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In a variety of problems in pure and applied probability, it is rele-
vant to study the large exceedance probabilities of the perpetuity sequence
Yn := B1 + A1B2 + · · · + (A1 · · ·An−1)Bn, where (Ai,Bi) ⊂ (0,∞) × R.
Estimates for the stationary tail distribution of {Yn} have been developed in
the seminal papers of Kesten [Acta Math. 131 (1973) 207–248] and Goldie
[Ann. Appl. Probab. 1 (1991) 126–166]. Specifically, it is well known that
if M := supn Yn, then P{M > u} ∼ CMu−ξ as u → ∞. While much atten-
tion has been focused on extending such estimates to more general settings,
little work has been devoted to understanding the path behavior of these pro-
cesses. In this paper, we derive sharp asymptotic estimates for the normalized
first passage time Tu := (logu)−1 inf{n : Yn > u}. We begin by showing that,
conditional on {Tu < ∞}, Tu → ρ as u → ∞ for a certain positive constant
ρ. We then provide a conditional central limit theorem for {Tu}, and study
P{Tu ∈ G} as u → ∞ for sets G ⊂ [0,∞). If G ⊂ [0, ρ), then we show
that P{Tu ∈ G}uI (G) → C(G) as u → ∞ for a certain large deviation rate
function I and constant C(G). On the other hand, if G ⊂ (ρ,∞), then we
show that the tail behavior is actually quite complex and different asymptotic
regimes are possible. We conclude by extending our results to the correspond-
ing forward process, understood in the sense of Letac [In Random Matri-
ces and Their Applications (Brunswick, Maine, 1984) (1986) 263–273 Amer.
Math. Soc.], namely to the reflected process M∗

n := max{AnM∗
n−1 + Bn,0},

n ∈ Z+. Using Siegmund duality, we relate the first passage times of {Yn} to
the finite-time exceedance probabilities of {M∗

n }, yielding a new result con-
cerning the convergence of {M∗

n } to its stationary distribution.
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1. Introduction. Since the pioneering work of Kesten (1973) and Vervaat
(1979), there has been a continued interest in the probabilistic study of perpetuity
sequences. Much of this interest has been driven by a wide variety of applications.
Perpetuity sequences arise naturally in connection with the ARCH and GARCH
financial time series models, the Asian option in discrete and continuous time
and in insurance mathematics. [For a detailed description of these diverse applica-
tions, see, for example, Engle (1982), Bollerslev (1986), Mikosch (2003), Geman
and Yor (1993), Carmona, Petit and Yor (2001), Paulsen (2002), Klüppelberg and
Kostadinova (2008), and Collamore (2009).] From a theoretical perspective, per-
petuity sequences also appear in connection with the weighted branching process
and branching random walk. Indeed, utilizing an argument in Guivarc’h (1990) and
Liu (2000), it is possible to relate the tail behavior of a perpetuity sequence to that
of an associated nonhomogeneous recursion, leading to further applications, for
example, to the Quicksort algorithm in computer science and to Mandelbrot cas-
cades. [See Alsmeyer and Iksanov (2009), Buraczewski (2009), Guivarc’h (1990),
Liu (2000), Buraczewski et al. (2014), and references therein.]

A central issue arising in all of these problems is the characterization of the tail
behavior of the perpetuity sequence. Namely, letting {(Ai,Bi) : i ∈ Z+} be an i.i.d.
sequence of random variables taking values in (0,∞) ×R, and letting

Yn = B1 + A1B2 + · · · + (A1 · · ·An−1)Bn, n = 1,2, . . . ,(1.1)

then it is of interest to consider

P{V > u} as u → ∞,(1.2)

where, typically,

V := lim
n→∞Yn or V := sup

n
Yn.

In either case, it is well known that under mild regularity conditions,

P{V > u} ∼ C u−ξ as u → ∞(1.3)

for certain positive constants C and ξ [cf. Kesten (1973), Goldie (1991)].
Much recent work has been devoted to showing that the estimate in (1.3) ex-

tends well beyond the setting of perpetuity sequences. Following Letac (1986), it
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is helpful to first observe that {Yn} can be identified as the backward process gener-

ated by the affine map �(x) = Ax + B , where (A,B)
D= (A1,B1) (and D= denotes

equality in distribution). More precisely, letting �i(x) = Aix +Bi for i ∈ Z+, then

Yn = �1 ◦ · · · ◦ �n(0), n = 1,2, . . . .(1.4)

The limiting behavior of this sequence is, of course, the same as that of the corre-
sponding forward process, namely

Y ∗
n := �n ◦ · · · ◦ �1(0), n = 1,2, . . . .(1.5)

Then it is natural to consider more general random functions, including Markov-
dependent sequences and random matrices. Extensions of this type can be also
found, for example, in recent work of Alsmeyer (2003), Alsmeyer and Mentemeier
(2012), Brofferio and Buraczewski (2015), Buraczewski et al. (2009), Collamore
(2009), Collamore and Vidyashankar (2013a, 2013b), Guivarc’h and Le Page
(2013a), Klüppelberg and Pergamenchtchikov (2004), Enriquez, Sabot and Zindy
(2009), Mirek (2011) and Roitershtein (2007). We note that, for the process (1.5),
recursions generated by random matrices were also considered in Kesten’s (1973)
original work. Moreover, some refined large deviation asymptotics for related re-
cursive structures can be found in Buraczewski et al. (2013) and Buraczewski,
Damek and Zienkiewicz (2015).

In contrast, very little is known concerning the path properties of perpetuity se-
quences. Two natural questions, well motivated by the theory of random walks, are
the characterization of the distribution of the first passage time of the sequence in
(1.4) and the convergence of the sequence in (1.5) to its stationary distribution. In-
deed, these two questions are very much the same, since it is known by extensions
of classical duality for random walks that

P{Yk > u, some k ≤ n} = P
{
M∗

n > u
}
,(1.6)

where {M∗
n} is defined as in (1.5), but with �(x) replaced with �̃(x) := (Ax +

B)+, and Y0 = 0 = M∗
0 . [Cf. Siegmund (1976), Asmussen and Sigman (1996),

and the discussion in Section 2 below.] Thus, the finite-time exceedances of {M∗
n}

can be analyzed through the first passage times of {Yn}, and vice versa.
The primary objective of this article is to study the asymptotic distribution of

the scaled first passage time

Tu := 1

logu
inf{n : Yn > u} as u → ∞.

Motivated by the large deviation theory for random walks, developed in the classic
papers of Donsker and Varadhan [cf. Varadhan (1984)], we study the asymptotic
behavior of

P{Tu ∈ G} as u → ∞, where G ⊂ [0,∞).
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We begin by showing that, conditional on {Tu < ∞},
Tu → ρ in probability

for some positive constant ρ, thus describing the “most likely” first passage time
into the set (u,∞). We then characterize the asymptotic distribution of {Tu} on
the respective time intervals [0, τ ], where either τ < ρ, τ = ρ, or τ > ρ, and the
analysis on these various regions turns out to be quite different. On the first of these
regions, we show that there exists a certain “rate function” I : [0,∞) → [0,∞)

such that as u → ∞,

P{Tu ≤ τ } ∼ C(τ)(λ(α))−�(u)

√
logu

u−I (τ ) for all τ < ρ,(1.7)

where C(τ) is a positive constant which we explicitly identify and �(u) :=
τ logu − �τ logu� ∈ {0,1}. [For logarithmic large deviation asymptotics describ-
ing the decay parameter I (τ ) for this case, see also Nyrhinen (2001).]

Next, we examine the behavior of {Tu} around its central tendency, that is,
around the constant ρ which describes the most likely exceedance time. To this
end, we establish a conditional central limit theorem; namely, we show that condi-
tional on {Tu < ∞},

a
√

logu(Tu − ρ) 
⇒ Z ,(1.8)

where Z has the standard Normal distribution function (denoted �) and a is a
certain constant. Thus, in particular, P{Tu ∈ [0, ρ]} ∼ �(0)P{Tu < ∞}, and hence
as a direct analog of (1.7), we obtain that

P
{
Tu ∈ [0, ρ]}∼ C

2
u−ξ as u → ∞,(1.9)

where (C , ξ) is given as in (1.3). Both (1.7) and (1.8) are comparable to classical
estimates for random walks, as we explain in Section 2.3 below.

Finally, we turn to a description of {Tu} for large times, when τ > ρ. Here we
find that the behavior is quite complex, requiring new mathematical techniques. As
we demonstrate, these asymptotics can be quite distinct from those expected from
the large deviation theory of random walks, which, based on Arfwedson (1955),
Asmussen [(2000), Chapter 4], and Collamore (1998), would suggest that

P{τ ≤ Tu < ∞} ∼ C(τ)√
logu

u−I (τ ) as u → ∞.(1.10)

As we show, under certain conditions, the previous formula fails to hold and we
obtain very different asymptotic behavior, not only for P{τ ≤ Tu < ∞}, but also
for logP{τ ≤ Tu < ∞}; thus, even the polynomial decay rate predicted by (1.10)
need not hold, in general. Indeed, in Theorems 2.3 and 2.4 below, we provide
asymptotic estimates showing that, under certain conditions,

lim sup
u→∞

logP{τ ≤ Tu < ∞} ≤ −I (τ ),(1.11)
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while under other conditions,

lim inf
u→∞ logP{τ ≤ Tu < ∞} > −I (τ ).(1.12)

In this way, we exhibit an interesting asymmetry between the large-time behavior
and the small-time behavior of {Tu}. The latter results are quite technical and show
that for τ > ρ, the story is very interesting, challenging and not fully understood.

We now turn to a more precise statement of our results. In the process, we also
connect the convergence in (1.7) to that of the dual process of {Yn}. The proofs are
deferred to Sections 3–5, where we establish our main results for the three regimes
(τ < ρ, τ = ρ, τ > ρ) which we have just described.

2. Statement of results.

2.1. A class of stochastic recursions. Before stating our main results, we first
introduce some notation related to our stochastic recursions and formulate a few of
their basic properties. Let {(Ai,Bi) : i = 1,2, . . .} be a sequence of i.i.d. random
variables taking values in (0,∞) ×R. Throughout the paper, we assume:

• E[logA] ∈ (−∞,0) and E[log+ |B|] < ∞.
• For every x ∈ R, P{Ax + B = x} < 1, which implies, in particular, that P{B =

0} < 1.

We will be interested in the following two processes: the perpetuity sequence

Yn := B1 +
n∑

k=2

A1 · · ·Ak−1Bk, n = 1,2, . . . , Y0 = 0,(2.1)

and, particularly, the process of partial maximums of this sequence, namely,

Mn := max
0≤k≤n

Yk, n = 0,1, . . . .(2.2)

These sequences represent the backward processes generated by the random map-
pings �i(x) = Aix + Bi and �i(x) = (Aix + Bi,0)+, respectively. The corre-
sponding forward processes [defined in (1.5)] are Markov chains satisfying the
respective equations

Y ∗
n = AnY

∗
n−1 + Bn,

(2.3)
M∗

n = (AnM
∗
n−1 + Bn

)+
.

If E[logA] < 0 and E[log+ |B|] < ∞, then it is well known that {Yn} converges
pointwise to

Y = B1 +
∞∑

k=2

A1 · · ·Ak−1Bk,
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while {Mn} converges a.s. to

M = sup
n≥0

Yn,

where Y and M are finite a.s. Then Y and M are called stationary solutions, since
they satisfy the stochastic fixed point equations

Y
D= AY + B, Y independent of (A,B);(2.4)

M
D= (AM + B)+, M independent of (A,B).(2.5)

In this paper, our objective will be to describe the path behavior of {Yn} and
{Mn}, and, in this connection, it will be of interest to compare the limiting quanti-
ties we obtain to the tail behavior of Y and M . To this end, define the generating
functions

λ(α) = E
[
Aα], 	(α) = logλ(α), α ∈ R;

λB(α) = E
[|B|α], 	B(α) = logλB(α), α ∈ R.

Note by the convexity of 	 and 	B that, if 	(α) < ∞ and 	B(α) < ∞ for some
α > 0, then 	(β) and 	B(β) are finite for every β ∈ (0, α). Moreover, these func-
tions are infinitely differentiable on the interiors of their respective domains.

We will use some fundamental properties of the solutions to the stochastic equa-
tions (2.4). First, if 	(α) < 0 and 	B(α) < ∞ for some α > 0, then their αth
moments must be finite, namely,

E
[|Y |α]< ∞ and E

[
Mα]< ∞;(2.6)

see Vervaat (1979). Next, to describe the tail behavior of Y and M , we focus on
the nonzero solution, ξ , to the equation 	(ξ) = 0. More precisely, assume that for
some ξ > 0,

	(ξ) = 0, 	′(ξ) < ∞ and 	B(ξ) < ∞.

Then, if the random variable logA is nonarithmetic, it is well known that the tails
of Y and M are regularly varying with index ξ ; that is,

P{Y > u} ∼ CY u−ξ as u → ∞;
(2.7)

P{M > u} ∼ CMu−ξ as u → ∞;
see Goldie (1991). Various explicit expressions for the constants CY and CM are
also available; see Remark 2.2 below.
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2.2. Main results. Let {Yn} denote the perpetuity sequence defined in (2.1),
and let

Tu := 1

logu
inf{n : Yn > u}(2.8)

denote the scaled first passage time of {Yn} into the set (u,∞). Then our primary
objective is to study the asymptotic decay, as u → ∞, of P{Tu ∈ G}, where G ⊂
[0,∞). We will show that this probability decays at a polynomial rate, and provide
sharp asymptotic estimates describing this rate of decay.

Set

μ(α) = 	′(α) and σ(α) =√	′′(α).(2.9)

To characterize the behavior of {Tu} as u → ∞, it is helpful to first observe that,
conditional on the event of ruin, the random variable Tu converges in probability to
ρ = (μ(ξ))−1, where ξ is given as in (2.7). This constant ρ will play an important
role in the sequel.

LEMMA 2.1. Assume there exists a value ξ > 0 such that 	(ξ) = 0, and sup-
pose that 	 and 	B are finite in a neighborhood of ξ and the law of logA is
non-lattice. Set ρ = (μ(ξ))−1. Then for any ε > 0,

P
{
Tu /∈ (ρ − ε,ρ + ε)|Tu < ∞}→ 0 as u → ∞.(2.10)

Lemma 2.1 will follow as a direct consequence of a stronger result, Lemma 4.3,
which will be proved in Section 4.

Turning now to our main results, we first introduce the rate function which we
will use to describe the polynomial rates of decay. Recall that the convex conjugate
(or Fenchel–Legendre transform) of the function 	 is defined by

	∗(x) = sup
α∈R
{
αx − 	(α)

}
, x ∈R.

Next, define

I (τ ) = τ	∗
(

1

τ

)
, τ > 0, I (0) = ∞.(2.11)

This rate function appears in the large deviation study for random walks, and it
is closely related to the “support function” in convex analysis, whose properties
are well known [see Rockafellar (1970), Chapter 13]. Various convexity proper-
ties of the function I (·) itself (developed primarily for random walk in higher
dimensions) can be found in Collamore (1998), Section 3. Note that if we set
τ = (μ(α))−1 for some α ∈ dom(μ) (the domain of μ), then it follows that

I (τ ) = α − 	(α)

μ(α)
;(2.12)
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cf. Dembo and Zeitouni (1993), page 28.
We turn now to the characterization of P{Tu ∈ [0, τ ]} when τ < ρ. Recall that

the function 	 is differentiable on the interior of its domain. Moreover, if 	 is
also essentially smooth (namely, if we further assume that |	′(αi)| ↑ ∞ for any
{αi} ⊂ int(dom	) whose limit lies on the boundary of dom	), then it is well
known that 	′ maps R onto the entire real line. Thus, in this case, there always
exists a point α(τ) satisfying the equation

μ
(
α(τ)
)= 1

τ
.(2.13)

More generally, if τ−1 lies in the interior of the domain of 	∗, then a solution
α(τ) exists in (2.13); cf. Ellis (1984), Theorem VI.5.7; Rockafellar (1970), Theo-
rem 23.5.

Thus, the assumption of a solution to (2.13) is a very weak condition, which
also appears to be necessary. In particular, when there fails to be a solution, one
usually expects to obtain only logarithmic large deviation asymptotics rather than
the sharp asymptotics which are the focus of this paper.

The most important solution to (2.13) appears, for our purposes, when we take
τ = ρ, where ρ is given as in the previous lemma. Then by definition of ρ, we
have α(ρ) = ξ . Then τ ∈ (0, ρ) if and only if α(τ) > ξ , which is the setting of our
first main result.

THEOREM 2.1. Let τ ∈ (0, ρ) and suppose that there exists a point α ≡
α(τ) ∈ R such that (2.13) holds. Assume that 	 and 	B are finite in a neigh-
borhood of α and the law of logA is non-lattice. Then

P{Tu ≤ τ } = C(τ)(λ(α))−�(u)

√
logu

u−I (τ )(1 + o(1)
)

as u → ∞,(2.14)

where �(u) := τ logu − �τ logu�. Moreover,

P
{
Tu ≤ τ − Lτ (u)

}= o

(
u−I (τ )

√
logu

)
as u → ∞,(2.15)

where Lτ (u) = {c log(logu)}/ logu and c ≥ {2(α + 1)}/	(α). The constant C(τ)

is given by

C(τ) = 1

ασ(α)
√

2πτ
lim

n→∞
1

λn(α)
E
[
Mα

n

] ∈ [0,∞).(2.16)

Moreover, if P{A > 1,B > 0} > 0 then C(τ) > 0.

Note that (2.15) shows, heuristically, that the critical event {Yn > u} occurs near
the end of the time interval [0, τ logu].

Next, we turn to the behavior around the critical case, where we would take
τ = ρ in the previous theorem. In the following result, we establish a more precise
estimate, which yields a conditional central limit theorem for the normalized first
passage time.
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THEOREM 2.2. Suppose that there exists a value ξ > 0 such that 	(ξ) = 0.
Also, assume that 	 and 	B are finite in a neighborhood of ξ and the law of logA

is non-lattice. Then for any y ∈ R,

P
{
Tu ≤ ρ + a(logu)−1/2y

}= CMu−ξ�(y)
(
1 + o(1)

)
as u → ∞,(2.17)

where � is the standard Normal distribution function, a = ρ3/2σ(ξ), and where
CM ∈ [0,∞) is given as in (2.7). Moreover, if P{A > 1,B > 0} > 0, then CM > 0.

REMARK 2.1. It follows from (2.17) and (2.7) that

P
{
Tu ≤ ρ + a(logu)−1/2y|Tu < ∞}= �(y)

(
1 + o(1)

);(2.18)

consequently, conditional on {Tu < ∞}, we have that a
√

logu(Tu − ρ) 
⇒ Z ,
where Z ∼ Normal(0,1).

REMARK 2.2. Using Goldie’s (1991) original characterization, the constant
CM in Theorem 2.2 can be expressed as

CM = 1

ξμ(ξ)
E
[(

(AM + B)+
)ξ − (AM)ξ

]
.(2.19)

Recently, certain more explicit representation formulas have been derived for
CM and CY in (2.7); see Enriquez, Sabot and Zindy (2009) and Collamore
and Vidyashankar (2013b). The main representation formula in Collamore and
Vidyashankar (2013b) states that, under a weak continuity assumption on logA,

CM = 1

ξμ(ξ)E[τ ]Eξ

[(
V0 + B1

A1
+ B2

A1A2
+ · · ·
)ξ

1{τ=∞}
]
,(2.20)

where Eξ [·] denotes expectation in the ξ -shifted measure (defined formally in Sec-
tion 3 below), τ − 1 is the first regeneration time of the forward process {M∗

n} in

(2.3), and M∗
0 is chosen such that M∗

0
D= M∗

τ . Specifically, if P{B < 0} > 0, then
τ −1 can be taken to be the return time of {M∗

n} to the origin. In particular, the pos-
itivity of CM follows readily under these conditions from (2.20). Moreover, under
the weaker requirements of Collamore and Vidyashankar (2013b), Theorem 2.2,
together with the additional assumption that {M∗

n} is ψ-irreducible (which is im-
plicitly assumed in Section 9 of that article), one obtains (2.20) for the k-chain
{M∗

kn : n = 1,2, . . .}, as well as the alternative representation

CM = 1

ξμ(ξ)
lim

n→∞
1

n
E
[
Mξ

n

]
,(2.21)

which is readily seen to have a closely related form to (2.16).

Finally, we turn to the case where τ > ρ. Interestingly, in this case, we do not
obtain a complete analog of Theorem 2.1. Indeed, counterexamples can be con-
structed where the asymptotics differ from those one might expect from the large
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deviation theory for random walks, as described in (1.10). For τ > ρ, the condition
that appears to lead to these counterexamples is that E[logA] > 	(α(τ)). In this
case, the true probability may decay at a slower polynomial rate than I (τ ). More
precisely, within a rather flexible class of processes with E[logA] > 	(α(τ)), we
have that

P{τ ≤ Tu < ∞} ≥ D0u
−I (τ )+δ for sufficiently large u.(2.22)

On the other hand, under different hypotheses which, in particular, imply
E[logA] < 	(α(τ)), we have that

P{τ ≤ Tu < ∞} ≤ D1√
logu

u−I (τ ) for sufficiently large u.(2.23)

Thus, one cannot expect a direct analog of Theorems 2.1 and 2.2 here, and our next
theorem provides, in effect, a source of counterexamples to the natural conjecture
suggested by (1.10).

THEOREM 2.3. Let τ ∈ (ρ,∞), and suppose that there exists a point α ≡
α(τ) ∈ int(dom	) such that (2.13) holds and

μ(0) = E[logA] > 	(α).(2.24)

Moreover, assume that B = 1 a.s. and the law of A has a strictly positive con-
tinuous density on R. Then there exist positive constants D0 and δ such that, for
sufficiently large u,

P{Ynu−1 ≤ u and Ynu > u} ≥ D0u
−I (τ )+δ, nu = �τ logu�.(2.25)

REMARK 2.3. Since the construction in the theorem is quite involved, we
have restricted our attention to the case B = 1; however, the theorem can also be
established under the weaker assumption that B > 0 a.s. For more details, see the
discussion in Section 5.1 following the proof of the theorem.

While the previous theorem leads essentially to a negative conclusion, we also
have the following complementary result.

THEOREM 2.4. Let τ ∈ (ρ,∞), and suppose that there exists a point α ≡
α(τ) ∈ int(dom	) such that (2.13) holds and

	(β) < 	(α) for some β < min{1, α}.(2.26)

Assume that B > 0 a.s. and λB(−α) < ∞, and assume that the law of (A,B) has
compact support and A has a bounded density. Then there exist finite constants D
and U such that, for all u ≥ U ,

P{Ynu+k−1 ≤ u and Ynu+k > u} ≤ D�k

√
logu

u−I (τ ), nu = �τ logu�,(2.27)
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where � := λ(α) ∈ (0,1) and k is any nonnegative integer. Thus, for sufficiently
large u,

P{τ ≤ Tu < ∞} ≤ D1√
logu

u−I (τ )(2.28)

for some positive constant D1.

REMARK 2.4. In these theorems, conditions (2.24) and (2.26) determine the
relevant asymptotic regime. At first sight, it in not immediately clear that there are
processes which satisfy these assumptions. In fact, such processes exist in abun-
dance; see the discussion in Section 5 and, in particular, Lemma 5.1.

2.3. A comparison with previous estimates for classical random walks. Our
motivation for considering P{Tu ≤ τ } as u → ∞ comes from classical estimates
for random walks, to which we now compare the results of this paper.

For this purpose, let {Xi} ⊂ R be an i.i.d. sequence of random variables such
that E[Xi] < 0. With a slight abuse of notation, specifically for the discussion in
this section set

Sn = X1 + · · · + Xn, n ∈ Z+; S0 = 0;
λ(α) = E

[
eαX1
]; and 	(α) = logλ(α) all α ∈ R.

(If Xi ≡ logAi for all i, then this notation agrees with that of the previous sec-
tions.) Also, let μ(·), σ(·), and I (·) be defined as in (2.9) and (2.11), and let α(τ)

be defined as in (2.13). Finally, set

Tu = 1

u
inf{n : Sn ≥ u}, u ≥ 0.

Then, motivated by large deviation theory, it is of interest to consider P{Tu ∈ G}
as u → ∞ for various intervals G ⊂R.

Assume that the distribution of X1 is non-lattice, and suppose that there exists
a value ξ > 0 such that 	(ξ) = 0. Set ρ = (μ(ξ))−1. Let τ < ρ, and assume that
α(τ) ∈ int(dom	). Set α ≡ α(τ). Then it is shown in Lalley [(1984), Theorem 5]
that

P{Tu ≤ τ } = C1(τ )(λ(α))−�1(u)

ασ (α)
√

2πτu
e−uI (τ )(1 + o(1)

)
as u → ∞,(2.29)

where �1(u) =: τu − �τu� ∈ {0,1}. Similarly, if τ > ρ, then

P
{
Tu ∈ (τ,∞)

}= C2(τ )(λ(α))�2(u)

ασ (α)
√

2πτu
e−uI (τ )(1 + o(1)

)
as u → ∞,(2.30)
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where �2(u) =: �τu + 1� − τu ∈ {0,1}. In Lalley’s theorem, the constants C1(τ )

and C2(τ ) are given (after an integration by parts in the numerator and an applica-
tion of Wald’s identity in the denominator) by the following expressions:

C1(τ ) = λ(α)

λ(α) − 1

1 −Eα[e−αST0 ]
E[T0] and

(2.31)

C2(τ ) = 1

1 − λ(α)

1 −Eα[e−αST0 ]
E[T0] ,

where T0 := inf{n ∈ Z+ : Sn ≥ 0}.
Alternatively, the proof of our Theorem 2.1 could be repeated in this simplified

setting to obtain (2.29), but with C1(τ ) replaced with

C∗
1 (τ ) := lim

n→∞
1

λn(α)
E
[
M̌α

n

]
where M̌n := max

0≤k≤n
eαSk .(2.32)

To see that these two expressions for the constant are consistent, observe by a
change of measure argument that

1

λn(α)
E
[
M̌α

n

]= Eα

[
max

0≤k≤n
e−α(Sn−Sk)

]
= Eα

[
e−αWn

]
,(2.33)

where {Wn} is the random walk reflected upon entering the positive half-line; that
is, Wn = (Wn−1 + Xn) ∧ 0 for n ≥ 1 and W0 = 0. Note that in the α-shifted mea-
sure, the Markov chain {Wn} converges to a proper random variable, W , and by an
application of the Athreya–Ney–Nummelin regeneration lemma [cf. Athreya and
Ney (1978), Nummelin (1978)], we have that

C∗
1 (τ ) = Eα

[
e−αW ]= 1

Eα[T0]Eα

[ T0∑
i=1

e−αWi

]
,(2.34)

where T0 + 1 is here identified as the first regeneration time of the process {Wn}.
Moreover, since Wn = Sn for all n < T0 and WT0 = 0 = W0, we have that

Eα

[ T0∑
i=1

e−αWi

]
= Eα

[T0−1∑
i=0

e−αSi

]
= Eα

[ ∞∑
i=0

e−αSi 1{T0>i}
]

=
∞∑
i=0

{
Eα

[
e−αSi

]−Eα

[
e−αSi 1{T0≤i}

]}
(2.35)

=
∞∑
i=0

Eα

[
e−αSi

]− ∞∑
i=0

Eα

[
e
−αST0

]
Eα

[
e
−α(ST0+i−ST0

)]

=
∞∑
i=0

(
λ(α)
)−i{1 −Eα

[
e
−αST0

]}
,
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where the last step was obtained by a further change of measure argument, applied
to the first and third expectations of the next-to-last expression in (2.35). Substitut-
ing (2.35) into (2.34) yields that C∗

1 (τ ) = C1(τ ), showing that our approach leads
to the same constant as in Lalley (1984), Theorem 5. Conversely, if τ > ρ, then
our Theorem 2.3 shows that (2.30) does not hold for perpetuity sequences.

For the conditional central limit theorem developed in Theorem 2.2, a compar-
ison can be made with a result of von Bahr (1974). Specifically, if the random
walk {Sn} is defined as above and if the parameter ξ ∈ int(dom	) exists and X1 is
nonlattice, then it is known that for any y ∈ R,

P
{
Tu ≤ ρ + a(logu)−1/2y

}= C ∗
Me−ξu(1 + o(1)

)
�(y),(2.36)

where a = ρ3/2σ(ξ) and ρ ≡ 1/μ(ξ), � is the standard Normal distribution func-
tion, and C ∗

M is the Cramér–Lundberg constant, namely

C ∗
M = 1

ξμ(ξ)

1 −E

[
e
ξS

T −
0

]
E[T −

0 ] , T −
0 = inf{n : Sn ≤ 0};

cf. von Bahr (1974), Section 8; Siegmund (1975), Theorem 2 [and Iglehart (1972)
for this representation for C ∗

M ]. Also, the proof of our Theorem 2.2 could be re-
peated in this setting to obtain (2.36).

As with many results in large deviation theory, the estimates described above ac-
tually have a longer history from an applied perspective. Indeed, (2.29) and (2.30)
are extensions of the classical Arfwedson approximations from collective risk the-
ory, originally derived with the random walk {Sn} replaced with a compound Pois-
son process; see Asmussen (2000), Chapter IV, Section 4c. Similarly, (2.36) is
an extension of Segerdahl’s conditional central limit theorem, known in collective
risk theory for compound Poisson processes; see Asmussen (2000), Chapter IV,
Section 4a.

Finally, we note that there are also higher-dimensional versions of (2.29) and
(2.30) for random walks. In this context, it is natural to replace the region [u,∞)

with a general open subset of Rd and to replace the one-dimensional random walk
with a d-dimensional process (either i.i.d. random walk or a more general Gärtner–
Ellis sequence), and to consider Tu := u−1 inf{n : Sn ∈ uA} for any set A ⊂ R

d .
At this level of generality, one does not expect to obtain sharp asymptotics, but
under natural conditions one can show weaker results; namely, for a certain large
deviation rate function IA,

lim sup
u→∞

1

u
logP{Tu ∈ F } ≤ − inf

τ∈F
IA(τ),(2.37)

for all closed sets F ⊂ [0,∞), and

lim inf
u→∞

1

u
logP{Tu ∈ G} ≥ − inf

τ∈G
IA(τ),(2.38)
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for all open sets G ⊂ [0,∞). Consequently, the probability law of {Tu} satisfies the
large deviation principle with a rate function IA, and this function IA reduces to
our rate function I in the one-dimensional case. For further details, see Collamore
(1998).

2.4. Exceedance probabilities for forward recursive sequences. We conclude
this section by relating our previous results for perpetuities, obtained in Theo-
rems 2.1 and 2.2, to the convergence of the corresponding forward sequence {M∗

n},
where M∗

n := (AnM
∗
n−1 + Bn)

+, n = 1,2, . . . , and M∗
0 = 0. Borrowing terminol-

ogy from queuing theory, {M∗
n} is called the “content process” corresponding to

the “risk process”

Un :=
(

Un−1

An

− Bn

An

)+
, n = 1,2, . . . , U0 = u.(2.39)

Then {Un} and {M∗
n} are dual processes in the sense of Siegmund (1976);

see Asmussen and Sigman (1996), Example 6 (slightly modified). Following
Asmussen and Sigman (1996), the finite-time ruin probability of {Un} may be
equated to the finite-time exceedance probability of {M∗

n}; that is,

�(u) := P{Uk ≤ 0, some k ≤ n|U0 = u} = P
{
M∗

n ≥ u
}
,(2.40)

and a simple argument yields that �(u) also describes the finite-time ruin prob-
ability of {Yn}, namely �(u) = P{Yk ≥ u, some k ≤ n} [see Collamore (2009),
Section 2.1]. Thus, it is natural to relate the ruin probabilities described in our
previous theorems to the exceedance probabilities of {M∗

n}.
In fact, the equivalence in (2.40) can be obtained more directly in our problem.

Indeed, since the finite-time distributions of the forward and backward sequences
are the same, we immediately obtain that

P
{
M∗

n > u
}= P{Mn > u} ≡ P{Yk > u, some k ≤ n}.(2.41)

Thus, in particular,

P{Tu ≤ τ } = P
{
M∗

nu
> u
}
, nu = �τ logu�.(2.42)

These last two equations lead to the following theorem on the convergence of {M∗
n}

to its stationary distribution, obtained now as a direct consequence of Theorems 2.1
and 2.2.

THEOREM 2.5. Let τ ∈ (0, ρ), and suppose that there exists a point α(τ) ∈ R

such that (2.13) holds. Assume that 	 and 	B are finite in a neighborhood of α(τ)

and that the law of logA is nonlattice. Then for nu = �τ logu�, we have

P
{
M∗

nu
> u
}= C(τ)(λ(α))−�(u)

√
logu

u−I (τ )(1 + o(1)
)

as u → ∞,(2.43)
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where �(u) := τ logu − �τ logu� and C(τ) < ∞ is given as in (2.16). The con-
stant C(τ) is strictly positive if P{A > 1,B > 0} > 0.

Next, let ξ and CM be the constants appearing in (2.7), and suppose that 	 and
	B are finite in a neighborhood of ξ and that the law of logA is non-lattice. Let
y ∈ R, and set nu = �ρ logu + a(logu)1/2y�, where a = ρ3/2σ(ξ). Then

P
{
M∗

nu
> u
}= CMu−ξ (1 + o(1)

)
�(y) as u → ∞.(2.44)

Moreover, CM is strictly positive if P{A > 1,B > 0} > 0.

3. Proof of Theorem 2.1. First, we introduce some further notation, as fol-
lows. Let

�n = A1 · · ·An, n ∈ Z+;

Sn =
n∑

k=1

logAk = log�n, n ∈ Z+;

Yn =
n∑

i=1

�i−1|Bi |, n ∈ Z+.

Also, let ν denote the probability law of (logA,B), and if λ(α) < ∞, define

να(E) =
∫
E

eαx

λ(α)
dν(x, y), E ∈ B

(
R

2),(3.1)

where B(R2) denotes the Borel sets on R
2. Let Eα[·] denote expectation with re-

spect to the probability measure να . Note that μ(α) := 	′(α) and σ 2(α) := 	′′(α)

[defined previously in (2.9)] denote the mean and the variance, respectively, of the
random variable logA with respect to the measure να .

We start by establishing a variant of the exponential Chebyshev inequality from
large deviation theory, commonly used in conjunction with Minkowski’s inequality
for perpetuity sequences (yielding estimates which are typically not very sharp).
The next lemma will provide a sharper version of these estimates for our problem.
Before stating this result, we recall that 	(ξ) = 0, that is, ξ denotes the critical
value that determines the decay rate of P{M > u} as u → ∞. Thus, λ(α) ≥ 1 for
α ≥ ξ .

LEMMA 3.1. Let α ≥ ξ , and assume that α and ε > 0 have been chosen such
that 	(α + ε) < ∞ and 	B(α + ε) < ∞. Then

P{Yn > u} ≤ Cnλ
n(α)u−(α+ε) for all u > 0, n ∈ Z+,(3.2)

where

Cn = bn(n − 1)2(α+ε) exp
{
(n − 1)

(
εμ(α) + ε2σ 2(α)

)}
(3.3)

for b = (π2/6)α+ε{λB(α + ε)/λ(α)}.
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PROOF. From the elementary equality
∑∞

k=1 k−2 = π2/6, we obtain

P{Yn > u} ≤
n∑

k=1

P

{
�k−1|Bk| > 6u

π2k2

}
(3.4)

≤
n∑

k=1

E
[
�α+ε

k−1 |Bk|α+ε](π2k2

6u

)α+ε

.

Now by independence,

E
[
�α+ε

k−1 |Bk|α+ε]= (E[Aα+ε])k−1
E
[
Bα+ε] := (λ(α + ε)

)k−1
λB(α + ε).

Moreover, since the generating function 	 is infinitely differentiable on the interior
of its domain,

λ(α + ε) = e	(α+ε) ≤ exp
{
	(α) + εμ(α) + ε2m

2

}
,

where m := sup{σ 2(β) : α ≤ β ≤ α + ε}. Moreover, using the continuity of the
function σ 2(·), we have that m/2 ≤ σ 2(α) when ε is sufficiently small. Hence,
substituting the previous two equations into (3.4), we obtain that for sufficiently
small ε,

P{Yn > u} ≤ u−(α+ε)
n∑

k=1

G(k),(3.5)

where

G(k) = λ(α)k−1 exp
{
(k − 1)

(
εμ(α) + ε2σ 2(α)

)}
λB(α + ε)

(
π2k2

6

)α+ε

.

Since λ(α) ≥ 1 and μ(α) := 	′(α) ≥ 0, it follows that G(k) is increasing
in k. Hence,

∑n
k=1 G(k) ≤ nG(n), and substituting this last estimate into (3.5)

yields (3.2), as required. �

Next, define

T u = 1

logu
inf{n : Yn > u},

and note by definition that T u ≤ Tu on {Tu < ∞}. Then as a simple consequence
of the lemma, we obtain the following.

LEMMA 3.2. Under the assumptions of Theorem 2.1,

P
{
T u ≤ τ − Lτ (u)

}= o

(
u−I (τ )

√
logu

)
as u → ∞,(3.6)

for any Lτ (u) ≥ {c log(logu)}/ logu, where c = {2(α + 1)}/	(α).
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PROOF. Set ζu = �logu(τ − Lτ (u))�. Then it follows directly from the defi-
nitions that

P
{
T u ≤ τ − Lτ (u)

}= P{Y ζu > u}.(3.7)

Now set α ≡ α(τ), where α(τ) is defined as in (2.13). To apply the lemma, it is
helpful to first observe [using (2.12)] that(

λ(α)
)τ logu

u−α = e− logu(α−τ	(α)) = u−I (τ ).(3.8)

Hence (
λ(α)
)ζuu−α ≤ u−I (τ )(λ(α)

)−Lτ (u) logu
.(3.9)

Next, choose ε ≡ ε(u) such that u−ε(u) = (logu)−1/2, which is achieved by setting

ε(u) = log(
√

logu)

logu
↘ 0, u → ∞.(3.10)

Then by (3.9), it is sufficient to show that

Cζu

(
λ(α)
)−Lτ (u) logu = o(1) as u → ∞,(3.11)

for Cζu defined as in (3.3). Observe that with the choice of ε(u) given in (3.10)
and the upper bound (ζu − 1) ≤ τ logu, we obtain that

exp
{
(ζu − 1)

(
ε(u)μ(α) + ε2(u)σ 2(α)

)}= O(
√

logu) as u → ∞;
hence

Cζu = O
(
(logu)2(α+ε)+3/2) as u → ∞.(3.12)

Then (3.11) follows from (3.12), provided that we choose Lτ (u) logu ≥
c log(logu), where c = 2(α + 1)/	(α). �

From the lemma, we see that the probability of ruin in the scaled time inter-
val [0, τ − Lτ (u)] is negligible, so we may concentrate on the critical interval
(τ − Lτ (u), τ ]. In this region, we will argue that the process {logYn ∨ 0} behaves
similarly to a perturbed random walk when this process is large, that is, logYn can
be approximated by Sn +εn for some perturbation term εn and Sn :=∑n

i=1 logAi .
To analyze the behavior of the random walk {Sn}, the following uniform large de-
viation theorem, due to Petrov [(1965), Theorem 2], will play a key role.

THEOREM 3.1 (Petrov). Let a0 = supα∈dom(	′) 	
′(α). Suppose that c satis-

fies E[logA] < c < a0, and suppose that δ(n) is an arbitrary function satisfying
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limn→∞ δ(n) = 0. Also, assume that the law of logA is non-lattice. Then with α

chosen such that 	′(α) = c, we have that

P
{
Sn > n(c + γn)

}
= 1

ασ(α)
√

2πn
exp
{
−n
(
α(c + γn)

)− 	(α) + γ 2
n

2σ 2(α)

(
1 + O

(|γn|))}(3.13)

× (1 + o(1)
)

as n → ∞, uniformly with respect to c and γn in the range

E[logA] + ε ≤ c ≤ a0 − ε and |γn| ≤ δ(n),(3.14)

where ε > 0.

REMARK 3.1. In (3.14), we may have that sup{α : α ∈ dom(	)} = ∞ or
E[logA] = −∞. In these cases, the quantities ∞ − ε or −∞ − ε should be in-
terpreted as arbitrary positive, respectively negative, constants.

PROOF OF THEOREM 2.1. Step 1. Equation (2.15) was established in
Lemma 3.2; thus, it is sufficient to show that

P
{
τ − Lτ (u) < Tu ≤ τ

}= C(τ)√
logu

u−I (τ )(1 + o(1)
)

as u → ∞,(3.15)

for Lτ (u) = {c log(logu)}/ logu, where c = {2(α + 1)}/	(α). Indeed, by Lem-
ma 3.2,

P
{
Tu ≤ τ − Lτ (u)

}= o

(
u−I (τ )

√
logu

)
as u → ∞.(3.16)

Set

ζu = ⌊logu
(
τ − Lτ (u)

)⌋
and τu = �τ logu�,

and define

Mu = max
ζu<n≤τu

{
Bζu+1 + Aζu+1Bζu+2 + · · · + (Aζu+1 · · ·An−1)Bn

}∨ 0.

Then on {ω ∈ � : maxζu<n≤τu Yn(ω) > Yζu(ω)}, we have

max
ζu<n≤τu

Yn = Yζu + �ζuMu,(3.17)

and our objective is to show that P{maxζu<n≤τu Yn > u} decays at the rate specified
on the right-hand side of (3.15).

Step 1a. We begin by analyzing the second term of the right-hand side of (3.17).
Observe that

P{�ζuMu > u} =
∫
R

P{log�ζu > logu − s}dFu(s),(3.18)
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where Fu denotes the probability distribution function of logMu. To evaluate this
integral, note that log�ζu :=∑ζu

k=1 logAi := Sζu , and thus

log�ζu > logu − s ⇐⇒ Sζu

ζu

>
logu − s

ζu

=: 1

τ
+ γu.(3.19)

Letting γu be defined as in this last equation and utilizing the definition of ζu, we
then obtain

ζuγu = Lτ (u)

τ
logu − s + δu where |δu| ≤ 1

τ
.(3.20)

Consequently,

γu = 1

ζu

(
Lτ (u)

τ
logu − s + δu

)
and

(3.21)

ζuγ
2
u = 1

ζu

(
Lτ (u)

τ
logu − s + δu

)2

.

From these equations, it is apparent that γu → 0 and ζuγ
2
u → 0 as u → ∞

and, moreover, this convergence is uniform in s provided that s ∈ [−(logu)1/3,

(logu)1/3].
Now set α ≡ α(τ) for the remainder of the proof. Then by applying Theo-

rem 3.1, we obtain that

P{log�ζu > logu − s} = 1

ασ(α)
√

2πτ logu
u−αeαs(λ(α)

)ζu
(
1 + o(1)

)
(3.22)

as u → ∞,

uniformly in s such that log s ∈ [−(logu)1/3, (logu)1/3]. Letting Gu = {ω ∈ � :
logMu(ω) ∈ [−(logu)1/3, (logu)1/3]} and returning to (3.18), we then obtain

P{�ζuMu > u,Gu} = 1

ασ(α)
√

2πτ logu

(
λ(α)
)ζuu−α

E
[
M α

u 1Gu

](
1 + o(1)

)
(3.23)

as u → ∞.

Now recall [cf. (3.8)] that (
λ(α)
)τ logu

u−α = u−I (τ ).

Moreover, since Mu
D= max{Yi : 0 ≤ i ≤ τu − ζu} ≡ M�τu−ζu�, we have

lim
u→∞

1

(λ(α))τu−ζu
E
[
M α

u 1Gu

]= lim
n→∞

1

λn(α)
E
[
Mα

n 1Hn

]
,

where Hn := {ω ∈ � : log(Mn(ω)) ∈ [−en/3c, en/3c]}. [In the definition of Hn,
we have used that τu − ζu ∼ Lτ (u) logu = c log(logu).] Substituting these last
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two equations into (3.23) yields

P{�ζuMu > u,Gu} = Ĉ(τ )(λ(α))−�(u)

√
logu

u−I (τ )(1 + o(1)
)
,(3.24)

where �(u) := τ logu − τu and

Ĉ(τ ) = 1

ασ(α)
√

2πτ
lim

n→∞
1

λn(α)
E
[
Mα

n 1Hn

]
.(3.25)

To complete the proof, we now show that the restriction to the sets Gu and Hn

can be removed on the left- and right-hand sides of (3.24), (3.25), and that the limit
in n on the right-hand side of (3.25) exists and is both positive and finite. To this
end, first observe by Chebyshev’s inequality that

P
{
�ζuMu > u, logMu < −(logu)1/3}

≤ P
{
Sζu > logu + (logu)1/3}(3.26)

≤ exp
{−α
(
logu + (logu)1/3)}(λ(α)

)ζu = o

(
1√

logu

(
λ(α)
)ζuu−α

)
,

since limu→∞
√

logu exp{−α(logu)1/3} = 0. This shows that the restriction to
values {ω ∈ � : logMu(ω) ≥ −(logu)1/3} can now be removed on the left-hand
side of (3.23), hence the left-hand side of (3.24).

Moreover, repeating the argument leading to (3.24), we find that
P{�ζuMu > u, logMu > (logu)1/3} is equal to the right-hand side of (3.24), but
with E[Mα

n 1Hn] replaced with

E
[
Mα

n 1H ′
n

]
where H ′

n := {ω ∈ � : logMn(ω) > en/3c}.
We claim that

lim
n→∞

1

λn(α)
E
[
Mα

n 1H ′
n

]= 0.(3.27)

Set H ′
n,k = {ω ∈ � : logMn(ω) − en/3c ∈ (k − 1, k]}, k = 1,2, . . .; thus⋃

k∈Z+ Hn,k = H ′
n . Then apply Lemma 3.1 to obtain that

1

λn(α)

∞∑
k=1

E
[
Mα

n 1H ′
n,k

] ≤ 1

λn(α)

∞∑
k=1

eαk exp
(
αen/3c)

P
{
Yn > ek exp

(
en/3c)}

= Cn exp
(−εen/3c) ∞∑

k=1

e−εk

for ε > 0 sufficiently small. Now choose ε ≡ ε(n) = n−2. With this choice of ε(n),
note that Cn = O(n2α+1) and

∑∞
k=1 e−εk = O(n2). Then Cn exp(−n−2en/3c) ×

n2 → 0 as n → ∞. Thus, we obtain (3.27).
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From (3.27), we conclude that the restrictions on large values can be removed
in (3.24) and (3.25) [i.e., the restriction that logMu ≤ (logu)1/3 in (3.24), and
the restriction that Mn ≤ en/3c in (3.25)]. Moreover, by a trivial calculation, the
restriction to values Mn ≥ −en/3c can also be removed in (3.25). Consequently,
we conclude that (3.24) and (3.25) hold without including the term Gu in (3.24), or
the term 1Hn in (3.25).

Step 1b. Finally, to establish (2.14), recall that maxζu<n≤τu Yn = Yζu + �ζuMu;
cf. (3.17). Now we have just shown that

P{�ζuMu > u} = Ĉ(τ )(λ(α))−�(u)

√
logu

u−I (τ )(1 + o(1)
)
,(3.28)

where

C(τ) = 1

ασ(α)
√

2πτ
lim

n→∞
1

λn(α)
E
[
Mα

n

]
.(3.29)

Moreover, by another application of Lemma 3.2, we obtain that

P{|Yζu | > u} = o

(
u−I (τ )

√
logu

)
as u → ∞.(3.30)

Note that (3.30) implies the existence of a function �(u) ↓ 0 such that

P
{|Yζu | > �(u)u

}= o

(
u−I (τ )

√
logu

)
as u → ∞.(3.31)

Moreover, on the one hand,

P{Yζu + �ζuMu > u}
= P
{
Yζu + �ζuMu > u, |Yζu | ≤ �(u)u

}
+ P
{
Yζu + �ζuMu > u, |Yζu | > �(u)u

}
≤ P
{
�ζuMu >

(
1 − �(u)

)
u
}+ P
{|Yζu | > �(u)u

};
while on the other hand,

P
{
�ζuMu >

(
1 + �(u)

)
u
}

= P
{
�ζuMu >

(
1 + �(u)

)
u, |Yζu | ≤ �(u)u

}
+ P
{
�ζuMu >

(
1 + �(u)

)
u, |Yζu | > �(u)u

}
≤ P{Yζu + �ζuMu > u} + P

{|Yζu | > �(u)u
}
.

Thus, in view of (3.31),

P
{
�ζuMu >

(
1 + �(u)

)
u
}− o

(
u−I (τ )

√
logu

)
(3.32)

≤ P{Yζu + �ζuMu > u} ≤ P
{
�ζuMu >

(
1 − �(u)

)
u
}+ o

(
u−I (τ )

√
logu

)
.
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Now apply (3.28) to the left- and right-hand sides of this equation. This yields that

P{Yζu + �ζuMu > u} ∼ P{�ζuMu > u} as u → ∞.

Hence, the required result follows from (3.28) and (3.16).
Step 2. It remains to show that this constant C(τ) is positive and finite, and that

the limit in this equation actually exists.
Step 2a. First, we prove existence of the limit. For this purpose, we utilize the α-

shifted measure defined previously in (3.1). Namely, observe that by (2.1) and (2.2)

1

λn(α)
E
[
Mα

n

]= Eα

[(
max

0≤k≤n
Yk

)α
�−α

n

]

= Eα

[(
max

1≤k≤n

k∑
j=1

B̃j (Ãj+1 · · · Ãn) ∨ 0

)α]
,

where Ãj := 1/Aj and B̃j := Bj/Aj for all j . By exchanging indices in this last
expression, where we let j �→ n + 1 − j in the expectation on the right-hand side,
we then obtain

1

λn(α)
E
[
Mα

n

]= Eα

[(
max

1≤k≤n

n∑
j=k

(Ã1 · · · Ãj−1)B̃j ∨ 0

)α]
.(3.33)

Note that in this expression, the pair (Ã, B̃) satisfies the following moment condi-
tions:

Eα[log Ã] = −Eα[logA] = − 1

λ(α)
E
[
Aα logA

]
< 0;

(3.34)

Eα

[
Ãα]= 1

λ(α)
< 1 and Eα

[|B̃|α]= 1

λ(α)
E
[|B|α]< ∞.

To further analyze the limit in (3.33) as n → ∞, we first show the following.

ASSERTION. Let sn =∑n
j=1 dj be an absolutely convergent series. Then the

sequence

mn = max{dn, dn−1 + dn, . . . , d1 + · · · + dn}
converges.

PROOF. It is sufficient to prove that mn is a Cauchy sequence. Fix ε > 0. Since
the series is absolutely convergent, there exists N such that

∑
j>N |dj | < ε. Note

mN = max{dN, dN−1 + dN, . . . , d1 + · · · + dN },
and for any p > N ,

mp = max{dp, dp−1 + dp, . . . , dN+1 + · · · + dp,

. . . , d1 + · · · + dN + dN+1 + · · · + dp}.
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Note that mp contains all of the factors that appear in mN , but they are modified
by adding dN+1 + · · · + dp (which is at most ε in absolute value). Moreover, mp

contains N − p additional terms, but all of them are bounded, in absolute value,
by ε. Therefore |mN − mp| < ε and mn is convergent. �

Now, in view of (3.34), the perpetuity

Ỹn =
n∑

j=1

Ã1 · · · Ãj−1B̃j

converges Pα-a.s. Hence, by the last assertion,

Xn = max
1≤k≤n

n∑
j=k

(Ã1 · · · Ãj−1)B̃j ∨ 0

also converges Pα-a.s. Set X = limn→∞ Xn. Now Xn can be dominated by R =∑∞
j=1 Ã1 · · · Ãj−1|B̃j |; and in view of (3.34) and (2.6), we have that E[Rα] < ∞.

Therefore, by the dominated convergence theorem,

lim
n→∞

1

λn(α)
E
[
Mα

n

]= lim
n→∞Eα

[
Xα

n

]= Eα

[
Xα],

and this last expectation is finite. This proves the existence of the limit.
Step 2b. Finally, we prove that this limit is strictly positive. To this end, consider

Ỹn ∨ 0 as n → ∞ [which we recognize as a single term in the maximum on the
right-hand side of (3.33)]. Clearly, Ỹn ≤ Xn. Furthermore, Ỹn converges to Ỹ with
E[|Ỹ |α] < ∞, and

lim
n→∞

1

λn(α)
E
[(

max{0, Yn})α]= lim
n→∞Eα

[(
max{0, Ỹn})α]

(3.35)
= Eα

[(
max{0, Ỹ })α].

Also, observe that

Eα

[(
max{0, Ỹ })α]≤ Eα

[
Xα].

We claim that if P{A > 1,B > 0} > 0, then this last expectation is strictly pos-
itive. Let π̃ denote the probability law of Ỹ , and assume the assertion to be false.
Then Ỹ ≤ 0 Pα-a.s.; that is, supp(π̃) ⊂ (−∞,0]. Notice that supp(π̃) must be
να-invariant a.s. under the action of (Ã, B̃). Also note that P{A > 1,B > 0} > 0
implies that Pα{Ã < 1, B̃ > 0} > 0. Let x0 = sup{x : x ∈ supp(π̃)}. Then x0 ≤ 0,
but taking a pair (Ã, B̃) such that Ã < 1, B̃ > 0, we obtain that Ãx0 + B̃ > x0, and
we are led to a contradiction.

This shows that the constant C(τ) in (3.29) must be positive, thereby completing
the proof of the theorem. �
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4. Proof of Theorem 2.2.

4.1. Preliminary considerations. As in the previous section, define T u =
(logu)−1 inf{n : Yn > u}, where Yn =∑n

i=1 �i−1|Bi |. First we establish an ana-
log of Lemma 3.2 for the case τ = ρ.

LEMMA 4.1. Assume that 	(ξ +η) < ∞ and 	B(ξ +η) < ∞ for some η > 0.
Then there exists a finite constant D and positive constant δ ≡ δ(η) such that for
all u ≥ 0,

P
{
T u ≤ ρ − Lρ(u)

}≤ Du−ξ (logu)−δ,(4.1)

where Lρ(u) = b
√{log(logu)}/ logu for any constant b > ρ{2(ξ + 1)+ρσ 2(ξ)}.

PROOF. Let ζu = �logu(ρ − Lρ(u))�, then by definition

P
{
T u ≤ ρ − Lρ(u)

}= P{Y ζu > u}.(4.2)

Now apply Lemma 3.1 with α ≡ ξ . Since 	(ξ) = 0, it suffices to show that for
some ε ≡ ε(u),

Cζuu
−ε(u) ≤ D(logu)−δ.(4.3)

Let

ε(u) =
(

log(logu)

logu

)1/2

.(4.4)

To analyze Cζu , first note by (2.13) and the definition of ρ that 	′(ξ) = ρ−1.
Hence, for some finite constant D,

Cζu ≤ D(logu)2(ξ+ε(u))+1 exp
{

logu
(
ρ − Lρ(u)

)(ε(u)

ρ
+ ε2(u)σ 2(ξ)

)}
.

Thus, for sufficiently large u,

Cζuu
−ε(u) ≤ D exp

{
2(ξ + 1) log(logu) − 1

ρ
logu
(
Lρ(u)ε(u)

)
(4.5)

+ ρ logu
(
ε2(u)σ 2(ξ)

)}
.

Substituting the definitions of Lρ(u) and ε(u) into this last equation yields

Cζuu
−ε(u) ≤ D exp

{
2(ξ + 1) log(logu) − b

ρ
log(logu) + ρσ 2(ξ) log(logu)

}
(4.6)

= D(logu)−δ,

where δ > 0 whenever b > ρ{2(ξ + 1) + ρσ 2(ξ)}. Thus, we obtain (4.1) for suf-
ficiently large u (with D = D), and hence, with another choice D ≥ D, we obtain
this equation for all u ≥ 0. �
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In the proofs below, it will be useful to observe that an analog of Lemma 4.1
also holds for the right tail of the hitting time of {Yn} to the level u. To this end,
set

Y
n =

∞∑
k=n+1

�k−1|Bk|, i = 1,2, . . . ,

(4.7)
T

u = (logu)−1 sup
{
n ∈ Z+ : Yn

> u
}
.

LEMMA 4.2. Assume that 	(ξ +η) < ∞ and 	B(ξ +η) < ∞ for some η > 0.
Then there are constants C,δ, b > 0 such that for every u > e,

P
{
T

u ≥ ρ + Lρ(u)
}≤ Cu−ξ (logu)−δ,(4.8)

where Lρ(u) = b
√{log(logu)}/ logu.

PROOF. Since
∑∞

k=1 k−2 = π2/6, it follows that for some ε > 0 (possibly de-
pendent on k and u),

P
{
Y

n
> u
}≤ ∞∑

k=n+1

P

{
�k−1|Bk| > 6u

π2(k − n)2

}
(4.9)

≤
∞∑

k=n+1

E
[
�

ξ−ε
k−1|Bk|ξ−ε](π2(k − n)2

6u

)ξ−ε

.

Note by independence that

E
[
�

ξ−ε
k−1|Bk|ξ−ε]= (E[Aξ−ε])k−1

E
[|B|ξ−ε] := (λ(ξ − ε)

)k−1
λB(ξ − ε).

Moreover, since 	(ξ) = 0, μ(ξ) = ρ−1, and 	 is infinitely differentiable on the
interior of its domain,

λ(ξ − ε) = e	(ξ−ε) ≤ exp
{
− ε

ρ
+ ε2l

2

}
,

where l := sup{σ 2(α) : ξ − ε ≤ α ≤ ξ}. Then using the continuity of σ 2(·), we
have that for sufficiently small ε, l/2 ≤ σ 2(ξ). Hence, substituting the last two
equations into (4.9) yields

P
{
Y

n
> u
}

(4.10)

≤
(

π2

6

)ξ

u−ξ
∞∑

j=1

j2ξuε exp
{
(n + j − 1)

(
− ε

ρ
+ ε2σ 2(ξ)

)}
λB(ξ − ε).
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Now specialize to the case where n ≥ logu(ρ + Lρ(u)). Then with ε ≡ ε(j) ≡
ε(j, u), we obtain

P
{
Y

n
> u
}≤ π2

6
u−ξ

∞∑
j=1

j2ξ exp
{
−ε(j)Lρ(u) logu

ρ
− (j − 1)

ε(j)

ρ

(4.11)

+ (n + j − 1)ε2(j)σ 2(ξ)

}
λB

(
ξ − ε(j)

)
.

Now choose

ε(j) = γ
Lρ(u) logu + (j − 1)

ρσ 2(ξ)(n + j − 1)
,

where γ is a positive constant. Since this expression remains bounded as u → ∞
(uniformly in j ≥ 1), the constant γ can be chosen such that ε(j) is arbitrarily
small. Then for n(u) = �logu(ρ +Lρ(u))�, b ≥ ρ, and γ1 = γ − γ 2, we obtain by
(4.11) that

P
{
Y

n(u)
> u
}≤ Cu−ξ

∞∑
j=1

j2ξ exp
{
−γ1(Lρ(u) logu + j − 1)2

4ρ2σ 2(ξ)(n(u) + j − 1)

}

≤ Cu−ξ

((
n(u)
)2ξ+1 exp

{−γ1b log(logu)/16ρ2σ 2(ξ)
}

(4.12)

+ ∑
j≥n(u)+1

j2ξ exp
{−γ1(j − 1)/8ρ2σ 2(ξ)

})

≤ Cu−ξ (logu)2ξ+1−γ1b/16ρ2σ 2(ξ),

since for j ≤ n(u) we have

(Lρ(u) logu + j − 1)2

4ρ2σ(n(u) + j − 1)
≥ b2 log(logu)

8ρ2(ρ + b)σ
≥ b log(logu)

16ρ2σ
.

Thus, (4.8) follows from (4.12) upon choosing b ≥ max{ρ,16σ 2(ξ)ρ2(2ξ +
1)/γ1}. �

From the previous lemma, we draw two conclusions. First, we observe that
this lemma combined with Lemma 4.1 may be used to prove a strengthening of
Lemma 2.1, thus establishing a conditional law of large numbers for the scaled
first passage time of {Yn} to level u.

LEMMA 4.3. Let Lρ(u) be given as in Lemma 4.1, and assume that 	 and
	B are finite in a neighborhood of ξ and the law of logA is nonlattice. Then

lim
u→∞P

{|Tu − ρ| ≥ Lρ(u)|Tu < ∞}= 0.(4.13)
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PROOF. Note Yn ≥ Yn, for all n, implying that {T u ≤ ρ − Lρ(u)} ⊃ {Tu ≤
ρ − Lρ(u)}. Consequently, it follows by Lemma 4.1 that

P
{
Tu ≤ ρ − Lρ(u)|Tu < ∞}= o(1) as u → ∞.(4.14)

Next, set nu = �logu(ρ + Lρ(u))� and define Rn = M − Mn. Observe that
Rn ≤ Y

n
, for all n. Hence, by Lemma 4.1,

P{Rnu > u} = o
(
u−ξ ) as u → ∞.(4.15)

Thus, by repeating the argument following (3.28) above, we obtain that the tail
decay of M = Mnu +Rnu is dominated by the larger of the tails of Mnu and Rnu ,
respectively, which must necessarily be the tail of Mnu ; that is,

lim
u→∞uξ

P{M > u} = lim
u→∞uξ

P{Mnu > u}.(4.16)

Since {Mnu > u} ⊂ {M > u}, it follows that

P
{
Tu ≥ ρ + Lρ(u)|Tu < ∞}= 1 − P{Mnu > u}

P{M > u} = o(1)

(4.17)
as u → ∞,

as required. �

From the perspective of our main theorems, a more important consequence to
be drawn from Lemma 4.1 is the convergence of a certain measure H to Lebesgue
measure. We will establish this convergence in the assertion given in the proof of
Theorem 2.2.

4.2. The conditional central limit theorem for the critical case.

PROOF OF THEOREM 2.2. Step 1. Let Lρ(u) = b
√{log(logu)}/ logu, where

b > ρ{2(ξ + 1) + ρσ 2(ξ)/2}. Then by Lemma 4.1,

P
{
T u ≤ ρ − Lρ(u)

}= o
(
u−ξ ) as u → ∞.(4.18)

Now let y ∈R be given, and set

ζu = ⌊logu
(
ρ − Lρ(u)

)⌋
, ρu = ⌊ρ logu + (ρ3/2σ(ξ)

√
logu
)
y
⌋
, y ∈ R,

and

Mu = max
ζu<n≤ρu

{
Bζu+1 + Aζu+1Bζu+2 + · · · + (Aζu+1 · · ·An−1)Bn

}∨ 0.(4.19)

Then arguing as in the proof of Theorem 2.1 [specifically, by repeating the argu-
ment following (3.28)], we obtain by (4.18) that

P{Tu ≤ ρ} = P{�ζuMu > u}(1 + o(1)
)

as u → ∞.(4.20)
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To analyze the right-hand side of this equation, we begin by observing, as in the
proof of Theorem 2.1, that

P{�ζuMu > u} =
∫
R

P{log�ζu > logu − s}dFu(s),(4.21)

where Fu denotes the probability distribution function of logMu. Then apply
Petrov’s theorem to handle the probability on the right-hand side.

First, observe [cf. (3.19), (3.21)] that

log�ζu > logu − s ⇐⇒ Sζu

ζu

>
logu − s

ζu

:= 1

ρ
+ γu,

where, for a deterministic function δu with |δu| ≤ 1/ρ, we have

γu = 1

ζu

(
Lρ(u)

ρ
logu − s + δu

)
and

(4.22)

ζuγ
2
u = 1

ζu

(
Lρ(u)

ρ
logu − s + δu

)2

.

Now let � > 0 and consider P{�ζuMu > u,Gu}, where

Gu = {ω ∈ � : logMu(ω) ∈ [0,D(u) + (y + �)
√

ζuσ (ξ)
]}

,

D(u) = Lρ(u)

ρ
logu + δu.

Note that when s ∈ Hu := [0,D(u) + (y + �)
√

ζuσ (ξ)] [corresponding to the
event Gu occurring in (4.21)], we have by elementary calculations that γu → 0
and ζuγ

3
u → 0 as u → ∞, uniformly for s ∈ Hu. However, we do not have that

ζuγ
2
u → 0 as u → ∞. Thus, focusing on the exponential term in Petrov’s theorem,

we see that the first- and second-order terms must be retained in the expansion (in
contrast to the proof of Theorem 2.1, where it was sufficient to analyze the first-
order term), while the third-order term may again be neglected. Consequently, by
Petrov’s Theorem 3.1, we obtain that

P{�ζuMu > u,Gu}
(4.23)

= 1

ξσ (ξ)
√

2πζu

∫ D(u)+(y+�)
√

ζuσ (ξ)

0
g(u, s) dFu(s)

(
1 + o(1)

)
,

where

g(u, s) = u−ξ eξs exp
{
− 1

2σ 2(ξ)ζu

(
D(u) − s

)2}
.(4.24)

Next, introduce the transformation

Tu(s) = 1

σ(ξ)
√

ζu

(
s − D(u)

)
,(4.25)
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and let Gu(E) = Fu(T
−1
u (E)), for all E ∈ B(R). Then after a change of variables

[Billingsley (1986), page 219], we obtain that

P{�ζuMu > u,Gu}

= u−ξ

ξσ (ξ)
√

2πζu

∫ y+�

−D(u)/σ(ξ)
√

ζu

eξT−1
u (z)e−z2/2 dGu(z)

(
1 + o(1)

)
(4.26)

= u−ξ

√
2π

∫ y+�

−D(u)/σ(ξ)
√

ζu

e−z2/2 dHu(z)
(
1 + o(1)

)
as u → ∞, where for any set E ∈ B(R),

Hu(E) = 1

ξσ (ξ)
√

ζu

∫
E

eξT−1
u (z) dGu(z)

(4.27)

= 1

ξσ (ξ)
√

ζu

∫
T

−1
u (E)

eξs dFu(s).

Step 2. Our strategy now is to characterize the measure Hu on (−∞, y + �],
and then to handle the remaining part (namely, P{�ζuMu > u,G c

u }) by a separate
argument. This remaining part will turn out to be asymptotically negligible. To
characterize the measure Hu on (−∞, y + �], we establish the following.

ASSERTION. (i) Let CM denote the constant appearing in (2.7), let l denote
Lebesgue measure on R, and let CK denote the collection of continuous functions
on (−∞,0) with compact support. Then for any f ∈ CK ,

lim
u→∞

∫ y

−∞
f (s) dHu(s) = CM

∫ y

−∞
f (s) dl(s).(4.28)

(ii) There is a constant C such that for every −∞ < v < w < ∞ and every
u ≥ 0,

Hu(v,w) ≤ C (w − v) + K√
ζu

for some K < ∞.(4.29)

PROOF. We begin with the proof of (ii). Let −∞ < v < w < ∞, and set
v∗(u) = T

−1
u (v), w∗(u) = T

−1
u (w), and let Fu(z) = 1 − Fu(−∞, z), z ∈ R. Then

from (4.27) and an integration by parts,

Hu(v,w) = − 1

ξσ (ξ)
√

ζu

{
eξw∗(u)F u

(
w∗(u)

)− eξv∗(u)F u

(
v∗(u)

)}
(4.30)

+ 1

σ(ξ)
√

ζu

∫ w∗(u)

v∗(u)
eξsF u(s) ds.

To analyze the first term on the right-hand side of this equation, observe that
the distribution of Mu is stochastically dominated by M . Moreover, as we have
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observed in Section 2,

lim
u→∞uξ

P{M > u} = CM.(4.31)

Consequently, there exists a finite positive constant C such that

P{M > u} ≤ C u−ξ for all u ≥ 0.(4.32)

From (4.32), we obtain that eξsF u(s) ≤ C for all s ∈ R. Hence we conclude that
the first term on the right-hand side of (4.30) is dominated by O(1/

√
ζu) as u →

∞, where ζu → ∞, independent of the choice of v and w.
For the second term on the right-hand side of this equation, first note that by

inverting the function Tu defined in (4.25), we obtain

T
−1
u (t) = D(u) + tσ (ξ)

√
ζu, t ∈ R.(4.33)

Hence,

w∗(u) − v∗(u) := T
−1
u (w) −T

−1
u (v) = σ(ξ)

√
ζu(w − v),

and consequently,

1

σ(ξ)
√

ζu

∫ w∗(u)

v∗(u)
eξsF u(s) ds ≤ C

σ(ξ)
√

ζu

(
w∗(u) − v∗(u)

)
(4.34)

= C (w − v).

Thus, we have established (ii).
Turning to the proof of (i), now suppose that −∞ < a ≤ v < w ≤ b < y. We

begin by observing that

lim
u→∞ eξsF u(s) = CM uniformly for s ∈ T

−1
u

([a,b]).(4.35)

To establish this claim, first recall that Fu is the distribution function of logMu,
where Mu was defined in (4.19). Set

mu = ρu − ζu := ⌊ρ logu + (ρ3/2σ(ξ)
√

logu
)
y
⌋− ⌊logu

(
ρ − Lρ(u)

)⌋
(4.36)

= Lρ(u) logu + (ρ3/2σ(ξ)
√

logu
)
y + δ∗

u,
∣∣δ∗

u

∣∣≤ 1.

Now to prove (4.35), we use Lemma 4.1. Namely, we show that for some finite
constant D and some positive constant δ,

eξs
P
{
Y

mu
> es}≤ Ds−δ, s ∈ T

−1
u

([a,b]),(4.37)

where Y
n

was defined in (4.7).
Before establishing (4.37), we first observe that (4.37) implies (4.35). For this

purpose, let {Mn} and {Rn} be defined as in the proof of Lemma 4.3, and observe
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that these definitions imply that Rmu ≤ Y
mu and M = Mmu + Rmu . Therefore,

assuming that (4.37) holds, we have that

eξs
P
{
Rmu > es}≤ Ds−δ.(4.38)

Arguing as in the proof of Lemma 4.3, we then conclude that

lim
s→∞ eξs

P
{
Mmu > es}= lim

s→∞ eξs
P
{
M > es}= CM.(4.39)

Moreover, as a straightforward consequence of the definitions, we see that logMmu

is equal in distribution to logMu, which has the distribution Fu. Since T
−1(s)

converges uniformly to infinity on [a,b], (4.35) follows.
To establish (4.37), in view of Lemma 4.1 it is enough to observe that

mu >
(
ρ + Lρ

(
es))s for all s ∈ T

−1
u

([a,b]).
[We will apply Lemma 4.1 with es in place of u.] Now the largest possible value
obtained by ρs for s ∈ T

−1
u ([a,b]) is given by

ρT−1
u (b) = Lρ(u) logu + ρbσ(ξ)

√
ζu + ρδu;

(4.40)
and recall mu = Lρ(u) logu + (ρ3/2σ(ξ)

√
logu
)
y + δ∗

u,

where |ρδu|, |δ∗
u| ≤ 1. Hence, we need to show that for sufficiently large u,

Lρ

(
es)s + ρbσ(ξ)

√
ζu + (ρ + 1) <

(
ρ3/2σ(ξ)

√
logu
)
y,

or

Lρ

(
es)s + bσ(ξ)ρ3/2(

√
ζu/ρ −

√
logu) + (ρ + 1)

(4.41)
<
(
ρ3/2σ(ξ)

√
logu
)
(y − b) where y > b.

But for sufficiently large u, we see from the first equation in (4.40) that [as Lρ(u) =
b
√{log(logu)}/ logu and s ≤ T

−1(b)], we have that

s ≤ const. ·
√

log(logu)
√

logu while Lρ

(
es)= b

√
log s/s.

Hence,

Lρ

(
es)s = b

√
s log s = o(

√
ζu) as u → ∞,

and (4.41) follows. Thus, we have established (4.37), and consequently (4.35).
Now returning to (4.30) and focusing on the second term on the right-hand side

of this equation, observe by the uniform convergence in (4.35) that

lim
u→∞

1

σ(ξ)
√

ζu

∫ w∗(u)

v∗(u)
eξsF u(s) ds = lim

u→∞
CM(w∗(u) − v∗(u))

σ (ξ)
√

ζu
(4.42)

= CM(w − v),
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where the last step follows as in (4.34). Since the first term on the right of (4.30)
is O(1/

√
ζu), as we have shown in the proof of (i), we conclude that

lim
u→∞H(u, v) = CM(w − v), −∞ < a≤ v < w ≤ b< 0.(4.43)

Then taking Riemann sums, we obtain that for any f ∈ CK ,

lim
u→∞

∫ y

−∞
f (s) dHu(s) = CM

∫ y

−∞
dl(s),(4.44)

as required. �

Step 3. Now returning to the proof of the main theorem, we split our interval
into three parts,[
− D(u)√

ζuσ (ξ)
,−J

]
, [−J, y−�], [y−�,y+�] where 0 < J < ∞,

and observe by part (i) of the previous assertion that for any J ,

lim
u→∞

∫ −�

−J
e−z2/2 dHu(s) = CM

∫ −�

−J
e−z2/2 dl(s),

while by part (ii) of the assertion,∫ −J

−D(u)/(σ (ξ)
√

ζu)
e−z2/2 dHu(s) ≤ C

∫ −J

−∞
e−z2/2 dl(s) ≤ C e−J 2/2,

∫ �

−�
e−z2/2 dHu(s) ≤ C

∫ �

−�
e−z2/2 dl(s) ≤ 2C �.

Letting J → ∞ yields

lim
u→∞uξ

P{�ζuMu > u,Gu} = CM√
2π

∫ y+�

−∞
e−z2/2 dl(z)

(4.45)
= �(y) + o(1) as � → 0.

Step 4. It remains to show that the restriction to Gu can be removed on the left-
hand side of this last equation.

Step 4a. We begin by removing the restriction that logMu ≤ D(u) + (y +
�)

√
ζuσ (ξ). To this end, letting Tu be defined as in (4.25), note that it is suffi-

cient to show that for any � > 0,

P
{
�ζuMu > u, logMu > T

−1
u (y + �)

}= o(1)u−ξ as u → ∞.(4.46)

Let � > 0 be given, and set Gu,k = {ω ∈ � : logMu(ω) − T
−1
u (y + �) ∈

(k − 1, k]}, k = 1,2, . . . . Then{
�ζuMu > u, logMu > T

−1
u (y + �)

}= ⋃
k∈Z+

{�ζuMu > u,Gu,k}.
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Moreover,

P{�ζuMu > u,Gu,k} ≤ P
{
�ζu > ue−(T−1

u (y+�)+k)}
P{Gu,k}

(4.47)
≤ u−ξ eξT−1

u (y+�)eξk
P{Gu,k}

by Chebyshev’s inequality. In addition, by applying Lemma 3.1 with ε ≡ ε(u) =
(logu)−1/3, we obtain that

P{Gu,k} = P
{
Mu > eT

−1
u (y+�)ek−1}

(4.48)
≤ C(u)e−(ξ+ε(u))T−1

u (y+�)e−(ξ+ε(u))(k−1),

where C(u) corresponds to the quantity Cn appearing in the statement of
Lemma 3.1. To identify the growth rate of this function as u → ∞, note that

Mu
D= {Yi : 0 ≤ i ≤ ρu − ζu}, where [from the definitions following (4.18)] we

have that

mu := ρu − ζu = Lρ(u) logu + (ρ3/2σ(ξ)
√

logu
)
y + δ∗

u for
∣∣δ∗

u

∣∣≤ 1;
cf. (4.36). Now in Lemma 3.1, we must replace the parameter n with mu. Since
μ(ξ)=ρ−1, we then obtain that for some positive constant K ,

C(u) ≤ K
(
Lρ(u) logu

)2(ξ+1) exp
{
ε(u)

(
Lρ(u)

ρ
logu + (σ(ξ)

√
ρ logu

)
y

)}
.

To obtain this expression, note that the term “(n − 1)ε2σ 2(α)” of Lemma 3.1 is
negligible, since mu grows at rate

√
log(logu)

√
logu, while ε(u) is chosen such

that

ε(u) ∼ (logu)−1/3 as u → ∞.

Moreover from (4.33),

T
−1
u (y + �) = Lρ(u)

ρ
logu + (y + �)σ(ξ)

√
ζu + δu.

Combining these last two equations yields

C(u)e−ε(u)T−1
u (y+�) ≤ K ′(Lρ(u) logu

)2(ξ+1)
e−ε(u)g(u),

where

g(u) = �σ(ξ)
√

ζu + yσ(ξ)(
√

ζu −
√

ρ logu).

Now√
ρ logu −√ζu ∼

√
Lρ(u) logu ∼ const. ·

√
log(logu)

√
logu as u → ∞,



LARGE DEVIATION ESTIMATES FOR EXCEEDANCE TIMES 3721

and, as ε(u) ∼ (logu)−1/3 as u → ∞, it follows that

−ε(u)(
√

ζu −
√

ρ logu) ≤ const.

Since(
Lρ(u) logu

)2(ξ+1)
e−ε(u)�σ(ξ)

√
ζu ≤ c2

(
log(logu) logu

)ξ+1/2
e−c1�σ(ξ)(logu)1/6

≤ c3e
−�σ(ξ)(logu)1/8

,

we have

C(u)e−ε(u)T−1
u (y+�) = O

(
exp
{−�σ(ξ)(logu)1/8}) as u → ∞.(4.49)

Then by (4.48),

P{Gu,k} = O
(
exp
{−�σ(ξ)(logu)1/8})e−ξT−1

u (y+�)e−(ξ+ε(u))(k−1)

(4.50)
as u → ∞.

Substituting this equation into (4.47), we conclude that

P
{
�ζuMu > u, logMu > T

−1
u (y + �)

}
=

∞∑
k=1

P{�ζuMu > u,Gu,k}

= O
(
exp
{−�σ(ξ)(logu)1/8})u−ξ

∞∑
k=0

e−kε(u)(4.51)

= O
(
exp
{−�σ(ξ)(logu)1/8})u−ξ (logu)1/3 = o(1)u−ξ

as u → ∞,

which establishes (4.46).
Step 4b. Finally, observe by Chebyshev’s inequality followed by a Taylor ex-

pansion that

P{�ζuMu > u, logMu < 0}
(4.52)

≤ P{�ζu > u} ≤ u−ξ−ε(u) exp
{
ζu

(
ε(u)

ρ
+ ε2(u)σ 2(ξ)

)}
.

Next, recall that ζu := �logu(ρ − Lρ(u))�; thus,

u−ε(u)eε(u)ζu/ρ ≤ exp
{
−ε(u)

(
Lρ(u)

ρ

)
logu + 1

}
.

Now choose ε(u) = (logu)−1/2. Then on the right-hand side of the previous equa-
tion, the exponential term tends to −∞ as u → ∞. Moreover, with this choice of
ε(u), we also have that ζuε

2(u) is bounded as u → ∞. Thus, we conclude that

P{�ζuMu > u, logMu < 0} = o(1)u−ξ as u → ∞,(4.53)
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as required.
Step 5. It remains to prove that the constant CM is strictly positive. To this end,

let Y be defined as in Section 2.1, let π denote the probability law of Y , and let
CY be given as in (2.7). Clearly CY ≤ CM . Thus, it is sufficient to analyze the case
where CY = 0. Then, by a result of Guivarc’h and Le Page (2013b), the support of
π is unbounded from below.

We claim that Collamore and Vidyashankar [(2013b), Remark 2.3 and Sec-
tion 9] can be applied to obtain the representation formula (2.20); hence CM is
strictly positive. For this purpose, we need to show that Lemma 5.1(iii) of that pa-
per holds without the continuity assumption given there [namely, condition (H0) of
that paper]. Let the forward process {M∗

n} be defined as in (2.3), and let P denote
its transition kernel. Then P satisfies a minorization condition, namely,

P(x,E) ≥ 1C(x)η(E), x ∈ R,E ∈ B(R),(4.54)

where C= {0} and η denotes the probability law of B+. Note that this minorization
condition is nontrivial, since supp(π)∩ (−∞,0] �= ∅ implies that Y ∗

n = AnY
∗
n−1 +

Bn hits (−∞,0] with positive probability; and hence, {M∗
n} hits {0} with positive

probability, as these two processes agree up until the first time that Y ∗
n ≤ 0. Thus,

in particular, {M∗
n} is ψ-irreducible [Nummelin (1984), Remark 2.1].

Moreover, if B+ has a density on some subinterval of (0,∞), then the set
[0,K] is petite. Indeed, letting π+ denote the stationary measure of {M∗

n}, then
supp(π+) ⊃ supp(η) (the support of B+), implying that supp(π+) is of second
category. Hence, since [0,K] is a compact set and {M∗

n} is a weak Feller chain,
we may apply Remark 2.7(i) of Nummelin and Tuominen (1982) to conclude that
[0,K] is petite.

But if B+ does not have a density on some subinterval of (0,∞), then we can
dominate {M∗

n} from below by the process {M̃∗
n}, where

M̃∗
n = (AnM̃

∗
n−1 + B̃n

)+
, B̃n = Bn + ζn,

where {ζn} is an i.i.d. sequence, independent of {(An,Bn)}, such that ζ has a
smooth density supported on the interval (−δ,0) for some δ > 0. The process
{M̃∗

n} is regularly varying at infinity with parameter ξ ; that is, it satisfies (2.7) and
the above argument can be applied to conclude that the corresponding constant CM̃

is positive. Since {M∗
n} dominates the process {M̃∗

n}, we conclude that CM is also
strictly positive. �

5. Proof of Theorems 2.3 and 2.4.

5.1. Proof of Theorem 2.3. Before we proceed with the proof of Theorem 2.3,
it is worthwhile to observe that there exists a measure satisfying the hypotheses of
this theorem and, in particular, (2.24).
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LEMMA 5.1. There exists a measure satisfying the assumptions of Theo-
rem 2.3.

PROOF. Take an arbitrary measure ν with continuous non-vanishing density h

and such that, if A has law ν, then E[logA] < 0 and E[Aα+ε] < 1 for some α > 1
[e.g., one could choose h(a) = Cη−1(1 + Ca)−α−2ε−1 with C sufficiently large
and η = ∫∞0 (1 + u)−α−2ε−1 du]. Define the family of probability measures

νt (da) = th(ta) da, t > 0.

Let 	t(β) = logEνt [Aβ ] denote the cumulant generating function. Then

	t(α) = log
(∫

R

aαh(ta)t da

)
= −α log t + 	(α)

and

μt(0) := 	′
t (0) =

∫
R

logah(ta)t da = − log t + μ(0).

Hence,

μt(0) − 	t(α) = (α − 1) log t + μ(0) − 	(α),

and choosing t appropriately large, we have that μt(0) > 	t(α). Thus, the measure
νt satisfies the hypotheses of Theorem 2.3. �

The proof of Theorem 2.3 will now be based on the following two lemmas.
In these lemmas, we study the joint distribution of �n := A1 · · ·An and Yn :=
1 + A1 + · · · + (A1 · · ·An−1) as n → ∞.

LEMMA 5.2. Let β ∈ int(dom	) be chosen such that 	(β) < ∞, and
set τβ = (μ(β))−1 and ku = �logu/μ(β)�. Then there are positive constants
D0, γ, a, b with γ b < 1, such that for sufficiently large u,

P{γ u ≤ �ku−1 ≤ γ au,Yku ≤ γ bu} ≥ D0√
logu

u−I (τβ).(5.1)

LEMMA 5.3. Assume E[| logA|3] < ∞, and set ε(m) = e(m−1)μ(0). Then
there are positive constants D1, c, d such that for sufficiently large m,

P
{
ε(m) ≤ �m−1 ≤ cε(m),Ym ≤ d

}≥ D1√
m

.(5.2)

Heuristically, Lemmas 5.2 and 5.3 can be understood as follows. Since μ(β) =
Eβ[logA], it follows that in the β-shifted measure, the random walk

Sn = log�n :=
n∑

i=1

logAi, n = 1,2, . . .
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will reach the boundary at level logu at approximately the time τβ logu, i.e.,
roughly at time ku. Hence, it follows from standard large deviation arguments
[based on the Bahadur–Rao approximation, cf. Dembo and Zeitouni (1993)] that

P
{
logu + logγ ≤ Sku ≤ logu + log(γ a)

}∼ D0(τ )√
logu

u−I (τβ)(5.3)

as u → ∞. [In particular, (5.3) can be concluded from Petrov’s Theorem 3.1, stated
above.] Hence, (5.1) states that on {logu + logγ ≤ Sku ≤ logu + log(γ a)}, we
have with high probability that logYku ≤ logu + log(γ b) for some positive con-
stant b. The latter event can be expected, since Yn := 1+A1 +· · ·+ (A1 · · ·An−1),
and, in the β-shifted measure, this process will grow as u → ∞ since μ(β) > 0.
Roughly speaking, {Yn} will then be dominated by its last term, namely �n−1,
where log�n−1 = Sn−1.

In a similar way, Lemma 5.3 can be viewed, roughly speaking, as a conse-
quence of the Berry–Esséen theorem, which studies the asymptotic behavior of
{Sn} around its central tendency, namely around nμ(0) = nE[logA]. Then the
Berry–Esséen theorem yields the estimate (5.2), but without the “Ym ≤ d” term
on the left-hand side. Note that when {Sn} follows a trajectory which is close it its
mean trajectory, one expects �n ↓ 0 and n → ∞, and hence {Yn} to be convergent.

Nonetheless, the formal proofs of Lemmas 5.2 and 5.3 are quite technical, and
hence postponed to the end of this section. Before turning to these rigorous proofs,
we first show how our main result may be deduced from these two lemmas.

PROOF OF THEOREM 2.3. Let α ≡ α(τ) [where α(τ) is given as in (2.13)],
and let 0 < α < β < ξ be chosen such that

	′(β) = 	′(α)

p
.

Later, we will choose β close to α and p close to one, but the precise choices of
these constants will be fixed only at the end of the proof. Note that since μ(·) :=
	′(·),

τ = 1

μ(α)
= 1

pμ(β)
:= τβ

p
.

For q = 1 − p, now define

nu = �τ logu�, ku = �pnu�, mu = nu − ku.

We begin by writing

Ynu = Yku + �ku−1AkuY
′
mu

,(5.4)

where

Y ′
mu

= 1 + A′
1 + · · · + A′

1 · · ·A′
mu−1 for A′

i = Anu+i .
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Note that Y ′
mu

is independent of Yku,�ku−1 and Aku . Let

�′
mu−1 = A′

1 · · ·A′
mu−1, εu = e(mu−1)μ(0)

and

�u = {γ u ≤ �ku−1 ≤ γ au,Yku ≤ bγ u,εu ≤ �′
mu−1 ≤ cεu, Y

′
mu

≤ d
}
,

where the constants a, b, c, d are given as in Lemmas 5.2 and 5.3. Applying Lem-
mas 5.2 and 5.3, we then conclude that there exists a constant D such that, for
sufficiently large u,

P{�u} ≥ D√
mu

√
logu

u−I (τβ).(5.5)

Next, observe

P{Ynu−1 ≤ u and Ynu > u}
= P
{
Yku + �ku−1AkuY

′
mu−1 ≤ u and Yku + �ku−1AkuY

′
mu

> u
}

(5.6)

≥ P

{(
u − Yku

�ku−1Y ′
mu

< Aku ≤ u − Yku

�ku−1Y
′
mu−1

)
∩ �u

}

= P

{(
C− ≤ u − Yku

�ku−1Y ′
mu

< Aku ≤ u − Yku

�ku−1Y
′
mu−1

≤ C+
)

∩ �u

}
for certain constants C+ and C−, since on the set �u we have

C+ := 1

γ
≥ u

�ku−1Y
′
mu−1

and C− := 1 − γ b

γ ad
≤ u − Yku−1

�ku−1Y ′
mu

.

Notice that on the set �u, we have that for sufficiently large u,

u − Yku

�ku−1Y
′
mu−1

− u − Yku

�ku−1Y ′
mu

≥ (u − Yku)�
′
mu−1

�ku−1d2/2
≥ 1 − γ b

γ ad2/2
· εu := γ ∗εu.

Therefore, for sufficiently large u, Aku must belong to a random interval of length
at least γ ∗εu.

Let Iεu be an arbitrary interval of length γ ∗εu. Since the density of A is bounded
from below on the interval [C+,C−] by some constant δ, we have

P{Ynu−1 ≤ u and Ynu > u} ≥ inf
Iεu⊂[C−,C+]P

{
(Aku ∈ Iεu) ∩ �u

}
≥ inf

Iεu⊂[C−,C+]P{A ∈ Iεu}P{�u}(5.7)

≥ δεu√
mu

D√
logu

u−I (τβ).

We emphasize that in this computation, �u has been defined so that Aku is inde-
pendent of �u. We now elaborate on the last term. Our objective is to compare the
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decay rate εuu
−I (τβ) to the “expected” decay rate governed by u−I (τ ). To this end,

note by an application of (2.12) [cf. (3.8)] that

uI (τ)−I (τβ)εu = exp
{
α logu − 	(α)n∗

u − β logu + 	(β)k∗
u + m∗

uμ(0)
}
,(5.8)

where n∗
u = τ logu, k∗

u = pn∗
u(= τβ logu) and m∗

u = n∗
u − k∗

u. Now estimate the
exponent in (5.8) from below. Recalling that μ(α) = τ−1, we obtain

α logu − 	(α)n∗
u − β logu + 	(β)k∗

u + m∗
uμ(0)

= n∗
u

{
μ(α)(α − β) + p

(
	(β) − 	(α)

)+ q
(
μ(0) − 	(α)

)}
(5.9)

= p
(
	(β) − 	(α) − μ(α)(β − α)

)+ qμ(α)(α − β) + q
(
μ(0) − 	(α)

)
≥ q
(
μ(α)(α − β) + μ(0) − 	(α)

)
,

since 	(β) − 	(α) − μ(α)(β − α) = 	′′(θ) > 0, for some θ ∈ [α,β].
Since we are assuming that μ(0) > 	(α), we see that when β is close to α,

the last expression in (5.9) is strictly positive. Thus, εuu
−I (τβ) decays at a slower

polynomial rate than u−I (τ ). Hence, the required result follows from (5.7). �

We now return to the proofs of Lemmas 5.2 and 5.3.

PROOF OF LEMMA 5.2. Step 1. By Theorem 3.1, there exists a constant C0
such that

P{γ u ≤ �ku−1 ≤ γ au} = C0√
logu

γ −βu−I (τβ)(1 + o(1)
)

(5.10)
as u → ∞.

The main step is to prove that there exist positive constants ε and C1 and a constant
0 < δ < 1 such that, for sufficiently large u,

P

{
γ u ≤ �ku−1,�ku−i−1 >

γbu

2i2

}
(5.11)

≤ C1√
logu

(
γ −βb−εδi)u−I (τβ) for i = 1, . . . , ku − 1.

The final result follows easily from (5.10) and (5.11), since then we obtain

P{γ u ≤ �ku−1 ≤ γ au,Yku ≤ γ bu}
≥ P

{
γ u ≤ �ku−1 ≤ γ au,�ku−i−1 ≤ γ bu

2i2 for all i ∈ {1, . . . , ku − 1}
}

(5.12)

≥ P{γ u ≤ �ku−1 ≤ γ au} −∑
i

P

{
γ u ≤ �ku−1 ≤ γ au,�ku−i−1 >

γbu

2i2

}

≥
(
C0
(
1 + o(1)

)− b−εC1

1 − δ

)
γ −β

√
logu

u−I (τβ) as u → ∞.
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The result then follows after choosing the constant b sufficiently large.
Step 2. We now prove (5.11). For this purpose, we consider two cases, namely

the case i ≤ K log ku and then the case i > K logku, where K is a large positive
constant and ku = �τβ logu�.

Case 1: First, assume that i ≤ K log ku, and suppose that a constant L has been
chosen such that

−Lβ − 	(β)K + 1
2 ≤ −η < 0.(5.13)

Clearly,

P

{
γ u ≤ �ku−1,�ku−i−1 ≥ γ bu

i2

}
≤ P
{
�ku−i−1 ≥ γ bu · kL

u

}
(5.14)

+ P

{
γ u ≤ �ku−1,

γ bu

i2 ≤ �ku−i−1 ≤ γ bu · kL
u

}
.

Now the first term on the right-hand side is asymptotically negligible, since it fol-
lows by an application of Chebyshev’s inequality that for some finite constant C2,

P
{
�ku−i−1 ≥ γ bu · kL

u

}≤ (γ bu)−βk−Lβ
u

(
λ(β)
)ku−i−1

(5.15)

≤ C2√
logu

u−I (τβ)(k−Lβ+1/2
u e−i	(β))γ −β,

and by (5.13) and 	(β) < 0, we have that for all i ≤ K logku,

k−Lβ+1/2
u e−i	(β) ≤ e−η logku ↘ 0 as u → ∞.

Thus, it is sufficient to focus on the second term on the right-hand side of (5.14).
To this end, first note that

P

{
γ u ≤ �ku−1,

γ bu

i2 ≤ �ku−i−1 ≤ γ bu · kL
u

}

≤ ∑
0≤l≤log(i2kL

u )

P

{
γ bu

i2 · el ≤ �ku−i−1 <
γbu

i2 · el+1
}
P

{
�i ≥ i2

bel+1

}
(5.16)

≤ ∑
0≤l≤(L+1) logku

P

{
�ku−i−1 ≥ γ bu

i2 · el

}
P

{
�i ≥ i2

bel+1

}
for sufficiently large u. The strategy is then to estimate the first term on the right-
hand side by Petrov’s theorem, and to estimate the second term using Chebyshev’s
inequality. Using that Sn := log�n, we see that the first term can be written as

P

{
Sku−i−1 ≥ log

(
γ bu

i2

)
+ l

}
,
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where ku := �τ logu� 
⇒ {log(γ bu/i2)+ l}/(ku − i − 1) ∼ τ−1 as u → ∞. Note
that since i ≤ K log ku, the conditions of Theorem 3.1 are easily verified. Then by
an application of Petrov’s Theorem 3.1, we obtain that

P

{
Sku−i−1 ≥ log

(
γ bu

i2

)
+ l

}
(5.17)

= 1

βσ(β)
√

2πku

(
γ bel

i2

)−β

u−βe(ku−i)	(β)(1 + o(1)
)

as u → ∞, uniformly for i ≤ K logu. Recalling that u−β exp{τβ logu · 	(β)} =
u−I (τβ) [cf. (3.8)], we then obtain that for some finite constant C3,

P

{
�ku−i−1 ≥ γ bu

i2 · el

}
≤ C3√

logu
u−I (τβ) · i2βγ −βb−βe−lβe−i	(β),

(5.18)
u ≥ some U0.

Moreover, by Chebyshev’s inequality, we have that for ε > 0 sufficiently small

P

{
�i ≥ i2

bel+1

}
≤ i−2(β−ε)bβ−εe(l+1)(β−ε)ei	(β−ε),(5.19)

since i2(β−ε) ≥ 1. Next, observe that 	(β) − 	(β − ε) = ε	′(β̄) > 0 for some
β̄ ∈ (β − ε,β), where positivity of 	′ follows from the convexity of 	. Hence,
we obtain from the previous two equations that, for some positive constant C4 and
sufficiently large u,∑

0≤l≤(L+1) log ku

P

{
�ku−i−1 ≥ γ bu

i2 · el

}
P

{
�i ≥ i2

bel+1

}
(5.20)

≤ C4√
logu

(
γ −βb−ε)u−I (τβ)i2εe−iε	′(β̄)

∞∑
l=0

e−εl,

which yields (5.11).
Case 2: Now suppose that i > K log ku. Then by Chebyshev’s inequality,

P

{
γ u ≤ �ku−1,�ku−i−1 >

γbu

2i2

}

≤
∞∑
l=0

P

{
γ bu

i2 · el ≤ �ku−i−1 <
γbu

i2 · el+1
}
P

{
�i ≥ i2

bel+1

}
(5.21)

≤
∞∑
l=0

(
γ bu

i2 · el

)−β

e(ku−i−1)	(β) ·
(

i2

bel+1

)−(β−ε)

ei	(β−ε)

≤ 1

λ(β)

(
γ −βb−ε)u−I (τβ)(i2εe−iε	′(β̄)) ∞∑

l=0

e−lε,
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where β̄ is given as in (5.20). Hence, using that (logu)−1/2 ∼ √
τ exp{log ku/2} ≤√

τei/K for i > K logu, we then obtain that for some positive constant C5,

P

{
γ u ≤ �ku−1,�ku−i−1 >

γbu

2i2

}
(5.22)

≤ C5√
logu

(
γ −βb−ε)u−I (τβ)(i2εe−iε	′(β̄)ei/K),

which establishes (5.11) upon choosing K sufficiently large. �

PROOF OF LEMMA 5.3. Step 1. With a slight abuse of notation, we will write
εm in place of ε(m) throughout the proof.

First, we prove that there exist finite constants c and M such that

P{εm ≤ �m−1 ≤ cεm} ≥ log c

2σ
√

2π

1√
m

for all m ≥M,(5.23)

where σ 2 = Var(logA).
Since μ(0) = E[X1], it follows by the Berry–Esséen theorem [Petrov (1995),

Theorem 5.5] that for all m,

sup
x

∣∣∣∣P{Sm − mμ(0)

σ
√

m
< x

}
− �(x)

∣∣∣∣≤ A E[|X1 −EX1|3]
σ 3

1√
m

:= ρ√
m

,(5.24)

where Sm := ∑m
j=1 logAi and � denotes the normal distribution function, and

where A is a universal constant. Hence, for any c > 1,

P
{
0 ≤ Sm − mμ(0) ≤ log c

}≥ (�( log c

σ
√

m

)
− �(0)

)
− 2ρ√

m
.(5.25)

Now it follows from the definitions that log{�m−1/εm} = Sm−1 − (m − 1)μ(0).
Thus, from the previous equation we obtain that

P{εm ≤ �m−1 ≤ cεm}
(5.26)

≥ log c

σ
√

2π

1√
m − 1

e−(1/2)(log c/(σ
√

m−1))2 − 2ρ√
m − 1

.

Then choosing c sufficiently large yields (5.23).
Step 2. Next we show that for sufficiently large m,

P{εm ≤ �m−1 ≤ cεm,Ym > d} ≤ B

dθ
√

m
,(5.27)

where B and θ are finite positive constants. Noting that

P{εm ≤ �m−1 ≤ cεm,Ym ≤ d} ≤∑
j

P

{
εm ≤ �m−1 ≤ cεm,�j >

d

2j2

}
,
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we then divide the sum on the right-hand side into two parts.
Let p < 1, and suppose that θ > 0 has been chosen such that 	(θ) < 0. Then,

on the one hand,∑
j>pm

P

{
�j >

d

2j2

}
≤ ∑

j>pm

(2j2)θ

dθ
ej	(θ) = o

(
1√
m

)
(5.28)

as m → ∞. On the other hand, we also have∑
j≤pm

P

{
εm ≤ �m−1 ≤ cεm,�j >

d

2j2

}

≤ ∑
j≤pm

∑
k≥0

P

{
d

2j2 · ek ≤ �j <
d

2j2 · ek+1 and εm ≤ �m−1 ≤ cεm

}
(5.29)

≤ ∑
j≤pm

∑
k≥0

P

{
�j ≥ d

2j2 · ek

}
P

{
2εmj2

dek+1 < �m−j ≤ 2cεmj2

dek

}
.

To estimate the last quantity on the right-hand side, apply once again the Berry–
Esséen theorem, noting that j ≤ pm 
⇒ m − j > (1 − p)m. This yields (after a
short computation) that

P

{
2εmj2

dek+1 < �m−j ≤ 2cεmj2

dek

}

≤ 1√
2π

∫ (Cj,k+log c+1)/(σ
√

m−j)

Cj,k/(σ
√

m−j)
e−x2/2 dx + 2ρ√

m
(5.30)

≤ B′
√

m
,

where Cj,k = jμ(0) + log(2j2) − logd − k − 1 and B′ is a finite constant. Note
that this integral is taken over an interval of length (log c + 1)/(σ

√
m − j). Con-

sequently, with θ chosen as before and B′′ a positive constant, we obtain that for
sufficiently large m,

∑
j≤pm

P

{
εm ≤ �m−1 ≤ cεm,�j >

d

2j2

}
≤ ∑

j≤pm

∑
k≥0

(2j2)θ

dθeθk
ej	(θ) B′′

√
m

(5.31)

≤ B

dθ
√

m

for some positive constant B, as required.
Step 3. Finally, observe that if d is chosen sufficiently large in the previous

equation, then the decay in (5.23) dominates the decay in (5.31). Consequently,
the required result follows from (5.23) and (5.27). �
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Finally, we remark that Theorem 2.3 also holds with B > 0 a.s. (but not neces-
sarily constant, as was assumed in the previous proofs). However, in this case, the
proofs become noticeably more technical. Thus, in order to emphasize the main
ideas in the proofs, we have restricted our attention to the case B = 1.

To prove Theorem 2.3 for B > 0 a.s., we would need Lemma 5.2 at the required
level of generality, and also Lemma 5.3 slightly modified. Namely, in place of
Lemma 5.3 we would need the following result, which can be proved by analogous
arguments.

LEMMA 5.4. Assume E[| logA|3] < ∞, and set ε(m) = e(m−1)μ(0). Then
there exist positive constants D̃1, c̃, d̃,a,b such that

P
{
ε(m) ≤ �m−1 ≤ c̃ε(m),Ym ≤ d̃,a< B1 < b

}≥ D̃1√
m

(5.32)

for sufficiently large m.

We now show by example the typical difficulty that one encounters when B is
allowed to be random. In the proof of Lemma 5.3, we need to estimate

P

{
γ u ≤ �ku,

γ bu

i2 el ≤ �ku−i max(1,Bk(u)−i+1) ≤ γ bu

i2 · el+1
}
.

This estimate is obtained by considering �′
i := �ku/�k(u)−i , and we need to have

bounds on the two independent random variables, �k(u)−i and �′
i . For this pur-

pose, we essentially need to eliminate the Ak(u)−i+1 and Bk(u)−i+1 terms, estimat-
ing the above probability by∑

j,r

P

{
γ u ≤ �ku−i�

′
i−1e

j+1,
γ bu

i2 e−r−1el ≤ �ku−i ≤ γ bu

i2 e−rel+1,

ej ≤ max(1,Aku−i+1) ≤ ej+1, er ≤ max(1,Bku−i+1) ≤ er+1
}
,

and then using that E[Aα + |B|α] < ∞, to sum over all j and r . We omit the
details, which are straightforward but technical.

5.2. Proof of Theorem 2.4. Let b ≥ 1 and B ∈ (0, b). Then Theorem 2.4 is a
consequence of the following.

LEMMA 5.5. Assume that the hypotheses of Theorem 2.4 are satisfied. Then
there exists a constant θ ∈ (0,1) and D ′ < ∞ such that for every ε ∈ (0,1/2) and
u sufficiently large,

P

{
Ynu+k−1 ∈

(
(1 − ε)u,

(
1 − ε

2

)
u

)
,�nu+k−1 >

ε

2b
u

}
(5.33)

≤ ε1−θ D ′λk(α)√
logu

u−I (τ ),
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where nu := �τ logu� and k is any non-negative integer, and the above result holds
uniformly in k.

Before presenting the proof of the lemma, we first show how it may be applied
to establish the theorem.

PROOF OF THEOREM 2.4. The proof is a simple consequence of the lemma.
Set ru = nu + k − 1. Since

(0, u] =⋃
i≥0

((
1 − 1

2i

)
u,

(
1 − 1

2i+1

)
u

]
,

and since Yru+1 = Yru + �ruBru+1, it follows that

P{Yru ≤ u and Yru+1 > u}
≤∑

i≥0

P

{
Yru ∈

((
1 − 1

2i

)
u,

(
1 − 1

2i+1

)
u

]
,�ruBru+1 >

u

2i+1

}

≤∑
i≥0

P

{
Yru ∈

((
1 − 1

2i

)
u,

(
1 − 1

2i+1

)
u

]
,�ru >

u

2i+1b

}

≤∑
i≥0

(
1

21−θ

)i D ′λk(α)√
logu

u−I (τ )

≤ Dλk(α)√
logu

u−I (τ ),

as required. �

PROOF OF LEMMA 5.5. We begin by establishing the following result.

ASSERTION. For any c > 1 and ε ∈ (0,1/2), there exist positive constants
θ ∈ (0,1) and D ′ < ∞ such that, for some finite constant U ,

P
{
c−1u ≤ Ynu+k−1 ≤ cu,�nu+k−1 > εu

}≤ ε−θ D ′λk(α)√
logu

u−I (τ )

(5.34)
all k ≥ 0, u ≥ U.

PROOF. Fix k, and set ru = nu + k − 1. Then define the set of indices

W u
j = {i : i < ru and (cu)e−j ≤ �iBi+1 ≤ (cu)e−j+1}.

Now suppose that c−1u ≤ Yru ≤ cu. Then we claim that for some j , the number
of elements in the set W u

j must be greater than ej /(10c2j2). Indeed, if this were
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not the case, then (setting �0 = 1) we would have

Yru :=
ru−1∑
i=0

�iBi+1 ≤
∞∑

j=1

∑
i∈W u

j

�iBi+1

(since Yru ≤ cu 
⇒ �iBi+1 ≤ cu for all i ≤ ru)

≤
∞∑

j=1

ej

10c2j2 · ecu

ej
≤ e

10
· π2

6
· u

c
<

u

c
,

a contradiction.
We now focus on the event {c−1u ≤ Yru ≤ cu}, which appears on the left-hand

side of (5.34). Let K u denote the following set of indices:

K u =
{
(j,m1,m2) : j ≥ 1,1 ≤ m1 < ru,m1 + ej

10c2j2 < m2 < ru

}
.

Recall that for some j , W u
j contains at least ej /(10c2j2) members. This means

that the first and last occurrences of the event described in W u
j must be separated

by a distance of at least ej /(10c2j2); that is, there must exist values m1 and m2
such that

(cu)e−j ≤ �mi
Bmi+1 ≤ (cu)e−j+1, i = 1,2 and m2 − m1 >

ej

10c2j2 .

Consequently,

P
{
c−1u ≤ Yru ≤ cu,�ru > εu

}
≤ ∑

(j,m1,m2)∈K u

P
{
(cu)e−j ≤ �mi

Bmi+1 ≤ (cu)e−j+1,

i = 1,2;�ru > εu
}

(5.35)

≤ ∑
(j,m1,m2)∈K u

P

{
�m1 ≥ cu

b
e−j

}
P

{
�m2−m1B

−1
1 ≥ 1

b
e−1
}

× P

{
�ru−m2B

−1
1 >

ε

bc
ej−1
}

:= ∑
(j,m1,m2)∈K u

P u
1 P u

2 P u
3 ,

where P u
1 ,P u

2 ,P u
3 denote, respectively, the three probabilities appearing in the

previous expression on the right-hand side.
While we will ultimately need a sharper estimate, we first estimate these

probabilities via Chebyshev’s inequality by choosing parameters β1 ∈ (0, α) and
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β2 ∈ (0, α ∧ 1) such that

ρ1 := λ(β1)

λ(α)
< 1 and ρ2 := λ(β2)

λ(α)
< 1.

Note that the parameter β2 exists due to the assumption (2.26). Applying Cheby-
shev’s inequality with the parameter α to the probability P u

1 , with parameter β1
to the probability P u

2 , and with parameter β2 to the probability P u
3 , we obtain by

(5.35) that

P
{
c−1u ≤ Yru ≤ cu,�ru > εu

}
≤ C1ε

−β2
∑

(j,m1,m2)∈K u

ej (α−β2)
(
λm1(α)λm2−m1(β1)λ

ru−m2(β2)
)
u−α(5.36)

= (C1ε
−β2
)
λk(α)u−I (τ )

∑
(j,m1,m2)∈K u

ej (α−β2)ρ
m2−m1
1 ρ

ru−m2
2

for some constant C1 < ∞, where we have used the assumption that λB(−α) < ∞.
Next, fix t > 0 and divide the set K u into four subsets, as follows:

K u
1 = {(j,m1,m2) ∈ K u : ej > tru

};
K u

2 = {(j,m1,m2) ∈ K u : ej ≤ tru,m2 < ru − r1/4
u

};
K u

3 = {(j,m1,m2) ∈ K u : ej ≤ tru,m1 < ru − 2r1/4
u ,m2 ≥ ru − r1/4

u

};
K u

4 = {(j,m1,m2) ∈ K u : ej ≤ tru,m1 ≥ ru − 2r1/4
u

}
.

We now study (5.36) by calculating the sum on the right-hand side separately over
the respective sets K u

i , i = 1, . . . ,4.
Case 1: First, we estimate the sum over K u

1 . Since K u
1 ⊂ K u, we have

m2 − m1 > ej/(10c2j2) ≥ Lej/2 for some constant L > 0. Thus, for some pos-
itive constant L1,∑

(j,m1,m2)∈K u
1

P u
1 P u

2 P u
3

≤ (C1ε
−β2
)
λk(α)u−I (τ )

∑
(j,m1,m2)∈K u

1

ej (α−β2)e−L1e
j

ρ
ru−m2
2(5.37)

= o

(
λk(α)√

logu
u−I (τ )

)
as u → ∞

when t is sufficiently large. The last step follows since ρ2 < 1 and, by defini-
tion, the set K u contains at most ru := �τ logu� + k members, while the sub-
set K 1

u contains only those members where ej > tru (so that in (5.35), the sum

over j is finite and dominated by its initial term, that is,
∑

K u
1

ej (α−β2)e−L1e
j ≤

C2[ej (α−β2)e−L1e
j ]{j=log(tru)} ↓ 0 as u → ∞).
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Case 2: Next, consider the sum over K u
2 . In this case, ru − m2 > r

1/4
u and so

in (5.35) ∑
(j,m1,m2)∈K u

2

P u
1 P u

2 P u
3

≤ (C1ε
−β2
)
λk(α)u−I (τ )

∑
(j,m1,m2)∈K u

2

(tru)
α−β2ρ

m2−m1
1 e−L2n

1/4
(5.38)

= o

(
λk(α)√

logu
u−I (τ )

)
as u → ∞

for L2 a positive constant and ρ1 < 1, where we have again used that K u contains
at most ru := �τ logu� + k members, and on the subset K u

2 , we have ej ≤ tru.
Case 3: For the sum over K u

3 , we can follow the same argument as in Case 2.

In (5.35), we now utilize that m2 − m1 > r
1/4
u and observe that ρ2 < 1 (rather than

observing that ru − m2 > r
1/4
u and ρ1 < 1). Hence, in either case, we have that

ρ
m2−m1
1 ρ

ru−m2
2 ≤ e−L2n

1/4
,

and (5.35) can be applied to deduce the same estimate as in (5.38).
Case 4: Finally, we estimate the sum over K u

4 . This estimate requires a more
intricate calculation than (5.35), relying now on Petrov’s Theorem 3.1.

Since m1 ≥ ru − 2r
1/4
u , we may apply Theorem 3.1 to obtain that, uniformly in

m1 ∈ [ru − 2r
1/4
u , ru],

P u
1 := P

{
�m1 ≥ cu

b
e−j

}
≤ C3e

αj

√
m1

λm1(α)u−α, u ≥ U0,(5.39)

independent of k, where C3 are U0 are finite positive constants. Thus, repeating
the calculation in (5.36), but using this estimate for P u

1 in place of the previous
estimate (which was based on Chebyshev’s inequality), we obtain that∑

(j,m1,m2)∈K u
4

P u
1 P u

2 P u
3

(5.40)

≤ (C4ε
−β2
) λk(α)√

logu
u−I (τ )

∑
(j,m1,m2)∈K u

4

ej (α−β2)ρ
m2−m1
1 ρ

ru−m2
2

for some finite constant C4 and u sufficiently large. To complete the proof, it is
sufficient to justify that the last sum is bounded. For this purpose, first recall that
since K u

4 ⊂ K u, then as argued in Case 1, we have that m2 − m1 > Lej/2 for
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some L > 0. Hence, for some positive constant L3,∑
(j,m1,m2)∈K u

4

ej (α−β2)ρ
m2−m1
1 ρ

ru−m2
2

≤ ∑
(j,m1,m2)∈K u

4

ej (α−β2)e−L1e
j/2

ρ
(m2−m1)/2
1 ρ

ru−m2
2(5.41)

≤
(∑

j

ej (α−β2)e−L1e
j/2
)( ∑

m1<m2

ρ
(m2−m1)/2
1

)( ∑
m2<ru

ρ
ru−m2
2

)
< ∞,

since ρ1 < 1 and ρ2 < 1. Combining the estimates in steps 1–4, we obtain (5.34),
as required. �

Returning now to the proof of the lemma, set

Jε =
(
(1 − ε)u,

(
1 − ε

2

)
u

)
, ε > 0;

Y ′
n = B2 +

n+1∑
i=3

(A2 · · ·Ai−1)Bi, n = 1,2, . . . ;

�′
n =

n+1∏
i=2

Ai, n = 1,2, . . . .

Then for all n, (Yn,�n)
D= (Y ′

n,�
′
n) and Yn = B1 + A1Y

′
n−1.

Suppose that the constant a has been chosen such that w.p.1, the support of the
law of A1 is contained in the interval [1/a, a]. Setting ru = nu + k − 1, we then
obtain

P

{
Yru ∈ Jε,�ru >

ε

2b
u

}
≤ P

{
B1 + A1Y

′
ru−1 ∈ Jε,�

′
ru−1 >

(
ε

2ab

)
u

}
(5.42)

≤ P

{
A1 ∈ 1

Y ′
ru−1

(
(1 − ε)u − b,

(
1 − ε

2

)
u

)
,�′

ru−1 >

(
ε

2ab

)
u

}
,

where A1 is independent of (Y ′
ru−1,�

′
ru−1). Moreover, since a−1 ≤ A1 ≤ a, we

also have when Yru ∈ Jε that

Y ′
ru−1 ∈ 1

A1

(
(1 − ε)u − b,

(
1 − ε

2

)
u

)
⊂
(

(1 − ε)u − b

a
, a

(
1 − ε

2

)
u

)
(5.43)

⊂
(

u

2a
, au

)
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for sufficiently large u, independent of k. Then for fixed Y ′
ru−1 ∈ (u/2a, au), an

easy calculation shows that the length of the interval

1

Y ′
ru−1

(
(1 − ε)u − b,

(
1 − ε

2

)
u

)
is bounded above by dε for some positive constant d . Hence, returning to (5.42),
we obtain that

P

{
Yru ∈ Jε,�ru >

ε

2b
u

}
≤
∫ au

u/2a
P

{
A1 ∈ 1

s

(
(1 − ε)u − b,

(
1 − ε

2

)
u

)}

× P

{
�′

ru−1 >

(
ε

2ab

)
u,Y ′

ru−1 ∈ ds

}
(5.44)

≤ dεP

{
u

2a
≤ Yru−1 ≤ au,�ru−1 >

(
ε

2ab

)
u

}
≤ dεP

{
u

a
≤ Yru−1 ≤ au,�ru−1 > ε∗u

}
for certain positive constants ε∗ and u. Applying (5.34) to the last quantity on the
right-hand side yields (5.33), as required. �
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