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Let {(Xn, Sn) :n = 0, 1, . . .} be a Markov additive process, where {Xn } 
is a Markov chain on a general state space and Sn is an additive component 
on Rd. We consider P{Sn E A/s, some n} as s -E 0, where A C Rd is 
open and the mean drift of {Sn I is away from A. Our main objective is 
to study the simulation of P{Sn E A/s, some n} using the Monte Carlo 
technique of importance sampling. If the set A is convex, then we establish 
(i) the precise dependence (as s -> 0) of the estimator variance on the 
choice of the simulation distribution and (ii) the existence of a unique 
simulation distribution which is efficient and optimal in the asymptotic 
sense of D. Siegmund [Ann. Statist. 4 (1976) 673-684]. We then extend our 
techniques to the case where A is not convex. Our results lead to positive 
conclusions which complement the multidimensional counterexamples of 
P. Glasserman and Y. Wang [Ann. Appl. Probab. 7 (1997) 731-746]. 

1. Introduction. There has been much recent interest in developing simula- 
tion techniques for estimating "rare event" probabilities; formally, these are prob- 
abilities P(C,), for small 8, where P(C,) -> 0 as 8 -E 0. When direct Monte Carlo 
methods are used to estimate such small probabilities, one runs a numerical ex- 
periment involving n trials and computes the proportion of times that the event 
C, occurs. However, under this direct approach, one then obtains that the error 
of the estimate / oc as 8 -O 0 when compared with the estimate [cf. Asmussen 
(1999), page 45]. The subject of rare event simulation consequently deals with 
alternative methods for simulating such probabilities which, in various contexts, 
are efficient and which remain effective in the asymptotic limit as 8 -E 0. In many 
one-dimensional problems, mainly involving i.i.d. sums which, in the event C., at- 
tain some region in R1, effective simulation techniques are well known; however, 
in higher dimensions-as we shall soon explain-the situation is somewhat more 
complicated. 

The objective of this article will be to study rare event simulation in the context 
of the following multidimensional boundary crossing problem: Let SI, S2, ... be 
a sequence of random variables in Rd, and consider the hitting probability of a 
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region A/8 = {x/8: x E A} by {Sn }; namely, consider 

A 
(1. 1) P Sn E- some n = P{P T(A) < oo} as 8 -0, 

where 

(1.2) TE(A)=infjn:Sn E A} 

It will be assumed that the mean drift of f Sn } is directed away from A, so that the 
probabilities in (1.1) will tend to zero as E -* 0. Our objective will be to develop a 
numerical regime based on importance sampling which yields an efficient estimate 
for (1.1), for any fixed 8, and which has certain optimality properties as 8 -E 0. 

Analytically, the first work on problems of this type seems to have appeared 
in Lundberg (1909). Here, a stochastic model for the capital fluctuations of an 
insurance company was introduced, and the risk faced by a company under this 
model was studied. Under Lundberg's model, an insurance company gains capital 
from a constant stream of premiums inflow, and loses capital as a result of i.i.d. 
claims arising at a Poisson rate. These assumptions imply that the total capital 
gain by time t, denoted St, is a Levy process. Assuming that this process has 
positive drift, the ruin problem then considers P1St < -1/e, some t > 0}, that is, 
the probability that a company with an initial capital of 1 /8 will ever have negative 
total capital, or incur ruin. A classical result due to Cramer (1930) states 

(1.3) PjSt <-- some t > 0} Ce-R/ as 8- 0 

for certain constants C and R. 
Cramer's result and techniques were later extended to more general processes 

and adapted in other applied areas, such as queueing theory and sequential 
analysis. An extension of (1.3) to higher dimensions was given in Collamore 
(1996a, b). There it was shown that if A is an arbitrary open subset of Rd and 
SI, S2, ... are the sums of an i.i.d., Markov or more general sequence of random 
variables, then 

(1.4) lim 8 log P{ T' (A) < oo } -inf Ip (v), 

where Ip is the support function of the d-dimensional surface {a: Ap (a) < 01 
and Ap is the cumulant generating function of {Sn/n}. Further distributional 
properties of T'(A) were explored in Collamore (1998). This multidimensional 
problem is relevant, for example, to applications in insurance and finance, where it 
is often of interest to measure risk which is associated with several dependent 
capital factors. Also, (1.4) serves as a preliminary study for certain queueing 
network problems that can be modelled as a reflected random walk in Rd [cf. 
Borovkov and Mogulskii (1996)]. 
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While (1.3) and (1.4) provide useful asymptotic results, which [for (1.3)] may be 
quite accurate when the limit is removed from the left-hand side, these estimates 
give no indication about the rate at which the convergence to the limit actually 
takes place. To circumvent this problem in a closely related problem in sequential 
analysis, Siegmund (1976) introduced the numerical technique of importance 
sampling [cf. Hammersley and Handscomb (1964), pages 57-59]. According to 
this technique, one observes by the Radon-Nikodym theorem that 

P(C) = EQ - (Z) c (Z) 
(1.5) 

d 

where Z - Q, 1c = indicator function on C. 

Then P(C) is computed by simulating C = jQ(Z)1 C(Z) under the distribution 
Q and averaging the empirical samples of &. In the context of the standard two- 
sided boundary crossing problem in sequential analysis, Siegmund showed that 
a judicious choice of Q leads to a much-reduced variance for the estimator & 
compared with direct Monte Carlo simulation. Moreover, he showed that there 
is a unique choice of Q which, in an appropriate asymptotic sense, is optimal. 
Extensions of Siegmund's algorithm to other large deviations problems in R' were 
later given, for example, in Asmussen (1989), Lehtonen and Nyrhinen (1992a, b) 
and Bucklew, Ney and Sadowsky (1990). Related developments can also be found, 
for example, in Cottrell, Fort and Malgouyres (1983), Chen, Lu, Sadowsky and 
Yao (1993), Sadowsky (1993) and Bucklew (1998). 

The difficulty of extending Siegmund's algorithm beyond the one-dimensional 
setting was documented by Glasserman and Wang (1997). Here it was shown that 
there is no hope of obtaining results like Siegmund's for the multidimensional 
problem in (1. 1) when A = {(u, v): u > I or v > 1} c L2 and E(S1) =-Qt1, AD2), 
where /ui > 0. In particular, from a reasonable class of importance sampling 
regimes, they showed that various regimes lead to unbounded relative error for the 
estimator as 8 -> 0. Similar "counterexamples" in a queueing context were given 
in Glasserman and Kou (1995). These counterexamples show that the much-used 
technique of minimizing the variational formula in Mogulskii's theorem [Dembo 
and Zeitouni (1998), Theorem 5.1] does not lead to any sort of efficient simulation 
regime in general. In this paper, we will show that if the set A c Rd in (1.1) is 
convex, then a natural analog of Siegmund's algorithm can be developed for the 
multidimensional problem in (1.1). 

A related work is Sadowsky (1996), which established certain necessary and 
sufficient conditions for efficient importance sampling of P{Sn/n E A}, where A is 
a subset of a Banach space. A sufficient condition is established under hypotheses 
which roughly amount to the existence of a "dominating point" [see Ney (1983), 
where dominating points are defined and their existence is studied]. There are, 
however, some substantial differences between the results and general approach 
of Sadowsky's paper and those given here. First, our problem and techniques 
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are very different; for example, the rate function Ip in (1.4) is neither strictly 
convex nor differentiable, nor are its level sets compact. Hence our analysis is 
quite distinct from that used for sample means or other classical large deviations 
theorems, such as, for example, Mogulskii's theorem, and the rate functions and 
optimal importance sampling regimes we obtain are, of course, different. Second, 
Sadowsky works with arbitrary sequences satisfying the large deviation principle. 
In practice, one would usually like to simulate using an explicit transformation 
on the increments SI - So, S2 - SI, ..., rather than on Sn itself, and it is not 
evident when this can be done in the framework of general sequences. Thus, 
an additional objective of this paper is to propose a wide and very natural 
class of processes-the Markov additive processes in general state space-where 
such explicit transformations can be achieved. (In our problem, it appears that 
such transformations cannot be obtained for the more general "Gartner-Ellis" 
sequences.) 

We now turn to a more precise statement of our results. Let {(Xn, t) n = 

0,1, ...} be a Markov chain on $ x Rd, where $ is a general state space, with 
transition kernel of the form 

Pt(Xn+l, tn+i) EE xr I Xn= =x =P(x, E x F). 

We are interested in the behavior of the sums Sn = 0I + *.. + tn, n = 1, 2, ... 

(So = 0). The process {(Xn, Sn) n = 0,1, . . .} is a Markov additive process. The 
simplest examples are when SI, S2, ... are the sums of an i.i.d. sequence of random 
variables, or the sums of functions of a finite state Markov chain. More generally, 
we may take tn+i = F(Xn, Xn+I), where {Xnl is a Markov chain on a general 
state space, $, and F(x, y) is a deterministic or random function for any given 
x, y E S. Our objective is to estimate 

P{TP(A) < o0 = PjSn E-, some n E z+} 

using importance sampling. 
The importance sampling technique suggests that we simulate P{TT(A) < oo} 

using another Markov additive sequence { (Xn, Sn) n = 0, 1, . . .} having transition 
kernel 2 = Pt(i,+1, &+l) E E x F I Xn = xl. An adaptation of (1.5) then 
becomes 

P{T (A) < oo } = Eo (&0,,) 

for some "estimator" Co,, that is computed from the d-distributed sequence of 
simulated random variables {Xo, ..., XT-(A); SO, ..., STE(A)}. The main objective 
is to choose 2 so that it minimizes Varo (&C,,) as 8 0, or equivalently Eo (&2) 
as 8 -E 0. 

Under the assumption that A is convex, our first result provides a large 
deviations estimate of the form 

(1.6) lim 8 log Eo (& ) = -inf Ixj (v), 
8 --->- 0 ~~vcQt 
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for some subset A of a A and some "rate function" Ix .. This establishes the precise 
correspondence between 2 and the decay (or growth) rate of E(&2) as E -+ 0. 
The implication of this estimate is made clear in Example 3.1, where the level sets 

de of f (2) = E(&2 _) are described by an explicit asymptotic formula. [For sample 
means of a uniformly recurrent Markov chain in R, a related "second-moment" 
estimate was established in Bucklew, Ney and Sadowsky (1990).] 

From (1.6) we may draw several conclusions. Equation (1.6) provides, for 
example, information about the robustness of a simulation regime under small 
perturbations of d. More important, (1.6) shows that an efficient simulation regime 
should be one which maximizes (over all simulation distributions d) the rate 

def function appearing on the right-hand side, namely, J(2) = infv jIX (v). If A 
is convex, then we show that there exists a unique choice of 2 which maximizes 
J (2). Furthermore, under this optimal distribution we show that simulation is 
indeed efficient in the sense that it has "logarithmic efficiency" and very often 
"bounded relative error;" this will be achieved using a convexity result given below 
in Lemma 3.2. It will be shown that the optimality we obtain is quite general 
and extends to the case where the simulation distribution is allowed to be time- 
dependent. 

Finally, we show that if A is a general set, then it is possible to partition A into 
a finite subcollection, A1, . . ., Al, and simulate independently along the elements 
of this subpartition. We show that a useful partition can always be obtained. The 
basic idea is to partition A along the level sets of the function IP in (1.4). The 
estimator we obtain will generally be efficient and in some main cases will have 
"bounded relative error." [All of the above results can easily be generalized to 
finite time-horizon problems of the form P{T (A) <K/8}, K <oc; the required 
modifications follow along the lines of Collamore (1998).] 

We will establish our results in some generality, at the level of Markov additive 
processes in general state space, as studied in a large deviations context by Ney and 
Nummelin (1987a, b), de Acosta (1988), de Acosta and Ney (1998) and references 
therein, following along the lines of the seminal papers of Donsker and Varadhan 
(1975, 1976, 1983). Thus, our results differ from known importance sampling 
results given, for example, in Siegmund (1976), Asmussen (1989) and Lehtonen 
and Nyrhinen (1992a, b), which focus on i.i.d. sums or the sums of a finite state 
space Markov chain, and in Bucklew, Ney and Sadowsky (1990), where sums of 
a general state space Markov chain are considered, but under a strong uniform 
recurrence condition. The usefulness of this general approach is illustrated in 
Example 3.2, where our results are applied to the ARMA(p, q) time series models. 
These models can be viewed as Markov additive processes in general state space, 
but they do not satisfy the uniform recurrence condition assumed, for example, in 
Bucklew, Ney and Sadowsky (1990). The mathematical difficulty inherent in the 
study of general Markov additive processes lies in the absence of a corresponding 
Perron-Frobenius theory, which is the basis for the analysis of finite or uniformly 
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recurrent Markov chains. Our extension to general Markov additive processes will 
be achieved using the theory of nonnegative operators, as given in Nummelin 
(1984); therefore our approach is similar to that of Ney and Nummelin (1987a, b). 
However, in our case, we will make use of abstract renewal properties, and-in 
contrast with Ney and Nummelin's work-our renewal structure will not generally 
coincide with the inherent renewal structure of the Markov additive process or of 
the simulated process. 

In the next section, we introduce Markov additive processes in general 
state space and provide some necessary background on these processes and on 
nonnegative kernels. The main results are stated formally in Section 3 and proved 
in Section 4. 

2. Background. 

2.1. Markov additive processes: definition and regenerative property. Let 
{Xn n = 0, 1, ... . be a Markov chain on a countably generated general measurable 
space ($, 8). Assume {XnI is aperiodic and irreducible with respect to a maximal 
irreducibility measure qo. 

To this Markov chain adjoin a sequence {fn} such that {(Xn, tn): n = 0,1, .. .I 
is a Markov chain on ($ x Rd, S X eRd) with transition kernel 

(2.1) ~~~~~~def 
(2.1) Y(x, E x F) = P{(Xn+li dn+i) E E x F I Xn = X}, 

for all x E $, E E 4, 1 E eRd, where eRd denotes the Borel a-algebra on Rd. 

Let an denote the a-algebra generated by {Xo, ..., Xn, So, . . ., Sn1; and let 

Sn = 1+--- + ,n = 1,2,...,andSo =0.Thesequence{(Xn, Sn):n =, 1, ...} 
is a Markov additive process. 

A (p-irreducible Markov chain always has a minorization [Nummelin (1984), 
Theorem 2.1]. Following Ney and Nummelin (1987a, b), we will work with a 
hypothesis which extends this minorization to Markov additive processes. 

Minorization. 

(9) For some family of measures {h(x, F): E eRd} on Rd, X E ?, and some 
probability measure {v(E x r) : E E , F E rld } on $ x R , 

h(x, )*v(Ex )< P(x,E xr) forallxE?, ES, FEeRd. 

(The symbol * denotes convolution. We will often abbreviate the left-hand side 
by h (v.) As in Ney and Nummelin (1987a, b), we will generally assume that 
either v(dy x ds) = v(dy) i7j(ds) or h(x, ds) = h(x) i7j(ds), where 77(9 denotes a 
measure on Rd having point mass at the origin; in other words, we will assume the 
slightly stronger condition: 
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(91') One of the following minorizations holds: 

h(x, F)v(E) < P(x, E x F) or h(x)v(E x F) < P(x, E x F), 

where {h(f)} is a family of measures on Rd, for each x E $ (respectively, 
a function on $), and v (.) is a probability measure on $ (respectively, on 
$ x Rd). 

In a few situations, we will strengthen this minorization to the following. 

(9k) av(E x F) < (x, E x F) < bv(E x F), for all x E 8, E E 8, F E R?d, where 
v is as in (1), and a, b are positive constants. 

When (9) holds, the Markov additive process is said to be "uniformly recurrent." 
This strong recurrence condition is satisfied, for example, if Sn denotes the sums of 
functions of a finite state Markov chain, but it is often not satisfied for more general 
processes, such as the AR(p) processes of Example 3.2 below. We emphasize, 
however, that condition (9) will not be required for the main results of this paper 
given below in Theorems 3.1 and 3.3. 

Under (9), a regenerative structure can be deduced for the Markov additive 
process: 

LEMMA 2.1. Let {(Xn, Sn)}n>O be a Markov additive process satisfying (9). 
Then there exist random variables 0 < To < <... and a decomposition ~T, = 

4/ + /T, i = 0, 1, . . ., with the following properties: 

(i) {Ti+1 - Ti : i = 0,1, . . .} are i.i.d. andfinite a.e.; 
(ii) the random blocks XT , XTI+1-1, C/, XTi+X* tT,+-l are 

independent; 
(iii) Px{(XT X`) E E x F" I aTi-1, T1} = V(A x F") for all E E S and 

"r E Rd. 

For Harris recurrent Markov chains, this lemma was established by Athreya and 
Ney (1978) and Nummelin (1978). The extension to Markov additive processes is 
in Ney and Nummelin (1984). 

REMARK 2.1. (i) If the function h in (9) is independent of x, that is, if the 
lower bound of (9) holds, then P{Ti = n, some i I an-1} > a, where a is the 
positive constant in (93). Thus, in particular, E(Tj+j - Tj) < o, i = 0, 1, ..., and 
E(To) < oo. 

(ii) If h(x,ds) = h(x)rqj0(ds), then 04 = 0, i = 0, 1, .... If v(dy x ds) = 

v(dy)i7j9 (ds), then =0, i = 0, 1. [See Ney and Nummelin (1984).] 

Futher properties of Markov chains in general state space can be found in 
Nummelin (1984), Revuz (1975) and Meyn and Tweedie (1993). Further properties 
of Markov additive processes can be found in the large deviations papers of de 
Acosta (1988), de Acosta and Ney (1998) and especially Ney and Nummelin 
(1987a, b). 
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2.2. Nonnegative kernels, eigenvalues and eigenvectors. We will also need 
certain facts about nonnegative kernels, which we now summarize and apply in 
the context of Markov additive processes. For details, see Nummelin (1984). 

Let {K(x, E): x E $, E E S} be a ac-finite nonnegative (p-irreducible kernel on 
a countably generated measurable space ($, S). For any function h: $ -t R and 
any measure v on ($, 8), let 

Kh(x) = f K(x, dy)h(y), vK(E) = f v(dx)K(x, E), 

(h X v)(x, E) = h(x)v(E), vh(E) = f v(dx)h(x), vh =vh(). 

Assume 

(2.2) h X v < K. 

Define 
00 00 

G E ~pnK, Gh,v , pn (K -h &2 vn, 
n=O n=O 

C00 
bn= v(K - h X v)n-1h, b(p) = pnbn 

n=1 

For any irreducible kernel K, there exists a constant R such that 0 < R < oo, and 
G(P) is "finite" for p < R and "infinite" for p > R [Nummelin (1984), pages 27- 
28]. The constant R is called the convergence parameter of K. A kernel K with 
convergence parameter R is said to be R-recurrent if G(R) (x, E) = oc for x E $, 
(p(E) > 0, and R-transient if this is not true. It can be shown that K is R-recurrent 
if and only if b(R) = 1. 

A function r: $ -+ [O, oo] (not oo) is p-subinvariant if pKr < r, and 
invariant (with unique eigenvalue A = p-1) if pKr = r. If R > 0 is the 
convergence parameter of K, then the existence of invariant and subinvariant 
functions for K can be obtained under (2.2), as follows. If p < R or if p = R 
and K is R-transient, then a p-subinvariant function exists [given by r(x) = 
(G(P)h)(x)]. If K is R-recurrent, then an R-invariant function exists [given by 
r(x) = (RG (R)h)(x)]. [See Nummelin (1984), Proposition 5.2 and Theorem 5.1.] 

Now specialize to the transformed Markov additive kernel JP (a), where (for any 
kernel K) 

K(a) = K(x, E; e) e(as)K(x, E x ds), aERd, xE?$, EcE-S, 

(XK(a)) = the convergence parameter of K(a), and AK(a) = logK(a)K 



390 J. F. COLLAMORE 

Let {Ti}Iio and {(t, 4")}i>O be given as in Lemma 2.1, and let 

d d 
'r =Ti +1 - Ti, St- =($T' +I1 + ***+ T, + -1 ) + T + ~TT+1 ' 

4(a, ) = Ev[e(aST)-?T] for all a E Rd, c ER, 

'Ur = {aO: /(a, 0) = 1, some < oo}. 

Observe that (9) =4 h (a) 0 V((a) ?< P(a), where (for any function h and any 
measure v) 

h(x; a) = f e(as s)h(x, ds), vi(E; a) = f e( s)v(E x ds). 

Thus, under (9), the theory for nonnegative kernels may be applied to MP(a). 
This leads to certain representation formulas and other regularity properties for 
the relevant eigenvectors and eigenvalues, which we now describe. 

LEMMA 2.2. Let {(Xn, Sn) :n = 0, 1, . . .} be a Markov additive process 
satisfying (9). 

(i) If a E Ur, then JP (a) is (Xkp (a)) --recurrent. Moreover, the eigenvalue 
Xkp (a) and invariant function rp (a) satisfy the following representation formulas: 

(2.3) i/r(a, Ap (a)) = 1, rp (x; a) = Ex [e(a,STo)-Ap(a)To]I 

(ii) If dom /f is open, then dom Ap is open, and on dom Ap we have a E Ur 
and Ap(.) analytic, and rgp(x; ) is finite and analytic on a set F C ?, where 

(FC) = 0. 
(iii) If (9) holds and a E domAp, then Xp (a) is an eigenvalue of ' (a), 

and the associated invariant function rp (a) is uniformly positive and bounded 
on domAp (in particular, if Vfi(a)rp (a) = 1, then a < Ap (a)rp (x; a) < b). 

For the proofs, see Ney and Nummelin [(1987a), Sections 3 and 4], and Iscoe, 
Ney and Nummelin [(1985), Lemma 3.1]. 

REMARK 2.2. Using the split-chain construction described in Ney and 
Nummelin [(1984), page 7], the quantities Ap(a) and rp(.; a) can be evaluated 
from (2.3) using direct simulation. 

REMARK 2.3. If the lower bound of (9) holds and rp (a) is a p-subinvariant 
function for fP(l), then rp(a) > pa(vi(a)rp(a)). This implies that rgp(a) is 
uniformly positive. 

Let P (x, -) <? 0(x, .), for all x E ?, and define 

( d,P 2 
(2.4) Xo (x, dy x ds)= I (x, y x s) (0Q(x, dy x ds). 

d2 2 
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LEMMA 2.3. Assume (9). Then the following hold: 

(i) (/P (x, E x r))2 < X7 (x, E x r), for all x E $, E E S and FE d. 
(ii) (Xkp (a))2 < Xx, (2a), for all a E Rd. Moreover, if a E U, and (Xkp (a))2 

= ,kx (2a), then 

(2.5) Q(x, dy x ds) = es)A (a) y (dy x ds), d -a.e (y, s), 
r,p(x; ae) 

for qo a.e. x, where rp(a) is the (k-p(a))-1-invariant function for P(a). 
Conversely, if a E U, and 2 is defined by (2.5), for all x E $, then (Xkp (a))2 
XxQ (2a). 

(iii) If ( is defined as in (2.5) and a, p E 'U, then Ax (a +/3) = Xp (a)Xkp (/), 
and the associated invariant functions satisfy the equation rX, (a + /) = 

PROOF. Part (i) is established using H6lder's inequality. 
For (ii), assume kX, (2a) < oo, and let rx, be a (kx,2(2a))-1-subinvariant 

function for Xc (2a). Apply H6lder's inequality to the integral 

f e(a S)rx, (y; 2a)1/2d(X, y x s)(0Q(x ,dy x ds) 

to obtain 

(2.6) P (a))rx, (2a)112 < X(, (2a) 112rx( (2a)1!2 

Thus rX, (2a)1/2 is a (_x<2(2a)K112-subinvariant function for P(a). Hence 
(Xgp(a))2 < kX(,(2a) [Nummelin (1984), Proposition 5.2]. 

Now suppose a E 'U, and (Xkp (a))2 = Xxx (2a). Then by (2.6), rx, (2a) 1/2 is a 
(X/ (a))-1-subinvariant function for fl (a). It follows that rp (a) = 

C(r,x (2a))1/2 q0 a.e., for some positive constant C [Nummelin (1984), Theo- 
rem 5.1]. Then there is equality in (2.6), namely equality in H6lder's inequality, 
and-after normalizing so that 2 is a probability measure-this implies (2.5). 

Conversely, note that (2.5) implies 

XQ(x, E x IF)= JE Xp(a)e (s) rp(x; a) Y( d ds) 
(2.7) dre(y;aId d 

forallEES8, r E Rd, 

and hence 

(2.8) Xc (2a) (rp (a))2 = (Xp (a))2 (rp (a))2 

It follows that (Xkp (a))2 = kxo (2a). 
To establish (iii), repeat (2.7) and (2.8) with "r rp(a)rp(,B)" in place of 

"r2 El) 
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3. Main results. 

3.1. Notation, hypotheses and estimation results. Given a Markov additive 
process {(Xn, Sn) :n = 0, 1, .. . 1, we would like to evaluate P{T'(A) < 0}1, where 
T'(A) is defined as in (1.2). Suppose that we simulate for this quantity using 
simulated random variables {(Xk, S,n) n = 0, 1, . . .1 with transition kernel 

Q F ?(x F X r) = P{(xn+lX~~1 1 
1) 

E E x r I xk =x}. 

If SP(x, )< ? n,(x, ),for all n E 7+, 8 > 0 and x E $, then 

P{P (A) <o01 

(3.1) =L (Hj (Xn Xn+1 XSn+1)) 

x 00'-(xo, dxl x dsl) ... *k le(xk- 1 dXk x dSk), 

where gk denotes all paths whichfirst hit A/E at time k, that is, 

(3.2) 3=j (xo,... Xk;S0o... sk)3 Si E -for l =k butnotfor l <k. k 
~~~~~~~~~~8 

It follows from (3.1) that 

def T-(A)1 (X8 
(3.3) &0,? _ ( n dQn ? (Xn Xnl x n+l)) {T TTA(A)<ol 

is an unbiased estimator for P{T' (A) < o0. 
The efficiency of this estimator is measured by its variance, which we will study 

in an asymptotic sense as 8 -> 0. Since Var(&0,,) = E(g2) -(E(& ,8))2, and 

E (9,.) = P{T8 (A) < o0 

has the asymptotic characterization given in (1.4) [Collamore (1996a), Theo- 
rems 2.1 and 2.2], it is sufficient to study the asymptotic behavior of 

71 2 (0 8 k 1,8 (3.4) E(&9 8)= XL 2 (xo, dxl x dsl) .,? (Xk_,I dXk x dSk) 
k k 

where, for all n, 8, 

X?(xn, dxn+l x dSn+1 ) 

(3.5) 
def ( 

? (Xn, Xn+1 X Sn+1d )) 
,, 

(xn dxn+l x dSn+1) d~~ ~ x dn?i) 
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Our objective will be to give estimation results for E(g2 ?) as 8 -E 0, and 
optimality results describing which transition kernels 0 for the simulated random 
variables minimize E(g&2,) as 8 > 0. 

We first introduce some additional notation and hypotheses, as follows. Let 

cone(C) = {(v: ? > 0, v E C} for any C c IRd, 

cones(C)={ v: >0, IIv-wll <SIIwIl, somewEC} foranyS>0, 

6= cone(Supp, ?5) with v, - as in Section 2, 

C ={v: (a, v) < 0, all EC} for any C c lRd, 

Je(a, a) = {v: (a, v) > a} for any O E Rld and a E l, 

?af = {v: f(v>) < al for any f: Rd -T Rand a E R, 

dom f = {v: f (v) < oo} foranyf: IRd --> IR. 

For any nonnegative sp-irreducible kernel K, let K? (a) = I, K' (a) = 

K(o)K'-l (Ol), n = 1, 2, .. ., and 

AK(a) = limsupn- log Kn(Xo ?; a), 
n -> oo 

A (N)(a) = sup n 1 log Kn(Xo, ; a), 
n>N 

IK(V) = SUP{(a, V) :aU E SOAK}, SK = domIK, 

I(c)(V) = SUP{(a, V):a E ?cAKK}, (c) = dom I (c), KK K' 

IK(V) = SUP{(ag, V) :aU E ?oAKI, respectively IK4)(.); 

where, as in the previous section, (K(al))-1 is the convergence parameter of 

KR(a) and AK(a() = 109gK(a)- In the definitions of IK, IKj and IK, we follow 
the convention that the supremum over the empty set equals -oo. 

For any set C, let c(v) denote the indicator function of C (1 for v E C; 0 for 
v , C); let ri C denote the relative interior of C; and let A C denote the relative 
boundary of C. For any function f, let f * denote the convex conjugate of f. [For 
definitions, see Rockafellar (1970).] 

Next we turn to certain regularity conditions on the Markov additive process 
{(Xn, Sn) n = 0, 1, .. .} and the set A which we will often need to impose. If, for 
example, SI, S2, ... are the sums of an i.i.d. sequence of random variables, or the 
additive sums of a Markov additive process which satisfies (9i) under both e and 
on,, = 0, then 

A (a) < oo for all a E dom AX. 

For general Markov additive processes, this property need not necessarily hold, 
but we will often assume that the following weaker condition is satisfied. 
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HYPOTHESIS. 

(HI) A(') (a) < oo,for all a E ?oAXQ 

A second assumption which we would like to impose is that the mean drift of 
the process is directed away from the set A. Now, under natural conditions, 

(3.6) A* (v) = O X E(SI) = v, 

where 7r is the stationary measure of the Markov chain {X,J; this is true, for 
example, if (9k) holds and 0 E domAp, or alternatively if (9') holds and the 
set dom * is open [Ney and Nummelin (1987a), Lemma 3.3 and Lemma 5.2]. 
From (3.6), we then see that the central tendency of SI, S2, ... is along the mean 
ray {(v: ( > 0 and v E ?oA*}. In fact, we will assume slightly more, namely that 

the set A is disjoint from a small S-cone about this mean ray, or more formally: 

(H2) clA A cones (CoA*) = 0, for some S > 0. 

DEFINITION. We say that a family of probability measures {(211 (x, E x F): 

E E -S, F E j,d} belongs to the class Co if (2'8(x, ) = Q(x, ) for all x E ?, 

independent of n and 8, and Y (x, -) << Q (x, .), for all x E S. 

DEFINITION. If A c Rd, then we say that v E cl A - {} is an exposed point 
of A if the line segment {( v: O < ( < 1 1 does not intersect cl A. 

THEOREM 3.1. Let A be a convex open set intersecting ri 6, (9 int A. Let 
A denote the exposed points of A. Assume that {(Xn, Sn) n = 0, 1, .. .} satisfies 
(9') and has initial state Xo = xo. Suppose that simulation is performed with a 
kernel 0 E Co. Then the following hold: 

(i) Lower bound. 

(3.7) lim infe logE(g2,,) > - inf Ix( (v). 

(ii) Upper bound. Assume, in addition, that the following holds: 

(C) inf. A$(xa(a) < 0, (HI) is satisfied and A n cone6 (LoAx,)' - 0, for some 

S > 0. 

Then, for tp a.e. xo, 

(3.8) lim sup E log E(g,a8) <- inf Ix (v). 
8-?>O VCQt 

If the lower bound of (9i) is satisfied, then in place of (X) it is sufficient to assume 
A n (XoAX, )l -0; and then (3.8) holds with Ix, in place of Ix<2. 
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REMARK 3.1. (i) Some conditions under which Ixfi = Ixfi are described in 
the discussion following Lemma 3.2. However, it is known in the context of large 
deviations for Markov additive processes that these bounds need not be the same 
in general; see de Acosta and Ney [(1998), Section 4]. 

(ii) Since (LOAX(,)1 = {v: Ixj (v) < O}, "A n (LOAX()1 - 0" holds as 
long as inf{Ix( (v) v E 2} > 0. The weakening of this assumption to the case 
where E(g2 ) exhibits exponential growth as E - 0 is apparently not possible, in 
general. 

The stronger condition "A n cone6(LoAX()' = 0, for some S > 0" is 
similar to, and in fact a strengthening of, condition (H2) (for (9 , clA). In 
particular, 2(XOAp) D ?OAx$ [Lemma 2.3(ii), since Ax. > Ax(2]. It follows 
that 4oIx, D4 oIy = {Jv: ( > 0, V E oA* }. 

REMARK 3.2. If the lower bound of (9i) holds, then as an upper bound we 
actually obtain 

(3.9) E(g2 exp - cos -x( 1 inf Ix (v)} 

REMARK 3.3. If Sn = 0I +... + n, where {n I is an i.i.d. sequence of random 
variables, then the quantities As and Ax( , which determine the rate functions on 
the right-hand sides of (3.7) and (3.8), can be simplified. In this setting, AS = AS 
may be identified as the cumulant generating function of tn, namely, 

Ay (a) = log f e(a, s) Y (ds), 

where YP is the probability law of tn and similarly for Ax.. Furthermore, any 
discussion of invariant functions may be dropped; that is, we may always take 
ry (.; a) = 1 and rx( (.; a) = 1. 

EXAMPLE 3.1. Let Sn = 01 + + tn where 1$n nZ+ c R 2 is an i.i.d. 

sequence of normal random variables with mean m = (t,u ,t) and covariance 
S- (), where ,t > 0 and -1 < a < 1. Let A = {(vI, V2): V <-l and V2 < 
-11. We consider the simulation of P{ T8(A) < oo} using an exponentially tilted 
distribution of the form 

(3.10) Op (ds) = e(,s)--A(p) Y (ds) 

By Lemma 2.3(iii), a E XoAXO X A(/B) + A/p(a - /) < 0. Since the 
cumulant generating function for a Normal(m, S) random variable is A,p(a) = 
(a, m) + 2 (a, Sa ), it follows from a straightforward computation that 

2 

(3.1 1) XOX = : .(Il+Oa)( l+ tPi +(1 - )(a,2 -32)< bl ~~ 1\\1 + cI Tj 
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where b =-(1?+ua)1pi -2Vg,il -(1-o), ?22 + 2jt2/(l + a), and, ,B denote 
the values of a, ,B in a coordinate system which has been rotated by angle 7r/4. 

Our objective is to apply Theorem 3.1 to analyze the dependence of E(62 ) 
on ,B. Thus we would like to study 

(3.12) J(,B)=- inf IX,(v) vEaA 

as a function of ,3. [If J > 0, the right-hand side of (3.8) must be taken to be 
infinity.] 

Suppose for simplicity that it = 1/V2 and a = 1/2. The function J(,B) can 
then be analytically computed from (3.1 1) for all values of PB. For example, if r is 
a sufficiently large positive constant, then the level sets where J (/) =-r < 0 are 
given by 

r 
2 12 r_ 

(3.13) (I ?+ ) + ? /2 =r( - )- 

A graph of the level sets of J over all of 12 is given in Figure 1. 

1 .5 
. . . . . . . . . . . . . . . . . 

0.5 

0 

- I ~~~~~~~~~~~~~~~~~~~~~~~~~~~. .| . ..... 

-0.5 

-1.500 T I1 

-2 -1.5 -1 05 0 0. 5 1 

FIG. 1. Let a= inf{ J() - E R2}, where J is defined as in (3.12). The figure illustrates the level 
lines r =a + 0.25, a + 0.5, a + 0.75, ..., with ~1 on the horizontal axis, and fi2 on the vertical 
axis; J is seen to increase rapidly to the left of its minimum at (-4/3, 0). The black area indicates 
the region where J = 00. 
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The minimum value of J occurs at the maximum r for which the right-hand 
side of (3.13) > 0, that is, r = 8VX/3, and for this r we obtain by (3.13) that 
, = (-4/3, 0). At the other extreme, the points where J = oc are all contained 
in the complement of the zero-set ?0Ayp = : 3 (@I + 2/3)2 + 

- 
< 4/32 This 

illustrates the general fact that J(,8) tends to be smaller on ?0A gp as compared 
with (JoAyp)C. 

EXAMPLE 3.2. Let {YnlnEz be an ARMA(p, q) process in Rd, namely, 

Yn = -(01 Yn-I + + ?pYn-p ) + Wn + 01 Wn-I + + Oq Wn-q 

for constants 451, . . ., 4p, 01, . .. , Oq satisfying appropriate regularity conditions, as 
given in Brockwell and Davis [(1991), Chapter 3]. For simplicity, take {Wnl}nE2z+ 
to be i.i.d. Normal(O, S). As in Meyn and Tweedie [(1993), page 28], we may 
then write Yn = F(Xn), where {Xn} is a Markov chain taking values in Rid, 
1 = max{p, q + 1I, and this Markov chain can be shown to satisfy (9)') [take 
h (x) = const t 11(x), where (9 = [-&, E]1 ]. 

Assume that the past history of the process is known or, equivalently, that 
the initial state of the Markov chain is Xo = xo, for some xo E Rlid. Let m E 
Rd - {O} and tn = Yn + m; and let Sn = 0j +.+ , n > 1, and So = O. Then 
{(Xn, Sn) n = 0, 1, .. .} is a Markov additive process. 

A simple computation gives 
00 

(3.14) Ay (a) = (a, m) + E j (a, SU) 
j=O 

for certain constants {fij I [cf. Brockwell and Davis (1991), Theorem 3.1 .1]. 
Next we observe that actually Ayp = Ayp. To this end, note that 

Ay (a) = lim sup -log E[e (a Sn ) 109 (Xn)] 
(3.15) nfoo 

n 

= lim sup - log E [e (a Sn ) 1 Abn (X LbnJ )I16 (Xn)]X 
n -*oo n 

where b E (0, 1), Ak = [-VWa, VWa]P, and a is a suitably large positive 
constant; the last step was obtained by an application of Holder's inequality to 
(e(a,Sn) tog9 (Xn))(11Ac (XLbnj )). Moreover, 

(3.16) -log E[e(asn SLbnJ) 90 8(Xn) I XLbnj = x] = (1 - b)AP,n (() + An (x), 
n 

where An (x) -O 0 as n -> oc, uniformly for x E Abn, and Ap,n(au) -> Ay (a). 
Substitute (3.16) into (3.15), let n -> oc and then b -- 1 and apply Holder's 
inequality once more to obtain Ayp (a) = Ayp (a), for all a. 

Also, by a direct computation, r(x; a) = exp{(c, x)I for some c E Li. 
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Suppose that we simulate using an exponentially tilted distribution of the 
form (2.5) (with "13" in place of "a"). A repetition of the above argument yields 
A xQ (a) = A xQ (a) = Ay(/3) + A (a - /3), by Lemma 2.3(iii). We may now 

proceed as in the previous example to determine the interdependence of E(&2 
and Op. 

For further applications to Markov and semi-Markov processes, see, for 
example, Iscoe, Ney and Nummelin (1985), Ney and Nummelin (1987a) and Meyn 
and Tweedie (1993). 

3.2. Optimality. Our next objective is to find an optimal 0 E Co which 
maximizes the decay rate on the right-hand sides of (3.7) and (3.8). For this 
purpose, first recall from (1.4) that the decay of P{T8(A) < oo} is governed by 
the rate function Iy-p. 

To obtain an optimal simulation regime for the multidimensional problem, a 
very essential role will be played by the following. 

LEMMA 3.2. Let A c Rd be a convex set intersecting ri &. Suppose that 
the probability law of Sn/n satisfies the large deviation principle with rate 
function Ij' = A* . Assume that dom Ayp is open and (H2) is satisfied. Let 
a = infc-A Iy (v). Then the following hold: 

(i) an element ao E a(LoAy) determines a hyperplane which separates A 
and alj, with A C {v: (ao, v) > a} and ,Ij' cC {v: (ao, v) < a}; 

(ii) there exists a unique element vo E cl A such that Igp (vo) = a; 
(iii) infv cA If (v) = infv ca A Is (v) = (aO, vo); 
(iv) if int & 7& 0, then ao is the unique element of the subgradient set a Ip (vo); 
(v) the gradient of Ayp at ao points in the same direction as vo, that is, 

vo = Q VAyp (ao) for some constant 0 > 0. 

The proof of Lemma 3.2 is given in Collamore [(1996a), Lemma 3.2; (1998), 
Lemma 2.2]. The uniqueness in (iv) is obtained from the strict convexity of Ayp 
[Collamore (1996b), page 38, Ney and Nummelin (1987a), Corollary 3.3]. If 
dom Ayp is open and (9)') is satisfied, then a sufficient condition for the probability 
law of Sn/n to satisfy the large deviation principle with rate Iy-p = A* is that 
A) = AS). [See Ney and Nummelin (1987b). The generating function AS) is the 
same as that appearing in the Gartner-Ellis theorem, as given, e.g., in Dembo and 
Zeitouni (1998), Theorem 2.3.6.] 

In our next theorem, we will work with a hypothesis which extends this 
condition "Ay = Ay" to the kernel Xi. 

HYPOTHESIS. 

(H3) AK() = AK(.)for K =f 'and K = Q. 
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A sufficient condition for (H3) to hold is any one of the following: 

(i) SI, S2, ... are the sums of an i.i.d. sequence of random variables, or the 
additive sums in a Markov additive process {(Xn, Sn): n = 0,1, .. .I where the 
state space of {Xn } is finite. 

(ii) {(Xn, Sn) : n = 0, 1, ...} is a Markov additive process on a general state 
space, and the lower bound of (9i) is satisfied. 

(iii) {(Xn, Sn) n = 0, 1, ...} is a Markov additive process on a general state 
space, and the entire state space is an "s-set." [See Ney and Nummelin (1987a, b).] 

There are, of course, other situations where (i)-(iii) are difficult or impossible 
to verify, but (H3) nonetheless holds. For example, this condition was verified 
directly for ARMA(p, q) processes in Example 3.2. [As with hypothesis (HI), it 
would actually be enough to assume that AK = AK on ?OAK, for K = ,P and 

K=XQ ] 
A second condition which is needed in Lemma 3.2 is that the domain of AS 

is an open set. A sufficient condition for this to hold is that dom 4 is open 
[Lemma 2.2(ii)]. 

Our present objective is to apply Theorem 3.1 and Lemma 3.2 to obtain an 
optimal simulation distribution which maximizes the decay rate on the right-hand 
sides of (3.7) and (3.8). To this end, first note by Lemma 2.3(ii) that ?OAx, C 
2(XOA,p). Hence Ixg (v) < 2I1p(v) for all v E Rd. Now focus on this inequality 
at the special point v = vo of Lemma 3.2(ii). By Lemma 3.2(iv) and Rockafellar 
[(1970), Theorem 23.5] 

(3.17) ?oAp n {a: (a - ao, vo) > o1 = {aol. 

Since ?OAx, C 2(XL0Ayp), it follows from (3.17) that the only way to obtain 
the equality IX,(Vo) = 2Ifp(vo) (= 2(ao, vo)) is to have 2ao E XOAX,. By 
Lemma 2.3(ii), this occurs precisely when 0 = d*, where 

(3.18) Q*(x dy x ds) = e(ao,s) ry (y; ao) p(x dy x ds). 
rg (x; ao) 

Hence 

(3.19) IX,(v0)<2Iyp(vo) withequality =(Q*forDPa.e.(y,s), 

where d* is given by (3.18) [so a.e. x, in the sense of Lemma 2.3(ii)]. From (3.19) 
and Lemma 3.2(ii), it follows that if 0Q :A d*, then 

(3.20) inf Ix, (v) < 2If (vo) = 2 inf Iy (v). 
v c-A v c-A 

Conversely, suppose that Q = d*. Then by Lemma 2.3(iii), ?OAxQ* = {a + 
ao: a E oAg4. Hence 

(3.21) Ix,* (v) = (a o, v) + IfP (v) 
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It follows from Lemma 3.2(i), (iii) that 

(3.22) 2 inf Ip (v) = inf Ix* (v) ( inf Ix,,* (v) by (H3)). 
v c-A v c-A v c-A 

Finally, we observe that the hypothesis "A n cone8 (LoAx ) - 0, some 
S > 0" in the upper bound of Theorem 3.1 is satisfied for Q = W. To this end, 
note by (3.21) that ?oIXs* C {v: (ao, v) < 01. Since ?oIXs* is a closed convex 
cone, it follows that {v: (ao, v) < 01 U {0} is itself a S-cone about ?oIXs* which 
is disjoint from A, by Lemma 3.2(i). Thus this hypothesis is satisfied. 

We have arrived at the following. 

THEOREM 3.3. Let A be a convex open set intersecting int . Assume that 
dom A<p is open and (H1)-(H3) and (9)') are satisfied. Let xo denote the initial 
state of {Xn,}; and let d * be the kernel defined in (3.18). Suppose that simulation 
is performed using a kernel Q E Co. Then the following hold: 

(i) For p a.e. xo, 

(3.23) lim inf c log E (& ) > lim c log E (& 2*). 

Moreover, if there is equality in (3.23), then 0 = dQ* for i a.e. (y, s) and q a.e. x. 
Conversely, if ( = d * for dP a.e. (y, s), all x E $, then there is equality in (3.23). 
Thus d9* is essentially the unique kernel in Co which minimizes E(&2 ) as O 0. 

(ii) For sp a.e. xo, 

(3.24) lim &log E(&*, ) = -2 inf Is (v). 

Equations (3.24) and (1.4) imply that simulation performed under the distribu- 
tion d* has "logarithmic efficiency" [Asmussen (1999), page 46]. Moreover, by 
Remark 3.2 and a sharp form of (1.4)-available for the case that {fn} is i.i.d. and 
A is convex with smooth boundary [Borovkov (1997)]-one actually obtains the 
stronger property of "bounded relative error," that is, 

lim sup Var(&- ,) < 

It is natural to expect that this stronger property also holds at least under (93). This 
property of "bounded relative error" is the strongest known property for nontrivial 
rare event simulation problems; see Asmussen (1999). 

In the next theorem, we show [under (9i)] that the optimality of d* E Co is, in 
fact, more general and extends to time-dependent simulation regimes of a larger 
class C., defined as follows. 
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DEFINITIONS. (i) We say that a family of probability measures {(Q;'8(x, E x 
F): E ES, F E Rd I belongs to the class C if Q'' (x, X) = (9i") (x, X) for all n > 0, 
?> 0, x E $, for some family {0(t)(x, E x F): E E S, r E Rdl; and 

,P(X, -) <<((t) (x , )for all x E$and t > . 

(ii) We say that a family {t(n,(x, E x F): E E A, F E Rd I belongs to the class 
CQ if it belongs to C, and 

0(t (, ) 0Q- X,*)f6r allx ES$and t >Q-A, 

where ? is the constant given in Lemma 3.2(v) and A is any positive constant. 

The significance of the constant ? is made clear in Theorem 2 of Collamore 
(1998), where it is shown that asymptotically &T8(A) -> ? in probability, 
conditioned on {T8(A) < oo}; that is, Q/? is the "most likely" first passage time of 
the process {(Xn SO): n =O, 1, ...} into the set A/?. 

We note that the scaling of the form on,, = j(no) coincides with the standard 
large deviations scaling appearing in Donsker and Varadhan (1975, 1976, 1983), 
Freidlin and Wentzell (1984) and essentially all subsequent work; it appeared in 
the context of the present problem in Collamore (1998). 

For notational convenience, we will from now on write "d E C9" to mean that 
the family {(n,'(x, E x r): E E , r E jRdl belongs to the class C, and likewise 
for members of CQ. 

DEFINITION. Let 0 E C. Then we say that to is a continuity point of Q if for 
any A > 0 there exists a positive constant y such that, for all It - to I < y, 

0(t)(x .) < Q(t0)(x, *) for all x E $, 

and for any n and c with In -tol < y, 

Fd(Q(t) 
(3.25) E7,* [log d( (Xn9 X* n+ x tl)]< A\ 7 

(3.26) Ex [log(d2 (to) (Xng Xn+l x n+1)) < K < oo for all x E S, 

where {(Xn* Sn*) n = 0,1, ...} denotes a Markov additive process having the 
transition kernel d* in (3.18) and 7r* is the stationary measure of {X*}. 

For example, if (9i) holds and Q E 6 has the form 

(3.27) ((t)(x dy x ds) = e(at s)-A(t)r(Y; at) J(x, dy x ds), 
rp (X; a{t) 

where at = f(t) for some continuous function f: [0, oc) -- int(domAyp), then 
all points t E [0, oo) are continuity points of O. 
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DEFINITION. We say that A c IRd is a semicone if v E 3A A= {v: ? > 1} C 
int A; that is, the ray generated by any point on the relative boundary of A is an 
interior ray of A. 

THEOREM 3.4. Let A be a convex open semicone intersecting int &. Assume 
that dom Ayp is open and (H2) and (9i) are satisfied. Let xo denote the initial state 
of {Xn }, and let * E C o be the kernel defined in (3.18). If simulation is performed 
using a family of measures 0Q E 6, then,for so a.e. xo, 

(3.28) liminf logE(&E ) 2 > limo 0gE(lgE *,). 

Moreover, if we do not have Q(t0) = (*, 2P a.e. (y, s), qp a.e. x, at all continuity 
points of ( in [0, q], then there is strict inequality in (3.28). Thus, d* is essentially 
the unique element of Q which minimizes E(&2?) as ? -> 0. 

If 0Q 7& Q* at a continuity point to which is outside [0, 0], then we do not 
necessarily obtain strict inequality in (3.28); thus, the logarithmic-level optimality 
of d* in Theorem 3.4 cannot be extended from CQ to C. 

REMARK 3.4. In fact what needs to be minimized in the above discussion is 
the number of random variables that need to be generated, that is, 

(3.29) Qlog[Var(&2',)Ec(T (A))] as ? - O 

[cf. Siegmund (1976), page 676, or Collamore (1996b), Lemma 5.2]. However, if 
A is a semicone, then 

(3.30) lim c log Ec (T (A)) = 0 

[Collamore (1996b), Lemma 5.3]. Thus simulation under d* is efficient and 
optimal. 

If A is not a semicone, then the situation is more complicated; in particular, 
we need not have (3.30) in this case. It may then be preferable to simulate with 
0 E C, where 0(t) = Q* for t E [O, 0], but 0(t) 7& Q* for t > to, some to > Q. By 
a judicious choice of 0, one may often obtain both (3.30) and (3.24). 

3.3. General sets. Finally, suppose that A is an arbitrary open subset of Rd. 
In this case, we will show that A can be partitioned into subsets A1, . . ., Al, 
and that the techniques of Theorem 3.1 can be applied to efficiently simulate 
P{T8(A) < co, QSTE(A) E Ai}, for i = 1, ..., l. 

For any a E dom Ay, let 

Qa(x, dy x ds) = e(,s)A(a) ry (yx; a) (x, dy x ds). 
rg(x; al) 
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Let B c A, and let qk denote the paths which first hit A/? at time k, as defined 
formally in (3.2). If simulation is performed using a kernel Q E Co. then 

P{T?(A) < 00, 8STE(A) E B} 

(3.31) =l E (Hd (xn Xn+I X Sn+I) t B (-Sk) 

x Q(xo, dxl x dsl) ..0(Xk-1, dxk x dsk). 

Hence 

de ()f 1d/ 3- 
- 

(3.32) &Q,, (B) H (2d (Xn Xn+I x n+1)) LB(ESTE(A)) 
n=O 

is an unbiased estimator for P{T? (A) < oo, 8STE(A) E B}, where {(Xn Sn) n 
0, 1, ... . denotes a Markov additive process having transition kernel d. 

PROPOSITION 3.5. Let A > 0 and A C Rd, and suppose that domAyp is open 
and (H2) and the lower bound of (9i) are satisfied. Let xo denote the initial state 
of {XnI, and let a = inf,cA Iy (v). Then the following hold: 

(i) Forsomefinite subset {fl, ... , al I of a (oAyp), the collection {JA(aoi, a - 
A): i = 1, ... .,1} is an open coverfor A. 

(ii) Let A1 = AOne(al aa- A), A2 = (An Je(a2, a- A))-A1, and so on 
for A3, ..., Al. Then {Al, ... ., AlI is a partition of A, and, for each i, 

(3.33) E(&2ai,g (Ai)) < Cexp -2?-1(inf I5(V) - A)/I} q a.e. xo 

for a certain positive constant C. In the event that A is a finite union of disjoint 
convex sets {Al, ..., A'j, then instead we may take Ai = A', and (3.33) holds with 
A =0. 

REMARK 3.5. If (C') and condition (X) in the statement of Theorem 3.1 are 
satisfied, then it is not necessary to assume that the lower bound of (9i) holds. 
However, in this case we must replace (3.33) with logarithmic asymptotics, as 
given in (3.8). 

4. Proofs. We now introduce some further notation from convex analysis. 
For any convex function f, let f*, cl f, fO+(.), 0+f, dom f and af (.) denote 

the convex conjugate of f, the closure of f, the recession function of f, the 
recession cone of f, the domain of f and the subgradient set of f, respectively. 

For any convex set C, let 

3c(v) = 0t ? v E C, 
09 v C, 
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and let C?, 0+C, aff C, ri C and a3C denote the polar of C, the recession cone 
of C, the affine hull of C, the relative interior of C and the relative boundary of C, 
respectively. [For definitions, see Rockafellar (1970).] 

Also, we adopt the same terminology that was already introduced at the 
beginning of Sections 2 and 3. 

4.1. Proof of Theorem 3.1: upper bound. The proof of the upper bound is 
based on the following convexity lemma, which shows that the separation property 
described in Lemma 3.2(i) is in fact quite general. 

LEMMA 4.1. Let A c Rd be a convex open set, and let f be a closed convex 
function. Let I (v) = sup{(a, v) a E Lof I and a = infvcA I(v). Assume that A 
intersects domI, but A n (xof)L = 0. Then there exists 0 E Lof such that 

(4.1) A c {v:(0,v) >a} and LaI C {v: (0v) a. 

PROOF. Note that (Xof)' = LoI. Since A does not intersect this zero-set 
and I is a positively homogeneous convex function, the sets A and La I are convex 
with no common points in their relative interiors. Hence there exists a separating 
hyperplane [Rockafellar (1970), Theorem 11.3], that is, for some 3 E Rd - {0}, 

(4.2) A c {v:(p,v) >b} and LaI C {v:(/3,v) <bl, 

where b E R; in fact, b > 0 because the definition of I implies I(0) = 0, so 
? E JaI. 

Let c > 0, and define J = I - c. Then LoJ = LcI, and J* = &t0f + c 
[Rockafellar (1970), Theorem 12.2]. An application of Theorems 13.5 and 9.7 
of Rockafellar (1970) then gives 

(4.3) ^jci(p) = inf{(J*y)(p) I y > 0 or y = 0+} 

where (J*y)(.) = yJ*(./y), for all y > 0, and J*0+ is the recession function 
of J *. 

Note that J*(.) E {c, oo} > J*0+(.) E {0, oo} [Rockafellar (1970), Theo- 
rem 8.5]. However, we cannot have J*0+(13) = 0. Otherwise, (4.3) would imply 

I (p) = 0 for all c > 0; then LcI C {v: (p, v) < 0} for all c > 0; and since A 
is open, we would then obtain A n dom I = 0, by (4.2), which is contrary to hy- 
pothesis. Therefore J*0+(13) = oc; thus the point y = 0+ can be removed from 
the infimum in (4.3). 

Since J*(.) E {c, oo}, we now conclude from (4.3) that, for all c > 0, 

(4.4) xci(p/)=yc, wherey=infjy i ELo f} 

Setting c = a when a > 0 yields LaI C {v: (/3, v) < ya}. Since b > 0, we 
conclude that the constant b in (4.2) is greater than or equal to ya, for any a > 0. 
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Next suppose b > ya', where a' > a. Then ?a'I C {v: (,8, v) < b}. By (4.2) it 
follows that infv A I(v) > a', which contradicts the definition of a. Therefore 
b = ya. Also observe that y > 0, because otherwise (4.2) and (4.4) would once 
again imply A n domI = 0, contrary to hypothesis. The required result now 
follows from (4.2) by setting 0 = p//y. E 

Proof of Theorem 3.1 (Upper bound). If 0Q = P, then the result follows 
trivially from (1.4); we will assume from now on that this is not the case. 

First assume that condition (X) in the statement of the theorem is satisfied. 
Under this general assumption, the eigenvectors rxg need not be uniformly 
positive. Consequently we start by introducing an augmented kernel, K6, whose 
eigenvectors do have this positivity property. Namely, for any A > 0 define 

(4.5) XK(x, dy x ds) = Xo (x, dy x ds) + A\xo(dy)>o(ds), 

where Uxo denotes a measure on $ having point mass at xo and 7 denotes 
a measure on Rd having point mass at the origin. For shorthand notation, let 
(XA (a))1 denote the convergence parameter of X A(a) and AA (a) = log XA (a). 

We begin by establishing the following. 

def 
ASSERTION. FO (a) = limA > o AA (a) < Ax, (a),for all a E SoAx, 

PROOF. Note 

(X) k (Xo, 5; a) 
(4.6) 

= ] x e(as),(i)(xo, dx I X) * (ik)(dXk-1,dXk X ), 

(i1,.k)EJkSC J 

where l(O) = Xo and M(1) = A7x0 o, and 3 consists of all elements of the form 

(ii, ..., ik), where either ij = 0 or 1. Fix a E ?oAXJ and N E E+, and let 

log bN = N[A(a) -A (N)] [< oc by (HI)]. 

Observe that any product j(1) * .* (k) which has n "A7x0?71or" terms contains 

at most n + 1 products consisting of j consecutive "X W " terms where j < N. 
Consequently, for a product containing n "A /1xo 7179 " terms, 

(kxRd e(a,s) I(i)(xo dx1 x ) * X * (ik)(dxk-1, dXk X 

(4 .7)(N 
< b nN+1 A\ (XN 0))k-n 

Summing all terms in (4.6) gives XA (a) < A(N)(a) + bN A, by the definition 
of the convergence parameter. Letting A -> 0 and then N -- oc establishes the 
assertion. El 
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Let F = clFo. We now apply Lemma 4.1 with f(a) = F(a) - c, c < 0, and 
I = J(c), where 

J(c)(v)=sup{(a,v):aE c1` foranycElR. 

Assume, for the moment, that the assumptions of the lemma are satisfied (we 
will verify these later), and let 0 be the element obtained in the lemma when 
f (a) = F(a) - c. Then I(0) < c; and by the assertion, there exists a A > 0 such 
that AA (0) < 0. Moreover, there exists a (XA (0))- 1-subinvariant function rA (0) 
for the kernel X.(0) [Nummelin (1984), Proposition 5.2 and Theorem 5.1, or 
Section 2.2 above]. Define 

(4.8) SR (x, dy x ds) = e(s)rA (dy; ) X (x, dy x ds). 
rA (x; 0) eK(,dyxd) 

Since rA(O) is (XA(0))-1-subinvariant and AA(0) < 0, R0 is itself a Markov 
additive subprobability kernel. 

Let qk denote the paths which first hit A/? at time T8(A) = k. Then by (3.4) 
and the definition of XK, 

00 

E(&?2 zf< KX(xo, dxl x dsl) ... XA(xk-1, dXk x dsk) 

k= 1 Jk (, ) PrA(xo; 0)e(AS1??+Sk) 
(4.9) - ~~ rA (Xk; 0) 

x 3Re (xo , dxl x dsl) 3R (Xk-1, dXk x dsk). 

Note that rA(; 0) is uniformly positive [Remark 2.3, since (4.5) yields a 
minorization Aqxpfo]. Also, rA(.; 0) < oc qp a.e. [Nummelin (1984), Propo- 
sition 5.1]. Thus the ratio (rA (xo; 0)/rA (xk; 0)) in (4.9) is deterministically 
bounded. 

Next observe by Lemma 4.1 that (0, STE(A)) > inf{J(c) (v): v E A}/?. Hence the 
integrand in (4.9) is less than or equal to const* exp{- infvcA J(c) (V)/}. Since "/o 
is a subprobability kernel, we then obtain upon letting ? X, 0 in (4.9) that 

(4.10) lim sup ? log E(&2, ) <- inf J (v)v. 

It remains to show 

(4.11) lim{ inf J(c) (v) > infIgc (v) 

Observe that F(0) > 0 [Lemma 2.3(ii), since SP 7& d]. Hence ( cr)1 \X (.Lor)' 
as c / 0. It follows under (C) that 

(4.12) A Ocone8'(XcF)I = 0 for all c E [co, 0), for some 8' > 0 and co < 0. 
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Since (4Fr)L = LoJ(c), this implies 

(4.13) A n cone8f(XoJ(c)) = 0 for all c E [co, 0). 

Now J(c) is bounded away from zero on (cone8iQ(oJ(c)))c n Sd-i. Since J(c) is 
positively homogeneous, it follows that its level sets are compact on the restricted 
set (cone8' (LoJ(c)))c. Hence, if a denotes the limit on the left-hand side of (4.11), 
then the sets clA 0na J (c) are compact and decrease monotonically as c / 0 to 

clA0n -aJ(?) C clA n -CaIX 

Since the left-hand side is nonempty, we conclude 

(4.14) lim inf J (c)(v)1 > inf IX,(v). c-+*O 1vcA v~c-cA 

Also, since Ix, is positively homogeneous, 

(4.15) inf{Ix, (v): v E cl A} = inf{Ixj (v) v E 

provided that the infimum on the left is greater than or equal to 0. As LoIx, 
(XOAxJ)C is disjoint from A, we see that this infimum is indeed nonnegative. 
Consequently, (4.11) follows from (4.14) and (4.15). 

Finally, we need to verify that the conditions of Lemma 4.1 are actually satisfied 
when f (a) = r(a) - c, for c < 0 sufficiently large. To this end, note that F is 
convex, since [by Lemma 4.2(ii) below] it is the limit of convex functions. Also, if 
c < 0 is sufficiently large, then by Lemma 4.3(i) below, 

ri(c) DriOD,=ri&. 

[The last step follows from Theorem 13.5 of Rockafellar (1970), as noted in the 
remark following Theorem 2.1 of Collamore (1996a).] Then dom J(c) D 0(c) X 

A n dom j(c) 0 0. Since (4.12) holds, we conclude that the hypotheses of the 
lemma are satisfied for sufficiently large c < 0. 

If the lower bound of (9i) is satisfied [instead of condition (X)], then we may 
apply the measure transformation (4.8) directly with Xo in place of eK6, and 
Lemma 4.1 directly with f = Ax. and I = Ix,. The uniform positivity of rx, 
is obtained from Remark 2.3. 

4.2. Proof of Theorem 3.1: lower bound. We begin by introducing a splitting 
and truncation of X , as follows. 

Let h o v be a minorization as in (9'), with h < 1, and note under (9') that 
either v(dy x ds) = v(dy)>71g9(ds) or h(x, ds) = h(x)> i9(ds), where 7o is a point 
mass at the origin. Thus (h @V(.))2 = g ?1L(*), where g = h2 and ct = v2. Hence 
by Lemma 2.3(i), (g @ v) < Xc. This implies the minorization 

(4.16) g (a) X Ft(a) < Xo (a) for all a. 
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Define 
KC X(x, dy x ds)-(g @,a)(x, dy x ds) 

XKc(x, dy x ds)= 1 -g(x, Rd) (> O) 

and observe by this definition that 

(4.17) Xo(x, dy x ds) = (g @,a)(x, dy x ds) + (1-g(x, Rd))JX(x, dy x ds). 

Enlarge (5, S) to ($, S), where $ = $ x {0, 1, 2, .. .} and S is the natural 
extension of S to $; and for M e 2+ define truncated versions gm, hM, XJQ!, 

JCM by 

gM((x, i), ds) = (M +)lo(i)r-MM]d(s)g(x, ds)q 

ILM((dy, j), ds) = lfl (I)l[-M M]d (s),a(dy x ds), 

X,q ((x, i), (dy, j) x ds) = M + I[li + I ( ) (O, M] (i) [M, M]d (S) 

x J%(x,dy xds)]AM, 

icm ((x , i), (dy,9 j) x ds) = gM @9um ((x , i),9 (dy, j) x ds) 

+ (1 - g(x, Rd))X/qM((x, i), (dy, j) x ds). 
Note that Xem is strictly increasing, 

(4.18) XM((x x N), (E x N) x I) < Xo (x, E x I) for all E E F, E /Rd 

(where N denotes the set of natural numbers), and 

(4.19) CM((xxN),(ExN)x')/XcQ(x,ExIF) asM- oo. 

Also, it follows from our construction that XM is irreducible with respect to a 
maximal irreducibility measure qpM / q as M -w c. 

The kernel XM has a minorization, namely gM @/m < XM, which implies 

(4.20) gM(a) 0 IM(a) ? X (a) for all a. 

For shorthand notation, let (XM(a))-l denote the convergence parameter of 
JK4 (a), AM(a) = log XM(a), OM = 0Xm and IM) = I() 

Our main reason for introducing the above truncation is because the transformed 
kernel X. (a) has eigenvectors which are bounded, and the following regularity 
properties also hold. 

LEMMA 4.2. Let XM, G XM, AM and Ax( be defined as above. Then the 
following hold: 

(i) AM is convex, analytic, strictly increasing, and AM(a) / Ax,(a) as 
M - oo, for all a. 

(ii) AX, is convex and lower semicontinuous. 
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(iii) For any a, there exists a (AM (a)) 1 -invariant function, rM (.; a), for the 
kernel Xj ('(a). Moreover, the function rM(; a) is positive and bounded. 

PROOF. (i) Following Iscoe, Ney and Nummelin [(1985), Lemma 3.4], 
introduce the generating function 

mrM(a, 0) 
00 

EjJs~IRd, e(a,s)-;n (IIM (XM -gM @1LM)n- IgM) (dx, dy x ds) 
(4.21) nl Rd, 

x_ye$ 
00 

n=l ~ ~ ~ ~ ~ ~ n e 4 eXL(aQ C9j - gMa 0gmMa) 
n=1 

Then AM(a) = inf{f: VfM(a, ?) < 11 [Nummelin (1984), Proposition 4.7(i)]. Note 
by the construction of XM that the individual terms and number of nonzero terms 
in the summand on the right-hand side of (4.21) are finite; consequently, 

(4.22) 4rM(a, AM(a)) = 1. 

The convexity of AM follows from (4.22) and the convexity of VM. Since VfM 
is analytic on Rd+l, the analyticity of AM follows from (4.22) and the implicit 
function theorem. Finally, the convergence AM / AX. is obtained as in Ney and 
Nummelin [(1987b), Lemma 3.3(i)]. (From this argument, we also see that AM is 
strictly increasing, since Xm is.) 

(ii) Ax. is convex because [by (i)] it is a limit of convex functions, and lower 
semicontinous since the analytic functions AM / AX. as M -> oo. 

(iii) Since (4.22) holds, XO is (XM(a))-'-recurrent [Nummelin (1984), 
Proposition 4.3]. Hence a (XM((a))V1-invariant function exists and is given by 

00 

(4.23) rM(a) = L e-(n?1)M(a)(e*(a0 ) - gM(a) 0 ^M(a)) ^ (a) 
n=O 

[Nummelin (1984), Theorem 5.1]. By the construction of XM, the sum and 
individual terms on the right-hand side are finite; hence rm (.; a) is bounded. The 
positivity of rM(*; a) is obtained from Nummelin [(1984), Proposition 5.1]. D 

LEMMA 4.3. Let the kernels P, XM and XeK be defined as above. Then the 
following hold: 

(i) If JbAp 7p 0 and CXAx,j 0, then i)(b) C Z)c) 

(ii) If X?CMAM 7 0 and X cAxf 7& 0, then D(M) / c)x as M o> . 

(iii) If Xc AX gi #& 0 and v E ri )D)c then I C(v) \ v I(V) as M oo. 

(iv) If X?CAM #& 0 and v E ri2 c), then the supremum in the definition of IMc) 

is achieved at a point 0 E a(XcAM) n affMD). Moreover, if c > infax AM (a), then 
pVAM(0) = v for some nonnegative constant p. 
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PROOF. (i) Note 

(4.24) (SZ) b = (bAp) and (?x() =0+(.c Ax(S) 

[Rockafellar (1970), Theorem 14.2, applied to V and XCAX; by Rock- 

afellar (1970), Theorem 8.7, O+(&ebVA), O+(&X-cAcQ) may be identified with 

O+G(bAp), 0+(CcAX(), respectively]. Now set b = c/2. Since LcAx(2 C 

2(XCl2Ap) [Lemma 2.3(ii)], it follows from (4.24) that (D(c/2))o D (c); 

hence 2(C/2) C ) For a general b > infa Ap(a), observe that 0+(GbA) = 

0+(XCl2A p) [Rockafellar (1970), Theorem 8.7]; hence D (b) = D (C/2) 
(ii) The proof is analogous to (i), once it is observed that 

(4.25) (O+Ax,) = n(O+AM) 
M 

[Rockafellar (1970), Corollary 8.3.3 and Theorem 8.7]. 
(iii) First assume v E inmt(c). Let 

'WM = {a E SCAM: (a, v) > I (V)}, W = {la E XcAx(: (a, v) > I (v)} 

Since LcAM \: cAx(2 monotonically as M -> F,M n WM= = ix(v) 
[the last step follows from Theorem 23.5 of Rockafellar (1970)]. Now v E 

inCtc) = aI c) (v) is a nonempty compact set [Rockafellar (1970), Theo- 
rem 23.4]. Hence the convergence 'WM \, 'W implies 

'WM C {Z: lz-wII < A, w E 'WI, M> someMo((A), forany A >0. 

Thus IM)(vc)<I (v) + A 1 v 11, all M > MO(A). Conversely, LOAM D XoAx X 

IM() > IXC) (v), for all M. We conclude that IC) (V) I c 
(V). 

Next assume v E ri D(c) . Then v E affD ), and hence [by (ii)] v E aff () for 

sufficiently large M. Thus (a, v) = 0, all a E (aff x)c)' and all a E (aff ())', 
M > some Mo. Using this fact, we may then proceed as in the previous paragraph, 
replacing IC), I(c) with their restrictions to aff D (c) 

(iv) Let v, AM, Ic) and bc) denote the restrictions of v, AM, I(c) and 
(c) to aff!M). Then vi E intCt(). Hence aI%c)(v) 7& 0 [Rockafellar (1970), 

Theorem 23.4]. This implies 

(4.26) If)(V) d-' sup (/3, V) = (0, V) for some 0 E a(CCAM) 

[Rockafellar (1970), Theorem 23.5]. Since (al, v) = 0 for all a E (affDc))', (4.26) 

also holds with IM in place of IM$), etc., and 0 in place of 0, where 0 = 0 on 

aff E M) and 0 = 0 on (aff D M) ) -l. 
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Finally observe by (4.26) that vi is normal to ?cAM at 0; hence v is normal 
to SCAM at 0. If c > infaxAM(a), then it follows from Corollary 23.7.1 of 
Rockafellar (1970) that v = pVAM(0), for some constant p > 0. D 

LEMMA 4.4. Let {(Xn, Sn) :n = 0, 1, .. .} be a Markov additive process on 
$ x Ri satisfying (9'). Let 3P denote its transition kernel, and assume that 
the additive components {J} and regeneration times {-cji are bounded and 
E, (SI) = 0, where w is the stationary distribution of {X, I. Then, for any A > 0 
and K > 0, 

A Ir(vj 
(4.27) limElogPi max IS >I - inf inf tA*t-H} <0 

8->0 O<n< LK1s] tE(O,Kls] v=?A t 

where (Qp (a))-1 is the convergence parameter of Y (a). 

PROOF. See Collamore [(1998), Theorem 1]. Since A*(v) = 0 X v = 

E, (SI) = 0, the right-hand side of (4.27) is less than 0. 
We remark that hypothesis (H2) of Collamore (1998) is not needed when the 

time interval (= [0, K] in this case) is bounded, and hypothesis (HO) of that paper 
is satisfied by the results of Ney and Nummelin (1987b). The "s-set" assumption 
in Theorem 2 of Ney and Nummelin (1987b) is not needed, because {1} and 
{ri I are bounded; hence rp (.; a) is uniformly positive for all a, by Lemma 2.2(i), 
and inspection of the proof shows that the "s -set" condition is unnecessary in that 
case. D 

Proof of Theorem 3.1 (Lower bound). 
Case 1: ?OAX(fi 7& 0. Let v E A n risDx,, - tOI. Then v E riSDM for 

sufficiently large M [Lemma 4.3(ii)]. Assume M has been chosen so that this is 
true. Then by Lemma 4.3(iv), there exists 0 E a(COAM) and a positive constant p 
such that pVAM(0) = v. 

Define 

e (O') rm(y. 0) 
(4.28) 3?Zo(x, dy x ds) rm(X 0) J (x,dy xds), 

and observe that AM (0) = 0 =s CROM is itself a Markov additive probability kernel. 
Let S3 denote the paths which first hit A/8 at time T8(A) = k, and let 

xo = (xo, 0). Then, by (3.4) and (4.18), 
00 

E(g?22? >E| X (kO, dxl x dsl) ... X2 M(Xk-1, dXk x dSk) 
k=I1 
00 ei0S1??--Sk)rm(ko0; 0) 

(4.29) k=I Jk rm(xk; 0) 

x ?0 (ko , dx I x ds 1) 3?. (Xk-1 , dxk x dsk). 
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To analyze the quantity on the right-hand side, note that E2T0 (, ) = VAM(O) = 

v/p, where wo is the stationary distribution of {X, I under S/?o [Ney and Nummelin 
(1987la), Lemmas 3.3 and 5.2]. Thus, the expected time for the S1o -process to reach 
the point v/8 E (aA)/8 is approximately p78. Also, since v E St, the straight-line 
path [0, v] contains no points other than v belonging to the convex set cl A. Hence, 
by Lemma 4.4, 

Ps0 {T8(A) < (p-A)/8 O-0 as 8 -0, for any A > 0; 

in other words, the process stays near its central tendency and therefore does not 
enter A/8 before the expected time of p/8. By an analogous argumient, we also 
obtain 

PROI {T8(A) < p78, ST?(A) E B(v, A)C/8} - 0 as 8 -O 0, 

where B (v, A) is a A -ball about v. Finally, by the central limit theorem for Markov 
additive processes, 

lim inf PgR0 { T8 (A) < p/E } > const > 0. 

Putting these together yields 

(4.30) liminfPET8T(A) E (p - A, p], 8ST8(A) E B(v, A)} > const > 0. 

Since rM (; 0) is positive and bounded, by Lemma 4.2(iii), it follows from (4.29) 
and (4.30) that 

(4.31) liminf 8 logE(&<2,) > -(0, v) - A 11I = -IM(v) - A 11I0 

Now let A -> 0 and then M -> oo. From Lemma 4.3 (iii) and (4.3 1), we then obtain 

(4.32) liminf8 logE(&g,) 2 >-Ix (v). 

The required lower bound follows by taking the supremum in (4.32) over v E 

( n risDx, - {0}), and observing by Lemma 4.3(i) and the definition of 2A that 
A n ri Sp #,0 X A 1 n ri Dx, 7& 0. Hence inf{Ixj (v): v E 2 n ri x, - tOll = 

inf{Ix. (v): v e 2L} [cf. Collamore (1996a), the last paragraph in the proof of 
Theorem 2. 1]. 

Case 2: XOAX( = 0. Let Mo = min{M E 2+: LOAM = 0} < oc, and first 
assume Mo < oc. 

For each M, let CM = infXERd AM(a) and c = infaXERd AX(2 (a). Then (bM) 

x)(b as M -- oc, for any bM > CM and b > c. Hence A n riSXy #, 0 X 

A n ri bM) _ 0 (bM > CM) for sufficiently large M (Lemma 4.3). 

Let M > Mo be chosen such that A n M l X (bm > CM), and let v E 

A n ri)bM) - {0}. Let dj = CM + 1/j > 0, j = 1, 2, .... Then by Lemma 4.3(iv), 
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there exist elements Oj E a (dj AM) n aff(DM and positive constants pj such that 

pjVAM(0j) = v. 
For each j, introduce the Markov additive probability kernel 

(4.33) NZO1 (x, dy x ds) = e(OsAm(O)rm(y; Oj) X Kf (x, dy x ds), i ~~~~rm (X; Oj) 

and reason as in (4.29) to obtain 
0 

f e-js +-+Sk)+kA M(0j)rM(xO; Oj) 
k=1 rMk; ~ 

(4.34) 
x ?Roj (xo, dxI x ds1) *? * joj (Xk-1, dxk x dsk). 

It follows from (4.30) and (4.34) that 

(4.35) liminf8logE(&2 E) > -(0j, v) + pjAM(0j). 

We now distinguish two possible cases. First, suppose that {0j} converges 
(possibly after passing to a subsequence) to some element 0 E Rd. Then the 
infimum in the definition of CM is achieved at 0; hence AM(0) = CM > 0 
and VAM (0) = 0. But then limj,00 pj = lim,?00 (v/VAM (0j)) = oo. Letting 
j -> oo in (4.35), we conclude 

(4.36) lim 8 log E(& ,) = oo. 

Next, suppose that {09j does not converge along any subsequence. Let /3j = 

0j / 110j11, and observe that (possibly after passing to a subsequence) /3j -> ,3 E 
Sd-i and 1 111 -> oo as j -- oo. Then /B E 0 AM [Rockafellar (1970), Theorems 
8.2 and 8.7]. Hence j3 E (ZM?m1)) [as in the proof of Lemma 4.3(i)]. Since 

the Oj's were chosen in aff(d1) = aff(m+') it follows that P E (cMD 1)\o n 
ff5)(CM+l) The v *(cA,+1) (B)OH (B )Of 1 aff0(m +. TevE ri ~D ((/3, v) < 0. Hence (,j , v) <- ao < 0, for all 

j > somejo. But then 

(4.37) - (Oj v) I-I Oi I (t3j, v) -- oo as j -- oo. 

Thus, letting j -- oc in (4.35) we again obtain (4.36). 
Finally suppose MO = oc. In this case, the elements of I{OAM: M = 1, 2, ... . 

are nonempty and monotonically decreasing to nM LOAM = LOAX(O = 0. Then 

(4.38) inf{IIjaj:aEXoAM} -oo asM- oo. 

Note that AM is strictly increasing, which (with MO = oc) implies infax AM(a) 
< 0, VM. Since A n rigD)p 7 0 and 5DM increases as M -> oc, Lemma 4.3(i), (ii) 
implies the existence of an element v E nM>M,0( riM- {0}) ' ri2X)Q 
Applying Lemma 4.3(iv), we then obtain elements OM E (a(o0AM) n aff DM) 
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and positive constants PM such that PMVAM (OM) = v. By (4.38), II0M || 00 as 
M -oo. 

Let fBM = OM/110M Then (possibly after passing to a subsequence) PM - 

,B E nM +AM [Rockafellar (1970), Theorems 8.2 and 8.7]. Then ,B E (D(1)) 

[Lemma 4.3(ii) and its proof]. Then v E ((1) and v E ri(D) =1 (, , v) < 0. 
Hence (,BM, v) <-a' < 0, for M sufficiently large. Hence (4.35) and (4.37) (with 
"M" in place of "j") give (4.36), as before. 

4.3. Proofs of Theorem 3.4 and Proposition 3.5. Next we turn to the proof 
of Theorem 3.4. Let d* be the kernel described in (3.18), and let 2 E CQ. By the 
Radon-Nikodym theorem we may write d(t) (x, *) = Jr(t) (x, *) + V(t) (x, .), where 
R (t) (x, ) <? 0*(x, *) and V(t) (x, I l*(x *), for any given x E S. Define 

(4.39) Zs1 =log(dj ( x _*?i)), n=0, 1, ..., 

where {(X*, Sn*) n = 0, 1, .. . denotes a Markov additive process with transition 
kernel W*. Let 

WE = Z F + .+ Zn, n = 1,2,..., and W08 =0. 

The proof of Theorem 3.4 will rely on the following. 

LEMMA 4.5. (i) For any fixed 8, {Wn} is a submartingale. 
(ii) If Z- = Z- v O-1 and WE = Z? + *-+ Z, n E Z+, then {Wn} is a 

submartingale. 
(iii) Suppose 2 E CIo, so that {Z,j}, {WI} are actually independent of 8, and let 

ZM = Z- V (-M), Wm = Z + ?+ Zm, n E Z+, and Wm - . Assume that 
the lower bound of (9i) holds, and assume that we do not have 2 = d * for R a.e. 
(y, s), qo a.e. x. Then, for some positive constant D, 

(4.40) lim -EQ*(Wm) <-D for all M > some Mo. 

PROOF. (i) Jensen's inequality implies that E(Z'+, I X* = x) < 0 for all x; 
hence { Wn, is a submartingale. 

(ii) This follows by a similar argument and the inequality (logs) < s. 
(iii) Let {(X,*, Sn*, Wn) n = 0, 1, .. .} be an independentcopy of {(X,*, Sn*, Wn): 

n = 0, 1,.. .}, but assume that the initial measure of X* is 

*= the stationary measure of {XI} under the transition kernel d 

Let {TiliEi and {TI liEi denote the respective regeneration times, as described in 
Lemma 2. 1, and let 

T=inf{n: Ti = n and i. = n, some i, j e NJ 

denote the coupling time. 
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First note that if we do not have 2 = d* for P a.e. (y, s), qo a.e. x, then 
Jensen's inequality implies E2T* (Zn) < 0. By the monotone convergence Zm \,j Zn 
as M -> oo, it follows that 

(4.41) E,*(ZM) <-D < 0 for all M > some Mo. 

Consequently 

(4.42) E(WnM) <-nD for all M > some Mo. 

Let 'In = T A n, and observe 

(4.43) E(WM) = E(Wm ) ? E(Ws - Wy). 

Also, by a slight variant of (i) and (ii), {W,' - nEMl is a submartingale for 
EM = log(l + e-M). Hence by the optional sampling theorem, 

(4.44) lim E (WT - EME (T) < oc. 

Since VM > -M we also have 

(4.45) lim sup{-E(WVj)} < ME(T) < o0. 
n -> oo 

[By Remark 2.1(i), E(T) < o0.] The required result is then obtained by substitut- 
ing (4.42), (4.44) and (4.45) into (4.43). D 

LEMMA 4.6. Let A c Rd be a convex semicone intersecting ri &. Assume 
that dom Ap is open and that (H2) and (9i) are satisfied. Let c be given as in 

Lemma 3.2, and let -c 
d 

i, where ri = Ti+ - Ti are the interregeneration times 

described in Lemma 2.1. Define 1' (A) = inf{i: Ti ' T8 (A)}. Then, for qo a.e. xo, 

(4.46) lim 8EQ* (18 (A)) -E, (-c) 

PROOF. Let ao, vo and a be given as in Lemma 3.2. 
Lower bound. First introduce a truncation on the additive components; namely 

let M > 0 and define 

(4.47) = if(ao, ) > -M, and M otherwise. 

Let SMl = 01M + ***+ tnM, n = 0, 1, ... ., and 0O =O and let 

B = e(ao, a) = {v: (ao, v) > a}. 

Then by Lemma 3.2(i), 18(A) > IM 8(B), where 1M 8(.) denotes the stopping 
time with respect to the truncated process {SI1nEN. 
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Note that dom Agp open =X 0 E int(dom A*). Hence we may apply the optional 
sampling theorem to obtain 

E* ((o, STM (B) E* ((a, ST)) 
(4.48)TI,8()O 

+EQ*((ao, S+ - ST ))EQ*((I (B)) - 1). 

Also, under the above truncation, 

E )((ao, STIME(B) STME(B))) > -MEG*(TJM,E(B)- TME (B)) 
(4.49) 

>-MC, 

where [by Remark 2.1(i)] the constant C < oo. Since (ao, SM (B)) > a/e, it 

follows from (4.48) and (4.49) that 

(4.50) liminf 8E(*(TM ?(B)) > a(E2*((ao, Sm - S)))1, qo a.e. xo, 

provided that 

(4.51) EQ*((aol, STO)) < oo, So a.e. xo. 

Finally observe by Ney and Nummelin [(1987a), Lemma 3.3] and Lemma 3.2(v), 
vO 

(4.52) E,* (S*i+ -S ) - VAp (ao) EQ* (I) = -EQ* (T), i = 0, 1,... . 

Then (4.51) holds, and the required result follows from (4.50), (4.52), Lem- 
ma 3.2(iii) and the monotone convergence (ao, Sm+? -SM{) \21 (aoO, ST+I -'Ti 
as M -> oo. 

Upper bound. First assume d > 1. Let t > 0, and observe that since A is a 
semicone, (1 + t))vo is an interior point of A. Choose w (1) ..., w(d) E A such that 
the convex hull of {vo, w (1) . .. . w(d)l contains a neighborhood of (1 + t)vo. Let 
v(k) = vo + w(k); let V(k) be the hyperplane containing {vo, v(l) . .. ., v(d) l-{v(k)l; 
and let 3k(k) be the open half-space determined by V(k) which contains the point 
(1 + t)vo. Then cl(nkd= e(k)) = vo + cone(conv{w(l), ..., w(d)l) [Rockafellar 
(1970), Theorem 18.8]. Hence, it follows from our construction and the semicone 
property that nk=l- e (k) C A. Also, 0 , 3e (k) and vo E a3(k), for all k. 

Let Q = inf{i: S* E je(k), all j > i}. By (4.52), the expected time for {S E li 
to reach 3e(k) is i = Q/E(r). Hence, by a simple one-dimensional change of 
measure argument, 

(4.53) lim E9* [1J; QJ > (E ()] = for allA>0 

[cf. Collamore (1998), Theorem 4.1, for a closely related result]. Since 18(A) < 
max{Q1 ..., '}, the upper bound is obtained from (4.53). 

Finally, if d = 1, then the upper bound can be obtained directly from (4.53). D 
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PROOF OF THEOREM 3.4. Following Asmussen and Rubinstein [(1995), 
Theorem 17.6], first observe that 

(4.54) dXC(sn) 
def d? ) d2 df )s( d2 
- dWsn~) dK dWQ(n) )dQ* 

Also, by the Radon-Nikodym theorem and the definition of R(8n), 

(4.55) 
d=* dQ* (d/?(en) -1 *ae 

From (4.54) and (4.55) it follows that 

E(&98)=EQ* [ r7 (XT AO) exp(-2(ao, S*S(A)) -WT88(A)) 
(4.56) Ls r2 (XT--(A); Oo) 

T 

(4.56) 
l 

> exp{-2E* ((ao, S*s(A))) - E* (WT? (A)) + C'}v 

where the last step was obtained by Jensen's inequality, and C' is a finite constant 
obtained from the uniform positivity and boundedness of rp (ao) described in 
Lemma 2.2(iii). 

Let To, Ti, ... denote the regeneration times in Lemma 2.1 generated by the 
Markov additive process { (Xn, S) 1; let {ri I denote the interregeneration times; 
and let 

I' (A) = inf{i: Ti > T8 (A) }. 

Introduce the truncation {(I , S') :n = O, 1, . . .} of {(, S): n = O, 1,...} 
that was described above in (4.47), and observe under this truncation that (4.49) 
holds with A in place of B and 18(.) in place of 1M 8( ). Hence, it follows from 
(4.56) and the definition of {S;'} that 

(4.57) logE(&2 E)>-2EQ*((ao,SM,(A) ))-EQ*(WT?8(A)) + C 

for some constant C E (-oo, oc). 
By the optional sampling theorem and Lemma 4.5(i), (ii), 

(4.58) Ed* (WT?8(A)) ' ? 

Also, by the optional sampling theorem, 

EQ* ((ao, 5TS(A))) = E* ((a(0, ST)) 

9 E* Qu((o, ST+ - ST ))E*((TQ?(A)) -1) 

Then by (4.51), (4.52), Lemma 4.6 and the monotone convergence (ao, SM - 

Si ) \\ (as, +1 -Ti 

(4.60) lim 8EQ*((ao, STQ(A))) \ v (oO VO) as M -- oc. 
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From (4.57), (4.58) and (4.60) we conclude 

(4.61) lim inf 8 log E(2& ) >-2(oao, vo). 

Together with Lemma 3.2(iii) and Theorem 3.3(ii), this implies 

(4.62) lim inf 8 log E(&2,) > lim 8 log E(, *)2 . 
s->-O e --~O 

It remains to show that if Q(t0) 7& d* at some continuity point to E [0, p], then 
there is strict inequality in (4.62). Suppose now that to E [0, c] is a continuity 
point and (tN) 0 d *. Then the continuity properties (3.25) and (3.26) are satisfied 
in some interval (1i, 02] C [0, ?). Let D and Mo be the constants obtained in 
Lemma 4.5(iii) when do = (t). Assume that the interval ?1i, (2] has been chosen 
sufficiently small that (3.25) holds with A = D/2. 

Decompose the random variable Zn into a sum of two terms, namely, 

/dxR(tO) X 
Un = logt +1Q (X* en+ X n ) n =O, ,.. 

(dJ?(sn) 
V= logi - (X* X* x*iI n=0,. Vn = 

dlo(d R(to) nl fn+ 
X 

l+j) 

For M > 0, let UM = Un V (-M); VnM 8 = Vn (-M); 

n n n nni ; ' I 
i=O i=O 

By Lemma 4.5(iii), 

(4.63) limsupFEQ*(Rm218j - RL1181) <-(2 )D for all M > Mo. 

Hence, from the continuity properties (3.25) and (3.26) and a straightforward 

variant of Lemma 4.5(iii) (applied to { Vf' ), we obtain 

(4.64) limsup8EQ* (W(1M's - _ 
M 

<-D < 0 for all M > Mo. 

Moreover, by the optional sampling theorem and Lemma 4.5(i), (ii), 

(4.65) E 0(WT? (A)ALW1 < ? 

and 

(4.66) E- (W[2/8J; T8(A) > Lvi) 0. 
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It follows from (4.64)-(4.66) and the definition of {W,MI81 that 

lim sup 8EQ* (WT?(A)) 

(4.67) 

<-D'-liminf8EEG* (WLM' M' 
WTT(A)A(lA/8J; () < 

exp 
Since 02 <Q, P{T8 (A) < LO2/8J1 -} 0 [Collamore (1998), Theorem 1; cf. (4.52) 
and the proof of Lemma 4.4]. Also, the above definitions imply that the last 
integrand in (4.67) is bounded below by -2M[((2 - (1)/8 + 1]. We conclude 
that the last term on the right-hand side of (4.67) can actually be dropped. 

Using (4.67) in place of (4.58) now gives strict inequality in (4.62), as 
desired. D 

PROOF OF PROPOSITION 3.5. (i) By definition, 

(CbIP)C= U Jk(a, b) for all b > O. 
a Eo0ASp 

def 
Hence {X(a,a - A)IaEXO0Ap is an open cover for 9 = a(CaIp) n 
(cone3 (CoA*))c. 

The set 93 is compact, since Ip is positively homogeneous and strictly 
positive on the compact set Sd-I n (cones(CoA* ))c [Collamore (1996b), Lem- 
ma 3.1]. Hence 93 has a finite subcover. This subcover also covers (CaIP)C n 
(cone3 (cLoA ))c, and hence A. 

(ii) This is established in the same way as the upper bound of Theorem 3.1, with 
ai in place of 0. In the case where A is a finite union of convex sets, choose the 
ai 's to be the elements obtained in Lemma 3.2 when A = A', i = 1, .., k, and 
then proceed as in the proof of the upper bound of Theorem 3.1. C 
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