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TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 246, December 1978 

INTERTWINING DIFFERENTIAL OPERATORS FOR 
Mp(n, R) AND SU(n, n)' 

BY 

HANS PLESNER JAKOBSEN 

ABSTRACT. For each of the two series of groups, three series of repre- 
sentations U,,, D,,, and H,, (n E Z) are considered. For each series of 
representations there is a differential operator with the property, that raised 
to the nth power (n > 0), it intertwines the representations indexed by - n 
and n. The operators are generalizations of the d'Alembertian, the Dirac- 
operator and a combination of the two. Unitarity of subquotients of 
representations indexed by negative integers is derived from the intertwining 
relations. 

0. Introduction. Motivated by the aspects of the conformal group as a 
physical symmetry group, as suggested by I. E. Segal [11], we recently studied, 
jointly with Michele Vergne, some representation theoretical aspects of 
SU(2, 2) [5]. One result, that was obtained, was that powers of the d'Alem- 
bertian 

a2 a2 _ a2 _ a2 
at2 ax2 ax22 aX 

as well as powers of the Dirac operator ? (a 4 x 4 matrix for which ?2 =E] 
are intertwining between two series of representations of SU(2, 2). We shall 
see that a similar phenomenon takes place for Mp(n, R) and SU(n, n). 

Specifically, we consider an n x n matrix D = a/ ax, with first order 
differential operators as entries, corresponding to a parametrization of the 
space of n x n symmetric (hermitian) matrices. We prove that det D as well 
as 

0={ Dt\ 

vc(D) 0 } 

where c(D)Dt = Dtc(D) = (det D)I,,, are intertwining between two series U, 
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and DI, / E Z, of representations of Mp(n, R) (SU(n, n)) in the sense that for 
1 > 0 

(detD)'U_ = U,(detD)', ()21+ D1 =DI (V)21/+1 (0.1) 

We shall refer to V as the Dirac-type operator. 
For Dt and det D the equations (0.1) were expected from [5, V.5.1 and 

V.6.1]. However, we shall take a somewhat different approach, which has the 
equations involving c(D) above as a straightforward consequence. 

We remark that as a special case of algebraic results, B. Kostant [7] 
obtained quasi-invariance properties of the wave-operator E1. The operators 
det D', (D')', and c(D)', for / E N, were studied by L. Garding [3], and the 
Cauchy problem was solved. It was also noted that the principal formulas 
involving (det D)' were invariant under the transformation x -* axa* of the 
space of symmetric (hermitian) matrices, for a in SL(n, R) (SL(n, C)). 

A basic observation in the proof of (0.1) is, that if s is the operator acting 
on functions f from the space of symmetric n X n matrices (space of 
hermitian n X n matrices) to Cn by (sf)(s) = sf(s), then c(D) = [(det D), s]. 
We use (0.1) to prove that U_ and D -,, for / > 0, act unitarily on quotient 
spaces of functions modulo solutions to 

(det D)l4 = 0 and ?21-1 = 0, 
respectively. The representation D, can be written as D,+ ED Dl- where, by 
(0.1), D,+ and DI- satisfy 

det D(c(D)D +,I1 = D-det D'c(D), and 

det D'D1D, 1 = D,+ det DID'. (0.2) 

We use this to study a series H, of representations obtained by induction 
from reducible, noncomplemented representations of the maximal parabolic 
subgroup. It is proved that these representations are related to the preceding 
ones by 

[D' 1] 0 DI + ] Df 1](3 

Ths study of the representations H, was motivated in part by the work of A. 
Salam and G. Mack [10, p. 178]. 

The present article falls in five parts. (1) is the scalar case for Mp(n, R), 
corresponding to (det D)', and (2) is the scalar case for SU(n, n). In (3) the 
Dirac-type operator for Mp(n, R) is related to representations obtained by 
induction from reducible, complemented representations of the maximal 
parabolic P_ in 2n-dimensional complex vector spaces, and (4) is the corre- 
sponding for SU(n, n). Finally, in (5) representations obtained by induction 
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from reducible, noncomplemented representations of P_ in 2n dimensional 
complex vector spaces, are proved in many cases to be unitary (and re- 
ducible). The details are carried out for SU(n, n). 

The first two chapters of the present paper are essentially contained in the 
author's Ph.D. Thesis [6], written under the direction of I. E. Segal. The 
author is indebted to Professor Segal for many helpful discussions. He is also 
thankful to Michele Vergne for friendly help and conversations. 

1. The scalar case for Mp(n, R). We shall begin with some generalities 
about Sp(n, R) which is covered twice by Mp(n, R). 

Sp(n, R) is the subgroup of Gl(2n, R) consisting of those matrices g that 
satisfy 

g ? n g=[? n ](1) 

If we write g in terms of n x n blocks; g = [ b], then (1.1) is equivalent to 

ad' - bc' = 1; ab' = bat; cd' = dc , (1.2) 

and to 

atd - ctb = 1; atc = cta; btd = dtb, (1.3) 

where (1.3) is obtained by replacing g by g1 in (1.1). The Lie algebra of 
Sp(n, R) is thus [4, p. 341] 

sp(n, R) = xI arbitrary; x2 = X2; X3 = X3 

We let 6D = (z = x + iyjlx,y real n x n matrices, x = xt; y = yt; y > 0). 
6D is then a complex domain, and Sp(n, R) acts on 6D by 

g.z = (az + b)(cz + d) 
We recall from [5] that if G is a group of holomorphic transformations on6D, 
V a finite dimensional complex vector space, J(g, z) a continuous function 
G x 6D -> GL(V) which, for each fixed g in G is holomorphic in z and 
satisfies 

J(g1g2, Z) = J(g1, g2z)J(g2, z); J(1, z) = 1, (1.4) 
then a function K(z, w): 6D x 6D -> End V, holomorphic in z, anti- 
holomorphic in w, is the reproducing kernel for the representation 

(T (g)f)(z) = J( g1 Z) f (glz) (1.5) 
on a space of holomorphic functionsf: 6D -- V if and only if 

K(z, w) = K(w, z)*, (1.6) 
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K(gz, gw) = J (g, z)K(z, w)J (g, w)*, and (1.7) 
n 

< KK(zj, zi)vi, vj> > 0 (1.8) 
ij = 1 

for all zi in 6D, vi in V, i = 1, 2, ...,n, and n in N. We let * denote the 
complex adjoint of an operator. Thus, (x + iy)* = x- iyt. If g = (a) is in 
Sp(n, R) and z, w are in 6D, we then define 

J1(g,z) = cz + d; J2(g,z)= (zc' + d)' (1.9) 

K1 (z, w) = ((z - w*)/2i)1; K2(z, w) = ((z - w*)/2i). (1.10) 

Then it follows easily from (1.2) and (1.3) that J1 and J2 both satisfy (1.4). By 
the same relations, it also follows that for i = 1, 2 

Ki ( gz, gw) = Ji ( g, z)Ki (z, w)Ji ( g, w)* (1.11) 

We shall in this section consider the one-parameter family of actions of 
Sp(n, R) on the space ?1 of holomorphic functions on GD defined by, for 
X E R, 

(U (g)f)(z) = (det J1 (g-1, z))--((n+l)/2)f(glz). (1.12) 

It is easy to see that UA is holomorphically induced from the one-dimensional 
representation Tx-(k) = det(J, (k, i))X+(n+ 1)/2 of the maximal compact 
subgroup K (cf. [5, p. 61]). 

REMARK. For noninteger X's, we only get a projective representation; by 
passing to the universal covering group, we get a proper representation. In the 
sequel we shall mostly be interested in the cases where X is integer. In these 
cases, we need only pass to the double covering group of Sp(n, R); the 
metaplectic group Mp(n, R). We shall maintain the notation UA irrespective 
of the groups. 

It follows easily from (1.2) and (1.3) that 

g* (z*) = (g.z)* 

for all g in Sp(n, R). (Sp(n, R) also acts on the "lower half-plane".) In 
particular, g leaves the Shilov boundary a GD of GD; a GD = S = {x + iyIy = 
0), invariant, and even though the action is not globally defined, we still get 
an action on measurable functions. We shall also maintain the notation UA 
for this action. It can be seen that there exists a subspace VA of C '-functions 
on S, which is invariant under this latter representation, and such that the 
restriction of UA to VA can be imbedded into an invariant subspace of a 
degenerate principal series representation (cf. [5, pp. 82-83], and below). 

The space S of n X n symmetric real matrices is a real vector space of 
dimension I n(n + 1). We write elements of S as x = [X,f]n ,.=l (X.f, = Xai3) 
or just x = [Xa,p], and let dx denote Lebesgue measure on S corresponding to 
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this parametrization. On functions from S to C, we define first order 
differential operators a,a by 

For a#l:aaf=2 aa f.(Thus,aa=a,=aq.) 

Fora=/~:aaJ= a (1.13) For a = 8: qjf - a f 
axaa 

We let D be the differential operator, whose (a, ,B)th entry is 

{ D} a,f = aa. (1.14) 

We shall in this section study the nth order differential operator det D. The 
Fourier transform is defined by 

f (k) = Y ei trxkf(x) dx, 

and the inverse Fourier transform by 

g (X) = 72f ei tr xkg(k) dk. 

For suitable pairs (yI, y,), and nice functions f, f = = f. Since for any (real 
or complex) matrix z, 

(det D)etrxz = det zetrxz (1.15) 

det D is in particular proportional to the Fourier transform of the multipli- 
cation operator (i)f det k. This could of course also be taken to be the 
definition of D. 

We want to analyze whether powers of det D can be intertwining operators, 
and if so, for which pairs of (UA, Ux,)'s. 

We remark that if we take 

u(x) =[ JE Sp(n, R) forx E X, 

then (det D)'Ux (u(x)) = Ux,(u(x))(det D)' for all (X, X') and r E N, since 
det D is a constant coefficient differential operator, and {u(x)lx E S) is the 
translation subgroup. 

Let us return to the Lie algebra. This is generated by the subalgebras 

{ )x E S and (( y E S}. 

In fact, we could replace the latter by the single element (6, 0), but we shall 
find it convenient to study a more general (: 0). 

Specifically, fix p and q and let y be the matrix in S given by 

{Y}kl= 'pk'8ql + Eapl3kq* (1.16) 
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For x E S and real t, we have 

x(tyx + 1) '= x - txyx 

and 

det(tyx + 1) = 1 + t tryx 

to the first order in t. Since furthermore 

{ XY X a = Xap XqO + xaq xpO 
and 

tryx = x, + pq (=2x,) 

we see, that if we let 
n 

YO= (XqpX>q + XaqXpf3)a,f3 
a,,f= 1 

with aa,1 as in (1.13), and if we let Ym = X,p + Xpql then 

A (y 0 )) dt A(+ ty I ))| 

= YO + (X + (n + 1)/2) Ym. (1.17) 

We now want to compute [det D, xi,j.], and to do this, we recall some basic 
facts from linear algebra. 

Let (A )j be an n x n matrix. Let C. be the determinant of the matrix M., 
obtained from A by replacing the entries in the ith row and jth column by 
zeros, except for a one in the (i, j)th place. Specifically, 

{ Mij rs = (ars(1 - 3ir)(1 -;js) + '5ir3js). (1.18) 

We call M., the (i,j)-minor, and denote by Crs the determinant of the 
(r, s)-minor of MA.. Then, 

n 
det A = 2 aijC, (1.19) 

j=1 

or, more generally, 
n n 

E ari Csi= ais Cir = 3rs det A, and 
i=l i=l 

n n 
C= 2 arsC(s - 2 ars8,r Crs- ar, Crj + ar, 8, CrJ + ,ir Cr'. (1.20) 

s=1 s=1 
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We use the above relations on the differential operator det D = det[aa,f]. 
We put i = io, r = jo Then 

n 

detA = E aijajosCiojS (1 -ijo 
j,s= I 

n n 

+ E aiOJa>ojC/? I'(-1 + Sjojo + E aij CiJ/j 
j=l j=l 

From (1.13) we get 

[aij, Xiojo] = 2 ('20 + 

[ajos, xijo2] 2 (Si, + Sido0jo8j 

Finally, since by construction, [Cibos, xi,jo] = 0, we get 

n 

[det D, xjo] = ai 2ios + iojosjo ) C/Jo? (1 -iojo 
j,s = 1 

n 

+ . 2(.O + 3iojoSioj3ajos C o 
1 

(I -3ojo 
j,s = 1 

n 

+ #O(& + Sdj5Si0d )ajU C/c4/j ( + 8E0j0 
j=l 

n 

+ 4aij(j(, + 83j8.#O )CjoJ (-I + 8iojo 
= oJ 

n 

+ 8 2ioJO(8Jo1 + 8iokJ ) C'J' 
j=l 

n n 
= 2 E ai0jCi ~0(1-3E0j0) + 2 ajosC;/jo (1-i ) 

J=1 s=1 

+ 2ajioCboio (-1 + iojo ) + aiiCo0 (-1 

+ 1i j (cito.0 
+ 

Cijct) 

Using the relations (1.20), this is readily seen to give 

[detD, xiojo] =(Cioo + Coio)= Ci. (1.21) 
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We are now able to compute 
n 

[det D, YO] = [det D, xap Xq, + Xqxp3j ]a,,, 
a,f = 1 

n n 

= (XapCqfl + CVXq13)aa13+ X (XaqCp 2 + CaqXp,0)aa, 
a,13=1 ac,f3=1 

n n 

- E x,, det D+ 8 det DxqX3 
a=1 \1 

n n 

-2 Z Cap (3qa + SqI8al) + E Xaq8pa det D 
a,13=I a=1 

n n 

+ ) fSq# P 
det Dxp 2 aqpa Ip/af3 3~ detDxCaq !p +3 3p )ai 

,B =1 a,(3 =1 

2 Ym det D-(n l)Cpq. 

By (1.21) and the above, we thus have the relations 

[det D, YO] = 2Ymdet D - (n - l)Cpq, 

[det D, Ym] = 2Cpq, 

[det D, Cpq] =O. (1.22) 

It follows that 

det D( YO + (X + (n + 1)/2)Ym) = (0Yo + (X + 2 + (n + 1)/2) Ym )det D 

+ (2(X + (n + 1)/2) - (n - 1))Cpq, 

or, by induction, for r E N, 

(detD) (Y0 + (X + (n + 1)/2)Ym) 

= (YO + (X + (n + l)/2 + 2r) Ym)(det D)r 

+ (2r(X + (n + 1)/2) + 2r(r - 1) - r(n - 1))Cpqq(det D)r1. (1.23) 

We see, that (det D)r is an intertwining operator exactly when X =-r. In 
this case, X' = r. We shall from now on consider Ux, X E Z, as a repre- 
sentation of Mp(n, R), even though this only is strictly necessary for n even. 
The above analysis may thus be summarized as 

PROPOSITION 1.1. Let r E N. Then VX E sp(n, R): 

(det D) rdU_ r (X) = dUr (X)(det D) r. (1.24) 

The point now is that the class of functions on which the equation (1.24) 
can be integrated is sufficiently big to be of interest. Specifically, the vector 
space V-r spanned by {(U-r(g)det(K1(., w))a)(x)lg E Mp(n, R), w E 6D, 
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a-(n + 1)/2 E Z, and a > (n + 1)/2 -r} is invariant under U_r, and 
each function f in V_r is the boundary value of a holomorphic function Ff, 
which can be extended holomorphically across the Shilov boundary. 

We remark that since the operators (det D)r are boundary values of 
operators acting on the space (1 of holomorphic functions on 6D, and since 
these, by exactly the same arguments as before, satisfy exactly the same 
intertwining relations, we could just integrate the relation (1.24) on 
holomorphic functions on 6D. In fact, by the above properties of V__r this 
would be exactly the same as integrating it on V__r On holomorphic 
functions on 6D, however, it is rather obvious, that the relation can be 
integrated. We shall therefore only give a sketch. 

We first observe that the Lie algebra sp(n, R) is generated by the subal- 
gebras 

[? 0]y )eS and {[2O 0J] ER} 

For the first algebra, the relation can easily be integrated. Thus, since 
Mp(n, R) is connected, we need only consider 

0 11 [Cos90 sin90 
c(O)=exp([ 01 O]J[-sin c - I 0 sin 0 cos9 J 

Clearly, the map (9, z) -> c(O)z is holomorphic and hence (9, z) -f (c(O)z) is 
holomorphic, if f is a holomorphic function on 6D. Since the same can be said 
about the multipliers 

det(-sin Oz + cos ) ((n +1)/2 r) 

and 

det(-sin Oz + cos ) ((n + 1)/2 + r) 

it follows by power series expansions that 

(det DrU- r (C(O )) f )(Z) = ( Ur (c (9 ))det Drf)(z). (1.25) 

PROPOSITION 1.2 [5]. For r E N and f either a holomorphic function on 6D or 
an element of V-r we have that 

(det D)rU-r(g)f = Ur(g)(det D)rf, Vg E Mp(n, R). (1.26) 

From here, we proceed as in the case of SU(2, 2) [5]. We denote the 
forward light cone in S by C +, i.e. 

C+ = {x E SIx > 0). 

Then we know from [3] or [9] that there exists a constant k, such that for all 
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a > - andz E 6D 

e e+i trzy detya a4 

- kl(detz/iya-((n+)/2) It F(a + (i + 1)/2). 
i=l1 

It is also known [9, ??4.5 and 4.6] that if we let 

?o= {O}, ?1 = {xeSlx >O,rankx= 1},.... 

)n-I = {x E Slx > 0, rank x = n - , 

then there are semi-invariant measures lj on Q) and constants db(j), such that 

f eitrzy d,uj(y) = db(j)(det z/i)-j/2. (1.28) 

The formula (1.27), together with (1.7), (1.8), (1.9), (1.10), and (1.11), 
immediately gives that U, is unitary for a > - 1, and (1.28) shows that 

U(-n -1)/2+j/2 forj = 0, 1, . . . , n - 1 has an invariant subspace, on which it 
acts unitarily, namely the space of Fourier transforms of holomorphic 
functions in L2(?j, fLj). From (1.14) and (1.27) it also follows that there are 
constants Cn,r such that 

(det D)rdet(x + z)- ((n+ 1)/2) = Cn,rdet(x + z) r 
((n,+ 1)/2) (1.29) 

for z E 6D and x E S. As in the case of SU(2, 2) [5, pp. 91-96], this is exactly 
what is needed to conclude: If we define an equivalence relation on V-r by 

f - g (det D)r(f- g) = 0, 

and denote the equivalence classes by [ ]r, then, using the unitarity of Ur for 
r > 0 and Proposition 1.2, we get 

PROPOSITION 1.3. For integers r > 0, there exists a subspace of equivalence 
classes [.]r, which can be given a Hilbert space structure, in which U-r acts 
unitarily. 

We shall end this section with a look at noninteger r's. We do this by 
Fourier transform. We consider C?? functions with compact support in the 
interior of the forward light cone C +. We denote the Fourier transforms of 
the operators det D, YO, Ym' etc. by D = det D, YO, Yin' etc. In particular 

t3 = det ik, x,af = ia,,af, a,,13 = ix,,i. 
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We let ,u E C. Then it follows from (1.20), (1.21), and (1.22) that 

det kIL, Ao = Cpq det( -i)2 ,( )det k-2 

+ det(-i)[D, YAO], jdetk-l 

= 2det(-i)C.0,pql(,A - 1)det k-' + 2YmI det kV 

- det(-i)(n - 1) ,uCpq det kA '. 

Also, [det kI, Ym] = 2Cgqt det k-' det(- i). Hence, 

det kA( Y + (X + (n + 1)/2) Ym) 

= (i0 + (X + (n + 1)/2 + 2L)Ym )det kt 

+ det k--Cpq det(- i)(2(X + (n + 1)/2) t + 2ju(tL - 1) - (n - ) 

In particular, the last term vanishes if and only if X =-i. In this case, 
A' = ju. 

REMARK. We let dU_A and dU, be the two representations of the Lie 
algebra obtained by Fourier transformation. They of course extend to be 
representations on all C' functions in the interior of the forward light cone, 
and since det kIL is a bijection of C '(C+) onto itself, these modules are 
infinitesimally equivalent. However, since when we took the Fourier trans- 
forms, we completely neglected boundary behavior, if these in any manner 
can be integrated, the result, transformed back again by the inverse Fourier 
transform, will in general differ from the original U 's by boundary terms. In 
this connection we observe that if we define two C functions f and g in C + 
to be equivalent if for each point p on the boundary b(C +) there is an open 
neighborhood Np such that det k (f - g) in Np n C + is the restriction of a 
C?? function in Np, then dU_,, preserves equivalence classes. 

We finally mention that for r real and positive, the closure of the operators 
dUr(x), x E sp(n, R), are the differentials of a unitary representation UAr in 
L2(C +, det k-rdk). Then, since the map 

Tr: L2(C+, det k-rdk) -- L2(C, det kr dk): (Trf)(k) d lr f(r) 

is unitary, we can define TrUrTr which then has generators dU_r(x), 
x E sp(n, R). 

2. The scalar case for SU(n, n). In view of the analysis of Mp(n, R), it is 
not surprising that similar generalizations hold for SU(n, n). Due to the 
strong analogy, we shall only give a sketch, 

SU(n, n) is the subgroup of SL(2n, C) consisting of those matrices g that 
satisfy 

g[ i] 0g*=[ i]; 
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writing g in n X n blocks, this is equivalent to 

ad* - bc* = 1; ab* = ba*; cd* = dc*, (2.1) 

and to 

a*d - c*b = 1; a*c = c*a; b*d= d*b, (2.2) 

where (2.2) is (2.1) for g -'. The Lie algebra is given by 

su(n, n) = x* Imtrx =O;x2 =x 2;X3= ) 
ILX3 XI 

We let 6D = {x + iylx = x*; y y*; y > 0}. SU(n, n) acts on 6D by gZ = 

(az + b)(cz + d)'-. Similarly to the case of Mp(n, R) there are functions, 
defined for g = (d d) and z, w E 6D by 

J1 (g, Z) = cz + d, J2 ( g, Z) = (ZC + d*)- (2.3) 

K1 (z, w) = ((z - w*)/2i)', and K2(z, w) = ((z - w*)/2i), (2.4) 

which satisfy (1.4) and (1.1 1): 

Ji (g1 g2, Z) = Ji (g1, g2Z)Ji ( g2, z) and 

Ki (gz, gw) = Ji (g, z)Ki (z, w)Ji ( g, w)* i = 1, 2. (2.5) 
We shall consider the representations 

(UA (g)f)(z) = (det J1 (g'1 z)) 
X 

f(g - z), (2.6) 

for X E Z. 
It follows from (2.1) and (2.2) that (gz*)* = g* z, and we can thus restrict 

UA to act on measurable functions on the Shilov boundary a 3 = H of 6D; 
H = {xlx = x*}. 

On functions on H, we define first order differential operators aaof to be 
dual to the variables X,,af in the parametrization of elements in H. Thus, 

af.3 (Xab) = 'a.a bfP 

We let D be the differential operator whose (a, ,B)th entry is 

{D} a = aaf,, (2.7) 

and we shall here consider det D. We define the Fourier transform by 

f (k) = e i eitr xkf(x) dx, 

and the inverse by 

g(X) = 74f ei tr xkg (k) dk. 

Since 

(det D)etr XZ = det zetr xz (2.8) 
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we observe that det D is proportional to the Fourier transform of (i)f det k. 
As in the case of Mp(n, R) we shall analyze for which pairs of (X, X')'s 

powers of det D are intertwining operators, and exactly as in that case we are 
reduced to studying the action of the subalgebra 

Specifically, we take {Y}kl = P5pk5ql + P* pl kq for a fixed p E C. For x in H 
and t in R, we then have 

x (tyx + 1) -1 - x- txyx; det(tyx + 1) _ I + t tr xy. 

Since {XYX}a3j = PXapXqJ3 + P*XaqXpf3, and tryx = pxqp + P*Xpq, we see, that 
if we put 

n 

YO E (PX,pXqjo + P*XqXpf)aaf,0 
a,,8=1 

and 

Y= PXqp + P*Xpq, 

then 

d (y O)) dt A([ I 0),o Yo + (AX + n) Ym. (2.9) 

We compute [det D, xf,,], maintaining the notation from Mp(n, R): 
n 

det D = : aiO,Ci, =*[det D, xi,j.] = Ci0.. (2.10) 
j=1 

Hence, 
n 

[det D, YO] = E [det D, PXapXqfi + P*XoqXpf]a,,, 
a,,8=I 

n n 
- PX-p Cq,0 ,,+ PC-pXq,0q., 

+ E p*xaqCpi3aai3 + p*Caqxpi3aai3 
a,,8=1 a,,8=1 

n n 
+ E p*XaqCpoadeD + E Pp CaqXp,xaa 0 

a,,8=I a,,8=1 

n n 

=E px, (det D)Sqa + E p C. (a,,,,,xq,, - Sq, 
a=1 a,,8 =I 

n n 

+ i p*xaq(det D)Spa+ E p*Caq(afigxf - Spa) 
a=1 a,f8=1 

- 2Ym(det D) - (n - 1)[pCqp + p*Cpq]. 
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We put C = pCq, + p*Cpq. Then, 

[det D, YO] = 2Ym (det D) - (n - 1)C; 

[det D, Ym] = C; [det D, C] = 0. (2.11) 

Hence, 

det D(Yo + (X + n) Ym) 

= (YO + (X + n + 2)Ym)det D + (X + n - (n - 1))C, 

or, more generally, 

(det D)r(Y0 + (X + n) Ym) = (Y0 + (X + n + 2r)Ym)(det D)r 

+ [r(X + n) + (r - 1)r - r(n - 1)]C(det D)r 1. (2.12) 
We see that in order for (det D)r to be intertwining, the last term must vanish, 
i.e. X = - r. In this case, X' = r. Hence we have proved 

PROPOSITION 2. 1. For integers r > 0, 

(det D)rdU- r (X) = dUr (X)(det D)r VX E su(n, n). (2.13) 
If we let V-r be the space consisting of those real analytic functions f on 

H, that are boundary values of holomorphic functions on 6D, and for which 
U-r([A-I 0i])f again is such a function, then it follows easily (cf. Chapter 1) 
that we have 

PROPOSITION 2.2 [5]. For r in N, f in V_r, and g in SU(n, n): 

(det D)r U-r(g)f = Ur (g)(det D)f. (2.14) 

In this section we let C = {x e HIx > 0). Then it is again known from 
[3] or [9] that there exists a constant k2 such that for a > -1 and z in 6D 

n 
eitr zYdetya dy = k2(det z/i)-an II (i + a). (2.15) 

Likewise, it is known [9] that on the orbits ?0 = {O), El = {x E Hlx > 0, 
rank x = 1}, . . ., 9n- = {x E Hx > O, rank x = n- 1 there are semi- 
invariant measures pLj such that for suitable constants cb(j) 

f de j (y) = cb(j)(det z)-J (2.16) 

These formulas imply that Ua is unitary for a > - 1, and that U_1 for] = 1, 
2, ... , n has an invariant subspace, on which it acts unitarily. 

Finally, again parallel to the case of Mp(n, R) we conclude: 

PROPOSITION 2.3. On a space of equivalence classes of functions whose 
Fourier transforms are supported by C +; equivalence being defined by f - g X 
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(det D)r(f - g) = 0, one can construct a pre-Hilbert space structure, which is 
preserved by U_ r' for all r in N. 

REMARK. By taking Fourier-transforms, we can get the relation 

(det k) AdU_ = dU,, (det k) 

for any y E C, as an equation between Lie algebra representations on the 
space of C '-functions whose support is compact and contained in C +; just 
as in the case of Mp(n, R). 

3. The Dirac-type operator. The case of Mp(n, R). There exists a 
distinguished operator .V; a 2n x 2n matrix with differential operators as 
entries, for which (S7)2 = det D. Recall from [5] that the Dirac operator 
associated to 

a2 a2 a2 a2 
at2 ax2 ax 2 ax2 

can be defined as V'= (% O), where 

-+- at ax3 ax., ax2 
a- a a a a 

ax, ax2 at ax3 

and c(a) is the co-factor of a; 

a _ a _ a+ia at ax3 ax, a~x2 
c(f a .a a a 

ax, ax2 at aX3 

We observe that, corresponding to (1.15), at is proportional to the Fourier 
transform of the multiplication operator (kf)(k) = k . f(k) for k E H (2). 
Likewise, c(a)t is proportional to the Fourier transform of the multiplication 
operator c(k), where c(k) is the co-factor of k; c(k) = (det k)k-'. These 
observations clearly lead to a natural candidate for Z. Finally, we make the 
(key) observation, that if we promote LO to be the operator IZf = (e Ql) on 
functions f: H(2) -* C2, and let h and c(h) be the above defined multi- 
plication operators, then [5] 

[Oi, h] = 2c(a); [EO, c(h)] = 2a. 

We shall in this chapter be concerned with two series of representations of 
Mp(n, R). To avoid a repetition of the technical arguments following Propo- 
sition 1.1, we shall here consider the space of holomorphic functions from 6D 
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to C'. We define, for g-I b), XE Z, and z E 6D 

(D ()f (z = (cz +d)-1 az+b 
(Dx~ (g)f)(z) = det(cz + d )x+(n+1)/2 f cz + d (3.1) 

(D (gf)() = (ZC + d')( az +b 
(D?7 (g)f)(z) det(zc' + dt )X+(n+3)/2 f cz + d ) and 

DA(g) = DA (g) f DA (g). 

We let D = Dt be the operator from (1.13), extended in an obvious way to 
functions from 6D to Cn, corresponding to a parametrization of 6D by 
matrices z for which the (i, j)th entry zb, = zji E C. Then all the formulas 
from Chapter 1 remain unchanged. We let c(D) be the n X n matrix whose 
(i,j)th entry is C,, = the determinant of Mij, as defined in (1.18). Thus, 

C(D)t = c(D) and D c(D) = c(D). D = (det D)In. Finally, we let -T= 
(co D) Then (_V)2r = (det D)r for r E N. 

We want to analyze the relation between odd powers of W and the 
representations DA. We begin by investigating for what (X, A'), for a given 
integer 1 > 0, 

(det D)'DD - (g) = (DA+ (g))(det D)'D. (3.2) 

As in the scalar case, we are immediately reduced to studying the elements 
(? 0) of sp(n, R). We maintain the notation of Chapter 1. Then, 

n + (( O) d D+(I ?)) 

=YZ + ( YO + (A' + (n + 1)/2) Ym )In, and 

dD-(y O) dt DA(ty I) t=o 

= -ZY + ( YO + (X + (n + 3)/2) Ym )In. (3.3) 

We consider Dzy. Since {ZY}rs = iqsqzrp + Eipszrq, we get that 

{Dzy } rs = 2 (qqsarjz,p + SpsarjZjq) 

(aqszipari + n+2 Ps ziq ari) + 2 ('qsfirp + 'aps arq) 
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Since moreover 

{[D, YO]i}rs=[ars, Yo] = (sp Zqa + pzqplasf) 
/3 

+ E (Z rq a- + Zq sq aar), 

{D Ym } rs {YmD } rs + (6qr6ps + 6qs Spr) 

and 

{yzD}rs= X (aprZqiais + 8rqzpiais), 

we get, using aa., = a,a and za - z=8Z that 

{(det D)'D(-zy + (YO + (X + (n + 3)/2)Ym)In)} 

{(det D)'yzD } + {(det D)' ( Yo + (X + (n + 3)/2) Ym )D} 

+ (det D)I(X + (n + 3)/2 - (n + 1)/2)(3qr3ps + 3qsapr)' 

To compute {(det D)'yz D}rs, observe that {[det D,YZI}rs = 8qrCsp + 5prCsq. 

It then follows easily that 

{(det D)'yz D} r= {.yz(det D) D}rs+ 1( qr8ps + 8prqs )(det D)'. 

Using (1.23), we thus get 

{(detD)'D(-zy + (YO + (A + (n + 3)/2)Ym)In)} 

= {yz(det D)'D}rs + ((YO + (X + 21 + (n + 3)/2)Ym)(det D)'D}rs 

+ {(21(X + (n + 3)/2) + 21(1 - 1) - I(n - 1))Cpq(det D)' 'D} 

+ (A + 1 + l)(det D)'(8qr8ps + Sqs3pr). (3.4) 

In particular, to have (3.2) satisfied, we must have X = - 1 - I and X' = 1. 
To deal with the other half of the problem, observe that if det D = 

(det D)In, then 

LEMMA 3.1. 

C(D) = [det D, z], (3.5) 

and in fact, for integers / > 0, 

(1 + 1)(det D)'C (D) = [(det D)+ 1, z]. (3.6) 

PROOF. (3.6) clearly follows from (3.5) which again follows from (1.21). 
To complete the investigation, we need therefore only check whether, for 
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g E Mp(n, R) 

[ (det D)'+1, z ]D +1 - I (g) = D (g) [ (det D)' zz]* (3.7) 

This relation is trivially satisfied for g = (0 1), x E S, since [(det D)'+ 1, z] is a 
constant coefficient differential operator. But these elements, together with 
those that project onto [? 1 1] E Sp(n, R) generate Sp(n, R). This means that if 
we put (CoJ)(z) = f- z - ), then we must have 

[(det D)'+', z] (de 
i 

[(de D) Z](det Z)- I-I+(n+ 1)/2 Co 

(det z)/+(n+3)/2 o[ ),z] 

That this equation is valid follows from Proposition 1.2 since 

((det D)'+ z - z(det D) ' ) (Co 

= (detD)'+ 1 (det Z)- 1-z+ (n +1)/2 Co 

= (det D)'+ ( 1 Co 

~~~(det z)l+n/ CO- 1(net1)2 
+ z (det D)'+' 1 ( D z 

(de zl+(+3/2CoZ (det D)'+ 

+(det Z)I+(n+3)12 C(eD 

(det z) /+(n+3)/2CO( ,] 
+ z Co ( D) f . 

We have thus brought the analysis to an end. Similarly to the scalar case we 
can then state 

PROPOSITION 3.2. Let 1 > 0 be an integer and let f be a holomorphic function 
from 6D to Cn". Then, for all g in Mp(n, R) 

To settle the question of unitarity, observe that it follows quite readily from 
[1], [2], and [8] that there exists a constant k1 such that for a > -1 and 
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z e= 6D : 

e+ ei trzYc(y)(dety) dy 
n 

- k (z/i)(det z/i)-a-((n+3)/2)r(a + 1) II r(a + (i + 3)/2), (3.8) 
i=2 

and 

|+ei 
tr zyy (det y) dy 

n-I 
= kl(z/i)-'(det z/i)- a-((n+l)/2)r( + (n + 3)/2) II r(a + (i + 1)/2). 

By (1.8), (1.9), (1.10), and (1.1 1) it then follows that D. is unitary for X > -1. 
We observe that since, for v E Cn, Deitrzyv = iyyeitrzYv, and c(D)eitrzYV = 

(i)n-Ic(y)eitrzyv, it follows from (1.27) and (3.8) by analytic continuation in 
a, that for all a in R, z, w in 61D and v E Cn: 

* -a((n + l)/2) 

det D det( z .w ) v 

= (i)n t (a + i 1 )det( z * ) -a--((n+)/2) 

C( )dtz aw ) e ziwV 
-a-((n ~ ~ * -a-((+2)2 

= (i)"-1 II (a + i + 1 )(Z *w )det( Z w ) v, and 

-a- ((n + 1)/2) 

D detZw v 

=(i )( a + 1 z i ) Wd e( z t w*w* -((n+ 3)/2) (3.9) 

By comparison with (1.28), it then follows that D_ - has an invariant subspace 
on which it is unitary, namely the completion of the pre-Hilbert space of all 
finite linear combinations of the functions (see (1.10)) 
z DK (z, w)det K1 (z, w v K2(z, w)det K2(z, w) (( )/2) 

2~~~~~~~~~~~~~~~~~2 

with w in 6D, and vi in Cn for i = 1, 2, in the metric given by (1.8). 
Since the co-factor of a rank r matrix for r < n - 2 is zero, a similar result 

for the other orbits ?j will only hold true for the representations 
D +((n_j+ 1)/2), j = O, 1, ... , n - 2. For every integer r > 0, we define 
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equivalence classes of functionsf from 6D to C' @ C" by 

[f]2+l=[g]2+12 2r+l (f - g) = 0. 

Then (cf. [5]) (3.9) together with Proposition 3.2 easily gives 

PROPOSITION 3.3. For each integer r > 0, there exists a subspace of the 
equivalence classes [H]2r+ 1 which can be given a Hilbert space structure in which 
D _ I -r is unitary. 

4. The Dirac-type operator. The case of SU(n, n). We shall here describe 
the analogue of Chapter 3 for SU(n, n). We consider functions defined on H; 
it is then straightforward to translate the results to holomorphic functions on 
6D. 

Let f be a measurable function from H to Cn, X E Z, and x E H. We 
define 

(DA+ (g)f)(x) = (cx + d) ax + 'and x 
~~det(cx + d) X+n fcx + d I 

(DA (g)f)(x) = dt(x * + d*)x+l+n cx + d)' (4.1) 

for g- = (a b) E SU(n, n). Finally, we put 

DA (g) = DA (g) e DA (g). 
Let Dt be the transpose of the matrix D in (2.5), and let c(D) be the n x n 
matrix whose (i, j)th entry is C,j = Cu (D) which is nothing more than the 
determinant of the matrix Mij obtained from D as in (1.18). Then, since 

Cy1(D)= Cji(Dt), 

D'c(D) = c(D)Dt = (det D)In, 

i.e. if ?= (co) r')' then (?)2r = (det D)r for r E N. Again we investigate for 
what (A, A') 

(det D)'D'D^- (g) = (Dxt (g))(det D)'D' (4.2) 

for a given integer I > 0, and again we are reduced to studying the elements 
(? 0?) of su(n, n); y E H. We maintain the notation of Chapter 2 and get 

dDx y 0) dt I 
Y I yX + (Yo + (A' + n) Ym)In, 

Di(y O)) dt -y (ty + +nI),4 

v.X + (YO + (X + n + I) Ym)In. (4.3) 
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To proceed, we observe the formulas 
n 

{Dty)rs = > air(x,pP8qs + Xjqp*ps), 
i=l1 

n 

{YxD) rs = E (P3prXqi + P*8rXi)ai, 
i=l1 

n 

{[Dt,r o]rs=as Yo] = p P3, x,fia5 

n n n 
+ E PXanp8sq ar + E P*8rqXp1Ba3,B + E P*Xaq8sp 

a=l ,=1 a=1 

{[D, Ym]}rs = (Pasq3rp + P*8sparq) 

{[det D, yx]) r = Papr Cqs + P* 3rq Cps, 

{ [(det D)l,yx] rs = l(det D)' '(PfprCqs + P*SrqCps). (4.4) 

From these formulas, together with (2.12), it then follows that 

{ (det D)D'(-vy + ( YO + (A + 1 + n) Ym )In ) } 

= {yx(det D)lDt'} + (A + 1 + 1)(det D)' (P3praqs + P*3rq8ps) 

+ {(YO + (A + 1 + n + 21 ) Ym )In (det D)Dt }rs 

+ {(1(A + 1 + n) + 1(1 - 1) - l(n- 1))C(det D) ID'} . (4.5) 

In particular, if (4.2) is to be satisfied, then A - 1 - 1 and A' = 1. 
The other half of the problem follows similarly to that of Chapter 3, once 

we have noted 

LEMMA 4.1. For integers 1 > 0, 

[(det D)'+', x] = (1 + 1)(det D)'c(D). (4.6) 

PROOF. This follows by induction from (2.8). 
We let V-, be the space of those functions on H with values in Cn ED Cn 

that are boundary values of holomorphic functions on 6D, and for every x in 
H can be continued across the boundary as a holomorphic function in a 
neighborhood Nx of x, and which maintain this property when acted upon by 
D - -I . We can then state, similarly to the preceding cases: 

PROPOSITION 4.2. For integers 1 > 0, g E SU(n, n), andf E V,1: 

T e2o+iDqit (g)fa = Db(g)y for (b f ) 
The question of unitarity is again settled by formulas obtainable from [1], 
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[2], and [8]. Specifically, there exists a constant k2 such that for a > - 1 and 
z E 6D: 

I+ e itrzYc(y)(dety)a dy 
n 

= k2(z/i)(det(z/i))aI nF( + a) II F(1 + i + a), (4.8) 
i=2 

and 

|ei tzyy (det y)' dy 

n-i 
= k2(z/i)l'(det(z/i)) a nr(n + 1 + a) II r(i + a). 

i=l1 

It follows again by (1.8), (1.9), (1.10), and (1.11) that DA is unitary for 
A >-1. It is easy to see, using det A = det A, that for v E Cn: 

Dte tr 
-V iyei tr xV, 

and 

c(D)eitr'v - (i)-lc(y)eitr'v 

It follows from these formulas, together with (2.15) and (4.8) that for a E R, 
h E H, w E 6D, and v E Cn: 

na-n n 
det D det((h _ 

W*)/I) 
V = (j)n 1 (a + i)det((h -w*i V 

i=1 

c(D)det((h - W*)/i)V 

n 

(j)n -I (i + a)((h - w*)/i)det((h - W*)/i)-a- V, (4.9) 
i=2 

and 

WI,-a-n DI det((h - w*)/i) V 

= (i)(n + a)((h - w*)/i) ldet((h - w*)/i) v. 

By comparison with (2.16), it follows that D-1 has an invariant subspace, on 
which it is unitary, namely that completion of the pre-Hilbert space of all 
finite linear combinations of the functions (see (2.4)) 

h -* K1 (h, w)det K1 (h, w)f'"1 
-+n V K2(h, w)det K2 (h, w) v2, 

with w in 6D, and vi in Cn for i = 1, 2, in the metric given by (1.8), whereas for 
the other orbits Qj, this only holds true for D = 0, 1,.. , nn-2. For 
every integer I > 0 we define equivalence classes of functions f from H to 
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cn C3 Cn by 

[ f]21+1 =[ g]2+ 1@V21 (f - g) = 0. 

Again analogous to the proof for the case of SU(2, 2) in [51, we get, using 
Proposition 4.2 and (4.9) 

PROPOSITION 4.3. For each integer I > 0, there eixsts a subspace of the 
equivalence classes [ 121+1 which can be given a Hilbert space structure, in which 

D-I-I is unitary. 

5. A combination. We conclude this article with a study of a series of 
representations obtained by induction from noncomplemented finite dimen- 
sional representations of the maximal parabolic subgroup P_. 

We shall give the details for the groups SU(n, n), whereas the correspond- 
ing results for Mp(n, R), due to the large similarity, are omitted. 

For SU(n, n), 

p_= ( ( - ) det a is real and ca* = ac* 

and hence there are some very natural representations of P_, namely 

I-L(c a I = ( I a*-l)(det a) (5.1) 

Similarly to the preceding cases, the induced representations obtained from Ujt 
yield actions on measurable functions on H (see [51) since H can be identified 
with the subgroup {(O f)Ix E H) of G (which is mapped onto an open dense 
subset of G/P_. The actions H,(g) thus obtained are 

(Hi (g)f)(x) 

(cx+d)* det(cx + d) ((n+l)j( ax + b,), (5.2) 

if g- 1 = (d ), and if f is any measurable function from H to C2'. 
We note that if z E 6D and if g = (a b) e G, then 

det(cz + d) = det(zc* + d*). (5.3) 

This fact is trivially true on the subgroup 

p+= {(( ab!i) det a isreal, and ab* = ba* 

and on EG -) E G. These elements generate the group, and hence, by (2.5), 
the assertion follows for all g in G. 
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In terms of the representations studied in Chapter 2 and Chapter 4, 

H, (g) = (( D41(g) D+(g) ) 

and from (5.3) it follows, that if we let ? (2n) be the space of holomorphic 
functions from 6D to C2", then we can think of H, as an action on that space, 
with (5.2) as boundary value. We shall do that, and omit the technicalities of 
passing to the boundary. In this connection, we recall that it was observed in 
the preceding chapters, that the differential operators D', c(D), and det D can 
be extended to operate on holomorphic functions on 6D in such a way that 
the intertwining relations remain valid. 

LEMMA 5.5. Let 1 be an integer and let f be a holomorphic function from 6D to 
cn. Then 

D(detz' f ) 

- -l ' f(-Z') + z (Df)(-z') (5.6) 

PROOF. Since Dt is a matrix with first order differential operators as entries, 
and since (det z)-' is a scalar valued function, the formula will follow from 
(4.7) (with 1 = 0), once we have proved that for any vector v E cn, 
D' (det z -v) =-lz -'det z - 'v. This, however, follows from (4.9). 

PROPOSITION 5.7. Let 1 be an integer. Then for allf in ? (2n) and all g in G, 

[D 
o DlI(g) 0 f 

LDt I 
L 
L- c(g )*Ul(g) DI+ (g) 

O D,+ (g) - -Dt 1 

PROOF. We need only check the relation for g I = (? -O). For this element, 
the only nontrivial equation in (5.8) is (5.6). 

In (5.8) the operator [ID' 1?] is clearly invertible on ? (2n) when 1 # 0. 
Hence, by Chapter 4, one can put a Hilbert space structure K, on a subspace 
of e (2n) in which H, is unitary for 1 > 1. 

When 1 = 0, in addition to (5.8), we also have 

[-D' ] Hop-HoHKo ] and 

[DO Do+][-D' O1[o o] E D-1 0 
0 D0 ~~(5.9) 
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In this case, we see that Ko+ = {e) E (2n)) and K- = {(B) E e ((2n)IDtPA 
= 0) are invariant subspaces. The restriction of Ho to Ko+ is D 1, which is 
unitary on a subspace. On K7 / Ko, Ho is equivalent to the representation 
D_Yl in the space of solutions to Dt.p = 0. Again there is a subspace on which 
Ho is unitary. Finally, there is also a subspace of e (2n)/K7 = 
(? (2n)/KO+)/(KC /Ko+), where Ho is unitary, because Ho there is equivalent 
to Do+. 

As for the case -I < 0, it follows from (4.7) that any operator of the form 

El = idetD'D 2det DOc (D) (5.10) 

has the property that 

E D D+1 ) DI- I 0 D El's (5.11) 
I,s1,8 

0= +1 0 D1 + 

Hence, if we define, for any complex number a, 

D =(det DI [det DI z]) 
a det D'D' det D' I 

( det D' I det Dl-' c(D) 5 
a det D'D' detD' (5.12) 

then we get from (5.8) and (5.9): 

PROPOSITION 5.13. For any nonnegative integer 1, andfor all g in G 

D1,aH-(g) = HI(g)D,a. 

REMARK. D,,0 = (D, 0)'. 

The trivial fact, that (0' ?2) commutes with the representation 

0 DI+ J 
for any pair of complex numbers yl and Y2, is, by (5.8), translated into 

COROLLARY 5.14. Let M.,, = [XD' J], where x is an arbitrary complex 
number. Then 

HI ( g)Mx, = Mx,1HI (g) 

for any integer / andfor all g in G. 

We observe that, either by using (5.8) to find the Hilbert space structure K1 
that makes HI unitary for I > 1, or directly from (2.1) and (2.2), it follows 
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that if we define, for z and w in 6D and ,B in C, 

[ (Z - w*)/2i 1/2i 1 -(I+n) 

Fj,,fl (z, w) = -/2 1((-w)2)'jdet(Z - w*)/2i) 
Un 

(5.15) 

and if J,( g, z) is the automorphic factor for which 

(H, ( g)f)(z) = J, ( g- z) f(gz), 

then 

PROPOSITION 5.16. F,fl(gz, gw) = J,(g, z)F,,fl(z, w)J,(g, w)*. 

From (4.8) and (2.15) it finally follows that there are constants Kl,n such 
that, for 1 > 1 

F1fl(z, ) = ,~f (1/2). k1 1/2i ide klitl(z -w*)kd 
+ L - 1/2i (2. /3). k/ (l + n) Jdet ke 

(5.17) 

and hence, since 

(1/2) k- 1/2i 
1/2i (2 .*) * k/ (1 + n)j 

is a positive operator (when k E C +) if and only if /3 > (n + 1)/41, we get, 
using (1.8), 

PROPOSITION 5.18. For 1 > 1 and / > (n + 1)/41, F1fl is the reproducing 
kernel for the representation H, in K,. 
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