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Abstract

Suppose Y1, Y2, . . . ⊂ R
d is a sequence of random variables such that the probability

law of Yn/n satisfies the large deviation principle and suppose A ⊂ R
d. Let T (A) =

inf{n : Yn ∈ A} be the first passage time and, to obtain a suitable scaling, let T ε(A) =
ε · inf{n : Yn ∈ A/ε}. We consider the asymptotic behavior of T ε(A) as ε → 0. We show
that the the probability law of T ε(A) satisfies the large deviation principle; in particular,
P {T ε(A) ∈ C} ≈ exp {− infτ∈C IA(τ)/ε} as ε → 0, where IA(·) is a large deviation rate
function and C is any open or closed subset of [0,∞). We then establish conditional
laws of large numbers for the normalized first passage time T ε(A) and normalized first
passage place Y ε

T ε(A).

1 Introduction

Let Y1, Y2, . . . be a sequence of random variables taking values in R
d. For any subset A

of R
d, let T (A) = inf{n : Yn ∈ A} be the first passage time, i.e., the first time that the

sequence Y1, Y2, . . . hits the set A. The purpose of this article is to study the distributional
properties of T (A) and, in effect, to determine the limiting behavior of T (A) as the set A

drifts to infinity, or, more precisely, the limiting behavior of

T ε(A) = ε · inf{n : Y ε
n ∈ A} as ε → 0, where Y ε

n = εYn.

Problems of this general type were first studied in the context of collective risk theory
by Lundberg (1909). Letting Yt = ct − Xt, where {Xt}t≥0 is a compound Poisson process
and c is a positive constant, he considered P{Yt < −1/ε, some t}, namely the probability
that the process {Yt}t≥0 ever hits the negative halfline (−∞,−1/ε). This is equivalent to
P{T ε(A) < ∞}, where A = (−∞,−1). A well-known result due to Cramér states that if
{Yt}t≥0 has positive drift, then for certain constants C and R,

P{T ε(A) < ∞} ∼ Ce−R/ε as ε → 0, (1.1)
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where R is identified as the nonzero element of the two-point set {α : Λ(α) = 0} and Λ is
the logarithmic moment generating function; see Cramér (1954).

Extensions of Cramér’s estimate have been widely studied, particularly in the setting of
random variables taking values in R

1. An extension to the d-dimensional setting has been
given in Collamore (1996a), where it is shown under certain regularity conditions that if A

is any open subset of R
d, then

lim
ε→0

ε log P{T ε(A) < ∞} = − inf
x∈A

Ĩ(x), (1.2)

where Ĩ is the support function of the d-dimensional surface {α : Λ(α) ≤ 0}. This limiting
result is shown to hold, moreover, for general sequences {Yn}n∈Z+ , provided that the prob-
ability law of Yn/n satisfies the large deviation principle. [Various one-dimensional results
for general sequences have been established by other authors; see Grandell (1991), Nyrhinen
(1994) and references therein.]

While the above results describe P{T ε(A) < ∞} as ε → 0, they give little insight into
the actual distribution of T ε(A). In fact, it is quite easy to construct examples of sequences
having the same exponential decay rates in (1.1), but for which the actual distributions of
T ε(A) are very different. It is of interest to develop refinements of (1.1) and (1.2) which
yield an improved characterization of T ε(A).

In the setting of (1.1), such refinements have been given by von Bahr (1974) and Sieg-
mund (1975). They have shown that if Yt = ct−Xt, where {Xt}t≥0 is a compound Poisson
process, or if {Yt}t≥0 is a more general process, and if A is the halfline (−∞,−1), then

P {T ε(A) ≤ τ(ε)} ∼ Ce−R/εΦ(y) as ε → 0, (1.3)

where Φ(·) denotes the standard Normal distribution function, τ(ε) = β1 + β2y
√

ε, and C,
R, β1 and β2 are constants. Eq. (1.3) gives the same asymptotic decay for P{T ε(A) < ∞} as
was given in (1.1), but it also shows that, conditioned on {T ε(A) < ∞}, a proper rescaling
of T ε(A) converges to a Normal distribution. We note that other relevant one-dimensional
theorems have been developed by Segerdahl (1955); Martin-Löf (1986), who has established
large deviation results e.g. for P{T ε(A) ≤ τ0} as ε → 0; and very recently by Nyrhinen
(1998), who, under a technical condition on the lower bound, has established more complete
large deviation results for general sequences Y1, Y2, . . . ⊂ R

1.
Our interest is in developing related limit theorems, but from a viewpoint more general

than has been considered in the works of von Bahr, Siegmund, Martin-Löf and Nyrhinen.
We are particularly interested in developing such theorems in the setting of the basic large
deviations results given, for example, in Varadhan (1984), Ney and Nummelin (1987a,b)
and Ellis (1984). Specifically, our objective is to study the case where A is a general subset
of R

d and Y1, Y2, . . . a general sequence of random variables for which the probability law
of Yn/n satisfies the large deviation principle.

Under certain regularity conditions on {Yn}n∈Z+ ⊂ R
d and A ⊂ R

d, we show

lim sup
ε→0

ε log P {T ε(A) ∈ F} ≤ − inf
τ∈F

IA(τ),

for all sets F which are closed in [0,∞) (1.4)
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and

lim inf
ε→0

ε log P {T ε(A) ∈ G} ≥ − inf
τ∈G

IA(τ),

for all sets G which are open in [0,∞). (1.5)

Thus, the probability law of T ε(A) satisfies the large deviation principle with rate function
IA(·). We show that (1.4) and (1.5) hold quite generally, namely, when A is any subset of R

d

and when Y1, Y2, . . . are the sums of an i.i.d. sequence of random variables, or the additive
functions of a Markov chain, or a sequence satisfying the conditions of the Gärtner-Ellis
theorem. The proofs of (1.4) and (1.5) will rely on large deviations estimates, as ε → 0, for
joint probabilities of the form

P {(Y ε
m, Y ε

n) ∈ A, some (m,n) ∈ C/ε} ,

where A ⊂ R
2d, C ⊂ {(τu, τv) : τv ≥ τu ≥ 0}, and {Yn}n∈Z+ is a general sequence for which

the probability law of Yn/n satisfies the large deviation principle. See Theorem 4.2 below.
If A ⊂ R

d is convex, then the form of the function IA(·) in (1.4) and (1.5) suggests that
there should be a most likely normalized first passage time, in the sense that we should
have T ε(A) ≈ ρ for some positive constant ρ. To this end, we show

lim
ε→0

P{|T ε(A) − ρ| > γ|T ε(A) < ∞} = 0, for all γ > 0, (1.6)

for a certain constant ρ > 0. We also establish an analogous result for the normalized first
passage place, Y ε

T ε(A), namely,

lim
ε→0

P{‖Y ε
T ε(A) − x0‖ > γ|T ε(A) < ∞} = 0, for all γ > 0, (1.7)

for a certain point x0 which lies on the boundary of A. Hence, conditioned on the event
{T ε(A) < ∞}, T ε(A) converges in probability to ρ and Y ε

T ε(A) converges in probability to x0.

We note that large deviations theorems having a similar form to (1.6) and (1.7) have been
developed in various other settings. For example, the exit from a domain of a perturbed
dynamical system near a point of stable equilibrium has been studied by Freidlin and
Wentzell (1984), who have shown under certain circumstances that there is a most likely
exit point. Also, certain large exceedance results have been established for Lévy processes
⊂ R

d by Dembo, Karlin and Zeitouni (1994). These last results have recently been extended
beyond the i.i.d. or Lévy setting by Zajic (1995).

2 Statement of Results

Let Y1, Y2, . . . be a sequence of random variables taking values in R
d. Let Y ε

n = εYn for all
ε > 0 and all n ∈ Z+.

Our objective is to study

T ε(A) = ε · inf{n : Y ε
n ∈ A}

for general sets A ⊂ R
d and, particularly, to determine the limiting behavior of T ε(A) as

ε → 0.
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First we introduce some further notation. Let

Λ(α) = lim
n→∞n−1 log E exp

{〈
α, Yn

〉}
, for all α ∈ R

d;

Zm,n = (Ym , Yn − Ym), Zε
m,n = εZm,n, for all n ≥ m;

Λm,n(α) = log E exp
{〈

α,Zm,n

〉}
, for all α ∈ R

2d and n ≥ m;

Λr(α) = lim
n→∞,

m/n→r
n−1 log E exp

{〈
α,Zm,n

〉}
, for all α ∈ R

2d;

Laf = {x : f(x) ≤ a}, for any f : R
d → R;

cone S = {λx : λ ≥ 0, x ∈ S};

and

Bδ = {x : infy∈L0Λ∗ ‖x − y‖ < δ} .

[It is assumed that the limits in the definitions of Λ and Λr exist.] For any set S, let ri S,
∂S denote the relative interior, relative boundary of S, respectively; and for any function
f , let f∗, dom f, cl f , 0+f denote the convex conjugate of f , the domain of f , the closure
of f , and the recession function of f , respectively. [For definitions, see Rockafellar (1970).]

The following regularity conditions will be imposed on the sequence {Yn}n∈Z+ and the
set A.

Hypotheses: (H0) The probability law of Yn/n satisfies the large deviation principle
with a rate function I = Λ∗, where Λ is differentiable at every point in its domain.

(H1) For each r ∈ [0, 1] and αu, αv ∈ R
d, Λr(αu, αv) = rΛ(αu) + (1 − r)Λ(αv).

(H2) For some δ > 0, cl A ∩ cone Bδ = ∅.
To consider the nature of these hypotheses in the context of some standard examples

of sequences {Yn}n∈Z+ satisfying the large deviation principle, suppose for example that
Yn = X1 + · · · + Xn, where {Xi}i∈Z+ is an i.i.d. sequence of random variables. Then, by
Cramér’s theorem, the probability law of Yn/n satisfies the large deviation principle as long
as

Λ(α) ≡ lim
n→∞n−1 log E exp

{〈
α, Yn

〉}
= log E exp

{〈
α,X1

〉}
(2.1)

is finite in a neighborhood of the origin. Since 0 ∈ dom Λ, a slightly stronger condition
would be to assume that dom Λ is open. As the right hand side of (2.1) is differentiable on
the interior of its domain, “domΛ open” would also imply that Λ is differentiable on its full
domain. Hence, “dom Λ open” is sufficient to imply (H0). Next, observe by independence

Λr(αu, αv) ≡ lim
n→∞,

m/n→r
n−1 log E exp

{〈
αu, Ym

〉
+
〈
αv, Yn − Ym

〉}

= lim
n→∞,

m/n→r
n−1

{
log
(
E exp

〈
αu,X1

〉)m + log
(
E exp

〈
αv,X1

〉)n−m
}

= rΛ(αu) + (1 − r)Λ(αv). (2.2)
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Therefore, (H1) always holds. Finally, note that for i.i.d. sums L0Λ∗ = {EX1}. Hence,
(H2) holds as long as the set A avoids an arbitrarily thin δ−cone about the mean ray
{λEX1 : λ ≥ 0}, that is, as long as the mean of the process is directed away from the set A.

If {Yn}n∈Z+ is a Markov-additive process as defined in Ney and Nummelin (1987a,b),
then the situation is analogous, that is, (H0), (H1) and (H2) hold as long as the domain of Λ
is open and the set A avoids a thin δ−cone about the relevant mean vector. The situation is
also analogous for general sequences satisfying the conditions of the Gärtner-Ellis theorem,
except that in this case we do not automatically have (H1).

In our first result, we consider the decay of P{T ε(A) ∈ C} as ε → 0, where C ⊂ [0,∞).
We show that this probability decays exponentially in ε, i.e.,

P {T ε(A) ∈ C} ≈ exp
{
− inf

τ∈C
IA(τ)/ε

}
,

with rate of decay described by a function IA(·) defined as follows.

Definitions. (i) For any set A ⊂ R
d, define IA : [0,∞) → [0,∞) by

IA(τ) = inf
{

τΛ∗(x
τ

)
: x ∈ A

}
for all τ > 0,

and IA(0) = inf {(0+Λ∗)(x) : x ∈ A}, where 0+Λ∗ is the recession function of Λ∗.
With slight abuse of notation, we will also write IA(·) for Icl A(·) and IA(·) for Iint A(·).
(ii) For any set C ∈ [0,∞), define JC : R

d → [0,∞) by

JC(x) = inf
{

τΛ∗(x
τ

)
: τ ∈ C

}
if 0 in not a limit point of C,

and JC(x) = min
{
infτ∈C−{0} τΛ∗(x

τ

)
, (0+Λ∗)(x)

}
if 0 is a limit point of C.

Definition. A set A will be called a semi-cone if x ∈ ∂A =⇒ {λx : λ > 1} ⊂ int A, that
is, the ray generated by any point on the relative boundary of A is an interior ray of A.

Theorem 1. Let Y1, Y2, . . . ⊂ R
d be a sequence of random variables satisfying (H0) and

(H1), and let A ⊂ R
d be a set satisfying (H2).

(i) Upper bound. For any set F which is closed in [0,∞),

lim sup
ε→0

ε log P {T ε(A) ∈ F} ≤ − inf
τ∈F

IA(τ). (2.3)

(ii) Lower bound. If A is a semi-cone, then for any set G which is open in [0,∞),

lim inf
ε→0

ε log P {T ε(A) ∈ G} ≥ − inf
τ∈G

IA(τ). (2.4)

Remark 2.1. (i) If 0 ∈ dom Λ∗, then it is not necessary to take the infimum at the point
τ = 0 [Rockafellar (1970), Theorem 8.5]. Likewise, if A and C are convex and A is open
and intersects ri

(⋃
τ∈C τ · dom Λ∗), then we do not need to take the infimum at τ = 0 (see

Remark 3.3).
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(ii) If cone A ⊂ dom Λ∗, then IA(τ) = IA(τ) for all τ > 0. Therefore, under this
assumption, the probability law of T ε(A) satisfies the large deviation principle with rate
function IA.

(iii) If C ⊂ [0,∞) is an interval and A is a convex open semi-cone intersecting
ri
(⋃

τ∈C τ · dom Λ∗), then Theorem 1 reduces to

lim
ε→0

ε log P {T ε(A) ∈ C} = − inf
τ∈C

IA(τ). (2.5)

In the special case C = [0,∞), equation (2.5) describes the probability that the sequence
{Y ε

n} ever hits the set A, which is Theorem 2.1 of Collamore (1996a). We note that Theorem
2.1 of Collamore (1996a) is proved under slighly weaker conditions; in particular, if C =
[0, τ0) for some 0 < τ0 ≤ ∞, then (H1) and the assumption that A is a semi-cone can be
dropped.

(iv) In general, the condition that A is a semi-cone cannot be dropped to obtain the
stated lower bound. However, if A ⊂ R

d is convex and the point x0 given below in Lemma
2.2 (i) is an exposed point, in the sense that the ray joining 0 to x0 does not intersect cl A

except at x0, then this condition can be dropped.

Theorem 1 suggests that if IA(τ) is minimized for a unique τ = ρ, then the most likely
normalized first passage time should be T ε(A) ≈ ρ.

Lemma 2.2. Y1, Y2, . . . ⊂ R
d by a sequence of random variables having a differentiable

logarithmic moment generating function, Λ, and let A ⊂ R
d be a convex set satisfying (H2),

A ∩ ri cone (dom Λ∗) 6= ∅. Then:
(i) infx∈cl A J[0,∞)(x) is achieved over cl A at a unique point x0 ∈ ∂A.
(ii) At some point α0 on the zero-set {α : Λ(α) = 0}, the gradient vector of Λ points in

the direction of x0, that is,

x0 = ρ∇Λ(α0), for some constant ρ > 0.

(iii) infτ∈[0,∞) IA(τ) is achieved over [0,∞) at the unique point ρ given in (ii).

A stronger version of this lemma will be proved below in Theorems 3.4, 3.7 and 6.1.
Also see Remarks 3.3 and 3.5 and the discussion just prior to Theorem 6.1.

Theorem 2. Let Y1, Y2, . . . ⊂ R
d be a sequence of random variables satisfying (H0) and

(H1). Let A be a convex open set satisfying (H2), A ∩ ri cone (dom Λ∗) 6= ∅. Then for any
γ > 0,

lim
ε→0

P
{|T ε(A) − ρ| > γ

∣∣ T ε(A) < ∞} = 0, (2.6)

where ρ is the positive constant appearing in Lemma 2.2 (iii).

Since the rate function in equation (2.5) for the interval C = [0,∞) is

inf
τ∈[0,∞)

IA(τ) ≡ inf
x∈A

min
{

inf
τ>0

τΛ∗(
x

τ
), (0+Λ∗)(x)

}
≡ inf

x∈A
J[0,∞)(x),
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another natural consequence of Lemma 2.2 is the following.

Theorem 3. Let Y1, Y2, . . . ⊂ R
d be a sequence of random variables satisfying (H0) and

(H1). Let A be a convex open set satisfying (H2), A ∩ ri cone (dom Λ∗) 6= ∅. Then for any
γ > 0,

lim
ε→0

P
{∥∥∥Y ε

T ε(A) − x0

∥∥∥ > γ
∣∣ T ε(A) < ∞

}
= 0, (2.7)

where x0 is the element of ∂A appearing in Lemma 2.2 (i).

Remark 2.3. Some of the conditions in Theorems 1, 2 and 3 can be slightly weakened, as
follows.

(i) Let

T ε
N (A) = ε · inf{n ≥ N : Y ε

n ∈ A},

that is, the first time after an initial time N that {Y ε
n}n∈Z+ hits A. If A is a convex open

set and N is suitably large, then Theorem 1 (i), 2 and 3 hold for T ε
N (A) without assuming

(H1). If A is a general set, then these theorems hold for T ε
N0

(A), some N0 ≥ 1, with the
weaker condition (H1′) of Collamore (1996a, b) in place of (H1). For details, see Collamore
(1996b).

(ii) If A is a general set, then Theorems 2 and 3 hold provided that: (a) infx∈A J[0,∞)(x)
is achieved over cl A at a unique point x0, and (b) the infimum in the definition of J[0,∞) is
the same over int A as it is over cl A [as is the case, e.g., when A is open and contained in
int cone (dom Λ∗)].

Example 2.4. First we consider the classical ruin model studied e.g. in Cramér (1954),
namely assume

Yt = ct −
N(t)∑
i=1

Xi, (2.8)

where N(t) is a Poisson(λ) process, {Xi}i∈Z+ ⊂ R
1 is an independent sequence of random

variables, and c − λEX1 = EY1 > 0. For simplicity, assume that the distribution of Xi is
exponential (θ). Let A denote the interval (−∞,−1) and consider

T ε(A) = ε · inf{n ∈ Z+ : Yn < −1
ε
}. (2.9)

The logarithmic moment generating function for the discrete sequence {Yn}n∈Z+ is

Λ(α) =

{
− λθα

1+θα + cα for all α > −1
θ ,

∞ otherwise.
(2.10)

It follows that

IA(τ) = τΛ∗(
x

τ
)]x=−1 =

(√
1 + cτ

θ
−

√
λτ

)2

, for all τ > 0, (2.11)
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and Λ∗(0) < ∞. By Theorem 1 and Remark 2.1, we may then evaluate limε→0 ε log P
{
T ε(A)

∈ C
}

by minimizing the function IA(τ) over τ ∈ C−{0} [more precisely, over (clC−{0}) to
obtain an upper bound and over (int C−{0}) to obtain a lower bound, where C is regarded
as a subset of [0,∞)]. Since {α : Λ(α) = 0} = {0, (λθ − c)/cθ}, we obtain by Theorem 2
that the most likely normalized first passage time is

ρ = − 1
∇Λ(α0)

]α0= λθ−c
cθ

=
λθ

c2 − cλθ
, (2.12)

and, as expected, this is the minimum of IA(·) over τ ∈ (0,∞).
To contrast these results with those of von Bahr (1974) and Siegmund (1975), now let

T ε(A) be defined as in (2.9) but with {Yt}t≥0 in place of {Yn}n∈Z+ . Then by Theorem 2 of
Siegmund (1975),

P {T ε(A) ≤ τ(ε)} ∼ Ce−R/εΦ(y) as ε → 0, (2.13)

where Φ(·) is the standard Normal distribution function, C and R = (c − λθ)/cθ are con-
stants, and

τ(ε) =
λθ

c2 − cλθ
+

√
2λθ2

(c − λθ)3
· y√ε. (2.14)

[The values in (2.14) are obtained by computing moments associated with the sequences
{Xi} and {Ti}, where Ti is the ith interarrival time of the Poisson process N(t).]

By setting y = 0, it is evident from (2.13) and (2.14) that the most likely normalized
first passage time as ε → 0 is ρ = λθ/(c2 − cλθ), which is in agreement with (2.12). But
the difference between (2.13) and our results is that (2.13) studies the variation of T ε(A)
about ρ for intervals which decrease after normalization by C/

√
ε as ε → 0; this results in

a limiting Normal distribution. Our results study the variation of T ε(A) e.g. over intervals
whose distance away from ρ after normalization is fixed; this leads to exponentially small
probabilities with decay characterized by a certain large deviation rate function.

A primary advantage of our approach lies in its generality and, especially, its ability to
handle general sets A ⊂ R

d where d > 1. A very simple multidimensional example is the
following.

Example 2.5. Let Yn = X1 + · · ·+ Xn, where {Xi}i∈Z+ ⊂ R
d in an i.i.d. Normal sequence

with mean vector µ and positive definite covariance S, and let A ⊂ R
d be an open semi-cone

which is disjoint from a thin δ−cone about µ.
The logarithmic moment generating function of {Yn}n∈Z+ is

Λ(α) =
〈
α, µ

〉
+

1
2
〈
α, Sα

〉
. (2.15)

It follows that

IA(τ) = inf
x∈A

τΛ∗(
x

τ
) = inf

x∈A

[τ
2
〈(x

τ
− µ

)
, S−1

(x
τ
− µ

)〉]
, for all τ > 0. (2.16)

By Theorem 1 and Remark 2.1, we may then evaluate limε→0 ε log P {T ε(A) ∈ C} by mini-
mizing the function IA(τ) over τ ∈ C − {0}.
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For example, if µ = − 1√
d
(1, . . . , 1), S = I [the identity matrix], and A = {(x1, . . . , xd) :

xi > 1}, then IA(τ) = τ
2 ·d

(
1
τ + 1√

d

)2
, which, among other things, has a minimum value at

ρ =
√

d. The existence and computation of this minimum value [corresponding to the most
likely normalized first passage time] can also be obtained from Theorem 2. By symmetry,
the unique element x0 ∈ ∂A of Lemma 2.2 (i) is (1, . . . , 1). Then the element α0 ∈ ∂(L0Λ)
of Lemma 2.2 (ii) is specified by the condition that ∇Λ(α) is parallel to x0. By (2.15) it
follows that α0 = 2√

d
(1, . . . , 1) and then ∇Λ(α0) = 1√

d
(1, . . . , 1). Therefore, by Theorem

2, the most likely normalized first passage time is ρ =
√

d.

3 Preliminary Results from Convex Analysis

Notation:

H+(α, t) =
{
x ∈ R

d :
〈
α, x

〉 ≥ t
}
, for all α ∈ R

d and t ∈ R;

H−(α, t) =
{
x ∈ R

d :
〈
α, x

〉 ≤ t
}
, for all α ∈ R

d and t ∈ R;

S + T = {s + t : s ∈ S, t ∈ T}, for all sets S and T .

For any set S, let ri S, ∂S denote the relative interior of S, relative boundary of S,
respectively.

For any function f , let f∗(·), dom f , cl f , epi f , and ∂f(·) denote the convex conjugate
of f , the domain of f , the closure of f , the epigraph of f , and the subgradient set of f ,
respectively.

For any set S, let 0+S denote the recession cone of S; and for any function f , let 0+f(·)
denote the recession function of f . [For definitions, see Rockafellar (1970).]

Our main objective in this section is to develop the convexity properties of the following
two functions.

Definitions. Let Λ denote the logarithmic moment generating function, as introduced in
Section 2.

(i) For any convex set C ⊂ [0,∞), let

ΓC(α) = sup
τ∈C

τΛ(α).

(ii) For any convex set C ⊂ {(τu, τv) : τv ≥ τu ≥ 0}, let

ΓC(αu, αv) = sup
(τu,τv)∈C

{
τuΛ(αu) + (τv − τu)Λ(αv)

}
.

In the next two theorems, we establish the relevance of the functions ΓC(·) and ΓC(·)
by relating them to the rate functions IA(·) and Jτ (·) introduced just prior to Theorem 1.

Theorem 3.1. Let Ξ be a convex set contained in the positive orthant {(ξ1, . . . , ξk) : ξ1 >

0, . . . , ξk > 0}.
(i) If f : R

d → R is a convex function, then the function

F (x1, . . . , xk) = inf
(ξ1,... ,ξk)∈Ξ

{
ξ1f(

x1

ξ1
) + · · · + ξkf(

xk

ξk
)
}

9



is also convex.
(ii) If f : R

d → R is a closed convex function, then the convex conjugate of

F (α1, . . . , αk) = sup
(ξ1,... ,ξk)∈Ξ

{
ξ1f(α1) + · · · + ξkf(αk)

}

is cl G, where

G(x1, . . . , xk) = inf
(ξ1,... ,ξk)∈Ξ

{
ξ1f

∗(
x1

ξ1
) + · · · + ξkf

∗(
xk

ξk
)
}

.

Proof. (i) Define

Fξ(x1, . . . , xk) = ξ1f(
x1

ξ1
) + · · · + ξkf(

xk

ξk
) and F =

⋃
(ξ1,... ,ξk)∈Ξ

epi Fξ.

Then evidently

F (x) = inf{µ : (x, µ) ∈ F}. (3.1)

To show that F is convex, note that the epigraph of x −→ λf(x/λ) is λ (epif), for all λ > 0.
Letting

Fi = {(x1, . . . , xk, µ) : (xi, µ) ∈ epi f and xj = 0 for j 6= i} ⊂ R
kd+1, (3.2)

it follows that

epi Fξ = ξ1F1 + · · · + ξkFk. (3.3)

Now let fu, fv ∈ F and 0 < λ < 1. Then by the definition of F and equation (3.3):
fu = ξ

(u)
1 f

(u)
1 + · · · + ξ

(u)
k f

(u)
k for some ξ(u) ∈ Ξ and f

(u)
i ∈ Fi, i = 1, . . . , k; and similarly

fv = ξ
(v)
1 f

(v)
1 + · · · + ξ

(v)
k f

(v)
k for some ξ(v) ∈ Ξ and f

(v)
i ∈ Fi, i = 1, . . . , k. Then

λfu + (1 − λ)fv =
(
λξ

(u)
1 f

(u)
1 + (1 − λ)ξ(v)

1 f
(v)
1

)
+ · · ·

= ξ1

(λξ
(u)
1

ξ1
f
(u)
1 +

(1 − λ)ξ(v)
1

ξ1
f
(v)
1

)
+ · · · , (3.4)

where ξ1 = λξ
(u)
1 + (1 − λ)ξ(v)

1 and so on for ξ2, . . . , ξk. On the last line of (3.4), the two
scalars inside the brackets sum to one; hence the convexity of F1 implies that this quantity
in brackets is an element of F1, and so on for the indeces 2, . . . , k. Also, the convexity of Ξ
implies that (ξ1, . . . , ξk) ∈ Ξ. Therefore,

λfu + (1 − λ)fv ∈ ξ1F1 + · · · + ξkFk = epi Fξ ∈ F. (3.5)

We conclude that F is convex. The convexity of F then follows from (3.1) and Theorem
5.3 of Rockafellar (1970).

(ii) Define

Fξ(α1, . . . , αk) = ξ1f(α1) + · · · + ξkf(αk). (3.6)
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Then the convex conjugate of Fξ is

F ∗
ξ (x1, . . . , xk) = ξ1f

∗(
x1

ξ1
) + · · · + ξkf

∗(
xk

ξk
), (3.7)

and an affine function h : x −→ 〈
α, x

〉 − µ minorizes G ⇐⇒ h minorizes F ∗
ξ for all ξ ∈ Ξ.

By definition of the convex conjugate and Theorem 12.2 of Rockafellar (1970), this occurs
⇐⇒ (α, µ) ∈ epi Fξ for all ξ ∈ Ξ; in other words, ⇐⇒ (α, µ) ∈ epi F . Since G is convex, by
(i), we conclude F = G∗. Hence F ∗ = cl G [Rockafellar (1970), Theorem 12.2]. 2

Next we identify the function cl G of the previous theorem.

Theorem 3.2. Let f : R
d → R be a closed proper convex function with f(0) > 0, and let

Ξ be a convex set contained in the positive orthant {(ξ1, . . . , ξk) : ξ1 > 0, . . . , ξk > 0}. Let
(fλ)(x) = λf(x/λ), for all λ > 0 and x ∈ R

d, and let

F (x1, . . . , xk) = inf
(ξ1,... ,ξk)∈Ξ

{
(ξ1f)(x1) + · · · + (ξkf)(xk)

}
.

Then

cl F (x1, . . . , xk) = inf
(ξ1,... ,ξk)∈Ξ̃

{
(ξ1f)(x1) + · · · + (ξkf)(xk)

}
,

where Ξ̃ = cl Ξ but with each ξi = 0 replaced with ξi = 0+ [so that the infimum is taken in
this case over 0+f , the recession function of f ].

Proof. Let K ⊂ R
d+2 be the convex cone generated by {(1, y) : y ∈ epi f}. Since f is a

closed proper convex function, it follows that

cl K = {(λ, y) : λ > 0, y ∈ λ(epi f)} ∪ {(0, y) : y ∈ 0+(epi f)
}

(3.8)

[Rockafellar (1970), Theorem 8.2]. Define

H =
{
(ξ1, y1, . . . , ξk, yk) : (ξ1, . . . , ξk) ∈ Ξ and yi ∈ R

d+1, i = 1, . . . , k
}

and

L = (K × · · · × K) ∩ H ⊂ R
k(d+2).

We study the image of the convex set L under the transformation

A : (ξ1, y1, . . . , ξk, yk) → (x1, . . . , xk, µ1 + · · · + µk), ξi ∈ R and yi = (xi, µi) ∈ R
d × R.

It follows directly from the definitions that

A(L) = {(x1, . . . , xk, µ1 + · · · + µk) : (xi, µi) ∈ ξi (epi f) and (ξ1, . . . , ξk) ∈ Ξ} ,

cl (A(L)) = cl (epi F ). (3.9)

Since cl L = (cl K × · · · × cl K) ∩ cl H, these definitions and (3.8) also imply

A(cl L) =
{

(x1, . . . , xk, µ1 + · · · + µk) : (xi, µi) ∈ ξi (epi f) and (ξ1, . . . , ξk) ∈ Ξ̃
}

, (3.10)
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where Ξ̃ = cl Ξ but with ξ = 0 replaced with ξi = 0+ [so that for such ξi we take (xi, µi) ∈
0+(epi f), the recession cone of epi f ]. Finally, note cl A(L) = A(cl L) (Rockafellar (1970),
Theorem 9.1, since f(0) 6= 0 implies that the only point of 0+(cl L) which is mapped by A
to zero is zero itself). Thus we conclude

cl (epi F ) =
{

(x1, . . . , xk, µ1 + · · · + µk) : (xi, µi) ∈ ξi (epi f) and (ξ1, . . . , ξk) ∈ Ξ̃
}

.

(3.11)

Since epi (ξif) is ξi (epi f), ξi 6= 0, and 0+(epi f) is epi (0+f), the theorem follows from
(3.11). 2

Remark 3.3. We now apply Theorems 3.1 and 3.2 to relate Γ∗
C and Γ∗

C to the rate functions
IA and JC .

(i) Suppose C ⊂ [0,∞) is convex. If 0 is a limit point of C, then it follows from Theorems
3.1 and 3.2 that

Γ∗
C(x) = cl

{
inf
τ∈C

τΛ∗(
x

τ
)
}

= min
{

inf
τ∈C−{0}

τΛ∗(
x

τ
) , (0+Λ∗)(x)

}
. (3.12)

If 0 is not a limit point of C, then (0+Λ∗)(x) may be dropped from the infimum on the
right of (3.12). Thus we obtain

Γ∗
C(x) = JC(x) and inf

x∈A
Γ∗

C(x) = inf
τ∈cl C

IA(τ), (3.13)

for any A ⊂ R
d.

Under certain circumstances, it is not necessary to include the recession function when
taking the infimum on the right of the second equation of (3.13). For example, if A is a
convex open set intersecting ri DC , where

DC ≡
⋃
τ∈C

τ dom Λ∗,

then infx∈A Γ∗
C(x) = infx∈A∩ ri DC

Γ∗
C(x). Since Γ∗

C(x) = infτ∈C τΛ∗(x/τ) on ri DC , by
(3.12), we see that we do not need to include the recession function when computing
infτ∈C IA(τ) in this case.

(ii) Let C ⊂ {(τu, τv) : τv ≥ τu ≥ 0} be convex, and let

J (xu, xv) = inf
(τu,τv)∈C

{
τuΛ∗(

xu

τu
) + (τv − τu)Λ∗(

xv

τv − τu
)
}
.

Then Γ∗
C(x) = cl J (x). The closure can be removed e.g. if cl C does not intersect the

xu-axis or the xv-axis; otherwise, the infimum must be taken in a slightly broader sense, as
described in Theorem 3.2.

Theorem 3.4. Let f : R
d → R be a closed proper convex function, and let E be a subset of

R
d. Assume D ∩ Lαf is nonempty and bounded for some α and some D ⊃ E. Then:

(i) There exists a point x0 ∈ cl E such that infx∈E f(x) = f(x0).
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(ii) If E intersects ri(dom f) and either (a) E is convex or (b) cl E ∩ ∂(dom f) = ∅, then
there exists a point α0 ∈ ∂f(x0).

(iii) If E is a convex set intersecting ri (dom f), then the point α0 in (ii) actually deter-
mines a separating hyperplane. That is, if a = infx∈E f(x), then for some t ∈ R we have
E ⊂ H+(α0, t) and Laf ⊂ H−(α0, t).

Proof. (i) Let f̃ = f on cl D and f̃ = ∞ on (cl D)c. Then Lαf̃ is compact for all α

[Rockafellar (1970), Corollary 8.7.1]. Hence (i) follows from the lower semicontinuity of f̃ .
(ii)-(iii) For the convex case, see Lemma 3.7 of Collamore (1996b) or Lemma 3.2 of

Collamore (1996a). [These carry over with minor modifications to the slightly more general
problem stated here.] For the nonconvex case [where cl E ∩ ∂(dom f) = ∅], see Theorem
23.4 of Rockafellar (1970). 2

Remark 3.5. (i) In Theorem 3.4 it is assumed that D ∩ Lαf is bounded for some α and
some D. We now discuss the nature of this hypothesis in the context of the functions Γ∗

C

and Γ∗
C and the hypotheses (H0)–(H2).

Under hypothesis (H0), the logarithmic moment generating function, Λ, is assumed to
be differentiable. Hence Λ∗ is essentially strictly convex [Rockafellar (1970), Theorem 26.3],
which implies that L0Λ∗ is compact. If C and C are convex, it follows by Theorem 3.1
that L0Γ∗

C = {τx : τ ∈ cl C, x ∈ L0Λ∗} and L0Γ∗
C =

{(
ξuxu, (ξv − ξu)xv

)
: (ξu, ξv) ∈ cl C,

(xu, xv) ∈ L0Λ∗
}
. Hence the zero level sets of Γ∗

C and Γ∗
C are bounded for bounded convex

intervals C and C. Thus, for such intervals, Theorem 3.4 holds with no restriction on E .
If the interval C ⊂ [0,∞) is unbounded, then Γ∗

C ≥ Γ∗
[0,∞) has compact level sets on

(cone Bδ)c, for any δ > 0. To demonstrate this fact, we note by Lemma 3.1 of Collamore
(1996a) that

inf
{

Γ∗
[0,∞)(x) : x ∈ (cone Bδ)c and ‖x‖ = 1

}
= t, for some t > 0. (3.14)

Also, by definition,

Γ∗
[0,∞)(x) = sup

α∈Rd

{〈
α, x

〉− 1L0Λ(α)
}

= sup
α∈L0Λ

〈
α, x

〉
, (3.15)

where 1L0Λ(·) is the indicator function on L0Λ. Hence Γ∗
[0,∞)(λx) = λΓ∗

[0,∞)(x) for all
λ > 0 and x ∈ R

d, i.e., Γ∗
[0,∞) is a positively homogeneous function. Using the positive

homogeneity of Γ∗
[0,∞) in conjunction with (3.14), we obtain that for any given a < ∞,

inf
{

Γ∗
[0,∞)(x) : x ∈ (cone Bδ)c and ‖x‖ ≥ K

}
≥ a, for a sufficiently large constant K.

(3.16)

We conclude that Lemma 3.4 applies for any set E = A, where A satisfies hypothesis (H2).

(ii) If E = A, where A satisfies hypothesis (H2), then A ⊂ (cone Bδ)c. Also, if C ⊂ [0,∞)
is convex, then by Theorem 3.1 we have L0Γ∗

C = {τx : τ ∈ cl C, x ∈ L0Λ∗} ⊂ cone Bδ.
Therefore, it follows by the convexity of Γ∗

C that x0 is a boundary point of A.

To motivate our next result, note by Theorem 23.5 of Rockafellar (1970) that α0 ∈
∂f(x0) ⇐⇒ x0 ∈ ∂f∗(α0). It is therefore of interest to characterize the set ∂f∗(α0). Next

13



we do this when f∗ is the function F (α) = supξ∈Ξ {ξ1f(α1) + · · · + ξkf(αk)} given earlier
in Theorem 3.1.

Theorem 3.6. Let f : R
d → R be a convex function which is differentiable on its domain;

let Ξ be a convex set contained in the positive orthant {(ξ1, . . . , ξk) : ξ1 > 0, . . . , ξk > 0};
and let F : R

kd → R be defined by

F (α) = sup
ξ∈Ξ

fξ(α),

where

fξ(α1, . . . , αk) = ξ1f(α1) + · · · + ξkf(αk) for α1, . . . , αk ∈ R
d.

Assume ∇f(αi) exists and is nonzero for each i, and assume F is finite and lower semi-
continuous at α. Then

∂F (α) =
⋃

ξ∈Ξα

∇fξ(α), (3.17)

where Ξα = {ξ ∈ cl Ξ : fξ(α) = F (α)}.

Proof. Let

Fα =
⋃

ξ∈Ξα

∇fξ(α)

[the set given on the right of (3.17)], and define neighborhoods of the index set Ξα and of
Fα as follows. For any δ > 0, let

Ξ(δ)
α = {ξ ∈ cl Ξ : fξ(α) ≥ F (α) − δ} and F(δ)

α =
⋃

ξ∈Ξ
(δ)
α

{∇fξ(α̃) : ‖α̃ − α‖ ≤ δ} .

(⊃) : Assume x ∈ Fα and show x ∈ ∂F (α).
If x ∈ Fα, then x = ∇fξ(α) for some ξ ∈ Ξα. Hence

sup
α̃∈Rkd

{〈
α̃, x

〉− fξ(α̃)
}

=
{〈

α, x
〉− fξ(α)

}
(3.18)

[Rockafellar (1970), Theorem 23.5]. Since the definition of F implies F (α̃) ≥ fξ(α̃) for all
α̃; and the definition of Ξα implies F (α) = fξ(α) for ξ ∈ Ξα; it follows that

sup
α̃∈Rkd

{〈
α̃, x

〉− F (α̃)
}

=
{〈

α, x
〉− F (α)

}
. (3.19)

Therefore, x ∈ ∂F (α) [Rockafellar (1970), Theorem 23.5].

(⊂) : Assume x /∈ Fα and show x /∈ ∂F (α).
Consider the set F

(δ)
α as δ ↓ 0. Note first that {∇f(α̃) : ‖α̃ − α‖ ≤ δ} decreases to{(

∇f(α1), . . . ,∇f(αk)
)}

as δ ↓ 0 [Rockafellar (1970), Corollary 25.5.1]; and by assumption
the elements ∇f(αi) are nonzero for all i. It follows that

F(δ)
α =

{(
ξ1∇f(α̃1), . . . , ξk∇f(α̃k)

)
: ξ ∈ Ξ(δ)

α

}
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decreases to

Fα =
{(

ξ1∇f(α̃1), . . . , ξk∇f(α̃k)
)

: ξ ∈ Ξα

}
.

It is easily verified that Ξα is convex, hence so is Fα. Thus we conclude

conv F(δ)
α ↓ conv Fα = Fα as δ ↓ 0. (3.20)

Therefore, x /∈ Fα =⇒ x /∈ conv F
(δ)
α for δ ≤ some δ0.

Fix δ ≤ δ0. Then {x} and conv F
(α)
δ are disjoint convex sets; consequently, there exists

a strongly separating hyperplane; that is,

conv F(δ)
α ⊂ H−(z, t − ε) and {x} ⊂ H+(z, t) (3.21)

for some z ∈ R
kd, t ∈ R, and ε > 0. Consider the derivative of F in the direction of z. By

definition this is

F ′(α; z) ≡ lim
λ↓0

F (α + λz) − F (α)
λ

. (3.22)

Next observe that for λ ≥ 0 sufficiently small:

F (α + λz) ≡ sup
ξ∈Ξ

fξ(α + λz) = sup
ξ∈Ξ

(δ)
α

fξ(α + λz). (3.23)

[Otherwise G(α̃) ≡ sup
{

fξ(α̃) : ξ ∈ Ξ − Ξ(δ)
α

}
would satisfy

G(α + λiz) = F (α + λiz) along a sequence λi ↓ 0.

Also, by definition of Ξ(δ)
α : G(α) ≤ F (α) − δ. Since F is lower semicontinuous at α, it

would follow that G is not convex. But G is a supremum of convex functions and hence G

is convex. Contradiction.] It follows by (3.22) and (3.23) that

F ′(α; z) ≤ lim
λ↓0

sup
α∈Ξ

(δ)
α

[
fξ(α + λz) − fξ(α)

λ

]
. (3.24)

By the mean value theorem, the quantity in brackets in (3.24) is
〈∇fξ(α̃), z

〉
for some

α̃ ∈ [α,α + λz]; and if λ is sufficiently small, then it follows by the definition of F
(δ)
α that

∇fξ(α̃) ∈ F
(δ)
α . Therefore, by (3.21) and (3.24) we obtain

F ′(α; z) ≤ t − ε. (3.25)

Hence by (3.21) and (3.25): F ′(α; z) <
〈
x, z
〉
. This implies x /∈ ∂F (α) [Rockafellar (1970),

Theorem 23.2]. 2

Of particular interest are the properties of

inf
x∈A

Γ∗
[0,∞)(x) = inf

x∈A
min

{
inf
τ>0

Λ∗(
x

τ
) , (0+Λ∗)(x)

}
≡ inf

τ∈[0,∞)
IA(τ),

namely, the rate function in (2.5) corresponding to the probability that the sequence
Y1, Y2, . . . ever hits the set A ⊂ R

d.
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Theorem 3.7. Let Y1, Y2, . . . ⊂ R
d be a sequence of random variables having a differentiable

logarithmic moment generating function, Λ, and let A ⊂ R
d be a convex set satisfying (H2),

A ∩ ri cone (dom Λ∗) 6= ∅. Let x0 and α0 be given as in Theorem 3.4 when f = Γ∗
[0,∞) and

E = A. Then:
(i) α0 ∈ ∂(L0Λ) and Λ(α0) = 0.
(ii) There exists a constant ρ > 0 such that x0 = ρ∇Λ(α0).
(iii) The element x0 is unique.

Proof. (i) Note Γ[0,∞)(α) ≡ supτ∈[0,∞) τΛ(α) = 1L0Λ(α), where 1L0Λ(·) is the indicator
function on the set L0Λ. Hence

Γ∗
[0,∞)(x0) ≡ sup

α∈Rd

{〈
α, x0

〉− 1L0Λ(α)
}

= sup
α∈L0Λ

〈
α, x0

〉
. (3.26)

Since (H2) =⇒ x0 6= 0, the supremum on the right can only be achieved on the boundary
of L0Λ. Hence α0 ∈ ∂(L0Λ). Since Λ is differentiable at α0, it follows that Λ(α0) = 0.

(ii) This follows from Theorem 3.6. The constant ρ is positive since (H2) =⇒ x0 6= 0.
(iii) Let x

(1)
0 , x

(2)
0 be two such elements, and let α0 ∈ ∂Γ∗

[0,∞)(x
(2)
0 ) denote the element

obtained in Lemma 3.4 (ii) which corresponds to x
(2)
0 . Let a = infx∈cl A Γ∗

[0,∞)(x).

Since {x(1)
0 , x

(2)
0 } ⊂ LaΓ∗

[0,∞)∩clA, it follows that both x
(1)
0 and x

(2)
0 lie on the hyperplane

given in Theorem 3.4 (iii) which separates LaΓ∗
[0,∞) and cl A. From this fact, together with

the fact that α0 achieves the supremum on the right of (3.26), we obtain〈
α0, x

(1)
0

〉
=
〈
α0, x

(2)
0

〉
= sup

α∈L0Λ

〈
α, x0

〉
. (3.27)

Thus, both x
(1)
0 and x

(2)
0 belong to the normal cone to L0Λ at α0. This implies

x
(i)
0 = ρi∇Λ(α0), i = 1, 2, for certain positive constants ρ1, ρ2 (3.28)

[Rockafellar (1970), Corollary 23.7.1. This corollary is applicable since (H2) =⇒ Λ∗(0) > 0,
hence infα Λ(α) < 0.] Therefore

x
(1)
0 = ρ1 (∇Λ(α0)) = ρ1

(
ρ−1
2 x

(2)
0

)
. (3.29)

Next observe by (3.26) that Γ∗
[0,∞)(x) = supα∈L0Λ

〈
α, x

〉
, which shows that the function

Γ∗
[0,∞) is positively homogeneous, i.e., Γ∗

[0,∞)(λx) = λΓ∗
[0,∞)(x) for all λ, x. Hence by (3.29)

Γ∗
[0,∞)(x

(1)
0 ) =

ρ1

ρ2
Γ∗

[0,∞)(x
(2)
0 ). (3.30)

Since x
(1)
0 and x

(2)
0 both minimize Γ∗

[0,∞) over cl A, it follows from (3.30) that (ρ1/ρ2) = 1,

and by (3.29) this implies x
(1)
0 = x

(2)
0 . 2

4 Estimates for Occupation Probabilities

For any set A ⊂ R
d, let

P
ε
C(A) = P {Y ε

n ∈ A, n ∈ C/ε} , for all convex C ⊂ [0,∞).
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Thus e.g. if C = (τ1, τ2), then P
ε
C(A) is the probability that the normalized sequence {Y ε

n}
hits A ⊂ R

d at some time during the interval ε−1(τ1, τ2). For any set A ⊂ R
2d, let

P
ε
C(A) = P

{
Zε

m,n ∈ A, (m,n) ∈ C/ε
}

, for all convex C ⊂ {(τu, τv) : τv ≥ τu ≥ 0}.

Thus e.g. if C = (τ1, τ2)×(ζ1, ζ2), then P
ε
C(A) is the probability that the normalized sequence

Zε
m,n ≡ (Y ε

m, Y ε
n − Y ε

m) hits A ⊂ R
2d at some time during the interval C/ε, i.e. for some

m ∈ ε−1(τ1, τ2) and some n ∈ ε−1(ζ1, ζ2).
In this section we derive estimates for the “occupation probabilities” P

ε
C(A) and P

ε
C(A).

Asymptotics for the hitting time T ε(A), i.e. the first time {Y ε
n} hits A, will follow directly

from these estimates.

Notation. First we recall the definitions of ΓC and ΓC from the previous section. For any
convex set C ∈ [0,∞), let

ΓC(α) = sup
τ∈C

τΛ(α), for all α ∈ R
d;

and for any convex set C ⊂ {(τu, τv) : τv ≥ τu ≥ 0}, let

ΓC(αu, αv) = sup
(τu,τv)∈C

{
τuΛ(αu) + (τv − τu)Λ(αv)

}
, for all αu, αv ∈ R

d.

Also let

HC(α, a) = the open half-space
{

x ∈ R
2d :

〈
α, x

〉
> (a + ΓC(α))

}
for all α ∈ R

2d, a ∈ R;

proj (A) =
{
xu ∈ R

d : (xu, xv) ∈ A
}⋃{

xu + xv ∈ R
d : (xu, xv) ∈ A

}
for any set A ⊂ R

2d.

Theorem 4.1. Let Y1, Y2, . . . ⊂ R
d be a sequence of random variables satisfying (H0) and

(H1), and let A ⊂ R
d be a set satisfying (H2). Let C be a convex subset of [0,∞). Then

(i) Upper bound:

lim sup
ε→0

ε log P
ε
C(A) ≤ − inf

x∈cl A
Γ∗

C(x). (4.1)

(ii) Lower bound:

lim inf
ε→0

ε log P
ε
C(A) ≥ − inf

x∈int A
Γ∗

C(x). (4.2)

Theorem 4.2. Let Y1, Y2, . . . ⊂ R
d be a sequence of random variables satisfying (H0) and

(H1), and let A ⊂ R
2d be a set such that proj(A) satisfies (H2). Let C be a convex subset

of {(τu, τv) : τv ≥ τu ≥ 0}, and assume (0, 0) /∈ cl C. Then
(i) Upper bound:

lim sup
ε→0

ε log P
ε
C(A) ≤ − inf

x∈cl A
Γ∗
C(x). (4.3)
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(ii) Lower bound:

lim inf
ε→0

ε log P
ε
C(A) ≥ − inf

x∈int A
Γ∗
C(x). (4.4)

First we turn to the proof of Theorem 4.2 and then indicate how this proof can be mod-
ified to establish Theorem 4.1. The proof of the upper bound of Theorem 4.2 is dependent
upon the following.

Lemma 4.3. Let Y1, Y2, . . . be a sequence of random variables satisfying (H0) and (H1).
Let C be a bounded convex subset of {(τu, τv) : τv ≥ τu ≥ 0}, and assume (0, 0) /∈ cl C. Then

lim sup
ε→0

ε log P
ε
C {HC(α, a)} ≤ −a. (4.5)

Proof of Lemma 4.3. Let µm,n denote the probability law of Zm,n, and define a trans-
formed measure µ̃m,n as follows:

µ̃m,n(F ) =
∫

F
exp

{〈
α, z
〉− Λm,n(α)

}
dµm,n(z), (4.6)

for all measurable sets F ⊂ R
2d. Then by definition:

P
{
Zε

m,n ∈ HC(α, a)
}

=
∫

ε−1HC(α,a)
exp

{− (〈α, z
〉− Λm,n(α)

)}
dµ̃m,n(z)

= E
[
exp

{
−
(〈

α, Z̃m,n

〉− Λm,n(α)
)}

; Z̃ε
m,n ∈ HC(α, a)

]
,(4.7)

where Z̃m,n is a random variable having distribution µ̃m,n and Z̃ε
m,n = εZ̃m,n. We replace

Λm,n with a limiting generating function, Λm
n
, by introducing the ratio

Rm,n = exp
{

Λm,n(α) − nΛm
n

(α)
}

; (4.8)

then (4.7) becomes

P
{
Zε

m,n ∈ HC(α, a)
}

= Rm,n · E
[
exp

{
−
(〈

α, Z̃m,n

〉− nΛm
n

(α)
)}

; Z̃ε
m,n ∈ HC(α, a)

]
.

(4.9)

The utility of this last representation is then evident from the following result, where it is
shown that the random variable in this last expectation is deterministically bounded over
{Z̃ε

m,n ∈ HC(α, a)} for (m,n) ∈ C/ε.

Sublemma 1: If (m,n) ∈ C/ε and Z̃ε
m,n ∈ HC(α, a), then{〈

α, Z̃m,n

〉− nΛm
n

(α)
}

>
a

ε
. (4.10)

Proof. By definition,

Z̃ε
m,n ∈ HC(α, a) ⇐⇒

{〈
α, Z̃ε

m,n

〉− ΓC(α)
}

> a

⇐⇒
{〈

α, Z̃m,n

〉− 1
ε
ΓC(α)

}
>

a

ε
. (4.11)
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Thus the proof will be complete as soon as we show that, on the right side of (4.11), ε−1ΓC(α)
can be replaced with nΛm

n
(α). To this end, observe that by (H1):

nΛm
n
(α) = mΛ(αu) + (n − m)Λ(αv), where α = (αu, αv). (4.12)

Thus (m,n) ∈ C/ε implies

nΛm
n

(α) ≤ ε−1 sup
(τu,τv)∈C

{
τuΛ(αu) + (τv − τu)Λ(αv)

}
≡ ε−1ΓC(α). (4.13)

Substituting this inequality into the right side of (4.11) gives{〈
α, Z̃m,n

〉− nΛm
n

(α)
}

>
a

ε
. 2

By Sublemma 1 and (4.9),

P
{
Zε

m,n ∈ HC(α, a)
} ≤ Rm,n · e−a/ε for (m,n) ∈ C/ε. (4.14)

Consequently, the probability that Zε
m,n enters HC(α, a) at some time (m,n) ∈ C/ε is

P
ε
C {HC(α, a)} ≤ e−a/ε

∑
(m,n)∈C/ε

Rm,n. (4.15)

It follows that

lim sup
ε→0

ε log P
ε
C {HC(α, a)} ≤ −a + lim sup

ε→0
max

(m,n)∈C/ε

{
ε log Rm,n

}
. (4.16)

Finally, the lemma is obtained by showing that the ratio Rm,n can, in a suitable sense,
be neglected.

Sublemma 2: lim supε→0 max(m,n)∈C/ε {ε log Rm,n} = 0.

Proof. Suppose false. Then there exists a sequence {εi}i∈Z+ with εi → 0 as i → ∞ and

εi log Rmi,ni ≥ t > 0, some (mi, ni) ∈ C/εi. (4.17)

Note: (mi, ni) ∈ C/εi, where C ⊂ {(τu, τv) : τv ≥ τu ≥ 0} is bounded and does not have
(0, 0) as a limit point. It follows that along a subsequence

ni → ∞ and
mi

ni
→ r as i → ∞, for some constant r ∈ [0, 1]. (4.18)

Then, along this subsequence,

lim
i→∞

Λmi,ni(α)
ni

= lim
ni→∞,

mi/ni→r

1
ni

log E exp
{〈

α, Zmi,ni

〉} ≡ Λr(α). (4.19)

Also, by (H1) and (4.18),

lim
i→∞

Λmi
ni

(α) = lim
i→∞

{
mi

ni
Λ(αu) +

(
1 − mi

ni

)
Λ(αv)

}
= Λr(α). (4.20)
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By (4.19) and (4.20) it follows that

lim sup
i→∞

εi log Rmi,ni ≡ lim sup
i→∞

εini

{
Λmi,ni(α)

ni
− Λmi

ni

(α)
}

= 0 (4.21)

[since εi(mi, ni) ∈ εi(εi
−1C) = C implies {εini}i∈Z+ is bounded]. But (4.21) contradicts

(4.17). 2

Proof of Theorem 4.2. Upper Bound.

Step 1: The upper bound holds under the assumption that A and C are bounded.

Proof. Let a < infx∈cl A Γ∗
C(x). Then for any x ∈ cl A,

sup
α∈R2d

{〈
α, x

〉− ΓC(α)
} ≡ Γ∗

C(x) > a; (4.22)

hence for some αx ∈ R
2d,

x ∈ HC(αx, a) ≡ {z :
〈
αx, z

〉− ΓC(α) > a
}

. (4.23)

By (4.23), {HC(αx, x)}x∈cl A is an open cover for the compact set cl A; hence there exists a
finite subcover: HC(αx1 , a),. . . ,HC(αxl

, a); and

P
ε
C(A) ≤

l∑
i=1

P
ε
C {HC(αxi , a)} . (4.24)

By Lemma 4.3,

lim sup
ε→0

ε log P
ε
C {HC(αxi , a)} ≤ −a, for each i. (4.25)

Consequently, by (4.24),

lim sup
ε→0

ε log P
ε
C(A) ≤ −a. (4.26)

The desired upper bound is then obtained by letting a ↑ infx∈clA Γ∗
C(x).

Step 2: The upper bound can be extended to the case where A and C are possibly unbounded.

Proof. Let a be a finite constant such that a ≤ infx∈cl A Γ∗
C(x). For R,K < ∞, define:

AR = A ∩ {(xu, xv) : ‖xu‖ ≤ R, ‖xu + xv‖ ≤ R}

and

CK = C ∩ ([0,K] × [0,K]) .

Since AR and CK are bounded, it follows by Step 1 that

lim sup
ε→0

ε log P
ε
CK

(AR) ≤ − inf
x∈cl AR

Γ∗
CK

(x) ≤ − inf
x∈cl A

Γ∗
C(x) ≤ −a (4.27)
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for any R,K < ∞. [The second inequality holds because CK ⊂ C =⇒ ΓCK
≤ ΓC, hence

Γ∗
CK

≥ Γ∗
C.] We need to show that the bounded sets AR and CK on the left of (4.27) may

be replaced with the possibly unbounded sets A and C.
For this purpose, observe: Zε

m,n ∈ A ∩ Ac
R ⇐⇒

(Y ε
m, Y ε

n − Y ε
m) ∈

{
(xu, xv) : (xu, xv) ∈ A, ‖xu‖ > R or ‖xu + xv‖ > R

}
⇐⇒ (Y ε

m, Y ε
n) ∈

{
(xu, xu + xv) : (xu, xv) ∈ A, ‖xu‖ > R or ‖xu + xv‖ > R

}
.

By the definition of proj(A) it follows that

Zε
m,n ∈ A ∩ Ac

R =⇒ Y ε
i ∈ proj(A) ∩ Bc

0,R, either i = m or i = n (4.28)

[where B0,R is a ball of radius R about the origin]. Hence the event
{

Zε
m,n ∈ (A ∩

Ac
R), (m,n) ∈ CK/ε

}
is contained in the event

{
Y ε

i ∈ proj(A) ∩Bc
0,R, i ∈ [0,K/ε]

}
. The

evaluation of the probability of this last event may then be handled by applying equation
(4.14) of Collamore (1996a). Namely, since a < ∞ and proj(A) satisfies (H2):

lim sup
ε→0

ε log P
{
Y ε

i ∈ proj(A) ∩ Bc
0,R, i ∈ [0,K/ε]

} ≤ −a, (4.29)

sufficiently large R. Consequently,

lim sup
ε→0

ε log P
ε
CK

(A ∩ Ac
R) ≤ −a, (4.30)

sufficiently large R. Finally, observe that the event
{

Zε
m,n ∈ A, (m,n) ∈ CK/ε

}
is the

union of the events
{

Zε
m,n ∈ AR, (m,n) ∈ CK/ε

}
and

{
Zε

m,n ∈ A ∩ Ac
R, (m,n) ∈ CK/ε

}
.

Therefore P
ε
CK

(A) ≤ P
ε
CK

(AR) + P
ε
CK

(A ∩ Ac
R). It follows by (4.27) and (4.30) that

lim sup
ε→0

ε log P
ε
CK

(A) ≤ −a. (4.31)

It remains to show that CK may likewise be extended to C. By an argument similar to
the one given in (4.28), Zε

m,n ∈ A =⇒ {Y ε
m, Y ε

n} ∈ proj(A). Hence P
ε
C∩Cc

K
(A) ≡ P

{
Zε

m,n ∈
A, (m,n) ∈ ε−1(C ∩ Cc

K)
}

is bounded above by P
{

Y ε
i ∈ proj(A), i ∈ [K/ε,∞)

}
. The

evaluation of this last probability may be handled by applying equation (4.7) of Collamore
(1996a). Namely, since a < ∞ and proj(A) satisfies (H2):

lim sup
ε→0

ε log P {Y ε
i ∈ proj(A), i ∈ [K/ε,∞)} ≤ −a, (4.32)

sufficiently large K. Hence

lim sup
ε→0

ε log P
ε
C∩Cc

K
(A) ≤ −a, (4.33)

sufficiently large K. Since P
ε
C(A) ≤ P

ε
CK

(A)+P
ε
C∩Cc

K
(A), it follows by (4.31) and (4.33) that

lim sup
ε→0

ε log P
ε
C(A) ≤ −a. (4.34)
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Finally, the desired upper bound is obtained by letting a ↑ infx∈cl A Γ∗
C(x). 2

Lower Bound. Fix (τu, τv) ∈ int C, and construct a sequence {Z̃ε}ε>0 ⊂ R
2d as follows:

for each ε > 0 let

Z̃ε = Zmε,nε, where mε = bτu/εc and nε = bτv/εc ,

and where bxc denotes the greatest integer ≤ x. The sequence {Z̃ε}ε>0 has been constructed
from elements of the original sequence, {Zm,n}m,n∈Z+ . Its generating function is

Λ̃(α) = lim
ε→0

ε log E
[
exp

{〈
α, Z̃ε

〉} ]
= τv lim

ε→0

1
bτv/εc log E

[
exp

{〈
α,Zbτu/εc,bτv/εc

〉} ]
.

(4.35)

The limit on the right can be simplified by applying (H1). Since bτv/εc → ∞ and bτu/εc/bτv/εc
→ τu/τv as ε → 0, the right side of (4.35) can be identified as τvΛ τu

τv
(α). Hence, by (H1)

and (4.35),

Λ̃(α) = τv

[
τu

τv
Λ(αu) +

(
1 − τu

τv

)
Λ(αv)

]
, where α = (αu, αv). (4.36)

By (H0) and the Gärtner-Ellis theorem [Dembo and Zeitouni (1993), Theorem 2.3.6 (c)],
it follows that the probability law of εZ̃ε satisfies the large deviation principle with rate
function

Λ̃∗(xu, xv) = sup
αu,αv∈Rd

[〈
αu, xu

〉
+
〈
αv, xv

〉− τuΛ(αu) − (τv − τu)Λ(αv)
]

= τu sup
α∈Rd

[〈
α,

xu

τu

〉− Λ(α)
]

+ (τv − τu) sup
α∈Rd

[〈
α,

xv

τv − τu

〉− Λ(α)
]

= τuΛ∗(
xu

τu
) + (τv − τu)Λ∗(

xv

τv − τu
). (4.37)

Next observe

P
ε
C(A) ≡ P

{
Zε

m,n ∈ A, (m,n) ∈ C/ε
} ≥ P{Z̃ε ∈ A}, (4.38)

where by definition Z̃ε = Zmε,nε, mε = bτu/εc, nε = bτv/εc, and where ε is sufficiently
small so that the operation b·c does not cause (mε, nε) to jump outside of the interval
C/ε ⊃ {(τu/ε, τv/ε)}. Applying the large deviation lower bound to the right side of (4.38)
yields

lim inf
ε→0

ε log P
ε
C(A) ≥ − inf

z∈int A
Λ̃∗(z) ≥ −Λ̃∗(x), for any x ∈ int A. (4.39)

Hence by (4.37):

lim inf
ε→0

ε log P
ε
C(A) ≥ −

[
τuΛ∗

(
xu

τu

)
+ (τv − τu)Λ∗

(
xv

τv − τu

)]
, (4.40)
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for any x = (xu, xv) ∈ int A. Taking the supremum in (4.40) over all (τu, τv) ∈ int C, then
applying Theorem 3.1, and finally taking the supremum over all x ∈ int A− ∂(dom Γ∗

C), we
obtain:

lim inf
ε→0

ε log P
ε
C(A) ≥ − inf

x∈intA−∂(dom Γ∗
C)

Γ∗
C(x). (4.41)

As int A is open and Γ∗
C convex, the extension of the infimum in (4.41) to all elements of

int A can then be handled as in the discussion following equation (4.9) of Collamore (1996a).
Thus the required lower bound follows from (4.41). 2

Remark 4.4. In Theorem 4.2 it is assumed that C ⊂ {(τu, τv) : τv ≥ τu ≥ 0}. Now suppose
C ⊂ {(τu, τv) : τu ≥ 0, τv ≥ 0}, and assume (0, 0) /∈ cl C. Put

C+ = C ∩ {(τu, τv) : τv ≥ τu} and C− = C ∩ {(τu, τv) : τv < τu}.

Then by Theorem 4.2 we have

lim
ε→0

ε log PC+(A) ≈ − inf
x∈A

Γ∗
C+(x) (4.42)

and similarly

lim
ε→0

ε log PC̃−(Ã) ≈ − inf
x∈Ã

Γ∗
C̃−

(x), (4.43)

where C̃− = {(τv , τu) : (τu, τv) ∈ C−} and Ã = {(xu + xv,−xv) : (xu, xv) ∈ A}. If we extend
the definition of Zm,n in the natural way to {(m,n) : n < m}, then

Zm,n ≡ (Ym, Yn − Ym) ∈ A ⇐⇒ (Yn, Ym − Yn) ∈ Ã ⇐⇒ Zn,m ∈ Ã,

implying P
ε
C−(A) = P

ε
C̃−

(Ã). Thus it follows by (4.42) and (4.43) that

lim
ε→0

ε log P
ε
C(A) ≈ −min

{
inf
x∈A

Γ∗
C+(x) , inf

x∈Ã
Γ∗
C̃−

(x)
}

(4.44)

[where “≈” may be replaced by the usual upper and lower bounds].

Proof of Theorem 4.1. Suppose C is bounded, and let C = C × D, where D is chosen
such that C × D ⊂ {(τu, τv) : τv ≥ τu ≥ 0} and (0, 0) /∈ cl (C × D). Let α = (α̃, 0). Then
an application of Lemma 4.3 yields:

lim sup
ε→0

ε log P
ε
C {HC(α̃, a)} ≤ −a, (4.45)

where HC(α̃, a) =
{
x :
〈
α̃, x

〉
> (a + ΓC(α̃))

}
.

Approximate P
ε
C(A) with

∑k
i=1 P

ε
C {HC(αxi , a)}, in the sense of (4.24), and use (4.45)

to determine an upper bound for P
ε
C(A).

The proof of Theorem 4.1 then follows Theorem 4.2, so we omit the details. 2
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5 Proof of Theorem 1

Upper Bound. First assume that F ⊂ [0,∞) is compact.
For all δ > 0 and all τ ∈ [0,∞), let

Bδ(τ) = {ζ ∈ [0,∞) : |ζ − τ | < δ} and Bδ(F ) =
⋃
τ∈F

Bδ(τ).

To apply Theorem 4.1, note

P {T ε(A) ∈ Bδ(τ)} ≤ P
ε
Bδ(τ)(A); (5.1)

on the left we have the probability that {Y ε
n} first hits A during the time interval Bδ(τ)/ε

and on the right the probability that {Y ε
n} ever hits A during that interval. Hence

lim sup
ε→0

ε log P {T ε(A) ∈ Bδ(τ)} ≤ − inf
x∈cl A

Γ∗
Bδ(τ)(x) = − inf

τ̃∈cl Bδ(τ)
IA(τ̃) (5.2)

by Theorem 4.1 and then Theorems 3.1 and 3.2. Next observe that {Bδ(τ)}x∈F is an open
cover for F ; hence there exists a finite subcover; and by applying (5.2) to the elements of
this subcover we obtain

lim sup
ε→0

ε log P {T ε(A) ∈ F} ≤ − inf
τ∈cl Bδ(F )

IA(τ). (5.3)

It remains to show

inf
τ∈cl Bδ(F )

IA(τ) ↑ inf
τ∈F

IA(τ) as δ ↓ 0. (5.4)

Assume false. Then for each i ∈ Z+ there exists xi ∈ cl A and τi ∈ B 1
i
(F ) such that

lim
i→∞

τiΛ∗(
xi

τi
) < inf

τ∈F
IA(τ). (5.5)

Then F is compact =⇒ along a subsequence τi → τ0 ∈ F . Next we observe that similarly
xi → x0 ∈ cl A. For this purpose, note: τiΛ∗ (xi/τi) ≥ Γ∗

[0,∞)(xi) [Theorem 3.1]. Since the
restriction of Γ∗

[0,∞) to cl A has compact level sets [by hypothesis (H2) and Remark 3.5 (i)],
it follows that {xi} is bounded. Hence along a subsequence xi → x0 ∈ cl A. If τ0 6= 0, then
by the lower semicontinuity of Λ∗,

τ0Λ∗(
x0

τ0
) ≤ lim

i→∞
τiΛ∗(

xi

τi
) as i → ∞. (5.6)

This shows that (5.5) is impossible in this case. On the other hand, if τ0 = 0, then observe(
xi

τi
, Λ∗(

xi

τi
)
)

∈ epi Λ∗, for all i, (5.7)

where (epi Λ∗) is the epigraph of Λ∗. By Theorem 8.2 of Rockafellar (1970), it follows that(
x0 , lim

τi→0
τiΛ∗(

xi

τi
)
)

= lim
τi→0

τi

(
xi

τi
, Λ∗(

xi

τi
)
)

∈ 0+(epi Λ∗). (5.8)

Hence, by definition of the recession function, the limit on the left of (5.5) is ≥ (0+Λ∗)(x0) ≥
IA(0), and so (5.5) is once again impossible.
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By (5.3) and (5.4) we conclude that the upper bound holds for all compact sets F ⊂
[0,∞). Finally, the extension to closed but unbounded sets may be handled by applying
equation (4.7) of Collamore (1996a). 2

Lower Bound. First assume that G is an interval which is open in [0,∞). Thus G =
(τ1, τ2), where 0 ≤ τ1 < τ2 ≤ ∞, or G = [τ1, τ2), where τ1 = 0 and 0 < τ2 ≤ ∞.

Let [ζ1, ζ2] ⊂ (τ1, τ2), and let C = [0, τ1] × (ζ1, ζ2).
Let

DC = dom Γ∗
C , for all intervals C ⊂ [0,∞);

Sδ =
{
y : ‖y − x‖ < δ for some x ∈ ∂D(ζ1,ζ2)

}
, for all δ > 0;

Aδ = int (A − Sδ) , for all δ > 0;

Aδ = {(xu, xv) : xu ∈ A, xu + xv ∈ Aδ} , for all δ > 0;

ME =
{
x0 ∈ cl E : Γ∗

(ζ1,ζ2)
(x0) = infx∈E Γ∗

(ζ1,ζ2)
(x)
}
, for all sets E ⊂ R

d.

Note that the open set Aδ ↑ [int A − ∂D(ζ1,ζ2)

]
as δ ↓ 0.

Consider:

(i) P
ε
(ζ1,ζ2)

(Aδ) = P
{
Y ε

n ∈ Aδ, n ∈ ε−1(ζ1, ζ2)
}

,

(ii) P
ε
C(Aδ) = P

{
(Y ε

m, Y ε
n ) ∈ A × Aδ, m ∈ ε−1[0, τ1] and n ∈ ε−1(ζ1, ζ2)

}
.

The quantity given in (i) is the probability that {Y ε
n}n∈Z+ hits Aδ during the interval

ε−1(ζ1, ζ2). The quantity given in (ii) is the probability that {Y ε
n}n∈Z+ hits A during the

interval ε−1[0, τ1] and then Aδ during the interval ε−1(ζ1, ζ2). If we subtract (ii) from (i),
we obtain the probability that {Y ε

n}n∈Z+ hits Aδ during the interval ε−1(ζ1, ζ2) but does
not hit A during the prior interval ε−1[0, τ1]. Since Aδ ⊂ A, this is a lower bound for the
probability that {Y ε

n} first hits A during the interval ε−1G ⊃ ε−1(ζ1, ζ2). In other words,

P{T ε(A) ∈ G} ≥ P
ε
(ζ1,ζ2)

(Aδ) − P
ε
C(Aδ). (5.9)

As ε → 0, the exponential rate of decay of P
ε
(ζ1,ζ2)

(Aδ) is ≤
{

ε−1 infx∈Aδ
Γ∗

(ζ1,ζ2)
(x)
}

, by

Theorem 4.1 (ii), while the exponential rate of decay of P
ε
C(Aδ) is ≥ {ε−1 infx∈cl Aδ

Γ∗
C(x)

}
,

by Theorem 4.2 (i). The next lemma shows that this decay is actually dominated by the
first term on the right of (5.9).

Lemma 5.1. Assume infx∈Aδ̃
Γ∗

(ζ1,ζ2)
(x) is finite for some δ̃ > 0. Then there exists a

positive real number δ0 such that

inf
x∈cl Aδ

Γ∗
C(x) > inf

x∈Aδ

Γ∗
(ζ1,ζ2)

(x), for all 0 < δ ≤ δ0. (5.10)

Proof of Lemma 5.1. Since Aδ increases in size as δ → 0, the assumption of the lemma
implies

Aδ ∩ dom Γ∗
(ζ1,ζ2)

6= ∅, for all 0 < δ ≤ δ̃. (5.11)
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Since the elements of the collection {Aδ}δ>0 have been constructed to be disjoint from
∂D(ζ1,ζ2) [the relative boundary of the domain of Γ∗

(ζ1,ζ2)], it follows by (5.11) that

Aδ ∩ ri D(ζ1,ζ2) 6= ∅, for all 0 < δ ≤ δ̃. (5.12)

Hence the conditions of Theorem 3.4 (i), (ii) are satisfied with f = Γ∗
(ζ1,ζ2)

, E = Aδ, and

0 < δ ≤ δ̃. From now on, we will assume that δ has been chosen in the interval (0, δ̃], so
that this is true.

Also, let (x0,u , x0,v) ∈ R
d ×R

d be an element obtained by Theorem 3.4 (i) with f = Γ∗
C

and E = Aδ.
We begin by relating Γ∗

C to Γ∗
(ζ1,ζ2)

.

Step 1: (i) For any α ∈ R
d, ΓC(α,α) = Γ(ζ1,ζ2)(α).

(ii) For any xu, xv ∈ R
d, Γ∗

C(xu, xv) ≥ Γ∗
(ζ1,ζ2)

(xu + xv).

Proof. By definition

ΓC(α,α) = sup
(τu,τv)∈C

{
τuΛ(α) + (τv − τu)Λ(α)

}
= sup

τv∈(ζ1,ζ2)
τvΛ(α) = Γ(ζ1,ζ2)(α),

hence

Γ∗
C(xu, xv) ≥ sup

(α,α)∈R2d

{〈
α, xu

〉
+
〈
α, xv

〉− ΓC(α,α)
}

= Γ∗
(ζ1,ζ2)

(xu + xv).2

Step 2: x0,u + x0,v /∈ MAδ
=⇒ infx∈cl Aδ

Γ∗
C(x) > infx∈Aδ

Γ∗
(ζ1,ζ2)

(x).

Proof. Note (x0,u, x0,v) ∈ cl Aδ = cl {(xu, xv) : (xu, xu + xv) ∈ A × Aδ} =⇒ x0,u + x0,v ∈
cl Aδ. Hence, if x0,u + x0,v /∈ MAδ

, then

Γ∗
(ζ1,ζ2)(x0,u + x0,v) > inf

x∈Aδ

Γ∗
(ζ1,ζ2)

(x). (5.13)

Consequently Γ∗
C(x0,u , x0,v) > infx∈Aδ

Γ∗
(ζ1,ζ2)

(x) [Step 1 (ii)]. By the choice of (x0,u , x0,v)
it follows that

inf
x∈cl Aδ

Γ∗
C(x) > inf

x∈Aδ

Γ∗
(ζ1,ζ2)

(x).2

This establishes the lemma for the case x0,u + x0,v /∈ MAδ
and we turn next to the

general case. The proof of the lemma for the general case is reliant upon the following.

Step 3: Suppose x0,u + x0,v ∈ MAδ
. Then

inf
x∈cl Aδ

Γ∗
C(x) ≤ inf

x∈Aδ

Γ∗
(ζ1,ζ2)

(x) =⇒ x0,u = c x0,v for some constant c ∈ (0, τ1

ζ1 − τ1

]
.

Proof. Let x0 = x0,u + x0,v. Then x0 ∈ MAδ
, i.e. x0 satisfies Theorem 3.4 (i) with

f = Γ∗
(ζ1,ζ2)

and E = Aδ. Let α0 be an element which satisfies Theorem 3.4 (ii) with
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f = Γ∗
(ζ1,ζ2) and E = Aδ. Since x0, α0 satisfy Theorem 3.4 (i), (ii), it follows by Theorem

23.5 of Rockafellar (1970) that

inf
x∈Aδ

Γ∗
(ζ1,ζ2)

(x) = Γ∗
(ζ1,ζ2)

(x0) =
{〈

α0, x0

〉− Γ(ζ1,ζ2)(α0)
}

. (5.14)

Therefore, if we assume

inf
x∈cl Aδ

Γ∗
C(x) ≤ inf

x∈Aδ

Γ∗
(ζ1,ζ2)

(x),

then it follows that

inf
x∈cl Aδ

Γ∗
C(x) ≤ {〈α0, x0

〉− Γ(ζ1,ζ2)(α0)
}

. (5.15)

The left side of (5.15) can be identified as Γ∗
C(x0,u , x0,v), since (x0,u , x0,v) was chosen as an

element at which Γ∗
C attains its infimum over clAδ. The right side of (5.15) can be identified

as
{〈

α0, x0,u

〉
+
〈
α0, x0,v

〉−ΓC(α0, α0)
}
, since by definition x0 = x0,u + x0,v, and by Step 1

(i) we have ΓC(α0, α0) = Γ(ζ1,ζ2)(α0). Hence (5.15) gives

Γ∗
C(x0,u , x0,v) ≤

{〈
α0, x0,u

〉
+
〈
α0, x0,v

〉− ΓC(α0, α0)
}

, (5.16)

implying (x0,u , x0,v) ∈ ∂ΓC(α0, α0) [Rockafellar (1970), Theorem 23.5]. By Theorem 3.6
we then obtain

(x0,u , x0,v) = ∇ΓC(α0, α0) =
(
τu∇Λ(α0) , (τv − τu)∇Λ(α0)

)
(5.17)

for some (τu, τv) ∈ cl C = [0, τ1] × [ζ1, ζ2]. Finally note (x0,u , x0,v) ∈ cl Aδ =⇒ x0,u ∈ cl A;
then (H2) =⇒ 0 /∈ cl A =⇒ x0,u 6= 0. As a result, by (5.17) we obtain x0,u = cx0,v, where
c = τu/(τv − τu) ∈ (0, τ1/(ζ1 − τ1)

]
. 2

We are now prepared to establish the lemma.

Step 4: If δ ≤ some δ0, then infx∈cl Aδ
Γ∗
C(x) > infx∈Aδ

Γ∗
(ζ1,ζ2)

(x).

Proof. Assume false. Then

inf
x∈cl Aδi

Γ∗
C(x) ≤ inf

x∈Aδi

Γ∗
(ζ1,ζ2)

(x) (5.18)

for a sequence {δi}i∈Z+ where δi → 0 as i → ∞. Along this sequence, it follows by Step 2
that

x
(i)
0 ≡ x

(i)
0,u + x

(i)
0,v ∈ MAδi

. (5.19)

Hence it follows by Step 3 that

x
(i)
0,u = c(i)x

(i)
0,v, some constant c(i) ∈ (0, τ1

ζ1 − τ1

]
. (5.20)

By combining (5.19) and (5.20) we obtain:

x
(i)
0 = K(i)x

(i)
0,u, (5.21)
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where K(i) ≡
(
1 + 1

c(i)

)
∈ [ ζ1

τ1
,∞). We study the limiting behavior of (5.21) as i → ∞.

First consider x
(i)
0 as i → ∞. Since x

(i)
0 ∈ MAδi

,

Γ∗
(ζ1,ζ2)(x

(i)
0 ) = inf

x∈Aδi

Γ∗
(ζ1,ζ2)

(x) ↓ inf
x∈int A−∂D(ζ1,ζ2)

Γ∗
(ζ1,ζ2)

(x) as i ↑ ∞. (5.22)

Since Γ∗
(ζ1,ζ2)

has compact level sets on clA [as in Remark 3.5 (i)], it follows that the sequence

{x(i)
0 } is bounded. Hence x

(i)
0 ∈ clAδi

converges [possibly after passing to a subsequence] to
some point x0 ∈ cl A. Furthermore, by (5.22) and the lower semicontinuity of Γ∗

(ζ1,ζ2)
,

Γ∗
(ζ1,ζ2)

(x0) = inf
x∈int A−∂D(ζ1,ζ2)

Γ∗
(ζ1,ζ2)

(x). (5.23)

The infimum on the right of (5.23) can be extended to all elements of (int A) as in the
discussion following equation (4.9) of Collamore (1996a). Hence x0 ∈ Mint A. We conclude
that x0 is actually a boundary point of A [Remark 3.5 (ii)].

Next consider x
(i)
0,u as i → ∞. Since {x(i)

0 } is bounded and K(i) ≥ ζ1
τ1

> 1, it follows by

(5.21) that {x(i)
0,u} is likewise bounded. Hence x

(i)
0,u ∈ cl A converges [possibly after passing

to a subsequence] to some point x0,u ∈ cl A.
Going back to (5.21) and letting i → ∞, we now obtain

x0 = Kx0,u, where x0 ∈ ∂A, x0,u ∈ cl A, and K ≥ ζ1

τ1
> 1. (5.24)

Then x0,u ∈ cl A =⇒ λx0,u ∈ ∂A for some 0 < λ ≤ 1, and if A is a semi-cone, this implies
x0 = (K/λ)λx0,u is an interior point of A. We have reached a contradiction. 2

By Lemma 5.1 and the discussion following (5.9),

lim inf
ε→0

ε log P {T ε(A) ∈ G} ≥ − inf
x∈Aδ

Γ∗
(ζ1,ζ2)

(x), for all δ ≤ some δ0. (5.25)

To obtain the required lower bound, let δ ↓ 0 and then let (ζ1, ζ2) ↑ G. As δ ↓ 0, we have
by definition that Aδ ↑ [int A − ∂D(ζ1,ζ2)

]
. As (ζ1, ζ2) ↑ G, we have by Theorem 3.1 that

ri D(ζ1,ζ2) ↑ ri DG. Hence by (5.25) we obtain

lim inf
ε→0

ε log P {T ε(A) ∈ G} ≥ − inf
x∈int A−∂DG

Γ∗
G(x). (5.26)

The infimum on the right of (5.26) can be extended to all elements of (int A) as in the
discussion following equation (4.9) of Collamore (1996a). Thus (5.26) implies

lim inf
ε→0

ε log P {T ε(A) ∈ G} ≥ − inf
x∈int A

Γ∗
G(x) ≥ − inf

τ∈G
IA(τ), (5.27)

the last step having been obtained by Theorems 3.1 and 3.2. This establishes the lower
bound for open intervals G ⊂ [0,∞). Since any open subset of [0,∞) can be written
as a countable union of such open intervals, the extension to general open sets follows
immediately from (5.27). 2
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6 Proofs of Theorems 2 and 3

First we turn to the proof of Theorem 2, namely, to the identification of the most likely
normalized first passage time.

To distinguish the most likely first passage time, we need to determine where IA(τ) is
minimized as a function of τ for convex sets A ⊂ R

d. Since

inf
τ∈C

IA(τ) = inf
x∈A

Γ∗
C(x) for all closed convex C ⊂ [0,∞) (6.1)

[Remark 3.3], we may determine this by finding which intervals minimize the quantity on
the right of (6.1), that is, which C ⊂ [0,∞) satisfy

inf
x∈A

Γ∗
C(x) = min

C̃⊂[0,∞)

{
inf
x∈A

Γ∗
C̃
(x)
}

. (6.2)

The minimum on the right of (6.2) is actually infx∈A Γ∗
[0,∞)(x) = Γ∗

[0,∞)(x0), for a unique
point x0 ∈ cl A [Theorems 3.4 and 3.7], and the infimum on the left can only achieve this
value at x0 [since at another x ∈ cl A we have Γ∗

C(x) ≥ Γ∗
[0,∞)(x) > Γ∗

[0,∞)(x0)]. Thus it is
enough to show (6.2) locally at x0, and this is the subject of the next theorem.

Theorem 6.1. Suppose A is a convex set satisfying (H2), A∩ ri cone (dom Λ∗) 6= ∅, and Λ
is differentiable on its domain. Let x0 and α0 be given as in Theorem 3.4 when f = Γ∗

[0,∞)

and E = A, and let ρ be the constant given in Theorem 3.7 (ii). Then for any convex
C ⊂ [0,∞),

Γ∗
C(x0) = min

C̃⊂[0,∞)
Γ∗

C̃
(x0) ⇐⇒ ρ ∈ cl C. (6.3)

We remark that the minimum in (6.3) and in Step 1 below is over all convex C̃ such
that int C̃ = (τ1, τ2), where 0 ≤ τ1 < τ2 ≤ ∞.

Proof of Theorem 6.1. We first identify the minimum value of Γ∗
C(x0) over C ⊂ [0,∞).

Then we show that this minimum value is attained ⇐⇒ ρ ∈ cl C.

Step 1: minC⊂[0,∞) Γ∗
C(x0) =

〈
α0, x0

〉
.

Proof. Note ΓC ≤ Γ[0,∞) for C ⊂ [0,∞), hence Γ∗
C ≥ Γ∗

[0,∞). Thus

min
C⊂[0,∞)

Γ∗
C(x0) = Γ∗

[0,∞)(x0). (6.4)

Next observe that by definition Γ∗
[0,∞)(x0) = supα∈Rd

{〈
α, x0

〉− 1L0Λ(α)
}
, where 1L0Λ(·)

is the indicator function on L0Λ. Hence

Γ∗
[0,∞)(x0) =

{〈
α, x0

〉− 1L0Λ(α)
}

α=α0
=
〈
α0, x0

〉
(6.5)

[Rockafellar (1970), Theorem 23.5, and Theorem 3.7 (i)].

In the remaining steps, we show that the minimum value obtained in Step 1 is achieved
⇐⇒ ρ ∈ cl C.
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Step 2: If ρ ∈ cl C, then Γ∗
C(x0) =

〈
α0, x0

〉
.

Proof. Note ρ ∈ cl C =⇒ supτ∈C τΛ(·) ≥ ρΛ(·). Hence

Γ∗
C(x0) ≡ sup

α∈Rd

{〈
α, x0

〉− sup
τ∈C

τΛ(α)
}

≤ sup
α∈Rd

{〈
α, x0

〉− ρΛ(α)
}

. (6.6)

Since ∇(ρΛ)(α0) = ρ∇Λ(α0) = x0, it follows that

Γ∗
C(x0) ≤

{〈
α, x0

〉− ρΛ(α)
}

α=α0
=
〈
α0, x0

〉
(6.7)

[Rockafellar (1970), Theorem 23.5, and Theorem 3.7 (i)].

Step 3: If ρ /∈ cl C, then Γ∗
C(x0) >

〈
α0, x0

〉
.

Proof. Since C ⊂ R is convex, we have int C = (τ1, τ2), where 0 ≤ τ1 < τ2 ≤ ∞.
First consider the case τ1, τ2 > ρ.
Assume to the contrary that

Γ∗
C(x0) ≡ sup

α∈Rd

{〈
α, x0

〉− sup
τ∈C

τΛ(α)
}

=
〈
α0, x0

〉
(6.8)

and derive a contradiction.
Note: ∇(ρΛ)(α0) = ρ∇Λ(α0) = x0. Hence

sup
α∈Rd

{〈
α, x0

〉− ρΛ(α)
}

=
{〈

α, x0

〉− ρΛ(α)
}

α=α0
=
〈
α0, x0

〉
(6.9)

[Rockafellar (1970), Theorem 23.5, and Theorem 3.7 (i)]. Then, by (6.8) and (6.9),

max

{
sup

{α:Λ(α)≤0}

{〈
α, x0

〉− sup
τ∈C

τΛ(α)
}

, sup
{α:Λ(α)>0}

{〈
α, x0

〉− ρΛ(α)
}} ≤ 〈

α0, x0

〉
.

(6.10)

Next observe

τ1Λ(α) = max
i=1,2

τiΛ(α) = sup
τ∈C

τΛ(α) on {α : Λ(α) ≤ 0}, (6.11)

and since τ1 ≥ ρ,

τ1Λ(α) ≥ ρΛ(α) on {α : Λ(α) > 0}. (6.12)

By (6.10), (6.11) and (6.12), it follows that

sup
α∈Rd

{〈
α, x0

〉− τ1Λ(α)
} ≤ 〈α0, x0

〉
. (6.13)

Since
{〈

α, x0

〉− τ1Λ(α)
}

α=α0
=
〈
α0, x0

〉
[Thoerem 3.7 (i)], it then follows by (6.13) that

sup
α∈Rd

{〈
α, x0

〉− τ1Λ(α)
}

=
{〈

α, x0

〉− τ1Λ(α)
}

α=α0
. (6.14)
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Hence x0 = ∇(τ1Λ)(α0) [Rockafellar (1970), Theorem 23.5], or ∇Λ(α0) = x0/τ1. But
∇Λ(α0) = x0/ρ and τ1, τ2 > ρ. We have reached a contradiction.

If τ1, τ2 < ρ, then it can be shown under (6.8) that

τ2Λ(α) = max
i=1,2

τiΛ(α) on {α : Λ(α) ≥ 0}, τ2Λ(α) ≥ ρΛ(α) on {α : Λ(α) < 0}, (6.15)

and a repetition of the above argument then gives ∇Λ(α0) = x0/τ2, a contradiction.
This completes the proof of Step 3 and hence the theorem. 2

Next we apply Theorem 6.1 to show that the most likely normalized first passage time
is T ε(A) ≈ ρ.

Proof of Theorem 2. If {Y ε
n}n∈Z+ first hits A at a time outside of the interval ε−1[ρ −

γ, ρ + γ], then either {Y ε
n}n∈Z+ first hits A during the interval ε−1[0, ρ − γ) or during the

interval ε−1(ρ + γ,∞). Thus

P
{∣∣T ε(A) − ρ

∣∣ > γ and T ε(A) < ∞}
= P {T ε(A) ∈ [0, ρ − γ)} + P {T ε(A) ∈ (ρ + γ,∞)} . (6.16)

Then P
{∣∣T ε(A) − ρ

∣∣ > γ
∣∣T ε(A) < ∞} is obtained by dividing left and right hand sides by

P {T ε(A) < ∞} . On the right side we have, for example,

P {T ε(A) ∈ [0, ρ − γ)} /P {T ε(A) < ∞}

and, by Theorem 1 and Remark 2.2,

lim sup
ε→0

ε log (P {T ε(A) ∈ [0, ρ − γ)} /P {T ε(A) < ∞})

≤ − inf
τ∈[0,ρ−γ)

IA(τ) + inf
τ∈[0,∞)

IA(τ)

= − inf
x∈cl A

Γ∗
[0,ρ−γ)(x) + inf

x∈cl A
Γ∗

[0,∞)(x). (6.17)

[The last step follows by Theorems 3.1 and 3.2. The last infimum has been extended from
int A to cl A because A is assumed to be a convex open set intersecting ri (dom Γ∗

[0,∞))]. By
an analogous application of Theorem 1,

lim sup
ε→0

ε log (P {T ε(A) ∈ (ρ + γ,∞)} /P {T ε(A) < ∞})
≤ − inf

x∈cl A
Γ∗

(ρ+γ,∞)(x) + inf
x∈cl A

Γ∗
[0,∞)(x). (6.18)

Thus, dividing left and right hand sides of (6.16) by P {T ε(A) < ∞} and taking the limit
as ε → 0, we obtain by (6.17) and (6.18):

lim sup
ε→0

ε log P {|T ε(A) − ρ| > γ |T ε(A) < ∞}

≤ −min
{

inf
x∈cl A

Γ∗
[0,ρ−γ)(x), inf

x∈cl A
Γ∗

(ρ+γ,∞)(x)
}

+ inf
x∈cl A

Γ∗
[0,∞)(x). (6.19)

Assertion. min
{
infx∈cl A Γ∗

[0,ρ−γ)(x), infx∈cl A Γ∗
(ρ+γ,∞)(x)

}
> infx∈cl A Γ∗

[0,∞)(x).
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Proof. First we show

inf
x∈cl A

Γ∗
[0,ρ−γ)(x) > inf

x∈cl A
Γ∗

[0,∞)(x). (6.20)

Let x̃0, x0 be given as in Theorem 3.4 (i) when E = cl A and f = Γ∗
[0,ρ−γ), Γ∗

[0,∞),
respectively.

If x̃0 6= x0, then Γ∗
[0,∞)(x̃0) > Γ∗

[0,∞)(x0), since x0 is the unique element which minimizes
Γ∗

[0,∞) over cl A, by Theorem 3.7. Since Γ[0,ρ−γ) ≤ Γ[0,∞) =⇒ Γ∗
[0,ρ−γ) ≥ Γ∗

[0,∞), it follows
that Γ∗

[0,ρ−γ)(x̃0) > Γ∗
[0,∞)(x0).

If x̃0 = x0, then Γ∗
[0,ρ−γ)(x̃0) > Γ∗

[0,∞)(x0) by Theorem 6.1.
Thus, in either case, Γ∗

[0,ρ−γ)(x̃0) > Γ∗
[0,∞)(x0), and this implies

inf
x∈cl A

Γ∗
[0,ρ−γ)(x) = Γ∗

[0,ρ−γ)(x̃0) > Γ∗
[0,∞)(x0) = inf

x∈cl A
Γ∗

[0,∞)(x). (6.21)

The proof of (6.20) with Γ∗
(ρ+γ,∞) in place of Γ∗

[0,ρ−γ) is identical. 2

By the assertion and (6.19) we obtain

lim sup
ε→0

ε log P {|T ε(A) − ρ| > γ |T ε(A) < ∞} ≤ −t, some t > 0, (6.22)

which establishes the theorem. 2

The technique used to prove Theorem 2 can be adapted to establish a law of large
numbers for YT ε(A) = the place of first passage, as follows.

Proof of Theorem 3. Let x0 be the element given in Theorem 3.4 (i) when f = Γ∗
[0,∞)

and E = A, and let

Aγ = A ∩
{

x ∈ R
d : ‖x − x0‖ > γ

}
[a subset of A which omits a small γ−ball about x0]. Then, by definition of conditional
expectation,

P
{∥∥∥Y ε

T ε(A) − x0

∥∥∥ > γ | T ε(A) < ∞
}

= P{first hitting A at a point of Aγ} / P{ever hitting A}

≤ P{ever hitting Aγ} / P{ever hitting A}

= P{T ε(Aγ) < ∞} / P{T ε(A) < ∞}. (6.23)

Hence

lim sup
ε→0

ε log P
{∥∥∥Y ε

T ε(A) − x0

∥∥∥ > γ | T ε(A) < ∞
}

≤ − inf
τ∈[0,∞)

IAγ (τ) + inf
τ∈[0,∞)

IA(τ)

= − inf
x∈cl Aγ

Γ∗
[0,∞)(x) + inf

x∈cl A
Γ∗

[0,∞)(x) (6.24)
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by Theorem 1 and Remark 2.2, and Theorems 3.1, 3.2, and the assumptions on A. The
proof will be complete once we establish:

Assertion. infx∈cl Aγ Γ∗
[0,∞)(x) > infx∈cl A Γ∗

[0,∞)(x).

Proof. If infx∈cl Aγ Γ∗
[0,∞)(x) = ∞ the result is obvious, so from now on we will assume

infx∈cl Aγ Γ∗
[0,∞)(x) < ∞.

Form a sequence {xi}i∈Z+ ⊂ Aγ such that

Γ∗
[0,∞)(xi) ↓ inf

x∈cl Aγ

Γ∗
[0,∞)(x) as i ↑ ∞. (6.25)

Note that Γ∗
[0,∞) has compact level sets on (cone Bδ)c [as in Remark 3.5 (i)] and A ⊂

(coneBδ)c [hypothesis (H2)]. Hence the sequence {xi}i∈Z+ is bounded and, consequently, a
subsequence of {xi}i∈Z+ converges to some z ∈ cl Aγ . Since Γ∗

[0,∞) is lower semicontinuous,

Γ∗
[0,∞)(z) ≤ lim inf

i→∞
Γ∗

[0,∞)(xi) = inf
x∈cl Aγ

Γ∗
[0,∞)(x). (6.26)

Next observe z ∈ cl Aγ =⇒ z 6= x0. Since x0 is the unique element which minimizes Γ∗
[0,∞)

over cl A, by Theorem 3.7, it follows that

inf
x∈cl A

Γ∗
[0,∞)(x) < Γ∗

[0,∞)(z) ≤ inf
x∈cl Aγ

Γ∗
[0,∞)(x).2
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