
COVERS, PRECOVERS, AND PURITY

HENRIK HOLM AND PETER JØRGENSEN

Abstract. We show that if a class of modules is closed under pure
quotients, then it is precovering if and only if it is covering, and this

happens if and only if it is closed under direct sums. This is inspired by

a dual result by Rada and Saoŕın.
We also show that if a class of modules contains the ground ring

and is closed under extensions, direct sums, pure submodules, and pure
quotients, then it forms the first half of a so-called perfect cotorsion pair

as introduced by Salce; this is stronger than being covering.

Some applications are given to concrete classes of modules such as
kernels of homological functors and torsion free modules in a torsion

pair.

0. Introduction

Covers. The main topic of this paper is the notion of covering classes.
To explain what that means, observe that the classical homological algebra
of a ring can be phrased in terms of the class of projective modules. This
class permits the construction of projective resolutions which again enable
the computation of derived functors.

In relative homological algebra, the class of projective modules is replaced
by another, suitably chosen class of modules. This replaces projective reso-
lutions by resolutions in terms of modules in the chosen class, and derived
functors by relative derived functors. A classical example of this is pure ho-
mological algebra where the projective modules are replaced by the so-called
pure projective modules; these are the direct summands in direct sums of
finitely presented modules. Pure homological algebra is a useful tool with a
number of applications; see for instance [12].

Some conditions have to be imposed on a class if it is to be a suitable
replacement for the projectives, and this leads to the notion of precovering
classes. These can be used instead of the projective modules for doing homo-
logical algebra. A class F of modules over a ring is precovering (or, as it is
also called, contravariantly finite) if each module M has an F-precover, that
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is, a homomorphism F → M with F in F, which has the property that each
homomorphism F ′ → M with F ′ in F has a factorization F ′ → F → M . A
precovering class enables the construction of well behaved resolutions: Pick a
precover F0 → M , let K0 be the kernel, pick a precover F1 → K0, let K1 be
the kernel, and so on. This results in a complex · · · → F1 → F0 → M → 0
which is called a proper F-resolution of M . It has the property that it becomes
exact when the functor Hom(F,−) is applied to it for each F in F. This im-
plies that it is unique up to homotopy, and hence well suited for homological
tasks such as the computation of relative derived functors.

Covering classes arise as a sharpening of the notion of precovering classes.
A class F is covering if each module M has an F-cover F →M , that is, an F-
precover with the additional property that if F → F is an endomorphism for
which F → F →M equals F →M , then F → F is in fact an automorphism.

The notions of precovering and covering classes can be dualized, and this
results in the notions of preenveloping and enveloping classes.

Considerable energy has gone into proving that concrete classes are (pre)-
covering or (pre)enveloping under suitable conditions on the ground ring.
Examples include the classes of modules which are projective, flat, injective,
Gorenstein projective, Gorenstein flat, Gorenstein injective, pure projective,
pure injective, of projective dimension ≤ n, torsion free, and cotorsion. A
number of these results can be found in Enochs and Jenda’s pivotal book [10],
but see also [1], [2], [3], [4], [5], [7], [8], [9], [11], [13], [14], [15], and [17].

This paper shows that classes possessing some simple properties from pure
homological algebra are covering, as we shall now describe.

Purity. Consider a short exact sequence 0→M ′ →M →M ′′ → 0 where
M ′ is a submodule of M and M ′′ is the corresponding quotient module. The
sequence is called pure exact if it stays exact when tensored with any module,
and then M ′ is called a pure submodule and M ′′ is called a pure quotient
module of M .

Recall the clever result [15, cor. 3.5(c)] by Rada and Saoŕın, that if a
class G of modules over a ring is closed under pure submodules, then G is
preenveloping if and only if it is closed under direct products.

Our first main result (Theorem 2.5) is the dual of this. In fact, we prove
more than the dual, namely, if a class F is closed under pure quotient modules,
then F is precovering if and only if it is covering, and this happens if and only
if F is closed under direct sums.

The proof does not use the methods of Rada and Saoŕın which do not
dualize. Instead, it is based on the deep result [3, thm. 5] which was used
by Bican, El Bashir, and Enochs to prove the Flat Cover Conjecture. To be
precise, we use a special case of [3, thm. 5] which is reproduced as Theorem 2.1
below. We also take inspiration from the proof of the Flat Cover Conjecture
itself, see the proof of Proposition 2.3.



COVERS AND PURITY 3

We go on to show that if F contains the ground ring and is closed under
extensions, direct sums, pure submodules, and pure quotients, then F is the
first half of a so-called perfect cotorsion pair (Theorem 3.4); this is a stronger
property than being covering. Cotorsion pairs go back to Salce [16], and have
gained popularity as a framework for relative homological algebra. The formal
definition is stated in Definition 3.3; the book [10] is a useful reference, but
see also [2], [3], [7], [11] and [13].

Applications. As an application of these results, we investigate classes
of the form Ker Ext1(A,−), Ker Tor1(B,−), and Ker Ext1(−, C), where A is
a class of finitely presented modules, B is any class of modules, and C is a
class of pure injective modules. The notation is straightforward; for instance,
Ker Tor1(B,−) is {M | Tor1(B, M) = 0 for each B in B }. Such classes had
been studied previously; for instance, it was proved by Eklof and Trlifaj in
[7, cor. 10 and thm. 12(i)] that Ker Tor1(B,−) and Ker Ext1(−, C) are both
covering, and when the ground ring is left-coherent, El Bashir’s result [8, thm.
3.3] implies that Ker Ext1(A,−) is also covering if one is willing to assume
Vopenka’s Principle on high cardinal numbers.

However, we prove some new results; for instance, if the ground ring is left-
coherent, then Ker Ext1(A,−)

⋂
Ker Ext1(−, C) is covering (Theorem 4.3).

We also give some concrete examples of classes of this form (Example 4.4), in-
cluding the class of left-modules of flat dimension ≤ m and injective dimension
≤ n over a left-noetherian ring, and the class of fp-injective left-modules.

The fp-injective left-modules had already been proved to be preenveloping
by Adams [1], and over a left-coherent ring, they had been proved to be
covering by Pinzon [14], but we recover their results with new proofs. We also
use our theory to give new proofs of the following: In a so-called hereditary
torsion pair of finite type, the torsion free modules form a covering class
(Theorem 4.8), and if, moreover, the ground ring is itself torsion free, then
the torsion free modules form the first half of a cotorsion pair (Theorem 4.9).
These results were first proved by different methods by Bican and Torrecillas
in [5, cor. 4.1], and Angeleri-Hügel, Tonolo, and Trlifaj in [2, exa. 2.7].

Notation. Our notation is standard and should not require explanations,
but we do wish to introduce the following blanket items.

Throughout the paper, R is a ring and the word class means class of R-
left-modules closed under isomorphisms.

The cardinality of a module M is denoted by |M |.

1. Cardinality and co-cardinality classes

In this preliminary section, we introduce the notions of cardinality and co-
cardinality classes. They are inspired by [10, Props. 5.2.2 and 6.2.1], and can
be used to prove that classes of modules are precovering and preenveloping.
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Definition 1.1. A class F is called a cardinality class when, for each R-
left-module M , there is a cardinal number f such that each homomorphism
F →M with F in F can be factored as F → F ′ →M with F ′ in F satisfying
|F ′| ≤ f.

A class G is called a co-cardinality class when, for each R-left-module N ,
there is a cardinal number g such that each homomorphism N → G with G
in G can be factored as N → G′ → G with G′ in G satisfying |G′| ≤ g.

The next proposition is very close to being in [10], but we think it is worth
to state it explicitly.

Proposition 1.2. Let F be a class which is closed under direct summands.
Then F is precovering if and only if it is a cardinality class which is closed
under set indexed direct sums.

Let G be a class which is closed under direct summands. Then G is preen-
veloping if and only if it is a co-cardinality class which is closed under set
indexed direct products.

Proof. It is enough to prove the first statement since the second one is dual.
If F is a cardinality class which is closed under set indexed direct sums,

then it is precovering by [10, prop. 5.2.2]. Conversely, if F is precovering, then
it is a cardinality class, also by [10, prop. 5.2.2].

Finally, let F be precovering and let {Fi} be a set indexed system from F.
Pick an F-precover F →

⊕
Fi. Each Fj has an inclusion into

⊕
Fi, and since

Fj is in F, each inclusion lifts through F →
⊕

Fi. Taken together, this gives
a splitting of F →

⊕
Fi, so

⊕
Fi is a direct summand of F . But F is closed

under direct summands, so
⊕

Fi is in F. �

Example 1.3. If B is a set of R-left-modules, then it is easy to verify that
Add B, the class of modules which are isomorphic to a direct summand of a
set indexed direct sum of modules from B, is a co-cardinality class.

Hence, if Add B is closed under set indexed direct products, then it is
preenveloping by Proposition 1.2. Note that in some cases of interest, Add B
is indeed closed under set indexed direct products, for example if B = {B}
for a finitely generated module B over an Artin algebra, cf. [13, lem. 1.2].

2. Purity

This section shows that if a class F is closed under pure quotient modules,
then F is precovering if and only if it is covering, and this happens if and only
if F is closed under direct sums (Theorem 2.5).

To begin, let us recall the following deep result which is a special case of
[3, thm. 5].

Theorem 2.1. For each cardinal number m there exists a cardinal number
f, depending only on m and the ground ring R, such that if an inclusion
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of R-left-modules K ⊆ F has |F/K| ≤ m and |F | ≥ f then there exists
0 6= K ′′ ⊆ K ⊆ F such that K ′′ is a pure submodule of F .

The following lemma is a standard application of Zorn’s lemma.

Lemma 2.2. Given an inclusion of modules K ⊆ F , there exists a K ′ which
is maximal with the properties that K ′ ⊆ K ⊆ F and that K ′ is a pure
submodule of F .

The proof of the following proposition is inspired by the proof of [3, thm.
6].

Proposition 2.3. If a class F is closed under pure quotient modules, then it
is a cardinality class (cf. Definition 1.1).

Proof. Let M be an R-left-module of cardinality m and let f be the cardinal
number from Theorem 2.1. Let F → M be a homomorphism with F in F.
We will construct a factorization as required by Definition 1.1.

If |F | ≤ f, then consider the factorization of F →M as F → F →M , where
the first arrow is the identity. This meets the requirements of Definition 1.1.

If |F | > f, then let K = Ker(F →M) and use Lemma 2.2 to find K ′ max-
imal with the properties that K ′ ⊆ K ⊆ F and that K ′ is a pure submodule
of F . Then F →M has the factorization F → F/K ′ →M , and we will show
that this meets the requirements of Definition 1.1.

First, F is closed under pure quotients, so F/K ′ is in F.
Secondly, we must show |F/K ′| ≤ f. Assume to the contrary that |F/K ′| >

f. Consider the inclusion K/K ′ ⊆ F/K ′. Since F/K is isomorphic to a

submodule of M , we have
∣∣∣∣ F/K′

K/K′

∣∣∣∣ = |F/K| ≤ |M | = m, and hence Theorem

2.1 says that there exists 0 6= K ′′/K ′ ⊆ K/K ′ ⊆ F/K ′ such that K ′′/K ′ is
a pure submodule of F/K ′. We now have K ′ $ K ′′ ⊆ K ⊆ F , and we claim
that K ′′ is in fact a pure submodule of F , contradicting the maximality of
K ′.

For this, consider the commutative diagram

0 // K ′ // K ′′ //� _

��

K ′′/K ′ //
� _

��

0

0 // K ′ // F // F/K ′ // 0

The lower row is pure exact and the inclusion K ′′/K ′ ⊆ F/K ′ is pure, both
by construction. Hence, if we tensor the diagram with an arbitrary R-right-
module Q it follows from the snake lemma that Q⊗K ′′ → Q⊗F is injective.
So K ′′ is a pure submodule of F as desired. �

The following lemma is due to Angeleri-Hügel, Mantese, Tonolo, and Trli-
faj; cf. [7, proof of lem. 9].
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Lemma 2.4. If a class F is closed under set indexed direct sums and pure
quotients, then it is also closed under colimits indexed by partially ordered
sets.

Proof. Let {Fi} be a system in F indexed by a partially ordered set. Then it is
easy to see that the canonical surjection

⊕
Fi → lim−→ Fi is a pure epimorphism,

and the lemma follows. �

Theorem 2.5. If a class F is closed under pure quotient modules, then the
following conditions are equivalent.

(i) F is closed under set indexed direct sums.
(ii) F is precovering.
(iii) F is covering.

Proof. Observe that F is closed under direct summands, since the projection
onto a direct summand turns it into a pure quotient. Moreover, F is a cardi-
nality class by Proposition 2.3.

Proposition 1.2 gives that (i) and (ii) are equivalent. By definition, (iii)
implies (ii).

Finally, suppose that (ii) holds. Then (i) also holds by the above, and so
Lemma 2.4 says that F is closed under colimits indexed by partially ordered
sets, and in particular under well ordered colimits. But then F is covering by
[10, thm. 5.2.3], proving (iii). �

Remark 2.6. The dual of Proposition 2.3 and the dual of Theorem 2.5 except
the covering part were proved, up to differences of terminology, by Rada and
Saoŕın in [15, prop. 2.8 and cor. 3.5(c)]. Namely, if a class G is closed under
pure submodules, then it is a co-cardinality class (cf. Definition 1.1), and if a
class G is closed under pure submodules, then G is preenveloping if and only
if it is closed under set indexed direct products.

The covering part of Theorem 2.5 cannot be dualized. For example, if a
ring is right-coherent, then the class of flat left-modules is closed under set
indexed products, and it is easy to see that this class is also closed under pure
submodules. But flat envelopes of left-modules do not necessarily exist, see
[9, thm. 6.1].

3. Cotorsion pairs

This section shows that if F is a class which contains the ground ring and
is closed under extensions, direct sums, pure submodules, and pure quotients,
then F is the first half of a so-called perfect cotorsion pair (see Definition 3.3).

Recall the following important notion from Enochs and López-Ramos [11,
def. 2.1].

Definition 3.1. A class F is called a Kaplansky class if there is a cardinal
number f such that, when F is in F and f is an element of F , we have
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f ∈ F ′ ⊆ F for some submodule F ′ where F ′ and F/F ′ are in F and where
|F ′| ≤ f.

Proposition 3.2. If a class F is closed under pure submodules and pure
quotient modules, then it is a Kaplansky class.

Proof. Given F in F and f in F , the submodule Rf has |Rf | ≤ |R|.
By [10, lem. 5.3.12], there is a cardinal number f depending only on |R|

such that we can enlarge Rf to a pure submodule F ′ of F with |F ′| ≤ f. So
f ∈ F ′ ⊆ F , and F ′ and F/F ′ are both in F since F is closed under pure
submodules and pure quotients. �

Let us recall the definition of a cotorsion pair. This goes back to Salce [16],
and has gained popularity as a framework for relative homological algebra;
among our references we could mention [2], [3], [7], [10], [11], and [13].

Definition 3.3. Let F and G be classes. Then F⊥ = Ker Ext1(F,−) is the
class {N ∈ Mod R | Ext1(F,N) = 0 for F ∈ F } and ⊥G = Ker Ext1(−, G) is
the class {M ∈ Mod R | Ext1(M,G) = 0 for G ∈ G }.

The pair (F, G) is called a cotorsion pair if F⊥ = G and F = ⊥G.
The cotorsion pair is called perfect if F is covering and G is enveloping.

Theorem 3.4. If a class F contains the ground ring R and is closed un-
der extensions, set indexed direct sums, pure submodules, and pure quotient
modules, then (F, F⊥) is a perfect cotorsion pair.

In particular, F is covering and F⊥ is enveloping.

Proof. We shall use the powerful result [11, thm. 2.9] to prove this.
To verify that the conditions of [11, thm. 2.9] are satisfied, first note that

F is a Kaplansky class by Proposition 3.2.
Since F contains R and is closed under set indexed direct sums, it follows

that F contains all free modules. But F is closed under pure quotients and so
in particular under direct summands, and so in fact, F contains all projective
modules.

Finally, since F is closed under set indexed direct sums and pure quotients,
it is closed under all colimits indexed by partially ordered sets by Lemma 2.4.

This shows that the conditions of [11, thm. 2.9] are satisfied, and the present
theorem follows. �

4. Applications

This section gives a number of applications of the theory developed above.

Remark 4.1. Recall the “⊥” notation from Definition 3.3. In the following
results, note that Ker Tor1(B,−) can be obtained as ⊥C by setting C equal
to the set of all Pontryagin duals HomZ(B, Q/Z) for B in B. This holds by
[7, proof of cor. 11] and also follows from computation (2) below.
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Lemma 4.2. Let C be a class of pure injective R-left-modules, B a class of
R-right-modules, and A a class of finitely presented R-left-modules.

(i) The class ⊥C is closed under set indexed direct sums and pure quo-
tients.

(ii) The class Ker Tor1(B,−) is closed under set indexed direct sums, pure
quotients, and pure submodules.

If R is right-coherent and B consists of finitely presented modules,
then Ker Tor1(B,−) is closed under set indexed direct products.

(iii) The class A⊥ is closed under set indexed direct products and pure
submodules.

If R is left-coherent, then A⊥ is closed under set indexed direct
sums and pure quotients.

Proof. (i). This is easy to prove, using the observation that for C in C, the
functor Hom(−, C) sends pure exact sequences to exact sequences.

(ii). Since Ker Tor1(B,−) has the form ⊥C for a suitable set C by Remark
4.1, the statements about set indexed direct sums and pure quotients follow
from part (i).

If 0 → X ′ → X → X ′′ → 0 is a pure exact sequence, then by [12, thm.
6.4], the Pontryagin duality functor (−)∨ = HomZ(−, Q/Z) gives a split exact
sequence 0→ (X ′′)∨ → X∨ → (X ′)∨ → 0, so if B is in B then there is a split
exact sequence

0→ Ext1
Ro(B, (X ′′)∨)→ Ext1

Ro(B, X∨)→ Ext1
Ro(B, (X ′)∨)→ 0. (1)

Moreover, a standard computation shows

Ext1
Ro(B, (−)∨) = Ext1

Ro(B, HomZ(−, Q/Z))

' HomZ(TorR
1 (B,−), Q/Z)

= TorR
1 (B,−)∨. (2)

Now let X be in Ker Tor1(B,−) so TorR
1 (B, X) = 0. The last computation

implies Ext1
Ro(B, X∨) = 0. The sequence (1) shows Ext1

Ro(B, (X ′)∨) = 0,
and then the last computation again implies that TorR

1 (B, X ′) = 0. So X ′ is
in Ker Tor1(B,−).

Finally, if R is right-coherent and B consists of finitely presented modules,
then each B in B has a projective resolution consisting of finitely generated
modules, so Ker Tor1(B,−) is closed under set indexed direct products because
these are preserved by the functor Tor1(B,−).

(iii). It is clear that A⊥ is closed under set indexed direct products because
these are preserved by the functor Ext1(A,−).

If

0→ Y ′ → Y → Y ′′ → 0 (3)
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is a pure exact sequence and A is in A, then there is an exact sequence
Hom(A, Y ) → Hom(A, Y ′′) → Ext1(A, Y ′) → Ext1(A, Y ). The first arrow is
surjective because A is finitely presented, so the second arrow is zero. If Y
is in A⊥ then Ext1(A, Y ) = 0, but then the sequence shows Ext1(A, Y ′) = 0
whence Y ′ is in A⊥.

Now suppose that R is left-coherent. Then each A in A has a projective
resolution consisting of finitely generated modules, so A⊥ is closed under set
indexed direct sums because these are preserved by the functor Ext1(A,−).

By [12, thm. 6.4], Pontryagin duality (−)∨ = HomZ(−, Q/Z) sends the pure
exact sequence (3) to a split exact sequence 0→ (Y ′′)∨ → Y ∨ → (Y ′)∨ → 0,
so if A is in A then there is a split exact sequence

0→ Tor1((Y ′′)∨, A)→ Tor1(Y ∨, A)→ Tor1((Y ′)∨, A)→ 0. (4)

However, A has a projective resolution consisting of finitely generated mod-
ules, so a standard computation shows

TorR
1 ((−)∨, A) = TorR

1 (HomZ(−, Q/Z), A)

' HomZ(Ext1
R(A,−), Q/Z)

= Ext1
R(A,−)∨.

Now let Y be in A⊥ so Ext1(A, Y ) = 0. The last computation implies
Tor1(Y ∨, A) = 0. The sequence (4) shows that Tor1((Y ′′)∨, A) = 0, and
then the last computation again implies that Ext1(A, Y ′′) = 0. So Y ′′ is in
A⊥. �

Some parts of the following theorem were already known; for instance, it
was proved by Eklof and Trlifaj in [7, cor. 10 and thm. 12(i)] that the classes
Ker Tor1(B,−) and ⊥C are both covering, and when the ground ring is left-
coherent, El Bashir’s result [8, thm. 3.3] implies that A⊥ is also covering if one
is willing to assume Vopenka’s Principle on high cardinal numbers. However,
it is new that we are able to work with the intersections of such classes.

Theorem 4.3. Let C be a class of pure injective R-left-modules, B a class of
R-right-modules, and A a class of finitely presented R-left-modules.

(i) The classes ⊥C and Ker Tor1(B,−) are covering.
If R is left-coherent, then A⊥

⋂⊥C and A⊥
⋂

Ker Tor1(B,−) are
covering.

(ii) The class Ker Tor1(B,−) is the first half of a perfect cotorsion pair.
If R is left-coherent and is an element of A⊥, then the class

A⊥
⋂

Ker Tor1(B,−)

is the first half of a perfect cotorsion pair.
(iii) The class A⊥ is preenveloping.

If R is right-coherent and B consists of finitely presented modules,
then the class A⊥

⋂
Ker Tor1(B,−) is preenveloping.
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Proof. (i). It is enough to prove the statements involving ⊥C, since the class
Ker Tor1(B,−) has the form ⊥C by Remark 4.1.

The class ⊥C is closed under set indexed direct sums and pure quotients
by Lemma 4.2(i). If R is left-coherent, then A⊥ has the same properties
by Lemma 4.2(iii), and so A⊥ ∩ ⊥C also has the same properties. Now use
Theorem 2.5.

(ii). The class Ker Tor1(B,−) clearly contains R and is closed under ex-
tensions, and by Lemma 4.2(ii) it is also closed under set indexed direct
sums, pure quotients, and pure submodules. If R is left-coherent and is con-
tained in A⊥, then A⊥ has the same properties by Lemma 4.2(iii), and so
A⊥
⋂

Ker Tor1(B,−) also has the same properties. Now use Theorem 3.4.
(iii). The class A⊥ is closed under set indexed direct products and pure

submodules by Lemma 4.2(iii). If R is right-coherent and B consists of finitely
presented modules, then Ker Tor1(B,−) has the same properties by Lemma
4.2(ii), and so A⊥

⋂
Ker Tor1(B,−) has the same properties. Now use Remark

2.6. �

Example 4.4. (i) Let m be an non-negative integer and consider the
class

F≤m = {F |F is an R-left-module with flat dimension ≤ m }.

Then (F≤m, (F≤m)⊥) is a perfect cotorsion pair. In particular, F≤m

is covering.
Moreover, if R is right-coherent, then F≤m is also preenveloping.
This follows from Theorem 4.3, (ii) and (iii), by setting B equal

to the m’th syzygies in projective resolutions of finitely presented
modules; cf. [12, thm. A.8].

(ii) Suppose that R is left-noetherian and let n be an non-negative inte-
ger. Then the class

I≤n = { I | I is an R-left-module with injective dimension ≤ n }

is covering and preenveloping.
This follows from Theorem 4.3, (i) and (iii), by setting A equal

to the n’th syzygies in projective resolutions of finitely generated
modules; cf. [12, thm. A.6].

(iii) Suppose that R is left-noetherian and let m and n be non-negative
integers. Then the class

F≤m ∩ I≤n =
{

X

∣∣∣∣ X is an R-left module with flat dimen-
sion ≤ m and injective dimension ≤ n

}
is covering.

Moreover, if R is right-coherent, then F≤m ∩ I≤n is also preen-
veloping.
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This follows from Theorem 4.3, (i) and (iii), using the same A and
B as above.

(iv) The class of fp-injective R-left-modules,

J = { J | Ext1(A, J) = 0 for A a finitely presented R-left-module },

is preenveloping.
Moreover, if R is left-coherent, then J is also covering.
This follows from Theorem 4.3, (i) and (iii), by setting A equal to

all the finitely presented modules.
These results on J were known from [1] (see also [10, prop. 6.2.4])

and [14] with different proofs.

Finally, we use our methods to give new proofs of some known results about
the torsion free modules in a torsion pair.

Definition 4.5. Recall from [6] that a pair of classes (T, F) is called a torsion
pair if T∩F contains only modules isomorphic to 0, the class T is closed under
quotient modules, the class F is closed under submodules, and each module
M permits a short exact sequence of the form 0→ T →M → F → 0 with T
in T and F in F.

The torsion pair is called hereditary if T is also closed under submodules,
see [17, p. 441].

The torsion pair is said to be of finite type if each left-ideal a for which R/a
is in T contains a finitely generated left-ideal b for which R/b is in T, see [4, p.
649]. Note that if R is left-noetherian, then the torsion pair is automatically
of finite type.

Lemma 4.6. Let (T, F) be a hereditary torsion pair. A module F is in F if
and only if Hom(R/a, F ) = 0 for each ideal a such that R/a is in T.

If (T, F) is of finite type, then F is in F if and only if Hom(R/b, F ) = 0
for each finitely generated left-ideal b such that R/b is in T.

Proof. The module F is in F if and only if Hom(T, F ) = 0 for each T in
T, see [6]. It is a small computation to see that this implies the lemma’s
statements. �

Lemma 4.7. Let (T, F) be a torsion pair. Then

(i) F is closed under extensions.
(ii) If (T, F) is hereditary, then F is closed under set indexed direct sums.
(iii) If (T, F) is hereditary and of finite type, then F is closed under pure

submodules and pure quotient modules.

Proof. (i). This holds because F is in F if and only if Hom(T, F ) = 0 for each
T in T.
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(ii). Let {Fi} be a set indexed system in F. Let a be a left-ideal in R with
R/a in T. Since R/a is finitely generated,

Hom(R/a,
⊕

Fi) ∼=
⊕

Hom(R/a, Fi) = 0

where = is because each Fi is in F. By Lemma 4.6 this shows that
⊕

Fi is in
F.

(iii). Let F be in F and let 0 → F ′ → F → F ′′ → 0 be a pure exact
sequence. As F is closed under submodules, F ′ is in F as desired.

Let b be a finitely generated left-ideal in R with R/b in T, and let R/b→ F ′′

be a homomorphism. Since R/b is finitely presented, R/b → F ′′ factors
through the pure epimorphism F → F ′′. But F is in F so each homomorphism
R/b→ F is zero, and it follows that R/b→ F ′′ is zero. Hence F ′′ is in F by
Lemma 4.6, as desired. �

The following result was first proved by Bican and Torrecillas in [5, cor.
4.1].

Theorem 4.8. Let (T, F) be a hereditary torsion pair of finite type.
Then F is covering.

Proof. Lemma 4.7(ii) says that F is closed under set indexed direct sums, and
Lemma 4.7(iii) says that F is closed under pure quotients, so F is covering by
Theorem 2.5. �

The following result was first proved by Angeleri-Hügel, Tonolo, and Trlifaj
in [2, exa. 2.7].

Theorem 4.9. Let (T, F) be a hereditary torsion pair of finite type where the
ground ring R is in F.

Then (F, F⊥) is a perfect cotorsion pair.
In particular, F is covering and F⊥ is enveloping.

Proof. Lemma 4.7 says that F is closed under extensions, set indexed direct
sums, pure submodules, and pure quotients. As R is in F, it follows that
(F, F⊥) is a perfect cotorsion pair by Theorem 3.4. �
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