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The purpose of this article is to determine the set of unitarizable highest weight 
modules corresponding to Hermitian symmetric spaces of the noncompact type. 
The major step is that of proving unitarity at the “last possible place.” With this 
established the description of the full set of unitarizable highest weight modules 
follows by a straightforward tensor product argument combined with the main 
ingredients of the proof of the key theorem: Bernstein-Gelfand-Gelfand, and a 
diagramatic representation of the set of positive noncompact roots. 

The purpose of this article is to determine the set of unitarizable highest 
weight modules corresponding to Hermitian symmetric spaces of the 
noncompact type. Specifically let g be a simple Lie algebra over R and let 
g = f + p be a Cartan decomposition. By assumption t has a nontrivial 
center q = R . h, and t = f, @ R . h,, where t, = [t, t]. The modules W,, 
considered are determined by a pair (A,,, A), where ,4, is f ,-dominant and 
integral and A E R. That is, A = (A,,, ,I) determines a finite-dimensional 
iY/(f”)-module V,, and W,, is the irreducible quotient of %(g”) @4/(tcBip-, V,, , 
where p’ = (zEp’I[h,,z]=iz}. 

W,, may be represented as a space of V,,-valued polynomials on p ’ and 
the g-invariant Hermitian form on W,,, restricted to a f ,-invariant subspace 
of dth order polynomials is a dth order polynomial in A. By considering the 
set of first order polynomials on p + this leads to the idea of “the last 
possible place of unitariry;” explicitly defined and determined in [6]. The 
main theorem we prove here is that the module at this last possible place 
indeed is unitarizable. From this the picture is completed by forming tensor 
products. along the lines of [4], of the unitary modules with the most 
singular, nontrivial, unitarizable module WA, corresponding to A, = 0. 

The main ingredients in the proof are Bernstein-Gelfand-Gelfand and a 
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diagrammatic representation of d ,’ ; the set of positive noncompact roots, 
which we develop here. The final steps in the proof then consists of 
describing certain subsets of d,+ in terms of its diagram. For some of the 
classical groups the combinatorics connected with this has so far been too 
involved, and for those groups we have to rely on the proof of the 
Kashiwara-Vergne conjecture [3,5-7, 131. After this work was completed 
we have learned that Enright, Howe, and Wallach [lo] have obtained the 
same result, see also Garland and Zuckerman [ 1 I], and [ 121. Finally, the 
significant contribution by Parthasarathy [ 141 should be mentioned. 

1. NOTATION 

Let g be a simple Lie algebra over I? and g = f + p a Cartan decom- 
position of g. We assume that f has a nonempty center q; in this case q = 
R . h, for an h, E q whose eigenvalues under the adjoint action on pc are ki. 
Let 

and 

p-={zEp”I[h,,z]=-iz}. 

Let f , = [t, t ] and let h be a maximal Abelian subalgebra oft. Then f = t, @ 
huh,, b=(t,nf,)OR*h,, (bnf,) ’ is a Cartan subalgebra of t:, and hc 
is a Cartan subalgebra of gc. We let u denote the conjugation in gc relative 
to the real form g of gc. The sets of compact and noncompact roots of g” 
relative to hC are denoted A, and A,, , respectively. A = A, U A,, . We choose 
an ordering of A such that 

P+= c+g=, 
CZEA, 

and set 

and 

g+= Y- g=, g-= x ga, 

aTA+ UEA- 

p=t r a. 
-1 LYEA 

Throughout /I denotes the unique simple noncompact root. For y E A let H, 
be the unique element of 3 n [(SC)‘, (SC)-y] for which y(H,) = 2. Then for 
all y1 in A 

(r, 9 Y> = $f = y,(H,), (1-l) 9 
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where (. , .) is th b lm e i ’ ear form on (h’)* obtained from the Killing form 
of 9’. The reflexion corresponding to y E A is denoted by cry. 

q(h) = Yl - (Y, 3 Y>Y* (1.2) 

For a E AZ choose z, E (9’)” such that 

lz,, n, ZZ] =H (1.3) 

and let z-, =zz. Following the notation of [S] we let y, denote the highest 
root. Then Y,E Ai, and H,6? [hnI,]c. Finally we let U+ u* be the 
antilinear antiautomorphism of %(g’) that extends the map x --t -x0 of 9’. 

2. MODULES 

Corresponding to the decomposition %(g’) = (SY(g”) g’ @ g-P(g’)) @ 
W(I)‘) we let, for u E v(g’), y(u) denote the unique element of P(h”) for 
which u - y(u) is in P(g’) g+ @ g-P/(9’). 

Let x E (I)‘)*. The Verma module M, of highest weight x - p is defined to 
be M,= 2V(gc)/Z,-,, where ZxeO is the left ideal generated by the elements 
W -x(H)) + p(W), ‘H E $‘, and 9 + . We denote the image of 1 in M, by 
1 x--p, and the unique irreducible quotient is denoted by L,. 

If /i, is a dominant integral weight of I, and if A E R we denote by /1 = 
(.4,. A) the linear functional on hc given by 

Ai (mid c=(ig, ,4 (H,) = A. (2.1) 

Further we let V, denote the irreducible finite-dimensional %((tC)-module of 
highest weight ,4. As %(I:)-modules, clearly V,, = I’,,). 

The sesquilinear form B, on P(g’), 

B,,@, ~1 =A(Y(u*u)) (2.2) 

is g-invariant. We let N, denote the kernel of B,, 

N,, = {u E %(g’) 1 Vu E P(g’):A(y(u*u)) = O), (2.3) 

and set 

N,,(f) = N, n W(f”). (2.4) 

Clearly, 

Z,,cN,, and I,, (f 1 E N, 0 ). (2.5) 
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Let J,, = I,, + g(gc) N,,(t). Since %(g’) = g’(p) %(tC) %(p ‘) and V, = 
P((tC)/N,,(t) we have 

LEMMA 2.1. P(gc) @Icfcgp+j V,, = s%‘(Q’)~~. 

Since J,, c N,, , B, gives rise to a g-invariant Hermitian form, also 
denoted by B,, , on P(g”) Oy~I~op+~ V,. 

The unique irreducible quotient W,, of g(gc) @yCIcop+) V, is given as 

W, = ~‘(~c&Y,. (25) 

Any g-invariant Hermitian form on W,, is proportional to B,. 
For further background information we refer to [8, Sect. 1; 4, Sect. 21. 

3. BERNSTEIN, GELFAND, AND GELFAND 

The only major theorem we shall be using describes the exact 
circumstances under which the irreducible quotient L, of one Verma module 
can occur in the Jordan-Holder series JH(M,) of another. First some ter- 
minology. 

DEFINITION 3.1. Let ,& yE (bC)*. A SCqUeUCC Of rOOtS yl,...,yk E A+ k 
said to satisfy condition (A) for the pair 01, w) if 

(i) x = &,..., uyI w. 
(ii) Put x0 = w, xi = byi,..., ~,y/.Thenx~-,-X~=n,y,,whereniEn\l. 

Observe that ni = (xi- 1, yi)* 

THEOREM 3.2 [ 1, p. 421. Let x, w ~5 (b”)*. Then L,E JH(M,) if and 
only if there exists a sequence y, ,.+., yk E A + satisfying condition (A) for the 
pair (x, v>. 

In the present situation, A + = Ai U AZ. Through a series of elementary 
lemmas it will now be proved that if x, v E (h’)*, if a sequence of roots from 
A+ satisfies condition (A) for the pair 01, v), and if moreover x is I,- 
dominant, then there also exists a sequence of roots from Ai satisfying the 
condition for this pair. 

The starting point is 

LEMMA 3.3. If Vp E A:, 01, p) > 0, and if y, ,..., yk E A ’ satisfies 
condition (A) for the pair (x, t,u), then yk E AZ. 
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ProoJ Let w = n, yi + . . . + n,, ykr and o’ = o - n, yk. By assumption, 

nk = (v - w’3 Yk) = 01 + nkyk7 Yk) = (x3 Yk) + 2nke 

Thus, 
($. yk) = -nk < 0. 1 

We now invoke the basic structure of the given situation through the 
following well-known fact: 

LEMMA 3.4. Let y E A. The coeflcient of/l in y is -1, 0. or 1. 

In particular, if y E A,S , the coefficient is 1. 

COROLLARY 3.5. Let a E A,, and ,u E A,. Then 

(lu.a)E {-l.O,l} and (a,p) E (-2, -1.0. 1. 2}. 

Proof. o,(y) =,D - (,u, a)a and thus the first assertion is clear. Let 
(a. ,u) = n and observe that a - n,u E A. Since (a - np. a) = 2 - [n / it follows 
that a,(a - np) = (InI - 1)a - np. 1 

Let yI, y2,..., yk be a sequence of roots in A + that satisfies condition (A) 
for a pair 01, w) of elements of (I)‘)*, let i < k. k > 2, and assume that 
yip i E A: and yi E Ai. Thus 

Xi=Isyiuyi_,Xi-2, 

= (xi-25 Yi-1) 
(3.1) 

ni- I and n,=tii- IqYi)=Ca, ,Xi&Z?Yi). 

We wish to replace the pair (y,_, , yi) in the sequence by either a pair (yol y,,) 
of positive roots such that ya E Ai or by a single noncompact positive root 
yc in such a way that the new sequence also satisfies condition (A) for 01, w). 
This is in fact possible even in a more general context. In the present 
situation, however, it follows from Corollary 3.5 that only a few cases need 
to be described. We do this, and omit the simple verifications: 

(i) ni. 1 t (Yi,Yi-l)n,>O: 

@a, Yb)= C”yim,Yi3 YL-1). 

(ii) nipI + (Yi3Y[-I)n)=0: 

YczayfmIYi. 

(iii) ni+(yi-,,yi)ni-.,>O: 

(Ya3 Yb)= (Yi3ayiYjm~ I)* 
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(iv) n, + (vi-1 9 yi) ni- 1 = 0: 

Observe that in the last case, (yi, yi- ,) = -2 and (yi_ i , yi) = -1. 
The net effect of this is that we may rearrange, perhaps even shorten, our 

sequence yi ,..., yk in such a way that compact roots participating in it move 
towards yk or disappear. If we are in the situation of Lemma 3.3 they can 
thus be made to disappear completely. Hence we may state 

PROPOSITION 3.6. Let x, tp E (bc)* and assume that the sequence 
y, ,..., yk satisfies condition (A) for the pair (x, w). If x is t,-dominant we may 
assume that yi E AZ, i = I,..,, k. 

4. CONCERNING A,+ 

In the following we shall consider sets built up of elements from Ai. There 
is a pictorial way of representing these subsets which stems from a 2- 
dimensional diagram ofA:. This construction, which we present here, is 
quite analogous to, and easily derived from, the Dynkin diagram ofd. 

We stress that besides elementary facts about root systems, everything 
follows from Lemma 3.4. 

Let Z, denote the set of simple compact roots. 

LEMMA 4.1. Let a E A:, let ,u, ,..., pcli be distinct elements of EC, and 
assume that a+bjEA,+ for all j=l,...,i. Then i<2. If i=2, a+p,+ 
lu, E A,+. 

Proof: (i) Assume i 2 2, and Vj: (a,pj) = 0. Since in this case 
(a + Pjuj, a + Pj) = (a, a) + (Pjui. Pj)T (a+~juj,a+~j)=2(a,a)=2(~j,~j). 

Consider two distinct elements, ,uj, and ,uju, from the set {~i,...,~,.}, and let 
(a +Pj,, a +Pj2) = n. 

By Lemma 3.4, n = 0, 1, or 2, but n = 1 is excluded since pi, -pj, is not a 
root. It follows that (pj,, pjuj,) = f 2 and thus, since the roots are simple, 
(~j,, pjuj,) = -2. This, however, is not possible since by symmetry, (1ui,, pj,) = 
-2 and pjui, is not proportional to ,ujz. 

Thus there can be at most one ,uj such that (a,,uj) = 0. In this case a is 
short, and a +;ui is long. 

(ii) Assume i > 3, (a,,uj,) = 0, (a,pj,) # 0, and (a,pj,) # 0. Let n2 = 
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(a,~~*) and n3 = (a,~~,). By Corollary 3.5 it follows easily that root strings 
are of length at most 3 (cf. Proposition 6.2 in 161). By (i), Q is short and 
hence n2 = n3 = -1. Thus, by Corollary 3.5. @j2v a) = (pj, 3 a) = -1, and, in 
particular, puj2 and ,u~, are short. a + pj2 and a + /I,, are clearly long. It follows 
that (a + pjl, a + pj,) = 1 + (~j, ,,u~,), and as in (i) this implies that 
(Pj,3P,j2) = (Pj,3Pj,)= -l* 

Consider (a + pjl, a + P,~,). By the previous observations this equals 
$(pj,,pj,), and since it can only take the values 0 or 2, (clj,, clj,) = 0. 
However, this leads to a contradiction of Lemma 3.4 since a + ,uiz $ ,ui3 E A,,+ 
and (a + ,uj2 + pj3, a + pi,) = -1. In other words: if P,~, is present either ,ujz or 
,u~, (or both) is not. If, say, pi2 is present the results concerning it and clj, 
remain valid. In particular, (~~,,il(~*) = -1 and a + pj, + ,ujI as well as a + 
P,~, + 2~~~ are elements of A,+. 

(iii) Assume i > 2 and (a,p,) = -2. It follows from (ii) that 
(u, ,u~) = -n ( 0, and Corollary 3.5 implies that a is long and ,u, is short. An 
easy computation now gives that (a + np2, a + 2,u,) < 0 which contradicts 
Lemma 3.4. Thus, if (a,pu,) = -2, i = 1. 

(iv) Assume (a,p,) = (a,~~) = (a,p3) = -1. Obviously, a, ,u,, pz, and 
,u, are of equal length. By considering (a +pi, a + pj) it is seen that the 
compact roots are pairwise orthogonal. Since this implies that, e.g., a + p, + 
,u,EA,‘andsince (a+~1+~z,a+~3)=-l,weconcludethattherecanbe 
at most two roots in EC,, ,~i and ,uz, say, such that (a,p,) = (a.,~~) = -1. In 
this case (p,,y,)=Oanda+,~,+,~~~A,+. I 

By considering the basis of A consisting of the negatives of the elements in 
C, together with the previously highest root y,. we naturally obtain an 
analogous result concerning the possibilities of subtracting simple compact 
roots from a given c1 E A ,S . 

Now, p+ is a highest weight module for 1: and each root space is one- 
dimensional, hence any a E A,+ can be written as a = a, + p, where a, E A,: 
and ,U E C,. This observation together with Lemma 4.1 leads directly to the 
construction of the diagram of AZ : 

One begins with (say) p and draws an arrow originating at p for each 
simple root ,U~ such that ,fJ’ + pi E AZ. Suppose for simplicity that i = 2 and 
consider p + ,u, . By Lemma 4.1 (p + ,u,) + ,u~ E A ,’ so there can be at most 
one morepu,EC, such that (j3+p,)+,uu,EA,t. 

It follows again from Lemma 4.1 that pl, if it exists, is different from p,, 
andp+,u,+pz+p3EA,t. In this case one draws two arrows originating at 
P-t/J , ; one parallel to ,uz and with the same label, and another parallel to R, 
and labelledp,. Similarly ,ul is drawn from ,8 +,u~ in such a way that its 
endpoint coincides with the endpoint of the ,u~ drawn from p +,u,. 
Continuing along these lines the diagram may easily be completed. In fact, 
the only situation which a priori might ruin this simple picture, that in which 
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we reach an a E dz in the diagram and for reasons of the structure of the 
previously constructed part of the diagram are forced to make the same 
simple compact root puo point out from a in two different directions, is 
excluded by assumption. This observation is rather useful in the limitations it 
puts on the diagrams. We formulate it as a lemma which eliminates a 
situation that obviously would have to occur if the described phenomenon 
could take place. 

LEMMA 4.2. For no a E A,+ does there exist three distinct roots, p,,, ,u, , 
andpu,EC, such that a-,u,, a-p*, a -,u, +,u,, and a-p, +pO all are 
elements of AZ. 

Proof: We may assume that for no a’ smaller than a does such a 
phenomenon occur. (a =/3 is excluded by assumption.) By excluding all 
other possibilities it follows from Lemma 4.1 that (a, p,) = (a,,q) = 1. (See 
Fig. 1.) Suppose (,u~, p,) < 0, and consider a -p, . It follows that we must be 
in case (ii) of the proof of Lemma 4.1. Thus a -,u, -P,, is a root and the 
same case then gives that (,u*, ,u,,) < 0. However, as this implies that a - 
pu, -p, is a root we quickly reach an a’ smaller than a at which a 
phenomenon similar to the one in Fig. 1 takes place. This is contradictory to 
the original assumption and hence (P~,,u~) = @,,,,uJ = 0. But clearly 
(a, pO) < 0 and thus (a - ,u, - ,uu,, p,,) < 0, which implies that three different 
roots originate at a --pi - ,u,, and this is impossible. a 

We remark that the assumption that leads to Lemma 4.2; essentially that 
each element of A,+ should occur exactly once in the diagram, has been made 
in order to avoid having to deal with degenerate situations in the subsequent 
proofs. In other situations (e.g., for sp(,(n, R)) it may well be natural to allow 
roots to occur more than once. 

To further illustrate the simplicity of the construction and for future 
reference we present the resulting diagrams in the Appendix. That there are 
no more Hermitian symmetric spaces of the noncompact type than those 
listed is of course a classical result due to Cartan 121. However, the criterion 
that one should be able to pick a root /I in the Dynkin diagram such than the 

FIGURE 1 
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set of roots bigger than, or equal to, /3, can be represented by a 2-dimensional 
diagram as above also excludes all other Dynkin diagrams and all other 
choices of p. 

We now begin to collect some of the technical lemmas that will be needed 
in the following. 

First we consider the %(I :)-module p- @ V,,a, where V,,O is a finite- 
dimensional irreducible module of highest weight /i,. The highest weights of 
p- @ V,,O are of the form .4, - a for certain a E A,i. We wish to describe 
these in terms of our diagrams. It follows from Proposition 7.3 in (6 ] and its 
proof (notably the last part) that 

LEMMA 4.3. Let aE A,i. A,, - a is a highest weight for the M(tF)- 
module pP @ V,,, if and only if 

(i) A,, - a is t,-dominant, and 
(ii) ifa=a,+p with,uEEcanda,EAJ, thenA,(H,)>O. 

LEMMA 4.4. Let a E Ai and assume a -,uj E AT for ,uj E C,; j = I,..., i, 
and i<2. 

Then A, - a is a highest weight for the %(ff)-module p - @ V.,, ij- and 
only iffor all j = l,..., i, 

Proof. A,, - a is a highest weight if and only if Vp E A:: 
(A,, - a,,u) > 0. In view of Lemma 4.3 the necessity is thus clear. As for the 
sufficiency, observe that since A, is dominant we need only consider those 
,U E AZ for which (a,p) > 0. Let ,u be as such: p = Ciujcz, rj,uj, rj E N u (0). 

It follows that there must be at least one pi, E Z, such that rjO > 0 and 
(a,pJ > 0. Hence for this simple root, a -pj, E A:. Let n, = (a,p,i,) and 
n = (a, ,u). Then, by assumption, 

Now observe that by Corollary 3.5, ($, a) = 1 for any ,Z E A, for which 
(a, lu’) > 0. Thus, (cloy P~)/(P, P) = n/n,. I 

DEFINITION 4.5. For a0 E AZ we let 

Czo.= {a E Ai j a > ao} and C&= {aEd: Ia<ao}. 

As is suggested by the way they appear in the diagram of A:, we think of 
C&, and C,, as the forward and backward cone, respectively, at a,. 
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Let /i = (A,, ,A) and let a E di, Then, by definition, 

(A,a)=(A,,a)+~ jy$ ) ( 1 9 
where (y,, r,) = (/3,p). Recall that li, is always assumed to be f,-dominant 
and integral. 

LEMMA 4.6. Let a,,, a E A; and suppose that 

and 

(Yr, YJ V,tp,a)+l (a,a) =n>O. ( 1 
If il < il,, then a @ C&. 

Proof By solving for 1 and A,,, the inequality L < 1, is seen to be 
equivalent to 

2(4 + p, a) > n(a, a) - (ao, a,) + W. + P, 4. 

Suppose a = a0 -/I with ,U = CPiEz, j j r p and all rj > 0. Unless n = 1 and 
((x0, a,) = 2(a, a) we immediately reach an inequality contradicting the 
dominance of /i, + p. In the remaining situation it follows that for any 
p, E E;, for which rj # 0 (and there must be at least one such), 
2(4 + P, pjuj> < (a, a) and so, since a is short, this case must also be 
dismissed. 1 

Remark. Under the assumptions of Lemma 4.6, a must in fact be quite a 
distance away from in particular the lower portions of C,. The separation 
increases as L decreases. 

For a E Ai let 1, E IR be determined by the equation 

(Vci9U +Pw,) = 1. (4.2) 

Among those 2,‘s for which /i ,, - a is a highest weight for the %(t :)-module 
P- 0 v*,, let 1, denote the smallest, and let a,, denote the corresponding 
element ofA,+. (Th ere are no multiplicities in p - @ Vlr, .) 

COROLLARY 4.7. Let c? E A:, a’# a,,. If a’ E Ca’,, A, - a’ is not a highest 
weight for the module p - @ V,,,. 

Proof: If & - a’ is a highest weight for the module p - 0 V,,,, 1, < A,. 
By Lemma 4.6 this implies that a, 4 C;. m 
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Let y=((A,,&)+p), let a,,...,a,EA,f, and let x=((A,,l)+p- 
n,a, - -.a - n,a,) with ni E N; i= I,..., r. In the sequel we shall be 
concerned with the situation in which the sequence a, ,..., a, satisfies 
condition (A) for the pair (x, v/). We assume for simplicity that ni = 
hi- 1, ai) for i = l,..., r (cf. Definition 3.1). 

LEMMA 4.8. Consider an a, from above; i = I,..., r, and assume ,I < LO. 
Then Ai, - ai is not a highest weight for the module p - @I V,,O. Moreover. 
ai & C&. 

Proof. ai satisfies 

2((11,,i)+p-n,a,-...-nni-,ai-L.ai)=n,>0 
(ai 7 ai) 

I . 

By Lemma 3.4, inner products between elements of Ai are nonnegative and 
1 thus 

It follows that & < A and the minimality of &, then gives the first part of the 
lemma. The second statement follows from Lemma 4.6. u 

Letw=n,a,+... + n,a,. The first real use of the diagram of Ai is made 
in the proof of 

LEMMA 4.9. Assume that I < 1, and that A, - o is a highest weight for 
the %((fy)-module 2Y(p-)@ VA,. Then at least one ai, i= l,..., r, belongs 
to C&. 

Proof: Suppose not. Then, by Lemma 4.8, ai k% C&U CII, for all i = 
1 ,..., r. Consider an arbitrary one of these, a,, . It is clear that there exists a 
y E A,+ such that (a) {a,,, a,} c CT, and (b) for no y, E CT is (a,,, a,,} c Ci 
(yi # y). It follows that there must exist two distinct elements, par and &,, , of 
C,suchthaty+&,,EA,t andy++Ub,EAn. + In fact, by the way the diagrams 
build up, it follows that there are elements flu,, ,..., pas, pb, ,..., pb, of Ai such 
that (i)a,= y+,~,, + ... i-pa,, and ai, = y +Ccb, + .a. +pb,, (ii)for allj<s 
and k<t, y+,u,,+ .I* +&,+&,+ ... +pbkEAn+, and (iii) {lUa,,.+.,r(l,Jln 
(pb,,...,,ub,} =a (Cf. Fig. 2). Let ,U, ‘&, + Sea +&, and &=&, + “’ $&,,. 
By (iii) (&, , &,,) Q 0 for k < t and (&, &,) < 0 for j < s. 

If (ai19tib,)=09 ai,+h,+r(la,EAn+ and this is easily seen to contradict 
the proof of Lemma 4.l(iii). Thus, (a,, , &,,) > 1, and ~hWUSlY3 
(a,, , cl,,) > 1. If we had (A, - ai,, &,) > 0 this would imply that 

(&C(b,)> (at9pb,)> maxil, (ai, +&?pbl)\. 
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FIGURE 2 

Since, by the above and by Lemma 4.4, we also have 

this would further imply that alI +p, = a, +,+, is a highest weight which, 
since it clearly belongs to Cn’,, is impossible. Thus 

(AO - ail 3 P*,> < O* (4.3) 

We now invoke the assumption that A, - o is a highest weight; in particular 
that (A, - w,,u~<) > 0. Combined with (4.3) this implies that there exists an 
ai* E {a, ,*a., a,} such that (~,,q,,) < 0. We claim that ai has to be located 
on the line through ai, -pbl, p arallel to pu,, (cf. Fig. 2). Recall that oi2 4 
C&U C&. This may be proved rigorously be eliminating all other 
possibilities. We mention briefly that Lemma 4.1 and the fact that Dynkin 
diagrams can have no closed loops immediately rule out all other situations 
but the one indicated by an a’,2 in Fig. 2 (and its symmetrical counterpart). 
This, however; by a straightforward reduction, can be ruled out by showing 
that Fig. 3, in which yr,..., y5 are distinct elements ofA:, can have no 
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FIGURE 3 

existence. But this follows easily from the nature of Dynkin diagrams, 
Lemma 3.4, or, equivalently and at the same time justifying our brevity; see 
the Appendix. 

The proof is completed by consecutively applying the arguments that led 
from cri, to ail, to each, from the previously thus obtained element of 
(a 1 ,**a, a,}. To wit, it follows that there are elements ai ,,..., of (a, ,..., a,) such 
that for each s = 3,..., air is located on the line through ai, - ,u,, - ... - pb, ~~ ( 

and parallel to the previously described line through ai,. Clearly, for s = 
t + 1, this is a contradiction. [ 

5. K-TYPES 

As a P(fc)-module, P(g’) @uct~oP+) V,, is equal to Z!(p-) @ V,. The 
restriction of B, to each f-irreducible subspace is, because it is f-invariant, 
either zero, strictly positive definite, or strictly negative definite. The problem 
to which we address ourselves is, for /i, fixed, that of determining the set of 
A’s for which WA, A = (Ao,A), is infinitesimally unitary. This is the case 
exactly when there are no subspaces on which B, is strictly negative definite. 

To begin with consider an irreducible subspace of iV(p-) @ V,, and let 
4 # 0 be the highest weight vector. Observe that the degree of q is well 
defined; assume that it is d. Observe moreover that since ,I only makes its 
presence felt through the action of the center off, q is, for /i, fixed, a highest 
weight vector for all ,I. Let A, and q be fixed and consider the function 

f,(n) = B,,b 4). 

The following is straightforward, and in part well known. 

(5.1) 
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LEMMA 5.2. f,(I) = (-l)d C,Ad + lower order terms in L. C, > 0. 

The zeros off,(l) are the only places where the restriction of B, to the 
irreducible subspace in question can change signature. If q is a first order 
polynomial and iff,(&) = 0 it is clear that W,, cannot be unitary for i < 1,. 
The smallest A, determined by a highest weight vector of degree 1; Iz,, was 
named “the last possible place of unitarity,” and was explicitly determined 
for an arbitrary /i, in [6]. 

PROPOSITION 5.3. Let A, - a, ,..., A,, - a, be the set of highest weights in 
the %((ff)-module p- @ V,,O; a, ,..., at E AZ. Let, for i = l,..., t, Ai be deter- 
mined by the equation (@lo, A,) + p)(H,,) = 1. Then & = min{d, ,..., A,). 

We shall see below that W,, , /i = @lo, A,), in fact is unitary. 
The determination of the zeros for all&% as q varies in the set of highest 

weight vectors in %(p-) @ V,, would of course yield a complete solution to 
our original problem. However, as we shall see, it is sufficient to determine 
N,, for 1 < &, and to describe this idea1 it is sufficient to determine a set of 
generators. This set is finite, as is intuitively clear, and as follows from, e.g., 
the theory of the category d [ 11. 

Consider now a highest weight vector q in SF@-) @ V,, of weight 
(/lO,~p)-n,a,-...-n,a,; a ,,..., a,EAi, and n ,,..., n,ElN. Let w,= 
nlal + ... + n,a, and observe that the degree of q is d = n, t ... t rz,. Let Id 
denote the ideal generated by the elements of degree less than d in N,, /i = 
(/iO, A,). Assume that q E N,, and that q 6! Id. 

LEMMA 5.4. The module (%(g’) . q + ZJZ,, is a standard cyclic module 
of highest weight (A 0, A,) - w, . 

Proof: By assumption q is a highest weight vector for tC. Moreover, for 
any z ’ E p ‘, z +q is in N,, and is of strictly lower degree than q. 1 

In the following proposition the assumptions on q are maintained. 

PROPOSITION 5.5. L,,+p-w, E JH(M,,+,), /i = (/lo, A,). 

Proof: It follows from the various identifications of Section 2 that there 
exist two %(gc)-invariant subspaces, A and B, of M,, +P such that B c A, and 
such that A/B is isomorphic to the unique irreducible quotient of the 
standard cyclic module in Lemma 5.4. A, B, and M, +,,/A belong to the 
category d and thus have finite Jordan-Holder series. I 
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6. SO*(2n) 

For later reference we list here a set of unitary representations of G, = 
SO*(2n). They are obtained along the lines of [4]. Specifically, the 
Hermitian symmetric space corresponding to G = SU(n, n) may be 
represented as g = (L E M(n, C) 1 z*z < 1 } and G, is isomorphic to a 
subgroup of G that leaves invariant the intersection g,, of @ with the space 
of skew-symmetric elements of M(n, C). One easily checks that the results of 
[4] may be applied, and thus the restriction to G, of any unitary 
holomorphic representation of G yields a series of unitary representations 
of G,. The representations of G in question may be taken to live in Hilbert 
spaces of vector-valued holomorphic functions on B and hence, in 
particular, the representation of G, obtained from a unitary holomorphic 
representation of G by restricting the functions to a,,, is unitary. 

Let e, ,..., e, denote the standard orthonormal basis of R”. Then, for G,. 

d,+={e!-ej]l<i<j<n), 
and 

A,+=(ei+ej)l<i<j<n}. 

A = (A, )..., A,) is t,-integral and dominant if and only if A, 2 A, > ... > 1, 
and&-AjZjE.p=(n-l,n-2 ,..., l,O),and1=I,+&. 

By letting r2 be the trivial representation in Proposition 2.3 of [ 5 1, and 
taking j = k, it follows from the above that the representations 

(0 ,..., 0, -Fn, )..., -mj) - (j, j I..., j) (6.1) 

of G, are unitary. 
Consider a A, for which (/lo, e, - e2) = 0; i.e., A, = AZ, and let i be deter- 

mined by I, = ,I, = . . . = Izi f ,Ii+, . It is clear that the 1, of Proposition 5.3 
is attained at a, = (e,-, + e,), and it follows that 

A, = /I, + A, = /I-, + ki 

= 1 - (n - (i - 1)) - (n - i) 

= -2n + 2i 

and thus, ,I,=&=... = Ii = -(n - i). A comparison with (6.1) then gives 
the following: 

PROPOSITION 6.1. Let (Ao,e,-ee,)=O. Then W,,, A=(Ao,&), is 
unitarizable. 

We observe that the case (liO, e, -e,) # 0 cannot be treated by this 
method. 
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7. UNITARITY AT THE LAST POSSIBLE PLACE 

Let rl, be Ii-integral and dominant. Suppose that for a given A’, W,, , /1 = 
(/i, A’), is IZO~ unitarizable. Observe that I-irreducible subspaces of different 
highest weights are perpendicular, independently ofl. It follows that the 
Hermitian form, restricted to the space spanned by the K-types of some 
highest weight, is not positive semidefinite. On the other hand, for 1 
sufficiently negative, W,, is unitarizable. Moreover, the form is a smooth 
function of 1 (polynomial) and changes in the signature can only happen at 
points at which it is degenerate. It follows easily that for some A, < A’ and 
some LUG, we must be in the situation of Proposition 5.5. It thus follows that 
there exists a sequence a,,..., ar E A ’ which satisfies condition (A) for the 
pair (@to, A,) - o, + p, (/lo, A,) + p). According to Proposition 3.6 we may 
assume that ai E Ai, i = l,..., r. 

Let Va, denote the t-invariant subspace of p- @ V,,O of highest weight 
/1,-a,. 

LEMMA 7.1. If q is a highest weight vector in %(p-) @ V,,, of weight 
AO-Oq=AO-n,a,--..-nn,a,, and iffor all i=l,...,r, aiEC&,, then 
q E %(p-) . VmO. Moreover, q does not belong to the %(p-)-ideal generated 
by any other l-invariant subspace of p - @ V,,,. 

Proof: Since q evidently must belong to one of the %(p -)-ideals 
generated by the t-irreducible subspaces of p- @ V,,O, it is sufficient to prove 
that it does not belong to any one different from %(p - ) . Vn,. Let V, denote 
a f-irreducible subspace of p- @ V,,O of weight A,, - a” with a’# a,,. To begin 
with, observe that a’ E Ca,. Using Corollary 4.7 and the fact that A, - & is a 
highest weight this follows by arguments similar to those that led to (4.3) in 
the proof of Lemma 4.9. Let z;‘f denote the smallest subset of C, for which 
any element of C,iO can be written as a linear combination of a,, and the 
elements of the subset (coefficient 0 allowed). Let ,D E 2, and assume that 
ao-,uEAJ. Our next observation is that p G Cg. To wit, if it did, by 
passing to the “boundary” of Ca’,, one would, through Lemma 4.4, obtain an 
a’ E CzO,, a’ # aO, for which /i, - a’ is a highest weight of the module 
p- 0 V,,, and this is impossible by Corollary 4.7. Now assume that q E 
P(p-)* v,. By the same arguments that gave that a highest weight of 
p- @ VA, is of the form /i, -a for some a E Ai it follows that there are 
elements G, ,..., &, ofA; such that w,=cS+Z,+... +c&. Observe that s= 
n, + ... + n, - 1. Now, (5 E CU, and & # a,, and hence there exists a ,u E Z, 
such that a0 -,u E AZ and such that, moreover, the coefficient to p in g is 
strictly less than the coefficient to ,u in (x0. Thus one of the c?ts must have a 
p-coefficient which is strictly larger than that of a,, . However, by the obser- 
vation that p & Cf and by the way the diagrams are built up, this is easily 
seen to be impossible. 1 
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We now begin to examine n = @I,,, &). Even though in general there will 
be some Aq’s less than A,, at which L, +p-o, E JH(M, +,) it seems to be 
generally true that any t-type whose highest weight occurs in 
PY(p-)@ VAoewg belongs to ‘%(p-) VaO, and thus vanishes at &. Here we 
shall only investigate the situation for some groups and representations. First 
we wish to establish that if a, ,..., a, E Ai satisfies condition (A) for the pair 
((110, &,) - coQ + p, (/iO, A,) + p), where /1,, - wq is the weight of a highest 
weight vector q in the %(I:)-module P(p-) @ V,,, and I, ( )L,,, then, for all 
i = l,..., ry CLi E C&e For the general case, the combinatorics has so far 
proved to be too complicated, but we can establish this for sufficiently many 
cases. To begin with, let n, ,..., n, be the integers of Definition 3.1. In par- 
ticular, 

ni=((rl,,~q)+P-n,a,-“‘-ni~,ai_,,ai). (7.1) 

Because inner products between positive noncompact roots are nonnegative, 
and because ?I, < A,, it follows that 

((/fo, 1,) + P3 ai) > ((A03 A,) +p- ai) > 0. (7.2) 

(Recall that ((ciO, A,,) + p, a,) = 1.) Equation (7.1) implies that the a:s are 
distinct. Suppose, namely, that ai = ai, with j > i. Then 

nj=((/i,,~,)+p-n,a, -... -nisi 

-(ni+lai+l + “’ +nj-,aj-,),ai) 

= -ni-(ni+lai+l + ..~+ni-la,i_,,a,)<O. 

Naturally, Eq. (7.1) contains much more information, but for our limited 
purposes, what has been stated is sufficient. 

Consider now the diagram corresponding to so (2n - 1,2). (See the 
Appendix.) Let /i, be t,-integral and dominant, and let i denote the smallest 
integer such that (A ,,, ,K~) # 0. Assume that i < IZ. In this case it is easy to see 
that ao=yr--pU2-... -pi-i (if i=2, a,=y,) and that any root aEd,+ 
that satisfies (7.2) must be in C&. However, it is also clear that for any such 
a one can find a ,u~,. j < i, such that (a,pj) > 0 and such that a is the only 
element of C& with a nonzero inner product withpj. But this means that it is 
impossible to construct a highest weight of the form /i, - n,a, - ..a - n,a, 
with elements aj, j = l,..., r, of CzO. The conclusion is the same when i = n. 
It suffices to observe that (A,,, ,u,) = 1 is the only case in which a0 = yr - 
Y, - ... -Pu,, and that this a0 satisfies (a,,pu,) = 0 (in fact, (a,, .Z,) = 0). 
Analogous arguments yield the same conclusion for so (2n - 2,2) and all 
cases for e, and e, but the ones described below: 

6 Following the notation of the Appendix, consider a /i,, for which 



402 HANS PLESNER JAKOBSEN 

@o,P*> = *-- = @o,Ps> = 0, and (/lo,& = n > 0. Clearly, a, =p +,D, + 
Pi +pu, +pu,. If n = 1 the root a’=p+~, +p4 +P, +pu, +,u~ +P, satisfies 
(7.2) but is not in C &,. However, it is impossible to have a’ belong to the set 
s = {a, ,..., a,} because of the ,uu3 pointing towards it. Suppose, namely, that 
a/ES. Since Ao-nla,-~.. - n,a, is a highest weight and (a’,,~& > 0, 
either a’ -,uj + pug or a’ -pj +,D, +p, (or both) must belong to S. If, say, 
a’ - ~1~ + ,u~ E S, because of the ,u, pointing towards this root, we must have 
a’ + ,K~ +p, E S, and the coefficient of that root must be at least equal to 
that of a’ - ,D, t pug. But there is a ,u~ pointing towards that root as well, and 
the net effect is that (as,& > 0. By considering ,u~, the case of a’ -pJ + 
,U~ t ,u~ is excluded as well. 

e,. In the case (A,,,D,)= a.. = (/10,p5) = 0 and (/iO,~s) = n > 0, a,, = 
pt~u,+~u,t~1,t~u3+c1,t~u,+~,+~,. When n=l the roots ao-ti6t 

,u, t pu, + ,u~ and a,, -p, t ,u, t pj t ,u~ + pu, must be excluded, and for n = 2 
the latter must be dismissed whereas the former no longer satsilies (7.2). 
This is done by arguments analogous to those of e,. We stress that in the 
mentioned cases for e, and e, there are solutions to (7.1) with 1, < A,,. 

Finally we consider so*(2n) and the case left open in Section 6: 
(A,,, e, - el) # 0. Let j be the biggest integer such that A, = ..a = Aj* 
Evidently then, a, = e, + ej. Observe that Ca’, is “one-dimensional,” We 
claim that, in this case, there can be no solutions to (7.1) with 1, < 1. 
Indeed, if there were, according to Lemma 4.9 there would be an a among 
the ai ,..., a, which belongs to Ca’,, and hence also a smallest such, a’. 
However, by considering the simple compact root ,U pointing towards a’ it 
follows by an exhaustion argument along the lines of the proof of Lemma 4.9 
that this is not possible. Together with Section 6, this extablishes the 
unitarity at the last possible place for so*(2n). 

Let us now return to the case left open for e6. Observe that A,, = -4. At 
2=-4-i, L n+p--(4-i)(ao+yrj E JH@f,,+,), i = 1, 2, 3, but AO - $a0 + Y,) is 
a highest weight if and only if (/i,, &) > s. Let V, denote a subspace of 
@(p-) @ V,,, of highest weight /i, - s(a,, t yr), s = 1, 2, 3,... . According to 
Lemma 7.1, V4 E %(p-) * Va,. More generally, any irreducible subspace of 
P(p-) @ V,,, whose highest weight occurs as a such in %(p-) V, actually 
belongs to U(p-) V=,. This is intuitively clear since the coordinate functions 
of Va, corresponding to the highest weight vector u. in V,,, include the terms 

aiEC+. Any highest weight vector tj in @(p-) V, must, because of 
fiipi;ave a co:rdinate function q. relative to u. of the form go = cF’o z- p. 
where a, E C& and p, E W(p-). This observation can easily be n?ad: 
rigorous since it is enough to consider the case in which none of the pi's 

contain elements corresponding to -C&. (P(p -) @ VA0 is built up by 
consecutively tensoring representations with p -). In this case the coordinate 
function is readily seen to coincide with the coordinate function of a highest 
weight vector in P(p -) . V=,. The remaining case for e, may be treated 
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analogously but we observe that the representations in question (& = -8) 
exactly are those that occur in the decomposition of the tensor product of the 
most singular, unitary, nontrivial representation with II, = 0, with itself. The 
A-parameter of that representation is -4. 

The only remaining cases now are sp(n, R) and su(p, 4). The unitarity at 
the last possible place for those groups has been established in [S, 61. We 
can then state 

PROPOSITION 7.2. W, , with A = (A,, , A,), is unirarizable. 

8. THE UNITARY HIGHEST WEIGHT MODULES 

With the unitarity at the last possible place thus established the 
description of the general situation follows by forming tensor products, along 
the lines of [4], of W,,,; /i = (A,,, A,,), with the most singular, nontrivial, 
unitary module WA, corresponding to A,, = 0 (and 1= A,). The value of AS 
has been determined in (8,9]. WA, contains, of course, all first order 
polynomials, but the S(p-)-ideal generated by the I,-irreducible subspace of 
the second order polynomials of highest weight -/I - y’ is missing. Here, y’ 
denotes the smallest element of Al perpendicular to /3. The restriction of 
W,, @ WA, to the diagonal (cf. [4]) is the unitarizable module W,,, A’ = 
(/i,, A, + A,). If a second order polynomial is missing from W, , it is clear 
that it must be in the ideal P(p-) . Va, and in no other such. Moreover, in 
this case it follows (cf. Lemma 5.2) that the modules W, , II = (/lo, A) with 
A, + I, < A < I,, are not unitarizable. From these observations it is 
straightforward to decide in the explicit cases at hand exactly in which cases 
second order polynomials are missing from W, , , and by repeatedly forming 
tensor products with WA, the complete description of the set of J’s below 1, 
at which certain polynomials are missing from the corresponding module 
W,, follows. Moreover, if a third order polynomial q is missing at 1, + U, 
(this can only happen for g = su(p, q), sp(n, IT?), or so*(2n)), it is in the ideal 
generated by the second order polynomial that is missing at & $ AS. Hence q 
is missing at 1, + 2A,, A,, + A,, and A,-,. Further, the Hermitian form 
restricted to q is positive for A+ -co, hence it is negative between A,, + 2A, 
and & + A,. Continuing along these lines we see that if a jth order 
polynomial is missing at 1, + (j - 1) A,, the Hermitian form cannot be 
positive semi-definite in the open interval from & + (j - 1) A, to II, + 
U-W,. 

Observe that the description of the generators of the missing K-types fits 
nicely into the diagrammatic approach presented here. As an example with 
g = su(p, q), the missing fifth order polynomial four steps below a & is 
indicated in Fig. 4. The l’s indicate that the roots occur exactly once in 0,. 
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FIGURE 4 

Naturally, A, as well as (p, q) must satisfy certain conditions for this 
configuration to be possible. (The horizontal string of l’s must hit both walls 
of c,t, 3 cf. below). 

When g = sp(n, R) or sa”(2n) the natural scene for the presentation of the 
missing K-types is the union of A,+ with its mirror image around the line 
joining ,/3 and yr in the A,+ of s&z, W) (cf. the remark following the proof of 
Lemma 4.2). In these terms the pictures are identical to those for g = su(n, n) 
with the exception that for g = so*(2n) one must exclude those pictures that 
contain points on the above mentioned line. 

Finally for es and e, the missing second order polynomials are easily 
localized. Observe that (a,-,, Zcf) is a basis for a root system (Z: as in the 
proof of Lemma 7.1); for e6 it corresponds to so(8,2) and for e, to so(lO,2). 
For e6, the corresponding I is -7, whereas for e, it is -12. 

To complete the description of the set of unitarizable highest weight 
modules we observe that by tensoring with WA, a finite number of times we 
reach a point 1, beyond which there will be unitarity for all A < A,. (A, 
might-though unitary-be called the first possible place for nonunitarity). 
This is so because of the structure of the diagrams combined with the fact 
that as L decreases, the number of points in the diagram that can be used in 
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FIGURE 5 

a sequence satisfying condition (A), decreases. Recall that by 
Proposition 5.5, there must be such a sequence at the first possible place of 
nonunitarity. Thus it may be seen that beyond the mentioned points in the 
examples of e6 and e, there is unitarity. In all other cases for e, and e,, as 
well as all cases for so@, 2), L, =I, @lo f 0). The cases of su(p, q), 
sp(n, IR), and so*(2n) are straightforward. We conclude with an example for 
g = su(6, 6) that contains all the relevant features of this remark. 

EXAMPLE. g =su(6,6). Assume @,,,u,) = 0 for i= 1, 2,4 ,..., 10. and 
(Il,,pu,)= 1. Then oo=/?+,u,+flu,+p3, and A,-,=-3. At A=-4 a second 
order polynomial is missing, and at I = -5 a third order polynomial is 
missing. The latter is indicated by the string of 1’s. For L < -5 one can at 
most use the roots indicated by circles to form a sequence satisfying 
condition (A). However, the result must be t,-dominant and so, because of 
,u,, there can be no points in such a hypothetical sequence on the line 1,. But 
then, because of p,, there can be no points on l,, etc. We conclude that there 
is unitarity for I. < -5. 
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APPENDIX 

The diagrams of A ,S 

g = so(2n - 1,2). 

B,: 

.-. -. .a . . . . . . .-. -. . 
4 2 3 n-2 n-l n 

A,+: 

;2’.3-. . . . . . . .~.--.+...-J. . . . . *. y-.+.2. 
” n % 

g = so(2n - 2,2). 

D,: 

. n-1 

.-.-. . . . . . . . . .-. / 
5 2 3 n-3 n-2 

\ 
*n 

A,+: 
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A +. “’ 
R 
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C,: 

,-.-. . . *. . . . . .-. - 
1 2 3 n-2 n-l - i 

A;: 
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A 9+p-1: 

.-. . . . . . . . . .-.-. . . . . . . , . .~. 
4+p-2 4ta-3 Q D I q-2 q-1 
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g=e,. 
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e,: 

i .-.-.- .-. 
4 3 4 5 6 

. yr 
2 

/ . 
4 

/ 

A 

A /’ 

‘2 /‘\; 

‘z /‘\ 

A A’ 

‘\/” 
. 

5 
. 

/ 
4 

. 

/ 
3 

0 
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g=e,. 
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e,: 

r .--p-p 
1 3 4 5 6 I3 

A +. PI* 

Yr . 
2 I 

. 
2 3 

. 
2. 4 
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