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HITTING PROBABILITIES AND LARGE DEVIATIONS1

By Jeffrey F. Collamore

University of Wisconsin–Madison

Let �Yn�n∈Z+ be a sequence of random variables in Rd and let A ⊂
Rd: Then P�Yn ∈ A for some n� is the hitting probability of the set A by
the sequence �Yn�. We consider the asymptotic behavior, as m → ∞, of
P�Yn ∈ mA; some n� = P�hitting mA� whenever (1) the probability law
of Yn/n satisfies the large deviation principle and (2) the central tendency
of Yn/n is directed away from the given set A. For a particular function Ĩ,
we show P�Yn ∈mA; some n� ≈ exp�−mĨ�A��.

1. Introduction. Let Y1;Y2; : : : be a sequence of random variables on a
probability space ��;&;P�, and let A ⊂ �. Then P�Yn ∈ A for some n� is the
hitting probability of the set A by the sequence �Yn�.

Historically, the asymptotic properties of a sequence of hitting probabilities

P�Yn ∈ A; some n�; P�Yn ∈ 2A; some n�; P�Yn ∈ 3A; some n�; : : :

were first studied by Lundberg (1909). In an effort to analyze the capital
fluctuations incurred by an insurance company, he considered the following
problem. Suppose that we let Yt represent the capital available to an insur-
ance company at time t. Then �Yt�t≥0 can be modelled as the sum of two
processes: a compound Poisson process, resulting from claims being paid by
the insurance company which are i.i.d. and arrive at a Poisson rate, and a de-
terministic linear drift, resulting from a constant inflow of premiums from the
policy holders. The second is assumed to grow faster than the first, implying
E�Yt/t� = const. > 0. In short, �Yt�t≥0 ⊂ R is a Lévy process having positive
drift. Then P�Yt < −m; some t ≥ 0� is less than 1 for any positive m, and in
the ruin problem one studies how P�Yt < −m; some t ≥ 0� varies with m. It
is known that asymptotically

P�Yt < −m; some t ≥ 0� ∼ Ce−Rm as m→∞

for certain constants C and R. See Cramér (1954).
Recently, there has been an interest in refining the above estimate. See, for

example, Lalley (1984), Martin-Löf (1986) and Nyrhinen (1994). However, the
multidimensional problem of first passage of general processes into general
regions in the plane—a problem of theoretical and of applied interest, for
example, in risk theory, sequential analysis and queueing theory—has not
been considered.
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Here, we address this multidimensional problem for discrete time. Letting
Y1;Y2; : : : be a general sequence of random variables for which the proba-
bility law of Yn/n satisfies the large deviation principle and letting A ⊂ Rd
be a general set which avoids the central tendency of �Yn�, we consider the
asymptotic behavior of

1
m

log P�Yn ∈mA; some n ≥N�

as m → ∞. Under some natural conditions on the set A and the sequence
�Yn�, we show that there exists a rate function Ĩ such that the equation

lim
m→∞

1
m

log P�Yn ∈mA; n ≥N� = − inf
x∈A

Ĩ�x�(1.1)

holds for suitably large N, provided that the set A is convex and open, and
under slightly stronger conditions if A is a general open set. Thus—subject
to appropriate restrictions on the set A—we show that (1.1) is valid for any
sequence Y1;Y2; : : : ⊂ Rd which is either the sums of an i.i.d. sequence of
random variables or the additive functionals of a Markov chain or a general
sequence satisfying the conditions of the Gärtner–Ellis theorem. [As discussed
below, N can be taken to be 1 in (1.1) under an additional regularity condition
on �Yn� satisfied, e.g., in the i.i.d. or Markov cases.]

A related work is Dembo, Karlin and Zeitouni (1994). Letting �Yt�t≥0 be a
multidimensional Lévy process and defining

T̃�mA� = inf�tx ∃ s ∈ �0; t� 3 Yt −Ys ∈mA�;

they have derived, among other things, a law of large numbers for
�T̃�mA��m∈Z+ . Their results are not strictly comparable to ours. In the
analog of their problem in our setting we would have Yn = X1 + : : : +Xn,
where �Xi�i∈Z+ is an i.i.d. sequence of random variables. Then, for example,

P�T̃�mA� <∞� ≥ P�Xi ∈mA for some i ∈ Z+�;

implying P�T̃�mA� < ∞� = 1 for all fixed m, whenever the support of Xi is
Rd: In contrast, we consider P�T�mA� < ∞�, where T�mA� = inf�nx Yn ∈
mA�, and show that this probability exhibits exponential decay inm, and that
such decay occurs quite generally whenever the sequence Y1;Y2; : : : satisfies
the large deviation principle. [Some of their results have also been derived in
the context of finite state Markov chains. See Dembo and Karlin (1991) and
Karlin and Dembo (1992).]

In our problem it is possible to obtain, in addition, a qualitative description
for the manner in which the process �Yn� first enters the set mA. Namely,
we can find conditional laws of large numbers describing the place and time
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of first passage, in the event that �Yn� enters the set mA in finite time. A
discussion of these conditional laws is given at the end.

2. Statement of results. Let Y1;Y2; : : : be a sequence of random vari-
ables taking values in Rd: For each n, let µn denote the probability law of
Yn/n:

Our objective is to study the asymptotic behavior, as m→∞, of

TN�mA� = inf�n ≥Nx Yn ∈mA�

for open sets A, and particularly of P�TN�mA� <∞�; that is, P�hitting mA
after time N�.

We will characterize this behavior whenever �µn� satisfies the large devia-
tion principle [as defined in Dembo and Zeitouni (1993)] with a convex, lower
semicontinuous rate function I and some regularity conditions hold for the set
A and the sequence �Yn�: To describe these conditions let

3�α� = lim sup
n→∞

1
n

log E exp�α;Yn�; ∀ α ∈ Rd;

3N�α� = sup
n≥N

1
n

log E exp�α;Yn�; ∀ α ∈ Rd;

Laf = �xx f�x� ≤ a� for any fx Rd→ R;

f∗�x� = sup
α∈Rd
��α; x� − f�α�� ∀ x ∈ Rd (the convex conjugate of f);

cone S = �λxx λ > 0; x ∈ S� for each set S ⊂ Rd;

ri S = the interior of S relative to the subspace generated by S;

D = cone�dom I�;

and, if the level sets of I are compact,

Cδ =
{
xx inf

y∈L0I
�x− y� < δ

}
:

Let Cδ be the slightly larger set �xx �x − y� < �1 + �y��δ; some y ∈ L0I� if
the level sets of I are not compact. It is assumed L0I = �xx I�x� = 0� 6= \.

Hypotheses:
(H1) 3�α� <∞ for all α ∈ L0I

∗.

(H2) For some δ > 0; A ∩ cone Cδ = \.
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Hypotheses (H1) and (H2) are natural and widely satisfied whenever �µn�
satisfies the large deviation principle and the central tendency of Yn/n is
directed away from the set A. Consider, for example, the case when �Xi� is an
i.i.d. sequence of random variables and Yn =X1+ · · · +Xn: The fundamental
large deviations result in this setting is Cramér’s theorem, which states that
if 3 is finite in a neighborhood of the origin, then �µn� satisfies the large
deviation principle with rate function I = 3∗: Then I∗ = 3∗∗. Since 3 is
convex and lower semicontinuous, it follows that I∗ = 3. Hence 3�α� = I∗�α�
for all α and therefore (H1) always holds. Also, in this situation

L0I = �xx I�x� = 0� = �EX1�:

Thus (H2) holds if EX1 6= 0 and the set A stays away from a thin cone
containing the mean ray �λ�EX1�x λ > 0�. That is, if for some δ > 0,

A ∩ �λxx λ > 0; x ∈ BEX1; δ
� = \;(2.1)

where BEX1; δ
is a δ-ball about EX1.

Similarly, if Y1;Y2; : : : is a Markov-additive chain as in Ney and Nummelin
(1987a, b) or a general sequence satisfying the conditions of the Gärtner–
Ellis theorem, then (H1) always holds, for the same reasons as for i.i.d. sums,
whereas (H2) holds under a condition very similar to (2.1).

Theorem 2.1. Suppose A is a convex open set intersecting ri D and (H1)
and (H2) are satisfied. Then for sufficiently large N,

lim
m→∞

1
m

log P�TN�mA� <∞� = − inf
x∈A

Ĩ�x�;(2.2)

where Ĩ�x� = supα∈L0I
∗�α; x� is the support function of L0I

∗.

Remark. By Rockafellar [(1970), Theorem 13.5], Ĩ = clJ, where J�x� =
inf τ>0 τ

−1I�τx� is the positively homogeneous function generated by I. Note
that the domain of J is D = cone�dom I�. Hence, from the equation Ĩ = clJ
we infer that the relative interior of the domain of Ĩ is ri D.

On the other hand, if A ⊂ Rd is a general open set, then (2.2) need no
longer govern the asymptotic behavior of P�TN�mA� < ∞�. Examples ex-
ist of sequences Y1;Y2; : : : satisfying the Gärtner–Ellis theorem, where the
hypotheses of Theorem 2.1 hold, yet the conclusion of that theorem fails for
certain sets A. In these situations the strongest upper bound which can be
established is

lim
N→∞

{
lim sup
m→∞

1
m

log P�TN�mA� <∞�
}
= − inf

x∈A
Ĩ�x�:

In particular, we do not obtain (2.2) for any fixed value of N. See Collamore
(1996).
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Thus, if A is not convex we need a further hypothesis; namely, strengthen
(H1) as follows:

(H1′) 3N�α� <∞ for all α ∈ L0I
∗ and N ≥ some N0.

Now (H1′) always holds whenever one of the following statements hold:

1. Yn is the nth sum of an i.i.d. sequence of random variables satisfying the
condition given in Cramér’s theorem or the weaker condition given in Ney
and Robinson (1995). Then n−1 log E exp�α;Yn� does not depend on n; con-
sequently (H1′) holds with N0 = 1.

2. Y1;Y2; : : : is a Markov-additive process satisfying the uniform recurrence
condition (6.2) in Ney and Nummelin (1987a). Then (H1′) holds withN0=1.

3. Y1;Y2; : : : is a general sequence satisfying the conditions of the Gärtner–
Ellis theorem and (i) 3�α� is finite in a neighborhood of each α ∈ L03;
(ii) the level sets of 3 are compact. (However, it can be shown that the
latter condition is unnecessary when clA ⊂ int D:)

Theorem 2.2. Suppose A ⊂ Rd and (H1′) and (H2) are satisfied. Then for
any N ≥N0,

lim inf
m→∞

1
m

log P�TN�mA� <∞� ≥ − inf
x∈intA

Ĩ�x�(2.3)

and

lim sup
m→∞

1
m

log P�TN�mA� <∞� ≤ − inf
x∈clA

Ĩ�x�;(2.4)

where Ĩ�x� = supα∈L0I
∗�α; x� is the support function of L0I

∗.

3. Some preliminary results from convex analysis.

Notation. For any G ⊂ Rd; x ∈ Rd and fx Rd→ R, let

NG �x� = normal cone to G at x;

rc G = recession cone of G ;

recf = recession function of f;

rcf = recession cone of f

∂f�x� = set of subgradients of f at x:

[For definitions, see Rockafellar (1970).] Let Ĩ�x� = supα∈L0I
∗�α; x� be the

support function of L0I
∗.

Lemma 3.1. Under (H2), the function Ĩ is strictly positive on E =
�cone Cδ�c − �0�.
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Proof. Note that Ĩ = clJ, where J�x� = inf τ>0 τ
−1I�τx� is the posi-

tively homogeneous function generated by I [Rockafellar (1970), Theorem
13.5]. Hence Ĩ�x� = min�recI�x�;J�x�� [Rockafellar (1970), Theorem 9.7].
That is, Ĩ�x� > 0 if and only if recI�x� > 0 and J�x� > 0:

Let x ∈ E . Then we assert recI�x� > 0 and J�x� > 0. To show recI�x� > 0,
observe that

rc L0I ⊂ rc (cl cone L0I� ⊂ cl cone L0I ⊂ �cone Cδ ∪ �0�� = E c:

Since rcI = rc L0I [Rockafellar (1970), Theorem 8.7], this implies rcI ⊂ E c.
From the definition of rcI it follows that �xx recI ≤ 0� ⊂ E c. Then x ∈ E ⇒
recI�x� > 0:

Next, to show J�x� > 0, observe x /∈ cone L0I⇒ τ−1I�τx� > 0 for any given
τ > 0. Moreover τ−1I�τx� 6→ 0 as τ→ 0, because (H2)⇒ I�0� 6= 0; τ−1I�τx� 6→
0 as τ → ∞, because either τ−1I�τx� = ∞; ∀ τ, or I�τ0x� < ∞ for some τ0
and then limτ→∞ τ

−1I�τx� = limτ→∞ τ
−1�I��τ+ τ0�x�−I�τ0x�� = recI�x� > 0

[Rockafellar (1970), Theorem 8.5]. 2

Lemma 3.2. Assume A ⊂ Rd is a convex open set intersecting ri D and (H2)
is satisfied. Let a = inf x∈A Ĩ�x�. Then there exists α0 ∈ L0I

∗ such that the
hyperplane

H = �xx �α0; x� = a�(3.1)

separates A and LaĨ, with A ⊂ �xx �α0; x� > a� and LaĨ ⊂ �xx �α0; x� ≤ a�.

Proof. Since A and LaĨ are convex sets with no common points in their
relative interiors, there exists a separating hyperplane

H = �xx �α; x� = t�; where α ∈ Rd − �0� and t ≥ 0:(3.2)

If t > 0, then because LaĨ is a convex set containing �0�, we must have
A ⊂ �xx �α; x� > t� and LaĨ ⊂ �xx �α; x� ≤ t�. These inclusions also hold
when t = 0, possibly after replacing α with −α.

To complete the proof, we now identify the quantities α and t. Here we argue
indirectly, first establishing the existence of a minimizing element x0 ∈ clA
such that

Ĩ�x0� = inf
x∈A

Ĩ�x� = a:

Then x0 ∈ LaĨ and x0 ∈ clA⇒ x0 ∈ H . Next we show that for some α0 ∈ L0I
∗

which is just a constant multiple of α, we have

a = Ĩ�x0� ≡ sup
α̃∈L0I

∗
�α̃; x0� = �α0; x0�:(3.3)

Because α = λα0, some λ > 0, it follows that

H = �xx �α; x� = t� =
{
xx �α0; x� =

t

λ

}
;

and since x0 ∈ H , it follows from (3.3) that, in fact, tλ−1 = a.
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Step 1. There exists x0 ∈ clA ∩ LaĨ: Suppose, to the contrary, that a =
inf x∈A Ĩ�x� is not attained at any point of clA: Then there exists an un-
bounded sequence �xi�i∈Z+ ⊂ A−�0� such that limi→∞ Ĩ�xi� = a. Now �xi� ⊂
A−�0� ⇒ �xi� ⊂ �cone Cδ�c−�0�, by (H2). Hence �xi/�xi�� ⊂ �cone Cδ�c∩Sd−1.
Since �cone Cδ�c∩Sd−1 is compact, it follows that a subsequence �xij/�xij��j∈Z+
converges to some element z ∈ �cone Cδ�c∩Sd−1:Moreover, from the lower semi-
continuity of Ĩ, Ĩ�z� ≤ lim inf j→∞ Ĩ�xij/�xij�� = lim inf j→∞ �xij�−1Ĩ�xij� = 0:

Hence Ĩ�z� = 0 for some z ∈ �cone Cδ�c − �0�, a contradiction to Lemma 3.1.
Step 2. ∂Ĩ�x0� 6= \. It suffices to show Ĩ′�x0yy� ≥ 0 for some y ∈ ri D − x0

[Rockafellar (1970), Theorem 23.3]. This can be verified when x0 ∈ ri D by
setting y = x0, and when x0 ∈ cl D − ri D by setting y = z − x0, where
z ∈ A ∩ ri D.

Step 3. In (3.2), α = λα0; where λ > 0 and α0 ∈ L0I
∗ satisfies Ĩ�x0� =

�α0; x0�. Note x0 ∈ clA ∩ LaĨ ⇒ x0 ∈ H . Hence �α; x − x0� ≤ 0, ∀ x ∈ LaĨ.
That is, α ∈ NLaĨ

�x0�. Since ∂Ĩ�x0� 6= \ (Step 2), it follows that α ∈ clK,
where K is the cone generated by ∂Ĩ�x0� [Rockafellar (1970), Theorem 23.7].
Now

clK =K ∪ rc ∂Ĩ�x0� =K ∪Ndom Ĩ�x0�

[Rockafellar (1970), Theorem 9.6 and the proof of Theorem 25.6]. Hence α ∈
clK⇒ either α ∈K or α ∈ Ndom Ĩ�x0�.

However, α /∈ Ndom Ĩ�x0�. Otherwise we would have �α; x − x0� ≤ 0, ∀ x ∈
dom Ĩ; implying �α; x� ≤ 0, ∀ x ∈ dom Ĩ, because dom Ĩ is a cone. Since A ⊂
�x: �α; x� ≥ t�, where t ≥ 0, it would follow that A ∩ ri�dom Ĩ� = \. Then
ri�dom Ĩ� = ri D⇒ A ∩ ri D = \, contrary to hypothesis.

We conclude α ∈K. Therefore, α = λα0 for some λ > 0 and some α0 ∈ ∂Ĩ�x0�:
Then, using the definition of Ĩ, we have α0 ∈ ∂δ∗�x0�L0I

∗�, where δ�·�L0I
∗�

is the indicator function on L0I
∗. By Rockafellar [(1970), Theorem 23.5], it

follows that �α̃; x0� − δ�α̃�L0I
∗� achieves its maximum in α̃ when α̃ = α0 and

therefore Ĩ�x0� ≡ supα̃∈L0I
∗�α̃; x0� = �α0; x0�: 2

4. Proofs of Theorems 2.1 and 2.2. For α ∈ Rd and a ∈ R, let

H �α; a� = the open half-space�xx �α; x� > a�:

The following lemma describes the first passage times of a sequenceY1;Y2; : : :
into half-spaces H �α; a�, where α ∈ L0I

∗.

Lemma 4.1. Let α ∈ L0I
∗ and suppose 3N�α� <∞. Then

lim sup
m→∞

1
m

log P�TN�mH �α; a�� ≤ km� ≤ −a(4.1)

holds for any integer k.
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Proof. Let r < 1; and define a sequence of measures �µ̃n� by

µ̃n�F� =
∫
F

exp�n�rα; z��dµn�z� for all measurable sets F:

From this definition it follows that

P�Yn ∈mH �α; a��

=
∫
�m/n�H �α; a�

exp�−n�rα; z��dµ̃n�z�

= exp�−m�ra��
∫
�m/n�H �α; a�

exp�mr�a− �α; �n/m�z���dµ̃n�z�:

Since H �α; a� = �xx �α; x� > a�, the integrand in this last expression is never
greater than 1. As a consequence, we obtain

P�Yn ∈mH �α; a�� ≤ exp�−m�ra��µ̃n�Rd�:
Then

P�TN�mH �α; a�� ≤ km� ≤ exp�−m�ra���µ̃N�Rd� + · · · + µ̃km�Rd��
and, therefore,

lim sup
m→∞

1
m

log P�TN�mH �α; a�� ≤ km�

≤ −ra+ lim sup
m→∞

max
N≤n≤km

{
1
m

log µ̃n�Rd�
}
:

(4.2)

To deal with the last term on the right, apply Theorem 2.2 of Varadhan
(1984). [This holds even if the level sets of I are not compact. The fact that
the given function is not bounded is handled by a simple truncation, as in
Theorem 4.3.1 of Dembo and Zeitouni (1993)]. Since 3N�α� < ∞, Varadhan’s
theorem yields

lim sup
n→∞

1
n

log µ̃n�Rd� ≡ lim sup
n→∞

1
n

log
∫
Rd

exp�n�rα; z��dµn�z�

≤ sup
z∈Rd
��rα; z� − I�z�� = I∗�rα� ≤ 0;

since 0 ∈ L0I
∗ and α ∈ L0I

∗ ⇒ rα ∈ L0I
∗, and it follows that

lim sup
m→∞

max√
m≤n≤km

{
1
m

log µ̃n�Rd�
}

≤ lim sup
m→∞

max√
m≤n≤km

{
k

n
log µ̃n�Rd�

}
∨ 0 = 0:

(4.3)

It remains to prove a similar inequality for

lim sup
m→∞

max
N≤n≤√m

{
1
m

log µ̃n�Rd�
}
:
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To this end, observe that for n ≥N,

1
n

log µ̃n�Rd� ≤ 3N�rα� ≤ r3N�α� <∞:

Hence

lim sup
m→∞

max
N≤n≤√m

{
1
m

log µ̃n�Rd�
}
≤ lim sup

m→∞

1√
m
�r3N�α� ∨ 0� = 0:(4.4)

Upon substituting (4.3) and (4.4) into (4.2) we obtain

lim sup
m→∞

1
m

log P�TN�mH �α; a�� ≤ km� ≤ −ra

and the lemma follows by letting r↗ 1. 2

Proof of Theorem 2.1. Upper bound. Let a = inf x∈A Ĩ�x�. By Lemma
3.2, there exists α0 ∈ L0I

∗ such that

A ⊂ H �α0; a� = �xx �α0; x� > a�:(4.5)

Because α0 ∈ L0I
∗, hypothesis (H1) implies that 3�α0� < ∞. That is,

3N�α0� < ∞ for suitably large N. Consequently, the hypotheses of Lemma
4.1 are satisfied for some constant N. Hence, by Lemma 4.1 and (4.5) we
obtain

lim sup
m→∞

1
m

log P�TN�mA� ≤ km� ≤ −a(4.6)

for any integer k.
To complete the proof of the upper bound, we need to show that for some k,

lim sup
m→∞

1
m

log P�km < TN�mA� <∞� ≤ −a:(4.7)

Here we observe that by (H2), �m/n�A ⊂ �m/n��cone Cδ�c = �cone Cδ�c: Hence

P�km < TN�mA� <∞� ≤
∑
n>km

P�Yn ∈mA�

≤
∑
n>km

P
{
Yn
n
∈ �cone Cδ�c

}
:

(4.8)

By the large deviation principle, the central tendency of Yn/n is near the
set L0I, and since L0I and �cone Cδ�c are disjoint, the central tendency is
therefore directed away from the set �cone Cδ�c. For this reason, the terms in
the above sum are becoming increasingly small. More precisely, by the large
deviation upper bound,

lim sup
n→∞

1
n

log P
{
Yn
n
∈ �cone Cδ�c

}
≤ − inf

x∈�cone Cδ�c
I�x�:

Also, inf x∈�cone Cδ�c I�x� > 0: [Since I�0� 6= 0, by (H2), we would otherwise have
J�x� = inf τ>0 τ

−1I�τx� equal to zero at some point of �cone Cδ�c ∩ Sd−1, and
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since Ĩ = clJ, this would contradict Lemma 3.1.] Therefore, for some integer
k,

lim sup
n→∞

1
n

log P
{
Yn
n
∈ �cone Cδ�c

}
≤ −2a

k
:

That is, for sufficiently large n0, P�Yn/n ∈ �cone Cδ�c� ≤ e−na/k; ∀ n ≥ n0:
Substituting this last inequality into (4.8) when m ≥ n0/k, we obtain

P�km < TN�mA� <∞� ≤
∑
n>km

e−na/k ≤ const. · e−ma;

establishing (4.7) and hence the required upper bound.
Lower bound. Let τ > 0 and x ∈ A, and for each integer m, let n�m� =

�m/τ�. Since A is an open set, there exists an ε > 0 such that Bx;2ε ⊂ A, and
for sufficiently large m,

P�TN�mA� <∞� ≥ P�Yn�m� ∈mA�

≥ P
{
Yn�m�
n�m� ∈

m

n�m�Bx;2ε
}
≥ P

{
Yn�m�
n�m� ∈ τBx; ε

}
:

Hence, by the large deviation lower bound

lim inf
m→∞

1
m

log P�TN�mA� <∞� ≥ lim
m→∞

(
n�m�
m

)
lim inf
n→∞

1
n

log P
{
Yn
n
∈ τBx; ε

}

≥ −τ−1 inf
z∈τBx; ε

I�z� ≥ −τ−1I�τx�:

Taking the supremum over all τ > 0 and x ∈ A ∩ ri D, we obtain

lim inf
m→∞

1
m

log P�TN�mA� <∞� ≥ − inf
x∈A∩ri D

{
inf
τ>0

τ−1I�τx�
}

= − inf
x∈A∩ri D

Ĩ�x�
(4.9)

[Rockafellar (1970), Theorem 13.5]
for any integer N.

Now suppose x̂ ∈ A ∩ ∂D, where ∂D = cl D − ri D is the relative boundary
of the domain of Ĩ. On the one hand, since x̂ is an element of the open set
A, Bx̂; ζ ⊂ A for some ζ > 0. On the other hand, since x̂ ∈ ∂D, the set Bx̂; ζ
intersects ri D. That is, Bx̂; ζ ∩ ri D 6= \. Let , be a line segment which joins x̂
to some y ∈ Bx̂; ζ ∩ ri D. Then ,− x̂ ⊂ Bx̂; ζ ∩ ri D [Rockafellar (1970), Theorem
6.1], implying ,−x̂ ⊂ A∩ri D. Consequently, inf x∈A∩ri D Ĩ�x� ≤ inf x∈,−x̂ Ĩ�x� ≤
Ĩ�x̂�, where the last step follows from the convexity of Ĩ. As this inequality
holds for each x̂ ∈ A∩∂D, we conclude inf x∈A∩riD Ĩ�x� = inf x∈A Ĩ�x�, and this,
together with (4.9), establishes the lower bound and hence the theorem. 2
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Proof of Theorem 2.2. The proofs of the lower bound and (4.7) of the
upper bound of Theorem 2.1 apply equally well here. Thus we have only to
establish a corresponding result to (4.6), namely, for all N ≥N0,

lim sup
m→∞

1
m

log P�TN�mA� ≤ km� ≤ − inf
x∈clA

Ĩ�x�(4.10)

holds for any integer k.
Case 1. A is bounded. Let a < inf x∈clA Ĩ�x�. Then for x ∈ clA we have

supα∈L0I
∗�α; x� ≡ Ĩ�x� > a: For each such x, we can therefore choose αx ∈ L0I

∗

such that �αx; x� > a, giving

x ∈ H �αx; a� = �zx �αx; z� > a�:
Note x ∈ H �αx; a� ⇒ �H �αx; a��x∈clA is an open cover for clA, and since

clA is compact, there exists a finite subcover: H �αx1
; a�; : : : ;H �αxl; a�. Then

lim sup
m→∞

1
m

log P�TN�mA� ≤ km�

≤ max
1≤i≤l

{
lim sup
m→∞

1
m

log P�TN�mH �αxi; a�� ≤ km�
}
:

(4.11)

Consider

lim sup
m→∞

1
m

log P�TN�mH �αxi; a�� ≤ km�

for any given i. Since αxi ∈ L0I
∗, hypothesis (H1′) implies that 3N�αxi� < ∞

for all N ≥N0. Hence, from Lemma 4.1 we obtain

lim sup
m→∞

1
m

log P�TN�mH �αxi; a�� ≤ km� ≤ −a for all N ≥N0:(4.12)

Substituting (4.12) into (4.11) yields

lim sup
m→∞

1
m

log P�TN�mA� ≤ km� ≤ −a for all N ≥N0:

Then (4.10) is established by letting a↗ inf x∈clA Ĩ�x�.
Case 2. A is unbounded. Let K <∞ and a = inf x∈clA Ĩ�x� ∧K: We need to

show that independent of K,

lim sup
m→∞

1
m

log P�TN�mA� ≤ km� ≤ −a for all N ≥N0:(4.13)

If R > 0, then the event �TN�mA� ≤ km� is the union of the events
�TN�m�B0;R ∩A�� ≤ km� and �TN�m�Bc0;R ∩A�� ≤ km�. Hence,

lim sup
m→∞

m−1 log P�TN�mA� ≤ km�

is the larger of

lim sup
m→∞

1
m

log P�TN�m�B0;R ∩A�� ≤ km�
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and

lim sup
m→∞

1
m

log P�TN�m�Bc0;R ∩A�� ≤ km�:

Since B0;R ∩A is bounded,

lim sup
m→∞

1
m

log P�TN�m�B0;R ∩A�� ≤ km�

≤ − inf
x∈cl�B0;R∩A�

Ĩ�x� ≤ −a for all N ≥N0

for any positive value of R. Thus, to establish (4.13) it suffices to show that,
for some R > 0,

lim sup
m→∞

1
m

log P�TN�m�Bc0;R ∩A�� ≤ km� ≤ −a for all N ≥N0:(4.14)

We now demonstrate that (4.14) holds for sufficiently largeR. First, observe
that the set LaĨ ∩ �cone Cδ�c is compact. [Since Ĩ is positively homogeneous,
it would otherwise approach zero at some point of �cone Cδ�c ∩ Sd−1. Using
the lower semicontinuity of Ĩ, this would give a contradiction to Lemma 3.1.]
Thus, there exists a large ball B0;R which contains LaĨ ∩ �cone Cδ�c. Then

Bc0;R ⊂ �LaĨ�c ∪ cone Cδ;

implying

Bc0;R ∩ �cone Cδ�c ⊂ �LaĨ�c:

Next, observe that from the very definitions of H �·; a� and Ĩ we have

�LaĨ�c =
⋃

α∈L0I
∗
H �α; a�:

From the last two equations it follows that

Bc0;R ∩ �cone Cδ�c ⊂
⋃

α∈L0I
∗
H �α; a�:

Therefore �H �α; a��α∈L0I
∗ is an open cover for Bc0;R∩�cone Cδ�c, hence also an

open cover for the smaller set ∂Bc0;R∩�cone Cδ�c, where ∂Bc0;R is the boundary
of Bc0;R. As ∂Bc0;R ∩ �cone Cδ�c is compact, there exists a finite subcollection
�H �α1; a�; : : : ;H �αl; a�� which covers ∂Bc0;R∩�cone Cδ�c, and from the defini-
tion of H �·; a� it is evident that this collection �H �α1; a�; : : : ;H �αl; a�� covers
the larger set Bc0;R ∩ �cone Cδ�c. Therefore, in view of (H2) we obtain

l⋃
i=1

H �αi; a� ⊃ Bc0;R ∩ �cone Cδ�c ⊃ Bc0;R ∩A:
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It follows that

lim sup
m→∞

1
m

log P�TN�m�Bc0;R ∩A�� ≤ km�

≤ max
1≤i≤l

{
lim sup
m→∞

1
m

log P�TN�mH �αi; a�� ≤ km�
}
:

(4.15)

To determine the quantity on the right-hand side of (4.15), apply Lemma
4.1. Since αi ∈ L0I

∗, from (H1′� we have 3N�αi� <∞ for all N ≥ N0. Hence,
by Lemma 4.1,

lim sup
m→∞

1
m

log P�TN�mH �αi; a�� ≤ km� ≤ −a for all N ≥N0:(4.16)

Finally, substituting (4.16) into (4.15) yields (4.14), as required. 2

5. Some further results. Under additional conditions [sufficient condi-
tions are (i) A ⊂ int D is open, (ii) I = 3∗, where 3 is differentiable on L0I

∗,
and (iii) Ĩ attains its infimum over clA at a unique point x0], then

P
{∥∥∥∥
YTN�mA�
m

− x0

∥∥∥∥ > ε�TN�mA� <∞
}
≤ e−mK�ε� for large m(5.1)

and

P
{∣∣∣∣
TN�mA�

m
− ρ

∣∣∣∣ > ε
∣∣TN�mA� <∞

}
≤ e−mL�ε� for large m;(5.2)

where ρ is a positive constant. Roughly speaking, (5.1) asserts that the place of
first passage of �Yn�n≥N into mA is near a point mx0, while (5.2) asserts that
the time of first passage is near mρ. In particular, the time of first passage
grows roughly linearly in m. For details, see Collamore (1996).
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