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Abstract

Suppose Y1,Ys, ... C R? is a sequence of random variables such that the probability
law of Y,,/n satisfies the large deviation principle and suppose A C R?. Let T(A) =
inf{n : Y, € A} be the first passage time and, to obtain a suitable scaling, let T¢(A) =
e-inf{n : Y, € A/e}. We consider the asymptotic behavior of T¢(A) as ¢ — 0. We show
that the the probability law of T¢(A) satisfies the large deviation principle; in particular,
P{T<(A) € C} mexp{—inf,cc Ia(T)/e} as e — 0, where I4(-) is a large deviation rate
function and C' is any open or closed subset of [0,00). We then establish conditional
laws of large numbers for the normalized first passage time T¢(A) and normalized first
passage place Yi(A).

1 Introduction

Let Y3,Ys,... be a sequence of random variables taking values in R%. For any subset A
of RY, let T(A) = inf{n : Y,, € A} be the first passage time, i.e., the first time that the
sequence Y7, Yo, ... hits the set A. The purpose of this article is to study the distributional
properties of T(A) and, in effect, to determine the limiting behavior of T'(A) as the set A
drifts to infinity, or, more precisely, the limiting behavior of

T°(A) =e-inf{n:Ys e A} as e =0, whereY, = €Y.

Problems of this general type were first studied in the context of collective risk theory
by Lundberg (1909). Letting Y; = ¢t — X;, where {X;};>0 is a compound Poisson process
and c is a positive constant, he considered P{Y; < —1/¢, some t}, namely the probability
that the process {Y:}+>0 ever hits the negative halfline (—oo,—1/¢). This is equivalent to
P{T¢(A) < oo}, where A = (—o0,—1). A well-known result due to Cramér states that if
{Y:}+>0 has positive drift, then for certain constants C' and R,

P{T(A) < oo} ~ Ce R/ as ¢ — 0, (1.1)

*E-mail: collamor@stat.uiuc.edu.
Some of the results in this paper were originally contained in the author’s Ph.D. dissertation, written at the
University of Wisconsin—Madison under the supervision of Professor Peter Ney.

AMS classification: Primary 60F10; secondary 60K10

Keywords: First passage times; Large deviations



where R is identified as the nonzero element of the two-point set {a : A(ar) = 0} and A is
the logarithmic moment generating function; see Cramér (1954).

Extensions of Cramér’s estimate have been widely studied, particularly in the setting of
random variables taking values in R!. An extension to the d-dimensional setting has been
given in Collamore (1996a), where it is shown under certain regularity conditions that if A
is any open subset of R?, then

lir%elogP{Te(A) < oo} =— ingf(x), (1.2)
€— S

where I is the support function of the d-dimensional surface {a : A(a) < 0}. This limiting
result is shown to hold, moreover, for general sequences {Y, },ez, , provided that the prob-
ability law of Y}, /n satisfies the large deviation principle. [Various one-dimensional results
for general sequences have been established by other authors; see Grandell (1991), Nyrhinen
(1994) and references therein.|

While the above results describe P{T(A) < oo} as € — 0, they give little insight into
the actual distribution of T¢(A). In fact, it is quite easy to construct examples of sequences
having the same exponential decay rates in (1.1), but for which the actual distributions of
T<(A) are very different. It is of interest to develop refinements of (1.1) and (1.2) which
yield an improved characterization of T¢(A).

In the setting of (1.1), such refinements have been given by von Bahr (1974) and Sieg-
mund (1975). They have shown that if ¥; = ¢t — X;, where {X}};>0 is a compound Poisson
process, or if {Y;};>0 is a more general process, and if A is the halfline (—oo, —1), then

P {T(A) < 7(e)} ~ Ce  *®(y) as € — 0, (1.3)

where ®(-) denotes the standard Normal distribution function, 7(e) = 81 4+ B2y+/€, and C,
R, 31 and [3; are constants. Eq. (1.3) gives the same asymptotic decay for P{T(A) < oo} as
was given in (1.1), but it also shows that, conditioned on {T(A) < oo}, a proper rescaling
of T¢(A) converges to a Normal distribution. We note that other relevant one-dimensional
theorems have been developed by Segerdahl (1955); Martin-Lof (1986), who has established
large deviation results e.g. for P{T(A) < 79} as € — 0; and very recently by Nyrhinen
(1998), who, under a technical condition on the lower bound, has established more complete
large deviation results for general sequences Y7, Ys,... C RL

Our interest is in developing related limit theorems, but from a viewpoint more general
than has been considered in the works of von Bahr, Siegmund, Martin-L6f and Nyrhinen.
We are particularly interested in developing such theorems in the setting of the basic large
deviations results given, for example, in Varadhan (1984), Ney and Nummelin (1987a,b)
and Ellis (1984). Specifically, our objective is to study the case where A is a general subset
of R% and Y7,Ys,... a general sequence of random variables for which the probability law
of Y, /n satisfies the large deviation principle.

Under certain regularity conditions on {Y, }nez, C R? and A C R?, we show

limsupelogP{T¢(4) € F} < — inlvaA(T)’
e—0 TE

for all sets F' which are closed in [0, c0) (1.4)



and

limi(r)lfelogP{TE(A) eG} > - inéIA(T),
€— TE

for all sets G which are open in [0, c0). (1.5)

Thus, the probability law of T¢(A) satisfies the large deviation principle with rate function
I4(-). We show that (1.4) and (1.5) hold quite generally, namely, when A is any subset of R?
and when Y7,Y5,... are the sums of an i.i.d. sequence of random variables, or the additive
functions of a Markov chain, or a sequence satisfying the conditions of the Géartner-Ellis
theorem. The proofs of (1.4) and (1.5) will rely on large deviations estimates, as e — 0, for
joint probabilities of the form

P{(Y;,Y:) €, some (m,n)e €/e},

m’ - n

where 2 € R??, ¢ C {(74,7,) : Ty > 7y > 0}, and {Y,}nez, is a general sequence for which
the probability law of Y;,/n satisfies the large deviation principle. See Theorem 4.2 below.

If A C R?is convex, then the form of the function I4(-) in (1.4) and (1.5) suggests that
there should be a most likely normalized first passage time, in the sense that we should
have T¢(A) = p for some positive constant p. To this end, we show

lir%P{\Te(A) —p| >7|T°(A) < o0} =0, forally >0, (1.6)

for a certain constant p > 0. We also establish an analogous result for the normalized first
passage place, Y. (A) namely,

lin% P{|[YFe(a) — @ol| > 7[T°(A) < oo} =0, forally>0, (1.7)
€E—

for a certain point xy which lies on the boundary of A. Hence, conditioned on the event
{T<(A) < oo}, T¢(A) converges in probability to p and Y. (4) converges in probability to .

We note that large deviations theorems having a similar form to (1.6) and (1.7) have been
developed in various other settings. For example, the exit from a domain of a perturbed
dynamical system near a point of stable equilibrium has been studied by Freidlin and
Wentzell (1984), who have shown under certain circumstances that there is a most likely
exit point. Also, certain large exceedance results have been established for Lévy processes
C R? by Dembo, Karlin and Zeitouni (1994). These last results have recently been extended
beyond the i.i.d. or Lévy setting by Zajic (1995).

2 Statement of Results

Let Y1,Y5,... be a sequence of random variables taking values in R?. Let Y, = €Y, for all
e>0andallneZ,.
Our objective is to study

T°(A) =e-inf{n: Yy € A}

for general sets A C R? and, particularly, to determine the limiting behavior of T¢(A) as

e — 0.



First we introduce some further notation. Let
Ale) = lim n 'logEexp {<a, Yn>} , for all « € R,
n—oo
Zmn = Yo, Yo—=Yn), Z5,=€Zny, foraln>m;
Apn(a) = logEexp {(a, Zmn>} , for all & € R** and n > m;

A(a) = nllrglo, n~1logEexp {<a, Zmn>} , for all o € R??;

m/n—x
Lof = {z:f(z)<a}, forany f:R? — R;
cone S = {Azx:A>0,2 €S}
and
Bs = {z:infyepon- |z —y| < d}.

[It is assumed that the limits in the definitions of A and A, exist.] For any set S, let ri S,
0S denote the relative interior, relative boundary of S, respectively; and for any function
f,let f* dom f, cl f, 0T f denote the convex conjugate of f, the domain of f, the closure
of f, and the recession function of f, respectively. [For definitions, see Rockafellar (1970).]

The following regularity conditions will be imposed on the sequence {Y}, },ez, and the
set A.

Hypotheses: (HO0) The probability law of Y,,/n satisfies the large deviation principle
with a rate function I = A*, where A is differentiable at every point in its domain.

(H1) For each t € [0,1] and ay, o, € RY A(an, ) = tA() + (1 — v)A(aw).
(H2) For some § >0, cl AN cone Bs = .

To consider the nature of these hypotheses in the context of some standard examples
of sequences {Y},},cz, satisfying the large deviation principle, suppose for example that
Y, = X1+ -+ X, where {Xj}iez, is an i.i.d. sequence of random variables. Then, by
Cramér’s theorem, the probability law of Y;, /n satisfies the large deviation principle as long
as

Ala) = nh_}rr;o n~1log Eexp {<a, Yn>} = log E exp {<a, X1>} (2.1)

is finite in a neighborhood of the origin. Since 0 € dom A, a slightly stronger condition
would be to assume that dom A is open. As the right hand side of (2.1) is differentiable on
the interior of its domain, “dom A open” would also imply that A is differentiable on its full
domain. Hence, “dom A open” is sufficient to imply (HO0). Next, observe by independence

Ae(ow, o) = nhl?o, n~1logEexp {(au, Ym> + <av, Y, — Ym>}

m/n—t

= nlij?o, nt {log (Eexp <au,X1>)m + log (E €xp <Oév7X1>)n7m}

m/n—t

= tAlaw) + (1 — 0)A (). (2.2)



Therefore, (H1) always holds. Finally, note that for i.i.d. sums LoA* = {EX;}. Hence,
(H2) holds as long as the set A avoids an arbitrarily thin d—cone about the mean ray
{AEX; : A\ > 0}, that is, as long as the mean of the process is directed away from the set A.

If {Y,}nez, is a Markov-additive process as defined in Ney and Nummelin (1987a,b),
then the situation is analogous, that is, (H0), (H1) and (H2) hold as long as the domain of A
is open and the set A avoids a thin §—cone about the relevant mean vector. The situation is
also analogous for general sequences satisfying the conditions of the Géartner-Ellis theorem,
except that in this case we do not automatically have (H1).

In our first result, we consider the decay of P{T(A) € C'} as € — 0, where C' C [0, 00).
We show that this probability decays exponentially in e, i.e.,

P{T°(A) € C} = exp {— inéIA(T)/e} ,
TE
with rate of decay described by a function I4(-) defined as follows.
Definitions. (i) For any set A C R?, define I : [0,00) — [0, 00) by
. x
I4(7) = inf {TA*(—) RS A} for all 7 > 0,
T

and 14(0) = inf {(0TA*)(z) : x € A}, where 0T A* is the recession function of A*.
With slight abuse of notation, we will also write I 4(-) for I A(-) and L4(+) for L A(-).
(ii) For any set C € [0,00), define Jo : R? — [0, 00) by

Jo(z) = inf {TA*(E) : TE C} if 0 in not a limit point of C,
T

and Jo(z) = min {inf co_goy TA*(2), (0T A*)(x)} if 0 is a limit point of C.

Definition. A set A will be called a semi-cone if x € 0A = {A\x : A > 1} C int A, that
is, the ray generated by any point on the relative boundary of A is an interior ray of A.

Theorem 1. Let Y1,Ys,... C R? be a sequence of random variables satisfying (HO) and
(H1), and let A C R? be a set satisfying (H2).
(i) Upper bound. For any set F' which is closed in [0, 00),

limsupelogP {T(A) € F} < — ing T (7). (2.3)
TE

e—0

(ii) Lower bound. If A is a semi-cone, then for any set G which is open in [0, 00),

limiglfelogP {T°(A) e G} > — ing L4(7). (2.4)
€— TE

Remark 2.1. (i) If 0 € dom A*, then it is not necessary to take the infimum at the point
7 = 0 [Rockafellar (1970), Theorem 8.5]. Likewise, if A and C are convex and A is open
and intersects ri (U, e 7 - dom A*), then we do not need to take the infimum at 7 =0 (see
Remark 3.3).



(i) If cone A C dom A*, then I4(r) = I4(7) for all 7 > 0. Therefore, under this
assumption, the probability law of T¢(A) satisfies the large deviation principle with rate
function I4.

(iii) If C C [0,00) is an interval and A is a convex open semi-cone intersecting
ri (U,ec 7 - dom A*), then Theorem 1 reduces to

limelog P {T“(A) € C'} = — inf I14(7). (2.5)
e—0 TeC
In the special case C' = [0,00), equation (2.5) describes the probability that the sequence
{Y,S} everhits the set A, which is Theorem 2.1 of Collamore (1996a). We note that Theorem
2.1 of Collamore (1996a) is proved under slighly weaker conditions; in particular, if C' =
[0,70) for some 0 < 79 < oo, then (H1) and the assumption that A is a semi-cone can be
dropped.

(iv) In general, the condition that A is a semi-cone cannot be dropped to obtain the
stated lower bound. However, if A C R? is convex and the point x( given below in Lemma
2.2 (i) is an exposed point, in the sense that the ray joining 0 to zy does not intersect cl A
except at xg, then this condition can be dropped.

Theorem 1 suggests that if 74(7) is minimized for a unique 7 = p, then the most likely
normalized first passage time should be T¢(A4) ~ p.

Lemma 2.2. Y},Y,,... C R? by a sequence of random variables having a differentiable
logarithmic moment generating function, A, and let A C R? be a convex set satisfying (H2),
ANricone (dom A*) # (). Then:

(1) infeeer 4 Jjo,00) () is achieved over cl A at a unique point xg € OA.

(ii) At some point g on the zero-set {a: A(a) = 0}, the gradient vector of A points in
the direction of xq, that is,

zo = pVA(ay), for some constant p > 0.
(iil) infr¢(o,00) 1a(7) is achieved over [0,00) at the unique point p given in (ii).

A stronger version of this lemma will be proved below in Theorems 3.4, 3.7 and 6.1.
Also see Remarks 3.3 and 3.5 and the discussion just prior to Theorem 6.1.

Theorem 2. Let Y1,Ys,... C R? be a sequence of random variables satisfying (HO) and
(H1). Let A be a convex open set satisfying (H2), ANri cone (dom A*) # (). Then for any
v >0,

lim P {|T(A) — p| > v | T*(A) < 0} =0, (2.6)

e—0

where p is the positive constant appearing in Lemma 2.2 (iii).

Since the rate function in equation (2.5) for the interval C' = [0, 00) is

at 1a(7) = inf min {inf rA*(5),0%4)(2) } = i ).



another natural consequence of Lemma 2.2 is the following.

Theorem 3. Let Y1,Ys, ... C R? be a sequence of random variables satisfying (HO) and
(H1). Let A be a convex open set satisfying (H2), ANri cone (dom A*) # (). Then for any
v >0,

hmP{Hyz(A) —xOH > | T(4) < 00} =0, (2.7)

e—0

where xq is the element of A appearing in Lemma 2.2 (i).

Remark 2.3. Some of the conditions in Theorems 1, 2 and 3 can be slightly weakened, as
follows.
(i) Let

Ty(A) =€ -inf{n > N:Y: € A},

that is, the first time after an initial time NV that {Y,$},cz, hits A. If A is a convex open
set and N is suitably large, then Theorem 1 (i), 2 and 3 hold for T'5,(A) without assuming
(H1). If Ais a general set, then these theorems hold for 7%, (A), some N > 1, with the
weaker condition (H1’) of Collamore (1996a, b) in place of (H1). For details, see Collamore
(1996h).

(ii) If A is a general set, then Theorems 2 and 3 hold provided that: (a) infyea Jj o0)(7)
is achieved over cl A at a unique point zg, and (b) the infimum in the definition of J o) is
the same over int A as it is over cl A [as is the case, e.g., when A is open and contained in
int cone (dom A*)].

Example 2.4. First we consider the classical ruin model studied e.g. in Cramér (1954),

namely assume

(*)
YVi=ct—> X, (2.8)
=1

where N (t) is a Poisson()) process, {X;}icz, C R! is an independent sequence of random
variables, and ¢ — AEX; = EY; > 0. For simplicity, assume that the distribution of X is
exponential (0). Let A denote the interval (—oo,—1) and consider

T(A)=e-inf{lne€Zy:Y, < 1 }. (2.9)
€

The logarithmic moment generating function for the discrete sequence {Y),}nez, is

_ Mo for all _1
Aa) =] “Trea tealoralia> =g, (2.10)
00 otherwise.

It follows that

2
Ia(7) = TA*(i)]z:—l = (\/ ! —ZCT - \/ﬁ> , forall 7>0, (2.11)




and A*(0) < co. By Theorem 1 and Remark 2.1, we may then evaluate lim,_,q e log P{T(A)
€ C'} by minimizing the function I4(7) over 7 € C'—{0} [more precisely, over (c1C'—{0}) to
obtain an upper bound and over (int C'—{0}) to obtain a lower bound, where C is regarded
as a subset of [0,00)]. Since {a: A(a) =0} = {0, (A0 —¢)/cf}, we obtain by Theorem 2
that the most likely normalized first passage time is

1 Y,

_A0—c

P= _VA(oco)]a0 A’

(2.12)

and, as expected, this is the minimum of I4(-) over 7 € (0, 00).

To contrast these results with those of von Bahr (1974) and Siegmund (1975), now let
T<(A) be defined as in (2.9) but with {Y;};>0 in place of {Y},}ncz,. Then by Theorem 2 of
Siegmund (1975),

P{T(A) <7(e)} ~ Ce ®®(y) as e—0, (2.13)

where ®(-) is the standard Normal distribution function, C' and R = (¢ — \0)/cf are con-

stants, and
A0 2062
_ |29 e 2.14
7(€) Z_ (c—N9)3 yve (2.14)

[The values in (2.14) are obtained by computing moments associated with the sequences
{X;} and {T;}, where T; is the i*" interarrival time of the Poisson process N(t).]

By setting y = 0, it is evident from (2.13) and (2.14) that the most likely normalized
first passage time as € — 0 is p = M/(c? — c\@), which is in agreement with (2.12). But
the difference between (2.13) and our results is that (2.13) studies the variation of T¢(A)
about p for intervals which decrease after normalization by C/+/e as € — 0; this results in
a limiting Normal distribution. Our results study the variation of T¢(A) e.g. over intervals
whose distance away from p after normalization is fized; this leads to exponentially small
probabilities with decay characterized by a certain large deviation rate function.

A primary advantage of our approach lies in its generality and, especially, its ability to
handle general sets A C R? where d > 1. A very simple multidimensional example is the
following.

Example 2.5. Let Y, = X7+ -+ X,,, where {XZ-}Z-GZJr C R%in an i.i.d. Normal sequence
with mean vector y and positive definite covariance S, and let A C R? be an open semi-cone
which is disjoint from a thin §—cone about .

The logarithmic moment generating function of {Y},}nez. is

Ala) = (a,p) + %(a, Sa). (2.15)
It follows that
) o T .. [T T
Ix(1) = muelgTA (;) = ;gg {§<(; —u), S 1(; — ,u)>] , forall 7>0. (2.16)

By Theorem 1 and Remark 2.1, we may then evaluate lim._,gelog P {T(A) € C'} by mini-
mizing the function I4(7) over 7 € C' — {0}.



For example, if @ = —ﬁ(l, ..., 1), § =1 [the identity matrix], and A = {(z1,... ,zq) :

2
x; > 1}, then I, (1) = 5 -d (% + %) , which, among other things, has a minimum value at

p = V/d. The existence and computation of this minimum value [corresponding to the most
likely normalized first passage time] can also be obtained from Theorem 2. By symmetry,
the unique element zg € 0A of Lemma 2.2 (i) is (1,...,1). Then the element ag € (LoA)
of Lemma 2.2 (ii) is specified by the condition that VA(«) is parallel to zg. By (2.15) it

follows that oy = %(1, ...,1) and then VA(ag) = ﬁ(l, ..., 1). Therefore, by Theorem

2, the most likely normalized first passage time is p = V/d.

3 Preliminary Results from Convex Analysis

Notation:
H (o, t) = {z e R?: (a,z) > t}, forall « € R and ¢ € R;
H (a,t) = {z € R : {a,z) < t}, for all a € R? and t € R;
S+T={s+t:se€ S teT}, for all sets S and T.

For any set S, let ri S, 05 denote the relative interior of S, relative boundary of 5,
respectively.

For any function f, let f*(-), dom f, cl f, epi f, and 9f(-) denote the convex conjugate
of f, the domain of f, the closure of f, the epigraph of f, and the subgradient set of f,
respectively.

For any set S, let 01S denote the recession cone of S; and for any function f, let 07 f(-)
denote the recession function of f. [For definitions, see Rockafellar (1970).]

Our main objective in this section is to develop the convexity properties of the following
two functions.

Definitions. Let A denote the logarithmic moment generating function, as introduced in
Section 2.
(i) For any convex set C' C [0, 00), let

Fo(a) = sup 7A(a).
TelC

(ii) For any convex set € C {(7y,Ty) : Ty > Ty > 0}, let

Te(ay,ay) =  sup {TuA(au) + (1p — TU)A(()(U)}.
(Tu,m0)€EC

In the next two theorems, we establish the relevance of the functions I'c(-) and I'¢(+)
by relating them to the rate functions 74(-) and J-(-) introduced just prior to Theorem 1.

Theorem 3.1. Let = be a convex set contained in the positive orthant {(&1,... ,&k) : & >
0,...,& > 0}.
(i) If f : R? — R is a convex function, then the function
. I T
F(zy,...,2g) = inf {ﬁlf— +"'+5kf—}
( ) (€1oeee ER)EE (51) (fk)

9



18 also convex.

(ii) If f : R? = R is a closed convex function, then the convex conjugate of

F(ay,...,ap) =  sup {§1f(a1)+'” +fk;f(04k;)}

(61,...,£k)65
1s cl G, where
. %L1 x Lk
G(x1,... ,x) = inf — )+ + —) .
R R GYACy & (5}
Proof. (i) Define
T x .
Fe(a,... ,ap) = 51f<§—1) +oo +5kf<5—’“> and = |J epiFe.

! F (€1, ,Ek)EE
Then evidently

F(z) =inf{u: (z,u) € §}. (3.1)

To show that § is convex, note that the epigraph of x — Af(z/\) is A (epi f), for all A > 0.
Letting

Si={(x1,... 2k, 1) : (x5, 1) €epi f and 2 = 0 for j # i} C R¥HL (3.2)
it follows that
epi Fe = &8+ -+ + £ (3.3)

Now let f,,f, € § and 0 < A < 1. Then by the definition of § and equation (3.3):
fu = §§u) 5“) + -+ f,(gu)fé_u) for some £ € = and fl-(u) € 5i,i = 1,...,k; and similarly
fo = flv) ﬁ”) +o 4+ fliv)fév) for some £ € Z and fi(v) €gi,i=1,...,k Then

Mat (1= Nh = (A&7 + @ =g 1)+

)\(U) u 1—)\ (v) v
= (e ) e

where & = )\du) +(1-— )\)SY)) and so on for &,...,&. On the last line of (3.4), the two
scalars inside the brackets sum to one; hence the convexity of §; implies that this quantity
in brackets is an element of §1, and so on for the indeces 2, ... , k. Also, the convexity of =
implies that (£1,...,&) € 2. Therefore,

Mo+ (1= Nfy € &1+ - + &Sk = epi F¢ € §. (3.5)

We conclude that § is convex. The convexity of F' then follows from (3.1) and Theorem
5.3 of Rockafellar (1970).
(ii) Define

Fg(al,... ,Oék) :flf(al) + .. —|—fkf(04k) (36)

10



Then the convex conjugate of F¢ is

Fi(a1,... ) :glf*(%)+---+§kf*(g), (3.7)

and an affine function h : x — <a,x> — p minorizes G <= h minorizes F{ for all { € =.
By definition of the convex conjugate and Theorem 12.2 of Rockafellar (1970), this occurs
< (a, p) € epi Fy for all £ € Z; in other words, <= (a, ) € epi F. Since G is convex, by
(i), we conclude F' = G*. Hence F* = cl G [Rockafellar (1970), Theorem 12.2]. O

Next we identify the function cl G of the previous theorem.

Theorem 3.2. Let f: R? — R be a closed proper convex function with f(0) > 0, and let
E be a convex set contained in the positive orthant {(&1,... ,&k) : & > 0,... ,& > 0}. Let
(fAN)(z) = Af(z/N), for all A\ > 0 and x € RY, and let

inf {(51f)(x1)+---+(§kf)(wk)}-

F(x1,...,x2,) =
(= 2 (&1, ,€R)EE

Then

APy, o) = inf {(@h@)++ @)},
(€15 EK)EE

where E = ¢l Z but with each & = 0 replaced with & = 0T [so that the infimum is taken in
this case over 0T f, the recession function of f].

Proof. Let K C R%?2 be the convex cone generated by {(1,%) : y € epi f}. Since f is a
closed proper convex function, it follows that

AdK={(\y):A>0, yeepif)}U{(0,y):ye0(epif)} (3.8)
[Rockafellar (1970), Theorem 8.2]. Define

H= {(517917--- Eeyr) (&, &) €Zand gy e RTFL i =1,... ,k}
and
L=(Kx---xK)nH c R+,
We study the image of the convex set L under the transformation
Az €Ly, k) — (@1, Ty -+ ), & € Rand y; = (4, 15) € REx R,

It follows directly from the definitions that

AL) = {(@1,- - xppa + o+ ) 2 (0, i) € & (epi f) and (§1,... , &) €2},
cl (A(L)) = cl(epiF). (3.9)

Since cl L = (cl K x --- x ¢l K) Ncl H, these definitions and (3.8) also imply

Al L) = {(xl, T ) ¢ () € & (epi f) and (€, ... &) € 5} . (3.10)
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where Z = ¢l Z but with ¢ = 0 replaced with & = 0% [so that for such & we take (x4, j1;) €
0% (epi f), the recession cone of epi f]. Finally, note cl A(L) = A(cl L) (Rockafellar (1970),
Theorem 9.1, since f(0) # 0 implies that the only point of 0" (cl L) which is mapped by A
to zero is zero itself). Thus we conclude

cl (epi F) = {(xl,... S Thy o1+ - ) 1 (@, i) € & (epl f) and (&q,...,&k) € é}
(3.11)

Since epi (& f) is & (epi f), & # 0, and 07 (epi f) is epi (0T f), the theorem follows from
(3.11). O

Remark 3.3. We now apply Theorems 3.1 and 3.2 to relate I'5, and I'y to the rate functions
14 and Jgo.
(i) Suppose C' C [0, 00) is convex. If 0 is a limit point of C, then it follows from Theorems
3.1 and 3.2 that
T x
Ia(x) =cl § inf 7A*(Z) p = mi inf 7A*(=), (0TA* . 3.12
o) =t {ing (D)} —min{_nt a3, 040} 312
If 0 is not a limit point of C, then (0TA*)(z) may be dropped from the infimum on the
right of (3.12). Thus we obtain
I't(z) = Jo(x) and ;r€11f4 I'o(z) = ngllfc Ia(7), (3.13)
for any A C R,
Under certain circumstances, it is not necessary to include the recession function when

taking the infimum on the right of the second equation of (3.13). For example, if A is a

convex open set intersecting ri ® ¢, where

Do = U 7 dom A*,
Tel
then infaea I'G(2) = infrcanri oo TG (2). Since I'p(x) = infrec TA*(z/7) on ri D¢, by
(3.12), we see that we do not need to include the recession function when computing
infrec Ia(7) in this case.

(ii) Let € C {(7u,7y) : Tw > Ty > 0} be convex, and let

T x
j(xu xv) (Tu}g)eet 5 (Tu) * (TU TU) (TU - Tu)
Then I'y(x) = cl J(x). The closure can be removed e.g. if cl € does not intersect the
Ty-axis or the x,-axis; otherwise, the infimum must be taken in a slightly broader sense, as
described in Theorem 3.2.

Theorem 3.4. Let f: R — R be a closed proper convex function, and let £ be a subset of
Re. Assume DN Lof is nonempty and bounded for some o and some D D E. Then:
(i) There exists a point xg € cl € such that infyece f(z) = f(xo).

12



(ii) If € intersects ri(dom f) and either (a) € is convex or (b) c1ENI(dom f) =0, then
there exists a point g € Of (x9).

(iii) If € is a convex set intersecting ri (dom f), then the point ag in (i) actually deter-
mines a separating hyperplane. That is, if a = inf,cg f(x), then for some t € R we have

E C H (o, t) and Lof C H ™ (g, t).

Proof. (i) Let f = f on clD and f = oo on (cl D)°. Then L,f is compact for all o
[Rockafellar (1970), Corollary 8.7.1]. Hence (i) follows from the lower semicontinuity of f.

(ii)-(iii) For the convex case, see Lemma 3.7 of Collamore (1996b) or Lemma 3.2 of
Collamore (1996a). [These carry over with minor modifications to the slightly more general
problem stated here.] For the nonconvex case [where cl £ N d(dom f) = ()], see Theorem
23.4 of Rockafellar (1970). O

Remark 3.5. (i) In Theorem 3.4 it is assumed that D N L, f is bounded for some a and
some D. We now discuss the nature of this hypothesis in the context of the functions I';,
and I'; and the hypotheses (HO)-(H2).

Under hypothesis (H0), the logarithmic moment generating function, A, is assumed to
be differentiable. Hence A* is essentially strictly convex [Rockafellar (1970), Theorem 26.3],
which implies that LoA* is compact. If C' and € are convex, it follows by Theorem 3.1
that Lo[% = {rz : 7 € O,z € LoA*} and LoTh = {(mu (€0 — §u)xv> (€, 6) € Cl €,

(@u, zy) € LoA* p. Hence the zero level sets of I'}, and I'y are bounded for bounded convex
intervals C and €. Thus, for such intervals, Theorem 3.4 holds with no restriction on &.

If the interval C' C [0,00) is unbounded, then I'f, > FE‘O’OO) has compact level sets on
(cone By)¢, for any § > 0. To demonstrate this fact, we note by Lemma 3.1 of Collamore

(1996a) that

inf {Ffo,oo)(x) : x € (cone By)¢ and ||z| = 1} =t, for some t > 0. (3.14)
Also, by definition,
.00y (®) = sup {(@,2) = Lea(a)} = sup (a,z), (3.15)
a€cRd aELoA

where 1.,A(+) is the indicator function on LoA. Hence I Oo)()\x) = Al'f OO)(CC) for all
A > 0and z € RY ie., I“[ko o) is a positively homogeneous function. Using the positive
homogeneity of FE‘O 00) in conjunction with (3.14), we obtain that for any given a < oo,

inf {FFO’OO)(CC) . € (cone B;)¢ and ||z|| > K} > a, for a sufficiently large constant K.
(3.16)

We conclude that Lemma 3.4 applies for any set £ = A, where A satisfies hypothesis (H2).

(i) If € = A, where A satisfies hypothesis (H2), then A C (cone By)¢. Also, if C' C [0, c0)
is convex, then by Theorem 3.1 we have LoI't, = {rx : 7 € cl C, x € LoA*} C cone Bs.
Therefore, it follows by the convexity of I';, that zg is a boundary point of A.

To motivate our next result, note by Theorem 23.5 of Rockafellar (1970) that oy €
Of (xg) <= wo € Of*(ap). It is therefore of interest to characterize the set 0f*(ap). Next
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we do this when f* is the function F'(a) = supgez {€1f(a1) + -+ + e f(ar)} given earlier
in Theorem 3.1.

Theorem 3.6. Let f : R? — R be a convex function which is differentiable on its domain;
let = be a conver set contained in the positive orthant {(&1,... &) : & > 0,...,& > 0};
and let F : R* — R be defined by

F(a) = sup fe(a),
==

where

felar,... o) = &uf(ar) + -+ & flag) for au,... ay € RY.

Assume V f(«;) exists and is nonzero for each i, and assume F is finite and lower semi-
continuous at . Then

0F(a) = | J V/fe(a), (3.17)
§€Ea

where 2, = {£ € cl 2 fe(a) = F(a)}.

Proof. Let
Sa = U vff(a)
§€E
[the set given on the right of (3.17)], and define neighborhoods of the index set =, and of
Fo as follows. For any 6 > 0, let

EP ={¢€dE: fe(a) > F(a) =6} and FV = |J {V/fe(@):lla—af <6},

gezy)

(D) : Assume z € §, and show z € 0F ().
If x € §o, then = V f¢(a) for some § € Z,. Hence

dsgl]gl:d {<d,:c> — fg(d)} = {<a,x> — fg(oz)} (3.18)

[Rockafellar (1970), Theorem 23.5]. Since the definition of F' implies F(&) > fe(&) for all
&; and the definition of Z, implies F'(«) = fe(o) for £ € E,; it follows that

sup {<d,x> — F(d)} = {<a,x> — F(a)}. (3.19)

dEde

Therefore, © € OF (a) [Rockafellar (1970), Theorem 23.5].

(C) : Assume z ¢ §, and show = ¢ OF ().
Consider the set ) as 6 | 0. Note first that {Vf(a) : ||&@ — «a| < §} decreases to
{ (Vf(al), cee Vf(ak)> } as 0 | 0 [Rockafellar (1970), Corollary 25.5.1]; and by assumption

the elements V f(«;) are nonzero for all 7. It follows that
30 ={(avs@).... .&Vi@r) =P}
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decreases to
Fo = {(aV/(@). - &V (@) € € 2.
It is easily verified that =, is convex, hence so is §,. Thus we conclude

conv 0 | conv Fo=Fa asd | 0. (3.20)

Therefore, © ¢ §, = x ¢ conv 8’(&6) for § < some dp.
Fix 0 < dyp. Then {z} and conv 3’550‘) are disjoint convex sets; consequently, there exists
a strongly separating hyperplane; that is,

conv §9 c H (2,6t —¢) and {z} C H(z,1) (3.21)

for some z € R* ¢ € R, and € > 0. Consider the derivative of F in the direction of z. By
definition this is

. Fla+Xz) — F(a)
Fllog2z) =1 . 3.22
(a3 2) = lim 3 (3.22)
Next observe that for A > 0 sufficiently small:
F(a+ Az) =sup fe(a+ Az) = sup fe(a+ Az). (3.23)

¢eg ce=®

[Otherwise G(&) = sup {fg(o?) Ee=E— E((f)} would satisfy
G(a+ \iz) = F(a+ \;jz) along a sequence ); | 0.

Also, by definition of ={: G(a) < F(a) — 6. Since F' is lower semicontinuous at «, it
would follow that G is not convex. But G is a supremum of convex functions and hence G
is convex. Contradiction.] It follows by (3.22) and (3.23) that

felao+ Az) = fe(o)

F'(a;2) <lim su ) 3.24
09 <ty sup g (320

By the mean value theorem, the quantity in brackets in (3.24) is (Vfe(a),z) for some

& € o, a + Az]; and if A is sufficiently small, then it follows by the definition of ¢ that
Vie(a) € 59 Therefore, by (3.21) and (3.24) we obtain

Fllag2) <t—e (3.25)

Hence by (3.21) and (3.25): F'(a;z) < (z,z). This implies 2 ¢ OF () [Rockafellar (1970),
Theorem 23.2]. O

Of particular interest are the properties of

e . N RPN 4o .
inf Ty o) = i min { inf A°C5) . OFA) @) b =it 1a(r),

namely, the rate function in (2.5) corresponding to the probability that the sequence
Y1,Ys, ... ever hits the set A C R
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Theorem 3.7. LetY1,Ys, ... C R? be a sequence of random variables having a differentiable
logarithmic moment generating function, A, and let A C R? be a convex set satisfying (H2),
A Nricone (dom A*) # (). Let z9 and g be given as in Theorem 3.4 when f = FE‘O’OO) and
E=A. Then:

(i) g € A(LoA) and A(ag) = 0.

(ii) There exists a constant p > 0 such that xo = pVA(ap).

(i) The element xq is unique.

Proof. (i) Note I'jgo)(a) = sup,¢jg ) TA(@) = 1goa (@), where 12ya(:) is the indicator
function on the set LoA. Hence

L'y o) (20) = sup {{a,z0) —1roa(a)} = sup (o, o). (3.26)
a€cRd acLloA
Since (H2) = x¢ # 0, the supremum on the right can only be achieved on the boundary
of LoA. Hence ag € O(LyA). Since A is differentiable at «y, it follows that A(ag) = 0.
(ii) This follows from Theorem 3.6. The constant p is positive since (H2) = zo # 0.

iii) Let x(l),:c@) be two such elements, and let oy € OI'F 2P denote the element
0 %o [0,00) \ 0

obtained in Lemma 3.4 (ii) which corresponds to :céQ). Let a = infye T, c>o)(x).

Since {xél) , 3:(()2)} C [,aF’[*O o) cl A, it follows that both 3:(()1) and CC(()Q) lie on the hyperplane
given in Theorem 3.4 (iii) which separates EGFE‘O 00) and cl A. From this fact, together with
the fact that o achieves the supremum on the right of (3.26), we obtain

<0z0,x61)> = <a0,x82)> = sup <a,x0>. (3.27)

acloA
Thus, both x(ol) and x(02) belong to the normal cone to LgA at «g. This implies
x(oi) = piVA(ap), i =1,2, for certain positive constants pi, pa (3.28)

[Rockafellar (1970), Corollary 23.7.1. This corollary is applicable since (H2) == A*(0) > 0,
hence inf, A(a) < 0.] Therefore

25 = p1 (VA(ao) = p1 (p7'af) - (3.29)

Next observe by (3.26) that I'}

[0,00) () = SUPueron <a,x>, which shows that the function

I'5 o0 Is positively homogeneous, i.e., I'f OO)()\QJ) = Al o) (x) for all A\, z. Hence by (3.29)
" 1 Pl s 2
b0 (@) = T (@) (3.30)

Since :cél) and 3:(()2) both minimize FE‘O o0) OVer cl A, it follows from (3.30) that (p1/p2) =1,

and by (3.29) this implies :cél) = 3:(()2). 0

4 Estimates for Occupation Probabilities

For any set A C R%, let

Po(A) =P{Ysc A, neC/e}, for all convex C' C [0, 00).
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Thus e.g. if C' = (71, 72), then P& (A) is the probability that the normalized sequence {Y¢}
hits A C R? at some time during the interval e~!(7y, 7). For any set 2 C R?, let

Pe(2) =P {ann e, (m,n) € C/e} ,  for all convex € C {(7y,7y) : 7y > Ty, > 0}.

Thus e.g. if € = (71, 72) % ((1,(2), then P& () is the probability that the normalized sequence
< .= (Y5, Ve —Ye) hits 2 € R at some time during the interval €/e, i.e. for some

m,n —
m € e (1, 72) and some n € e ({1, (2).
In this section we derive estimates for the “occupation probabilities” P (A) and Py ().
Asymptotics for the hitting time T¢(A), i.e. the first time {Y,} hits A, will follow directly

from these estimates.

Notation. First we recall the definitions of I'c and I'¢ from the previous section. For any
convex set C € [0,00), let

Fo(a) = sup TA(a), for all a € R%;
Tel

and for any convex set € C {(7y,7y) : Ty = Ty > 0}, let

Fe(ay,ay) =  sup {TuA(Oéu) + (10 — Tu)A(av)}, for all oy, oy € R,
(Tu,Tv)EC

Also let
He(a,a) = the open half-space {:c eR*: {a,2) > (a+T¢(a)) }
for all @ € R*?, q € R;

proj () = {xu e R?: (Ty,xy) € Ql} U {xu + 1z, € R®: (Ty,xy) € Ql}
for any set 2 ¢ R?¢,

Theorem 4.1. Let Y1,Ys,... C R? be a sequence of random variables satisfying (H0) and
(H1), and let A C RY be a set satisfying (H2). Let C be a convex subset of [0,00). Then
(i) Upper bound:

limsupelogPo(A4) < — inf T'G(x). (4.1)
e—0 zecl A
(ii) Lower bound:
o ¢ > _ ‘(). .
IIICILI(I)If elogPo(A) > zelirrllfA I'a(z) (4.2)

Theorem 4.2. Let Y1,Ys,... C R? be a sequence of random variables satisfying (HO) and
(H1), and let A C R?? be a set such that proj(A) satisfies (H2). Let € be a conver subset
of {(Tu, ™) : 7w > Ty > 0}, and assume (0,0) ¢ cl €. Then

(i) Upper bound:

limsup elog Pe(A) < — inf T'g(z). (4.3)
e—0 z€cl A
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(ii) Lower bound:

liminf elog PS(A) > — inf Ti(z). 44
im inf elog Pe(A) > — inf Te(x) (4.4)

First we turn to the proof of Theorem 4.2 and then indicate how this proof can be mod-
ified to establish Theorem 4.1. The proof of the upper bound of Theorem 4.2 is dependent
upon the following.

Lemma 4.3. Let Y1,Ya,... be a sequence of random variables satisfying (H0) and (H1).
Let € be a bounded convex subset of {(Ty,Ty) : 7y > Ty > 0}, and assume (0,0) ¢ c1&. Then

lim sup elog Pg {He (o, a)} < —a. (4.5)

e—0

Proof of Lemma 4.3. Let p,,, denote the probability law of Z,, ,,, and define a trans-

formed measure fi,, ,, as follows:

P = [ ex0{{002) = (@)} ditn(2), (16)
for all measurable sets F' C R2?. Then by definition:

P {ann € He(a,a)} = /—1H ( )exp {— ({a,2) = Apn(@)) } diimn(2)

= E [exp {— ((a, Zmn> - Amm(a)) } ; Z;n € Hela, a)] (4.7

where me is a random variable having distribution fi,, ,, and ann = €Zmn- We replace
Ay with a limiting generating function, Am, by introducing the ratio

Rpn.n = €Xp {Am,n(a) —nAmn (a)} ; (4.8)

then (4.7) becomes

P{Z,,€Helwv,a)} =Rpn-E [exp {— (<a, Zmm) — nA%(a))} ; Z;n € He(a,a)| .
(4.9)

The utility of this last representation is then evident from the following result, where it is
shown that the random variable in this last expectation is deterministically bounded over
{Zyn € He(a,a)} for (m,n) € €/e.

Sublemma 1: If (m,n) € €/e and ann € He(a,a), then

{(a,Zm,n> - nA%(a)} > 2 (4.10)

€

Proof. By definition,

Zﬁnn € He(o,a) = {<a, Zﬁ,m> - F@(CM)} >a

= {(a, Zmn) — Efg(a)} > = (4.11)



Thus the proof will be complete as soon as we show that, on the right side of (4.11), e 'T'¢()
can be replaced with nAm («). To this end, observe that by (H1):

nAmn(a) = mA(ay) + (n —m)A(aw), where v = (o, o). (4.12)
Thus (m,n) € €/e implies

nAmn(a) < et ( suI))€€ {TUA(au) + (1p — Tu)A(av)} = e 'Te(a). (4.13)

Substituting this inequality into the right side of (4.11) gives
~ a
{<a, Zmm) — nAm(oz)} >—. 0O
n €
By Sublemma 1 and (4.9),
P{Z,, € Helo,a)} <Ry - e~ ¢ for (m,n) € €/e. (4.14)

Consequently, the probability that Z7, ,, enters He(a,a) at some time (m,n) € €/¢ is

Ps {He(a,a)} <e ™ > Ry, (4.15)
(m,n)ec/e
It follows that
limsup elog Pg {He(a,a)} < —a + limsup ( m)ax@/ {elogRmn}- (4.16)
e—0 e—0 myn)ed/e

Finally, the lemma is obtained by showing that the ratio R,,, can, in a suitable sense,
be neglected.

Sublemma 2: limsup,_,o max,, ,)ee/c 1€10g Rmn} = 0.

Proof. Suppose false. Then there exists a sequence {¢;};cz, with ¢, — 0 as i — oo and
€ log Ry, n, >t >0, some (mi,n;) € C/e;. (4.17)

Note: (m;,n;) € €/¢;, where € C {(7y,7y) : 7w > 7, > 0} is bounded and does not have
(0,0) as a limit point. It follows that along a subsequence

s
n; — oo and — —t asi— oo, for some constant t € [0,1]. (4.18)
g

Then, along this subsequence,

JL P 1
lim Amions (@) _ lim  —logEexp {(a, Zm;n,)} = Ac(). (4.19)
1—00 n; T:Zl/_n’:it n;

Also, by (H1) and (4.18),

lim Am (@) = lim {@A(au) + <1 - ﬁ) A(av)} = Av(a). (4.20)

1—00 Ny 1—00 n;
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By (4.19) and (4.20) it follows that

A
lim sup €; log Ry, n; = limsup e;n; {M —Amy (a)} =0 (4.21)

[since €(m;,n;) € €6, '€) = € implies {€n;}icz, is bounded]. But (4.21) contradicts
(4.17). O

Proof of Theorem 4.2. Upper Bound.

Step 1: The upper bound holds under the assumption that A and € are bounded.

Proof. Let a < infycqo g (x). Then for any x € cl 2,

sup {{a,z) —Te(a)} =Tg(z) > a; (4.22)
acR2d
hence for some o, € R??,
z € He(ag,a) = {z: {az,2z) —Te(a) > a}. (4.23)
By (4.23), {He¢(az, ) }zec o is an open cover for the compact set ¢l 2; hence there exists a
finite subcover: He(ow,,a),. .. ;He(oy,,a); and
l
Pe() <Y Pe{He(as,,a)}. (4.24)
i=1
By Lemma 4.3,
limsup elog Pg {He(ag,,a)} < —a, for each i. (4.25)
e—0

Consequently, by (4.24),

lim sup e logPe(A) < —a. (4.26)

e—0

The desired upper bound is then obtained by letting a T inf,cqn Fz(x)
Step 2: The upper bound can be extended to the case where A and € are possibly unbounded.

Proof. Let a be a finite constant such that a <inf,cqg 'g(x). For R, K < oo, define:
Ar =A N {(zu, o) ¢ [2u] < R, [lzy + 2o < R}
and
Cxk=¢n ([0,K] x[0,K]).
Since 2Ar and €k are bounded, it follows by Step 1 that

lir?jélpelog Pg, (Ag) < _a:eigllglR Ie,(z) < _m‘lerélfmrz(x) <-a (4.27)
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for any R, K < oo. [The second inequality holds because €x C € = I'¢,, < I'¢, hence
It = I'z.] We need to show that the bounded sets Ag and € on the left of (4.27) may
be replaced with the possibly unbounded sets 2 and €.

For this purpose, observe: ZF, € ANAL

(YE,YE—YS) e {(xu,xv) (T, ) € A, ||zu]| > R or ||y + 20| > R}
= (Y5, Y0) € {@uwu + 30) = (2, 20) €2, [l > Rox [z + 2| > R}.
By the definition of proj(2) it follows that
Zn € ANAR = Y € proj(A) N Bf g, either i =m ori=n (4.28)

[where By g is a ball of radius R about the origin]. Hence the event {ann e (AN

A%), (m,n) € Q:K/E} is contained in the event {Y;6 € proj(A)NBi g, i€ [O,K/e]}. The
evaluation of the probability of this last event may then be handled by applying equation
(4.14) of Collamore (1996a). Namely, since a < oo and proj(2) satisfies (H2):

limsup elog P {Y;* € proj(A) N B§ . i € [0, K/e]} < —a, (4.29)

e—0

sufficiently large R. Consequently,

limsup elog P (ANAR) < —a, (4.30)

e—0

sufficiently large R. Finally, observe that the event {Zﬁ,m e, (m,n) € €K/e} is the

union of the events {ann € Ar, (m,n) € Q:K/E} and {Zﬁnn eANAG, (m,n) € Q:K/G}.
Therefore PG, (A) < Pg, (UAr) + P, (ANAR). It follows by (4.27) and (4.30) that

limsup elog PG, (/) < —a. (4.31)
e—0
It remains to show that €x may likewise be extended to €. By an argument similar to
the one given in (4.28), Zy, ,, € & = {Y,5,,Y,;} € proj(A). Hence Penes, ) = P{Z,i%n €
2, (m,n) € e (€N C%)} is bounded above by P{Yi6 € proj(2A), i € [K/e, oo)} The
evaluation of this last probability may be handled by applying equation (4.7) of Collamore
(1996a). Namely, since a < co and proj(2) satisfies (H2):

limsup elog P {Y;" € proj(2), i € [K/e,00)} < —a, (4.32)

e—0

sufficiently large K. Hence

lim sup €log Pgee (A) < —a, (4.33)

e—0

sufficiently large K. Since Pg(A) < P () +Pere:. (), it follows by (4.31) and (4.33) that

lim sup elog Pg(2A) < —a. (4.34)

e—0
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Finally, the desired upper bound is obtained by letting a T infycq9 I'y(z). O

Lower Bound. Fix (7,,7,) € int €, and construct a sequence {Z€}€>0 C R%4 a5 follows:
for each € > 0 let

Ze = Zme’ne, where m, = {TU/GJ and ne = LTU/EJ )

and where |z | denotes the greatest integer < z. The sequence {Z, }e~0 has been constructed
from elements of the original sequence, {Z, n }mnez, - Its generating function is

< . 5 . 1
Ala) = lg%elogE[exp {<a, Ze>}] =Ty 15% Tm/el 10gE[eXP {{ Ziruestmrel) } }
(4.35)

The limit on the right can be simplified by applying (H1). Since |7,/€] — oo and |7, /€] /|70 /€]
— Ty /Ty as € — 0, the right side of (4.35) can be identified as 7,Ar (). Hence, by (H1)
and (4.35), '

Aa) =1, [EA(%) + (1 - E) A(av)} , where o = (ay, o). (4.36)

Ty Ty

By (HO) and the Gartner-Ellis theorem [Dembo and Zeitouni (1993), Theorem 2.3.6 (c)],
it follows that the probability law of €Z, satisfies the large deviation principle with rate

function
A*(mu,wv) _ sup [<au,xu> + <av,xv> — 1ul\(a) — (T — TU)A(O@)}
Q0 ERA
su [<a 33u> A(a)} + ( ) su [<a Lo ) A(a)}
= T , =) — To = Tu : -
aeﬂgd Tu aeﬂgd To = Tu
x x
= T A (= v — Tu) A (———). 4.
R (28) o (= mA () (4.37)
Next observe
Pe(A) =P {Z:,, €, (m,n) € C/e} >P{Z €U}, (4.38)
where by definition Z. = Zy_n., me = |Tu/€), ne = |7o/€), and where e is sufficiently

small so that the operation |-| does not cause (m.,n¢) to jump outside of the interval
/e D {(ru/€,7v/€)}. Applying the large deviation lower bound to the right side of (4.38)
yields

lim i(I)lfelogPE(Ql) > — in{m]&*(z) > —A*(z), for any = € int 2. (4.39)
€— zZEIn

Hence by (4.37):

lim inf e log Pg(2) > — {TUA* <—) + (14 — Tu) A ( - )] , (4.40)
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for any = = (zy,x,) € int A. Taking the supremum in (4.40) over all (7,,7,) € int €, then
applying Theorem 3.1, and finally taking the supremum over all = € int A — 9(dom I'}), we
obtain:

liminf € log Py () > — inf Iy(x). 4.41
Heri}(gl €108 C( )_ zeint%lig(dom ry) @(1’) ( )

As int 2 is open and I'y convex, the extension of the infimum in (4.41) to all elements of
int 2 can then be handled as in the discussion following equation (4.9) of Collamore (1996a).
Thus the required lower bound follows from (4.41). O

Remark 4.4. In Theorem 4.2 it is assumed that € C {(7,,7y) : 7w > 7, > 0}. Now suppose
¢ C {(ru, ) : 7 >0, 7, > 0}, and assume (0,0) ¢ cl €. Put

Cr=CN{(ry, ) : 7o =7y} and C€_ =EN{(7y,Tv) : T < Tu}-

Then by Theorem 4.2 we have

li_f)r(l)EIOgP¢+ )~ — ;relglfa () (4.42)
and similarly

lim elog Py (A) ~ —inf % (z), (4.43)

e—0 - e ¢

where €_ = {(7y, ) : (T, 70) € €_} and A = {(wy + L0, —2y) : (Tu, 2) € A}. If we extend
the definition of Z,, ,, in the natural way to {(m,n) : n < m}, then

Zm,n = (Ymvyn - Ym) SRS (Ynaym - Yn) € 91 — Zn,m € 917

implying P () = Ps (). Thus it follows by (4.42) and (4.43) that

lijr(l)elog P& () ~ —min{ ;Ielg[ I'e (2), ;gg s (z) } (4.44)

[where “~” may be replaced by the usual upper and lower bounds].

Proof of Theorem 4.1. Suppose C' is bounded, and let € = C' x D, where D is chosen
such that C' x D C {(7y,7y) : v > 7, > 0} and (0,0) ¢ cl (C x D). Let o = (&,0). Then
an application of Lemma 4.3 yields:

limsup elog P {Hco (&, a)} < —a, (4.45)
e—0
where Ho(d, a) = {z: (@,2) > (a+Tc(@))} .
Approximate P (A) with Sk P& {Hc (o, a)}, in the sense of (4.24), and use (4.45)
to determine an upper bound for P& (A).
The proof of Theorem 4.1 then follows Theorem 4.2, so we omit the details. O
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5 Proof of Theorem 1

Upper Bound. First assume that F' C [0,00) is compact.
For all § > 0 and all 7 € [0, 0), let

Bs(t) ={¢€[0,00): [(—7| <6}  and  Bs(F)= | Bs(n).

To apply Theorem 4.1, note
P{T¢(A) € Bs(1)} < ]P’EB(;(T) (A); (5.1)

on the left we have the probability that {Y,¢} first hits A during the time interval Bs(7)/e
and on the right the probability that {Y,¢} ever hits A during that interval. Hence

liI:ljélpElOgP {T*(A) € Bs(1)} < _a;g:llfA Ipsn (@) = — %ec}r}i(ﬂ TA(T) (5.2)

by Theorem 4.1 and then Theorems 3.1 and 3.2. Next observe that {Bs(7)}.cr is an open
cover for F'; hence there exists a finite subcover; and by applying (5.2) to the elements of
this subcover we obtain

limsupelogP {T°(A) € F} < — inf T4(7). (5.3)
e—0 T€cl Bs(F)

It remains to show

inf T inf 7 : 4
red By AT T8 Talr) s 0 L o4

Assume false. Then for each i € Zy there exists x; € cl A and 7; € B1(F') such that
) « T R
lim 7 A" (—) < inf T4(7). (5.5)
1—00 Ti TeF
Then F' is compact = along a subsequence 7; — 79 € F'. Next we observe that similarly

x; — xo € cl A. For this purpose, note: 7,A* (z;/7;) > I OO)(xi) [Theorem 3.1]. Since the

restriction of I'y ) to cl A has compact level sets [by hypothesis (H2) and Remark 3.5 (i)],
it follows that {x;} is bounded. Hence along a subsequence x; — xo € cl A. If 79 # 0, then
by the lower semicontinuity of A*,

T()A*(@) < 'lim TZA*(E) as 1 — 00O. (5_6)

T0 1—00 Ti
This shows that (5.5) is impossible in this case. On the other hand, if 79 = 0, then observe
(x—A(i)) € epi A*, for all 4, (5.7)

where (epi A*) is the epigraph of A*. By Theorem 8.2 of Rockafellar (1970), it follows that

<:c0, lim TZ'A*(E)) — lim 7; <ﬁ,A*(ﬁ)) € 07 (epi AY). (5.8)

7;—0 Ti T — Ti T;

Hence, by definition of the recession function, the limit on the left of (5.5) is > (0T A*)(zg) >
14(0), and so (5.5) is once again impossible.
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By (5.3) and (5.4) we conclude that the upper bound holds for all compact sets F' C
[0,00). Finally, the extension to closed but unbounded sets may be handled by applying
equation (4.7) of Collamore (1996a). O

Lower Bound. First assume that G is an interval which is open in [0,00). Thus G =
(11,72), where 0 < 71 < 15 < 00, or G = [11,72), where 77 = 0 and 0 < 75 < o0.

Let [Cl,CQ] C (7‘1,7’2), and let ¢ = [0,7’1] X (Cl,CQ).
Let

Do =domTy, for all intervals C C [0, 00);

Ss = {y: |y — | <6 for some x € D¢, ¢,y }, forall § >0;
As =int (A — &5), for all § > 0;

Ws = {(xy,xy) : Ty € A, y + 1y € A5}, forall § > 0;

Me = {IEO eclé: F?CLCZ)(:CO)

Note that the open set As T [int A— 633(@@)] as d | 0.
Consider:

(1) (Cl 42)(145 P {er e A&) n 6 6_1(<1a C2)} bl
(i) Pg(As) P{ CY)eAxAs, meelo,m]andn e eil(Cl,Cg)} .

= infee FZ‘“@)(:C)}, for all sets £ C RY.

The quantity given in (i) is the probability that {Y},cz, hits As during the interval
€7 1(¢1,¢2). The quantity given in (ii) is the probability that {Y}s }nez, hits A during the
interval e 1[0, 7] and then As during the interval e~!((1,(2). If we subtract (ii) from (i),
we obtain the probability that {Ys},cz, hits As during the interval € 1(¢1,¢2) but does
not hit A during the prior interval e~1[0,71]. Since A5 C A, this is a lower bound for the
probability that {Y,¢} first hits A during the interval e 'G D e 1((1,(2). In other words,

P{T*(4) € G} > P, o, (4s) ~ Pe (). (59)

As e — 0, the exponential rate of decay of PECLCQ)(A(S) is < {6*1 infea, F&h@)(x)}, by
Theorem 4.1 (ii), while the exponential rate of decay of Pg(%s) is > {6*1 infecr 0, Fé(x)},
by Theorem 4.2 (i). The next lemma shows that this decay is actually dominated by the
first term on the right of (5.9).

Lemma 5.1. Assume infyea; FZ‘CI C2)(56) is finite for some & > 0. Then there ezists a
positive real number &g such that

f I'y f Iy for all < p. 1
melg% (av)>x1€n(S (c1.co)(@),  forall 0<6<do (5.10)

Proof of Lemma 5.1. Since Ay increases in size as 6 — 0, the assumption of the lemma

implies

As Ndom F?Ch@) £(, forall 0<d<3é. (5.11)
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Since the elements of the collection {Ajs}s~o have been constructed to be disjoint from
0D (¢, o) [the relative boundary of the domain of I, 42)]’ it follows by (5.11) that

AsNriD ) #0, forall0<d <. (5.12)

Hence the conditions of Theorem 3.4 (i), (ii) are satisfied with f = I'(. ., £ = A5, and

0 < § < 4. From now on, we will assume that & has been chosen in the interval (0, 5], SO
that this is true.

Also, let (zq , Zo,v) € R? x R? be an element obtained by Theorem 3.4 (i) with f = I's
and & = AUs.

. : * *
We begin by relating I'z to I‘(Ch@).

Step 1: (i) For any a € R T¢(a,a) = L e (@)
(ii) For any x.,z, € RY, Le(ry, ) > F?CL@)(.%.U + ).

Proof. By definition

Fe(a,a) =  sup {TuA(a) + (1 — Tu)A(Oé)} = sup TA(a)= F(Cl@)(a),
(7'1177'11)6C TUE(CLCQ)

hence

F}(xua xv) > sup {<aa xu> + <04, xv> - FC(O" a)} = F&l,@)(xu + xv)'D
(a,a)ER24

Step 2: xoy + 20w € Ma; = infocaa, Te(x) > infrca, Fz‘ch@)(m).

Proof. Note (z9.4,%00) € clUs = cl {(zy,2y) : (Ty, Ty +20) € A X As} = 200 + T €
cl As. Hence, if xq,, + 200 ¢ Ma,, then

e e (o + 700) > nf T, ;) (@). (5.13)

Consequently 'y (zou, o) > infyea, I‘Z‘Q C2)(x) [Step 1 (ii)]. By the choice of (zg4 , o)
it follows that

inf I inf T'F .0
juf, Te(z) > inf I, (@)

This establishes the lemma for the case zg, + 29, ¢ M4, and we turn next to the
general case. The proof of the lemma for the general case is reliant upon the following.

Step 3: Suppose xo.y + o € Ma,;. Then

T1 ]

inf TI'zg(z) < inf Fz‘(h@)(x) —> oy = CZo, for some constant ¢ € (0, G

zecl As TEAs

Proof. Let zyp = zo4 + zop. Then z¢g € My,, ie. zo satisfies Theorem 3.4 (i) with
[ =T and € = As. Let ap be an element which satisfies Theorem 3.4 (ii) with
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f= F’(*Cl &) and & = Aj. Since xg, o satisfy Theorem 3.4 (i), (ii), it follows by Theorem
23.5 of Rockafellar (1970) that
xlenj(; F&l’@)( ) F(C1,C2)(x0 {<Oéo, SC()> F(Cl’@)(ao)} . (514)

Therefore, if we assume

f I < inf T%
ooy Tel@) < inf T, (@),
then it follows that
Ldub, Te(@) < {(ao0,20) — T ¢ (@0)} - (5.15)

The left side of (5.15) can be identified as I'g (20,4 , Zo,v), since (2o,u , o) Was chosen as an
element at which I' attains its infimum over cI®s. The right side of (5.15) can be identified
as {<a0, x07u> + <a0, xovv>—F¢(a0, ao)}, since by definition z¢ = g, + o, and by Step 1
(i) we have TI'¢(ap, ) = T'(¢, ¢,)(0). Hence (5.15) gives

L (@o,u s 2ow) < {{ao, z0u) + (a0, z0) — Te(an, a0)}, (5.16)

implying (0.4, o) € Ol'¢(, ) [Rockafellar (1970), Theorem 23.5]. By Theorem 3.6
we then obtain

(®0,u » Tow) = VIe(an, ) = (TuVA(Oéo) y (1o — Tu)VA(OéO)> (5.17)

for some (7, 7,) € 1 € = [0,71] x [(1, (2] Finally note (x4, o) € clAs = x4, € cl 4;
then (H2) = 0 ¢ cl A = 9, # 0. As a result, by (5.17) we obtain x¢, = czg,, where
c= Tu/(TU - Tu) € (077_1/(C1 - 7—1)] .

We are now prepared to establish the lemma.
Step 4: If § < some &, then infycq o, Te(x) > infrca, F’(*Cl CQ)(x).

Proof. Assume false. Then

< i * .
pouf, Tel@) < inf T, (@) (5.18)

for a sequence {d;}icz, where §; — 0 as i — oco. Along this sequence, it follows by Step 2
that

o) = af), +al), € My, (5.19)
Hence it follows by Step 3 that
x(()ZL = c(i):céizj, some constant ¢ € (O, L} (5.20)
’ ’ G—mn
By combining (5.19) and (5.20) we obtain
o)) = KOg) (5.21)



where K() = (1 + -3 ) € [Cl 00). We study the limiting behavior of (5.21) as i — oc.

(@) T
()

First consider x(()l) as 1 — 00. Since x5’ € My, ,

. N . . . .
e e (@) = xleriif(gl e e (@) | eint Aljlg@(cl@) L co)(@) as i T oo. (5.22)

Since I'., ) has compact level sets on clA [as in Remark 3.5 ()], it follows that the sequence

{x(()i)} is bounded. Hence x(()i) € cl As, converges [possibly after passing to a subsequence] to

some point zy € cl A. Furthermore, by (5.22) and the lower semicontinuity of FZ‘CI )

F(CLCQ)(.%'O) = reint Aglgg( F(Ch@)(x) (523)
€1,¢2)

The infimum on the right of (5.23) can be extended to all elements of (int A) as in the

discussion following equation (4.9) of Collamore (1996a). Hence zp € Miye 4. We conclude

that z is actually a boundary point of A [Remark 3.5 (ii)].

Next consider x(()ZL as i — o0o. Since {x(()i)} is bounded and K > % > 1, it follows by

(5.21) that {:cgl} is likewise bounded. Hence :ch € cl A converges [possibly after passing
to a subsequence] to some point g, € cl A.
Going back to (5.21) and letting ¢ — oo, we now obtain

xo = Kxoy, where o€ 0A, z9,€clA, and K > G > 1. (5.24)

1
Then zg, € cl A = Az, € 0A for some 0 < A <1, and if A is a semi-cone, this implies
xo = (K/X)Axg,, is an interior point of A. We have reached a contradiction. O

By Lemma 5.1 and the discussion following (5.9),

lirﬁrﬁgfelogP {T*(A) e G} > — gciemj(S I (@), forall 6 < some do. (5.25)
To obtain the required lower bound, let § | 0 and then let ((1,{2) T G. As § | 0, we have
by definition that As T [int A— 833(41742)]. As (¢1,¢2) T G, we have by Theorem 3.1 that
11D ¢ ) T11De. Hence by (5.25) we obtain

liminfelogP {T(A) € G} > — inf I'a(z). 5.26

13351 clog PAT"(4) € G} = inntlzréxlfa’DG c(o) ( )
The infimum on the right of (5.26) can be extended to all elements of (int A) as in the
discussion following equation (4.9) of Collamore (1996a). Thus (5.26) implies

liminfelogP {T°(A) € G} > — inf T&(z) > — inf I4(7), (5.27)
e—0 z€int A TEG
the last step having been obtained by Theorems 3.1 and 3.2. This establishes the lower
bound for open intervals G C [0,00). Since any open subset of [0,00) can be written
as a countable union of such open intervals, the extension to general open sets follows
immediately from (5.27). O

28



6 Proofs of Theorems 2 and 3

First we turn to the proof of Theorem 2, namely, to the identification of the most likely
normalized first passage time.

To distinguish the most likely first passage time, we need to determine where [4(7) is
minimized as a function of 7 for convex sets A C R%. Since

ing Ix(7) = in£1 I't(z) for all closed convex C C [0, 00) (6.1)
TE TEe

[Remark 3.3], we may determine this by finding which intervals minimize the quantity on
the right of (6.1), that is, which C' C [0, c0) satisfy

:;Ielil I'o(z) = ég[lé,r;o) {ig‘ Fg(az)} . (6.2)

0.00)
point zg € cl A [Theorems 3.4 and 3.7, and the infimum on the left can only achieve this

value at g [since at another x € cl A we have I'f,(x) > I'0.00) (x) > I‘E‘Ovoo)(xo)]. Thus it is

enough to show (6.2) locally at zg, and this is the subject of the next theorem.

The minimum on the right of (6.2) is actually infyea T’ (x) = F?o,m)(xo)’ for a unique

Theorem 6.1. Suppose A is a convez set satisfying (H2), ANricone (dom A*) # 0, and A

*
[0,00)
and € = A, and let p be the constant given in Theorem 3.7 (ii). Then for any convex

C C[0,00),

is differentiable on its domain. Let xg and aqg be given as in Theorem 3.4 when f =T

*

Ti(zo) = C~éIE(i)n )Fc(azo) < peclC. (6.3)

We remark that the minimum in (6.3) and in Step 1 below is over all convex C' such
that int C' = (71, 72), where 0 < 7 < 75 < 0.

Proof of Theorem 6.1. We first identify the minimum value of I';,(2) over C C [0, 00).
Then we show that this minimum value is attained <= p € cl C.

Step 1: mingco ) I'i(xo) = <a0,:c0>.

Proof. Note I'c < T'jg ) for C' C [0,00), hence T'¢, > F’[*O 00)" Thus
min T'¢(zo) = 'y o) (0)- (6.4)

CC[0,00)

Next observe that by definition FE‘O’OO)(xO) = supyepa { (@, 20) — Lroa() }, where 1o (+)
is the indicator function on LoA. Hence

Ffo,oo)(%) = {{a,20) - 1£0A(a)}a:a0 = (ao, x0) (6.5)

[Rockafellar (1970), Theorem 23.5, and Theorem 3.7 (i)].

In the remaining steps, we show that the minimum value obtained in Step 1 is achieved
< peclC.
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Step 2: If p € clC, then I't:(xg) = <a0,x0>.

Proof. Note p € cl C = sup,cc TA(-) > pA(:). Hence

I'o(zo) = sg[é)d {(a,x0> — ilelg TA(a)} < s;l]é)d {{a,z0) — pA(a)} . (6.6)

Since V(pA)(ap) = pVA(ag) = xp, it follows that

I'é(z0) < {{a, @o) — pA(a)}a:ao = (o, z0) (6.7)

[Rockafellar (1970), Theorem 23.5, and Theorem 3.7 (i)].
Step 3: If p ¢ clC, then I't(zo) > <a0,x0>.

Proof. Since C' C R is convex, we have int C' = (11, 72), where 0 < 71 < 79 < 00.
First consider the case 71,7 > p.
Assume to the contrary that

T'i(zo) = Sél]gd {<a,x0> - ftelg TA(a)} = (a0, x0) (6.8)

and derive a contradiction.

Note: V(pA)(ap) = pVA(ap) = z¢. Hence

sup {(o, z0) — pA(a)} = {(o, z0) — pA(a)}a:aO = (o, z0) (6.9)

acRd

[Rockafellar (1970), Theorem 23.5, and Theorem 3.7 (i)]. Then, by (6.8) and (6.9),

max{ sup {<a,x0> — sup TA(a)} ,  sup {<a,x0> — pA(a)}} < <a0,x0>.

{a:A(a)<0} Ted {a:A(a)>0}
(6.10)
Next observe
mA(a) = gi}é i) = ftelg TA(a) on {a:A(a) <0}, (6.11)
and since 11 > p,
T1A(a) > pA(a) on {a: Ala) > 0}. (6.12)
By (6.10), (6.11) and (6.12), it follows that
sup {{a,z0) — TiA(@)} < (e, z0). (6.13)

a€cRd

Since {(a,z9) — T1A(2)} = (ap,z0) [Thoerem 3.7 (i)], it then follows by (6.13) that

a=ap

sup {<a,x0> - TlA(a)} = {<a,x0> - TlA(a)}

acR4

(6.14)

a=aq
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Hence z9p = V(m1A)(ap) [Rockafellar (1970), Theorem 23.5], or VA(ag) = zo/71. But
VA(a) = zo/p and 11,72 > p. We have reached a contradiction.
If 71,7 < p, then it can be shown under (6.8) that

ToA(a) = max TiA(a) on {a: A(a) > 0}, ToA(a) > pA(a) on {a: Ala) < 0}, (6.15)

and a repetition of the above argument then gives VA(ag) = /72, a contradiction.
This completes the proof of Step 3 and hence the theorem. O

Next we apply Theorem 6.1 to show that the most likely normalized first passage time
is T¢(A) =~ p.

Proof of Theorem 2. If {Y,‘},cz, first hits A at a time outside of the interval e ![p —
v,p + ], then either {Y,¢},cz, first hits A during the interval e~ 1[0, p —v) or during the
interval e !(p + v, 00). Thus

P {|T°(4) — p| > vand T*(A) < oo}
= P{T°(A) €[0,p =)} + P{T*(A) € (p+,0)}. (6.16)

Then P {|T6(A) — p| > ’y‘TE(A) < oo} is obtained by dividing left and right hand sides by
P {T<(A) < oo} . On the right side we have, for example,

P{T°(4) €[0,p =)} /P{T°(4) < oo}
and, by Theorem 1 and Remark 2.2,

limsup elog (P{T(A) € [0,p —7)} /P{T(A) < c0})

e—0

< — inf TA(r)+ inf I4(7
T€[0,p—7) A( ) T7€[0,00) A( )

= 1, Top-y(@) + I0f, To o) (). (6.17)
[The last step follows by Theorems 3.1 and 3.2. The last infimum has been extended from
int A to cl A because A is assumed to be a convex open set intersecting ri (dom I“[ko 0O))]. By
an analogous application of Theorem 1,

limsupelog (P {T“(A) € (p+7,00)} /P{T“(A) < c0})

e—0

S =k T @)+ Inf, Tooo) ()- (6.18)

Thus, dividing left and right hand sides of (6.16) by P {T“(A) < oo} and taking the limit
as € — 0, we obtain by (6.17) and (6.18):
limsupelog P {|T(A) — p| > v |T(A) < o0}

e—0

< —min{ 0, Ty @ B0, Clproe)} + 181, Tl (619

*

Assertion. min {infzedA % p— (), infrea a I‘z‘er%OO)(x)} > inficqa I‘E‘Ovoo) (x).
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Proof. First we show

B Tlop— @) > I, To o) (). (6.:20)

Let Zg, xop be given as in Theorem 3.4 (i) when &€ = cl A and f = FFO,pfw)’ FFO,OO)’

respectively.
If g # g, then Ffbm)(fo) > FFO,OO)('%.O)’ since xg is the unique element which minimizes
Ffo,oo) over cl~A, by Theorem 3.7. Since I'ig ,_,) < g0y = FFO,p—w) > FFO,OO)’ it follows
If 7 : 3:0,' then F’[*pr_w) (Zo) >~ FFO’OO)(.’E()) by Theorem. 6:1. .
Thus, in either case, Ff‘o’p_w(mo) > FFO’OO)(SC()), and this implies
ziercllfA Lo,p—) (@) = Lo pr)(@0) > Lo o) (0) = xiercl;fA Lo,00) (@)- (6.21)
The proof of (6.20) with I i .00) I Place of Ty s identical. O
By the assertion and (6.19) we obtain
limsupelog P {|T°(A) — p| > v|T(A) < o0} < —t, some t >0, (6.22)

e—0

which establishes the theorem. O

The technique used to prove Theorem 2 can be adapted to establish a law of large
numbers for Y7 4) = the place of first passage, as follows.

Proof of Theorem 3. Let xp be the element given in Theorem 3.4 (i) when f = I'%.00)
and £ = A, and let

A7:Aﬂ{x€Rd:Hx—on>’y}

[a subset of A which omits a small y—ball about xy]. Then, by definition of conditional
expectation,

P {HYi(A) - :cOH >y |T(A) < oo}
= P{first hitting A at a point of A,} / P{ever hitting A}
< P{ever hitting A} / P{ever hitting A}
= P{T(A,) < oo} /P{T*(A) < oo}. (6.23)
Hence

limsup e log P {HYZ(A) - on >y | T¢(A) < oo}

e—0
< — inf TA
T€[0,00)

= - xelgav 0,00y (%) + mérglfAF[O,oo) (z) (6.24)

(1) 4+ inf I4(7)

v T7€[0,00)
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by Theorem 1 and Remark 2.2, and Theorems 3.1, 3.2, and the assumptions on A. The
proof will be complete once we establish:

Assertion. inficq 4, FE‘QOO)(x) > inficqa FE‘OOO)(QU).

Proof. If infcqa, 'Y, (%) = oo the result is obvious, so from now on we will assume

[0,00)
infeea, FE‘QOO)(x) < 0.
Form a sequence {z;}icz, C Ay such that
Lo 00y (@) | xeingwF[Om)(x) as 1T oo. (6.25)
Note that I'f, ) has compact level sets on (cone Bs)¢ [as in Remark 3.5 (i)] and A C
(cone Bs)¢ [hypothesis (H2)]. Hence the sequence {z;};cz, is bounded and, consequently, a

*

subsequence of {z;};cz, converges to some z € cl A,. Since F[O,oo) is lower semicontinuous,

Next observe z € cl A, = z # xg. Since zg is the unique element which minimizes l“[ko o)
over cl A, by Theorem 3.7, it follows that

xiercllfA 0,00y (%) <Tp ey (2) < zeicfllaw o0y (%).0
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