Yoneda embedding, the tensor embedding (]1) and its possible gener-
alizations have only received little attention in the literature. One reason for this is probably
that any potential generalization / extension of (]1) within ordinary category theory seems
impossible, as the definition itself requires the existence of a suitable tensor product. How-
ever, it is possible to make sense of the tensor embedding for a closed symmetric monoidal
category, and this is exactly what we do in this paper. More precisely, we consider to begin
with (in Section 4) an abelian cosmos (V ,⊗, I, [−,−]) and the V-functor

Θ : V −→ [A,V] given by X 7−→ (X⊗−)|A ,

where A is any full V-subcategory of V containing the unit object I. We call Θ the tensor
embedding and we show in Theorem 4.6 that it is, indeed, fully faithful, and thus it induces
an equivalence of V-categories V ' Ess. ImΘ. We also prove that Θ preserves V-colimits.

Certainly, Θ induces an (ordinary) additive functor

Θ0 : V0 −→ [A,V]0 (]2)

between the underlying abelian categories (the fact that [A,V]0 is abelian is contained in
[3, Thm. 4.2] by Al Hwaeer and Garkusha). As we now explain, this functor is intimately
connected with the notion of geometrically purity.
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As V is closed symmetric monoidal, it can be equipped with the so-called geometrically
pure exact structure, E⊗, in which the admissible monomorphisms are geometrically pure
monomorphisms introduced by Fox [21] (see Definition 3.4). The exact category (V0,E⊗)
has recently been studied in works of Enochs, Estrada, Gillespie, and Odabaşı [17, 20], and
we continue to investigate it in this paper. Note that if V happens to be locally λ-presentable
(which will often be the case), then it also makes sense to consider the categorically pure
exact structure, Eλ, from (∗). As mentioned in [20, Rem. 2.8], one always has Eλ ⊆ E⊗, but
in general these two exact structures are different! However, for V =Mod(R) they agree
by [28, Thm. 6.4]. Although being different from the categorically pure exact structure, the
geometrically pure exact structure, E⊗, captures many interesting notions of purity, e.g.:

• The category Ch(R) of chain complexes of R-modules (R is any commutative ring)
is closed symmetric monoidal when equipped with the total tensor product and total
Hom. In this situation, a short exact sequence 0→C′→C→C′′→ 0 is in E⊗ if and
only if it is degreewise pure exact, meaning that 0→ C′n→ Cn→ C′′n → 0 is a pure
exact sequence of R-modules for every n ∈ Z. See Example 3.5(a).

• In the closed symmetric monoidal category Qcoh(X) of quasi-coherent sheaves on a
quasi-seperated scheme X, a short exact sequence 0→ F′→ F→ F′′→ 0 is in E⊗
if and only if it is stalkwise pure exact, meaning that 0→ F′x→ Fx→ F′′x → 0 is a
pure exact sequence of OX,x-modules for every x ∈ X. See Example 3.6.

In Section 3 we study purity. A main result about the geometrically pure exact category,
which we prove in Proposition 3.12 and Theorem 3.13, is the following.

Theorem A. The exact category (V0,E⊗) has enough relative injectives. In the language
of relative homological algebra, this means that every object in V0 has a geometrically pure
injective preenvelope. If V0 is Grothendieck, then every object in V0 even has a geometri-
cally pure injective envelope.

In Definition 3.16 / Proposition 3.17 we introduce a certain exact structure on the abelian
category [A,V]0. We call it the ?-pure exact structure, E?, and it is usually strictly coarser
than the exact structure induced by the abelian structure on [A,V]0. As already hinted, there
is a connection between the tensor embedding functor Θ0 from (]2) and the geometrically
pure exact structure on V0. The main result in Section 4 is Theorem 4.6, which contains:

Theorem B. The tensor embedding yields a fully faithful exact functor,

Θ0 : (V0,E⊗)−→ ([A,V]0,E?) ,
which induces an equivalence of exact categories (V0,E⊗)' (Ess. ImΘ,E?|Ess.ImΘ).

So far (i.e. in Sections 3 and 4) V has been an abelian cosmos and A has been any full
V-subcategory of V containing the unit object I. In Section 5 we assume that V is a Gro-
thendieck cosmos. We show in Proposition 5.2 that there exists some regular cardinal λ for
which V is a locally λ-presentable base, and we focus now only on the case where

A = Presλ(V)
is the the V-subcategory of λ-presentable objects in V (in the ordinary categorical sense,
or in the enriched sense; it makes no difference by [9, Cor. 3.3]). In this situation, we
explicitly describe the essential image of Θ. The description is, in some sense, dual to the
one for the Yoneda embedding in (∗∗) above. We also show that in this case the ?-pure
exact structure, E?, and the abelian exact structure from [Presλ(V),V]0 agree on Ess. ImΘ,
and that simplifies the last statement in Theorem B. The precise statements are given below;
they are contained in Theorem 5.9, which is the main result of Section 5.

Theorem C. The essential image of the fully faithful tensor embedding

Θ : V −→ [Presλ(V),V] given by X 7−→ (X⊗−)|Presλ(V)
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is precisely Ess. ImΘ = λ-Cocont(Presλ(V),V), that is, the subcategory of λ-cocontinuous
V-functors from Presλ(V) to V . Further, Θ0 induces an equivalence of exact categories,

(V0,E⊗) ' λ-Cocont(Presλ(V),V) ;

the exact structure on the right-hand side is induced by the abelian structure on [Presλ(V),V]0.

In the final Section 6 we specialize the setup even further. Here we require V to be a
Grothendieck cosmos (as in Section 5) which is generated by a set of dualizable objects
and where the unit object I is finitely presentable. The category Ch(R) of chain complexes
always satisfies these requirements, and so does the category Qcoh(X) of quasi-coherent
sheaves for most schemes X (see Examples 6.2 and 6.3). We prove in Proposition 6.9 that
such a category V is a locally finitely presentable base, which means that we can apply our
previous results with λ= ℵ0. In this case,

Presℵ0(V) =: fp(V)
is the class of finitely presentable objects in V . The main result in the last section is Theo-
rem 6.13, of which the following is a special case:

Theorem D. For V as described above, the tensor embedding from Theorem C with λ= ℵ0
restricts to an equivalence between the geometrically pure injective objects in V0 and the
(categorically) injective objects in [fp(V),V]0. In symbols:

PureInj⊗(V0) ' Inj([fp(V),V]0) .

This work has been developed in the setting of a suitably nice abelian cosmos V . Unfor-
tunately, this setting excludes applications to the “non-commutative realm”, in particular, it
does not cover the original tensor embedding (]1). However, it is possible to develop much
of the theory, not just for the category V , but for the category R-Mod of R-left-objects (or
left R-modules) in the sense of Pareigis [38], where R is any monoid (or ring object) in V .
Note that V is a special case of R-Mod as the unit object I is a commutative monoid in V
with I-Mod=V . To develop the theory found in this paper for R-Mod instead of just V , one
basically uses the same proofs, but things become more technical. A reader who wants to
carry out this program should be able to do so with the information given in Remark 6.14.

2. PRELIMINARIES

We recall some definitions and terminology from enriched category theory that are im-
portant in this paper. We also a give some examples, which we shall repeatedly return to.

2.1 Locally presentable categories ([1]). Let λ be a regular cardinal. An object A in a cat-
egory V is said to be λ-presentable if the functor V0(A,−) : V → Set preserves λ-directed
colimits. One says that V is locally λ-presentable if it is cocomplete and there is a set S of
λ-presentable objects such that every object in V is a λ-directed colimit of objects in S.

It is customary to say finitely presentable instead of “ℵ0-presentable”; thus ℵ0-present-
able objects are called finitely presentable objects and locally ℵ0-presentable categories are
called locally finitely presentable categories. Moreover, “ℵ0-directed colimits” are simply
called directed colimits.

2.2 Monoidal categories ([30]). A monoidal category consists of a category V , a bifunctor
⊗ : V ×V → V (tensor product), a unit object I ∈ V , and natural isomorphisms a (associa-
tor), l (left unitor), and r (right unitor) subject to the coherence axioms found in [30, §1.1
eq. (1.1) and (1.2)]. A monoidal category V is said to be symmetric if there is a natural iso-
morphism c (symmetry) subject to further coherence axioms that express the compatibility
of c with a, l, and r; see [30, §1.4 eq. (1.14)–(1.16)]. In particular, the symmetry c identifies
l and r so there is no need to distinguish between them. Due to Mac Lane’s coherence the-
orem, see [35] or [36, Sect. VII.2], it is customary to suppress a, l, r, and c, and we simply
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write (V ,⊗, I) when referring to a (symmetric) monoidal category. A symmetric monoidal
category is said to be closed if for every X ∈ V , the functor −⊗ X : V → V has a right
adjoint [X,−] : V → V; see [30, §1.5]. It turns out that [−,−] is a bifunctor Vop×V → V ,
and we write a closed symmetric monoidal category as a quadruple (V ,⊗, I, [−,−]).

2.3 Example. The category Ch(R) of chain complexes of modules over a commutative
ring R is a Grothendieck category with two different closed symmetric monoidal structures:

(a) (Ch(R),⊗•R,S(R),Hom•R) where⊗•R is the total tensor product, Hom•R the total Hom,
and S(R) = 0→ R→ 0 is the stalk complex with R in degree 0. See [14, App. A.2].

(b) (Ch(R),⊗•R,D(R),Hom•
R) where ⊗•R is the modified total tensor product, Hom•

R the
modified total Hom, and D(R) = 0→ R→ R→ 0 is the disc complex concentrated
in homological degrees 0 and −1. See [18, §2] or [23, §4.2].

2.4 Example. Some important examples of closed symmetric monoidal categories, which
are also Grothendieck, come from algebraic geometry. Let X be any scheme.

(a) (Mod(X),⊗X ,OX ,H omX) is a closed symmetric monoidal category, where Mod(X)
is the abelian category of all sheaves (of OX-modules) on X; see [26, II§5]. It is well-
known that this is a Grothendieck category; see [24, Prop. 3.1.1].

(b) The category Qcoh(X) of quasi-coherent sheaves on X is an abelian subcategory of
Mod(X); see [25, Cor. (2.2.2)(i,ii)] or [26, II Prop. 5.7]. As I =OX is quasi-coherent
and quasi-coherent sheaves are closed under tensor products by [25, Cor. (2.2.2)(v)],
it follows that (Qcoh(X),⊗X ,OX) is a monoidal subcategory of (Mod(X),⊗X ,OX).
In general, H omX is not an internal hom in Qcoh(X). However, the inclusion func-
tor Qcoh(X)→Mod(X) admits a right adjoint QX : Mod(X)→Qcoh(X), called the
coherator, and the counit QX(F )→F is an isomorphism for every quasi-coherent
sheaf F ; see [41, Tag 08D6]. It is well-known, and completely formal, that the
functor H omqc

X := QXH omX yields a closed structure on (Qcoh(X),⊗X ,OX). The
category Qcoh(X) is Grothendieck by [4, Lem. 1.3].

A category can be locally presentable (as in 2.1) and closed symmetric monoidal (as in
2.2) at the same time, but in generel one can not expect any compatibility between the two
structures. This is the reason for the next definition, which comes from [9].

2.5 Locally presentable bases ([9, Dfn. 1.1]). Let λ be a regular cardinal. A closed sym-
metric monoidal category (V ,⊗, I, [−,−]) is said to be a locally λ-presentable base if it
satisfies the following condition:

(1) the category V is locally λ-presentable,
(2) the unit object I is λ-presentable, and
(3) the class of λ-presentable objects is closed under the tensor product ⊗.

A locally ℵ0-presentable base is simply called a locally finitely presentable base.

2.6 Enriched category theory. We assume familiarity with basic notions and results from
enriched cateory theory as presented in [30, Chaps. 1–2 (and parts of 3)]. In particular,
for a closed symmetric monoidal category (V ,⊗, I, [−,−]), the definitions and properties
of V-categories and their underlying ordinary categories, V-functors, V-natural transfor-
mations, and weighted limits and colimits will be important. When we use specific results
from enriched category theory, we will give appropriate references to [30], but a few gen-
eral points are mentioned below.

To avoid confusion, we often write V0 when we think of V as an ordinary category, and
we use the symbol V when it is viewed as a V-category.

If the category V0 is complete,K is a small V-category, and C is any V-category, there is
a V-category [K,C] whose objects are V-functorsK→C. The underlying ordinary category
[K,C]0 has V-natural transformations as morphisms. See [30, §2.1–2.2].
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In the proof of Proposition 5.8 we use the unit V-category I. It has one object, ∗, and
I(∗,∗) = I. The composition law is given by the isomorphism I⊗ I→ I. See [30, §1.3].

In 2.7–2.9 below, (V ,⊗, I, [−,−]) denotes a cosmos, that is, a closed symmetric monoidal
category for which V0 is bicomplete. The examples in 2.3 and 2.4 are all cosmos.

The next notion of smallness for a V-functor with values in V will be important to us.

2.7 Definition. ([9, Dfn. 2.1]). Let λ be a regular cardinal. A V-functor T : K→V is said
to be λ-small if the following conditions are satisfied:

(1) the class ObK is a set of cardinality strictly less than λ,
(2) for all objects X,Y ∈ K, the hom-object K(X,Y) is λ-presentable in V0, and
(3) for every object X ∈ K, the object T (X) is λ-presentable in V0.

We shall also need the “enriched versions” of limits and colimits:

2.8 Weighted limits and colimits ([30, Chap. 3]). Let F : K→ V and G : K→A be V-
functors. The V-limit of G weighted by F, if it exists, is an object {F,G} ∈ A for which
there is a V-natural isomorphism in A ∈ A:

A(A,{F,G}) ∼= [K,V](F,A(A,G(−))) .
Given V-functors G : Kop→V and F : K→A, the V-colimit of F weighted by G, if it

exists, is an object G?F ∈ A for which there is a V-natural isomorphism in A ∈ A:

A(G?F,A) ∼= [Kop,V](G,A(F(−),A)) . (]3)

2.9 Tensors and cotensors ([8, Prop. 6.5.7]). LetK be a small V-category. The V-category
[K,V] is both tensored and cotensored. By [8, Dfn. 6.5.1] this means that for every V ∈ V
and F ∈ [K,V] there exist objects V⊗F and [V,F] in [K,V] and V-natural isomorphisms,

[K,V](V⊗F,?) ∼= [V, [K,V](F,?)] and [K,V](?, [V,F]) ∼= [V, [K,V](?,F)] . (]4)

The proof of [8, Prop. 6.5.7] reveals that the V-functors V⊗F and [V,F] are just the com-
positions V⊗F = (V⊗−)◦F and [V,F] = [V,−]◦F.

3. EXACT CATEGORIES AND PURITY

We demonstrate (Proposition 3.2) a general procedure to construct exact structures on an
abelian category, and apply it to establish the so-called geometrically pure exact structure
on V0 (Definition 3.4) and the ?-pure exact structure on [K,V]0 (Definition 3.16).

3.1 Exact categories ([39]). Let X be an additive category and E be a class of kernel-
cokernel pairs (i, p) in X ,

X // i
// Y

p
// // Z ,

that is, i is the kernel of p, and p is the cokernel of i. The morphism i is called an admissible
monic and p an admissible epic in E . The class E is said to form an exact structure on X
if it is closed under isomorphisms and satisfies the following axioms:

(E0) For every object X in X , the identity morphism idX is both an admissible monic and
an admissible epic in E .

(E1) The classes of admissible monics and admissible epics in E are closed under com-
positions.

(E2) The pushout (resp., pullback) of an admissible monic (resp., admissible epic) along
an arbitrary morphism exists and yields an admissible monic (resp., admissible epic).

In this situation, the pair (X ,E ) is called an exact category. An object in J ∈ X is said to
be injective relative to E if the functor HomX (−, J) maps sequences in E to short exact
sequences in Ab. For a detailed treatment on the subject, see [13].
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We begin with a general result, potentially of independent interest, which shows how to
construct an exact structure ET on an abelian category C from a collection T of functors.
Inspired by terminology from topology, we call ET the initial exact structure on C w.r.t. T.

3.2 Proposition. Let C be an abelian category and T a collection of additive functors
T : C →DT where each category DT is abelian and each functor T is left exact or right ex-
act. Denote by ET the class of all short exact sequences 0→ X→ Y→ Z→ 0 in C such that

0−→ T X −→ TY −→ TZ −→ 0

is exact in DT for every T in T. Then ET is an exact structure on C, in fact, it is the finest
(that is, the largest w.r.t. inclusion) exact structure E on C which satisfies the condition that
T : (C,E )→DT is an exact functor for every T in T.

Proof. Once we have proved that ET is, in fact, an exact structure on C, then certainly
T : (C,ET)→DT is an exact functor for every T in T. Moreover, if E is any exact structure
on C for which every T in T is an exact functor T : (C,E )→DT , then evidently E ⊆ ET.

We now show that ET satisfies the axioms in 3.1. The condition (E0) is immediate from
the definition of ET. To show (E1), let f : X→ Y and g : Y→ Z be composable morphisms
in C. We will prove that if f and g are admissible monics in ET, then so is g f . The case
where f and g are admissible epics in ET is proved similarly. If f and g are admissible
monics in ET then, by definition, f and g are monics in C and the short exact sequences

0 // X
f
// Y // Cok f // 0 and 0 // Y

g
// Z // Cokg // 0

stay exact under every functor T in T. The composition g f is certainly a monic in C, so it
remains to prove that the short exact sequence

0 // X
g f
// Z // Cok(g f ) // 0 (]5)

stays exact under every functor T in T. Let T in T be given and recall that T is assumed
to be left exact or right exact. As the composition of two monics, T (g f ) = T (g)T ( f ) is a
monic. Thus, if T is right exact, the sequence (]5) certainly stays exact under T . Assume
that T is left exact. In the leftmost commutative diagram below, the lower row is exact by
the Snake Lemma; the remaining rows and all columns are trivially exact. The rightmost
commutative diagram is obtained by applying the functor T to the leftmost one. In the
right diagram, the 1st column and 2nd row are exact by assumption, and the 1st row and 3rd

column are trivially exact. The epimorphism T (Z)� T (Cokg) in the 2nd row factorizes as
T (Z)→ T (Cok(g f ))→ T (Cokg), and hence the last morphism T (Cok(g f ))→ T (Cokg)
in the 3rd row is epic too. Since T is left exact, the entire 3rd row is exact. Consequently,
in the rightmost diagram below, all three rows and the 1st and 3rd columns are exact.

0

��

0

��

0

��

0 // X =
//

f
��

X //

g f
��

0

��

// 0

0 // Y
g
//

��

Z //

��

Cokg
=
��

// 0

0 // Cok f //

��

Cok(g f ) //

��

Cokg //

��

0

0 0 0

0

��

0

��

0

��

0 // T (X) =
//

T ( f )
��

T (X) //

T (g f )
��

0

��

// 0

0 // T (Y)
T (g)

//

��

T (Z) //

��

T (Cokg)
=
��

// 0

0 // T (Cok f ) //

��

T (Cok(g f )) //

��

T (Cokg) //

��

0

0 0 0

Thus, we can consider the rightmost diagram as an exact sequence 0→C1→C2→C3→ 0
of complexes where Ci is the ith column in the diagram. As C1 and C3 are exact, so is C2.
Hence the sequence (]5) stays exact under the functor T , as desired.
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It remains to show (E2). We will show that the pushout of an admissible monic in ET

along an arbitrary morphism yields an admissible monic. A similar argument shows that
the pullback of an admissible epic in ET along an arbitrary morphism is an admissible epic.
Thus, consider a pushout diagram in C,

X

(pushout)

��

f
// Y

��

X′
f ′
// Y ′ ,

where f is an admissible monic in ET and X→ X′ is any morphism. As f is, in particular,
a monomorphism, so is f ′ by [22, Thm. 2.54*], and hence there is a short exact sequence

0 // X′
f ′
// Y ′ // Cok f ′ // 0 .

We must argue that this sequence stays exact under every T in T.
First assume that T is right exact. In this case, T (X′)→ T (Y ′)→ T (Cok f ′)→ 0 is exact,

and it remains to see that T ( f ′) is monic. As T preserves pushouts, T ( f ′) is a pushout of
the monic T ( f ), so another application of [22, Thm. 2.54*] yields that T ( f ′) is monic.

Next assume that T is left exact. In this case, 0→ T (X′)→ T (Y ′)→ T (Cok f ′) is exact,
and it remains to see that T (Y ′)→ T (Cok f ′) is epic. As f ′ is a pushout of f , the canonical
morphism Cok f → Cok f ′ is an isomorphism, cf. (the dual of) [22, Thm. 2.52], and hence
so is T (Cok f )→ T (Cok f ′). By assumption, T (Y)→ T (Cok f ) is epic, so the composite
morphism T (Y)� T (Cok f )

∼=−→ T (Cok f ′) is epic. But this composite is the same as the
composite T (Y)→ T (Y ′)→ T (Cok f ′), which is therefore an epimorphism, and it follows
that T (Y ′)→ T (Cok f ′) is an epimorphism. �

Any locally λ-presentable abelian category V (see 2.1) can be equipped with an exact
structure (see 3.1) called the categorically pure exact structure and denoted by Eλ. In this
exact structure, the admissible monomorphisms are precisely the λ-pure subobjects and the
admissible epimorphisms are precisely the λ-pure quotients in the sense of [2]. That these
classes of morphisms do, in fact, yield an exact structure follows from Prop. 5, Obs. 11,
and Prop. 15 in loc. cit.. Alternatively, it follows directly from Proposition 3.2 with C = V
and T the collection of functors V(A,−) : V → Ab where A ranges over the λ-presentable
objects in V . In the special case λ= ℵ0, this kind of purity was studied in [16, §3].

If V is a closed symmetric monoidal abelian category, there is also a notion of purity
in V0 based on the tensor product (see Definition 3.4). In the literature, this kind of purity
is often called geometrically purity (as opposed to categorically purity, mentioned above).
The study of geometrically purity was initiated in [21] and was recently continued in [17]
and [20]. Below we establish the geometrically pure exact structure, E⊗, on V0, and show
that the exact category (V0,E⊗) has enough relative injectives (Propositions 3.7 and 3.12).

As mentioned in [20, Rem. 2.8], when both the categorically and the geometrically pure
exact structures are available, the former is coarser than the latter, i.e. one has Eλ ⊆ E⊗. In
general, this is a strict containment, however, in the locally finitely presentable categories
V =Mod(R), where R is a commutative ring, one has Eℵ0 = E⊗. See e.g. [28, Thm. 6.4].
As mentioned in Example 3.5(b) below, this equality also holds for V = Ch(R) with the
modified total tensor product ⊗•R.

Note that the examples found in 2.3 and 2.4 all satisfy the following setup.



THE TENSOR EMBEDDING FOR A GROTHENDIECK COSMOS 9

3.3 Setup. In the rest of this section, (V ,⊗, I, [−,−]) denotes a cosmos, that is, a closed
symmetric monoidal category which is bicomplete2. We also assume that V0 is abelian3

and that the category V0 has an injective cogenerator E.

Following Fox [21] a morphism f : X → Y in V0 is said to be geometrically pure if
f ⊗V : X⊗V → Y ⊗V is a monomorphism for every V ∈ V . Note that a geometrically
pure morphism is necessarily a monomorphism (take V = I).

3.4 Definition. Let E⊗ be the class of all short exact sequences in V0 which remain exact
under the functor−⊗V for every V ∈V . We call E⊗ the geometrically pure exact structure
on V0 (see Proposition 3.7 below). Sequences in E⊗ are called geometrically pure (short)
exact sequences. An object J ∈V0 which is injective relative to E⊗ is called a geometrically
pure injective object. We set

PureInj⊗(V0) = {J ∈ V0 | J is geometrically pure injective} .

3.5 Example. Consider the abelian cosmos from Example 2.3.

(a) It is easy to see that a short exact sequence S in Ch(R) is geometrically pure exact
in (Ch(R),⊗•R) if and only if Sn is a pure exact sequence of R-modules in each de-
gree n. Therefore, geometrically pure injective objects in (Ch(R),⊗•R) are precisely
contractible chain complexes of pure injective R-modules; see [43, Cor. 5.7].

(b) The geometrically pure exact sequences in (Ch(R),⊗•R) have been characterized in
several ways in [18, Thm. 2.5] and [23, Thm. 5.1.3]. Namely, a short exact sequence
S in Ch(R) is geometrically pure exact in (Ch(R),⊗•R) if and only if S is a categori-
cally pure exact sequence in Ch(R). Furthermore, if a chain complex J of R-modules
is a geometrically pure injective object in (Ch(R),⊗•R), then Jn and Ker∂J

n are pure
injective R-modules for every integer n; see [23, Prop. 5.1.4].

3.6 Example. Consider the abelian cosmos from Example 2.4(b). For a quasi-seperated
scheme X, a short exact sequence S is geometrically pure exact in (Qcoh(X),⊗X) if and
only if Sx is a pure exact sequence of OX,x-modules for every x ∈ X. This is proved in [17,
Prop. 3.4 and Rem. 3.5].

3.7 Proposition. The pair (V0,E⊗) is an exact category.

Proof. This is known and implicit in [20, (proof of) Lem. 3.6]. It is also a special case of
Proposition 3.2 with C = V0 and T the class of functors−⊗V : V0→V0 where V ∈ V . �

3.8 Lemma. For every X ∈ V , the object [X,E] is geometrically pure injective.

Proof. For any geometrically pure exact sequence S, the sequence S⊗X is exact, and hence
so is V0(S⊗X,E), as E is injective. The isomorphism V0(S, [X,E])∼= V0(S⊗X,E) shows
that V0(S, [X,E]) is exact, which means that [X,E] is geometrically pure injective. �

3.9 Lemma. A short exact sequence S in V0 is geometrically pure exact if and only if [S,E]
is a split short exact sequence in V0.

Proof. As E is an injective cogenerator in V0, the sequence S is geometrically pure exact
if and only if V0(S⊗V,E) is a short exact sequence in Ab for every V ∈ V . And [S,E] is a
split short exact sequence in V0 if and only if V0(V, [S,E]) is a short exact sequence in Ab
for every V ∈ V . The isomorphism V0(S⊗V,E)∼= V0(V, [S,E]) yields the conclusion. �

3.10 Lemma. The functor [−,E] : Vop
0 →V0 is faithful.

2 Actually, we shall not use the bicompleteness of V0 until we get to Lemma 3.14 and the subsequent results.
3 When we talk about an abelian closed symmetric monoidal category, we tacitly assume that the tensor

product −⊗− and the internal hom [−,−] are additive functors in each variable.
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Proof. There is a natural isomorphism V0(−,E) ∼= V0(I, [−,E]). If f 6= 0 is a morphism,
then V0( f ,E) 6= 0, as E is a cogenerator in V0, so V0(I, [ f ,E]) 6= 0 and thus [ f ,E] 6= 0. �

3.11 Observation. There is a pair of adjoint functors (F,G) as follows:

V0

F=[−,E]
// Vop

0 .
G=[−,E]

oo

Indeed, for all X ∈ V and Y ∈ Vop (equivalently, Y ∈ V) one has:

Vop
0 (F(X),Y) = V0(Y,FX) = V0(Y, [X,E]) ∼= V0(Y⊗X,E)

∼= V0(X⊗Y,E) ∼= V0(X, [Y,E]) = V0(X,G(Y)) .

Write ε for the counit of the adjunction. For every object Y in V , note that εY is an element
in Vop

0 (FG(Y),Y) = V0(Y,FG(Y)), so εY is a morphism Y→ FG(Y) = [[Y,E],E] in V0.

3.12 Proposition. For every Y ∈ V the morphism εY : Y → [[Y,E],E] from Observation
3.11 is a geometrically pure monomorphism. In particular, the exact category (V0,E⊗) has
enough relative injectives (= enough geometrically pure injectives).

Proof. First we show that εY is monic. Let f be a morphism in V0 with εY ◦ f = 0. It fol-
lows that [ f ,E] ◦ [εY ,E] = 0 in V0. By adjoint functor theory, see [36, §IV.1 Thm. 1], the
morphism G(εY) = [εY ,E] has a right-inverse (which is actually ε[Y,E], but this is not im-
portant), and hence [ f ,E] = 0. Now Lemma 3.10 implies f = 0, so εY is a monomorphism.
To show that εY is a geometrically pure monomorphism, consider the short exact sequence

S = 0 // Y
εY
// [[Y,E],E] // CokεY // 0 .

By Lemma 3.9 we need to prove that [S,E] splits, but as already argued above, [εY ,E] is a
split epimorphism, so we are done. To see that (V0,E⊗) has enough relative injectives, it
remains to note that [[Y,E],E] is a geometrically pure injective object by Lemma 3.8. �

Recall from [19, Dfn. 6.1.1] the notions of preenvelopes and envelopes.

3.13 Theorem. Assume that V0 is Grothendieck (that is, V is a Grothendieck cosmos).
Every object in V0 has a geometrically pure injective envelope, that is, an envelope w.r.t. the
class PureInj⊗(V0).

Proof. Let A be the class of geometrically pure monomorphisms and J= PureInj⊗(V0) be
the class of geometrically pure injective objects in V0. The following conditions hold:

(1) An object J ∈ V0 belongs to J if and only if V0(Y, J)→V0(X, J)→ 0 is exact in Ab
for every X→ Y in A.

(2) A morphism X → Y in V0 belongs to A if and only if V0(Y, J)→ V0(X, J)→ 0 is
exact in Ab for every J ∈ J.

(3) Every object in V0 has a J-preenvelope.

Indeed, the “only if” part of (1) holds by definition of geometrically pure injective objects.
For the “if” part, take by Proposition 3.12 a morphism J→ J′ in A with J′ ∈ J. By assump-
tion, V0(J′, J)→V0(J, J)→ 0 is exact, so idJ has a left-inverse J′→ J. Thus J is a direct
summand in J′ ∈ J and it follows that J ∈ J. The “only if” part of (2) holds by definition of
geometrically pure injective objects. For the “if” part, let f : X→ Y be any morphism in V0.
For every V ∈ V0 one has [V,E]∈ J by Lemma 3.8, so V0( f , [V,E]) is surjective by assump-
tion. As in the proof of 3.8, this menas that f ⊗V is monic, and hence f is in A. Condition
(3) holds by Proposition 3.12.

These arguments show that (A,J) is an injective structure in the sense of [19, Dfn. 6.6.2].
Even though the definitions and results (with proofs) about such structures found in [19]
are formulated for the category of modules over a ring, they carry over to any Grothendieck
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cosmos. Since the injective structure (A,J) is determined by the class G := V0 in the sense
of [19, Dfn. 6.6.3], the desired conclusion follows from [19, Thm. 6.6.4(1)]. �

It is well-known that if K is a small ordinary category, then the category of functors
K→ Ab is abelian, and even Grothendieck. In [3, Thm. 4.2] it is shown that if K is a small
V-category, then the ordinary category [K,V]0 of V-functors K → V is abelian too, and
even Grothendieck if V is4. Moreover, (co)limits, in particular, (co)kernels, in the category
[K,V]0 are formed objectwise. Below we construct a certain exact structure on [K,V]0.

3.14 Lemma. Let K be a small V-category and let 0→ F′ → F → F′′ → 0 be an exact
sequence in the abelian category [K,V]0. For every V-functor G : Kop → V the sequence
G?F′→G?F→G?F′′→ 0 is exact in V0.

Proof. It follows immediately from the fact that G? F ∼= F ?G, see [30, eq. (3.9)], and
from the axiom (]3) in the definition of weighted colimits, that (−?G, [G,−]) is an adjoint
pair. This implies that the functor G?−∼=−?G is right exact. �

3.15 Proposition. LetK be a small V-category and let 0→ F′→ F→ F′′→ 0 be an exact
sequence in [K,V]0. The following conditions are equivalent:

(i) 0→G?F′→G?F→G?F′′→ 0 is an exact sequence in V0 for every G ∈ [Kop,V].
(ii) 0→ [F′′,E]→ [F,E]→ [F′,E]→ 0 is a split short exact sequence in [Kop,V]0.

Proof. Let S be the given exact sequence. By the definition of weighted colimits, see (]3),
there is an isomorphism [G ? S,E] ∼= [Kop,V](G, [S,E]) of sequences in V0 and thus an
induced isomorphism of sequences in Ab,

V0(G?S,E) ∼= [Kop,V]0(G, [S,E]) . (]6)

As E is an injective cogenerator in V0, condition (i) holds if and only if the left-hand side
in (]6) is exact for every G ∈ [Kop,V]. Evidently, (ii) holds if and only if right-hand side in
(]6) is exact for every G ∈ [Kop,V]. Hence (i) and (ii) are equivalent. �

3.16 Definition. Let E? denote the class of all short exact sequences in [K,V]0 that satisfy
the equivalent conditions in Proposition 3.15. We call E? the ?-pure exact structure on
[K,V]0 (see the next result). Sequences in E? are called ?-pure (short) exact sequences.

3.17 Proposition. The pair ([K,V]0,E?) is an exact category.

Proof. Apply Prop. 3.2 with C = [K,V]0 and T the class of functors G?− : [K,V]0→V0
where G ∈ [Kop,V]. Note that every functor G?− is right exact by Lemma 3.14. �

Recall that a left R-module M is absolutely pure (or FP-injective) if it is a pure submod-
ule of every R-module that contains it; see [28, Dfn. A.17]. Equivalently, every short exact
sequence 0→M→ K→ K′→ 0 is pure exact, that is, 0→ X⊗M→ X⊗K→ X⊗K′→ 0
is exact for every right R-module X. The definition of absolutely pure V-functors K→ V
given below is completely analogous to this.

3.18 Definition. LetK be a small V-category and let H be an object in [K,V]0. Recall that

H is injective ⇐⇒
{

Every exact sequence 0→ H→ F→ F′→ 0
in the abelian category [K,V]0 is split exact .

Inspired by the remarks above, we define:

H is absolutely pure ⇐⇒
{

Every exact sequence 0→ H→ F→ F′→ 0
in the abelian category [K,V]0 is ?-pure exact .

4 Note that in loc. cit. the symbol [K,V] is used for the ordinary category of V-functors K→ V (but we use
the symbol [K,V]0) whereas the V-category of such functors is denoted by F(K) (but we use the symbol [K,V]).
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We also set:

Inj([K,V]0) = {H ∈ [K,V]0 | H is injective} and

AbsPure([K,V]0) = {H ∈ [K,V]0 | H is absolutely pure} .

These categories will appear in Theorem 6.13, the final result of the paper.

4. THE TENSOR EMBEDDING FOR AN ABELIAN COSMOS

We establish some general properties of the tensor embedding defined in 4.2 below. The
main result is Theorem 4.6, which shows that the tensor embedding identifies the geomet-
rically pure exact category (V0,E⊗) from Proposition 3.7 with a certain exact subcategory
of ([A,V]0,E?) from Proposition 3.17.

4.1 Setup. The setup for this section is the same as in 3.3, i.e (V ,⊗, I, [−,−]) is an abelian5

cosmos with an injective cogenerator E.

4.2 Definition. Recall from [30, §1.6] that ⊗ is a V-functor6 V⊗⊗⊗V → V . For a small full
V-subcategoryA of V , restriction yields a V-functor⊗ : V⊗⊗⊗A→V . Via the isomorphism

V-CAT(V⊗⊗⊗A,V) ∼= V-CAT(V , [A,V])

from [30, §2.3 eq. (2.20)], the latter V-functor corresponds to the V-functor

Θ : V −→ [A,V] given by X 7−→ (X⊗−)|A : A→V .

We refer to this V-functor as the tensor embedding. Note that it induces an additive functor
Θ0 : V0→ [A,V]0 of the underlying abelian categories.

4.3 Remark. If I ∈A, then the V-functorA(I,−) = [I,−] exists and it is clearly naturally
isomorphic to the inclusion V-functor, inc : A→V . Thus, in the notation of 2.9 one has

Θ(X) = (X⊗−)|A = X⊗ inc ∼= X⊗A(I,−) . (]7)

For the next result, recall the notions of geometrically pure exact sequences and ?-pure
exact sequences from Definitions 3.4 and 3.16.

4.4 Lemma. LetA be a small full V-subcategory of V and let S be a short exact sequence
in V0. The following two conditions are equivalent:

(i) S⊗A is a short exact sequence in V0 for every A ∈ A.
(ii) Θ0(S) is a short exact sequence in [A,V]0.

If I belongs to A, then the following two conditions are equivalent:

(i′) S is a geometrically pure exact sequence in V0.
(ii′) Θ0(S) is a ?-pure exact sequence in [A,V]0.

Proof. The equivalence (i)⇔ (ii) is evident from the definitions. Now assume that I ∈ A.
For every V-functor G : Aop→V there is an equivalence of endofunctors on V0,

G ?Θ0(−) ∼= −⊗G(I) . (]8)

Indeed, for X ∈ V one has the next isomorphisms, where the 1st is by (]7), the 2nd follows
as the V-functor X⊗? : V →V preserves weighted colimits (this follows from e.g. [8, Prop.
6.6.12]), and the 3rd is by [30, eq. (3.10)]:

G ?Θ(X) ∼= G ? (X⊗A(I,−)) ∼= X⊗ (G ?A(I,−)) ∼= X⊗G(I) .

5 Note that the abelianness of V0 is not used, neither is it important for, part (a) in Theorem 4.6.
6 Note that in loc. cit. the symbol “Ten” is used for this V-functor whereas “⊗” is reserved for the ordinary

functor V0×V0→ V0, however, we shall abuse notation and use the latter symbol for both functors.



THE TENSOR EMBEDDING FOR A GROTHENDIECK COSMOS 13

It is clear from (]8) that (i′) implies (ii′). Conversely, assume (ii′) and let V ∈ V be given.
As G = [−,V] is a V-functorAop→V , the sequence [−,V]?Θ(S) is exact by assumption.
Another application of (]8) shows that S⊗ [I,V]∼= S⊗V is exact, so (i′) holds. �

Recall that the essential image of a V-functor T : C → D, denoted by Ess. ImT , is just
the essential image of the underlying ordinary functor T0 : C0→D0. Thus Ess. ImT is the
collection of all objects D ∈ D such that D∼= T (C) in D0 for some object C ∈ C. We may
consider Ess. ImT as a full V-subcategory of D or as a full subcategory of D0.

4.5 Lemma. Let A be a small full V-subcategory of V with I ∈ A. For any short exact
sequence 0→ F′→ F→ F′′→ 0 in the abelian category [A,V]0 one has:

F′,F′′ ∈ Ess. ImΘ =⇒ F ∈ Ess. ImΘ .

Consequently, Ess. ImΘ is an extension-closed subcategory of both of the exact categories

([A,V]0,Eab) and ([A,V]0,E?) ,
where Eab is the exact strucure induced by the abelian structure, and E? is the (coarser)
exact structure from Proposition 3.17. It follows that the sequences in Ess. ImΘ which are
exact, respectively, ?-pure exact, in [A,V]0 form an exact structure on Ess. ImΘ, which we
denote by Eab|Ess.ImΘ, respectively, E?|Ess.ImΘ. In this way, we obtain exact categories:

(Ess. ImΘ,Eab|Ess.ImΘ) and (Ess. ImΘ,E?|Ess.ImΘ) .

Proof. For all objects X ∈ V and F ∈ [A,V] there are isomorphisms:

[A,V](Θ(X),F) ∼= [A,V](X⊗A(I,−),F) ∼= [X, [A,V](A(I,−),F)] ∼= [X,F(I)] (]9)

which follow from (]7), (]4), and the strong Yoneda Lemma [30, §2.4 eq. (2.31)]. Con-
sequently there is also an isomorphism [A,V]0(Θ(X),F)∼= V0(X,F(I)), which shows that
there is a pair of adjoint functors (Θ0,(EvI)0) where EvI is the V-functor given by evalua-
tion at the unit object I (see [30, §2.2]):

V0

Θ0
//
[A,V]0 .

(EvI)0

oo

Write θ for the counit of this adjunction; thus for F ∈ [A,V]0 we have the V-natural trans-
formation θF : Θ0(F(I))→ F. Clearly, θF is an isomorphism if and only if F ∈ Ess. ImΘ.

Now, let 0→ F′→ F → F′′→ 0 be an exact sequence in [A,V]0. It induces an exact
sequence 0→ F′(I)→ F(I)→ F′′(I)→ 0 in V0 and hence the exact sequence in the upper
row of the next commutative diagram (by right exactness of the tensor product),

Θ0(F′(I)) //

θF′
��

Θ0(F(I)) //

θF
��

Θ0(F′′(I)) //

θF′′
��

0

0 // F′ // F // F′′ // 0 .

If F′ and F′′ are in Ess. ImΘ, then θF′ and θF′′ are isomorphisms in [A,V]0; whence θF is
an isomorphism by the Five Lemma, so F belongs to Ess. ImΘ.

The last assertion follows directly from [13, Lem. 10.20] (also note that Ess. ImΘ is an
additive subcategory of [A,V]0 since the functor Θ0 is additive). �

4.6 Theorem. Let V be as in Setup 4.1 and let A be any small full V-subcategory of V .
The tensor embedding

Θ : V −→ [A,V] given by X 7−→ (X⊗−)|A .

from Definition 4.2 is cocontinuous, that is, it preserves all small weighted colimits. If I
belongs to A, then Θ is a fully faithful and it induces two equivalences:

(a) An equivalence of V-categories, Θ : V '−→ Ess. ImΘ.
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(b) An equivalence of exact categories, Θ0 : (V0,E⊗)
'−→ (Ess. ImΘ,E?|Ess.ImΘ).

Proof. First note that the V-categories V and [A,V] are bicomplete, that is, they have small
weighted limits and colimits. This follows from [30, §3.1 and §3.3] as the ordinary category
V0 is assumed to be bicomplete. We now show that Θ is cocontinuous.

Let K be a small V-category and let G : Kop → V and F : K → V be V-functors. We
must show that G? (Θ◦F)∼= Θ(G?F), where the weighted colimit on the left-hand side
is computed in [A,V] and the one on the right-hand side in V . Via the isomorphism

V-CAT(K, [A,V]) ∼= V-CAT(K⊗⊗⊗A,V)
from [30, §2.3 eq. (2.20)], the V-functor Θ◦F : K→ [A,V] corresponds to the V-functor
P : K⊗⊗⊗A→ V given by P(K,A) = F(K)⊗A. So P(−,A) is F⊗A in the notation of 2.9.
In the computation below, the 1st isomorphism holds as weighted colimits in [A,V] are
computed objectwise, see [30, §3.3] (more precisely, we use the weighted colimit counter-
part of eq. (3.16) in loc. cit.); the 2nd and 3rd isomorphisms hold by the definitions of P and
Θ; the 4th isomorphism holds as the V-functor−⊗A : V →V preserves weighted colimits:

(G? (Θ◦F))(A) ∼= G?P(−,A) ∼= G? (F⊗A) ∼= (G?F)⊗A ∼= Θ(G?F)(A) .

Consequently, G? (Θ◦F)∼= Θ(G?F), as claimed.
Now assume that I ∈A. As Θ is a V-functor it comes equipped with a natural morphism,

ΘXY : [X,Y]−→ [A,V](Θ(X),Θ(Y)) ,

for every pair of objects X,Y ∈ V . The claim is that ΘXY is an isomorphism in V . However,
the morphism ΘXY is precisely the following composite, where the second isomorphism
comes from (]9) with F = Θ(Y),

[X,Y] ∼= [X,Θ(Y)(I)] ∼= [A,V](Θ(X),Θ(Y)) .

(a): The asserted V-equivalence is a formal consequence of fact that Θ is fully faithful;
see [30, §1.11 p. 24].

(b): By part (a) we have an equivalence of additive categories Θ0 : V0
'−→ Ess. ImΘ.

The assertion about exact categories now follows from the equivalence (i′)⇔ (ii′) in Lemma
4.4 and from Lemma 4.5. �

We end this section with two results that show how to construct a (co)generating set of
objects in the category [K,V]0 of V-functors from a (co)generating set of objects in V0.
This will be used in the proof of Proposition 6.12.

4.7 Lemma. Let K be a small V-category. The following hold.

(a) If S is a cogenerating set of objects in V0, then { [K(−,K),S ]}K∈K,S∈S is a cogen-
erating set of objects in [K,V]0.

(b) If S ∈ V0 is injective, then [K(−,K),S ] is injective in [K,V]0 for every K ∈ K.

Proof. For K in K, the functor [K,V]0→V0 given by ? 7→ K(−,K)?? is just the evalua-
tion functor EvK(?) at K, see [30, §3.1 eq. (3.10)]. This fact, the defining property (]3) of
weighted colimits, and [30, §3.1 eq. (3.9)] yield isomorphisms in V ,

[K,V](? , [K(−,K),S ]) ∼= [K(−,K)?? ,S ] ∼= [EvK(?),S ] .

In particular, [K,V]0(?, [K(−,K),S ])∼= V0(EvK(?),S ), which yields both assertions. �

Lemma 4.7 has the next dual of which part (a) can also be found in [3, Thm. 4.2].

4.8 Lemma. Let K be a small V-category. The following hold.

(a) If S is a generating set of objects in V0, then {S ⊗K(K,−)}K∈K,S∈S is a generating
set of objects in [K,V]0.

(b) If S ∈ V0 is projective, then S ⊗K(K,−) is projective in [K,V] for every K ∈ K.
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Proof. For any objects S ∈ V and K ∈ K, the first isomorphism below follows from (]4)
and the second follows from the strong Yoneda Lemma [30, §2.4 eq. (2.31)]:

[K,V](S ⊗K(K,−),?) ∼= [S , [K,V](K(K,−),?)] ∼= [S ,EvK(?)] .

In particular, [K,V]0(S ⊗K(K,−),?)∼= V0(S ,EvK(?)), which yields both assertions. �

5. THE TENSOR EMBEDDING FOR A GROTHENDIECK COSMOS

In this section, we work with Setup 5.1 below and we consider the tensor embedding

Θ : V −→ [Presλ(V),V] (]10)

from Definition 4.2 in the special case where A= Presλ(V). The goal is to strengthen and
make Theorem 4.6 more explicit in this situation; this is achieved in Theorem 5.9 below.
Note that the examples found in 2.3 and 2.4 all satisfy the following setup.

5.1 Setup. In this section, (V ,⊗, I, [−,−]) is a cosmos and V is a Grothendieck category.

• We fix a regular cardinal λ such that V is a locally λ-presentable base7 in the sense
of 2.5; such a choice is possible by Proposition 5.2 below.

• We let Presλ(V) be the (small) collection of all λ-presentable objects in V .
• We fix an injective cogenerator E in V0; existence is guaranteed by [29, Thm. 9.6.3].

5.2 Proposition. There is a regular cardinal λ for which V is a locally λ-presentable base.

Proof. As V0 is Grothendieck, it follows from [7, Prop. 3.10] that it is a locally γ-present-
able category for some regular cardinal γ. Note that for every regular cardinal λ > γ, the
category V0 is also locally λ-presentable by [1, Remark after Thm. 1.20], so condition (1)
in 2.5 holds for all such λ. Let S be a set of representatives for the isomorphism classes of
γ-presentable objects in V0. Let S ′ be the set consisting of the unit object I and all finite
tensor products of objects in S. As every object in V0 is presentable (that is, µ-presentable
for some regular cardinal µ), see again [1, Remark after Thm. 1.20], and since S ′ is set,
there exists some regular cardinal λ > γ such that every object in S ′ is λ-presentable. In
particular, condition (2) in 2.5 holds. If neccessary we can replace λ with its successor λ+

(every successor cardinal is regular) and thus by [1, Exa. 2.13(2)] assume that γ is sharply
smaller than λ (in symbols: γ C λ) in the sense of [1, Dfn. 2.12]. This will play a role in
the following argument, which shows that condition (3) in 2.5 holds.

Let X and Y be λ-presentable objects in V0. As the category V0 is locally γ-presentable
(and hence also γ-accessible) and λ B γ, it follows from [1, Rem. 2.15] that X and Y are
direct summands of a λ-small directed colimit of γ-presentable objects in V0, i.e. we have

X⊕X′ ∼= colimp∈PXp and Y⊕Y ′ ∼= colimq∈QYq

where Xp,Yq ∈ S and |P|, |Q| < λ. As ⊗ preserves all colimits, one has

(X⊕X′)⊗ (Y⊕Y ′) ∼= colim(p,q)∈P×Q Xp⊗Yq . (]11)

By construction, each Xp⊗Yq is in S ′, so it is a λ-presentable object. Furthermore, the
category P×Q is λ-small. Hence [1, Prop. 1.16] and (]11) imply that (X⊕X′)⊗ (Y⊕Y ′)
is λ-presentable. Since X⊗Y is a direct summand of (X⊕X′)⊗ (Y⊕Y ′), the object X⊗Y
is λ-presentable too by [1, Remark after Prop. 1.16].8 �

7 Thus the blanket setup at the end of the Introduction in [9] is satisfied, and we can apply the theory herein.
8 According to [1, Rem. 1.30(2)] it follows from [37] that if λ is any regular cardinal > γ, then every λ-pre-

sentable object is a λ-small colimit of γ-presentable objects. If this is true, then a couple of simplifications can
be made in the proof of Proposition 5.2. Indeed, in this case we would not have to worry about γ being sharply
smaller than λ, and we could simply take both X′ and Y ′ to be zero. However, as there seems to be some doubt
about the correctness of the claim in [1, Rem. 1.30(2)] (https://mathoverflow.net/questions/325278/
mu-presentable-object-as-mu-small-colimit-of-lambda-presentable-objects), we have cho-
sen to give a (slightly more complicated) proof of Proposition 5.2 based on [1, Rem. 2.15] instead.

https://mathoverflow.net/questions/325278/mu-presentable-object-as-mu-small-colimit-of-lambda-presentable-objects
https://mathoverflow.net/questions/325278/mu-presentable-object-as-mu-small-colimit-of-lambda-presentable-objects
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Under Setup 5.1 one can improve some of the statements about purity from Sections 3
and 4. This will be our first goal.

5.3 Lemma. For a short exact sequence S in V0, the following conditions are equivalent:

(i) S⊗C is a short exact sequence in V0 for every C ∈ Presλ(V).
(ii) V0(S, [C,E]) is a short exact sequence in Ab for every C ∈ Presλ(V).

(iii) S is geometrically pure exact sequence in V0.

Proof. The equivalence (i)⇔ (ii) follows as V0(S⊗C,E)∼= V0(S, [C,E]) and E is an injec-
tive cogenerator in V0. Evidently, (iii)⇒ (i). Finally, assume that (i) holds. Every object
V ∈ V is a directed colimit of λ-presentable objects, say, V ∼= colimq∈QCq. The sequence
S⊗V ∼= colimq∈Q(S⊗Cq) is exact as each S⊗Cq is exact (by assumption) and any directed
colimit of exact sequences is again exact because V0 is Grothendieck. So (iii) holds. �

5.4 Corollary. Consider the tensor embedding (]10). The exact structures Eab and E? on
the category [Presλ(V),V]0 from Lemma 4.5 agree on the subcategory Ess. ImΘ, that is,

Eab|Ess.ImΘ = E?|Ess.ImΘ .

Proof. Every short exact sequence 0→ F′→ F → F′′→ 0 in Ess. ImΘ has the form (up
to isomorphism) Θ0(S) for some short exact sequence S= 0→ X′→ X→ X′′→ 0 in V0.
Lemma 5.3 shows that conditions (i) and (i′) in Lemma 4.4 (withA= Presλ(V)) are equiv-
alent. Thus (ii) and (ii′) in Lemma 4.4 are equivalent too, as asserted. �

We know from Proposition 3.12 that the exact category (V0,E⊗) has enough relative
injectives. An alternative demonstration of this fact is contained in the next proof.

5.5 Proposition. An object X ∈V0 is geometrically pure injective if and only if it is a direct
summand of an object

∏
q∈Q [Bq,E] for some family {Bq}q∈Q of λ-presentable objects.

Proof. The “if” part is clear since each object [Bq,E] is geometrically pure injective by
Lemma 3.8. Conversely, let X be any object in V0. Choose a set C of representatives for the
isomorphism classes of λ-presentable objects in V0 and consider the canonical morphism

α : X −→
∏

C∈C [C,E]JC where JC = V0(X, [C,E]) .

We will show that α is a monomorphism. Let β : Y→ X be a morphism with αβ= 0. This
implies that for every C ∈ C the map V0(β, [C,E]) : V0(X, [C,E])→ V0(Y, [C,E]) is zero.
By adjunction this means that V0(β⊗C,E) = 0 and thus β⊗C = 0 since E is an injective
cogenerator. As every object in V0, in particular the unit object I, is a directed colimit of
objects from C, and since β⊗− preserves colimits, it follows that β∼= β⊗ I = 0.

By what we have just proved there is a short exact sequence,

S = 0 // X α
//
∏

C∈C [C,E]JC // Cokα // 0 .

By construction of α, every morphism X→ [C,E] with C ∈ C factors through α; thus for
every C ∈ C the morphism V0(α, [C,E]) is surjective and therefore V0(S, [C,E]) is a short
exact sequence. It follows from Lemma 5.3 that S is geometrically pure exact. Thus, if X is
geometrically pure injective, then S splits and X is a direct summand in

∏
C∈C [C,E]JC . �

5.6 Definition ([9, Dfn. 2.1]). Let λ be a regular cardinal (in our applications, λ will be the
fixed cardinal from Setup 5.1) and letA be a V-category. Let G : Kop→V and F : K→A
be V-functors and assume that the weighted colimit G?F ∈ A exists. If the weight G is
λ-small in the sense of Definition 2.7, then G?F is called a λ-small weighted colimit.

A V-functor T : A→B is said to be λ-cocontinuous if it preserves all λ-small weighted
colimits, that is, for every λ-small weight G one has G? (T ◦F)∼= T (G?F). We set

λ-Cocont(A,B) =
{

the collection of all λ-cocontinuous V-functors A→B
}
.
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5.7 Remark. By [9, Prop. 3.2 and Cor. 3.3] the full V-subcategoryA= Presλ(V) is closed
under λ-small weighted colimits in V . Thus Presλ(V) has all λ-small weighted colimits.

5.8 Proposition. For the tensor embedding (]10) the essential image is:

Ess. ImΘ = λ-Cocont(Presλ(V),V) .

Proof. For every object X ∈ V the V-functor Θ(X) = (X⊗−)|Presλ(V) is λ-cocontinuous.
Indeed, X⊗− : V → V preserves all weighted colimits, and by Remark 5.7 any λ-small
weighted colimit in Presλ(V) is, in fact, a (λ-small) weighted colimit in V . Thus “⊆” holds.

Conversely, let T : Presλ(V)→ V be any λ-cocontinuous V-functor. Consider for any
A ∈ Presλ(V) the V-functors G : Iop → V and F : I → Presλ(V) given by G(∗) = A and
F(∗) = I. Here I is the unit V-category from 2.6. Note that the weight G is λ-small as the
objects Iop(∗,∗) = I and G(∗) = A are λ-presentable. Evidently one has

G?F = G(∗)⊗F(∗) = A⊗ I ,

and since T is assumed to preserve λ-small weighted colimits, it follows that

T (A) ∼= T (A⊗ I) ∼= T (G?F) ∼= G? (T ◦F) ∼= G(∗)⊗ (T ◦F)(∗) ∼= A⊗T (I) .

Hence T is V-naturally isomorphic to Θ(T (I)) = (T (I)⊗−)|Presλ(V), so T ∈Ess. ImΘ. �

5.9 Theorem. Let V be as in Setup 5.1. The tensor embedding

Θ : V −→ [Presλ(V),V] given by X 7−→ (X⊗−)|Presλ(V)

is cocontinuous and it induces two equivalences:

(a) An equivalence of V-categories, Θ : V '−→ λ-Cocont(Presλ(V),V).
(b) An equivalence of exact categories, Θ0 : (V0,E⊗)

'−→ λ-Cocont(Presλ(V),V), where
the latter is an extension-closed subcategory of the abelian category [Presλ(V),V]0.

Proof. Combine Theorem 4.6, Proposition 5.8, and Corollary 5.4. �

6. THE CASE WHERE V IS GENERATED BY DUALIZABLE OBJECTS

In this final section, we work with Setup 6.1 below. We prove in Proposition 6.9(a) that
under the assumptions in Setup 6.1, V is a locally finitely presentable base. Thus in Setup
5.1 and in all of the results from Section 5 we can set λ= ℵ0. As it is customary, we write

fp(V) := Presℵ0(V)
for the class of finitely presentable objects in V , so the tensor embedding (]10) becomes:

Θ : V −→ [fp(V),V] .
We will improve and make Theorem 5.9 more explicit in this situation. Let us explain the
two main insights we obtain in this section:

• We know from Theorem 5.9(b) that the geometrically pure exact category (V0,E⊗) is
equivalent, as an exact category, to Ess. ImΘ = ℵ0-Cocont(fp(V),V). We prove in
Theorem 6.13 that Ess. ImΘ also coincides with the class of absolutely pure objects
in [fp(V),V]0 in the sense of Definition 3.18.

• As mentioned in the remarks preceding Lemma 3.14, it follows from [3, Thm. 4.2]
that [fp(V),V]0 is a Grothendieck category; in particular, it has enough injectives.
Theorem 6.13 gives a very concrete description of the injective objects in [fp(V),V]0:
they are precisely the V-functors of the form (X⊗−)|fp(V) where X is a geometri-
cally pure injective object in V0 in the sense of Definition 3.4.

6.1 Setup. In this section, (V ,⊗, I, [−,−]) is a cosmos and V is a Grothendieck category
(just as in Setup 5.1) subject to the following requirements:

• The unit object I is finitely presentable in V0.
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• The category V0 is generated by a set of dualizable objects (defined in 6.5 below).

6.2 Example. The two Grothendieck cosmos from Example 2.3, that is,

(Ch(R),⊗•R,S(R),Hom•R) and (Ch(R),⊗•R,D(R),Hom•
R) , (]12)

satisfy Setup 6.1. Indeed, it is not hard to see that

fp(Ch(R)) = {X ∈ Ch(R) |X is bounded and each module Xn is finitely presentable} ,

in particular, the unit objects S(R) and D(R) of the two cosmos are finitely presentable. Thus
the first condition in Setup 6.1 holds. Evidently,

{ΣnD(R) |n ∈ Z} (where Σ
n is the n’th shift of a complex)

is a generating set of objects in Ch(R). Each object ΣnD(R) is dualizable in the rightmost
cosmos in (]12) as I = D(R) is the unit object. The object ΣnD(R) is also dualizable in the
leftmost cosmos in (]12), indeed, it is not hard to see that every perfect R-complex (i.e. a
bounded complex of finitely generated projective R-modules) is dualizable in this cosmos.
Hence the second condition in Setup 6.1 holds as well.

6.3 Example. Consider the Grothendieck cosmos from Example 2.4(b), that is,

(Qcoh(X),⊗X ,OX ,H omqc
X ) .

If X is concentrated (e.g. if X is quasi-compact and quasi-separated), then I =OX is finitely
presentable in Qcoh(X) by [17, Prop. 3.7], so the first condition in Setup 6.1 holds.

Note by the way, that for any noetherian scheme X, it follows from [15, Lem. B.3] (and
the fact that in a locally noetherian Grothendick category, finitely presentable objects and
noetherian objects are the same, see [42, Chap. V§4]) that one has:

fp(Qcoh(X)) = Coh(X) := {X ∈ Qcoh(X) |X is coherent} ,

The dualizable objects in Qcoh(X) are precisely the locally free sheaves of finite rank,
see [11, Prop. 4.7.5], and hence the second condition in Setup 6.1 holds if and only if X has
the strong resolution property in the sense of [11, Dfn. 2.2.7]. Many types of schemes—for
example, any projective scheme and any separated noetherian locally factorial scheme—do
have the strong resolution property; see the remarks after [11, Dfn. 2.2.7]. We refer to [5,
3.4] for further remarks and insights about the strong resolution property.

6.4 Evaluation morphisms. For any closed symmetric monoidal category there are canon-
ical natural morphisms in V0 (see e.g. [34, III§1, p. 120] for construction of the first map):

ϑXYZ : [X,Y]⊗Z −→ [X,Y⊗Z] and ηXYZ : X⊗ [Y,Z]−→ [[X,Y],Z]

In commutative algebra, that is, in the case where V =Mod(R) for a commutative ring R,
people sometimes refer to ϑ as tensor evaluation and to η as homomorphism evaluation;
see for example [14, (A.2.10) and (A.2.11)].

We now consider dualizable objects as defined in [27] and [34].

6.5 Dualizable objects. For every object P in V , the following conditions are equivalent:

(i) The canonical morphism [P, I]⊗P→ [P,P] is an isomorphism.
(ii) The canonical morphism [P, I]⊗Z→ [P,Z] is an isomorphism for all objects Z ∈ V .

(iii) ϑPYZ : [P,Y]⊗Z→ [P,Y⊗Z] is an isomorphism for all objects Y,Z ∈ V .

Evidently, (iii)⇒ (ii)⇒ (i). Objects P satisfying (i) are in [34, III§1, Dfn. 1.1] called finite,
and in Prop. 1.3(ii) in loc. cit. it is proved that (i) implies (iii). Hence all three conditions
are equivalent. Objects P satisfying (ii) are called (strongly) dualizable in [27, Dfn. 1.1.2];
we shall adopt this terminology, “dualizable”, for objects satisfying conditions (i)–(iii).
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6.6 Remark. If P∈V is dualizable, then so is [P, I], and the natural map P→ [[P, I], I] is an
isomorphism; see [34, III§1, Props. 1.2 and 1.3(i)]. By condition 6.5(ii) there is a natural
isomorphism [P, I]⊗−∼= [P,−]. By replacing P with [P, I] one also gets P⊗−∼= [[P, I],−].

6.7 Lemma. If P and Q are dualizable, then so are P⊕Q, P⊗Q, and [P,Q].

Proof. Using condition 6.5(ii) and additivity of the functors −⊗− and [−,−], it is easy to
see that P⊕Q is dualizable. By condition 6.5(iii) the computation

[P⊗Q,Y]⊗Z ∼= [P, [Q,Y]]⊗Z ∼= [P, [Q,Y]⊗Z] ∼= [P, [Q,Y⊗Z]] ∼= [P⊗Q,Y⊗Z]

shows that P⊗Q is dualizable. To see that [P,Q] is dualizable, note that [P,Q]∼= [P, I]⊗Q
(as P is dualizable) and apply what we have just proved combined with Remark 6.6. �

6.8 Definition. Following Lewis [33, Dfn. 1.1] we use the next terms for an object J in V .

J is injective ⇐⇒ the functor V0(−, J) : Vop
0 → Ab is exact.

J is internally injective ⇐⇒ the functor [−, J] : Vop
0 →V0 is exact.

A question of interest in [33] is when every injective object in V is internally injective;
in this case Lewis would say that V satisfies the condition IiII (Injective implies Internally
Injective). As we shall prove next, this condition does hold under Setup 6.1.

6.9 Proposition. For V as in Setup 6.1, the following assertions hold.

(a) V is a locally finitely presentable base (see 2.5).
(b) V satisfies Lewis’ condition IiII, i.e. every injective object is internally injective.
(c) For objects X,Y, J in V where X is finitely presentable and J is injective, the mor-

phism ηXY J : X⊗ [Y, J]−→ [[X,Y], J] from 6.4 is an isomorphism.

Proof. (a): As I is finitely presentable, condition 2.5(2) holds with λ= ℵ0. Note that every
dualizable object P is finitely presentable. Indeed, [P,−] : V0→V0 preserves colimits as it
is naturally isomorphic to [P, I]⊗− by Remark 6.6, and V0(I,−) preserves directed colim-
its as I is finitely presentable. Thus V0(P,−)∼= V0(I, [P,−]) preserves directed colimits.

As V0 is a Grothendieck category generated by a set of finitely presentable (even du-
alizable) objects, it is a locally finitely presentable Grothendieck category in the sense of
Breitsprecher [12, Dfn. (1.1)]. Hence V0 is also a locally finitely presentable category in the
ordinary sense, see [12, Satz (1.5)] and [16, (2.4)], so condition 2.5(1) holds with λ= ℵ0.

To see that 2.5(3) holds, i.e. that the class of finitely presentable objects is closed under
⊗, note that as V0 is generated by a set of dualizable objects, [12, Satz (1.11)] and Lemma
6.7 yield that an object X is finitely presentable if and only if there is an exact sequence

P1 −→ P0 −→ X −→ 0 (]13)

with P0,P1 dualizable. Now let Y be yet a finitely presentable object and choose an exact
sequence Q1 → Q0 → Y → 0 with Q0,Q1 dualizable. It is not hard to see that there is
an exact sequence (P1⊗Q0)⊕ (P0⊗Q1)→ P0⊗Q0→ X⊗Y → 0, cf. [10, Chap. II§3.6
Prop. 6], so it follows from Lemma 6.7 that X⊗Y is finitely presentable.

(b): As V0 is generated by a set, say, P of dualizable objects, the category V0 has a
⊗-flat generator, namely

⊕
P∈P P. The conclusion now follows from [40, Lem. 3.1].

(c): As noted in the proof of (a), if X is a finitely presentable object there exist dualizable
objects P0 and P1 and an exact sequence (]13). It induces a commutative diagram in V0:

P1⊗ [Y, J] //

ηP1Y J

��

P0⊗ [Y, J] //

ηP0Y J

��

X⊗ [Y, J] //

ηXY J

��

0

[[P1,Y], J] // [[P0,Y], J] // [[X,Y], J] // 0 .

(]14)
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In this diagram, the upper row is exact by right exactness of the functor −⊗ [Y, J]. The
sequence 0→ [X,Y]→ [P0,Y]→ [P1,Y] is exact by left exactness of the functor [−,Y].
Thus, if J is injective, and hence also internally injective by part (b), we get exatcness of
the lower row in (]14). Thus, to prove that ηXY J is an isomorphism, it suffices by the Five
Lemma to show that ηP0Y J and ηP1Y J are isomorphisms. However, for every dualizable
object P and arbitrary objects Y,Z, the map ηPYZ is an isomorphism. Indeed, Remark 6.6,
the adjunction (−⊗Y) a [Y,−], and condition 6.5(ii) yield isomorphisms:

P⊗ [Y,Z] ∼= [[P, I], [Y,Z]] ∼= [[P, I]⊗Y,Z] ∼= [[P,Y],Z] .

It is straightforward to verify that the composite of these isomorphisms is ηPYZ . �

6.10 Lemma. For V as in Setup 6.1, the following assertions hold.

(a) For any family {Bq}q∈Q of objects and every finitely presentable object A in V0, the
next canonical morphism is an isomorphism:(∏

q∈Q [Bq,E]
)
⊗A

∼=−→
∏

q∈Q
(
[Bq,E]⊗A

)
.

(b) Assume that V0 satisfies Grothendieck’s axiom (AB4*), i.e. the product of a family
of epimorphisms is an epimorphism. For any family {Cq}q∈Q of objects and every
finitely presentable object A in V0, the next canonical morphism is an isomorphism:(∏

q∈Q Cq
)
⊗A

∼=−→
∏

q∈Q
(
Cq⊗A

)
.

Proof. (a): In the computation below, the 1st and 4th isomorphisms follow as [−,E] con-
verts coproducts to products; the 2nd and 5th isomorphisms follow from Proposition 6.9(c);
and the 3rd isomorphism holds as [A,−] preserves directed colimits by [9, Lem. 2.6 and
Cor. 3.3] since A is finitely presentable (as mentioned in the footnote of Setup 5.1, we can
apply the theory of [9] as V is a locally presentable base).(∏

q∈Q [Bq,E]
)
⊗A ∼= [

⊕
q∈Q Bq,E]⊗A ∼= [[A,

⊕
q∈Q Bq],E] ∼= [

⊕
q∈Q [A,Bq],E]

∼=
∏

q∈Q [[A,Bq],E] ∼=
∏

q∈Q
(
[Bq,E]⊗A

)
.

(b): Assume that V0 satisfies (AB4*). We must show that −⊗A preserves all products.
By the proof of Proposition 6.9(a) there is an exact sequence P1→ P0→ A→ 0 with P0,P1
dualizable. In the induced commutative diagram below, the upper row is exact by right
exactness of the functor

(∏
q∈Q Cq

)
⊗−, and the lower row is exact as V0 satisfies (AB4*).(∏

q∈Q Cq
)
⊗P1 //

∼=
��

(∏
q∈Q Cq

)
⊗P0 //

∼=
��

(∏
q∈Q Cq

)
⊗A //

��

0

∏
q∈Q
(
Cq⊗P1

)
//
∏

q∈Q
(
Cq⊗P0

)
//
∏

q∈Q
(
Cq⊗A

)
// 0

The two leftmost vertical morphisms are isomorphisms as the functor −⊗ Pn preserves
products, indeed, by Remark 6.6 this functor is naturally isomorphic to [[Pn, I],−], which
is a right adjoint. By the Five Lemma, the righmost morphism is an isomorphism too. �

Some important abelian categories fail to satisfy Grothendieck’s axiom (AB4*). For
instance, this is often the case for the category of quasi-coherent sheaves on a scheme; see
[31, Exa. 4.9]. Fortunately, we shall not need the strong conclusion in Lemma 6.10(b) (we
have only included it for completeness), as the weaker part (a) is sufficient for our purpose
(the proof of Proposition 6.12 below). We shall also need the next general lemma.

6.11 Lemma. Let C and D be additive and idempotent complete categories, Φ : C → D a
fully faithful additive functor, and C ∈ C and D ∈ D objects. If D is a direct summand in
Φ(C), then D has the form D∼= Φ(C′) for some direct summand C′ in C.
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Proof. Since the functor Φ is fully faithful and additive, it induces a ring isomorphism,

EndC(C,C)
∼=−→ EndD(Φ(C),Φ(C)) given by f 7−→Φ( f ) . (]15)

As D is a direct summand in Φ(C) there exist morphisms h : D→Φ(C) and k : Φ(C)→ D
in D such that kh = idD, and thus hk is an idempotent element in EndD(Φ(C),Φ(C)). By
the ring isomorphism (]15) there is an idempotent e in EndC(C,C) with Φ(e) = hk. As C is
idempotent complete there is an object C′ ∈ C and morphisms f : C′→ C and g : C→ C′

such that g f = idC′ and f g = e, in particular, C′ is a direct summand in C. The morphisms

Φ(C′)
Φ( f )
// Φ(C)

k
// D and Φ(C′) Φ(C)

Φ(g)
oo Dh

oo

satisfy kΦ( f )◦Φ(g)h = idD and Φ(g)h◦ kΦ( f ) = idΦ(C′), so Φ(C′)∼= D as claimed. �

6.12 Proposition. A V-functor H : fp(V)→ V is an injective object in [fp(V),V]0 if and
only if it has the form H ∼= Θ0(X) for some geometrically pure injective object X ∈ V0.

Proof. “If”: We start by showing that Θ0(X) is injective in [fp(V),V]0 for every geometri-
cally pure injective object X in V . By Proposition 5.5 (and additivity of the functor Θ0), we
may assume that X =

∏
q∈Q[Bq,E] for some family {Bq}q∈Q of finitely presentable objects.

It follows from Lemma 6.10(a) (notice that this isomorphism is V-natural in A) that:

Θ0(X) = Θ0
(∏

q∈Q[Bq,E]
) ∼= ∏

q∈Q Θ0([Bq,E]) .

Thus we may further reduce the case where X = [B,E] for a single finitely presentable ob-
ject B. Now Proposition 6.9(c) yields the isomorphism in the following computation:

Θ0(X) = ([B,E]⊗−)
∣∣
fp(V)

∼= [[−,B],E]
∣∣
fp(V)

= [fp(V)(−,B),E] .

The latter in an injective object in [fp(V),V]0 by Lemma 4.7(b) with K = fp(V).
“Only if”: By Lemma 4.7 withK= fp(V) and S = {E} we get that {[[−,B],E]}B∈fp(V)

is a cogenerating set of (injective) objects in [fp(V),V]0. So every H in [fp(V),V]0 can be
embedded into a product F =

∏
q∈Q[[−,Bq],E] where each Bq is finitely presentable. Set

X =
∏

q∈Q[Bq,E] ∈ V ;

this is a geometrically pure injective object by Lemma 3.8, and the arguments above show
that F ∼= Θ0(X). Thus we have an embedding H�Θ0(X). Consequently, if H is injective,
then it is a direct summand in Θ0(X), and it follows from Lemma 6.11 that H ∼= Θ0(X′)
for some direct summand X′ in X. As X is geometrically pure injective, so is X′. �

We can now give the result that is explained in the beginning of the section.

6.13 Theorem. Let V be as in Setup 6.1. The underlying tensor embedding functor,

Θ0 : V0 −→ [fp(V),V]0 given by X 7−→ (X⊗−)|fp(V) ,

induces a commutative diagram of exact categories and exact functors,(
V0,E⊗

) Θ0

'
//
(
AbsPure([fp(V),V]0),Eab

)
(
PureInj⊗(V0),Esplit

)inc

OO

Θ0

'
//
(
Inj([fp(V),V]0),Esplit

)
,

inc

OO

(]16)

where E⊗ is the geometrically pure exact structure (Definition 3.4), Eab denotes the exact
structure on AbsPure([fp(V),V]0) induced by the abelian structure on [fp(V),V]0, and Esplit
is the (trivial) split exact structure. Further, “inc” denotes the inclusion functor.

In this diagram, the vertical functors are equivalences of exact categories.
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Proof. The asserted equivalence of exact categories in the top of diagram (]16) will follow
from Theorem 4.6(b) and Corollary 5.4 once we have proved the equality:

Ess. ImΘ0 = AbsPure([fp(V),V]0) . (]17)

It then follows from Proposition 6.12 that the equivalence in the top of (]16) restrics to the
one in the bottom. We now prove the equality (]17).

“⊆”: Let H be in Ess. ImΘ0, that is, H ∼= Θ0(X) for some X ∈ V . We must argue that
every short exact sequence 0→ Θ0(X)→ F→ F′→ 0 in [fp(V),V]0 is ?-pure exact. By
Lemma 3.14 it suffices to prove that Θ0(X)� F is a ?-pure monomorphism, meaning that
G?Θ0(X)→ G?F is monic for every V-functor G : fp(V)op → V . By Proposition 3.12
there is a geometrically pure injective object J and a geometrically pure monomorphism
X� J in V0. Thus Θ0(X)�Θ0(J) is a ?-pure monomorphism by Lemma 4.4. As Θ0(J)
is injective in [fp(V),V]0 by Proposition 6.12, the morphism Θ0(X)→Θ0(J) admits a lift:

Θ0(X)

��

// // F

}}

Θ0(J)

As Θ0(X)�Θ0(J) is a ?-pure monomorphism, so is Θ0(X)� F.
“⊇”: Let H be an absolutely pure object in [fp(V),V]0. As this category has enough

injectives, it follows from Proposition 6.12 that there exists a monomorphism H� Θ0(J)
for some geometrically pure injective object J ∈ V . By assumption on H, this is even a ?-
pure monomorphism, and thus [H(−),E] is a direct summand in [Θ0(J)(−),E]∼= [−, [J,E]]
by the equivalent conditions in Proposition 3.15. By [30, §2.4] the Yoneda embedding

ϒ0 : V0 −→ [fp(V)op,V]0 given by X 7−→ [−,X]
∣∣
fp(V)

is fully faithful, so because [H(−),E] is a direct summand in ϒ0([J,E]) = [−, [J,E]], it
follows from Lemma 6.11 that [H(−),E]∼= [−,Y] for some direct summand Y in [J,E]. By
evaluating this isomorphism on the unit object, it follows that Y ∼= [I,Y]∼= [H(I),E], so

[H(−),E] ∼= [−, [H(I),E]] ∼= [H(I)⊗−,E] .

It can be verified that this V-natural isomorphism is [θH ,E] where

θH : Θ0(H(I)) = H(I)⊗− −→ H(−)

is the V-natural transformation from the proof of Lemma 4.5.By Lemma 3.10 the functor
[−,E] is faithful, and hence it reflects isomorphisms. We conclude that θH is a V-natural
isomorphism, and hence H belongs to Ess. ImΘ0. �

We end this paper with a follow-up of the discussion at the end of the Introduction.

6.14 Remark. Let (V ,⊗, I, [−,−]) be a closed symmetric moniodal category and let R be
a monoid in V . Write R-Mod (respectively, Mod-R) for the category of R-left-objects (re-
spectively, R-right-objects) in V; see [38, §2]. Note that R-Mod and Mod-R are complete,
cocomplete, abelian, or Grothendieck if V is so. Moreover, there are functors

R[−,−] : (R-Mod)op×R-Mod−→V ,
[−,−]R : (Mod-R)op×Mod-R−→V , and (]18)
−⊗R− : Mod-R×R-Mod−→V ,

which behave in expected ways. For example, for X ∈Mod-R the functor [X,−] (which a
priori is a functor from V to V) takes values in R-Mod and yields a right adjoint of X⊗R−.

For any full subcategory A of R-Mod one can now consider the tensor embedding

Θ0 : Mod-R−→ [A,V]0 given by X 7−→ (X⊗R−)|A .



THE TENSOR EMBEDDING FOR A GROTHENDIECK COSMOS 23

With these functors at hand, we leave it to the reader to formulate appropriate versions of,
for example, Theorems A–D from the Introduction and check how the existing proofs can
be modified to show these. Concerning Theorem C one can use the adjunctions associated
with the functors in (]18) to show that if V is locally λ-presentable, then so is Mod-R.
To prove that geometrically pure injective objects in Mod-R correspond to injective ob-
jects in [fp(R-Mod),V]0 (as in Theorem D), a crucial input is the hypothesis that for all
objects X,Y ∈Mod-R, where X is finitely presentable, and J ∈ V is injective, the following
canonical morphism is an isomorphism,

X⊗R [Y, J]−→ [[X,Y]R, J] .

We briefly mention a few examples. A monoid in Ab is nothing but a ring. For any
ring R, the stalk complex S(R) and the disc complex D(R) from Example 2.3 are monoids
in (Ch(Z),⊗•Z) and in (Ch(Z),⊗•Z), respectively. This viewpoint allows one to deal with
Example 2.3 also in the case where R is non-commutative.

REFERENCES
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