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Abstract. Let V be the steady-state workload and @ the steady-state queue
length in the GI/G/1 queue. We obtain the exact asymptotics for probabilities
of the form P{V > a(t), @ > b(t)} as t — oc. In the light-tailed case, there
are three regimes according to the limiting value of a(t)/b(t). Our analysis
here extends and simplifies recent work of Aspandiiarov and Pechersky [8]. In
the heavy-tailed subexponential case, a lower asymptotic bound is derived and
shown to be the exact asymptotics in a regime where a(t), b(t) vary in a certain
way determined by the service time distribution.
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1. Introduction

Consider the GI/G/1 queue in the notation of [3, Chapter VIII], with service
times Up,Uy,... of customers n = 0,1,... and interarrival times Tp,T3,... ,
where T,, is the time between the arrival of customer n and n + 1. The se-
quences {U,} and {T,} are ii.d. and mutually independent, with U, hav-
ing distribution B (say) and T, having distribution A. We assume stability
p=pp/pa < 1, where p4, up are the means of A, B, and that. both 4 and B
are non-lattice. Let V denote the workload in steady state and @ the queue
length (the number of customers in the system, including the customer currently
being served). A considerable amount of work then deals with tail asymptotics
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for P{V >z}, z = o0, or for P{Q > k}, k — oco. The results, which carry far
beyond the GI/G/1 setting, show that with light tails one has an exponential
decay

PIV>z} ~ Cye ™™, (1)
P{R>k} ~ Cpz* (1.2)

for suitable constants ¥ > 0, z < 1 and Cy,Cg (we will return to the exact
expressions later); here and in the following, ~ means that the ratio is one in the
limit (z — oo in (1.1) and k — oo in (1.2)). When going beyond the GI/G/1
queue, the exact asymptotics are more difficult to obtain, and as is customary in
large deviations theory one considers logarithmic asymptotics. That is, instead
of (1.1) one would be satisfied with showing that

logP{V >z} ~ —vr

and similarly for (1.2) (for examples of such asymptotics in a general setting,
see e.g. [19]).

In the heavy-tailed case where the service time distribution B is subexpo-
nential (as described in [16] and Section 4), the asymptotics for the GI/G/1
steady-state workload ¥ have long been known:

o0

1 —

PIV >t} ~ -—~——-~/B(z) dz; {1.3)
HA — Up /

see e.g. [17] and references therein. The asymptotics of the steady-state queue

length @ were more recently obtained by Asmussen, Kliippelberg and Sig-

man [7], who showed that

PIQ> 1) ~ PV > tua) (14)

subject to a certain condition on B, saying basically that the tail decreases
slower than exp{—z'/?}. For less heavy-tailed subexponential distributions (say
Weibull with 8 > 1/2), the tail of Q is effectively larger than the right-hand
side of (1.4), and exact asymptotics were obtained in [7] only for the M/G/1
case.

The present paper is concerned with joint asymptotics for V and @, that is,
we study probabilities of the form P{V > a(t), Q@ > b(t)} as t — co. In a recent
paper, Aspandiiarov and Pechersky (8] obtained the logarithmic asymptotics for
the light-tailed M/G/1 case, where T is exponential, and a(t) = at, b(t) = bt.
Their arguments are based upon a large deviation principle for multidimensional

compound Poisson processes. We improve upon the result by Aspandiiarov and
Pechersky [8] by

1) replacing the logarithmic asymptotics by exact asymptotics;
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2) generalizing from M/G/1 to GI/G/1;

3) presenting a shorter and more straightforward approach; basically, we just
use the representation

o
V = U, + ZUL (1.5)

fe=l

where U, has the residual service distribution B, and U{,Uj,... are in-
dependent of {(@,U,) and i.i.d. with distribution B, in combination with
sharp estimates (saddlepoint approximations) for sums of i.i.d. random
variables and convexity arguments.

In addition, we present various results for the case of heavy-tailed service times,
where asymptotic regimes other than a(t) = at, b(t) = bt turn out to be of
interest. Roughly, the results state that P{V > a(t) + b(t)(us — up)} is always
an asymptotic lower bound for P{V > a(t), @ > b(t)} and in some main cases
the correct asymptotics.

2. Preliminaries

Notation. For any real-valued distribution F', et
oo
Ap(a) = /e”F(dz), Ap{a) =log Ar{a)
i

denote the moment generating function and cumulant generating function of F,
respectively.

Our starting point is the classical exact asymptotics for the steady-state
waiting time W (Feller [18, Chapter XII| or Asmussen [3, Chapter XIIJ)

P{W >z} ~Cwe™ ™ (2.1}
for a strict upper bound it is also known that
P{W >z} < 777, (2.2)
The constant <y is the non-zero solution of the eguation
Ap(MAa(=7) = 1, (2.3)

and it is assumed (for (2.1)) that A’g(y) < oo. In the discussion of light-tailed
distributions below, it will always be assumed that this condition holds. (For the
corresponding asymptotics when this condition does not hold, see Remark 3.1.)
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While the constant v in (2.1) is readily computed from (2.3), the con-
stant Cw is somewhat more difficult to obtain. Basically it is determined from
the solution of a Wiener - Hopf problem. In particular, Cw is explicit if either
A or B is exponential (M/G/1 or GI/M/1; Feller 18], Asmussen [3]) and algo-
rithmically computable if either A or B is phase-type (PH/G/1 or GI/PH/1;
Asmussen [4]). In view of these references, we will henceforth consider Oy as
an explicitly available constant.

The distributions of the steady-state workload V and the steady-state queue
length Q can easily be obtained in terms of the distribution of W. Let U. be a
random variable having the stationary excess distribution B, of U, B.(z) =
foP{U > y}dy/ps, and let T®*) have the distribution A** of the sum of
k independent interarrival times. Then, assuming W, U,, 7O 7M. to be
independent, one has (see e.g. the books by Cohen [13], Asmussen [3, Chap-
ter VII1.3-4])

i

P{V >z}
P{Q > k}

Combining (2.4)—(2.5) with (2.1), one then obtains in a straightforward way
that (1.1}, (1.2) hold with

pP(W +U. > ), (2.
pP{W +U. > T 1] (2

o e

)
)

i

Cy = pCwin.(v), Co = Cvig(y), and 2z = Ap(y)™5;  (2.6)

see e.g. Section 2 of [1] or the proof of Corollary 2.1 below for (1.2). Here

() = Aa(=v7h
Ap, (o) = ;%(i\_‘?_%)_:_}_), a # 0. (2.7)

We will need the following extension of (2.5).
Proposition 2.1. P{Q >k, U, >y} = pP {Ue > (TE=D Wyt gy}

The proof is just as the proof of (2.5) in [3] (in the last display on p. 193,
the condition that the residual service time exceeds y leads to replacing U, by
Ua — ).

Corollary 2.1. Let Gy (y) =P {U, <y|Q =k}, k€2, andy € R; and let

Gly)=1-

o0
/e* “=Y) B, (du). (2.8)
¥

Then as k — o0,
(i) the functions {Gy} converge pointwise to G
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(ii) the moment generating functions {\g,} converge pointwise to Ag on
D = {a: dgla) < oo}, Also, this convergence is uniform on compact subsets
of int D,

Proof. (i) The result is given for M/G/1 in [1]. For GI/G/1, we get
PlO=k U, >yl = p/Be(du}/D(dv) P{W >v+y—ul,
Yy 0

where D(-) = A**=1 () — 4*=2)(.} Since A**~1)(q) goes to zero faster than
any exponential for a fixed a (see [3, p. 113]), the right-hand side behaves like

o0 o0

o [ Be(du) / D(dv)Cye~7w+v—u)
0

v

= PCW&‘W/e"’“Be(du)/e"”’D(dv}
v 0
= pCwe (51 ~zk“2}/e“’“Be(du). (2.9)
v

(ii) By a slight variant of (i) (using (2.2) in place of (2.1)),
f "B, (du). (2.10)

¥

Thus the sequence Fi(-) = 1 — Gi(-) is dominated by F(-) = {1 - G(-)}/Cw,
all k € Z,.. Integrate by parts to obtain

1
P{Ur>yIQ—-k}Sm

o
Ao (a) =1+ a/Fk(u)e““du, for all o € D, (2.11)
0

and similarly for G. Applying the dominated convergence theorem to the right-
hand side of (2.11) yields Ag, — Ag on D.

Since Fy is dominated by F, (2.11) also implies 0 < Ag, < Ag/Cw. By
the convexity of moment generating functions, it follows that on any compact
subset K C int D

sup {|Ag, (@)|: a € K, ke Z,} < 0.

Then the required uniformity follows as a consequence of the mean value theo-
rem, which implies that the oscillation outside a finite subset of K is appropri-
ately small. 0
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Remark 2.1. By a straightforward calculation,

_alp, (o) —vAB, (V)
Al = e, ()

Since moment generating functions are lower semi-continuous, {2.12) also de-
termines A¢ at the point a = v; in particular, Ag(v) = 1 + yAj (7).

a#y. (2.12)

3. Results for the light-tailed case

For light-tailed distributions one obtains distinctively different behavior de-
pending on whether a/b < A’3(0), when the asymptotics are dominated by
P{Q > bt}; or a/b > A'y(v), when the asymptotics are dominated by P{V > at};
or A%g(0) < a/b < Alg(7y), when the asymptotics are influenced by both V and

We begin by analyzing the intermediate and more interesting case Az(0) <
a/b < Alg(7v). An essential part of the analysis in this case will involve the
“saddlepoint approximation” (see e.g. [9, 14, 15,22-25,27]).

Definition 3.1. Let F be a distribution function, and let = be any point in the
range of the map A%. The unique solution s(z) to the equation A% (s{z)) =z
is called the saddlepoint of z.

If S, is the nth sum of an i.i.d. sequence of random variables with law # and
one is interested in obtaining large deviation asymptotics of the form P{S,,/n >
z}, then the “saddlepoint” method considers the conjugate distribution deter-
mined by s(z), namely the distribution

which has the important property that its mean mp (s{(z)) = z. We also denote
the variance of this conjugate distribution by o%(s(x)).

Theorem 3.1. Assume AlR{0) <a/b < Ag{v). Then ast — oo

Cexp { — (at)s + [bt](Ap(s) - Ag(7))}

PIV > at, Q > bt} ~
(V' zat. Q2 bt} sop{s)v2rbi

(3.1)
where C = Coig(s)(As{v) — 1)/(As(y) — Ag(s)) and s = s(a/b) is the saddle-
point of a/b. ([x} denotes the smallest integer greater than or equal to T).

Recall that the constants Cp and Ag(s) were given already in (2.6) and {2.12)
and the constant v in {2.3).

Proof of Theorem 3.1. We begin by establishing the following lemma.
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Lemma 3.1. Let N € Z; and A > 0, and define B = {f:b < B < a/(A(0)+
A)}. Then, uniformly for § € B
PV > at| @ = [Bt+ NT)
Ag(s,g Jexp{ — (at)sg + [ﬁt]AB(SB)} (s
3565(5;3}\/ 7Bl ﬁ

ast — co, where sg = s(a/f) is the saddlepoint of aff.

(3.2)

Proof of Lemme 3.1. Let {U]} be an i.i.d. sequence with distribution B, S, =
Ui+ -+ U}, and Gpe(u) = P{U, <u | Q= [pt+ N|}. Then V = Sg + U,
and so

.
P{V>at|Q=[pt+N]}= )/ P {Sipien +u > at}Gp(du). (3.3)
u>0

To determine the limiting form of the quantity inside the integrand, apply
the saddlepoint approximation. Namely observe by Theorem 1 of [27] that

P{ Sipeeny o (at —u) } exp(~t F(au, )
e+ N1 2 T8+ N1 S~ 5(5)on (s(25)) V2Bt

t—o00, (3.4)

where

at:?f-}iﬁ, 6 = @—?ﬁi Fla, ) was(\s 51\3( (ﬁ)) (3.5)

Moreover, this convergence is uniform for § € B and 0 < u < ¢gt, where
cp = a— B(Ap(0) +6)

and é > 0 is a constant which will be fixed later in the discussion following (3.16).
(To establish uniformity from Petrov’s result, note that u > 0, b > § and
a/b < A'g(v) implies oy /B; < A'(7) — €, for some € > 0. On the other hand,
u < cpt zmphes /B > (AB(O} + 6/2), for suitably large t.) Next cbserve bx
Theorem 23.5 of [28] that '

e
Fla,8) = 6A5(3). (3.6)
where A% is the convex conjugate of Ap. Since A% () = s(-), [28, Theorem 23.5],

and A} is differentiable on the interior of its domain, [28, Theorem 26.3], it
follows by the mean value theorem that

Flaw, ) = Fa,8) = Ss(60) ~ SAn(s6), (3.7
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where 3(8;) is the saddlepoint of some 8, € [a¢/3;,a/8] and
Ne= N+ ([Bt] - Bt).
Then by (3.4), (3.5) and (3.7}
P{Sipe4n1 + v > at}
exp { — (at)sg + (Bt)Ap(sp)}
(3 om (5(3)) VR

uniformly for 8 € B and 0 < u < egt, for some 8, € [a¢/ B, a/ ).

Roughly speaking, substitution of this last equation into (3.3) will establish
the lemma, provided it can be shown that the relevant limit can be brought
outside the integral. The remainder of the proof is devoted to formally dealing

with this problem. For this purpose we introduce some further notation, as
follows. Let

ga(t) = the right-hand side of (3.2);

Ag(s(8:))Veet® 1 o0, (3.8)

fal{u, t) = (the right-hand side of (3.8)) /as(t);
Gs.e(u) =P {Sigeeny +u > at} [ga(t);
ﬁgt = a random variable with distribution

Garlw) = P{U, <u| Q= [Bt+ N1}
(independent of the service times {U!}).

In this notation, (3.8) becomes
Gpi(u) ~ fa(u,t) ast— oo, (3.9)
uniformly for # € B and 0 < u < cgt. It needs to be shown that
tl_ff& E [gg,t(Ugt)] =1, uniformly for 3 € B (3.10)

{which is a natural consequence of (3.9}, since s(a;/8;), s(8:) — sp and hence
fa(u, t) = exp(spu)/Aa(sa) ).

Proceeding more formally, we begin by analyzing the function fz(u,t). Note
that the saddlepoints sz decrease as 3 increases, and

déf a
A (0) + A

Thus {s3 : 8 € B = [b,Ba]} forms a bounded interval disjoint from {0} {and
likewise for op{sg)); and with minor adjustments (as in the discussion follow-
ing (3.5)), these same properties are obtained for s{ou/B:), ogla:/f:) on the
restricted range 0 < u < cgt and 3 € B. Hence, the definition of {5 implies

Ba = Ag(sp,) > A5(0) = 35, > 0. (3.11)

f3(u, £} < const - exp(s(8,)u), 0<u<est and JeB. (3.12)
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Since s{f;) < s, < <y and Ag(y) < oo, we may then apply Corcllary 2.1 (i) to
obtain

E ﬁﬁ{i’gh t); 0< Ug < cpt] < const < oo, (3.13
for all ¢ > Tp for some T and § € B. It then follows by (3.9) that, uniformly
for § € ‘B,

im { € [G.4(Ta0) ~ SR8, 0 < g, < o
P00 L Aaipt rolspy 7 T pt = CBY]
£ [Rlals0) 00 < D < cpt] ) =0 3.14)
| Tetep) fo(Upt,t); 0 < Upe < cpt|p = 0. (3.14)

We now show that the restriction to {0 < Ug; < cgt} can be removed from
the first term of (3.14), and that the second term of (3.14) can, in an appropriate
sense, be neglected.

We start by analyzing the first term. By Chebychev’s inequality,

P{Us: > cat} < exp(—veat)Ag,, (7). (3.15)

The exponential term on the right decays in t like

v(a - BAR(0) — B6) = §;<sﬁa ~ BssAlp(0)) — v84
> (spa—PBAgp(sp)) +¢ (3.16)

for § sufficiently small and ¢ > 0 independent of 5 € B. (We have used the
hypothesis a/b < A’g(y), which implies s5 < s, < 7. Also, we have used the
assumption A < a/(A'g(0) + A), which by (3.6) implies (sga — BAp(sg)) is
bounded away from 0.} We now conclude that the exponential term in (3.15)
decays at a faster rate than the exponential term in the definition of gg(t).
Hence

lim P{Ug; > cpt} - =0, 3.17
e { Bt Z g } gﬁ(i} » ( )

uniformly for § € B, implying
Jm E[Gs.1(Upt); Upe > ept] = 0, (3.18)

uniformly for § € B. Also, by a slight variant of Corollary 2.1 (ii},
E [exp(sgUpt); Ut > L] — E [exp(sgU); U > L] ast— oo, (3.19)

where U is a random variable having the distribution function G given in Corol-
lary 2.1 (and this convergence is uniform on int®, where D is the domain of the
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right-hand side). The quantity on the right can be made arbitrarily small, for
3 € B, for a sufficiently large choice of L. Equations (3.18) and (3.19) imply
that the restriction to {0 < Ug; < ct} in the first term on the left of (3.14) can
be dropped.

Next consider the second term on the left of (3.14). From the definition of
fs and the convergence s(a;/B:), s(8:) — 53, we have

exp(spu)

. _ (2 oM
tl}g; fa(u,t) = o (55) {3.20)
uniformly for 3 € B and 0 < u < L < oo. Hence
r 77 . ~ 1
tim £ [2200%) g o< Ol =0 2y
twoo | Ag(sg) '

uniformly for § € B. It remains to consider this integral over the range {L <
Uss < cat}. But by (3.12) and another application of (3.19), we see that this
part may also be neglected for L suitably large.

By (3.14) we now conclude

(o o exp(spUs)]

Jim E [G,@,twm | =0 (3.22)
uniformly for 3 € B. Since Ag,, converges uniformly to Ag for § € B, by
Corollary 2.1 (ii}, the desired result follows from (3.22). O

Let r = Ag(sg)/Ag(7). Then by Lemma 3.1 and (1.2), (2.6),
P{V>at,Q=[Bt+ N1}
Cq(1 = 2)Ag(sp) exp { — (at)sg + [Bt] (AB(ss) —As(1)) } «
N (3.23)
330‘3(3[3)\/271'815
as t - oo, uniformly for g € B. Hence
M=1
P{V >at, Qe [[bt],[bt+ M)} ~b(e)(1—r) 3 7, (3.24)
N=0

where B{t) is the function on the right-hand side of (3.1) and M is any positive
integer. To complete the proof we show
im{gmwvz%Q3w+Myw§:a

I
M-sc0 — 00

Proof. Let A > 0. First consider P {V > at, Q € [bt + M, Bat)}, where 85 =
a/(A'g(0) + A). By (3.23), this probability decays asymptotically as ¢ — oo like

Lemma 3.2.

tdg, (3.25)

L

7‘ Call — 2)Ac(sp) exp (=t Ha(B)
spop(sg)/2npt

b+ M/t
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where
a
B

(We ignore the effect of the [-] operation, which will prove negligible here.)
Now consider the behavior of Hq(f) as a function of 4. By Theorem 23.5
of (28],

Ha(B) = 5( 55— An(ss) + A3(7}>. (3.26)

a
He(B) 2 B(57~ An () + An()) = o7 (3.27)
with equality iff Ag(y) =a/B ( = Ag(sg)) <= v = sp. By assumption
Ap(n) > 3 2 % for > b, (3.28)

implying v ¢ {sp : B € [b,c0)}. Hence we conclude that #,(f) does not attain
its minimum as a function of # on the half-line [b, c0). Since H,(f) is convex
((3.6) and [28, p. 35]), it follows that

Ha(B) 2 Ha(b) + K(B D), B € [boo), (3.29)

for some K > 0. Since the set of saddlepoints {sg : 8 € [b, fa]} form a bounded
interval disjoint from {0} (as in (3.11) above), and similarly for {op(ss)} and
{Ac(sp)}, it follows by (3.29) that (3.25) decays at least as fast as

Co(l = 2))a(sp) exp(—tHa(B))
SﬁUB(Sﬁ)\/Q;F_Bz B=b+ M4

const - = const - h(£)(1 — r)rM.

(3.30)

This establishes the desired result over the restricted range @ € [bt + M, fat).
Finally consider P{V > at, @ > Bat}. Note by (3.6) and (3.29) that

Ha(b) < Ha(fo) = BoAp(7), (3.31)

where a

bo = Jim Ba = A (0)°

Thus BaAs(y) > He(b}, for some A > 0. For this A, (1.2}, (2.6) then imply
that P{Q > fat} > P{V > at, Q@ > (at} decays faster than h(t) as ¢ — cc. O

We conclude this section by considering the remaining two cases.

Theorem 3.2. (i) Assume 0 < a/b < A%5(0). Then ast — oo
P{V > at, Q > bt} ~ s P{Q > bt} ~ xCgz'*! (3.32)

with k = 1. If A5(0) = a/b and Aj(7) < oo, then this equation holds
with k = 1/2.
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(i) Assume Ag(7) < a/b<oo. Then ast — oo
P{V >at, Q > bt} ~ &P{V > at} ~ &Cye 7" (3.33)

with & = 1. If Ag(y) = a/b and Aj(v) < oo, then this equation holds
with & = 1/2.

Proof. (i) If a/b < A'3(0), then (3.32) is immediate from the law of large num-
bers and (1.5), since the conditional distribution of E? Ul/Q given @ > &
converges to the degenerate distribution at pp as k — co.

If a/b = A'%(0) and A% (y) < o0, then (3.32) follows from (1.5) and a slight
variant of the central limit theorem as given in Theorem 7.2 of [10]. For further
details, see Proposition A.1 below, where a general conditional limit theorem is
established.

{ii) First suppose a/b > Az (7). Consider a doubly infinite stationary version
{(Vr,Q%)} —cocs<oo of {{Vs,Qs) }sxo0. If Vi > at, then it is well-known that this
occurred as a consequence of an exponential tilted buildup where A s{a), Agla),
changed to A g{a—v)}—Aa(—), respectively Ap{a+v)—Ag(y) (see(2]). Denote
the corresponding exponentially tilted probability measure by P..

More precisely, let PX(-) = P{- | Vo >t} let —r def sup {s <0:V* =0}

denote the start of the busy period straddling 0; and let N} (s), Nj(s) denote
the number of arrivals, respectively service events, in [—s5,0], s > 0. Then, by
an easy variant of [2, Section 7], one has P*{F; .} — 1 for any ¢, where 7}
denotes the event

1+ . P
{T € :—g—:;-—e—)——, Ni(ryeqar(1£e), Nj{r)€iigr(l ie)} (3.34)
Ba/fip —1

and Jig = 1/A (=), Bg = 1/A%B(y) are the means in the P, distributions of
Na(1), Ng(1). Next observe that a/b > 1/fi implies that for some € > 0

3' 5
fiaa(l —z)—dga{l +2) {1 - &)l ——1 > b
{Baal ) — Gga( ) H )(ﬂA/MB - 1)
Then Qf = Ni{(r} — N5(r) > bt on F,; . and hence
Po{Q5 > bt} > P*(Fu o} ~ L.

Finally, if a/b = A'g(7y), then a refinement of (3.34) is needed, namely a
conditional central limit theorem in place of a conditional law of large numbers.
This is given below in Proposition A.1. If a/b = Aly(7y) and A%f{7y) < oo, then
it follows as a consequence of Proposition A.1 that P*{Q% > bt} ~ 1/2. O

Remark 3.1. In the above discussion, it has been assumed that a solution ~
o (2.3) exists and Alz(7y) < co. We conclude this section with some comments
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on the asymptotics for light-tailed distributions which do not satisfy this con-
dition.
in that case, {2.1) does not hold; instead one has

P{W > 2} = o(e™ ), (3.35)

where v = sup{o : Agla)ia(—7) < 1}.

(Under stronger conditions, somewhat more can be said; see [11, Theo-
rem 22.12], or [17, Theorem 5.1].}

Using (3.35) in place of (2.1), one obtains natural analogs to the asymptotics
stated in Theorems 3.1 and 3.2, namely,

P{V > at, @ > bt} = o(f(t)), (3.36)

where f(f) is the right-hand side of either (3.1), (3.32) or (3.33) (depending
on whether A%(0) < a/b < limaoy AR(Y); 0 < af/b < AR(0); or a/b >
lima~ Apla), respectively).

4. Results for the heavy-tailed case

We now assume that the service time distribution B is subexponential (see
[16]). As an additional regularity condition, we assume

IILII;CP{—(%—(-—;)—I>yEU>$} = P{Z >y} (4.1)

for some random variable Z, where

hz) = E[U-z|U>z| = P,zz}/ﬁ(y)dy

is the so-called auxiliary function. See [20] for a discussion of this condition
and [6,7,26] for applications where it occurs.

In particular, this set-up covers the regularly varying case, where B(z) =
L(z)/z* for some slowly varying function L{z) and o > 1 (to ensure finite
mean); here one can take

1
(I+y/(a-1))
{i.e. Z is Pareto distributed with mean one). In other examples, B is necessarily

less heavy-tailed (B(z)/z® — 0 for all @ < o0); one has h(z)/z — 0 and Z is
standard exponential. Further, one has the self-neglecting property
h(z + yh(z))

Jlim o ! (4.3)

h(t) = 2 P{Z>y)= (4.2)
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uniformly in |y| < yo.

For example, B could be lognormal-like, B(z) ~ caPe™*198" % with v > 1,
in which case h(z) ~ zlog" ™" z/(Xy), or Weibull-like, B(z) ~ cz®e*" with
0 < #'< 1, in which case h(z) ~ £}~ /(af).

We will often use the following standard property of subexponential distri-
butions: for any fixed a,

Blt+a) . JiaBy)dy

e e 4.4
oo B(t) Rl f;’o Bly) dy (44)

We also assume. that the interarrival time 7' is not too heavy-tailed in the
sense that ET? < co.
Note for the following that we can rewrite (1.3) in either of the ways

o0

, h(t)B(t) 1 o
PV 2 ey ~ 2080 i !(y ~0*Bldy).  (45)
It is immediate as in Theorem 3.2 that
fmsup ) < un = PV 2a(0,Q > 50)) ~ P@2 b0} (46)
and thus we assume
Hm inf 9—(2 > up (4.7

t—oo b(t)

(the liminf may be infinite). We will present first (Section 4.1) a heuristic
argument indicating that one would then expect

P{V 2 a(t), Q2 b(t)} ~ P{V >c(t)}, (4.8)

where c(t) = a(t) + b(t)(us — ug).

In Section 4.2, we show that the right-hand side of (4.8) is always a lower
bound but in fact not always the correct asymptotics. In Section 4.3, we then
supplement this with upper bounds leading to criteria for (4.8) to be true. Note
that in heavy-tailed asymptotic problems, it is usually easier to get lower than
upper bounds, cf. e.g. [12] and [29].

4.1. Heuristics

In the heavy-tailed case, there are two obstacles for using the representa-
tion V = U, + E? Uj. First, the tail behavior of U,, given that Q is large,
needs to be derived. Second, when both Q and the U! are heavy-tailed, the best
result on the tail behavior of sums like Z? U{ that we know of is Theorem 3.6
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of [7], but the technical condition (c) there creates difficulties. For example, in
the regularly varying case (c) would require nB**(n(up +¢)) = o(n~(=~1)), but
according to [26] the correct order is O(n~(®~V)}. (There_are also difficulties in
applying [26] say in the Weibull case.)

Our arguments instead use the regenerative representation

C
PIV2at) Q2 b)) = £5E [ HV.2 a0, Q2 b0} ds,  (49)
3]

where C' is the busy cycle (i.e. the sum of the busy and idle periods), combined
with the description of a cycle with V, exceeding a large level a(t) given in [55:
roughly, the exceedance happens as consequence of one early big service time,
say of size y > a(t), and apart from this, everything in the cycle develops
normally. Using the law of large numbers and ignoring random fluctuations,

this leads to the simplified picture of the cycle in Figure 1.

a(t)

s

O j

Ha , Qs .

Z |

) SRR R "

; I Z i
: f : ; s

—b(
b(t)pa y il
Figure 1

To understand the figure, note that V, decreases linearly at rate 1 — up/pa
=1 — p; in particular, level a(t) is downcrossed at time (y — a(¢))/(1 - p), and
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the busy cycle ends at time y/(1 — p). The queue length builds up linearly at
rate 1/p4 during the long service time of duration y; in particular, level b(t) is
upcrossed at time b(t)p4. At time y, we thus have Q, = y/u4 and after that Q,
decreases linearly at rate 1/ug — 1/p4, implying that level b(¢) is downcrossed
at time

ylpa —b(t) _ y-b(t)ps
/pug —1/pa L—p

When a(t) > b(t)pa, we have (y — b(t)un)/(1 —p) > (y — a{t))/(1 - p), and
thus the time interval in the cycle where V, > a(t),Q, > b(¢) has length

(422 b "

Combined with the results of Asmussen [5], we are led heuristically to expect
that

PLV > a(t), @ > b(t)}

L EC [ ry—alt) +
~ ECua ( =, b(t)uA) B(dy)
a(t)
L7 N
= —— [w-e)* By
HA — UB

a(t)

i

1 [
————— | B(y)dy ~ P{V >c(t)}.
—— [Budy ~ PV 2 et}
(t)
One further indication of this analysis is that @ given V > a(t) should be of
the order of magnitude h(a(t)) (this follows since y — a(t) is of order h{a(t)}).
In fact, it follows from Theorem 4.1 below that

lim msupP{Q > zh(t) |V > ¢t} =0,

T tgoo
whereas (4.6) may be rewritten

lim P{V >dt|Q >t} =1, d< ug.
£ OO

In the regularly varying case (h{z) = z/a), this is similar to the light-tailed
case, but for other subexponential distributions (h{z) = o(z)) the conclusion is
that ¢} is typically smaller than V; in particular, the distributional Little’s law
underlying the proof of (1.4) in [7] does not hold in the sample path sense.
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4.2. Lower bounds and counterexamples

In fact, (4.8) is not always correct.
Proposition 4.1. If h{c(2))//b(t) — 0, then

. P{V>a@),@2b(t))
M P{V > c(t)] -

Note in particular that h(c(t))//b(t) — 0 holds if a(t) = at, b(¢t) = bt and
h(z)/z'/? — 0.
But (4.8) is always a lower bound.

Proposition 4.2. Without conditions beyond (4.7),

. P{V >alt), Q > b(t)}
lim inf P{V > c(t)] =

For the proof, define w(a) = inf { > 0: V; > a},
7o(t) =inf{s: Qs 2 b(1)}, 7v(t;y) =inf{s: V, <a(t)|Vo =1y},

and let PY refer to the probability measure with Vo =y, Qo = 0, ¥ > a(t). It
follows from [5], (2.2), that we can write

pi(aa0) <P{w(a) <C, Vo < a0} < pa(a,a0), (4.10)
where
3 Y
lim liminf <PA%90)  _ 1, lim lim sup _p2(a,00)
ag—400 a—00 B(Q)EC/HA 6000 g o0 B(G)EG//jA

(note that EC/u4 is the expected number of arrivals during a cycle). In a cycle
where V; > a(t) for some s, we must have w(a{t)) < C and so for y > a(t) > aq,

P{w(a(®) < C, Ve > ¥ Vata)- < a0} =P{wl(y) < C, V- < ao},

which can be bounded below and above by p;(y, ag), respectively po(y, ao). For
lower bounds, we bound (J,(,)~ below by 0 and obtain (first let ¢ — oo and
next ag — oo)

i inf _ P{V > “(Q’ Q> b(t)} > 1
209 ()L E [ Bldy) EY [T I{Ve > a(t), Q, > b(t)} ds

(4.11)

Proof of Proposition 4.2. Consider first the case of finite variance. Combining
the heuristics behind Figure 1 with the central limit theorem (which requires
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EU? < oo for V;), it then follows that given £ > 0, one can choose z, K such
that

py {Qs > b(t) for all s € (b(t)lm + 26 pal (1 = p), iiﬁgl}} > 1.,

py {VS > alt) forallse iO, g; a(t) -z

for all y > a(t) + K. Hence by {4.11), we have asymptotically that
P{V >al(t), @ > b(t)}

1~ 2¢
4

/ (%:fz@ -2y —a(t) = b(t)pua

p
a{t)+ K

~ VbOuA/(L-p) Bldy)
L-2 / (y —e(t) - 2y = c(t))+ B(dy), (4.12)

HA — BB J
a{8)+K

using the inequality va +b < /a + vb. Since y — c(t) — z4/y — c(t) > 0 for
y > ¢(t) +z, and c(t) + z > alt) + K for all large ¢, it follows by (4.4) that (4.12)
has the same asymptotics as

L2 (et - sy 0) B,
e(t)+z

Further, for fixed £,
. [k, V9 — ¢ Bldy)
lim sup —= - -
emvoo [ (y —¢)B(dy)
e[ Bldy) +e [ sy — o) Bldy)

< limsu el 0 +¢,
= ERE [Z(y — ¢)Bldy)
30 that by (1.3}
PV >a(), @ 26(1)}
im i = S 207
1-2) (7 —¢(t))*t B(d
> limin ( )fc(g)+;<1(y (t) (dy) e =13

=00 J5 (- ()" Bldy)
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Lletel 0.

In the case of infinite variance (which can only occur in the case of regular
variation with 1 < a < 2}, the same argument nent goes through if one replaces
b(t)pa + 24/b(t) and (y — a(t)}/(i —p) — 23/y — a(t) by (14 8)b(t)j, respec-
tively (1—-6)(y —a(t))/(1 - p). .

Proof of Proposition 4.1. Consider the events

= {Q& > b(t) forall s € (bt#,; _ Z\/Say—*atl})
1—pi
fosed / A y“‘:—;cit.
B={V.za(t) forall s € [p, ;ﬂp}}'
Since PY {Qb(t Vaa e JHE 2 b(t)} has a limit as t — oo of the form ®(~z0), it is

easily seen that we can choose z > 0 such that PY{A;} > 1/4. Similarly, P¥{B;}
depends only on y — a(t) and goes to 1/2 as y — a(t) — oo which (note that
Ay means atypically large early values of (J;) is more than sufficient to ensure
P¥{B; | A;} > 1/4 for t large and y > at + K. Hence

P{V > a(t), Q > b(t)}

[ (5520 oes i) )

a(t)+K

>

16#,4

oo

1 -
= m /(y“c(t )* B(dy) = 60us — 5ip) /B(y)dy,

c'(t) c'(t)

where ¢ () = c(t) — z(1 — p)/b(t). Writing ¢"(t) = c(t) ~ zh(c(t)), the self-
neglecting property (4.3) of h implies that h(c¢"'(t))/h(c{t})) — 1 and hence, using
the fact that z2(1 — p}/b(t) > zh(c(t)) for all large ¢,

lim inf [%(gt—’—_:-(———z—‘ > liminf fc ® )
fmveo f(z} Bly)dy t=oo [0 t)+xh{c(t)7B(y
f:?(t) B(y) dy 1
= liminf = .
t—+00 c”(t)+xh(c”(t)P(y P{Z > :E}
The assertion now follows by letting z 1 co. O

4.3. Upper bounds and positive results

Here is our main result for the joint asymptotics in the heavy-tailed case.
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Theorem 4.1. Assume b(t) = xh(a(t)). Then (4.8) holds without conditions
beyond (4.7}, i.e.

PV > a(t), @ 2 zh(a(t)} ~ P{Z > xz(ua - up)} P{V > a(t)}.
Corollary 4.1. Assume a/b > ug and B is regularly varying. Then
L(t)

P{VZGt,Qth}N P{Vzct} ~ W}

where ¢ = a + b{us — pg).
Corollary 4.2. If h(z)/z — 0, then
P{V > a(t), Q > zh(a(t)} ~ e *a=42) p{y > q(f)}.

Proof of Theorem 4.1. Assume without loss of generality that alt) = ¢, b(t) =
Th(t), so that c(t) = t + zh(t)(ug — ug}. Note that we can choose § > 0 such
that

P{Quity~ > ao(l = 0)/up | V- <ao} <e.
Redefining m(t) as 7o(t) = inf {s: Q, > b(t) | Qo = ao(1 —4)/pp} and noting
that the expected time after mv (¢;y) where V, > ¢ is bounded uniformly in y
and ¢, we thus have the asymptotic upper bound
. o
EC E {/I{I/; 2t Qs 2 b(t)}ds; V4 < a()j
0

7AN

;}; / E(rv(ty) - mo(1)* Bldy) + O(B(t)).

Further, by (4.4),

C

e[ [ 1Vi 26 Q20 ds; Vi > a0l
0
[0

PV > a0 | w(t) < C} /E“j I{V, > t} ds B(dy)
£ 1]

/A

i

0as (1) / Oy = H)B(dy) = 0y (1) OPIV > 1})

230 (1) O(P{V > ¢(t)}).

i
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Thus, combining with the lower bound in Proposition 4.2, it suffices to show for
a fixed ag that

(pa)™t [TE(v(Gy) — o))" Bldy)

I <1, 13)
125;1;3 BV S o) <1 (4.13)
To this end, write
1T ‘
o E(rv(t;y) —7o®)" Bldy) = L + I + I, (4.14)
A
i

where Iy,[5. I3 denote the contributions from the y-intervals [t,¢:(t)),
[c1(t), e2(2)), respectively {eg(t), o), where ¢1(t) = o{t) — eh(t), co(t) = ¢(t) +
rh(t)
Consider first y € [¢,¢1(f)}). Then
E(rv(t;y) ~ ()t < Elrvtalt)) - molt); vt a) > mot))
< [Envima)? Plrvita®) > o))
Here Ery(t;c1(1)? = O{cr(t) — )?) = O(h(t)*) if EU? < oo,
vitalt) Q) ®
: S R
(e () —t)/(1-p) zh(t)pa
(cf. [21] for similar discrete time estimates). Since
@) -0/0-p) _,___ c
(zh(t)pa) (s — pB)
we get P{rv(t;c1(t)) > 7o(t)} — 0 so that

<1,

I < / O(h(t))o(1) B(dy) = o(h(t)B(1)).

In the regularly varying case with EU? = oo, i.e. 1 < a < 2, we have
Erv(t:ex () = Ol(es () = )*) = O(h(x)*)

for all o' € (1,a) (see again [21]) and we can use the Holder inequality instead
of the Cauchy - Schwarz to obtain the same conclusion.
Similarly (but easier}, for some constants k;, k; we get

ca(t)
L < k / E v (£ (1)) B(dy)
cy(t)
cz(t)
ksh(t) / B(dy) ~ ksh(t)B(t) P{aps —c < Z < zpa + £}

cxlt)

IA
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PFinally, for y € [ea(2), 0o}, we have

E(rv(tiy) — o)™ = E(v(ty) — m(t) + E(ro(t) — rv(ty)t

y—1
< I wh(Oua+0()
1/2

+ [Er(t)? - P{ro(t) > rv(t;ca(t)}] ™",

which by similar estimates as for I; (using ET? < o) can be written as

;i}; ~ wh(t)ia + O(L) + O(A()) o(1)

30 that

uﬂs;£35£®~m»M®>+0@m>+4mm§mm(
o{t

Hence the limsup in (4.13) can be bounded by
0 + k3Plaps—ec<Z<zps+c} + 1L+0+0.

Letting ¢ | 0 completes the proof. a

A. Appendix

It remains to establish the conditional central limit theorems needed to han-
dle the boundary cases in Theorem 3.2. Assume from now on that a,b are
arbitrary nonnegative constants. Let p4, up and 0%, 0% denote the mean and
variance of a random variable having distribution A, respectively B, and put

a
=5 = P T e
my = bug, oy = Vbosg, mQ A ()
and N 3 . A ()
5 :;Qms MML, where w = 80
at  w-—1 Ay(=)

It is assumed in this section that A%L(y) < co.
Proposition A.1.

(i) Let V*® be arandom variable with distribution function PV <-1Q>bt},
and let £ be standard Normal(0,1). Then as t — co,

bt _
L%” Ny (A1)
Iy
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(i) Let Q% be a random variable with distribution function P{Q < - |V >
at}, and let £ be standard Normal(0,1). Then ast — oo,

)% — mgt
Q¥ —mqt Ay (A.2)
ooVt

Proof of Propesition A.1. (i) First, fix N € N, and consider P{V > at | @ =
(bt + N1}, where V = U, + ES:} U!. By the central limit theorem,

[bt+N1

S (Ul - pp)/opVt S €

FES

as t — oo, where ¢ is N(0,1); and it needs to be shown that an analogous result
holds for V.

To this end, let Up; be a random variable with distribution G, (u) def P{U, <
u | @ = [bt + N1}, independent of {U!}. Then by (2.10), Fy(-) = 1 — G (")
is dominated by (1 — G(-))/Cw, where G is defined as in (2.8). It follows that
Var(U,) < A%4(7)/Cw < oo. Consequently, by Theorem 7.2 of [10],

[bt+N] |

(O + LU -bmt
C:Bm — £, (A.3)
where ¢ is N(0,1). Since this result holds for any N € N, it follows that
P{V —myt<zovVt|Q € [[bt], [bt + N1)} = &(2), (A.4)

where my = bup, oy = vbop, N € N, and ®(-) is the standard N(0,1)
distribution function.

The desired result then follows from (A.4), since as N — o0 we may asymp-
totically neglect

P{V = pyt < 2007, Q > [bi+ N1} <P{Q > [bt+ N1} ~ 2V Coz™
compared to
P{V — uvt <zoyvt, Q€ [[bt], [bt+ N1)} ~ &(z)Coz'®.

(ii) Let N4, Np be the renewal processes generated by the interarrival times,
respectively service times, and let
_ 1 _ 2= ! __ Ap(Y)
p = ——-———_——-———, UA = .._—____._—.47 # = ....—-———-.-) UB =
AT A=) AL (=7)*" TP T AR() Ag(7)?
(the means and variances associated with the P,-distribution of N4(1), Ng(1),
cf. the proof of Theorem 3.2).
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HViis)= E;i’*l(s) U; — s is the workload process modified by removing the
reflection at 0, then

, ] HA N 1\’4(8) ﬁA NA(.?) ) EAS 1
V{S)“S(i;‘l) = ;Ui“s‘ﬁ;:;f’”;(mﬁ;)
) o1 R
= WAl ~Easig + 3 (Ui~ ==) +ov3)

in P,-distribution. From this and the standard central limit theorem for renewal
processes, we conclude that in P.-distribution

. / Na(s) —Tigs
7 Ng(s) — igs — N30, %), [A.5)
B {V'(s) —s(Ba/Bp — 1}
where
/ Ta 0 Fa
T = 0 oB 7B (\1 - g‘;) . (A.6)
Fa 5‘3<1~%> Ga+0p- B4

To check the expression for £, let Cova denote the asymptotic covariance in the
sense of the central limit theorem and note that

T8 Bas 1 Ng(s)
Cova( Y Us, No(s) ~figs) = HipCova( Y Ui, Na(s)- ==Y v:)
==k i=1 i==1
P48 Ng(s)
= —[g COV&(ZU,;, z Ui)
i=1 i=1

Bas Ggs

~Ug COV&( Z U, , z Ui)
i=1 s==1

i

g . .
= —~—(fia8 — Egs),
147

where we used Anscombe’s theorem to replace Ng{s) by Zigs.
Let T =inf {s: V'(s) > at}. Then T/(at/(G4/Bg — 1)) = 1 in P,-probabi-
lity, and so by using Anscombe’s theorem once more we obtain from (A.6) that
Na(T) - paT
Ng(%) - ngT - N3(0, %)
at ~T(ha /g — 1)

1
Vat/(E4/fg — 1)
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in P,-distribution and hence
P, {N4(T)— Np(%) — mot < zogvt} — &(z),

where mg = ajig and

9 i

R S 0y VS
@7 at/(Ba/Hp - 1) "B(%B 1),

Note that op > 0, since in P,-distribution 7i,/fig > 1. Using a mixing argu-
ment as in {2] then yields

P, {Na(%) ~ Np(%) —mqt < zogVt| T <C} - @(z),

where ¢ denotes the busy cycle. By a regenerative argument as in (2], this
finally yields

Pat{N% (1) — Np(1) —mqt < zogVt} — @(2),

where N%, Np, and 7 are defined as in the proof of Theorem 3.2 (ii). 0o
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