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Abstract While the Yoneda embedding and its generalizations have been studied extensively in the literature,

the so-called tensor embedding has only received a little attention. In this paper, we study the tensor embedding

for closed symmetric monoidal categories and show how it is connected to the notion of geometrically purity,

which has recently been investigated in the works of Enochs et al. (2016) and Estrada et al. (2017). More

precisely, for a Grothendieck cosmos, i.e., a bicomplete Grothendieck category V with a closed symmetric

monoidal structure, we prove that the geometrically pure exact category (V, E⊗) has enough relative injectives;

in fact, every object has a geometrically pure injective envelope. We also show that for some regular cardinal λ,

the tensor embedding yields an exact equivalence between (V, E⊗) and the category of λ-cocontinuous V-functors
from Presλ(V) to V, where the former is the full V-subcategory of λ-presentable objects in V. In many cases of

interest, λ can be chosen to be ℵ0 and the tensor embedding identifies the geometrically pure injective objects in

V with the (categorically) injective objects in the abelian category of V-functors from fp(V) to V. As we explain,

the developed theory applies, e.g., to the category Ch(R) of chain complexes of modules over a commutative

ring R and to the category Qcoh(X) of quasi-coherent sheaves over a (suitably nice) scheme X.
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1 Introduction

By the Gabriel-Quillen embedding theorem (see [47, Theorem A.7.1]), any small exact category admits

an exact full embedding, which also reflects exactness, into some abelian category. Hence, any small exact

category is equivalent, as an exact category, to an extension-closed subcategory of an abelian category.

Actually, the same is true for many large exact categories of interest. Consider, for example the category

R-Mod of left R-modules equipped with the pure exact structure Epure, where the “exact sequences” (the

conflations) are directed colimits of split exact sequences in R-Mod. The exact category (R-Mod,Epure)

admits two different exact full embeddings into abelian categories. One is the Yoneda embedding, i.e.,

(R-Mod,Epure) → [(R-mod)op,Ab]0 given by M �→ HomR(−,M) |R-mod; (1.1)
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the other is the so-called tensor embedding, i.e.,

(R-Mod,Epure) → [mod-R,Ab]0 given by M �→ (−⊗R M) |mod-R. (1.2)

Here, “mod” means finitely presentable modules and [X ,Ab]0 denotes the category of additive functors

from X to the category Ab of abelian groups. While the Yoneda embedding identifies pure projective

left R-modules with projective objects in [(R-mod)op,Ab]0, the tensor embedding induces an equivalence

between pure injective left R-modules and injective objects in [mod-R,Ab]0. For a detailed discussion

and proofs of these embeddings, we refer to [29, Theorems B.11 and B.16].

There are several important and interesting generalizations of the Yoneda embedding (1.1). For

example, any locally λ-presentable abelian category V , where λ is a regular cardinal, can be equipped

with the so-called categorically pure exact structure Eλ treated in [2] by Adámek and Rosický. Also in

this case, the Yoneda functor

(V ,Eλ) → [Presλ(V)op,Ab]0 given by X �→ HomV(−, X) |Presλ(V) (1.3)

is an exact full embedding, where Presλ(V) is the category of λ-presentable objects in V. For a locally

finitely presentable category V, the Yoneda embedding (1.3) with λ = ℵ0 identifies pure projective

objects in V (objects that are projective relative to the exact structure Eℵ0) with projective objects

in [fp(V)op,Ab]0 (see Crawley and Boevey [13, (1.4) and Section 3] and Lenzing [33]). The Yoneda

embedding (1.1) is the special case V = R-Mod and λ = ℵ0.

In this paper, we study a generalization of the tensor embedding (1.2), where (R-Mod,Epure) is replaced

by another exact category (V,E⊗). Of course, to make sense of such a tensor embedding, one must

require the existence of a suitable tensor product in V . We consider the situation, where (V,⊗, I, [−,−])

is an abelian cosmos, as explained in Setup 3.3. The exact structure E⊗ imposed on V is the so-called

geometrically pure exact structure, where the admissible monomorphisms are the geometrically pure

monomorphisms introduced by Fox [19] (see Definition 3.4). Before we present our main results about

the exact category (V ,E⊗), let us mention a few concrete examples for the readers to have in mind.

(i) The category V = Ch(R) of chain complexes of modules over a commutative ring R equipped

with the total tensor product ⊗ = ⊗•
R is an abelian cosmos. In this case, a short exact sequence 0 → C ′

→ C → C ′′ → 0 is in E⊗ if and only if it is degree-wise pure exact, meaning that 0 → C ′
n → Cn → C ′′

n → 0

is a pure exact sequence of R-modules for every n ∈ Z (see Example 3.5(a) for details).

(ii) The category V = Ch(R) of chain complexes of modules over a commutative ring R equipped

with the modified total tensor product ⊗ = ⊗•
R is also an abelian cosmos. In this case, a short exact

sequence 0 → C ′ → C → C ′′ → 0 is in E⊗ if and only if it is categorically pure in the sense discussed

above. More precisely, the category Ch(R) is a locally ℵ0-presentable (= locally finitely presentable) and

the categorically pure exact structure Eℵ0 agrees with the geometrically pure exact structure E⊗ for the

tensor product ⊗ = ⊗•
R in question (see Example 3.5(b) for details).

(iii) The category V = Qcoh(X) of quasi-coherent sheaves on a scheme (X,OX) equipped with the

usual tensor product ⊗ = ⊗X is an abelian cosmos. If X is quasi-seperated, then a short exact sequence

0 → F ′ → F → F ′′ → 0 is in E⊗ if and only if it is stalk-wise pure exact, meaning that 0 → F ′
x

→ Fx → F ′′
x → 0 is a pure exact sequence of OX,x-modules for every x ∈ X (see Example 3.6 for

details). Note that for an affine scheme X = SpecR, the exact category (V,E⊗) = (Qcoh(X),E⊗X
)

coincides with the exact category (R-Mod,Epure) that appears in (1.1) and (1.2).

We now describe our main results about the exact category (V ,E⊗). In general, an exact category

need not have enough relative injectives (= objects in that are injective relative to the exact structure);

in fact, for a general exact category, the question about the existence of enough relative injectives is

delicate. The first main result about the geometrically pure exact category, which we prove in Section 3

(see Proposition 3.12 and Theorem 3.13), is the following theorem.

Theorem A. The exact category (V0,E⊗) has enough relative injectives. In the language of relative

homological algebra, this means that every object in V0 has a geometrically pure injective preenvelope. If

V0 is Grothendieck, then every object in V0 even has a geometrically pure injective envelope.
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The first part of this result can also be found in [27, Theorem 2.6]. To avoid confusion, we often write

V0 when we consider V as an ordinary category (as in the theorem above), and we use the symbol V when

it is viewed as a V-category (see 2.6).

Next, we turn to the construction of the tensor embedding for the exact category (V0,E⊗). We begin

with a quite general version of this functor. The main result in Section 4 is Theorem 4.6, which contains

the following theorem.

Theorem B. Let A be any small full V-subcategory of V containing the unit object I for the tensor

product ⊗. The tensor embedding yields a fully faithful exact functor, i.e.,

Θ0 : (V0,E⊗) → ([A,V ]0,E�) given by X �→ (X ⊗−) |A,

which induces an equivalence of exact categories (V0,E⊗) � (Ess. ImΘ,E� |Ess.ImΘ).

Here, [A,V ]0 denotes the ordinary category of V-functors A → V , which is abelian by Al Hwaeer and

Garkusha [3, Theorem 4.2]. Being an abelian category, [A,V ]0 has a canonical exact structure Eab; but

Theorem B is not true (for all the choices of A) if we consider [A,V ]0 as an exact category in this way.

Instead one has to equip [A,V]0 with the so-called �-pure exact structure E�. This exact structure is

introduced in Definition 3.16 and it is usually strictly coarser than the exact structure induced by the

abelian structure on [A,V ]0.
So far (in Sections 3 and 4) V has been an abelian cosmos and A ⊆ V has been any small full V-

subcategory containing the unit object. In Section 5, we require V to be a Grothendieck cosmos. We

show in Proposition 5.2 that there exists some regular cardinal λ for which V is a locally λ-presentable

base (see 2.5), and we focus now only on the case where A = Presλ(V) is the the V-subcategory of λ-

presentable objects in V (in the ordinary categorical sense, or in the enriched sense; it makes no difference

by [6, Corollary 3.3]). In this special situation, Theorem B simplifies a great deal because it is possible

to get the following:

• Explicitly describe the essential image Ess. ImΘ0 of the tensor embedding Θ0.

• Show that the (rather strange) �-pure exact structure E� and the (canonical) abelian exact structure

Eab on [A,V]0 = [Presλ(V),V ]0 coincide on Ess. ImΘ0.

The precise statements are given below; they are contained in Theorem 5.9, which is the main result of

Section 5.

Theorem C. The essential image of the fully faithful tensor embedding

Θ0 : V0 → [Presλ(V),V]0 given by X �→ (X ⊗−) |Presλ(V)

is precisely Ess. ImΘ = λ-Cocont(Presλ(V),V), i.e., the subcategory of λ-cocontinuous V-functors from

Presλ(V) to V. Furthermore, Θ0 induces an equivalence of exact categories, i.e.,

(V0,E⊗) � λ-Cocont(Presλ(V),V);

the exact structure on the right-hand side is induced by the abelian structure on [Presλ(V),V]0.
The definition of λ-cocontinuous V-functors is given in Definition 5.6. The Grothendieck cosmos

V = R-Mod, where R is a commutative ring, is locally finitely presentable, so Theorem C applies with

λ = ℵ0 to recover the classical tensor embedding (1.2). As mentioned in the beginning of Section 1, it

is known that this tensor embedding restricts to an equivalence between pure injective R-modules and

(categorically) injective objects in the functor category. The purpose of the final Section 6 is to establish

such a result in the much more general context of Theorem C.

In Section 6, we specialize the setup even further: V is required to be a Grothendieck cosmos (as

in Section 5) generated by a set of dualizable objects and the unit object I is assumed to be finitely

presentable (see Setup 6.1). This specialized setup still applies to several examples; indeed, the category

Ch(R) from (i) and (ii) above always satisfies these requirements, and so does the category Qcoh(X) from

(iii) for most schemes X (see Examples 6.2 and 6.3). We prove in Proposition 6.9 that such a category

V is a locally finitely presentable base, which means that we can apply Theorem C with λ = ℵ0. In this
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case, Presℵ0(V) =: fp(V) is the class of finitely presentable objects in V . The main result in the last

section is Theorem 6.13, of which the following is a special case.

Theorem D. For V as in Setup 6.1, the tensor embedding from Theorem C with λ = ℵ0 restricts to an

equivalence between the geometrically pure injective objects in V0 and the (categorically) injective objects

in [fp(V),V ]0. In symbols, PureInj⊗(V0) � Inj([fp(V),V]0).
The paper ends with Remark 6.14, where we explain how many of our results can be extended to an

even more general (but also more technical) setting.

We close Section 1 with some perspective remarks and an explanation of how our work is related to

the existing literature.

We should start by pointing out that we are not the first to study the geometrically pure exact structure;

however, its connections with the tensor embedding uncovered in this paper seem to be new. In fact, the

investigation of geometrically purity was initiated by Fox [19] and was recently continued by Enochs et

al. [14] and Estrada et al. [17].

Notice that if V is a Grothendieck cosmos, then by Proposition 5.2, there is a regular cardinal λ

for which V is a locally λ-presentable base; in particular, V is a locally λ-presentable category (see 2.1

and 2.5), so it makes sense to consider both the Yoneda embedding (1.3) and the tensor embedding from

Theorem C. Even though these embeddings are akin, there is a fundamental difference: while the Yoneda

embedding is related to the categorically pure exact structure Eλ, the tensor embedding pertains the

geometrically pure exact structure E⊗. The former exact structure is coarser than the latter, i.e., one has

Eλ ⊆ E⊗, and in general this containment is strict. In the discussion preceding Setup 3.3, we compare

these two exact structures.

The category Qcoh(X) of quasi-coherent sheaves over a quasi-separated scheme X is particularly

interesting in our study. As already mentioned in the example (iii), earlier in Section 1, the category

Qcoh(X) equipped with the stalk-wise (= geometrically) pure exact structure Estalk (= E⊗), which is an

algebro-geometric generalization of the (representation theoretical) exact category (R-Mod,Epure), is just

one example of a geometrically pure exact category (V ,E⊗). This special case has already been studied in

detail in [14,17]. From Theorem A, it follows that every quasi-coherent sheaf over X has a (geometrically)

pure injective envelope; this was already proved in a different way in [14, Theorem 4.10]. If the scheme X

is concentrated (i.e., quasi-compact and quasi-separated), then the category Qcoh(X) is locally finitely

presentable by [22, Proposition 7], so Theorem D yields a well-behaved tensor embedding of the exact

category (Qcoh(X),Estalk) into a Grothendieck category. Besides, it should be mentioned that recently,

Estrada and Virili [18, Theorem 4.13 and Corollary 4.16] have successfully introduced and studied a

“local” version of the Yoneda embedding for (Qcoh(X),Estalk). On one hand, if X is concentrated, the

categorically pure exact category (Qcoh(X),Eℵ0) has not only enough relative projectives but also enough

relative injectives (see Herzog [26, Theorem 6]). On the other hand, one can study the categorically pure

exact category (Qcoh(X),Eℵ0) via the Yoneda embedding (1.3). Besides, by [13, pp. 1658 and 1660],

the exact category (Qcoh(X),Eℵ0) can be embedded in an abelian categoy D, which identifies relative

injectives with absolute injectives in D. However, the deficiency of the categorically pure exact structure

Eℵ0 on Qcoh(X) is that it interacts poorly with flat quasi-coherent sheaves while the stalk-wise pure exact

structure Estalk is closely related to such sheaves. For this reason, the latter notion of purity is widely

accepted to be the “correct” one for Qcoh(X), and this favours the tensor embedding.

As a final remark, the Yoneda embedding has also been studied in the context of enriched categories: let

V be a locally λ-presentable base (2.5) and C be a locally λ-presentable V-category in the sense of Borceux

et al. [6, Definitions 1.1 and 6.1]. Denote by Presλ(C) the full V-subcategory of λ-presentable objects in

C in the enriched sense [6, Definition 3.1], and let [Presλ(C)op,V ] be the V-category of V-functors from

Presλ(C)op to V. In the proof of [6, Theorem 6.3], it is shown that the Yoneda V-functor
Υ: C → [Presλ(C)op,V] given by X �→ C(−, X) |Presλ(C)

is fully faithful with the essential image

Ess. ImΥ = λ-Flat(Presλ(C)op,V) = λ-Cont(Presλ(C)op,V).
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Here, λ-Flat(Presλ(C)op,V) is the V-subcategory of λ-flat V-functors in the enriched sense, and

λ-Cont(Presλ(C)op,V) is the V-subcategory of λ-continuous V-functors. Note that our Theorems C and D

are, in some sense, dual to this result.

2 Preliminaries

We recall some definitions and terminologies from the enriched category theory that are important in

this paper. We also give some examples, to which we repeatedly return.

2.1 (Locally presentable categories [1]). Let λ be a regular cardinal. An object A in a category V is

said to be λ-presentable if the functor V0(A,−) : V → Set preserves λ-directed colimits. One says that V
is locally λ-presentable if it is cocomplete and there is a set S of λ-presentable objects such that every

object in V is a λ-directed colimit of objects in S.
It is customary to say finitely presentable instead of “ℵ0-presentable”; thus ℵ0-presentable objects are

called finitely presentable objects and locally ℵ0-presentable categories are called locally finitely presentable

categories. Moreover, “ℵ0-directed colimits” are simply called directed colimits.

2.2 (Monoidal categories [31]). A monoidal category consists of a category V , a bifunctor ⊗ : V×V → V
(tensor product), a unit object I ∈ V , and natural isomorphisms a (associator), l (left unitor) and r (right

unitor) subject to the coherence axioms found in [31, Subsection 1.1, (1.1) and (1.2)]. A monoidal category

V is said to be symmetric if there is a natural isomorphism c (symmetry) subject to further coherence

axioms that express the compatibility of c with a, l and r (see [31, Subsection 1.4, (1.14)–(1.16)]). In

particular, the symmetry c identifies l and r, so there is no need to distinguish between them. Due to

Mac Lane’s coherence theorem (see [36] or [37, Subsection VII.2]), it is customary to suppress a, l, r

and c, and we simply write (V,⊗, I) when referring to a (symmetric) monoidal category. A symmetric

monoidal category is said to be closed if for every X ∈ V , the functor −⊗X : V → V has a right adjoint

[X,−] : V → V (see [31, Subsection 1.5]). It turns out that [−,−] is a bifunctor Vop × V → V, and we

write a closed symmetric monoidal category as a quadruple (V,⊗, I, [−,−]).

Example 2.3. The category Ch(R) of chain complexes of modules over a commutative ring R is a

Grothendieck category with two different closed symmetric monoidal structures.

(a) (Ch(R),⊗•
R, S(R),Hom•

R), where ⊗•
R is the total tensor product, Hom•

R the total Hom, and S(R) =

0 → R → 0 is the stalk complex with R in degree 0 (see [11, Appendix A.2]).

(b) (Ch(R),⊗•
R, D(R),Hom•

R), where ⊗•
R is the modified total tensor product, Hom•

R the modified

total Hom, and D(R) = 0 → R → R → 0 is the disc complex concentrated in homological degrees 0 and

−1 (see [15, Section 2] or [21, Subsection 4.2]).

Example 2.4. Some important examples of closed symmetric monoidal categories, which are also

Grothendieck, come from algebraic geometry. Let X be any scheme.

(a) (Mod(X),⊗X ,OX ,H omX) is a closed symmetric monoidal category, where Mod(X) is the abelian

category of all the sheaves (of OX -modules) on X (see [25, Chapter II, Section 5]). It is well known that

this is a Grothendieck category (see [23, Proposition 3.1.1]).

(b) The category Qcoh(X) of quasi-coherent sheaves on X is an abelian subcategory of Mod(X) (see

[24, (i) and (ii) of Corollary (2.2.2)] or [25, Chapter II, Proposition 5.7]). As I = OX is quasi-coherent

and quasi-coherent sheaves are closed under tensor products by [24, Corollary (2.2.2)(v)], it follows

that (Qcoh(X),⊗X ,OX) is a monoidal subcategory of (Mod(X),⊗X ,OX). In general, H omX is not an

internal hom in Qcoh(X). However, the inclusion functor Qcoh(X) → Mod(X) admits a right adjoint

QX : Mod(X) → Qcoh(X), called the coherator, and the counit QX(F ) → F is an isomorphism for

every quasi-coherent sheaf F (see [46, Tag 08D6]). It is well known, and completely formal, that the

functor H omqc
X := QXH omX yields a closed structure on (Qcoh(X),⊗X ,OX). The category Qcoh(X)

is Grothendieck by [44, Lemma 1.3].

A category can be locally presentable (as in 2.1) and closed symmetric monoidal (as in 2.2) at the

same time, but in generel one cannot expect any compatibility between the two structures. This is the
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reason for the next definition, which comes from [6].

2.5 (Locally presentable bases [6, Definition 1.1]). Let λ be a regular cardinal. A closed symmetric

monoidal category (V ,⊗, I, [−,−]) is said to be a locally λ-presentable base if it satisfies the following

condition:

(1) the category V is locally λ-presentable;

(2) the unit object I is λ-presentable;

(3) the class of λ-presentable objects is closed under the tensor product ⊗.

A locally ℵ0-presentable base is simply called a locally finitely presentable base.

2.6 (Enriched category theory). We assume the familiarity with basic notions and results from the

enriched category theory as presented in [31, Chapters 1 and 2, and parts of Chapter 3]. In particular,

for a closed symmetric monoidal category (V,⊗, I, [−,−]), the definitions and properties of V-categories
and their underlying ordinary categories, V-functors, V-natural transformations and weighted limits and

colimits will be important. When we use specific results from the enriched category theory, we give the

appropriate references to [31], but a few general points are mentioned below.

To avoid confusion, we often write V0 when we think of V as an ordinary category, and we use the

symbol V when it is viewed as a V-category.
If the category V0 is complete, K is a small V-category and C is any V-category, then there is a V-

category [K, C], whose objects are V-functors K → C. The underlying ordinary category [K, C]0 has

V-natural transformations as morphisms (see [31, Subsections 2.1 and 2.2]).

In the proof of Proposition 5.8, we use the unit V-category I. It has one object ∗ and I(∗, ∗) = I. The

composition law is given by the isomorphism I ⊗ I → I (see [31, Subsection 1.3]).

In Definition 2.7, 2.8 and 2.9 below, (V,⊗, I, [−,−]) denotes a cosmos, i.e., a closed symmetric monoidal

category for which V0 is bicomplete. Examples 2.3 and 2.4 are all the cosmoses.

The next notion of smallness for a V-functor with values in V will be important to us.

Definition 2.7 (See [6, Definition 2.1]). Let λ be a regular cardinal. A V-functor T : K → V is said

to be λ-small if the following conditions are satisfied:

(1) the class ObK is a set of cardinality strictly less than λ;

(2) for all the objects X,Y ∈ K, the hom-object K(X,Y ) is λ-presentable in V0;

(3) for every object X ∈ K, the object T (X) is λ-presentable in V0.

We also need the “enriched versions” of limits and colimits:

2.8 (Weighted limits and colimits [31, Chapter 3]). Let F : K → V and G : K → A be V-functors. The
V-limit of G weighted by F , if it exists, is an object {F,G} ∈ A for which there is a V-natural isomorphism

in A ∈ A:

A(A, {F,G}) ∼= [K,V ](F,A(A,G(−))).

Given V-functors G : Kop → V and F : K → A, the V-colimit of F weighted by G, if it exists, is an

object G � F ∈ A for which there is a V-natural isomorphism in A ∈ A:

A(G � F,A) ∼= [Kop,V ](G,A(F (−), A)). (2.1)

2.9 (Tensors and cotensors [5, Proposition 6.5.7]). Let K be a small V-category. The V-category [K,V]
is both tensored and cotensored. By [5, Definition 6.5.1], this means that for every V ∈ V and F ∈ [K,V],
there exist objects V ⊗ F and [V, F ] in [K,V ] and V-natural isomorphisms

[K,V ](V ⊗ F, ·) ∼= [V, [K,V](F, ·)] and [K,V](·, [V, F ]) ∼= [V, [K,V](·, F )]. (2.2)

The proof of [5, Proposition 6.5.7] reveals that the V-functors V ⊗F and [V, F ] are just the compositions

V ⊗ F = (V ⊗−) ◦ F and [V, F ] = [V,−] ◦ F .
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3 Exact categories and purity

We demonstrate (see Proposition 3.2) a general procedure to construct exact structures on an abelian

category, and apply it to establish the so-called geometrically pure exact structure on V0 (see

Definition 3.4) and the �-pure exact structure on [K,V ]0 (see Definition 3.16).

3.1 (Exact categories [40]). Let X be an additive category and E be a class of kernel-cokernel pairs

(i, p) in X :

X �� i �� Y
p �� �� Z,

i.e., i is the kernel of p, and p is the cokernel of i. The morphism i is called an admissible monic and p is

called an admissible epic in E . The class E is said to form an exact structure on X if it is closed under

isomorphisms and satisfies the following axioms:

(E0) For every objectX in X , the identity morphism idX is both an admissible monic and an admissible

epic in E .

(E1) The classes of admissible monics and admissible epics in E are closed under compositions.

(E2) The pushout (resp. pullback) of an admissible monic (resp. admissible epic) along an arbitrary

morphism exists and yields an admissible monic (resp. admissible epic).

In this situation, the pair (X ,E ) is called an exact category. An object in J ∈ X is said to be injective

relative to E if the functor HomX (−, J) maps sequences in E to short exact sequences in Ab. For a

detailed treatment on the subject, see [10].

We begin with a general result, potentially of independent interest, which shows how to construct an

exact structure ET on an abelian category C from a collection T of functors. Inspired by terminologies

from topology, we call ET the initial exact structure on C with respect to T.

Proposition 3.2. Let C be an abelian category and T be a collection of additive functors T : C → DT ,

where each category DT is abelian and each functor T is left exact or right exact. Denote by ET the class

of all the short exact sequences 0 → X → Y → Z → 0 in C such that 0 → TX → TY → TZ → 0 is

exact in DT for every T in T. Then ET is an exact structure on C; in fact, it is the finest (i.e., the largest

with respect to inclusion) exact structure E on C, which satisfies the condition that T : (C,E ) → DT is an

exact functor for every T in T.

Proof. Once we have proved that ET is, in fact, an exact structure on C, then certainly T : (C,ET) → DT

is an exact functor for every T in T. Moreover, if E is any exact structure on C for which every T in T

is an exact functor T : (C,E ) → DT , then evidently E ⊆ ET.

We now show that ET satisfies the axioms in 3.1. The condition (E0) is immediate from the definition

of ET. To show (E1), let f : X → Y and g : Y → Z be composable morphisms in C. We prove that if f

and g are admissible monics in ET, then so is gf . The case where f and g are admissible epics in ET is

proved similarly. If f and g are admissible monics in ET, then by definition, f and g are monics in C and

the short exact sequences

0 �� X
f �� Y �� Cok f �� 0 and 0 �� Y

g �� Z �� Cok g �� 0

stay exact under every functor T in T. The composition gf is certainly a monic in C, so it remains to

prove that the short exact sequence

0 �� X
gf �� Z �� Cok(gf) �� 0 (3.1)

stays exact under every functor T in T. Let T in T be given and recall that T is assumed to be left exact

or right exact. As the composition of two monics, T (gf) = T (g)T (f) is a monic. Thus, if T is right

exact, the sequence (3.1) certainly stays exact under T . Assume that T is left exact. In the leftmost

commutative diagram below, the lower row is exact by the Snake lemma; the remaining rows and all the

columns are trivially exact. The rightmost commutative diagram is obtained by applying the functor T to

the leftmost one. In the right diagram, the 1st column and the 2nd row are exact by the assumption, and
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the 1st row and the 3rd column are trivially exact. The epimorphism T (Z) � T (Cok g) in the 2nd row

factorizes as T (Z) → T (Cok(gf)) → T (Cok g), and hence the last morphism T (Cok(gf)) → T (Cok g) in

the 3rd row is epic too. Since T is left exact, the entire 3rd row is exact. Consequently, in the rightmost

diagram below, all three rows and the 1st and 3rd columns are exact:

0

��

0

��

0

��
0 �� X

= ��

f
��

X ��

gf
��

0

��

�� 0

0 �� Y
g ��

��

Z ��

��

Cok g

=
��

�� 0

0 �� Cok f ��

��

Cok(gf) ��

��

Cok g ��

��

0,

0 0 0

0

��

0

��

0

��
0 �� T (X)

= ��

T (f)
��

T (X) ��

T (gf)
��

0

��

�� 0

0 �� T (Y )
T (g) ��

��

T (Z) ��

��

T (Cok g)

=
��

�� 0

0 �� T (Cok f) ��

��

T (Cok(gf)) ��

��

T (Cok g) ��

��

0.

0 0 0

Thus, we can consider the rightmost diagram as an exact sequence 0 → C1 → C2 → C3 → 0 of complexes,

where Ci is the i-th column in the diagram. As C1 and C3 are exact, so is C2. Hence the sequence (3.1)

stays exact under the functor T , as desired.

It remains to show (E2). We show that the pushout of an admissible monic in ET along an arbitrary

morphism yields an admissible monic. A similar argument shows that the pullback of an admissible epic

in ET along an arbitrary morphism is an admissible epic. Thus, consider a pushout diagram in C:

X

(pushout)

��

f �� Y

��
X ′ f ′

�� Y ′,

where f is an admissible monic in ET and X → X ′ is any morphism. As f is, in particular, a mono-

morphism, so is f ′ by [20, Theorem 2.54*], and hence there is a short exact sequence

0 �� X ′ f ′
�� Y ′ �� Cok f ′ �� 0.

We must argue that this sequence stays exact under every T in T.

First, assume that T is right exact. In this case, T (X ′) → T (Y ′) → T (Cok f ′) → 0 is exact, and it

remains to see that T (f ′) is monic. As T preserves pushouts, T (f ′) is a pushout of the monic T (f), so

another application of [20, Theorem 2.54*] yields that T (f ′) is monic.

Next, assume that T is left exact. In this case, 0 → T (X ′) → T (Y ′) → T (Cok f ′) is exact, and it

remains to see that T (Y ′) → T (Cok f ′) is epic. As f ′ is a pushout of f , the canonical morphism Cok f

→ Cok f ′ is an isomorphism (see the dual of [20, Theorem 2.52]), and hence so is T (Cok f) → T (Cok f ′).
By the assumption, T (Y ) → T (Cok f) is epic, so the composite morphism T (Y ) � T (Cok f)

∼=→ T (Cok f ′)
is epic. But this composite is the same as the composite T (Y ) → T (Y ′) → T (Cok f ′), which is therefore

an epimorphism, and it follows that T (Y ′) → T (Cok f ′) is an epimorphism.

Any locally λ-presentable abelian category V (see 2.1) can be equipped with an exact structure (see 3.1)

which is called the categorically pure exact structure and denoted by Eλ. In this exact structure, the

admissible monomorphisms are precisely the λ-pure subobjects and the admissible epimorphisms are

precisely the λ-pure quotients in the sense of [2]. That these classes of morphisms do, in fact, yield

an exact structure follows from [2, Proposition 5, observation 11 and Proposition 15]. Alternatively, it

follows directly from Proposition 3.2 with C = V and T the collection of functors V(A,−) : V → Ab, where

A ranges over the λ-presentable objects in V . In the special case λ = ℵ0, this kind of purity was studied

in [13, Section 3].
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If V is a closed symmetric monoidal abelian category, there is also a notion of purity in V0 based on the

tensor product (see Definition 3.4). In the literature, this kind of purity is often called geometrically purity

(as opposed to categorically purity, mentioned above). The study of geometrical purity was initiated in

[19] and was recently continued in [14,17]. Below we establish the geometrically pure exact structure E⊗
on V0, and show that the exact category (V0,E⊗) has enough relative injectives (see Propositions 3.7

and 3.12).

As mentioned in [17, Remark 2.8], when both the categorically and the geometrically pure exact

structures are available, the former is coarser than the latter, i.e., one has Eλ ⊆ E⊗. In general, this

is a strict containment, however, in the locally finitely presentable category V = Mod(R), where R is

a commutative ring, one has Eℵ0 = E⊗ (see, e.g., [29, Theorem 6.4]). As mentioned in Example 3.5(b)

below, this equality also holds for V = Ch(R) with the modified total tensor product ⊗•
R.

Note that Examples 2.3 and 2.4 all satisfy the following setup.

Setup 3.3. In the rest of this section, (V,⊗, I, [−,−]) denotes a cosmos, i.e., a closed symmetric

monoidal category which is bicomplete1). We also assume that V0 is abelian2) and the category V0 has

an injective cogenerator E.

Following Fox [19], a morphism f : X → Y in V0 is said to be geometrically pure if f ⊗ V : X ⊗ V

→ Y ⊗ V is a monomorphism for every V ∈ V . Note that a geometrically pure morphism is necessarily

a monomorphism (take V = I).

Definition 3.4. Let E⊗ be the class of all the short exact sequences in V0 which remain exact under

the functor − ⊗ V for every V ∈ V . We call E⊗ the geometrically pure exact structure on V0 (see

Proposition 3.7 below). Sequences in E⊗ are called geometrically pure (short) exact sequences. An object

J ∈ V0, which is injective relative to E⊗, is called a geometrically pure injective object. We set

PureInj⊗(V0) = {J ∈ V0 | J is geometrically pure injective}.

Example 3.5. Consider the abelian cosmos from Example 2.3.

(a) It is easy to see that a short exact sequence S in Ch(R) is geometrically pure exact in (Ch(R),⊗•
R)

if and only if Sn is a pure exact sequence of R-modules in each degree n. Therefore, geometrically pure

injective objects in (Ch(R),⊗•
R) are precisely contractible chain complexes of pure injective R-modules

(see [43, Corollary 5.7]).

(b) The geometrically pure exact sequences in (Ch(R),⊗•
R) have been characterized in several ways in

[15, Theorem 2.5] and [21, Theorem 5.1.3]. Namely, a short exact sequence S in Ch(R) is geometrically

pure exact in (Ch(R),⊗•
R) if and only if S is a categorically pure exact sequence in Ch(R). Furthermore,

if a chain complex J of R-modules is a geometrically pure injective object in (Ch(R),⊗•
R), then Jn and

Ker ∂J
n are pure injective R-modules for every integer n (see [21, Proposition 5.1.4]).

Example 3.6. Consider the abelian cosmos from Example 2.4(b). For a quasi-separated scheme X,

a short exact sequence S is geometrically pure exact in (Qcoh(X),⊗X) if and only if Sx is a pure exact

sequence of OX,x-modules for every x ∈ X. This is proved in [14, Proposition 3.4 and Remark 3.5].

Proposition 3.7. The pair (V0,E⊗) is an exact category.

Proof. This is known and is implicit in the proof of [17, Lemma 3.6]. It is also a special case of

Proposition 3.2 with C = V0 and T the class of functors −⊗ V : V0 → V0 where V ∈ V .
Lemma 3.8. For every X ∈ V, the object [X,E] is geometrically pure injective.

Proof. For any geometrically pure exact sequence S, the sequence S ⊗ X is exact, and hence so is

V0(S⊗X,E), as E is injective. The isomorphism V0(S, [X,E]) ∼= V0(S⊗X,E) shows that V0(S, [X,E])

is exact, which means that [X,E] is geometrically pure injective.

1) Actually, we do not use the bicompleteness of V0 until we get to Lemma 3.14 and the subsequent results.
2) When we talk about an abelian closed symmetric monoidal category, we tacitly assume that the tensor product −⊗−

and the internal hom [−,−] are additive functors in each variable.
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Lemma 3.9. A short exact sequence S in V0 is geometrically pure exact if and only if [S, E] is a split

short exact sequence in V0.

Proof. As E is an injective cogenerator in V0, the sequence S is geometrically pure exact if and only

if V0(S ⊗ V,E) is a short exact sequence in Ab for every V ∈ V . [S, E] is a split short exact sequence

in V0 if and only if V0(V, [S, E]) is a short exact sequence in Ab for every V ∈ V . The isomorphism

V0(S⊗ V,E) ∼= V0(V, [S, E]) yields the conclusion.

Lemma 3.10. The functor [−, E] : Vop
0 → V0 is faithful.

Proof. There is a natural isomorphism V0(−, E) ∼= V0(I, [−, E]). If f �= 0 is a morphism, then

V0(f,E) �= 0, as E is a cogenerator in V0, so V0(I, [f,E]) �= 0 and thus [f,E] �= 0.

Observation 3.11. There is a pair of adjoint functors (F,G) as follows:

V0

F=[−,E] �� Vop
0 .

G=[−,E]
��

Indeed, for all X ∈ V and Y ∈ Vop (equivalently, Y ∈ V), one has

Vop
0 (F (X), Y ) = V0(Y, FX) = V0(Y, [X,E]) ∼= V0(Y ⊗X,E)

∼= V0(X ⊗ Y,E) ∼= V0(X, [Y,E]) = V0(X,G(Y )).

Write ε for the counit of the adjunction. For every object Y in V, note that εY is an element in

Vop
0 (FG(Y ), Y ) = V0(Y, FG(Y )), so εY is a morphism Y → FG(Y ) = [[Y,E], E] in V0.

Proposition 3.12. For every Y ∈ V, the morphism εY : Y → [[Y,E], E] from Observation 3.11

is a geometrically pure monomorphism. In particular, the exact category (V0,E⊗) has enough relative

injectives (= enough geometrically pure injectives).

Proof. First, we show that εY is monic. Let f be a morphism in V0 with εY ◦ f = 0. It follows that

[f,E] ◦ [εY , E] = 0 in V0. By the adjoint functor theory (see [37, Subsection IV.1, Theorem 1]), the

morphism G(εY ) = [εY , E] has a right-inverse (which is actually ε[Y,E], but this is not important), and

hence [f,E] = 0. Now Lemma 3.10 implies f = 0, so εY is a monomorphism. To show that εY is a

geometrically pure monomorphism, consider the short exact sequence

S = 0 �� Y
εY �� [[Y,E], E] �� Cok εY �� 0.

By Lemma 3.9, we need to prove that [S, E] splits, but as already argued above, [εY , E] is a split

epimorphism, so we are done. To see that (V0,E⊗) has enough relative injectives, it remains to note that

[[Y,E], E] is a geometrically pure injective object by Lemma 3.8.

From [16, Definition 6.1.1], recall the notions of preenvelopes and envelopes.

Theorem 3.13. Assume that V0 is Grothendieck (i.e., V is a Grothendieck cosmos). Every object in

V0 has a geometrically pure injective envelope, i.e., an envelope with respect to the class PureInj⊗(V0).

Proof. Let A be the class of geometrically pure monomorphisms and J = PureInj⊗(V0) be the class of

geometrically pure injective objects in V0. The following conditions hold:

(1) An object J ∈ V0 belongs to J if and only if V0(Y, J) → V0(X, J) → 0 is exact in Ab for every

X → Y in A.

(2) A morphism X → Y in V0 belongs to A if and only if V0(Y, J) → V0(X, J) → 0 is exact in Ab for

every J ∈ J.

(3) Every object in V0 has a J-preenvelope.

Indeed, the “only if ” part of (1) holds by the definition of geometrically pure injective objects. For

the “if ” part, by Proposition 3.12 take a morphism J → J ′ in A with J ′ ∈ J. By the assumption,

V0(J
′, J) → V0(J, J) → 0 is exact, so idJ has a left-inverse J ′ → J . Thus J is a direct summand in

J ′ ∈ J and it follows that J ∈ J. The “only if ” part of (2) holds by the definition of geometrically pure
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injective objects. For the “if ” part, let f : X → Y be any morphism in V0. For every V ∈ V0, one has

[V,E] ∈ J by Lemma 3.8, so V0(f, [V,E]) is surjective by the assumption. As in the proof of Lemma 3.8,

this means that f ⊗ V is monic, and hence f is in A. Condition (3) holds by Proposition 3.12.

These arguments show that (A, J) is an injective structure in the sense of [16, Definition 6.6.2]. Even

though the definitions and results (with proofs) about such structures found in [16] are formulated for

the category of modules over a ring, they carry over to any Grothendieck cosmos. Since the injective

structure (A, J) is determined by the class G := V0 in the sense of [16, Definition 6.6.3], the desired

conclusion follows from [16, Theorem 6.6.4(1)].

It is well known that if K is a small ordinary category, then the category of functors K → Ab is

abelian, and even Grothendieck. In [3, Theorem 4.2], it is shown that if K is a small V-category, then the

ordinary category [K,V ]0 of V-functors K → V is abelian too, and even Grothendieck if V is3). Moreover,

(co)limits, in particular, (co)kernels, in the category [K,V]0 are formed object-wise. Below we construct

a certain exact structure on [K,V]0.
Lemma 3.14. Let K be a small V-category and let 0 → F ′ → F → F ′′ → 0 be an exact sequence in the

abelian category [K,V]0. For every V-functor G : Kop → V, the sequence G � F ′ → G � F → G � F ′′ → 0

is exact in V0.

Proof. It follows immediately from the fact that G�F ∼= F �G (see [31, (3.9)]), and from the axiom (2.1)

in the definition of weighted colimits, that (−�G, [G,−]) is an adjoint pair. This implies that the functor

G �− ∼= − � G is right exact.

Proposition 3.15. Let K be a small V-category and let 0 → F ′ → F → F ′′ → 0 be an exact sequence

in [K,V ]0. The following conditions are equivalent:

(i) 0 → G � F ′ → G � F → G � F ′′ → 0 is an exact sequence in V0 for every G ∈ [Kop,V ];
(ii) 0 → [F ′′, E] → [F,E] → [F ′, E] → 0 is a split short exact sequence in [Kop,V]0.

Proof. Let S be the given exact sequence. By the definition of weighted colimits (see (2.1)), there is

an isomorphism [G � S, E] ∼= [Kop,V](G, [S, E]) of sequences in V0 and thus an induced isomorphism of

sequences in Ab:

V0(G � S, E) ∼= [Kop,V ]0(G, [S, E]). (3.2)

As E is an injective cogenerator in V0, the condition (i) holds if and only if the left-hand side in (3.2) is

exact for every G ∈ [Kop,V ]. Evidently, (ii) holds if and only if the right-hand side in (3.2) is exact for

every G ∈ [Kop,V ]. Hence, (i) and (ii) are equivalent.

Definition 3.16. Let E� denote the class of all the short exact sequences in [K,V]0 that satisfy the

equivalent conditions in Proposition 3.15. We call E� the �-pure exact structure on [K,V]0 (see the next

result). Sequences in E� are called �-pure (short) exact sequences.

Proposition 3.17. The pair ([K,V ]0,E�) is an exact category.

Proof. Apply Proposition 3.2 with C = [K,V ]0 and T the class of functors G �− : [K,V ]0 → V0 where

G ∈ [Kop,V ]. Note that every functor G �− is right exact by Lemma 3.14.

Recall that a left R-module M is absolutely pure (or FP-injective) if it is a pure submodule of every

R-module that contains it (see [29, Definition A.17]). Equivalently, every short exact sequence 0 → M

→ K → K ′ → 0 is pure exact, i.e., 0 → X ⊗ M → X ⊗ K → X ⊗ K ′ → 0 is exact for every right

R-module X. The definition of absolutely pure V-functors K → V given below is completely analogous

to this.

Definition 3.18. Let K be a small V-category and H be an object in [K,V]0. Recall that

H is injective ⇔
{
every exact sequence 0 → H → F → F ′ → 0

in the abelian category [K,V]0 is split exact.

3) Note that in [3, Theorem 4.2], the symbol [K,V] is used for the ordinary category of V-functors K → V (but we use the

symbol [K,V]0) whereas the V-category of such functors is denoted by F(K) (but we use the symbol [K,V]).
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Inspired by the remarks above, we define

H is absolutely pure ⇔
{
every exact sequence 0 → H → F → F ′ → 0

in the abelian category [K,V ]0 is �-pure exact.

We also set

Inj([K,V]0) = {H ∈ [K,V ]0 | H is injective},
AbsPure([K,V]0) = {H ∈ [K,V]0 | H is absolutely pure}.

These categories will appear in Theorem 6.13, the final result of this paper.

4 The tensor embedding for an abelian cosmos

We establish some general properties of the tensor embedding defined in Definition 4.2 below. The

main result is Theorem 4.6, which shows that the tensor embedding identifies the geometrically pure

exact category (V0,E⊗) from Proposition 3.7 with a certain exact subcategory of ([A,V ]0,E�) from

Proposition 3.17.

Setup 4.1. The setup for this section is the same as in Setup 3.3, i.e, (V,⊗, I, [−,−]) is an abelian4)

cosmos with an injective cogenerator E.

Definition 4.2. Recall from [31, Subsection 1.6] that ⊗ is a V-functor5) V ⊗⊗⊗ V → V . For a small full

V-subcategory A of V , restriction yields a V-functor ⊗ : V ⊗⊗⊗A → V . Via the isomorphism

V-CAT(V ⊗⊗⊗A,V) ∼= V-CAT(V, [A,V])

from [31, Subsection 2.3, (2.20)], the latter V-functor corresponds to the V-functor

Θ: V → [A,V] given by X �→ (X ⊗−) |A : A → V.

We refer to this V-functor as the tensor embedding. Note that it induces an additive functor Θ0 : V0

→ [A,V ]0 of the underlying abelian categories.

Remark 4.3. If I ∈ A, then the V-functor A(I,−) = [I,−] exists and it is clearly naturally isomorphic

to the inclusion V-functor, inc : A → V . Thus, in the notation of 2.9, one has

Θ(X) = (X ⊗−) |A = X ⊗ inc ∼= X ⊗A(I,−). (4.1)

For the next result, recall the notions of geometrically pure exact sequences and �-pure exact sequences

from Definitions 3.4 and 3.16.

Lemma 4.4. Let A be a small full V-subcategory of V and S be a short exact sequence in V0. The

following two conditions are equivalent:

(i) S⊗A is a short exact sequence in V0 for every A ∈ A.

(ii) Θ0(S) is a short exact sequence in [A,V]0.
If I belongs to A, then the following two conditions are equivalent:

(i′) S is a geometrically pure exact sequence in V0.

(ii′) Θ0(S) is a �-pure exact sequence in [A,V]0.
Proof. The equivalence (i) ⇔ (ii) is evident from the definitions. Now assume that I ∈ A. For every

V-functor G : Aop → V, there is an equivalence of endofunctors on V0:

G � Θ0(−) ∼= −⊗G(I). (4.2)

4) Note that the abelianness of V0 is not used, neither is it important for the part (a) in Theorem 4.6.
5) Note that in [31, Subsection 1.6], the symbol “Ten” is used for this V-functor whereas “⊗” is reserved for the ordinary

functor V0 × V0 → V0, however, we abuse the notation and use the latter symbol for both functors.
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Indeed, for X ∈ V , one has the next isomorphisms, where the 1st is by (4.1), the 2nd follows as the

V-functor X ⊗ · : V → V preserves weighted colimits (this follows from, e.g., [5, Proposition 6.6.12]), and

the 3rd is by [31, (3.10)], i.e.,

G � Θ(X) ∼= G � (X ⊗A(I,−)) ∼= X ⊗ (G � A(I,−)) ∼= X ⊗G(I).

It is clear from (4.2) that (i′) implies (ii′). Conversely, assume (ii′) and let V ∈ V be given. As G = [−, V ]

is a V-functor Aop → V , the sequence [−, V ] �Θ(S) is exact by the assumption. Another application

of (4.2) shows that S⊗ [I, V ] ∼= S⊗ V is exact, so (i′) holds.

Recall that the essential image of a V-functor T : C → D, denoted by Ess. ImT , is just the essential

image of the underlying ordinary functor T0 : C0 → D0. Thus Ess. ImT is the collection of all the objects

D ∈ D such that D ∼= T (C) in D0 for some object C ∈ C. We may consider Ess. ImT as a full

V-subcategory of D or as a full subcategory of D0.

Lemma 4.5. Let A be a small full V-subcategory of V with I ∈ A. For any short exact sequence

0 → F ′ → F → F ′′ → 0 in the abelian category [A,V ]0, one has

F ′, F ′′ ∈ Ess. ImΘ ⇒ F ∈ Ess. ImΘ.

Consequently, Ess. ImΘ is an extension-closed subcategory of both of the exact categories ([A,V]0,Eab) and

([A,V]0,E�), where Eab is the exact structure induced by the abelian structure, and E� is the (coarser) exact

structure from Proposition 3.17. It follows that the sequences in Ess. ImΘ which are exact, respectively, �-

pure exact, in [A,V ]0 form an exact structure on Ess. ImΘ, which we denote by Eab |Ess.ImΘ, respectively,

E� |Ess.ImΘ. In this way, we obtain exact categories (Ess. ImΘ, Eab |Ess.ImΘ) and (Ess. ImΘ, E� |Ess.ImΘ).

Proof. For all the objects X ∈ V and F ∈ [A,V], there are isomorphisms

[A,V](Θ(X), F ) ∼= [A,V](X ⊗A(I,−), F ) ∼= [X, [A,V ](A(I,−), F )] ∼= [X,F (I)], (4.3)

which follow from (4.1), (2.2) and the strong Yoneda lemma [31, Subsection 2.4, (2.31)]. Consequently,

there is also an isomorphism [A,V]0(Θ(X), F ) ∼= V0(X,F (I)) which shows that there is a pair of adjoint

functors (Θ0, (EvI)0), where EvI is the V-functor given by evaluation at the unit object I (see [31,

Subsection 2.2]):

V0

Θ0 ��
[A,V ]0.

(EvI)0

��

Write θ for the counit of this adjunction; thus for F ∈ [A,V]0, we have the V-natural transformation

θF : Θ0(F (I)) → F . Clearly, θF is an isomorphism if and only if F ∈ Ess. ImΘ.

Now, let 0 → F ′ → F → F ′′ → 0 be an exact sequence in [A,V]0. It induces an exact sequence

0 → F ′(I) → F (I) → F ′′(I) → 0 in V0 and hence the exact sequence in the upper row of the next

commutative diagram (by right exactness of the tensor product), i.e.,

Θ0(F
′(I)) ��

θF ′
��

Θ0(F (I)) ��

θF

��

Θ0(F
′′(I)) ��

θF ′′
��

0

0 �� F ′ �� F �� F ′′ �� 0.

If F ′ and F ′′ are in Ess. ImΘ, then θF ′ and θF ′′ are isomorphisms in [A,V ]0; whence θF is an isomorphism

by the Five Lemma, so F belongs to Ess. ImΘ.

The last assertion follows directly from [10, Lemma 10.20].

Theorem 4.6. Let V be as in Setup 4.1 and A be any small full V-subcategory of V. The tensor

embedding

Θ: V → [A,V ] given by X �→ (X ⊗−) |A
from Definition 4.2 is cocontinuous, i.e., it preserves all the small weighted colimits. If I belongs to A,

then Θ is a fully faithful functor and it induces two equivalences
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(a) an equivalence of V-categories Θ: V �→ Ess. ImΘ;

(b) an equivalence of exact categories Θ0 : (V0,E⊗)
�→ (Ess. ImΘ,E� |Ess.ImΘ).

Proof. First, note that the V-categories V and [A,V ] are bicomplete, i.e., they have small weighted

limits and colimits. This follows from [31, Subsections 3.1 and 3.3] as the ordinary category V0 is assumed

to be bicomplete. We now show that Θ is cocontinuous.

Let K be a small V-category and G : Kop → V and F : K → V be V-functors. We must show G� (Θ◦F )
∼= Θ(G � F ), where the weighted colimit on the left-hand side is computed in [A,V] and the one on the

right-hand side in V. Via the isomorphism V-CAT(K, [A,V]) ∼= V-CAT(K⊗⊗⊗A,V) from [31, Subsection 2.3,

(2.20)], the V-functor Θ ◦ F : K → [A,V] corresponds to the V-functor P : K ⊗⊗⊗ A → V given by

P (K,A) = F (K) ⊗ A. So P (−, A) is F ⊗ A in the notation of 2.9. In the computation below, the

1st isomorphism holds as weighted colimits in [A,V] are computed object-wise (more precisely, we use

the weighted colimit counterpart of [31, Subsection 3.3, (3.16)]); the 2nd and 3rd isomorphisms hold

by the definitions of P and Θ; the 4th isomorphism holds as the V-functor − ⊗ A : V → V preserves

weighted colimits

(G � (Θ ◦ F ))(A) ∼= G � P (−, A) ∼= G � (F ⊗A) ∼= (G � F )⊗A ∼= Θ(G � F )(A).

Consequently, G � (Θ ◦ F ) ∼= Θ(G � F ), as claimed.

Now assume that I ∈ A. As Θ is a V-functor, it comes equipped with a natural morphism, i.e.,

ΘXY : [X,Y ] → [A,V](Θ(X),Θ(Y ))

for every pair of objects X,Y ∈ V . The claim is that ΘXY is an isomorphism in V . However, the

morphism ΘXY is precisely the following composite, where the second isomorphism comes from (4.3)

with F = Θ(Y ):

[X,Y ] ∼= [X,Θ(Y )(I)] ∼= [A,V](Θ(X),Θ(Y )).

(a) The asserted V-equivalence is a formal consequence of the fact that Θ is fully faithful (see [31,

Subsection 1.11, p. 24]).

(b) By the part (a), we have an equivalence of additive categories Θ0 : V0
�→ Ess. ImΘ. The

assertion about exact categories now follows from the equivalence (i)
′ ⇔ (ii)

′
in Lemma 4.4 and from

Lemma 4.5.

We end this section with two results that show how to construct a (co)generating set of objects in the

category [K,V]0 of V-functors from a (co)generating set of objects in V0. This will be used in the proof

of Proposition 6.12.

Lemma 4.7. Let K be a small V-category. The following hold:

(a) If S is a cogenerating set of objects in V0, then {[K(−,K), S]}K∈K,S∈S is a cogenerating set of

objects in [K,V]0.
(b) If S ∈ V0 is injective, then [K(−,K), S] is injective in [K,V ]0 for every K ∈ K.

Proof. For K in K, the functor [K,V]0 → V0 given by · �→ K(−,K) � · is just the evaluation functor

EvK(·) at K (see [31, Subsection 3.1, (3.10)]). This fact, the defining property (2.1) of weighted colimits,

and [31, Subsection 3.1, (3.9)] yield isomorphisms in V :

[K,V](·, [K(−,K), S]) ∼= [K(−,K) � ·, S] ∼= [EvK(·), S].

In particular, [K,V]0(·, [K(−,K), S]) ∼= V0(EvK(·), S), which yields both assertions.

Lemma 4.7 has the next dual of which the part (a) can also be found in [3, Theorem 4.2].

Lemma 4.8. Let K be a small V-category. The following hold:

(a) If S is a generating set of objects in V0, then {S ⊗K(K,−)}K∈K,S∈S is a generating set of objects

in [K,V ]0.
(b) If S ∈ V0 is projective, then S ⊗K(K,−) is projective in [K,V ] for every K ∈ K.
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Proof. For any objects S ∈ V and K ∈ K, the first isomorphism below follows from (2.2) and the

second follows from the strong Yoneda lemma [31, Subsection 2.4, (2.31)], i.e.,

[K,V ](S ⊗K(K,−), ·) ∼= [S, [K,V](K(K,−), ·)] ∼= [S,EvK(·)].
In particular, [K,V]0(S ⊗K(K,−), ·) ∼= V0(S,EvK(·)), which yields both assertions.

5 The tensor embedding for a Grothendieck cosmos

In this section, we work with Setup 5.1 below and we consider the tensor embedding

Θ: V → [Presλ(V),V] (5.1)

from Definition 4.2 in the special case where A = Presλ(V). The goal is to strengthen Theorem 4.6 and

make it more explicit in this situation; this is achieved in Theorem 5.9 below. Note that the examples

found in Examples 2.3 and 2.4 all satisfy the following setup.

Setup 5.1. In this section, (V,⊗, I, [−,−]) is a cosmos and V is a Grothendieck category.

• We fix a regular cardinal λ such that V is a locally λ-presentable base6) in the sense of 2.5; such a

choice is possible by Proposition 5.2 below.

• We let Presλ(V) be the (small) collection of all the λ-presentable objects in V .
• We fix an injective cogenerator E in V0; the existence is guaranteed by [30, Theorem 9.6.3].

Proposition 5.2. There is a regular cardinal λ for which V is a locally λ-presentable base.

Proof. As V0 is Grothendieck, it follows from [4, Proposition 3.10] that it is a locally γ-presentable

category for some regular cardinal γ. Note that for every regular cardinal λ � γ, the category V0 is also

locally λ-presentable by [1, Remark after Theorem 1.20], so the condition (1) in 2.5 holds for all such λ.

Let S be a set of representatives for the isomorphism classes of γ-presentable objects in V0. Let S ′ be the
set consisting of the unit object I and all finite tensor products of objects in S. As every object in V0 is

presentable (i.e., μ-presentable for some regular cardinal μ) (see again [1, Remark after Theorem 1.20]),

since S ′ is a set, there exists some regular cardinal λ � γ such that every object in S ′ is λ-presentable.

In particular, the condition (2) in 2.5 holds. If necessary we can replace λ with its successor λ+ (every

successor cardinal is regular) and thus by [1, Example 2.13(2)] assume that γ is sharply smaller than λ

(in symbols: γ � λ) in the sense of [1, Definition 2.12]. This will play a role in the following argument,

which shows that the condition (3) in 2.5 holds.

Let X and Y be λ-presentable objects in V0. As the category V0 is locally γ-presentable (and hence

also γ-accessible) and λ � γ, it follows from [1, Remark 2.15] that X and Y are direct summands of a

λ-small directed colimit of γ-presentable objects in V0, i.e., we have

X ⊕X ′ ∼= colimp∈PXp and Y ⊕ Y ′ ∼= colimq∈QYq,

where Xp, Yq ∈ S and |P |, |Q| < λ. As ⊗ preserves all the colimits, one has

(X ⊕X ′)⊗ (Y ⊕ Y ′) ∼= colim(p,q)∈P×Q Xp ⊗ Yq. (5.2)

By construction, each Xp ⊗ Yq is in S ′, so it is a λ-presentable object. Furthermore, the category P ×Q

is λ-small. Hence, [1, Proposition 1.16] and (5.2) imply that (X ⊕X ′)⊗ (Y ⊕ Y ′) is λ-presentable. Since
X ⊗Y is a direct summand of (X ⊕X ′)⊗ (Y ⊕Y ′), the object X ⊗Y is λ-presentable too by [1, Remark

after Proposition 1.16]7).

6) Thus the blanket setup at the end of the introduction in [6] is satisfied, and we can apply the theory herein.
7) According to [1, Remark 1.30(2)], it follows from [38] that if λ is any regular cardinal greater than or equal

to γ, then every λ-presentable object is a λ-small colimit of γ-presentable objects. If this is true, then a couple

of simplifications can be made in the proof of Proposition 5.2. Indeed, in this case, we would not have to worry

about γ being sharply smaller than λ, and we could simply take both X′ and Y ′ to be zero. However, as there

seems to be some doubt about the correctness of the claim in [1, Remark 1.30(2)] (https://mathoverflow.net/questions/

325278/mu-presentable-object-as-mu-small-colimit-of-lambda-presentable-objects), we have chosen to give a (slightly more

complicated) proof of Proposition 5.2 based on [1, Remark 2.15] instead.



16 Holm H et al. Sci China Math

Under Setup 5.1, one can improve some of the statements about purity from Sections 3 and 4. This

will be our first goal.

Lemma 5.3. For a short exact sequence S in V0, the following conditions are equivalent:

(i) S⊗ C is a short exact sequence in V0 for every C ∈ Presλ(V).
(ii) V0(S, [C,E]) is a short exact sequence in Ab for every C ∈ Presλ(V).
(iii) S is a geometrically pure exact sequence in V0.

Proof. The equivalence (i) ⇔ (ii) follows as V0(S ⊗ C,E) ∼= V0(S, [C,E]) and E is an injective

cogenerator in V0. Evidently, (iii) ⇒ (i). Finally, assume that (i) holds. Every object V ∈ V is a

directed colimit of λ-presentable objects, i.e., V ∼= colimq∈QCq. The sequence S⊗ V ∼= colimq∈Q(S⊗Cq)

is exact as each S⊗Cq is exact (by the assumption) and any directed colimit of exact sequences is again

exact because V0 is Grothendieck. So (iii) holds.

Corollary 5.4. Consider the tensor embedding (5.1). The exact structures Eab and E� on the category

[Presλ(V),V]0 from Lemma 4.5 agree on the subcategory Ess. ImΘ, i.e., Eab |Ess.ImΘ = E� |Ess.ImΘ.

Proof. Every short exact sequence 0 → F ′ → F → F ′′ → 0 in Ess. ImΘ has the form (up to

isomorphism) Θ0(S) for some short exact sequence S = 0 → X ′ → X → X ′′ → 0 in V0. Lemma 5.3

shows that conditions (i) and (i′) in Lemma 4.4 (with A = Presλ(V)) are equivalent. Thus (ii) and (ii′)
in Lemma 4.4 are equivalent too, as asserted.

We know from Proposition 3.12 that the exact category (V0,E⊗) has enough relative injectives. An

alternative demonstration of this fact is contained in the next proof.

Proposition 5.5. An object X ∈ V0 is geometrically pure injective if and only if it is a direct summand

of an object
∏

q∈Q [Bq, E] for some family {Bq}q∈Q of λ-presentable objects.

Proof. The “if ” part is clear since each object [Bq, E] is geometrically pure injective by Lemma 3.8.

Conversely, let X be any object in V0. Choose a set C of representatives for the isomorphism classes of

λ-presentable objects in V0 and consider the canonical morphism

α : X → ∏
C∈C [C,E]JC , where JC = V0(X, [C,E]).

We show that α is a monomorphism. Let β : Y → X be a morphism with αβ = 0. This implies that

for every C ∈ C, the map V0(β, [C,E]) : V0(X, [C,E]) → V0(Y, [C,E]) is zero. By adjunction this means

that V0(β ⊗ C,E) = 0 and thus β ⊗ C = 0 since E is an injective cogenerator. As every object in V0,

in particular the unit object I, is a directed colimit of objects from C, since β ⊗− preserves colimits, it

follows that β ∼= β ⊗ I = 0.

By what we have just proved, there is a short exact sequence,

S = 0 �� X
α �� ∏

C∈C [C,E]JC �� Cokα �� 0.

By construction of α, every morphism X → [C,E] with C ∈ C factors through α; thus for every C ∈ C,
the morphism V0(α, [C,E]) is surjective and therefore V0(S, [C,E]) is a short exact sequence. It follows

from Lemma 5.3 that S is geometrically pure exact. Thus, if X is geometrically pure injective, then S

splits and X is a direct summand in
∏

C∈C [C,E]JC .

Definition 5.6 (See [6, Definition 2.1]). Let λ be a regular cardinal (in our applications, λ will be the

fixed cardinal from Setup 5.1) and A be a V-category. Let G : Kop → V and F : K → A be V-functors
and assume that the weighted colimit G � F ∈ A exists. If the weight G is λ-small in the sense of

Definition 2.7, then G � F is called a λ-small weighted colimit.

A V-functor T : A → B is said to be λ-cocontinuous if it preserves all the λ-small weighted colimits,

i.e., for every λ-small weight G, one has G � (T ◦ F ) ∼= T (G � F ). We set

λ-Cocont(A,B) = {the collection of all the λ-cocontinuous V-functors A → B}.
Remark 5.7. By [6, Proposition 3.2 and Corollary 3.3], the full V-subcategory A = Presλ(V) is closed
under λ-small weighted colimits in V . Thus Presλ(V) has all the λ-small weighted colimits.
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Proposition 5.8. For the tensor embedding (5.1), the essential image is

Ess. ImΘ = λ-Cocont(Presλ(V),V).

Proof. For every object X ∈ V, the V-functor Θ(X) = (X ⊗ −) |Presλ(V) is λ-cocontinuous. Indeed,

X ⊗− : V → V preserves all the weighted colimits, and by Remark 5.7, any λ-small weighted colimit in

Presλ(V) is, in fact, a (λ-small) weighted colimit in V. Thus “⊆” holds.

Conversely, let T : Presλ(V) → V be any λ-cocontinuous V-functor. For any A ∈ Presλ(V), consider
the V-functors G : Iop → V and F : I → Presλ(V) given by G(∗) = A and F (∗) = I. Here, I is the unit

V-category from 2.6. Note that the weight G is λ-small as the objects Iop(∗, ∗) = I and G(∗) = A are

λ-presentable. Evidently, one has

G � F = G(∗)⊗ F (∗) = A⊗ I,

and since T is assumed to preserve λ-small weighted colimits, it follows that

T (A) ∼= T (A⊗ I) ∼= T (G � F ) ∼= G � (T ◦ F ) ∼= G(∗)⊗ (T ◦ F )(∗) ∼= A⊗ T (I).

Hence, T is V-naturally isomorphic to Θ(T (I)) = (T (I)⊗−) |Presλ(V), so T ∈ Ess. ImΘ.

Theorem 5.9. Let V be as in Setup 5.1. The tensor embedding

Θ: V → [Presλ(V),V ] given by X �→ (X ⊗−) |Presλ(V)

is cocontinuous and it induces two equivalences:

(a) an equivalence of V-categories Θ: V �→ λ-Cocont(Presλ(V),V);
(b) an equivalence of exact categories Θ0 : (V0,E⊗)

�→ λ-Cocont(Presλ(V),V), where the latter is an

extension-closed subcategory of the abelian category [Presλ(V),V]0.
Proof. Combine Theorem 4.6, Proposition 5.8 and Corollary 5.4.

6 The case where V is generated by dualizable objects

In this final section, we work with Setup 6.1 below. We prove in Proposition 6.9(a) that under the

assumptions in Setup 6.1, V is a locally finitely presentable base. Thus in Setup 5.1 and in all of the

results from Section 5, we can set λ = ℵ0. As it is customary, we write fp(V) := Presℵ0
(V) for the class of

finitely presentable objects in V , so the tensor embedding (5.1) becomes Θ: V → [fp(V),V]. We improve

and make Theorem 5.9 more explicit in this situation. Let us explain the two main insights that we

obtain in this section.

• We know from Theorem 5.9(b) that the geometrically pure exact category (V0,E⊗) is equivalent, as
an exact category, to Ess. ImΘ = ℵ0-Cocont(fp(V),V). We prove in Theorem 6.13 that Ess. ImΘ also

coincides with the class of absolutely pure objects in [fp(V),V]0 in the sense of Definition 3.18.

• As mentioned in the remarks preceding Lemma 3.14, it follows from [3, Theorem 4.2] that

[fp(V),V]0 is a Grothendieck category; in particular, it has enough injectives. Theorem 6.13 gives a very

concrete description of the injective objects in [fp(V),V]0: they are precisely the V-functors of the form

(X ⊗−) |fp(V), where X is a geometrically pure injective object in V0 in the sense of Definition 3.4.

Setup 6.1. In this section, (V,⊗, I, [−,−]) is a cosmos and V is a Grothendieck category (just as in

Setup 5.1) subject to the following requirements:

• The unit object I is finitely presentable in V0.

• The category V0 is generated by a set of dualizable objects (defined in 6.5 below).

Example 6.2. The two Grothendieck cosmoses from Example 2.3, i.e.,

(Ch(R),⊗•
R, S(R),Hom•

R) and (Ch(R),⊗•
R, D(R),Hom•

R) (6.1)
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satisfy Setup 6.1. Indeed, it is not hard to see that

fp(Ch(R)) = {X ∈ Ch(R) | X is bounded and each module Xn is finitely presentable},

in particular, the unit objects S(R) and D(R) of the two cosmoses are finitely presentable. Thus the first

condition in Setup 6.1 holds. Evidently,

{ΣnD(R) | n ∈ Z} (where Σn is the n-th shift of a complex)

is a generating set of objects in Ch(R). Each object ΣnD(R) is dualizable in the rightmost cosmos in (6.1)

as I = D(R) is the unit object. The object ΣnD(R) is also dualizable in the leftmost cosmos in (6.1);

indeed, it is not hard to see that every perfect R-complex (i.e., a bounded complex of finitely generated

projective R-modules) is dualizable in this cosmos. Hence, the second condition in Setup 6.1 holds as

well.

Example 6.3. Consider the Grothendieck cosmos from Example 2.4(b), i.e.,

(Qcoh(X),⊗X ,OX ,H omqc
X ).

If X is concentrated (e.g., if X is quasi-compact and quasi-separated), then I = OX is finitely presentable

in Qcoh(X) by [14, Proposition 3.7], so the first condition in Setup 6.1 holds.

Note by the way that for any noetherian scheme X, it follows from [12, Lemma B.3] (and the fact that

in a locally noetherian Grothendieck category, finitely presentable objects and noetherian objects are the

same [42, Chapter V, Section 4]) that

fp(Qcoh(X)) = Coh(X) := {X ∈ Qcoh(X) | X is coherent}.

The dualizable objects in Qcoh(X) are precisely the locally free sheaves of finite rank (see [8,

Proposition 4.7.5]), and hence the second condition in Setup 6.1 holds if and only if X has the strong

resolution property in the sense of [8, Definition 2.2.7]. Many types of schemes—for example, any

projective scheme and any separated noetherian locally factorial scheme—do have the strong resolution

property (see the remarks after [8, Definition 2.2.7]). We refer to [45, Subsection 3.4] for further remarks

and insights about the strong resolution property.

6.4 (Evaluation morphisms). For any closed symmetric monoidal category, there are canonical natural

morphisms in V0 (see, e.g., [35, Chapter III, Section 1, p. 120] for the construction of the first map):

ϑXY Z : [X,Y ]⊗ Z → [X,Y ⊗ Z] and ηXY Z : X ⊗ [Y, Z] → [[X,Y ], Z]

In commutative algebra, i.e., in the case where V = Mod(R) for a commutative ring R, people sometimes

refer to ϑ as the tensor evaluation and to η as the homomorphism evaluation (see, for example, [11,

(A.2.10) and (A.2.11)]).

We now consider dualizable objects as defined in [28,35].

6.5 (Dualizable objects). For every object P in V, the following conditions are equivalent:

(i) The canonical morphism [P, I]⊗ P → [P, P ] is an isomorphism.

(ii) The canonical morphism [P, I]⊗ Z → [P,Z] is an isomorphism for all the objects Z ∈ V .
(iii) ϑPY Z : [P, Y ]⊗ Z → [P, Y ⊗ Z] is an isomorphism for all the objects Y, Z ∈ V .

Evidently, (iii) ⇒ (ii) ⇒ (i). Objects P satisfying (i) are in [35, Chapter III, Section 1, Definition 1.1]

called finite, and in [35, Chapter III, Section 1, Proposition 1.3(ii)], it is proved that (i) implies (iii).

Hence, all three conditions are equivalent. Objects P satisfying (ii) are called (strongly) dualizable in [28,

Definition 1.1.2]; we adopt this terminology, “dualizable”, for objects satisfying the conditions (i)–(iii).

Remark 6.6. If P ∈ V is dualizable, then so is [P, I], and the natural map P → [[P, I], I] is an

isomorphism (see [35, Chapter III, Section 1, Propositions 1.2 and 1.3(i)]). By the condition 6.5(ii), there

is a natural isomorphism [P, I]⊗− ∼= [P,−]. By replacing P with [P, I], one also gets P ⊗− ∼= [[P, I],−].
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Lemma 6.7. If P and Q are dualizable, then so are P ⊕Q, P ⊗Q, and [P,Q].

Proof. Using the condition 6.5(ii) and additivity of the functors −⊗− and [−,−], it is easy to see that

P ⊕Q is dualizable. By the condition 6.5(iii), the computation

[P ⊗Q,Y ]⊗ Z ∼= [P, [Q, Y ]]⊗ Z ∼= [P, [Q,Y ]⊗ Z] ∼= [P, [Q,Y ⊗ Z]] ∼= [P ⊗Q,Y ⊗ Z]

shows that P ⊗ Q is dualizable. To see that [P,Q] is dualizable, note that [P,Q] ∼= [P, I] ⊗ Q (as P is

dualizable) and apply what we have just proved combined with Remark 6.6.

Definition 6.8. Following [34, Definition 1.1], we use the next terms for an object J in V :

J is injective ⇔ the functor V0(−, J) : Vop
0 → Ab is exact.

J is internally injective ⇔ the functor [−, J ] : Vop
0 → V0 is exact.

A question of interest in [34] is when every injective object in V is internally injective; in this case

Lewis would say that V satisfies the condition IiII (Injective implies Internally Injective). As we prove

next that this condition does hold under Setup 6.1.

Proposition 6.9. For V as in Setup 6.1, the following assertions hold:

(a) V is a locally finitely presentable base (see 2.5).

(b) V satisfies Lewis’ condition IiII, i.e., every injective object is internally injective.

(c) For objects X, Y and J in V where X is finitely presentable and J is injective, the morphism

ηXY J : X ⊗ [Y, J ] → [[X,Y ], J ] from 6.4 is an isomorphism.

Proof. (a) As I is finitely presentable, the condition 2.5(2) holds with λ = ℵ0. Note that every

dualizable object P is finitely presentable. Indeed, [P,−] : V0 → V0 preserves colimits as it is naturally

isomorphic to [P, I]⊗− by Remark 6.6, and V0(I,−) preserves directed colimits as I is finitely presentable.

Thus V0(P,−) ∼= V0(I, [P,−]) preserves directed colimits.

As V0 is a Grothendieck category generated by a set of finitely presentable (even dualizable) objects, it

is a locally finitely presentable Grothendieck category in the sense of Breitsprecher [9, Definition (1.1)].

Hence, V0 is also a locally finitely presentable category in the ordinary sense (see [9, Satz (1.5)] and [13,

(2.4)]), so the condition 2.5(1) holds with λ = ℵ0.

To see that 2.5(3) holds, i.e., that the class of finitely presentable objects is closed under ⊗, note that

as V0 is generated by a set of dualizable objects, [9, Satz (1.11)] and Lemma 6.7 yield that an object X

is finitely presentable if and only if there is an exact sequence

P1 → P0 → X → 0 (6.2)

with P0 and P1 dualizable. Now let Y be yet a finitely presentable object and choose an exact sequence

Q1 → Q0 → Y → 0 with Q0 and Q1 dualizable. It is not hard to see that there is an exact sequence

(P1 ⊗Q0)⊕ (P0 ⊗Q1) → P0 ⊗Q0 → X ⊗ Y → 0 (see [7, Chapter II, Subsection 3.6, Proposition 6]), so

it follows from Lemma 6.7 that X ⊗ Y is finitely presentable.

(b) As V0 is generated by a set, i.e., P of dualizable objects, the category V0 has a ⊗-flat generator,

namely,
⊕

P∈P P . The conclusion now follows from [41, Lemma 3.1].

(c) As noted in the proof of (a), if X is a finitely presentable object, then there exist dualizable objects

P0 and P1 and an exact sequence (6.2). It induces a commutative diagram in V0:

P1 ⊗ [Y, J ] ��

ηP1Y J

��

P0 ⊗ [Y, J ] ��

ηP0Y J

��

X ⊗ [Y, J ] ��

ηXY J

��

0

[[P1, Y ], J ] �� [[P0, Y ], J ] �� [[X,Y ], J ] �� 0.

(6.3)

In this diagram, the upper row is exact by right exactness of the functor − ⊗ [Y, J ]. The sequence

0 → [X,Y ] → [P0, Y ] → [P1, Y ] is exact by left exactness of the functor [−, Y ]. Thus, if J is injective,

and hence also internally injective by the part (b), then we get exactness of the lower row in (6.3). Thus,
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to prove that ηXY J is an isomorphism, it suffices by the Five Lemma to show that ηP0Y J and ηP1Y J are

isomorphisms. However, for every dualizable object P and arbitrary objects Y and Z, the map ηPY Z

is an isomorphism. Indeed, Remark 6.6, the adjunction (− ⊗ Y ) � [Y,−] and the condition 6.5(ii) yield

isomorphisms

P ⊗ [Y, Z] ∼= [[P, I], [Y, Z]] ∼= [[P, I]⊗ Y, Z] ∼= [[P, Y ], Z].

It is straightforward to verify that the composite of these isomorphisms is ηPY Z .

Lemma 6.10. For V as in Setup 6.1, the following assertions hold:

(a) For any family {Bq}q∈Q of objects and every finitely presentable object A in V0, the next canonical

morphism is an isomorphism, i.e.,( ∏
q∈Q

[Bq, E]

)
⊗A

∼=→
∏
q∈Q

([Bq, E]⊗A).

(b) Assume that V0 satisfies Grothendieck’s axiom (AB4*), i.e., the product of a family of epimorphisms

is an epimorphism. For any family {Cq}q∈Q of objects and every finitely presentable object A in V0, the

next canonical morphism is an isomorphism, i.e.,( ∏
q∈Q

Cq

)
⊗A

∼=→
∏
q∈Q

(Cq ⊗A).

Proof. (a) In the computation below, the 1st and 4th isomorphisms follow as [−, E] converts coproducts

to products; the 2nd and 5th isomorphisms follow from Proposition 6.9(c); the 3rd isomorphism holds as

[A,−] preserves directed colimits by [6, Lemma 2.6 and Corollary 3.3] since A is finitely presentable (as

mentioned in the footnote of Setup 5.1, we can apply the theory of [6] as V is a locally presentable base).( ∏
q∈Q

[Bq, E]

)
⊗A ∼=

[⊕
q∈Q

Bq, E

]
⊗A ∼=

[[
A,

⊕
q∈Q

Bq

]
, E

]
∼=

[⊕
q∈Q

[A,Bq], E

]

∼=
∏
q∈Q

[[A,Bq], E] ∼=
∏
q∈Q

([Bq, E]⊗A).

(b) Assume that V0 satisfies (AB4*). We must show that − ⊗ A preserves all the products. By the

proof of Proposition 6.9(a), there is an exact sequence P1 → P0 → A → 0 with P0 and P1 dualizable.

In the induced commutative diagram below, the upper row is exact by right exactness of the functor

(
∏

q∈Q Cq)⊗−, and the lower row is exact as V0 satisfies (AB4*), i.e.,

( ∏
q∈Q

Cq

)
⊗ P1

��

∼=
��

( ∏
q∈Q

Cq

)
⊗ P0

��

∼=
��

( ∏
q∈Q

Cq

)
⊗A ��

��

0

∏
q∈Q

(Cq ⊗ P1) ��
∏
q∈Q

(Cq ⊗ P0) ��
∏
q∈Q

(Cq ⊗A) �� 0.

The two leftmost vertical morphisms are isomorphisms as the functor −⊗Pn preserves products; indeed,

by Remark 6.6 this functor is naturally isomorphic to [[Pn, I],−], which is a right adjoint. By the Five

Lemma, the rightmost morphism is an isomorphism too.

Some important abelian categories fail to satisfy Grothendieck’s axiom (AB4*). For example, this is

often the case for the category of quasi-coherent sheaves on a scheme (see [32, Example 4.9]). Fortunately,

we shall not need the strong conclusion in Lemma 6.10(b) (we have only included it for completeness),

as the weaker part (a) is sufficient for our purpose (the proof of Proposition 6.12 below). We shall also

need the next general lemma.
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Lemma 6.11. Let C and D be additive and idempotent complete categories, Φ: C → D be a fully

faithful additive functor, and C ∈ C and D ∈ D be objects. If D is a direct summand in Φ(C), then D

has the form D ∼= Φ(C ′) for some direct summand C ′ in C.

Proof. Since the functor Φ is fully faithful and additive, it induces a ring isomorphism, i.e.,

EndC(C,C)
∼=→ EndD(Φ(C),Φ(C)) given by f �→ Φ(f). (6.4)

As D is a direct summand in Φ(C), there exist morphisms h : D → Φ(C) and k : Φ(C) → D in D such that

kh = idD, and thus hk is an idempotent element in EndD(Φ(C),Φ(C)). By the ring isomorphism (6.4),

there is an idempotent e in EndC(C,C) with Φ(e) = hk. As C is idempotent complete, there is an object

C ′ ∈ C and morphisms f : C ′ → C and g : C → C ′ such that gf = idC′ and fg = e; in particular, C ′ is a
direct summand in C. The morphisms

Φ(C ′)
Φ(f) �� Φ(C)

k �� D and Φ(C ′) Φ(C)
Φ(g)�� D

h��

satisfy kΦ(f) ◦ Φ(g)h = idD and Φ(g)h ◦ kΦ(f) = idΦ(C′), so Φ(C ′) ∼= D as claimed.

Proposition 6.12. A V-functor H : fp(V) → V is an injective object in [fp(V),V ]0 if and only if it has

the form H ∼= Θ0(X) for some geometrically pure injective object X ∈ V0.

Proof. Necessity. We start by showing that Θ0(X) is injective in [fp(V),V]0 for every geometrically pure

injective object X in V. By Proposition 5.5 (and the additivity of the functor Θ0), we may assume that

X =
∏

q∈Q[Bq, E] for some family {Bq}q∈Q of finitely presentable objects. It follows from Lemma 6.10(a)

(notice that this isomorphism is V-natural in A) that

Θ0(X) = Θ0

( ∏
q∈Q

[Bq, E]

)
∼=

∏
q∈Q

Θ0([Bq, E]).

Thus we may further reduce the case where X = [B,E] for a single finitely presentable object B. Now

Proposition 6.9(c) yields the isomorphism in the following computation:

Θ0(X) = ([B,E]⊗−) |fp(V)
∼= [[−, B], E] |fp(V) = [fp(V)(−, B), E].

The latter is an injective object in [fp(V),V ]0 by Lemma 4.7(b) with K = fp(V).
Sufficiency. By Lemma 4.7 with K = fp(V) and S = {E}, we see that {[[−, B], E]}B∈fp(V) is a

cogenerating set of (injective) objects in [fp(V),V]0. So every H in [fp(V),V ]0 can be embedded into a

product F =
∏

q∈Q[[−, Bq], E], where each Bq is finitely presentable. Set X =
∏

q∈Q[Bq, E] ∈ V; this
is a geometrically pure injective object by Lemma 3.8, and the arguments above show that F ∼= Θ0(X).

Thus we have an embedding H � Θ0(X). Consequently, if H is injective, then it is a direct summand

in Θ0(X), and it follows from Lemma 6.11 that H ∼= Θ0(X
′) for some direct summand X ′ in X. As X

is geometrically pure injective, so is X ′.

We can now give the result that is explained in the beginning of this section.

Theorem 6.13. Let V be as in Setup 6.1. The underlying tensor embedding functor

Θ0 : V0 → [fp(V),V]0 given by X �→ (X ⊗−) |fp(V)

induces a commutative diagram of exact categories and exact functors, i.e.,

(V0,E⊗)
Θ0

�
�� (AbsPure([fp(V),V ]0),Eab)

(PureInj⊗(V0),Esplit)

inc

��

Θ0

�
�� (Inj([fp(V),V]0),Esplit),

inc

��
(6.5)

where E⊗ is the geometrically pure exact structure (see Definition 3.4), Eab denotes the exact structure on

AbsPure([fp(V),V]0) induced by the abelian structure on [fp(V),V]0, and Esplit is the (trivial) split exact

structure. Furthermore, “inc” denotes the inclusion functor.

In this diagram, the vertical functors are equivalences of exact categories.
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Proof. The asserted equivalence of exact categories in the top of the diagram (6.5) will follow from

Theorem 4.6(b) and Corollary 5.4, once we have proved the equality, i.e.,

Ess. ImΘ0 = AbsPure([fp(V),V]0). (6.6)

It then follows from Proposition 6.12 that the equivalence in the top of (6.5) restricts to the one in the

bottom. We now prove the equality (6.6).

“⊆”: Let H be in Ess. ImΘ0, i.e., H ∼= Θ0(X) for some X ∈ V . We must argue that every short

exact sequence 0 → Θ0(X) → F → F ′ → 0 in [fp(V),V]0 is �-pure exact. By Lemma 3.14, it suffices to

prove that Θ0(X) � F is a �-pure monomorphism, meaning that G �Θ0(X) → G � F is monic for every

V-functor G : fp(V)op → V . By Proposition 3.12, there are a geometrically pure injective object J and

a geometrically pure monomorphism X � J in V0. Thus Θ0(X) � Θ0(J) is a �-pure monomorphism

by Lemma 4.4. As Θ0(J) is injective in [fp(V),V]0 by Proposition 6.12, the morphism Θ0(X) → Θ0(J)

admits a lift, i.e.,

Θ0(X)

��

�� �� F.

��
Θ0(J)

As Θ0(X) � Θ0(J) is a �-pure monomorphism, so is Θ0(X) � F .

“⊇”: Let H be an absolutely pure object in [fp(V),V ]0. As this category has enough injectives, it

follows from Proposition 6.12 that there exists a monomorphism H � Θ0(J) for some geometrically pure

injective object J ∈ V . By the assumption on H, this is even a �-pure monomorphism, and thus [H(−), E]

is a direct summand in [Θ0(J)(−), E] ∼= [−, [J,E]] by the equivalent conditions in Proposition 3.15.

By [31, Subsection 2.4], the Yoneda embedding

Υ0 : V0 → [fp(V)op,V]0 given by X �→ [−, X] |fp(V )

is fully faithful, so because [H(−), E] is a direct summand in Υ0([J,E]) = [−, [J,E]], it follows from

Lemma 6.11 that [H(−), E] ∼= [−, Y ] for some direct summand Y in [J,E]. By evaluating this isomorphism

on the unit object, it follows that Y ∼= [I, Y ] ∼= [H(I), E], so

[H(−), E] ∼= [−, [H(I), E]] ∼= [H(I)⊗−, E].

It can be verified that this V-natural isomorphism is [θH , E], where θH : Θ0(H(I)) = H(I)⊗− → H(−)

is the V-natural transformation from the proof of Lemma 4.5. By Lemma 3.10, the functor [−, E] is

faithful, and hence it reflects isomorphisms. We conclude that θH is a V-natural isomorphism, and hence

H belongs to Ess. ImΘ0.

We end this paper with a follow-up on our comment at the end of Section 1.

Remark 6.14. This work has been developed in the setting of an abelian cosmos V. This setting

excludes applications to the “non-commutative realm”; in particular, it does not cover the original tensor

embedding (1.2). However, it is possible to develop much of the theory, not just for the category V, but
for the category R-Mod of R-left-objects in the sense of Pareigis [39], where R is any monoid in V. Notice

that V is a special case of R-Mod as the unit object I is a commutative monoid in V with I-Mod = V . To
develop the theory found in this paper for R-Mod instead of just V, one basically uses the same proofs,

but things become much more technical. A reader who wants to carry out this program should be able

to do so with the information given below.

Let (V,⊗, I, [−,−]) be a closed symmetric moniodal category and R be a monoid in V. Write R-Mod

(resp. Mod-R) for the category of R-left-objects (resp. R-right-objects) in V (see [39, Section 2]). Note

that R-Mod and Mod-R are complete, cocomplete, abelian, or Grothendieck if V is so. Moreover, there

are functors

R[−,−] : (R-Mod)op ×R-Mod → V,
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[−,−]R : (Mod-R)op ×Mod-R → V, (6.7)

−⊗R− : Mod-R×R-Mod → V,

which behave in expected ways. For example, for X ∈ Mod-R the functor [X,−] (which a priori is a

functor from V to V) takes values in R-Mod and yields a right adjoint of X ⊗R −.

For any full subcategory A of R-Mod, one can now consider the tensor embedding

Θ0 : Mod-R → [A,V]0 given by X �→ (X ⊗R −) |A.

With these functors at hand, we leave it to the readers to formulate appropriate versions of, for example,

Theorems A–D from Section 1 and check how the existing proofs can be modified to show these.

Concerning Theorem C, one can use the adjunctions associated with the functors in (6.7) to show that if

V is locally λ-presentable, then so is Mod-R. To prove that geometrically pure injective objects in Mod-R

correspond to injective objects in [fp(R-Mod),V]0 (as in Theorem D), a crucial input is the hypothesis

that for all the objects X,Y ∈ Mod-R, where X is finitely presentable and J ∈ V is injective, the following

canonical morphism is an isomorphism:

X ⊗R [Y, J ] → [[X,Y ]R, J ].

We briefly mention a few examples. A monoid in Ab is nothing but a ring. For any ring R, the

stalk complex S(R) and the disc complex D(R) from Example 2.3 are monoids in (Ch(Z),⊗•
Z
) and in

(Ch(Z),⊗•
Z
), respectively. This viewpoint allows one to deal with Example 2.3 also in the case where R

is non-commutative.
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17 Estrada S, Gillespie J, Odabaşı S. Pure exact structures and the pure derived category of a scheme. Math Proc

Cambridge Philos Soc, 2017, 163: 251–264

18 Estrada S, Virili S. Cartesian modules over representations of small categories. Adv Math, 2017, 310: 557–609

19 Fox T F. Purity in locally-presentable monoidal categories. J Pure Appl Algebra, 1976, 8: 261–265

20 Freyd P J. Abelian Categories: An Introduction to the Theory of Functors. Harper’s Series in Modern Mathematics.

New York: Harper & Row, 1964



24 Holm H et al. Sci China Math

21 Garćıa Rozas J R. Covers and Envelopes in the Category of Complexes of Modules. Boca Raton: Chapman &

Hall/CRC, 1999

22 Garkusha G A. Classification of finite localizations of quasi-coherent sheaves. Algebra i Analiz, 2009, 21: 93–129
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