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Abstract

This paper introduces a new approach, based on large deviation theory and nonlinear re-

newal theory, for analyzing solutions to stochastic fixed point equations of the form V
D
= f(V ),

where f(v) = Amax{v,D}+ B for a random triplet (A,B,D) ∈ (0,∞)× R2. Our main result
establishes the tail estimate P {V > u} ∼ Cu−ξ as u → ∞, providing a new, explicit proba-
bilistic characterization for the constant C. Our methods rely on a dual change of measure,
which we use to analyze the path properties of the forward iterates of the stochastic fixed point
equation. To analyze these forward iterates, we establish several new results in the realm of
nonlinear renewal theory for these processes. As a consequence of our techniques, we develop
a new characterization of the extremal index, as well as a Lundberg-type upper bound for
P {V > u}. Finally, we provide an extension of our main result to random Lipschitz maps of

the form Vn = fn(Vn−1), where fn
D
= f and Amax{v,D∗}+B∗ ≤ f(v) ≤ Amax{v,D}+B.

1 Introduction

From Stochastic Processes and their Applications 123 (9), pp. 3378-3429.

Stochastic fixed point equations (SFPE) arise in several areas of contemporary science and have
been the focus of much study in applied probability, finance, analysis of algorithms, page ranking in
personalized web search, risk theory, and actuarial mathematics. A general stochastic fixed point
equation has the form

V
D
= f(V ), (1.1)

where f is a random function satisfying certain regularity conditions and is independent of V .
When f(v) = Av + B, where (A,B) is independent of V and E [logA] < 0, this problem has a
long history starting with the works of Solomon (1972), Kesten (1973), Vervaat (1979), and Letac
(1986).

†Corresponding author. Research supported in part by Danish Research Council (SNF) Grant “Point Process
Modelling and Statistical Inference,” No. 09-092331.

‡Research supported by grants from NSF DMS 110 7108.
AMS 2000 subject classifications. Primary 60H25; secondary 60K05, 60F10, 60J10, 60G70, 60K25, 60K35.
Keywords and phrases. Random recurrence equations, Letac’s principle, nonlinear renewal theory, slowly changing

functions, Harris recurrent Markov chains, geometric ergodicity, large deviations, Cramér-Lundberg theory with
stochastic investments, GARCH processes, extremal index.

1



Tail estimates for solutions to general SFPEs have been developed by Goldie (1991) using
implicit renewal theory, extending the fundamental work of Kesten (1973). Under appropriate
regularity conditions, Goldie (1991) proved that

P {V > u} ∼ Cu−ξ as u→∞ (1.2)

for certain constants C and ξ. More recently, Buraczewski et al. (2009) revisited the multi-
dimensional version of (1.2) and established strong results concerning the distribution of the sta-
tionary solution.

The constant C appearing in (1.2) is defined in terms of the tails of V and f(V ), rendering it
unsuitable for numerical purposes and for statistical inference concerning various tail parameters
of scientific interest. Indeed, except in some special cases, the formulae for C presented in Goldie
(1991) do not simplify to useful expressions. This issue is folklore and has been observed by several
researchers including Yakin and Pollak (1998), Siegmund (2001), and Enriquez et al. (2009). Yakin
and Pollak’s work was motivated by likelihood ratio testing and change point problems in statistics,
while the paper of Enriquez et al. was motivated by probabilistic considerations.

The primary objective of this paper is to present a general alternative probabilistic approach
to deriving the above tail estimates, yielding a characterization of this constant which—beyond
its theoretical interest—is also amenable to statistical inference, and to Monte Carlo estimation
in particular. In the process, we draw an interesting connection between the constant C in (1.2)
and the backward iterates of an SFPE described in Letac (1986). Specifically, we show that in
many cases, this constant may be obtained via iterations of a corresponding perpetuity sequence,
which has a comparatively simple form and is computable. As this representation is explicit, it also
resolves questions about the positivity of the constant which have been often raised in the literature
and addressed via specialised methods.

The starting point for our analysis is the quasi-linear recursion

f(v) = Amax{v,D}+B, (1.3)

where (A,B,D) ∈ (0,∞)×R2, often referred to as “Letac’s Model E.” A key idea in our approach
is the observation that the distribution of the solution to this SFPE is the stationary limit of a
positively recurrent Markov chain, namely the forward sequence generated by this SFPE, given by

Vn = An max{Vn−1, Dn}+Bn, n = 1, 2, . . . . (1.4)

The tail probabilities of V can then be studied via excursions within a regeneration cycle of this
Markov chain. After a large deviation change of measure argument, these excursions can be viewed
as perturbations of a multiplicative random walk. While the multiplicative random walk itself
can be handled via classical renewal-theoretic techniques, analysis of perturbations requires the
development of new methods in nonlinear renewal theory.

In the central result of this paper, we show that P {V > u} ∼ Cu−ξ for a constant C which is
given by

C =
1

ξλ′(ξ)E[τ ]
Eξ

[(
Z(p) − Z(c)

)ξ
1{τ=∞}

]
, (1.5)

where τ is a typical regeneration time of the Markov chain {Vn} (as described below in Lemma
2.2), λ is the moment generating function of the random variable (logA),

Z(p) = V0 +
∞∑
n=1

Bn
A1 · · ·An

,
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Z(c) is the limit of (2.16) below, often be taken to be zero, and Eξ[·] denotes expectation in the
ξ-shifted measure (as defined below in (2.17)). In addition, we provide an error estimate which
describes the convergence rate of the infinite series in (1.5) to its limiting value.

Roughly, the expectation in (1.5) quantifies the discrepancy between the constant appearing
in Goldie’s estimate (1.2) and the constant obtained in Cramér’s classical ruin estimate, used to
characterize the hitting probability of a positive-drift random walk into a negative barrier; see
Remark 2.4 below. In practical applications, the conjugate term Z(c) appearing in (1.5) is often
zero; thus, this expression typically represents a perpetuity sequence killed when the transient ξ-
shifted process {Vn} regenerates within finite time. [In Remark 2.5 below, we compare our formula
to one recently obtained by Enriquez et al. (2009) for the linear recursion f(v) = Av + B and
independent random variables A and B.]

The next objective of this article is to describe how our probabilistic methods go beyond the
scope of (1.2) in certain respects. In our first extension, we develop an analog of the classical
Lundberg inequality of insurance mathematics. Namely we show that P {V > u} ≤ C̄u−ξ, for all
u ≥ 0, for a certain constant C̄ ∈ (C,∞). Then, as an application of our techniques and motivated
by extreme value theory, we provide a new characterization of the extremal index Θ for the forward
recursive process (1.4). Namely we establish that

Θ =
1−E

[
eξSτ∗

]
E [τ∗]

, (1.6)

where τ∗ = inf{n ≥ 1 : Sn ≤ 0} and Sn =
∑n

i=1 logAi. The latter expression provides a closed-form
alternative to the well-known iterative solution given for the special case of the linear recursion in
de Haan et al. (1989).

We conclude this paper with an extension of our main result to random maps of the form

Vn = fn(Vn−1), n = 1, 2, . . . , (1.7)

for {fn} i.i.d. copies of a random Lipschitz function f satisfying the cancellation condition

An max{v,D∗n}+B∗n ≤ fn(v) ≤ An max{v,Dn}+Bn, (1.8)

where {(An, Bn, Dn, B
∗
n, D

∗
n) : n = 1, 2, . . .} is an i.i.d. sequence taking values in (0,∞) × R4. It-

erated random systems have received much recent attention in the literature (Diaconis and Freed-
man (1999), Stenflo (2001), Steinsaltz (2001), Carlsson (2002), Alsmeyer and Fuh (2001), Alsmeyer
(2003), Athreya (2003)), and it is of interest to characterize their tail behavior; cf. Mirek (2011a).
In fact, (1.8) describes a rather general class of recursions, and it will allow us to subsume—in a
single mathematical result—all of the models considered in Goldie (1991) and to include additional
processes not considered there, such as the AR(1) process with ARCH(1) errors, which we describe
in Example 3.6 below. In this paper, we develop an analog of (1.5) for this general class of pro-
cesses. Under our hypotheses, we obtain, once again, the asymptotic decay (1.2) with C ∈ (0,∞),
but a simple form for the constant C is no longer feasible, and (1.5) must now be replaced with a
recursive formula. It is worthwhile to observe that Mirek (2011a) also studied the above question
and established related results, although without our expression for C. While our methods are
probabilistic, Mirek’s methods are analytic in nature; in particular, he establishes the positivity of
the constant using complex analysis techniques.

The rest of the paper is organized as follows. Section 2 contains some background, notation,
and a statement of the main results of the paper. Section 3 contains examples, while Section 4
describes our results in nonlinear renewal theory. Proofs of the main results are in Sections 5, 6,
and 7, while proofs of the results from nonlinear renewal theory are in Section 8. Section 9 contains
the proof of our main result for Lipschitz random maps and further discussion pertaining to this
generalization.

3



2 Statement of results

2.1 Letac’s principle and background from Markov chain theory

Assume that V
D
= f(V ) can be written in the general form

V
D
= F (V, Y ) := FY (V ), (2.1)

where F : R× Rd → R is deterministic, measurable, and continuous in its first component.
Let v be an element of the range of F , and let {Yn} be an i.i.d. sequence of random variables

such that Yn
D
= Y for all n. Then the forward sequence generated by the SFPE (2.1) is defined by

Vn(v) = FYn ◦ FYn−1 ◦ · · · ◦ FY1(v), n = 1, 2, . . . , V0 = v, (2.2)

while the backward sequence generated by this SFPE is defined by

Zn(v) = FY1 ◦ FY2 ◦ · · · ◦ FYn(v), n = 1, 2, . . . , Z0 = v. (2.3)

Note that the backward recursion need not be Markovian, but for every v and every integer n,
Vn(v) and Zn(v) are identically distributed. The Letac-Furstenberg principle states that, when the
backward sequence converges to a random variable Z a.s. and is independent of its starting value,
then the stationary distribution of {Vn} is the same as the distribution of Z. This is described in
the following lemma (Letac (1986), p. 264, or Furstenberg (1963)).

Lemma 2.1 Let F : R × Rd → R be deterministic, measurable, and continuous in its first com-
ponent; that is, FY is continuous, where Y is an Rd-valued random variable, for some d ∈ Z+.
Suppose that limn→∞ Zn(v) := Z exists a.s. and is independent of its initial state v. Then Z is the
unique solution to the SFPE (2.1). Furthermore, Vn(v) ⇒ V as n → ∞, where V is independent
of v, and the law of V is same as the law of Z.

Starting with (2.1), we will study the tail probabilities of V using its forward recursive sequence
(2.2), and noting that the distribution of V agrees with the limiting distribution of this forward
sequence. We will focus especially on the SFPE

V
D
= FY (V ), where FY (v) := Amax{v,D}+B, (2.4)

for Y = (logA,B,D) ∈ (0,∞)×R2, often referred to as Letac’s Model E. This SFPE generates the
forward quasi-linear recursive sequence

Vn = An max{Vn−1, Dn}+Bn, n = 1, 2, . . . , (2.5)

where the driving sequence {Yn : n = 1, 2, . . .}, Yn := (logAn, Bn, Dn), is assumed to be i.i.d. with
the same distribution as (logA,B,D).

Iterating the forward recursion (2.5), we obtain with B0 ≡ V0 that

Vn = max


n∑
i=0

Bi

n∏
j=i+1

Aj ,

n∨
k=1

 n∑
i=k

Bi

n∏
j=i+1

Aj +Dk

n∏
j=k

Aj

 . (2.6)

Iterating the corresponding backward recursion and setting B̃i = Bi for i = 1, . . . , n and B̃n+1 = V0,
we obtain that

Z̃n = max


n+1∑
i=1

B̃i

i−1∏
j=1

Aj ,
n∨
k=1

 k∑
i=1

Bi

i−1∏
j=1

Aj +Dk

k∏
j=1

Aj

 . (2.7)
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Under mild regularity conditions (to be introduced formally in the next section), the forward
sequence {Vn} in (2.6) will be Markovian, possessing a stationary distribution and a regeneration
structure.

To describe this regeneration structure, let {Vn} denote a Markov chain on a general state space
(S,S), and assume that this chain is aperiodic, countably generated, and irreducible with respect
to its maximal irreducibility measure ϕ (as defined on p. 13 of Nummelin (1984)). Let P denote
the transition kernel of {Vn}. (From Section 2.2 onwards, we will take {Vn} to be the Markov chain
generated by a forward sequence (2.6), but for the remainder of this section, we will assume it to
be an arbitrary chain.)

Recall that if {Vn} is aperiodic and ϕ-irreducible, then it satisfies a minorization, namely

δ1C(x)ν(E) ≤ P k(x,E), x ∈ S, E ∈ S, k ∈ Z+, (M)

for some set C with ϕ(C) > 0, some constant δ > 0, and some probability measure ν on (S,S). The
set C is called a small set or C-set.

An important consequence of (M)—first established by Athreya and Ney (1978) and Nummelin
(1978)—is that it yields a regeneration structure for the Markov chain. More precisely, these authors
established the following result. Here and in the following, we let Fn denote the σ-field generated
by (V0, . . . , Vn).

Lemma 2.2 Assume that (M) holds with k = 1. Then there exists a sequence of random times,
0 ≤ K0 < K1 < · · · , such that:

(i) K0,K1 −K0,K2 −K1, . . . are finite a.s. and mutually independent;
(ii) the sequence {Ki −Ki−1 : i = 1, 2, . . .} is i.i.d.;
(iii) the random blocks

{
VKi−1 , . . . , VKi−1

}
are independent, i = 0, 1, . . .;

(iv) P {VKi ∈ E|FKi−1} = ν(E), for all E ∈ S.

Let τi := Ki −Ki−1 denote the ith inter-regeneration time, and let τ denote a typical regeneration

time, i.e., τ
D
= τ1.

Remark 2.1 Regeneration can be related to the return times of {Vn} to the C-set in (M) by
introducing an augmented chain {(Vn, ηn)}, where {ηn} is an i.i.d. sequence of Bernoulli random
variables, independent of {Vn} with P {ηn = 1} = δ. Then based on the proof of Lemma 2.2, we
may identify Ki − 1 as the (i+ 1)th return time of the chain {(Vn, ηn)} to the set C × {1}. At the
subsequent time, Ki, VKi has the distribution ν, where ν is given as in (M) and is independent
of the past history of the Markov chain. Equivalently, the chain {Vn} regenerates with probability
δ upon each return to the C-set. In particular, in the special case when δ = 1, in which case the
chain {Vn} is said to have an atom, the process {Vn} regenerates upon every return to the C-set.

As a consequence of the previous lemma, we obtain a representation formula relating the sta-
tionary limit distribution V of {Vn} to the behavior of the chain over a regeneration cycle. First
set

Nu =

τ−1∑
n=0

1(u,∞)(Vn), (2.8)

where V0 ∼ ν. By Lemma 2.2 (iv), Nu describes the number of visits of {Vn} to the set (u,∞) over
a typical regeneration cycle. Then Theorem 2.2 yields a representation formula (Nummelin (1984),
p. 75), as follows.

Lemma 2.3 Assume that (M) holds with k = 1. Then for any u ∈ R,

P {V > u} =
E [Nu]

E [τ ]
. (2.9)
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If (M) holds only for k > 1, then it is helpful to study the k-chain {Vkn : k = 0, 1, . . .} and to
observe that (2.9) also holds when Nu, τ are defined relative to this k-chain. It is also helpful to
note that the k-chain of the forward process generated by Letac’s Model E is also a process having
the form of Letac’s Model E. In particular, for each i ∈ Z+, we may define

Ai = Ak(i−1) · · ·Aki−1, Bi =

ki−1∑
j=k(i−1)

Bj (Aj+1 · · ·Aki−1) ,

Di =

ki−1∨
j=k(i−1)

Dj(Aj · · ·Aki−1)−
j−1∑

l=k(i−1)

Bl(Al+1 · · ·Aki−1)

 , (2.10)

and note that Vn = An max{Vn−1, Dn}+Bn, n = 0, 1, . . . implies

Vki = max {Ai V0,Di}+ Bi, i = 1, 2, . . . , (2.11)

which has the same form as (2.4), (2.5), but with (A,B,D/A) in place of (A,B,D).

2.2 The main result

We now turn to the tail decay of the random variable V satisfying the SFPE

V
D
= FY (V ), where FY (v) := Amax{v,D}+B. (2.12)

Let {Vn} and {Zn} denote the forward and backward recursions generated by this SFPE. Also
introduce two related backward recursive sequences, which will play an essential role in the sequel.

The associated perpetuity sequence: Let {Yn}n∈Z+ , Yn ≡ (logAn, Bn, Dn), be the i.i.d.
driving sequence which generates the forward recursion {Vn}, and let A0 ≡ 1 and B0 have the
distribution ν given in the minorization (M). Assume B0 is independent of the driving sequence
{Yn}n∈Z+ . Now consider the backward recursion

Z(p)
n = F

(p)
Y0
◦ · · · ◦ F (p)

Yn
(0), n = 0, 1, . . . ,

where

F
(p)
Y (v) :=

v

A
+
B

A
. (2.13)

By an elementary inductive argument, it follows that

Z(p)
n =

n∑
i=0

Bi
A0 · · ·Ai

, n = 0, 1, . . . . (2.14)

The sequence {Z(p)
n } will be called the perpetuity sequence associated to {Vn} and is the backward

recursion generated by the SFPE (2.13). Set Z(p) = limn→∞ Z
(p)
n provided that this limit exists

a.s.

The conjugate sequence: Let Ď0 := −B0, where B0 has the distribution ν given in the
minorization (M), and let Ďi := −AiDi−Bi for i = 1, 2, . . . , and consider the backward recursion

Z(c)
n = F

(c)
Y0
◦ · · · ◦ F (c)

Yn
(0), n = 0, 1, . . . ,

where

F
(c)
Y (v) :=

1

A
min

{
Ď, v

}
+
B

A
. (2.15)
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It follows by induction that

Z(c)
n = min

{
Z(p)
n , 0,

n∧
k=1

k−1∑
i=0

(
Bi

A0 · · ·Ai
− Dk

A0 · · ·Ak−1

)}
. (2.16)

The sequence {Z(c)
n } will be called the conjugate sequence to {Vn} and is the backward recursion

generated by the SFPE (2.15). Set Z(c) = limn→∞ Z
(c)
n provided this limit exists a.s.

Further notation: Let A denote the multiplicative factor appearing in (2.12), and define

λ(α) = logE [Aα] and Λ(α) = log λ(α), α ∈ R.

Let µ denote the distribution of Y := (logA,B,D), and let µα denote the α-shifted distribution
with respect to the first variable; that is,

µα(E) :=

∫
E
eαxdµ(x, y, z), E ∈ B(R3), α ∈ R, (2.17)

where, here and in the following, B(Rd) denotes the Borel sets of Rd. Let Eα [·] denote expectation
with respect to this α-shifted measure. For any random variable X, let L(X) denote the probability
law of X. Let supp (X) denote the support of X. Also, given an i.i.d. sequence {Xi}, we will often
write X for a “generic” element of this sequence. For any function h, let dom (h) denote the domain
of h and supp (h) the support of h, respectively. Finally, let Fn denote the σ-field generated by the
forward sequence V0, . . . , Vn, where {Vn} is obtained from the recursion (2.12).

We now state the main hypotheses of this paper.

Hypotheses:
(H0) The random variable A has an absolutely continuous component with respect to Lebesgue

measure with a nontrivial density in a neighborhood of R.

(H1) Λ(ξ) = 0 for some ξ ∈ (0,∞) ∩ dom (Λ′).

(H2) E
[
|B|ξ

]
<∞ and E

[
(A|D|)ξ

]
<∞.

(H3) P {A > 1, B > 0} > 0 or P {A > 1, B ≥ 0, D > 0} > 0.

Next we turn to a characterization of the decay constant C in the asymptotic formula P {V > u} ∼
Cu−ξ as u→∞. To describe this constant, we will compare the process {Vn} generated by Letac’s
forward recursion (2.2) to that of a random walk, namely

Sn := logA1 + · · ·+ logAn, n = 1, 2, . . . ,

where {logAn} is an i.i.d. sequence having the probability law µA. In Sparre-Andersen model in
collective risk theory, one studies ruin for the random walk {Sn}, that is,

ψ∗(u) := P {Sn < −u, for some n ∈ Z+} .

It is well known that, asymptotically,

ψ∗(u) ∼ C∗e−ξu as u→∞, (2.18)

where E
[
Aξ
]

= 1. Following Iglehart (1972), the constant C∗ is characterized by setting

τ∗ = inf {n ∈ Z+ : Sn ≤ 0} , (2.19)
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and then defining

C∗ =
1−E

[
eξSτ?

]
ξλ′(ξ)E [τ∗]

. (2.20)

In collective risk theory, the constant C∗ is referred to as the Cramér-Lundberg constant.
Our aim is to develop an analogous characterization for the constants of tail decay associated

with ψ(u) := P {V > u}. Expectedly, this will involve the return times τ , where τ is a typical
regeneration time of the Markov chain or, more precisely, the first regeneration time given that
regeneration occurs at time 0.

Recall that {Z(p)
n } and {Z(c)

n } are the associated perpetuity and conjugate sequences, respec-
tively, and that Z(p) and Z(c) are their a.s. limits (which exist under (H0)-(H3); see Lemma 5.5
below).

Theorem 2.1 Assume Letac’s Model E, and suppose that (H0), (H1), (H2), and (H3) are satisfied.
Then

lim
u→∞

uξP {V > u} = C, (2.21)

for the finite positive constant

C =
1

ξλ′(ξ)E [τ ]
Eξ

[(
Z(p) − Z(c)

)ξ
1{τ=∞}

]
. (2.22)

Moreover, C = limn→∞Cn, where

Cn =
1

ξλ′(ξ)E [τ ]
Eξ

[((
Z(p)
n − Z(c)

n

)+
)ξ

1{τ>n}

]
, (2.23)

and Rn := C − Cn = o(e−εn) as n→∞, for some ε > 0.

Remark 2.2 The constant ε in the previous theorem can be related to the tail distribution of τ ,
as follows. In Lemma 5.1 below, it will be shown that the Markov chain {Vn} is geometrically
recurrent. Thus, for some γ > 0,

P {τ > n} = o(e−γn) as n→∞.

From the proof of Theorem 2.1, we identify ε = γ/ξ for ξ ≥ 1, and ε = γ for ξ ∈ (0, 1). The
constant γ may also be identified more explicitly by a slight variant of the proof of Theorem 2.1;
see Remark 6.2 below.

Remark 2.3 Hypothesis (H0) can be replaced with the weaker condition that logA is nonarith-
metic and {Vn} is nondegenerate, although this leads to in a more complicated expression for C.
Indeed, Hypothesis (H0) is only needed to establish the minorization condition (M) with k = 1.
(While this assumption also appears in the section on nonlinear renewal theory, it may be replaced
there with the assumption that A is non arithmetic.) However, if the recursion is nondegenerate,
then under our remaining hypotheses, it follows that the forward process {Vn} is ϕ-irreducible and
hence Harris recurrent (cf. Lemma 5.1 (ii) below). Consequently (M) always holds, although not
necessarily with k = 1. But then we may study the k-chain in place of the 1-chain, replacing the
transition kernel P with the kernel P k everywhere in the proofs. This leads to the same representa-
tion formula as in (2.22), except that τ is now the first regeneration time of the k-chain {Vkn}. The
other hypotheses remain the same as before, since if (H1), (H2), and (H3) hold for the 1-chain, they
also hold for the k-chain by an elementary argument. Nonetheless, it is important to emphasise
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that the expression for C obtained in this way is not always useful, especially compared with (2.22),
mainly because the regeneration time will now be relative to the k-chain. In particular, in Example
3.2 below, we will show that the conjugate sequence for the 1-chain is zero, greatly simplifying
(2.22). However, it is not possible to show the same is true of the k-chain in this example. (For a
more detailed discussion of the k-chain, see Section 9.)

Remark 2.4 The above theorem may be viewed as an extension of Cramér’s famous ruin estimate,
as follows. By a classical duality argument, it can be shown that the ruin probability in (2.18) is
the same as the steady-state exceedance probability of the reflected random walk

Wn := max
{
Wn−1 + logAn, 0

}
, n = 1, 2, . . . and W0 = 0;

cf. Siegmund (1985), Appendix 2. Specifically, if W := limn→∞Wn and ψ∗ is given as in (2.18),
then ψ∗(u) = P {W > u}, and we now compare ψ∗(u) to ψ(u) := P {V > u}.

By Theorem 2.1, (ψ(u)/ψ∗(log u)) ∼ C/C∗ as u → ∞. Moreover, recalling that τ∗ := inf{n :
Sn ≤ 0}, it follows by a simple change-of-measure argument (as in the proof of Lemma 6.1 below)
that

E
[
eξSτ∗

]
= Pξ {τ∗ <∞} .

Hence it follows from Theorem 2.1 that

C

C∗
=

E [τ∗]

E [τ ]
·

Eξ [W]

Pξ {τ∗ =∞}
, where W :=

(
Z(p) − Z(c)

)
1{τ=∞}. (2.24)

Thus, the discrepancy between an exceedance for classical random walk and Letac’s Model E
is quantified via the inclusion of an additional term

(
Z(p) − Z(c)

)
and the replacement of the

regeneration time τ∗ for the random walk with the regeneration time τ for Letac’s Model E.
It is worth observing that, if (B,D) = (0, A−1) in Letac’s Model E, then we obtain the multi-

plicative random walk Vn = max{AnVn−1, 1}, and the sample paths of {log Vn} are equivalent to
those of {Wn}, and then we expect to obtain that C = C∗. Indeed, in Example 3.1 below, we will
revisit this example and verify that C = C∗ in this special case.

Remark 2.5 In a recent work, specialized to the linear recursion f(v) = Av + B, Enriquez et al.
(2009) provided an alternative probabilistic representation for this constant when A and B are
independent. Utilizing a coupling satisfied by the doubly-infinite random walk {Sn : n ∈ N}, where

Sn =
∑n

i=1 logAi for n > 0, Sn =
∑0

i=−n+1 logAi for n ≤ 0 (where An
D
= A), these authors

established another representation formula for C, namely

C = C∗E∗
[
ZξF
]

+ E∗
[
ZξB
]
, (2.25)

where

ZF := B0 +
∞∑
n=1

Bn
A1 · · ·An

and ZB :=

−1∑
n=−∞

Bn
A1 · · ·An

.

Here, C∗ is given as in the previous remark, and {An} and {Bn} are i.i.d. copies of A and B,
respectively, and these sequences are mutually independent. Here, the expectations E∗[·] are evalu-
ated in the ξ-shifted measure and are conditional on the event that the random walk stays positive
over its infinite-time evolution when viewed forward in time (n = 1, 2, . . .), and nonnegative over
its infinite-time evolution when viewed backward in time (n = 0,−1, . . .).

It is difficult to directly compare (2.25) with our formula, since they are based on very different
techniques. However, from an applied perspective, we note that Eq. (2.25) is still computationally
complex, as it depends on paths of infinite length, both forward and backward in time, which proves
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cumbersome in applications, e.g., to statistics and Monte Carlo simulation. In these contexts, our
formula and method can be applied more directly (cf. Collamore et al. (2011)) and thus gives
an appealing alternative. A further advantage of our formula is its generality, which allows one
to study a wide variety of recursions beyond the linear case, as we will see in Section 3 below.
Moreover, there are also other variants on our formula for C which can be deduced directly from
our method of proof. We will discuss these variants in Remarks 6.2 and 6.3 below.

In practice, Theorem 2.1 only yields a simple representation for the constant C when the
complicated “conjugate” term can be removed from the expression in (2.22). Indeed, in many

applications of practical interest, Z
(c)
n = 0 for all n along paths for which {τ =∞}. Verifying this

additional condition is problem-dependent, but it will always be our strategy when addressing the
various applications of Letac’s Model E. Thus, it is worth emphasizing that a trivial consequence
of Theorem 2.1 is the following:

Corollary 2.1 Assume the conditions of the previous theorem, and further assume that Z
(c)
n = 0,

n ∈ Z+, along all paths such that {τ =∞}. Then (2.21) holds with

C =
1

ξλ′(ξ)E [τ ]
Eξ

[(
Z(p)

)ξ
1{τ=∞}

]
. (2.26)

Moreover, C = limn→∞Cn, where

C =
1

ξλ′(ξ)E [τ ]
Eξ

[((
Z(p)
n

)ξ ∨ 0
)
1{τ>n}

]
+ o(e−εn) as n→∞, (2.27)

for some ε > 0.

For specific examples where the conditions of Corollary 2.1 applies, see Examples 3.1-3.4 below.

2.3 Two auxiliary results

We now supplement the previous estimate with a sharp upper bound. First define

Z̄(p) = |V0|+
∞∑
n=1

(
|Bn|+An|Dn|

)
A1 · · ·An

1{τ>n}. (2.28)

Proposition 2.1 Assume Letac’s Model E, and suppose that (H0), (H1), (H2), and (H3) are
satisfied. Then

P {V > u} ≤ C̄(u)u−ξ, for all u ≥ 0, (2.29)

where for certain positive constants C1(u) and C2(u),

C̄(u) = Eξ
[(
Z̄(p)

)ξ]
sup
z≥0

{
e−ξz (zC1(u) + C2(u))

}
<∞ for all u. (2.30)

Furthermore,

C1(u)→ 1

m
, and C2(u)→ 1 +

σ2

m2
as u→∞, (2.31)

where m := Eξ [logA] and σ2 := Varξ (logA).
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The constants C1(u) and C2(u) will be identified explicitly in (8.44) below.
Next, we conclude our discussion of Letac’s Model E with an alternative characterization of

the extremal index of its forward iterates. The extremal index—which measures the tendency of a
dependent process to cluster—is defined for a strictly stationary process {Ṽn} via the equation

lim
n→∞

P

{
max

1≤i≤n
Ṽn ≤ un

}
= e−Θt, (2.32)

where {un} is chosen such that

lim
n→∞

n
(

1−P
{
Ṽn > un

})
= t > 0. (2.33)

As argued in Rootzén (1988), p. 380, when {Vn} is a Markov sequence and the conditions of Lemma
2.2 are satisfied, this quantity may be written as

Θ = lim
u→∞

P {Vn > u, some n < τ}
E [Nu]

, (2.34)

where Nu denotes the number of exceedances above level u occurring over a regeneration cycle.
Consequently, using a slight modification of the methods of Theorem 2.1, we obtain the following:

Proposition 2.2 Assume that {Vn} satisfies the forward recursion (2.5), and suppose that (H0),
(H1), (H2), and (H3) are satisfied. Then

Θ =
1−E

[
eξSτ∗

]
E [τ∗]

, (2.35)

where τ∗ = inf{n ≥ 1 : Sn ≤ 0} for Sn =
∑n

i=1 logAi.

The above expression provides a closed-form expression for Θ, complementing the iterative
solution provided for the linear recursion f(v) = Av + B in de Haan et al. (1989). We note that
the quantities τ∗ and Sτ∗ in this representation appear naturally in the context of risk theory; cf.
Iglehart (1972) and (2.20) above.

2.4 General random maps

Finally, we turn to an extension of our main result to the setting of general random maps. Suppose
that

Vn = fn(Vn−1), n = 1, 2, . . . , V0 = v, (2.36)

where {fn} are i.i.d. copies of a random function f , and f is approximated by Letac’s Model E in
a sense which we make precise below.

Before introducing this approximation, we need to impose a regularity condition which assures
that the process {Vn} in (2.36) has a unique stationary solution. Namely, we assume the following.

Lipschitz condition (L): There exists a random variable L with E [logL] < 0 such that

sup
v 6=w

|f(v)− f(w)|
|v − w|

= L, (L)

where E
[
| logL|+ log+ |f(v0)|

]
<∞, for some v0 ∈ supp (V ).
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It is shown in Elton (1990), Alsmeyer (2003), and Mirek (2011a,b) that under (L), the sequence
{Vn} has a unique stationary solution which is independent of its starting state. Moreover, in
Alsmeyer (2003) it is shown that, under these assumptions, the Markov chain {Vn} is Harris re-
current. By Theorem 2.2 of Alsmeyer (2003), the maximal Harris set either has empty interior
(which we call the “degenerate” case), or the maximal Harris set is the entire space (which we call
the “nondegenerate” case). In particular, for the linear recursion f(v) = Av + B, it is well known
that the necessary and sufficient condition for nondegeneracy is that P {B = (1−A)c} < 1 for all
c (cf. Goldie and Maller (2000), Theorem 2.1). We now turn to the approximation alluded to above.

Cancellation condition (C): There exists a nonarithmetic random variable A ∈ (0,∞) and
a random vector (B,D,B∗, D∗) ∈ R4 such that, for all v ∈ supp (V ),

Amax{v,D∗}+B∗ ≤ f(v) ≤ Amax{v,D}+B, (C)

where Hypotheses (H1), (H2), and (H3) are satisfied by (A,B,D) and by (A,B∗, D∗).

Now let {(An, Bn) : n ∈ Z+} be an i.i.d. sequence of random variables having the same prob-
ability law as (A,B). Then our strategy is to view {Vn} as a perturbation of the linear recursion
f(v) = Av +B, where the remainder term

Rn(Vn−1) := Vn −AnVn−1

plays the role of the sequence {Bn} for the linear recursion. For the linear recursion with B
supported on the nonnegative axis, we will see in Example 3.3 below that the conjugate term in
Theorem 2.1 is zero and hence

C =
1

ξλ′(ξ)E [τ ]
Eξ

[(
V0 +

B1

A1
+

B2

A1A2
+ · · ·

)ξ
1{τ=∞}

]
.

In this section, we will see than an analogous result holds more generally, but with each Bn in this
formula replaced with the remainder term Rn(Vn−1).

Now if {Vn} is Harris recurrent, then it is well known that (M) holds for some k ∈ Z+. If
k = 1, then a proper regeneration structure exists, as described in Lemma 2.2. Let {Ki} denote
the regeneration times and τi := Ki −Ki−1, i = 1, 2, . . . denote the inter-regeneration times. By
Remark 2.1, the regeneration times correspond to the returns of an adjoined process {(Vn, ηn)} to
the set C × {1}, where we assume, without loss of generality, that C ⊂ [−M,M ] for some M > 0.
Also let τ denote a typical regeneration time; more precisely, if regeneration occurs at time 0, then
τ denotes the subsequent regeneration time.

If k > 1, then a proper regeneration structure exists for the k-chain {Vkn : n = 0, 1, . . .}, and

we take
{
τ

(k)
i

}
to be the inter-regeneration times of this chain.

We note that for the k-chain, the relevant remainder term changes slightly, becoming

R(k)
n (Vkn) := Vkn −AnVk(n−1), n = 1, 2, . . . ,

where An := Ak(n−1) · · ·Akn−1 (cf. the discussion at the end of Section 2.1).

Then by a slight modification of the proof of Theorem 2.1, we obtain:

Theorem 2.2 Assume (2.36), and suppose that (C) and (L) are satisfied and that {Vn} is nonde-
generate. Then

lim
u→∞

uξP {V > u} = C (2.37)
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for the finite positive constant C. If k = 1, then

C =
1

ξλ′(ξ)E [τ ]
Eξ

(V0 +
∞∑
i=1

Ri(Vi−1)

A1 · · ·Ai

)ξ
1{τ=∞}

 . (2.38)

Moreover C = limn→∞Cn, where

Cn =
1

ξλ′(ξ)E [τ ]
Eξ

((V0 +
n∑
i=1

Ri(Vi−1)

A1 · · ·Ai

)+)ξ
1{τ>n}

 , (2.39)

and Rn := C − Cn = o(e−εn) as n → ∞, for some ε > 0. In addition, if the minorization (M)
holds for k > 1, then (2.37), (2.38), and (2.39) still hold, but with the following modifications. In
(2.38), the stopping time τ must be replaced with τ (k), where τ (k) denotes first regeneration time
of the k-chain {Vkn : n = 0, 1, . . .}, and, moreover, the quantity λ′(ξ) must be replaced with kλ′(ξ).

In (2.39), the quantities {An}, {Rn(Vn−1)}, λ′(ξ), τ must be replaced with {An},
{
R(k)
n (Vk(n−1))

}
,

kλ′(ξ), τ (k), respectively.

It will be seen in the proof that the quantity inside the parentheses in (2.38) is necessarily
positive relative to the ξ-shifted measure; thus, the ξth moment of the quantity in (2.38) makes
sense.

Remark 2.6 In the proof of Theorem 2.2, it will be seen that (V0 +
∑n

i=1 (Ri(Vi−1)/A1 · · ·Ai)) =
Zn, where Zn → Z for a random variable Z which is strictly positive. Hence the constant C in
(2.38) is well-defined and positive.

Remark 2.7 Recently, an alternative expression for the constant C was given for the linear recur-
sion f(v) = Av+B with B ≡ 1 in Bartkiewicz et al. (2011). In fact, this constant can be obtained
as a corollary to the proof of Theorem 2.2. Indeed, as we illustrate in Remark 6.3 and Section 9
below, their formula is valid for Lipschitz random maps under the conditions of Theorem 2.2 and
the assumption that {Vn} is nonnegative. Under these conditions,

C =
1

ξλ′(ξ)
lim
n→∞

1

n
E
[
Z̃ξn
]
, (2.40)

where {Z̃n} is the backward process corresponding to the forward process {Vn}. See Remark 6.3
(for Letac’s Model E) and the discussion following the proof of Theorem 2.2 in Section 9 (for the
general case). A liability of (2.40) is that it involves an averaging and an infinite limit, while
an advantage of this formula is that it does not depend on the regeneration times. (We observe,
however, that determining the regeneration times is often not difficult in specific applications, and
in all of the examples of the next section, one can easily verify (M) with k = 1 and C = [−M,M ]
for some M ≥ 0.) Noting that the backward sequence for the linear recursion f(v) = Av + B is

the perpetuity sequence {Z(p)
n }, we see that there is an appealing correspondence with our original

representation formula (2.22) in that special case, although (2.40) introduces a limit and scaling

factor to deal with the fact that E
[(
Z

(p)
n

)ξ] ↑ ∞ as n→∞.

3 Examples

We begin by describing a variety of examples satisfying the conditions of Theorem 2.1. First
we revisit the classical ruin problem, showing that our estimate reduces to the classical Cramér-
Lundberg estimate in that case.
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Example 3.1 As described in the previous section, the classical ruin problem is concerned with
ψ∗(u) := P {Sn > u} as u → ∞, where Sn :=

∑n
i=1 logAi. Now in Remark 2.4, we observed that

by a duality argument, ψ∗(log u) = ψ(u) := P {V > u}, where V is the stationary limit of the
process

Vn = max{AnVn−1, 1}, n = 1, 2, . . . .

Note that {Vn} is a special case of Letac’s Model E, obtained by taking (B,D) = (0, A−1).
By Theorem 2.1, setting v = log u,

ψ∗(v) ∼ Ce−ξv as v →∞,

and thus we obtain the classical Cramér-Lundberg estimate (2.18), provided that we can verify
that C = C∗. Now by Remark 2.4, C = C∗ if and only if

Pξ {τ∗ =∞} = Eξ

[(
Z(p) − Z(c)

)
1{τ=∞}

]
; (3.1)

cf. (2.24). Here, τ∗ is the first return time of Wn := log Vn to zero or, equivalently, the first return
time of the process {Vn} to one.

To verify that (3.1) holds, first observe that {Vn} satisfies the minorization condition (M) with
C = {1}, δ = 1, and ν ∼ L(A∨ 1). Thus, by Remark 2.1, {Vn} regenerates subsequent to its return
to {1}, i.e., τ = inf{n : Vn = 1}+ 1. (Thus τ = τ∗ + 1.)

Now Bi = 0 for i = 1, 2, . . . implies Z(p) = B0, and, by definition, B0 has the distribution ν
appearing in the minorization (M) satisfied by {Vn}. Thus, Z(p) = B0 ∼ L(A ∨ 1).

Next, we claim that the conjugate sequence is zero on {τ = ∞}, and hence the conditions
of Corollary 2.1 are satisfied. To see that this is the case, observe that in (2.16), after setting
A′0 = B0 ∼ L(A ∨ 1) and recalling that A0 ≡ 1, we have

k−1∑
i=0

Bi
A0 · · ·Ai

− Dk

A0 · · ·Ak−1
= A′0

(
1− 1

A′0A1 · · ·Ak−1

)
. (3.2)

Observe that on {τ = ∞}, the multiplicative process A′0A1 · · ·Ak−1 > 1 for all k. Thus the term
on the right-hand side of (3.2) is positive. Since (2.16) involves the minimum of these terms with
zero, we deduce that the conjugate term must be zero on {τ =∞}.

Consequently,

Eξ

[(
Z(p) − Z(c)

)
1{τ=∞}

]
= Eξ

[
(A′0)ξ1{τ=∞}

]
. (3.3)

Next, by a change of measure, applied now to the initial term A′0 (which, up to now, has not been
shifted in the expectation on the right-hand side), we further obtain that

Eξ

[
(A′0)ξ1{τ=∞}

]
= P′ξ {τ =∞} , (3.4)

where P′ξ{·} denotes that the probability is evaluated in the ξ-shifted measure with respect to
the entire sequence A′0, A1, A2, . . . (and not just with respect to A1, A2, . . .). Finally, recall that
τ =∞⇐⇒ τ∗ =∞. Indeed, τ∗ is the first return time of the random walk

∑n
i=1 logAi to (−∞, 0]

(starting at time one), while τ − 1 is the first return time of the multiplicative random walk {Vn},
starting at time zero, to {1}. Thus P′ξ{τ = ∞} = Pξ{τ∗ = ∞}. Substituting this equation and
(3.3) into (3.4), we conclude that (3.1) holds and thus C = C∗.

Example 3.2 Consider an extension of the classical ruin problem, where the insurance company
invests its surplus capital and earns stochastic interest on its investments. More precisely, let Li
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denote the net losses of the insurance business incurred during the ith discrete time interval. Now
in classical risk theory, the surplus process is a Lévy process, and typically it is assumed that the
insurance company earns premiums at a faster rate than the expected losses due to the claims;
thus, the sequence {Li} is i.i.d. with a negative mean. Next, assume that the company earns a
stochastic interest Ri on its surplus capital at time i− 1. Then the total capital of the company at
time i is given by

Yi = RiYi−1 − Li, i = 1, 2, . . . , Y0 = u,

and we further assume that the process {Ri} is i.i.d. (but that Li and Ri may be dependent for
any given i).

By an elementary computation, one can show that {Yn < 0, for some n ∈ Z+} if and only if
{Ln > u, for some n ∈ Z+}, where {Ln} is the cumulative discounted loss process

Ln := A1L1 + (A1A2)L2 + · · ·+ (A1 · · ·An)Ln, n = 1, 2, . . . ; Ai :=
1

Ri
. (3.5)

Thus
P {ruin} = P {L > u} , where L :=

(
sup
n∈Z+

Ln
)
∨ 0. (3.6)

To see that the random variable L satisfies an SFPE of the form of Letac’s Model E, we begin

by observing that, in (3.5), Ln−1
D
= A2L2 + · · ·+ (A2 · · ·An)Ln. Hence

Ln
D
= B +ALn−1, where A

D
= A1 and B

D
= A1L1, (3.7)

and (A,B) is independent of Ln−1 on the right-hand side. Recalling that L :=
(

supn∈Z+
Ln
)
∨ 0,

we then conclude that L satisfies the SFPE

L D= (AL+B)+ . (3.8)

(An alternative SFPE is obtained by setting L̃ = supn∈Z+
Ln and repeating the above argument.

Then P {ruin} = P
{
L̃ > u

}
, where L̃ satisfies the SFPE L̃ D= Amax{L̃, 0}+ B. However, for our

current discussion, the SFPE (3.8) is slightly simpler to analyze.)
Observe that the forward process {Vn} generated by the SFPE (3.8) agrees with the linear

process Ṽn := AnṼn−1 + Bn, except that {Vn} is reflected upon its return to the origin. Focusing
on this return to the origin, one can verify that {Vn} satisfies the minorization (M) with δ = 1,
C = 0, and ν = L(B+). By Remark 2.1, we conclude that regeneration occurs with probability one
subsequent to the return of {Vn} to the origin; that is, τ = inf{n : Ṽn ≤ 0}+ 1.

Next observe that the conjugate sequence is zero on {τ =∞}. Indeed, setting Di = −Bi/Ai in
(2.16), we obtain

Z(c) = min

{
0,
∞∧
n=1

n∑
i=0

Bi
A0 · · ·Ai

}
. (3.9)

But the terms on the right-hand side all have the general form
∑n

i=0Bi/(A0 · · ·Ai), which upon
multiplication by (A0 · · ·An) yields

n∑
i=0

Bi(Ai+1 · · ·An), n = 0, 1, . . . . (3.10)

Now for Z(c) to be nonzero, we would need the quantity in (3.10) to be negative for some n. But

(3.10) is just the nth iteration of the SFPE Ṽ
D
= AṼ + B with forward recursive sequence {Ṽn},

which, as we have already observed, agrees with the process {Vn} prior to the first entrance of
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either process to (−∞, 0]. Since τ := inf{n : Vn = 0}, it follows that these two processes agree and
are positive-valued along sample paths where {τ =∞}. Thus, the quantity in (3.10) is positive on
{τ =∞}, and hence so is

∑n
i=0Bi/(A0 · · ·Ai) for all n. Thus, by (3.9), we conclude that Z(c) = 0.

Hence by Corollary 2.1, P {L > u} ∼ Cu−ξ, where

C =
1

ξλ′(ξ)E [τ ]
Eξ

[(
B0 +

B1

A1
+

B2

A1A2
+ · · ·

)ξ
1{τ=∞}

]
; (3.11)

here, B0 ∼ B+ and τ is identified as the time subsequent to the return of {Vn} to {0}.
Note that if ξ ≥ 1, then Minkowskii’s inequality followed by a change of measure argument

yields the upper bound

Eξ

( ∞∑
i=0

|Bi|
A0 · · ·Ai

)ξ
1{τ=∞}

1/ξ

≤ E
[
|B|ξ

]1/ξ
(

1 +
∞∑
i=1

P
{
τ > i− 1

}1/ξ

)
. (3.12)

Thus the constant C may be explicity related to the return times of {Vn} to the origin. Since
{Vn} is geometrically ergodic (by Lemma 5.1 below), these regeneration times have exponential
moments, and so this last expression is also finite. (The case ξ ∈ (0, 1) can be handled similarly,
since then the inequality |x+ y|ξ ≤ |x|ξ + |y|ξ may be used in place of Minkowskii’s inequality.)

From (3.11), we obtain a qualitative description of how the insurance surplus process influences
ruin of the company, and we note that this information is not obtained directly from the decay
constant ξ (since this constant depends only on A and hence only on the investment process). For
some specific examples of investment and insurance processes, see Collamore (2009), Section 3.

Example 3.3 In the well-known ARCH(1) and GARCH(1,1) financial time series models, one
typically studies the forward process {Vn} generated by the linear recursion f(v) = Av+B, where
A and B are strictly positive random variables. Here it is of interest to determine P {V > u}, where
V := limn→∞ Vn (cf. Embrechts et al. (1997), Mikosch (2003), or Section 3 of Collamore (2009)).

For these processes, a minorization is obtained by first observing that V (v) := Av + B has a
density, which we call hv, and hv(x) is monotonically decreasing for large x. Hence

ν̂(E) :=

∫
E

(
inf

v∈[0,M ]
hv(x)

)
dx

is not identically zero, and then P (x,E) ≥ 1[0,M ](x)v̂(E). Normalizing ν̂ so that it is a probability
measure, we then obtain (M) with k = 1 and δ the normalizing constant. Thus, according to
Remark 2.1, we see that regeneration occurs w.p. δ following return to the set C = [0,M ].

Since (A,B) ∈ (0,∞)2, the process Vn = AnVn−1 +Bn is always positive; thus, the quantity in
(3.10) is positive. Now setting Di ≡ 0 in (2.16), we again obtain (3.9), and, as before, we conclude
that this minimum is equal to zero. Thus, the conjugate term is zero on the entire probability space.
Hence, once again, the conditions of Corollary 2.1 are satisfied. Consequently, P {V > u} ∼ Cu−ξ,
where C assumes the same form as in (3.11), but where B0 ∼ ν̂ and, by Corollary (2.1), τ denotes
the first time subsequent to the return of {(Vn, δn)} to [0,M ]×{1}, where {δn} is an i.i.d. sequence
of Bernoulli(δ) random variables, independent of {Vn}.

In this example, we have seen that for positive-valued random variables A and B, the linear
recursion f(v) = Av+B is a rather special case of Letac’s Model E. However, it is worth observing
that for random variables B taking values in (−∞,∞), this reduction would not be possible (and,
in particular, we would not be able to deduce the positivity of the constant C from our result).
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Example 3.4 In a life insurance context, one often studies the future discounted losses of the
company, that is, the perpetuity sequence (3.5), where {An} denotes a stochastic discount factor
(as before) and {Ln} denotes the future obligations of the company. Then it is of interest to
study the steady-state tail behavior of L∞ := limn→∞ Ln, and a simple argument yields that

L∞
D
= AL∞ + B. Thus we are back in the previous example, and the constants of decay assume

the same form as in that case.

Example 3.5 As a slight extension of an example studied in Goldie (1991), consider the polynomial
SFPE

V
D
= f(V ) := ÃkV + Ãk−1V

(k−1)/k + · · ·+ Ã1V
1/k + Ã0, (3.13)

where the driving sequence Y := (Ã0, . . . , Ãk) ∈ (0,∞)d, and where we assume that (H1) is satisfied

with Ãk in place of A, and that E
[
Ãξi
]
<∞ for all i.

Note that (3.13) can be written in a more suggestive form as

V
D
= AV +R(V ), where A := Ãk and R(V ) :=

j−1∑
i=0

ÃiV
i/j . (3.14)

Thus, when the random coefficients (Ã0, . . . , Ãk−1) are fixed, v−1B(v) ↓ 0 as v →∞, and hence for
large V, the random function R(V ) may be viewed as a remainder term, whereas the asymptotic
behavior of the process is dominated by the linear term, AV . Thus, from a qualitative perspective,
we are in the basic setting of Theorem 2.2.

In this example, it is easy to see that the minorization condition (M) holds with k = 1.
Moreover, by repeating the argument on p. 712 of Mirek (2011a), we obtain that

|f(v)− f(q)|
|v − q|

≤
√
A (3.15)

and ∣∣∣f(v)−
√
A|v|

∣∣∣ ≤ 1√
A

j−1∑
i=1

Ãi +
Ã0√
Q
, Q := Ã0 −

1

4A

(
j−1∑
i=1

Ãi

)2

. (3.16)

Hence the Lipschitz and cancellation conditions hold, provided that Q > 0 and

E

( 1√
A

j−1∑
i=1

Ãi +
Ã0√
Q

)ξ <∞. (3.17)

Admittedly, the latter condition is not optimal. In Section 9 below, we revisit this example and
discuss an alternative approach, leading to more natural moment assumptions for this problem.

Example 3.6 As another illustration, consider the AR(1) model with ARCH(1) errors studied in
Borkovec (2000). In this case, the model takes the form

Vn =

(
γVn−1 +

√(
β + λV 2

n−1

)
An

)
, (3.18)

where {An : n = 1, 2, . . .} is a collection of i.i.d. symmetric random variables with continuous

density with respect to the Lebesgue measure. We also assume that E
[
log
∣∣γ +

√
λ|A|

∣∣] < 0; this
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condition guarantees the existence and uniqueness of the stationary distribution for the process
{Vn}. It is easy to see that {Vn} satisfies the minorization (M) with k = 1. Consider

Qn :=

∣∣∣∣(γQn−1 +
√(

β + λV 2
n−1

)
An

)∣∣∣∣ , n = 1, 2, . . . . (3.19)

Then it is shown in Borkovec (2000) that {Qn}n∈Z+

D
= {Vn}n∈Z+ . Hence, the tail behavior of |V |

can be inferred from the tail of Q := limn→∞Qn. To verify that the cancellation condition holds,
set

f(v) = γ|v|+
√

(β + λv2)A. (3.20)

Notice that f is Lipschitz, and ∣∣∣f(v)− (γ +
√
λA)|v|

∣∣∣ ≤√βA (3.21)

(cf. Mirek (2011a), p. 713), implying the cancellation condition. Thus the tail of |V | is governed

by the constant ξ satisfying E
[
(γ +

√
λA)ξ

]
= 1. The constant C in this case can be determined

from (2.38) and is evidently positive.

4 Some results from nonlinear renewal theory

The main tools needed in the proofs of the main theorems will involve ideas from nonlinear renewal
theory, which we now present in detail.

The crux of the proof of Theorem 2.1 will be to utilize the representation formula of Lemma
2.2, namely,

P {V > u} =
E [Nu]

E [τ ]
.

Thus we will need to estimate E [Nu], the number of exceedances above level u which occur over a
regeneration cycle. To study this quantity, we will employ the following dual change of measure:

L
(

logAn, Bn, Dn

)
=

{
µξ for n = 1, . . . , Tu,
µ for n > Tu,

(4.1)

where Tu = inf{n : Vn > u} and µξ is defined as in (2.17). Roughly speaking, this dual measure
shifts the distribution of logAn on a path terminating at time Tu, and reverts to the original
measure thereafter. Let ED [·] denote expectation with respect to the dual measure described in
(4.1).

We now focus on two quantities:

(i) the overjump distribution at the first time Vn exceeds the level u, calculated in the ξ-shifted
measure; and

(ii) the expected number of exceedances above level u which then occur until regeneration,
calculated in the original measure.

Note that in the ξ-shifted measure, Eξ [logA] > 0 and hence Vn ↑ ∞ w.p.1 as n→∞ (cf. Lemma
5.2 below). Consequently,

Vn = An max {Dn, Vn−1}+Bn

implies
Vn ≈ AnVn−1 for large n.

In other words, in an asymptotic sense, the process {Vn} will ultimately resemble a perturbation of
multiplicative random walk. Consequently, the problem described in (i) may be viewed as a variant
of a standard problem in nonlinear renewal theory (cf. Woodroofe (1982)).
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Lemma 4.1 Assume Letac’s Model E, and suppose that (H0), (H1), (H2), and (H3) are satisfied.
Then

lim
u→∞

Pξ

{
VTu
u

> y

∣∣∣∣Tu < τ

}
= Pξ

{
V̂ > y

}
(4.2)

for some random variable V̂ . The distribution of this random variable V̂ is independent of the
initial distribution of V0 and is described as follows. If Al is a typical ladder height of the process
Sn =

∑n
i=1 logAi in the ξ-shifted measure, then

Pξ

{
log V̂ > y

}
=

1

Eξ
[
Al
] ∫ ∞

y
Pξ

{
Al > z

}
dz, for all y ≥ 0. (4.3)

While Lemma 4.1 follows easily from known results in nonlinear renewal theory, this is not
the case for the problem stated in (ii) above. Here we would like to determine ED [Nu |FTu ], i.e.,
the expected number of exceedances, in the dual measure, which occur over a typical regeneration
cycle prior to the regeneration time τ . We provide a precise estimate for this quantity next. In the
following result, note that we start the process at a level vu, where v > 1, and so the dual measure
actually agrees with the original measure in this case.

Theorem 4.1 Assume Letac’s Model E, and suppose that (H0), (H1), (H2), and (H3) are satisfied.
Then for any v > 1,

lim
u→∞

E

[
Nu

∣∣∣∣ V0

u
= v

]
= U(log v), (4.4)

where U(z) :=
∑

n∈N µ
?n
A (−∞, z) and µA is the marginal distribution of − logA.

Roughly speaking, the function U may be interpreted as the renewal function of the random
walk −Sn = −

∑n
i=1 logAi. More precisely, if the distribution of logA is continuous, so that the

open interval (−∞, z) could be replaced with the closed interval (−∞, z], then U(z) agrees with
the standard definition of the renewal function of {−Sn}.

We now supplement the estimate in the previous theorem with an upper bound.

Proposition 4.1 Assume that the conditions of the previous theorem. Then there exist finite
positive constants C1(u) and C2(u) such that

ED

[
Nu

∣∣FTu∧(τ−1)

]
≤
(
C1(u) log

(
VTu
u

)
+ C2(u)

)
1{Tu<τ}, for all u, (4.5)

where C1(u) and C2(u) are the positive finite constants that converge as u → ∞ to m−1 and
1 + (σ2/m2), respectively, where m := Eξ [logA] and σ2 := Varξ (logA).

We emphasize that this last proposition will prove crucial for obtaining the upper bound described
in Proposition 2.1.

Finally, using the previous results it is now possible to state an extension of Lemma 4.1, which
will be particularly useful in the sequel. Let

Qu = ED

[
Nu

∣∣FTu∧(τ−1)

](VTu
u

)−ξ
1{Tu<τ}.
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Theorem 4.2 Assume the conditions of the previous theorem. Then conditional on {Tu < τ},

Qu ⇒ U(log V̂ )V̂ −ξ as u→∞, (4.6)

where V̂ is given as in (4.2) and (4.3). That is,

lim
u→∞

PD {Qu ≤ y|Tu < τ} = PD

{
U(log V̂ )V̂ −ξ ≤ y

}
, for all y ≥ 0.

Remark 4.1 For the previous results, Hypothesis (H0) is only needed to assure that the minoriza-
tion condition holds with k = 1. If k > 1, then the same results hold for the k-chain, and then
(H0) may be replaced with the weaker condition that logA is nonarithmetic.

5 Proofs of the main results: preliminary lemmas

We begin with a series of preparatory lemmas, which will be needed in the proofs of the main
theorems given below in Section 6. The first two lemmas describe path properties of the Markov
chain {Vn}, where Vn = An max{Vn−1, Dn} + Bn, n = 1, 2, . . . ; that is, the forward iterates of
Letac’s Model E described in (2.5).

First recall that a Markov chain satisfies a drift condition if∫
S
h(y)P (x, dy) ≤ ρh(x) + β1C(x), for some ρ ∈ (0, 1), (D)

where h is a function taking values in [1,∞), β is a positive constant, and C is a Borel subset of R.
In the next theorem, we will work with the assumption that the process {Vn} is nondegenerate,

namely that we do not have P {FY (v) = v} = 1. This assumption is subsumed by (H3), but we
state it here as a separate hypothesis.

Lemma 5.1 Assume Letac’s Model E, and let {Vn} denote the forward recursive sequence cor-
responding to this SFPE. Suppose that (H1) and (H2) are satisfied and {Vn} is nondegenerate.
Then:

(i) {Vn} satisfies the drift condition (D) with C = [−M,M ] for some constant M ≥ 0.
(ii) {Vn} is ϕ-irreducible, where ϕ is the stationary distribution of {Vn}.
(iii) Suppose (H0) is satisfied. Then {Vn} satisfies the minorization condition (M) with k = 1

both with respect to the measure µ and the measure µξ. Furthermore, for any M > 0, the set
[−M,M ] is petite.

(iv) {Vn} is geometrically ergodic. Moreover E [eετ ] <∞, where τ is the inter-regeneration time
of the process {Vn} under any minorization (M) for which the C-set is bounded.

Proof (i) Using the defining equation Vn = An max {Dn, Vn−1}+Bn, we obtain the inequality

|Vn| ≤ An|Vn−1|+ (An|Dn|+ |Bn|) . (5.1)

Now hypothesis (H1) implies that E [Aα] < 1 for all α ∈ (0, ξ). Fix α ∈ (ξ ∧ 1) and V0 = v. Then
from the deterministic inequality |x+ y|α ≤ |x|α + |y|α, α ∈ (0, 1), we obtain

E [|V1|α] ≤ E [Aα] vα + E [|B1|α] + E
[

(A1|D1|)α
]
. (5.2)

Thus (D) holds with h(x) = |x|α + 1, ρ = (E [Aα] + 1) /2, and C = [−M,M ], where M is chosen
sufficiently large such that

1

2
(1−E [Aα])Mα ≥ E

[
|B1|α

]
+ E

[
(A1|D1|)α

]
.

20



(ii) To verify that {Vn} is ϕ-irreducible, it is sufficient to show that ϕ(A) > 0 implies that
U(x,A) > 0 for all x, where

U(x,A) :=

∞∑
n=1

Pn(x,A)

(cf. Meyn and Tweedie (1993), Proposition 4.2.1). Now to identify ϕ, note that under our hypothe-
ses, the conditions of Proposition 6.1 of Goldie (1991) are satisfied. Hence the backward recursion
(2.7) converges to a random variable Z̃ which is independent of v. By Lemma 2.1, it follows that
{Vn} is stationary and the law of the limiting random variable V is the same as the law of Z̃. Now
choose ϕ ≡ L(Z̃). Since {Vn} is assumed to be nondegenerate, it follows by Theorem 1.3.1 and
(1.16) of Meyn and Tweedie (1993) that

sup
A∈B(R)

|Pn(x,A)− ϕ(A)| → 0 as n→∞, (5.3)

for all x ∈ R (where we have used (i) to verify their condition (1.14) with h(x) = |x|α + 1). Hence

U(x,A) ≥ lim
n→∞

Pn(x,A) = ϕ(A) > 0 (5.4)

for any ϕ-positive set A.

(iii) We note that the main issue is to verify that the minorization holds with k = 1 (rather
than for general k, which is well known to follow immediately from (ii)).

We will show that for any v ∈ R, there exists an ε-neighborhood Bε(v) such that

P (w,E) ≥ δ1Bε(v)(w)ν(E), for all w ∈ R and E ∈ B(R), (5.5)

for some positive constant δ and some probability measure ν, both of which will typically depend
on v. Since some such interval Bε(v) will necessarily be ϕ-positive with ϕ ≡ L(V ) as in (ii), this
will imply the existence of a minorization with k = 1.

Set v∗ = inf {v : P {D ≤ v} = 1} ∈ (−∞,∞]. We will consider three different cases, namely
v < v∗, v > v∗, and v = v∗.

If v < v∗, then P {D > v} > 0. Since P {D > w} is nonincreasing as a function of w,
P {D > v + ε} > 0 for some ε > 0. For this choice of v and ε, let Bε(v) be the required ε-
neighborhood in (5.5). Now if V0 ∈ Bε(v) and D1 > v + ε, then max{D1, V0} = D1 and hence
V1 = A1D1 +B1. Thus, for any initial state V0 ∈ Bε(v),

V1 = (A1D1 +B1)1{D1>v+ε} + V11{D1≤v+ε}. (5.6)

Note that the first term on the right-hand side is independent of V0. Taking ν to be the probability
law of (A1D1 +B1) conditional on {D1 > v + ε} and δ = P {D > v + ε}, we obtain (5.5).

Next suppose v > v∗. Then for some ε > 0, P {D > v − ε} = 0, and for this choice of v and ε, let
Bε(v) be the ε-neighborhood in (5.5). Then P {V1 = A1V0 +B1 |V0 ∈ Bε(v)} = 1. Hence, to obtain
a minorization for V1 in this case, it is sufficient to derive a minorization for V1(v) := A1v + B1

a.s. To this end, begin by observing that since A1 has an absolutely continuous component with a
nontrivial density in a neighborhood of R, so does the pair (A1, A1v + B1) in R2. Let γ(v) denote
the probability law of (A1, A1v + B1). Then by the Lebesgue decomposition theorem, γ(v) can be
decomposed into its absolutely continuous and singular components relative to Lebesgue measure,
and the continuous component satisfies

γ(v)
c (E) =

∫
E

dγ(v)

dl
(z)dl(z), for all E ∈ B(R2),
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where l denotes Lebesgue measure on R2. Since there is a nontrivial density, by (H0), there exists

a rectangle where dγ(v)

dl is bounded away from zero; that is,

dγ(v)

dl
(x, y) ≥ δ > 0, for all (x, y) ∈ [a, b]× [c, d]. (5.7)

Now suppose w ∈ Bε(v) and let γ(w) denote the probability law of V1(w) := A1w + B1. Then
V1(w)− V1(v) = A1(w − v), and hence (5.7) yields

dγ(w)

dl
(x, y) ≥ δ, for all (x, y) ∈ [a, b]× [c+ w∗, d− w∗],

where w∗ = b|w−v|. Notice that the constant b was obtained by observing that the first component
describes the distribution of A, where supp(A) ⊂ (0,∞), implying that 0 < a < b < ∞. Since
w∗ ↓ 0 as w → v, it follows that for sufficiently small ε, there exists a subinterval [c′, d′] of [c, d]
such that

dγ(w)

dl
(x, y) ≥ δ, for all (x, y) ∈ [a, b]× [c′, d′] and all w ∈ Bε(v). (5.8)

Hence the minorization (5.5) holds with

ν(E) =

∫
R×E

(
inf

w∈Bε(v)

dγ(w)

dl
(x, y)

)
dl(x, y), for all E ∈ B(R),

and by (5.7), this measure is not identically equal to zero.
It remains to consider the case where v = v∗. First observe that, similar to (5.6), P

{
V1 =

A1V0 +B1 |V0 ∈ Bε(v
∗), D1 ≤ v∗ − ε

}
= 1. Hence, we clearly have

V1 = (A1V0 +B1)1{D1≤v∗−ε} + V11{D1>v∗−ε}. (5.9)

Now define γ(ε,v∗) on any Borel set E ⊂ R2 to be

γ(ε,v∗)(E) = P {(A1, A1v
∗ +B1) ∈ E,D1 ≤ v∗ − ε} ↗ γ(v∗)(E) as ε→ 0,

where the last step follows from the definition of γ(v∗), since P {D1 ≤ v∗ − ε} ↑ 1 as ε→ 0. Hence,
since γ(v∗) has an absolutely continuous component, there exists an ε > 0 such that γ(ε,v∗) also has
an absolutely continuous component. Now apply the previous argument with γ(v) replaced with
γ(ε,v∗) for this choice of ε to obtain the corresponding minorization for this case. Thus we have
obtained (5.5) for all the three cases. Note that the above computations hold regardless of whether
we are in the original measure µ or in the ξ-shifted measure µξ.

Finally, to show that [−M,M ] is a petite set, note that [−M,M ] ⊂
⋃
v∈[−M,M ] Bε(v)(v), where

Bε(v)(v) is a small set and hence is petite. Thus there exists a finite subcover of petite sets, and
then by Proposition 5.5.5 of Meyn and Tweedie (1993), [−M,M ] is petite.

(iv) Since [−M,M ] is petite for any M > 0, it follows from (i) and Meyn and Tweedie (1993),
Theorem 15.0.1, that the process {Vn} is geometrically ergodic. It remains to show that—regardless
of (δ, C, ν) in the minorization (M)—we have E [eετ ] < ∞, where τ is the inter-regeneration time
under (M). Now since C is bounded, it follows by Theorem 15.2.6 of Meyn and Tweedie (1993)
that C is h-geometrically regular with h(x) = |x|α + 1. Consequently, letting K denote the first
return time of {Vn} to C, we have

Γ(t) := sup
v∈C

E
[
tK |V0 = v

]
<∞ (5.10)

for some t > 1.
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Consider the split-chain (see Nummelin (1984), Section 4.4 or Remark 2.1 above). Originating
from the C-set, this chain has the 1-step transition measure ν(dy) w.p. δ and the 1-step transition
kernel P̄ (x, y) := (P (x, dy) − ν(dy))/(1 − δ) w.p. (1 − δ). Thus, conditional on either one of
these transition kernels, it follows from (5.10) that Γν(t) < ∞ and ΓP̄ (t) < ∞, where Γν denotes
conditioning on V1 ∼ ν, and ΓP̄ (t) := supv∈C E

[
tK |V0 = v, V1 ∼ P̄

]
. Hence by Remark 2.1,

E [tτ ] ≤ Γν(t)

(
δ +

∞∑
n=1

δ(1− δ)n (ΓP̄ (t))n
)
, (5.11)

where δ is the constant appearing in (M). Finally observe by a dominated convergence argument
that ΓP̄ (t) ↓ 1 as t ↓ 1, and thus for sufficiently small t > 1, ΓP̄ (t) < (1− δ)−1. For this choice of
t, the series on the right-hand side of (5.11) is convergent, as required. 2

Next we turn to a critical result which establishes the transience of the process {Vn} in its
ξ-shifted measure.

Lemma 5.2 Assume Letac’s Model E, and let {Vn} denote the forward recursive sequence corre-
sponding to this SFPE. Assume that (H1), (H2) and (H3) are satisfied and {Vn} is nondegenerate.
Then under the measure µξ,

Vn ↗ +∞ w.p. 1 as n→∞. (5.12)

Thus, in particular, the Markov chain {Vn} is transient.

Proof By (H3), the set [M,∞) is attainable with positive probability for all M . Consequently by
Meyn and Tweedie (1993), Theorem 8.3.6, it is sufficient to show that for some constant M ,

Pξ {Vn ≤M, for some n ∈ Z+|V0 ≥ 2M} < 1. (5.13)

To establish (5.13), note that by iterating the inequality Vn ≥ AnVn−1 − |Bn|, we obtain

Vn
A1 · · ·An

≥ V0 −Wn, where Wn :=

n∑
i=1

|Bi|
A1 · · ·Ai

.

Now since Eξ[logA] > 0, it follows by Lemma 5.1 that {Wn} converges a.s. to a proper random
variable and, furthermore,

Pξ {A1 · · ·An ≥ 1, for all n} > 0.

Hence (5.13) holds.
We conclude that [−M,M ] is uniformly transient, and thus |Vn| ↑ ∞ as n → ∞. Then Vn ≥

AnDn +Bn for all n, implying that Vn ↑ ∞ as n→∞. 2

Prior to stating the next lemma, recall that Tu := inf {n : Vn > u}, and that ED [·] denotes
expectation with respect to the dual measure over a typical regeneration cycle.

Lemma 5.3 Assume Letac’s Model E, let {Vn} denote the forward recursive sequence correspond-
ing to this SFPE, and assume that (H1) and (H2) are satisfied. Let g : R∞ → [0,∞] be a de-
terministic function, and let gn denote its projection onto the first n + 1 coordinates; that is,
gn(x0, . . . , xn) = g(x0, . . . , xn, 0, 0, . . .). Then

E [gτ−1(V0, . . . , Vτ−1)] = ED

[
gτ−1(V0, . . . , Vτ−1)e−ξSTu1{Tu<τ}

]
+ ED

[
gτ−1(V0, . . . , Vτ−1)e−ξSτ1{Tu≥τ}

]
. (5.14)
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Proof If

L (logAi, Bi, Di) =

{
µξ for i = 1, . . . , n,
µ for i > n,

then it can be shown using induction that

E [gn(V0, . . . , Vn)] = Eξ

[
gn(V0, . . . , Vn)e−ξSn

]
. (5.15)

Then (5.14) follows by conditioning on {Tu = m, τ = n} and summing over all possible values of
m and n. 2

Next we establish a critical result which links forward iteration of Letac’s Model E to its
corresponding backward iterates.

Lemma 5.4 Assume Letac’s Model E, and let {Vn} denote the forward recursive sequence cor-

responding to this SFPE. Let {Z(p)
n } and {Z(c)

n } denote the associated perpetuity and conjugate
sequences, respectively, assumed to have the initial values described prior to (2.13) and (2.15), and
set A0 = 1. Then for any n ∈ N,(

Z(p)
n − Z(c)

n

)
1{Zn>0} = Zn1{Zn>0}, where Zn :=

Vn
A0 · · ·An

. (5.16)

Proof It follows by an inductive argument that for all n ∈ N,

Vn = max


n∑
i=0

Bi

n∏
j=i+1

Aj ,
n∨
k=1

 n∑
i=k

Bi

n∏
j=i+1

Aj +Dk

n∏
j=k

Aj

 , (5.17)

where B0 := V0. Hence

Zn :=
Vn

A0 · · ·An
=

n∑
i=0

Bi
A0 · · ·Ai

−min {0,Mn} , (5.18)

where

Mn :=

n∧
k=1

{
k−1∑
i=0

Bi
A0 · · ·Ai

− Dk

A0 · · ·Ak−1

}
. (5.19)

Now

Z(p)
n = F

(p)
Y0
◦ · · · ◦ F (p)

Yn
(0) =

n∑
i=0

Bi
A0 · · ·Ai

. (5.20)

To obtain a similar expression for Z
(c)
n , observe again by induction that

Z(c)
n = min

{
n∑
i=0

Bi
A0 · · ·Ai

,
n∧
k=0

(
k∑
i=0

Bi
A0 · · ·Ai

+
D∗k

A0 · · ·Ak

)}
. (5.21)

Then substituting D∗0 = −B0 and D∗i = −AiDi −Bi, i = 1, 2, . . . , yields that, with Mn given as in
(5.19),

Z(c)
n = min

{
Z(p)
n , 0,Mn

}
. (5.22)

Comparing these expressions with (5.18), we conclude that

Zn = Z(p)
n −min{0,Mn}. (5.23)

24



Finally observe that if Zn ≥ 0, then it follows from the previous equation that 0 ≤ max
{
Z

(p)
n ,Z

(p)
n −

Mn

}
and hence

Zn1{Zn≥0} = max
{

0, Z(p)
n , Z(p)

n −Mn

}
= Z(p)

n −Z(c)
n . 2

Finally, we study the convergence of the sequence {Zn} introduced in the previous lemma, and
relate it to the random variable Z̄(p) defined prior to the statement of Proposition 2.1.

Lemma 5.5 Assume Letac’s Model E, and suppose that (H1), (H2), and (H3) are satisfied and
{Vn} is nondegenerate. Let {Zn} be defined as in (5.16). Then in µξ-measure, {Zn} has the fol-
lowing regularity properties:

(i) Zn → Z a.s. as n → ∞, where Z is a proper random variable supported on (0,∞). Conse-
quently, Z(p) and Z(c) are well defined and Z(p) > Z(c) a.s.

(ii) Eξ
[(
Z̄(p)

)ξ]
<∞. Moreover, for all n and u,∣∣Zn1{n<τ}∣∣ ≤ Z̄(p) and

∣∣ZTu1{Tu<τ}∣∣ ≤ Z̄(p). (5.24)

Proof We begin by establishing (ii). Since

|Vn| ≤ An|Vn−1|+ (An|Dn|+ |Bn|) , (5.25)

the process {|Vn|} is bounded from above by {Rn}, where R0 = |V0| and, for each n ∈ Z+,

Rn = B̃n +AnRn−1, where B̃n = An|Dn|+ |Bn|.

Iterating the previous equation yields

Rn =
n∑
i=0

B̃i

n∏
i=j+1

Ai, n = 0, 1, . . . , (5.26)

where B̃0 ≡ |V0|. Since |Vn| ≤ Rn for all n, we may now apply (5.16) to obtain that {|Zn|} is
bounded from above by the perpetuity sequence

W̃n := (A1 · · ·An)−1Rn =

n∑
i=0

B̃i
A1 · · ·Ai

, n = 1, 2, . . . , (5.27)

and hence

|Zn|1{n<τ} ≤ W̃n1{n<τ} ≤
∞∑
i=0

B̃i
A0 · · ·Ai

1{τ>i} := Z̄(p), (5.28)

and similarly for ZTu1{Tu<τ}.

It remains to show that Eξ
[(
Z̄(p)

)ξ]
< ∞. To this end, observe that if ξ ≥ 1, then by

Minkowskii’s inequality followed by a change of measure argument,

Eξ

[(
Z̄(p)

)ξ]1/ξ
≤ E

[
|V0|ξ

]
+ E

[
B̃ξ
]1/ξ ∞∑

n=1

P
{
τ > n− 1

}1/ξ
<∞, (5.29)

where finiteness is obtained from (H2) and Lemma 5.1 (iv). For the first term on the right-hand
side, we have used B0 ≡ |V0|, where V0 ∼ ν. Note that the first expectation on the right-hand
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side of (5.29) is also finite since, in the split-chain construction (as described in Nummelin (1984),
Section 4.4, or or Remark 2.1),

E
[
|V0|ξ

∣∣∣V−1 = v
]

= δĒ
[
|V0|ξ

∣∣∣V0 ∼ ν
]

+ (1− δ)Ē
[
|V0|ξ

∣∣∣V−1 = v
]
,

where Ē [·] denotes expectation with respect to the kernel P̄ (x, dy) := (P (x, dy) − ν(dy))/(1 − δ).
As the left-hand side of the last equation is finite under (H1) and (H2), so is the first term on the
right-hand side, as required.

On the other hand, if ξ < 1, then an analogous result is obtained using the deterministic
inequality |x+ y|α ≤ |x|α + |y|α, 0 < ξ < 1, in place of Minkowskii’s inequality, and this completes
the proof of (ii).

To establish (i), set Z− = lim infn→∞ Zn and observe that if Pξ{Z− ≤ 0} = p > 0, then by
Fatou’s lemma

p ≤ lim inf
n→∞

Eξ
[
1{Zn≤0}

]
= lim inf

n→∞
Pξ {Vn ≤ 0} , (5.30)

where, in the last step, we have used Lemma 5.4 to replace Zn by Vn. But by Lemma 5.2, Vn ↑ +∞
w.p.1 as n→∞, and thus p = 0. We conclude Z− ∈ (0,∞).

Next observe by definition of {Vn} that if Vn−1 ≥ 0,

AnVn−1 − |Bn| ≤ Vn ≤ AnVn−1 + (An|Dn|+ |Bn|) . (5.31)

Let δ(n) denote the indicator function on the event {Vl ≥ 0, for all l ≥ n}. Then by Lemma 5.2,
limn→∞ δ(n) = 1 a.s. By iterating the left- and right-hand sides of (5.31), we obtain that for any
m > n,

|Vm − (An+1 · · ·Am)Vn| δ(n) ≤
m∑

i=n+1

B̃i

n∏
i=j+1

Ai, (5.32)

where B̃i := Ai|Di|+ |Bi|. Hence for any m > n,

|Zm − Zn| δ(n) ≤
∞∑

i=n+1

B̃i
A1 · · ·Ai

. (5.33)

Now recall that Eξ [logA] = Λ′(ξ) > 0. Hence the process S̃n := −{
∑n

i=1 logAi} + log B̃n has
a negative drift, and by (H1) we have Eξ

[
(A−1)α

]
<∞ for some α > 0. Hence by Cramér’s large

deviation theorem (Dembo and Zeitouni (1998), Section 2.2), it follows that

Pξ

{
B̃n

A1 · · ·An
> an

}
≤ e−tn, (5.34)

where a := exp {−Eξ [logA] + ε} ∈ (0, 1), and t ∈ (0,∞) and ε ∈ (0,Eξ [logA]). Then by the
Borel-Cantelli lemma,

Pξ

{
B̃n

A1 · · ·An
> an i.o.

}
= 0. (5.35)

Since limn→∞ δ(n) = 1 a.s., it follows as a consequence of (5.33) and (5.35) that Zn converges a.s.
to a proper random variable on (0,∞), which we denote by Z.

Since the above argument also holds for the recursion f(v) = Av + B, it follows that Z
(p)
n

converges a.s. to a random variable taking values in (0,∞). Then by Lemma 5.4, the limit in the
definition of Z(c) must also exist and we must have that Z(p) − Z(c) = Z > 0 a.s. 2
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6 Proof of Theorem 2.1

The key to the proof is the following result, which shows that uξE [Nu] behaves asymptotically as a
product of two terms, the first being influenced mainly by the “short-time” behavior of the process,
the second term being determined by the “large-time” behavior. We will later identify this second
term as a classical limit related to the random walk Sn =

∑n
i=1 logAi.

Proposition 6.1 Assume Letac’s Model E, and suppose that (H0), (H1), (H2), and (H3) are
satisfied. Then

lim
u→∞

uξE [Nu] = Eξ

[
Zξ1{τ=∞}

]
lim
u→∞

ED

[
Nu

(
VTu
u

)−ξ ∣∣∣Tu < τ

]
. (6.1)

Remark 6.1 A similar asymptotic independence is utilized in Enriquez et al. (2009). However,
their precise results and techniques differ considerably from ours.

Proof Since Nu = gτ−1(V0, . . . , Vτ−1), where g(v0, v1, . . .) =
∑∞

n=0 1{vn>u} and gτ denotes the
projection onto the first τ + 1 coordinates, it follows by Lemma 5.3 that

E [Nu] = ED

[
Nue

−ξSTu
]
.

Moreover by the definition of Zn in (5.21),

e−ξSTu1{Tu<τ} =
(

(A1 · · ·ATu)−ξ V ξ
Tu
1{Tu<τ}

)
V −ξTu

=
(
ZξTu1{Tu<τ}

)
V −ξTu

.

Combining the last two equations, we obtain

E [Nu] = ED

[(
ZξTu1{Tu<τ}

)
NuV

−ξ
Tu

]
. (6.2)

Consequently, by conditioning on FTu∧(τ−1) and rearranging the terms,

uξE [Nu] = ED

[(
ZξTu1{Tu<τ}

)
Qu
]
, (6.3)

where

Qu := ED

[
Nu

∣∣FTu∧(τ−1)

](VTu
u

)−ξ
1{Tu<τ}. (6.4)

Note

ED

[(
ZξTu1{Tu<τ}

)
Qu
]

= ED

[
ZξnQu1{n≤Tu<τ}

]
+ ED

[(
ZξTu1{Tu<τ} − Z

ξ
n1{n≤Tu<τ}

)
Qu
]
. (6.5)

Now take the limit first as u→∞ and then as n→∞.

We begin by analyzing the first term on the right-hand side. By Proposition 4.1 and the defini-
tion of Qu in (6.4), {Qu} is uniformly bounded in u. Also, by Lemma 5.5 (ii), Eξ

[
|Zn|ξ1{n≤Tu<τ}

]
<

∞, for all n. Consequently, for any given n,

ED

[∣∣ZξnQu∣∣1{n≤Tu<τ}] ≤ KEξ

[∣∣Zn∣∣ξ1{n≤Tu<τ}] ≤ K ′ (6.6)
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for finite constants K and K ′. In the middle term, we have replaced ED [·] with Eξ [·], since these
will be the same on the set {n ≤ Tu < τ}. Hence an application of the dominated convergence
theorem yields

lim
u→∞

ED

[
ZξnQu1{n≤Tu<τ}

]
= ED

[
Zξn lim

u→∞
1{n≤Tu<τ}ED [Qu |Fn, Tu < τ ]

]
= ED

[
Zξn lim

u→∞
1{n≤Tu<τ}

]
ED [Q] , (6.7)

where the last step of (6.7) follows by Theorem 4.2 (and, in particular, the independence of the lim-
iting distribution Q from the initial distribution of {Vk}, which is here taken to be the distribution
of Vn for some fixed n). In the second expectation on the right-hand side, the limit and expectation
may be exchanged due to the weak convergence of Qu to Q and the uniform boundedness of {Qu},
by Proposition 4.1 and Theorem 4.2.

To identify the first expectation on the right-hand side of (6.7), observe once again that
Zn1{n≤Tu<τ} is the same in the ξ-shifted measure as it is in the dual measure, since the dual
measure agrees with the ξ-shifted measure up until time Tu. Hence

ED

[
Zξn lim

u→∞
1{n≤Tu<τ}

]
= Eξ

[
Zξn lim

u→∞
1{n≤Tu<τ}

]
= Eξ

[
Zξn1{τ=∞}

]
,

since an elementary argument yields that Tu ↑ ∞ a.s. as u→∞.

Substituting into (6.7) and now taking the limit as n→∞ yields

lim
n→∞

lim
u→∞

ED

[
ZξnQu1{n≤Tu<τ}

]
= lim

n→∞
Eξ

[
Zξn1{τ=∞}

]
ED [Q]

= Eξ
[
Zξ1{τ=∞}

]
ED [Q] , (6.8)

where the last step follows from the dominated convergence theorem and Lemma 5.5 (i) and (ii).
Finally, observe by Theorem 4.2 that

ED [Q] = lim
u→∞

ED [Qu] (P {Tu < τ})−1

= lim
u→∞

ED

[
ED

[
Nu

∣∣FTu∧(τ−1)

](VTu
u

)−ξ
1{Tu<τ}

]
(P {Tu < τ})−1

= lim
u→∞

ED

[
Nu

(
VTu
u

)−ξ ∣∣∣Tu < τ

]
.

Substituting the previous equation into (6.7) yields

lim
n→∞

lim
u→∞

ED

[
ZξnQu1{n≤Tu∧(τ−1)}

]
= Eξ

[
Z1{τ=∞}

]
lim
u→∞

ED

[
Nu

(
VTu
u

)−ξ ∣∣∣Tu < τ

]
. (6.9)

Returning to (6.3) and (6.5), we see that the proof of the proposition will now be complete, provided
that we can show that

lim
n→∞

lim
u→∞

ED

[(
ZξTu1{Tu<τ} − Z

ξ
n1{n≤Tu<τ}

)
Qu
]

= 0. (6.10)
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But recall once again that {Qu} is uniformly bounded. Thus, to establish (6.10), it is sufficient
to show

lim
n→∞

lim
u→∞

Eξ

[(
ZξTu1{Tu<τ} − Z

ξ
n1{n≤Tu<τ}

)+
]

= 0 (6.11)

and

lim
n→∞

lim
u→∞

Eξ

[(
ZξTu1{Tu<τ} − Z

ξ
n1{n≤Tu<τ}

)−]
= 0. (6.12)

Note that in these last expectations, we have again replaced ED [·] with Eξ [·], since these expecta-
tions involve random variables on {Tu < τ}, and on that set these expectations are the same.

To establish (6.11), first apply Lemma 5.5 (ii). Namely observe that the integrand on the left-

hand side is dominated by 2
(
Z̄(p)

)ξ
, which is integrable. Hence, applying the dominated convergence

theorem twice, first with respect to the limit in u and then with respect to the limit in n, we obtain

Eξ

[(
lim
u→∞

ZξTu1{Tu<τ} − lim
n→∞

Zξn1{τ=∞}

)+
]

= 0, (6.13)

where, in the last equality, we have used that Tu ↑ ∞ as u→∞. This establishes (6.11). The proof
of (6.12) is analogous. 2

Next we identify second term on the right-hand side of (6.1) by relating it to the classical
Cramér-Lundberg constant. First recall that τ∗ is a typical return time of the random walk Sn =∑n

i=1 logAi to the origin, while τ is a typical regeneration for the process {Vn}.

Lemma 6.1 Assume (2.12), and suppose that (H1), (H2), and (H3) are satisfied. Then

1−E
[
eξSτ∗

]
E [τ∗]

lim
u→∞

ED

[
Nu

(
VTu
u

)−ξ ∣∣∣Tu < τ

]
= C∗, (6.14)

where C∗ is the Cramér-Lundberg constant defined in (2.20).

Proof Define

Wn = (logAn +Wn−1)+ , for n = 0, 1, . . . .

Then {Wn} is a random walk reflected at the origin, and since E [logA] < 0, it is well known that
this process is a recurrent Markov chain which converges to a random variable W whose distribution
is the stationary distribution. Also, by Iglehart (1972), Lemma 1,

lim
u→∞

u−ξP {W > log u} = C∗, (6.15)

where W := limn→∞Wn.

Set τ∗ = inf
{
n ∈ Z+ : Wn = 0

}
. Since {Wn} has an atom at the origin, τ∗+1 is a regeneration

time of the Markov chain {Wn}. Hence by the representation formula in Lemma 2.2,

P {W > log u} =
E
[
N∗u
]

E[τ∗]
, (6.16)

where N∗u :=
∑τ∗

n=1 1(log u,∞)(Wn).

Let µA denote the marginal distribution of logA, and set

µA,ξ(E) =

∫
E
eξxdµA(x), E ∈ B(R).
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Let T ∗u = inf {n ∈ Z+ : Wn > log u}, and define the dual measure

L(logAn) =

{
µA,ξ for n = 1, . . . , T ∗u ,
µA for n > T ∗u .

(6.17)

With a slight abuse of notation, let ED [·] denote expectation with respect to this dual measure.
Then by a change of measure, analogous to Lemma 5.3, we obtain

E
[
N∗u
]

= u−ξED

[
N∗ue

−ξ(WT∗u−log u)
]

= u−ξED

[
ED

[
N∗u
∣∣FT ∗u∧τ∗ ] e−ξ(WT∗u−log u)1{T ∗u≤τ∗}

]
, (6.18)

which is equal to

u−ξED

[
ED

[
N∗u
∣∣FT ∗u∧τ∗ ] e−ξ(WT∗u−log u)

∣∣∣T ∗u < τ∗ + 1
]
PD {T ∗u < τ∗ + 1} .

To complete the proof, notice that the multiplicate random walk process {exp(Wn)} also satisfies
the conditions of Theorem 4.2, and the random variable inside the last expectation converges to
the same weak limit as the corresponding quantity for the process {Vn}. [Note that we write
“T ∗u < τ∗+1” while we write “Tu < τ ,” since 0 and τ are regeneration times for the original process,
while {Wn} regenerates subsequent to returning to the origin, so 1 and τ∗+1 are regeneration times
for this process.] Thus by Theorem 4.2, (J1(u)/J2(u))→ 1 as u→∞, where

J1(u) := ED

[
ED [Nu |FTu ]

(
VTu
u

)−ξ ∣∣∣Tu < τ

]
,

J2(u) := ED

[
ED

[
N∗u
∣∣FT ∗u∧τ∗ ] e−ξ(WT∗u−log u)

∣∣∣T ∗u ≤ τ∗] .
Consequently we conclude

lim
u→∞

ED

[
Nu

(
VTu
u

)−ξ ∣∣∣Tu < τ

]
= lim

u→∞

uξE [N∗u ]

PD {T ∗u ≤ τ∗}

= lim
u→∞

C∗E [τ∗]

PD {T ∗u ≤ τ∗}
by (6.15) and (6.16). (6.19)

Finally observe that limu→∞PD {T ∗u ≤ τ∗} = PD {T ∗u =∞}, and by a change of measure argument,

PD {τ∗ =∞} = 1−Pξ {τ∗ <∞} = 1−
∞∑
n=1

Eξ
[
1{τ∗=n}

]
= 1−

∞∑
n=1

E
[
eξSn1{τ∗=n}

]
= 1−E

[
eξSτ∗

]
. (6.20)

The required result then follows from (6.19) and (6.20). 2

Proof of Theorem 2.1 By Lemma 2.2, P {V > u} = E [Nu] /E [τ ], and hence by Proposition 6.1,

lim
u→∞

uξP {V > u} = Eξ

[
Zξ1{τ=∞}

]
· (E [τ ])−1 lim

u→∞
ED

[
Nu

(
VTu
u

)−ξ ∣∣∣Tu < τ

]
. (6.21)

30



Since Z > 0 w.p. 1 in the ξ-shifted measure, by Lemma 5.5 (i), we may identify the random variable
Z in the previous display as Z = Z(p) − Z(c) a.s., by Lemma 5.4. Then by Lemma 6.1, the last
limit on the right-hand side of (6.21) may be identified as

C∗E [τ∗]

1−E [eξSτ∗ ]
=

1

ξλ′(ξ)
by (2.20). (6.22)

Thus we have shown that (2.22) holds. Also, the positivity of the constant C is obtained from
Lemma 5.5 (i), which yields Z > 0 w.p. 1, while the finiteness of this constant is obtained from
Lemma 5.5 (ii), which yields Z1{τ=∞} ≤ Z̄(p), where Eξ

[
(Z̄(p))ξ

]
<∞.

To complete the proof, it suffices to show that

Eξ

[(
Z+
n

)ξ
1{τ>n}

]
−Eξ

[(
Z+
n−1

)ξ
1{τ>n−1}

]
≤ Ke−εn, n ∈ Z+, (6.23)

for finite positive constants K and γ. Now the left-hand side of (6.23) is equal to

Eξ

[(
(Z+

n )ξ − (Z+
n−1)ξ

)
1{τ>n}

]
−Eξ

[
(Z+

n−1)ξ1{τ=n}

]
. (6.24)

For the second term, observe that if regeneration occurs at time n, then (according to the split-
chain described in Nummelin (1984), Section 4.4, or Remark 2.1 above), we must have Vn−1 ∈ C =
[−M,M ]. Moreover, by Lemma 5.1, {Vn} is geometrically ergodic, and thus P {τ > n} ≤ Je−γn

for certain positive constants J and γ. Hence, since Zn = Vn/(A1 · · ·An), it follows by Lemma 5.3
that

Eξ

[
(Z+

n−1)ξ1{τ=n}

]
= E

[
(V +
n−1)ξ1{τ=n}

]
≤MP {τ = n} ≤MJe−γ(n−1). (6.25)

Next consider the first term in (6.24). It follows immediately by definition in (2.12) that
−|Bn| ≤ Vn −AnVn−1 ≤ An|Dn|+ |Bn|. Hence, similar to (5.33),∣∣Z+

n − Z+
n−1

∣∣1{τ>n} ≤ B̃n
A1 · · ·An

1{τ>n}, where B̃n = An|Dn|+ |Bn|. (6.26)

If ξ ≥ 1, then from the previous equation and an application of Minkowskii’s inequality, we obtain

Eξ

[
(Z+

n )ξ1{τ>n}

]
≤ Eξ

[
(Z+

n−1)ξ1{τ>n}

]1 +
Eξ

[
B̃ξ
n1{τ>n}/(A1 · · ·An)ξ

]
Eξ
[
(Z+

n−1)ξ1{τ>n}
]

ξ

. (6.27)

Moreover by Lemma 5.3,

Eξ

[
B̃ξ
n

(A1 · · ·An)ξ
1{τ>n}

]
= E

[
B̃ξ
n1{τ>n}

]
≤ Ke−γ(n−1), (6.28)

where the last step was obtained by the independence of B̃n from {τ > n−1} and by the geometric
ergodicity of {Vn}. Substituting (6.28) into (6.27) yields, after a Taylor expansion,

Eξ

[
(Z+

n )ξ1{τ>n}

]
≤ Eξ

[
(Z+

n−1)ξ1{τ>n}

]
+ o(e−εn), (6.29)

where ε = γ/ξ. Repeating this argument (but using the lower bound rather than the upper bound
for the difference (Z+

n −Z+
n−1) in (6.26)) yields the same bound, but with Z+

n and Z+
n−1 interchanged

in (6.29). Using this observation together with (6.29) and (6.25), we conclude that (6.23) holds for
ξ ≥ 1. On the other hand, if ξ < 1, then we may use the deterministic inequality |x+y|ξ ≤ |x|ξ+|y|ξ
in place of Minkowskii’s inequality to obtain the same result, obtaining in this case that ε = γ. The
proof of the theorem is now complete. 2
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Remark 6.2 The proof of Theorem 2.1 could be slightly modified to obtain other representations
for the constant C. For example, applying Theorem 2.2 of Collamore et al. (2011) (and its proof),
we obtain that

P {V > u} = π(C)E [Nu] , (6.30)

where πC(E) := π(E)/π(C) for any Borel subset E ⊂ C (and π denotes the stationary measure of
{Vn}), and where Nu denotes the number of exceedances above level u over a cycles eminating from
and returning to C = [−M,M ], where M ≥ 0 and ϕ(C) > 0. (In other words, the regeneration
time in our original definition of Nu needs to be replaced with the first return time to C.) Using
(6.30) in place of (2.9), we obtain essentially the same representation formula for C, viz. (2.21),
except that the initial measure of V0 is taken to be πC (rather than the measure ν appearing in
the minorization (M)), and the stopping time τ is interpreted as the first return time to C. In
this way, we arrive at a canonical representation for the constant C, which does not depend on the
minorization (M).

Now in the proof of Theorem 2.1, the remainder term satisfies Rn := C −Cn = o(e−εn), where
ε = γ/ξ if ξ ≥ 1 and ε = γ if ξ < 1. Here, γ is obtained from the geometric ergodicity of {Vn};
in particular, P {τ > n} ≤ Ke−γn for some positive constant K. But if (6.30) is used in place
of (2.9), then γ derives from the return times to C rather than the regeneration times, and these
return times can be quantified more easily. In particular, the drift condition (D) derived in Lemma
5.1 (i) yields that

E
[
h(Vn)1{V0 /∈C}

]
≤ ρh(Vn−1),

where h(v) = |v|α + 1 for some α ≤ 1 chosen such that λ(α) ∈ (0, 1). Hence by an inductive
argument,

E

[
h(Vn)

n−1∏
i=1

1{Vi /∈C}

]
≤ ρnh(V1)1{V1 /∈C}. (6.31)

Since the function h(v) is increasing in |v|, it follows that E [h(Vτ )] ≤ h(V1) for any V1 /∈ C.
Consequently, (6.31) implies that P {τ = n} ≤ ρn.

Remark 6.3 When the process {Vn} is nonnegative, an alternative respresentation for the constant
C may be obtained by noting that, using the stationarity of {Vn},

P {V > u} = lim
n→∞

1

n
E
[
N(n)
u

]
, where N(n)

u :=
n∑
i=1

1(u,∞)(Vi). (6.32)

Next, let κ(n) denote the first regeneration time after time n. Then the proof of Theorem 2.1 can
be repeated with κ(n) in place τ . The only significant change occurs in proof of Proposition 6.1,
which plays a critical role in the proof of Theorem 2.1. Specifically, in place of (6.5) in that proof,
we obtain

n−1ED

[(
ZξTu1{Tu<κ(n)}

)
Qu
]

= n−1ED

[
ZξnQu1{Tu<κ(n)}

]
+ n−1ED

[(
ZξTu − Z

ξ
n

)
Qu1{Tu<κ(n)}

]
, (6.33)

where Qu is defined as in (6.4). As in the proof of Proposition 6.1, we let u→∞ and then n→∞.

To handle the first term on the right-hand side of (6.33), first note by a slight modification of
the results in Section 4 that, as u→∞,

ED [Qu]→ ED [Q] , ED

[
Qu1{Tu≥κ(n)}

∣∣Fκ(n)]ED [Q]1{Tu≥κ(n)}.
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Hence, by mimicking the proof of Proposition 6.1, we obtain

lim
u→∞

ED

[
ZξnQu1{Tu<κ(n)}

]
= Eξ

[
Zξn1{κ(n)=∞}

]
ED [Q] . (6.34)

Next, consider a modification of the ξ-shifted measure, where the first n innovations are taken
in the original measure, but all the remaining innovations are taken according to the ξ-shifted

measure. We let E
(n)
ξ [·] denote expectation with respect to this modified ξ-shifted measure. Since

Zn := Vn/(A1 · · ·An), we then obtain by the change of measure formula in Lemma 5.3 that, for
any positive constant γ < 1/ξ,

n−1Eξ

[
Zξn1{κ(n)=∞}

]
= n−1E

(n)
ξ

[
V ξ
n1{Vn<nγ}1{κ(n)=∞}

]
+ n−1E

(n)
ξ

[
V ξ
n1{Vn≥nγ}1{κ(n)=∞}

]
. (6.35)

Recall that for regeneration to occur, the process must first return to the set C = [−M,M ] (as
described in Remark 2.1). Hence, since Vn ≥ AnVn−1 − |Bn| for all n, it follows by an application
of the proof of Lemma 5.2 that

sup
s≥nγ

P
(n)
ξ

{
κ(n) =∞

∣∣Vn = s
}
↗ 1 as n→∞.

Since the first term on the right-hand side of (6.35) is zero, we conclude that

lim
n→∞

1

n
Eξ

[
Zξn1{κ(n)=∞}

]
= lim

n→∞

1

n
Eξ
[
Zξn
]
. (6.36)

Next consider the second term on the right-hand side of (6.33). First take that limit as u →
∞. By Lemma 5.5 (ii), we have

∣∣∣ZTu1{Tu<κ(n)}∣∣∣ ≤ Z(p), where Z(p) is defined the same way as

Z̄(p), but with τ replaced with κ(n). Then by repeating the argument in (5.29), we obtain that
E
[
(Z(p))ξ

]
≤ L(n) <∞. (The finiteness of L(n) follows from the geometric ergodicity of {Vn} and

(6.43) below.) Hence, since {Qu} is uniformly bounded (as noted in the proof of Proposition 6.1),
it follows by the dominated convergence theorem that the second term in (6.33) tends to

1

n
Eξ

[(
Zξ − Zξn

)
Q1{κ(n)=∞}

]
as u→∞. (6.37)

We claim that as n→∞, this quantity tends to zero. Since Q is bounded from above, it suffices
to show that

lim sup
n→∞

1

n
Eξ

[
|Zξ − Zξn|1{κ(n)=∞}

]
= 0. (6.38)

To this end, we employ the elementary inequalities∣∣∣|x+ y|ξ − |x|ξ
∣∣∣ ≤ { |y|ξ , ξ ∈ (0, 1],

ξ|y| (|x|+ |y|)ξ−1 , ξ > 1.
(6.39)

Applying (6.39) with x = Zn, y = Z − Zn, we see that (6.38) will hold for ξ ∈ (0, 1] provided that

lim sup
n→∞

1

n
Eξ

[
|Z − Zn|ξ1{κ(n)=∞}

]
= 0. (6.40)

When ξ > 1, we require that (6.40) holds and, in addition,

lim sup
n→∞

1

n
Eξ

[
|Z − Zn|Zξ−1

n 1{κ(n)=∞}

]
= 0. (6.41)
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Note by (5.33) that

|Z − Zn| ≤
∞∑

i=n+1

B̃i
A1 · · ·An

, B̃i := Ai|Di|+ |Bi|.

Then, by repeating the argument in (3.12) or (5.29), we obtain

Eξ

[
|Z − Zn|ξ1{κ(n)=∞}

]1/ξ
≤ E

[
B̃ξ
]1/ξ ∞∑

i=n+1

P
{
κ(n) > i− 1

}1/ξ
<∞. (6.42)

To see that the quantity on the right-hand side is finite, apply a renewal argument along the lines
of Iscoe et al. (1985), Lemma 6.2. Recall that {Ki} denotes the regeneration times of {Vn} and let
Nn = sup{i : Ki ≤ n}. Then set γn = KNn+1−1 −KNn and notice that γn ≤ κ(n) − n. Now assume
that regeneration occurs at time zero and let τ denote the subsequent regeneration time. Then

un := E [eεγn ] = E [eετ ; τ > n] +
n∑
k=0

P {τ = k}E [eεγn−k ] := an +
n∑
k=0

pkun−k.

Then the argument on p. 396 of Iscoe et al. (1985) can be applied to obtain that

lim
n→∞

E [eεγn ] =
1

E[τ ]
E
[
τeετ

]
. (6.43)

Hence κ(n)−n has exponential moments, as can now be seen from the geometric ergodicity of {Vn}
established in Lemma 5.1 (iv). Consequently, the right-hand side of (6.42) must be finite. Thus we
conclude that (6.40) holds.

Next, to establish (6.41) when ξ > 1, first apply Hölder’s inequality to obtain that

1

n
Eξ

[
|Z − Zn|Zξ−1

n 1{κ(n)=∞}

]
≤
(

1

n
Eξ

[
|Z − Zn|ξ1{κ(n)=∞}

])1/ξ ( 1

n
Eξ
[
Zξn
])ξ−1/ξ

.

As we have just shown, the first term on the right-hand side tends to zero. Moreover, by a repetition
of (5.29), the second term is finite, since Eξ

[
Zξn
]
≤ E [V0] + nE

[
B̃
]
. This establishes (6.41).

In this way, we have obtained an alternative expression for the constant C in Theorem 2.1 for
nonnegative processes {Vn} governed by Letac’s Model E, namely,

C =
1

ξλ′(ξ)
lim
n→∞

1

n
Eξ
[
Zξn
]
. (6.44)

Moreover,
Eξ
[
Zξn
]

:= Eξ
[
V ξ
n /(A1 · · ·An)ξ

]
= E

[
V ξ
n

]
,

and—as long as the initial state is the same—the backward and forward sequences are equal in dis-
tribution for every n; that is, V0 = Z̃0 =⇒ Vn = Z̃n for all n, where {Z̃n} denotes the corresponding
backward sequence. Hence

C =
1

ξλ′(ξ)
lim
n→∞

1

n
E
[
Z̃ξn
]
. (6.45)

Thus, we have arrived at an alternative expression for the constant C, which was established for
the special case f(v) = Av + B and B ≡ 1 in Bartkiewicz et al. (2011). However, we note that
our original expression in Theorem 2.1 is more useful in our applications, since it is exact and
does not involve limiting moments of {Z̃n}. A further, very important, advantage of our original
representation is that in applications such as Example 3.2, we are thereby able to eliminate the
complicated conjugate term, which often turns out to be zero when taken over paths which fail to
regenerate in the ξ-shifted measure. Nonetheless, for general Lipschitz maps, the formula we have
just obtained appears to provide an appealing alternative.∗

∗We thank Prof. Ewa Damek for pointing out the paper of Bartkiewicz et al. (2011).
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7 Proofs of Propositions 2.1 and 2.2

Proof of Proposition 2.1 A repetition of (6.3) and (6.4) yields

uξE [Nu] = E

[(
ZξTu1{Tu<τ}

)
E [Nu |FTu∧τ−1 ]

(
VTu
u

)−ξ]

≤ E

[(
Z̄(p)

)ξ (
C1(u) log

(
VTu
u

)
+ C2(u)

)(
VTu
u

)−ξ]
, (7.1)

where the last step follows from Proposition 4.1 and Lemma 5.5 (ii). Moreover, since VTu ≥ u, we
obviously have(

C1(u) log

(
VTu
u

)
+ C2(u)

)(
VTu
u

)−ξ
≤ sup

z≥0

{
e−ξz (zC1(u) + C2(u))

}
, (7.2)

which is bounded. Substituting this deterministic bound into the right-hand side of (7.1) establishes
the theorem. The limiting values of C1(u) and C2(u) are obtained by a further application of
Proposition 4.1. 2

Proof of Proposition 2.2 By (2.34),

Θ = lim
u→∞

P {Vn > u, for some n < τ}
E [Nu]

= lim
u→∞

E
[
1{Tu<τ}

]
E [Nu]

. (7.3)

Moreover, by a repetition of the proof of Proposition 6.1,

lim
u→∞

uξE
[
1{Tu<τ}

]
= Eξ

[
Zξ1{τ=∞}

]
lim
u→∞

Eξ

[
1{Tu<τ}

(
VTu
u

)−ξ ∣∣∣Tu < τ

]
. (7.4)

(In the second term on the right-hand side, we have used the fact that the dual measure and the
ξ-shifted measures are the same prior to time Tu.)

To identify the last term on the right-hand side, let Sn =
∑n

i=1 logAi, let T ∗u = inf{n : Sn > u},
and let τ∗ = inf{n : Sn ≤ 0}. Then by applying Lemma 4.1 to the process {Vn} and to the
multiplicative random walk {exp(Sn)}, we see that VTu/u and expST ∗u/u converge to the same
weak limit. Hence

lim
u→∞

Eξ

[(
VTu
u

)−ξ∣∣∣∣∣Tu < τ

]
= lim

u→∞
ED

[
e−ξ(ST∗u−log u)

∣∣∣T ∗u < τ∗ + 1
]

(7.5)

(where by definition, we recall that {Vn} regenerates at times 0 and τ , while the process {Sn},
but reflected at the origin, regenerates subsequent to its returns to the origin, i.e., at times 1 and
τ∗ + 1).

Next, we observe that the quantity on the right-hand side is just the Cramér-Lundberg constant
C∗. To see that this is the case, first note that if T ∗u 6≤ τ∗, then the process {Sn} returns to (−∞, 0]
and, starting from this new level x ∈ (−∞, 0] until its return to (−∞, x], the overjump distribution
will have the same limiting distribution (as u → ∞) as it had when starting its first cycle from
the origin. Moreover, since we are in the ξ-shifted measure, the number of such returns will be
finite, with each return occuring with a probability bounded above by some p ∈ (0, 1). From
these considerations, we conclude that on the right-hand side of (7.5), the conditioning on the
event {T ∗u < τ∗ + 1} may be dropped. Consequently, the right-hand side of this equation may be
identified as

lim
u→∞

Eξ

[
e−ξ(ST∗u−log u)

]
= lim

u→∞
uξP {T ∗u <∞} = C∗,
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where the second equality follows from a change of measure argument. Thus by (7.4),

lim
u→∞

uξE
[
1{Tu<τ}

]
= C∗Eξ

[
Zξ1{τ=∞}

]
. (7.6)

But by Proposition 6.1 and Lemma 6.1, we also have that

lim
u→∞

uξE [Nu] = Eξ

[
Zξ1{τ=∞}

] C∗E [τ∗]

1−E [eξSτ∗ ]
. (7.7)

Substituting (7.6) and (7.7) into (7.3), we conclude (2.35). 2

8 Proofs of the results from nonlinear renewal theory

First we turn to the proof of Lemma 4.1, which extends a classical result from nonlinear renewal
theory (given in Woodroofe (1982), Theorem 4.2) to the setting of our problem.

Proof of Lemma 4.1 By definition of Zn in (5.16),

Vn = (A1 · · ·An)
(
Zn1{Zn>0} + Zn1{Zn≤0}

)
. (8.1)

Now by Lemma 5.2, Vn ↑ ∞ w.p.1 under the measure µξ. Thus Tu <∞ a.s., and at this exceedance
time we obviously have 1{Zn≤0} = 0. Thus, letting Yn = Zn on {Zn > 0} and Yn = 1 otherwise, we
obtain that on {Zn > 0},

VTu = V ′Tu for V ′n := (A1 · · ·An)Yn, n = 1, 2, . . . , (8.2)

Note that Yn is everywhere positive.
We begin by showing that

V ′Tu
u
⇒ V̂ as u→∞, (8.3)

where V̂ has the distribution described in (4.3). To this end, note by (8.2) that

log V ′n = Sn + δn, (8.4)

where Sn :=
∑n

i=1 logAi and δn := log Yn. Hence {log V ′n} may be viewed as a perturbed random
walk where {Sn} has a positive drift under µξ-measure, and the sequence {δn} has the property
that {(logAi, δi) : i = 1, . . . , n} is independent of logAj for all j > n. This puts us in the setting
of classical nonlinear renewal theory.

Next observe by Lemma 5.5 and the fact that 1{Zn≤0} → 0 a.s. that δn := log Yn converges a.s.
to a proper random variable, and hence δn/n → 0 a.s. as n → ∞. Thus {δn} is slowly changing.
By Woodroofe (1982), Theorem 4.2, it follows that (8.3) holds and hence, by (8.2), this equation
also holds with VTu in place of V ′Tu .

To show that the result holds conditional on {Tu < τ}, let V0 ∼ ν, where ν is given in Lemma
2.2 (iv); let K0 = 0; and let K1,K2, . . . denote the successive regeneration times. For each i, let Ri
denote the distribution of (VTu/u) conditional on the event that Tu ∈ [Ki,Ki+1). By independence
of the regeneration cycles, {Ri} is an i.i.d. sequence of random variables. Consequently, the con-
ditional distribution of VTu given that Tu ∈ [Ki,Ki+1) is the same for all i. Thus, the conditional
distribution of VTu/u given {Tu < τ} must agree with the unconditional distribution of VTu/u,
completing the proof. 2

Next we turn to the proofs of Proposition 4.1 and Theorems 4.1 and 4.2. An important part
of the proofs will be the study the process {Vn} as it returns from the set (u,∞). To do so, we
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will introduce a new barrier at a lower level ut, where t ∈ (0, 1), and divide the trajectory into two
parts, namely that occuring prior to the event Vn ∈ [−ut, ut], and that occuring after this time.
Intuitively, the process {Vn} will closely resemble a multiplicative random walk away from the set
[−ut, ut], and so a critical aspect of the proofs will be to characterize the behavior of {Vn} after
it returns to [−ut, ut], but prior to regeneration. Indeed, it is precisely in this region that {Vn}
fails to resemble the random walk process. In the next proposition, we show that the behavior of
the process in this critical region may be neglected in an appropriate sense, and we also provide a
reasonably sharp estimate for the number of visits above the level u which arise after returning to
[−ut, ut].

For any v ≥ 0, first define

K(v) = inf{n : |Vn| ≤ v}.

Proposition 8.1 Assume Letac’s Model E, suppose that {Vn} is nondegenerate and (H1) and (H2)
are satisfied, and assume that V0 > u. Then for any t ∈ (0, 1), there exist finite positive constants
α, M , and ρ ∈ (0, 1) such that

E

 τ−1∑
n=K(ut)

1{Vn>u}

 ≤ ∆(u). (8.5)

The constant ∆(u) is characterized as follows. Set V̄1 := A1 max {D1, V0}+ |B1|. Then

∆(u) :=
u−α(1−t)

1− ρ

{
1 + u−αt sup

w∈[−M,M ]
Ew [τ ]EM

[
V̄ α

1

]}
<∞ (8.6)

(where Ew [·] denotes expectation conditional on V0 = v).

Note that we have dropped the dependence on the dual measure in this proposition, since we
assume that V0 > u, and hence the entire trajectory will take place in the original measure.

Proof of Proposition 8.1 Recall by Lemma 5.1 (ii) that {Vn} satisfies a drift condition; namely,
for some α > 0,

E
[
|Vn|α

∣∣Vn−1 = v
]
≤ ρ|v|α + β1CM (v), (8.7)

where ρ ∈ (0, 1), CM := [−M,M ], and M and β are constants.

We will divide the proof into three steps. In the first step, we study the number of exceedances
above level u which occur in an excursion beginning at time K(ut) (i.e., when the process {|Vn|}
first falls below the level ut for t < 1) and ending at time K(M) (i.e., when this process first enters
the set CM := [−M,M ]). In the next step, we consider the number of exceedances above level u
which occur between time K(M) and the actual regeneration time. Combining these two estimates
in Step 3, we obtain the desired upper bound.

Step 1: For any t ∈ (0, 1),

E

 K(M)∑
n=K(ut)

1{Vn>u}

 ≤ u−α(1−t)

1− ρ
. (8.8)

Proof: If V0 = v, where |v| > M , then by iterating (8.7) we obtain

E
[
|Vn|α1{K(M)>n}

∣∣V0 = v
]
≤ ρn|v|α, n = 0, 1, . . . , (8.9)
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and hence
E
[
1{Vn>u}1{K(M)>n}

∣∣∣V0 = v
]
≤ u−αρn|v|α. (8.10)

Consequently,

E

K(M)−1∑
n=0

1{Vn>u}

∣∣∣V0 = v

 ≤ u−α|v|α (1 + ρ+ ρ2 + · · ·
)
. (8.11)

Then by the previous equation and the strong Markov property,

E

K(M)−1∑
n=K(ut)

1{Vn>u}

∣∣∣VK(ut)

 ≤ u−α|VK(ut)|α
(
1 + ρ+ ρ2 + · · ·

)
. (8.12)

Now by definition, we have |VK(ut)| ≤ ut. Thus we have established (8.8).

Step 2: We have

E

 τ−1∑
n=K(M)

1{Vn>u}

 ≤ u−α

1− ρ

{
sup

w∈[−M,M ]
Ew [τ ]EM

[
V̄ α

1

]}
. (8.13)

Proof: It suffices to show that for any v ∈ [−M,M ],

E
[
Nu

∣∣V0 = v
]
≤ u−α

1− ρ

{
sup

w∈[−M,M ]
Ew [τ ]EM

[
V̄ α

1

]}
. (8.14)

To this end, introduce the augmented chain (as described in Remark 2.1); namely consider the
process {(Vn, ηn)}, where {ηn} is an i.i.d. sequence of Bernoulli random variables with P {ηn = 1} =
δ and P {ηn = 0} = 1−δ. Then we may identify τ as the return time of this augmented chain to the
set C := C×{1}, where C and δ are obtained from the minorization condition (M) (which holds by
Lemma 5.1 (iii)). We assume without loss of generality that C ⊂ CM , and define M = CM × {0, 1}.
(We may possibly have that C is strictly contained in CM .)

With a slight abuse of notation, let P denote the transition kernel of the augmented chain
{(Vn, ηn)}. Introduce the taboo transition kernel

GP (x,E) :=

∫
E
1Gc(y)P (x, dy),

where G and E are Borel subsets of R×{0, 1}. Then by the last-exit decomposition (cf. Meyn and
Tweedie (1993), Section 8.2),

CP
n(v, E) = MP

n(v, E) +
n−1∑
k=1

∫
M−C

CP
k(v, dw)MP

n−k(w, E). (8.15)

Now set E = (u,∞) × {0, 1} and fix v = (v, q), where v < u and q ∈ {0, 1}. Then sum
(8.15) over all n ∈ Z+. On the left-hand side of (8.15), the term CP

n
(
v, (u,∞)× {0, 1}

)
describes

the probability that regeneration does not occur during the first n time increments and that
Vn ∈ (u,∞). Thus

∞∑
n=1

CP
n
(
v, (u,∞)× {0, 1}

)
=

∞∑
n=1

E
[
1{Vn>u}1{τ>n}

∣∣V0 = v
]

= E
[
Nu

∣∣V0 = v
]
. (8.16)
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Next consider the second term on the right-hand side of (8.15). Applying Tonelli’s theorem to
interchange the order of summation and integration, then interchanging the order of summation,
we obtain

∞∑
n=1

n−1∑
k=1

∫
M−C

CP
k(v, dw)MP

n−k(w, (u,∞)× {0, 1}
)

=

∫
M−C

∞∑
k=1

CP
k(v, dw)

( ∞∑
n=k+1

MP
n−k(w, (u,∞)× {0, 1}

))

=

∫
w∈(M−C)

∫
z∈Mc

∞∑
k=1

CP
k(v, dw)MP (w, dz)

·

( ∞∑
n=0

MP
n
(
z, (u,∞)× {0, 1}

))
. (8.17)

For the last term in parentheses, note that MP
n
(
z, (u,∞) × {0, 1}

)
describes the probability that

{Vn} avoids the set [−M,M ] during the first n time increments and that Vn ∈ (u,∞). Hence
setting z = (z, r) yields, by (8.11),

∞∑
n=0

MP
n
(
z, (u,∞)× {0, 1}

)
= E

[ ∞∑
n=0

1{Vn>u}1{K(M)>n}

∣∣∣V0 = z

]

= E

K(M)−1∑
n=0

1{Vn>u}

∣∣∣∣V0 = z

 ≤ u−α|z|α

1− ρ
. (8.18)

Substituting this inequality into the previous equation, we see that the right-hand side of (8.17) is
bounded above by

u−α

1− ρ

∞∑
k=1

∫
M−C

CP
k(v, dw)

(∫
Mc

MP (w, dz)|z|α
)
. (8.19)

Note that with w = (w, s), ∫
Mc

MP (w, dz)|z|α ≤ E
[
V̄ α

1

∣∣V0 = M
]
,

where V̄1 := A1 max {D1, V0} + |B1|. Moreover, for the remaining integral in (8.19), we have by
definition that ∫

M−C
CP

k(v, dw) = P
{
τ > k, Vk ∈ [−M,M ]

∣∣V0 = v
}
.

Substituting the last two estimates into (8.19), we obtain that (8.19) is bounded above by

u−α

1− ρ

∞∑
k=1

P
{
τ > k

∣∣V0 = v
}
E
[
V̄ α

1

∣∣V0 = M
]
. (8.20)

Now repeat the same argument, but applied to the first term on the right of (8.15). Essentially,
this can be viewed as one of the terms in the previous sum, namely the term k = 0. In fact, the
previous argument may be repeated without change to obtain

MP
n(v, E) ≤ P

{
τ > 0

∣∣V0 = v
}
E
[
V̄ α

1

∣∣V0 = M
]
. (8.21)
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Substituting these last two equations into the right-hand side of (8.15) and substituting (8.16) into
the left-hand side of (8.15) yields

E
[
Nu

∣∣V0 = v
]

=
u−α

1− ρ

∞∑
k=0

P
{
τ > k

∣∣V0 = v
}
E
[
V̄ α

1

∣∣V0 = M
]

≤ u−α

1− ρ

{
sup

w∈[−M,M ]
Ew [τ ]EM

[
V̄ α

1

]}
, (8.22)

which is (8.14).
Finally observe that the quantity on the right-hand side of (8.22) is finite. To this end, it is

sufficient to verify that the set M is regular. For this purpose, observe that since {ηn} is an i.i.d.
sequence, it follows by a slight modification of Lemma 5.1 (iii) that M is petite. Moreover, letting
κ denote the first return time of {Vn} to CM , then by Lemma 5.1 (i) and Theorem 15.0.1 of Meyn
and Tweedie (1993), we have that supv∈CM Ev

[
tκ
]
< ∞ for some t > 1. Then by definition, it

follows that this last equation also holds for the augmented chain with M := CM ×{0, 1} in place of
CM . Consequently, the conditions of Meyn and Tweedie (1993), Theorem 11.3.14 (i), are fulfilled
and hence M is regular.

Step 3: Finally observe that by summing the expectations studied in Steps 1 and 2, we imme-
diately obtain (8.5). 2

Proof of Theorem 4.1 By Proposition 8.1, it is sufficient to show that for some t ∈ (0, 1),

E

K(ut)−1∑
n=0

1{Vn>u}

∣∣∣∣V0

u
= v

 = U(log v), (8.23)

where U(z) :=
∑

n∈N µ
∗n
A (−∞, z) and µA is the marginal distribution of − logA. As explained

earlier in Section 4, under a minor continuity condition, U may be viewed as the renewal function
of −Sn = −

∑n
i=1 logAi, while the expectation on the left-hand side may be viewed as a truncated

renewal function of the nonlinear process {Vn}.
In the remainder of the proof, we will suppress the conditioning in (8.23).
To prove (8.23), we first establish an upper bound and then a corresponding lower bound. For

the upper bound, begin by observing (cf. (5.25)) that

|Vn|
|Vn−1|

≤ An +

(
An|Dn|+ |Bn|

)
|Vn−1|

. (8.24)

Note by definition that |Vn| > ut for all n ≤ K(ut). Hence

log

(
|Vn|
|Vn−1|

)
< log

(
An + u−t

(
An|Dn|+ |Bn|

))
, all n < K(ut). (8.25)

Now introduce the random walk

S(u)
n :=

n∑
i=1

X
(u)
i , where X

(u)
i := log

(
Ai + u−t

(
Ai|Di|+ |Bi|

))
, (8.26)

and S
(u)
0 = 0. From the previous two equations, we obtain (log |Vn| − log |V0|) ≤ S

(u)
n . Since

(V0/u) = v, it follows that
log |Vn| − log u ≤ S(u)

n + log v. (8.27)
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Now suppose that |Vn| > u. Then the left-hand side of (8.27) is positive, so S
(u)
n > − log v.

Consequently,

E

K(ut)−1∑
n=0

1{|Vn|>u}

 ≤ E

[ ∞∑
n=0

1{S(u)
n >− log v}

]
:= U (u)(log v). (8.28)

To establish an upper bound, it remains to show that

lim sup
u→∞

U (u)(log v) ≤ U(log v). (8.29)

To this end, observe by (H2) and (8.26) that E
[

exp
{
εX

(u)
i

}]
< ∞ for some ε > 0. Moreover,

E [logA] < 0 =⇒ E
[
X

(u)
i

]
< 0 for sufficiently large u. Since U (u) can itself be viewed as a renewal

function for the random walk {S(u)
n } (describing the number of visits of this negative-drift process

to the interval (− log v,∞)), it follows that U (u)(log v) < ∞. Since X
(u)
i decreases monotonically

to logAi as u→∞, it follows by a dominated convergence argument that

lim
u→∞

U (u)(log v) = E

[ ∞∑
n=0

1{Sn>− log v}

]
:= U(log v), (8.30)

which establishes the required upper bound.
Turning now to the lower bound, fix ε > 0 and choose N sufficiently large such that∣∣∣∣∣E

[
N∑
n=0

1{Sn>− log v}

]
− U(log v)

∣∣∣∣∣ < ε. (8.31)

Then

E

K(ut)−1∑
n=0

1{Vn>u}

 ≥ E

[
N∑
n=0

1{Vn>u}

]
−NP

{
K(ut) ≤ N

}
. (8.32)

To bound the first term on the right-hand side, note that

Vn ≥ AnVn−1 − |Bn|, (8.33)

and iterating this equation yields

Vn ≥ (A1 · · ·An)V0 −
n−1∑
i=1

n∏
j=i+1

Aj |Bi|, for all n. (8.34)

Thus, setting (V0/u) = v and letting u→∞ while fixing n ∈ Z+, we obtain that for any given n,

lim inf
u→∞

Vn
u
≥ (A1 · · ·An) v := exp {Sn + log v} a.s. (8.35)

Hence, if Sn > − log v, then we will necessarily have lim infu→∞(Vn/u) > 1. Consequently,

lim inf
u→∞

E

[
N∑
i=1

1{Vn>u}

]
≥ E

[
N∑
n=1

1{Sn>− log v}

]
≥ U(log v)− ε, (8.36)

where the last step was obtained by (8.31). Finally, observe by the definition of K(ut) together
with (8.34) that, for any s ∈ (t, 1),

P
{
K(ut) ≤ N

}
≤ P

{
(A1 · · ·AN )V0 ≤ us

}
+ P


N−1∑
i=1

N∏
j=i+1

Aj |Bi| > us − ut
 . (8.37)
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In the first term on the right-hand side, (V0/u) = v, and so the probability in question reduces to
P
{

(A1 · · ·AN ) v ≤ us−1
}

= P {SN + log v ≤ (s− 1) log u}, and the latter probability tends to zero
as u → ∞, as N is fixed and (s − 1) < 0. Similar reasoning shows that the second term on the
right of (8.37) also tends to zero as u → ∞. Thus we conclude limu→∞P

{
K(ut) ≤ N

}
= 0 for

any fixed N . Substituting this last equation and (8.36) into (8.32) yields the desired lower bound.
2

Proof of Proposition 4.1 First assume that (V0/u) = v for some v > 1. Then it follows by
(8.28) and Proposition 8.1 that

E

[
Nu

∣∣∣∣V0

u
= v

]
= E

[ ∞∑
n=0

1{Vn>u}

∣∣∣∣V0

u
= v

]
≤ U (u)(log v) + ∆(u), (8.38)

where, if S
(u)
n be defined as in (8.26), then

U (u)(log v) := E

[ ∞∑
n=0

1{S(u)
n >− log v}

]
= E

[ ∞∑
n=0

1{−S(u)
n <log v}

]
. (8.39)

Notice that U (u)(·) is the renewal function of {−S(u)
n }. Consequently, by Lorden’s inequality (As-

mussen (2003), Proposition V.6.2), it follows that

U (u)(log v) ≤ log v

mu
+

(
1 +

σ2
u

m2
u

)
, (8.40)

where
mu := E

[
X(u)

]
and σ2

u := Var
(
X(u)

)
(8.41)

and X(u) is defined as in (8.26).
Observe that the moments in (8.41) are actually finite. In particular, |x|ε dominates (log x)2

for any ε > 0. Hence, applying (H2) for a sufficiently small choice of ε > 0, we obtain

E
[(
X(u)

)2] ≤ const. ·E
[
eεX

(u)
]
<∞, for all u. (8.42)

Consequently, both the constants mu and σ2
u are finite. Substituting (8.40) into (8.38) yields

E

[
Nu

∣∣∣∣V0

u
= v

]
≤ C1(u) log v + C2(u), (8.43)

where, by (8.6) and (8.40),

C1(u) :=
1

mu
and C2(u) :=

(
1 +

σ2
u

m2
u

)
+ ∆(u). (8.44)

Next recall that our primary objective is to study ED

[
Nu

∣∣FTu∧(τ−1)

]
. But by the strong Markov

property,
ED

[
Nu

∣∣FTu∧(τ−1)

]
= ED

[
Nu

∣∣VTu]1{Tu<τ}.
Observe that in the dual measure, the process {Vn} reverts back to its original measure after time
Tu, and if Tu 6< τ then Nu is zero. Thus, we may apply (8.43) to the right-hand side of the previous
equation to obtain that

ED

[
Nu

∣∣FTu∧(τ−1)

]
≤
(
C1(u) log

(
VTu
u

)
+ C2(u)

)
1{Tu<τ}, (8.45)
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which is the required upper bound.
Finally observe that as u → ∞, X(u) decreases monotonically to logA a.s. and ∆(u) ↓ 0, and

hence as u→∞,

C1(u)→ C1 :=
1

m
and C2(u)→ C2 := 1 +

σ2

m2
, (8.46)

where m := E [logA] and σ2 := Var (logA). 2

Proof of Theorem 4.2 By the strong Markov property,

E

[
Nu

∣∣∣∣ VTuu = v

]
= E

[
Nu

∣∣∣∣ V0

u
= v

]
:= Hu(v),

and by Lemma 4.1,
lim
u→∞

Hu(v) = H(v) := U(log v). (8.47)

Let νu denote the probability law of VTu/u in the dual measure. Then our objective is to show that
for any z > 1,

lim
u→∞

∫ z

1
Hu(v)v−ξdνu(v) =

∫ z

1
H(v)v−ξdµ̂(v). (8.48)

[Here we have taken the lower end point of the integral at one, since VTu/u > 1 for every u.]
Next observe that ∫ z

1
Hu(v)v−ξdνu(v) = R1(u) +R2(u), (8.49)

where

R1(u) =

∫ z

1
Hu(v)v−ξd (νu(v)− µ̂(v)) , R2(u) =

∫ z

1
Hu(v)v−ξdµ̂(v).

Now by (8.43), (8.46), (8.47), and the dominated convergence theorem, it follows that as u→∞,

R2(u)→ R2 :=

∫ z

1
H(v)v−ξdµ̂(v). (8.50)

Finally, R1(u)→ 0 as u→∞ using (8.43), (8.46), and the weak convergence of νu to µ̂. 2

9 Proof of Theorem 2.2

The proof of Theorem 2.2 is a modification of the proof of Theorem 2.1. However, we first need to
verify that the preparatory lemmas are satisfied in the general setting of Section 2.4.

Lemmas 5.1-5.5 for general Lipschitz maps. A complication arises with Lemma 5.1 (iii),
which asserts the minorization (M) with k = 1. However, in general, this strong minorization
condition is not necessary and can be avoided by considering the k-chain {Vkn : n = 0, 1, . . .}. (As
noted in Remark 2.3, if we consider the k-chain, then Lemma 5.1 (iii) is not necessary and, as a
consequence, we do not need to assume (H0) in the case of Letac’s Model E. While these remarks
were stated in the setting of Theorem 2.1, the situation is the same here.)

Thus, we consider two cases. In the first case, we suppose that (M) holds with k = 1 and
C ⊂ [−M,M ] for some M ≥ 0. Then by the cancellation condition (C),

Amax{v,D∗}+B∗ ≤ Vn(v) ≤ Amax{v,D}+B, (9.1)

for triplets (A,B,D) and (A,B∗, D∗) satisfying (H1), (H2), and (H3), and by considering the upper
bound in (9.1), we immediately obtain Lemma 5.1 (i) and (iv). Also, we obtain Lemma 5.1 (ii)
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directly from our previous proof, since assumption (L) in Section 2.4 imply the existence of a unique
stationary measure for {Vn}, independent of the initial state. Hence, for this case, we see that all
of the conclusions in Lemma 5.1 hold.

If (M) is satisfied with k > 1, then we work with the k-chain {Vkn : n = 0, 1, . . .} in place of
the 1-chain {Vn : n = 0, 1, . . .}. Since {Vkn} converges to the same stationary distribution as {Vn},
the representation formula in Lemma 2.3 still holds; that is,

P {V > u} =
E
[
N

(k)
u

]
E
[
τ (k)

] , (9.2)

where τ (k) denotes the first regeneration time of the process {Vkn}, and

N (k)
u :=

τ (k)−1∑
n=0

1(u,∞)(Vkn),

Using the compositional formulas (2.10) and (2.11), we obtain in place of (9.1) that

Amax{v,D∗}+ B∗ ≤ f (k)(v) ≤ Amax{v,D}+ B, (9.3)

where f (k) denotes the k-fold composition fk ◦ · · · ◦ f1 for i.i.d. copies {fi} of the random map
f , and where (A,B,D) is given according to (2.10) and (B∗,D∗) is given according to (2.10), but
with (B∗i , D

∗
i ) in place of (Bi, Di). Moreover, (A,B,D) and (A,B∗,D∗) are easily seen to satisfy

(H1), (H2), and (H3), provided that (A,B,D) and (A,B∗, D∗) satisfy these conditions. By (9.3)
and the discussion in the previous paragraph, we conclude that Lemmas 5.1 (i), (ii), and (iv) hold
for the k-chain. In part (iv), it is worth observing that the set [−M,M ] is petite. In particular,
under the Lipschitz condition (L), {Vn} is weak Feller (cf. Alsmeyer (2003), Remark C). Under our
assumption of nondegeneracy of {Vn}, it then follows by Proposition 6.2.8 of Meyn and Tweedie
(1993) that [−M,M ] is petite.

Now turning to the remaining lemmas of Section 5, we note that the transience asserted in
Lemma 5.2 is immediately obtained from the proof given in Section 5 and the lower bound in (9.3).
Similarly, Lemma 5.3 follows by the previous proof given in Section 5, and Lemma 5.5 is obtained
by the proof in Section 5 and the upper and lower bounds in (9.3) (cf., e.g. (5.31)). In Lemma 5.5
for the k-chain, note that (9.3) implies

|Vkn| ≤ An|Vk(n−1)|+ B̃n, where B̃n := An
(
|Dn|+ |D∗n|

)
+ |Bn|+ |B∗n|.

Thus, as an analog to (2.28), the perpetuity sequence utilized for the upper bound now becomes

Z̄(p) := |V0|+
∞∑
n=1

B̃n
A1 · · · An

1{τ (k)>n}. (9.4)

(The required upper bound is seen to hold by repeating the proof of Lemma 5.5 (ii) following
(5.25).) Finally, Lemma 5.4 is not needed for our discussion of general Lipschitz maps.

Nonlinear renewal theory for general Lipschitz maps. The proofs of these results require
almost no modifications, once it is understood that we obtain these results with respect to the k-
chain when k > 1 and that the bounds (9.1) and (9.3) hold. In particular, Lemma 4.1 is proved in
the same way as before and essentially follows from the transience {Vn} (resp. {Vkn}) obtained by
Lemma 5.2. Also, Proposition 8.1 is derived for Lipschitz maps by repeating our previous proof in
Section 8, since these calculations mainly rely on the drift condition (8.7), established in Lemma 5.1
(i). The finiteness on the right-hand side of (8.6) is obtained by first noting that [−M,M ] is petite
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(by the above discussion following (9.3)). Then by Meyn and Tweedie (1993), Theorem 11.3.11,
the expected return time to C, starting from x, is bounded above by V (x) + const., where V is
given as in Lemma 5.1 (iv). Turning to Theorem 4.1, we see that the main ingredient of the proof
are the bounds (8.24) and (8.33), which, when adapted for the k-chain, follow from the inequalities

AnVk(n−1) − |B∗n| ≤ Vkn ≤ AnVk(n−1) + (An|Dn|+ |Bn|) , n = 1, 2, . . . ;

cf. (9.1) and (9.3). The proof of Proposition 4.1 also follows from the previous proof, once it is
understood that these results are derived with respect to the k-chain (and thus Nu, mu, σu, etc. are
all calculated with respect to the k-chain and with respect to the lower-bounding Letac model, i.e.,
with respect to the process generated by the lower bound in (9.3)). Finally, the proof of Theorem
4.2 is purely analytical in nature and is derived from the previous results of the section and does
not require any modifications.

Proof of Theorem 2.2 The proof can be obtained from the proof of Theorem 2.1, with a few
modifications involving the replacement of the 1-chain with the k-chain and the use of the upper
and lower bounds in (9.3). Observe that the conclusions of Proposition 6.1 still hold under the
conditions of Theorem 2.2. Indeed, if (M) holds with k = 1, then we obtain (6.1) with Z :=
limn→∞ Vn/(A0 · · ·An). If (M) holds with k > 1, then we also obtain (6.1), except that Nu is now

replaced with N
(k)
u , the number of returns of the k-chain {Vkn : n = 0, 1, . . .} to (u,∞) prior to

regeneration; τ is now replaced with τ (k), the first regeneration time of the k-chain; and Tu is now

replaced with T
(k)
u := inf{n : Vkn > u}. We emphasize here that the dual measure is computed

with respect to the k-chain.
By Proposition 6.1 (for the k-chain),

lim
u→∞

uξP {V > u} = Eξ

[
Zξ1{τ (k)=∞}

]
·
(
E
[
τ (k)

])−1
lim
u→∞

ED

Nu

(
V
T

(k)
u

u

)−ξ ∣∣∣T (k)
u < τ (k)

 . (9.5)

In the first term on the right-hand side of (9.5), note that

Zn :=
Vn

A1 · · ·An
:=

AnVn−1 +Rn(Vn−1)

A1 · · ·An
= Zn−1 +

Rn(Vn−1)

A1 · · ·An
= V0 +

n∑
i=1

Ri(Vi−1)

A1 · · ·Ai
, (9.6)

where the last step follows by induction. Hence

Eξ

[
Zξ1{τ (k)=∞}

]
= Eξ

(V0 +

∞∑
i=1

Ri(Vi−1)

A1 · · ·Ai

)ξ
1{τ (k)=∞}

 , (9.7)

and since Z > 0 w.p. 1 in the ξ-shifted measure (by Lemma 5.5 (i)), the signed quantity appearing
on the right-hand side of (9.6) is positive. (We emphasise that this is the same expression for the
k-chain and the 1-chain, except that the stopping time τ (k) is used for the k-chain, while τ is used
for the 1-chain. In particular, {Zkn} and {Zn} converge to the same a.s. limit, so the quantity
inside the exponent in (9.7) does not change.)

Next we turn to the second term on the right-hand side of (9.5). Applying Lemma 6.1 (but to
the multiplicative random walk {Ai} rather than {Ai} when k > 1, where Ai := Ak(i−1)···ki−1), we
obtain that

1−E
[
eξSτ∗

]
E [τ∗]

lim
u→∞

ED

Nu

(
V
T

(k)
u

u

)−ξ ∣∣∣T (k)
u < τ (k)

 = C∗, (9.8)
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where we now write Sn = logA1 + · · · + logAn and τ∗ = inf{n : Sn < 0}; cf. (6.14). Note that
the parameter ξ remains unchanged in these expressions (compared with the case k = 1), since
E
[
Aξ
]

= E
[
(A1 · · ·Ak)ξ

]
= 1, by independence of {Ai}. Furthermore, by (2.20),

C∗E [τ∗]

1−E [eξSτ∗ ]
=

1

ξλ′k(ξ)
, (9.9)

where λk is the moment generating function of logA. Now an elementary calculation yields λ′k(ξ) =
kλ′(ξ). Hence, substituting (9.7) and (9.9) into (9.5), we obtain that P {V > u} ∼ Cu−ξ as u→∞,
where

C =
1

ξλ′(ξ) · kE
[
τ (k)

]Eξ
(V0 +

∞∑
i=1

Ri(Vi−1)

A1 · · ·Ai

)ξ
1{τ (k)=∞}

 , (9.10)

which is (2.38) adapted to the case of general k ∈ Z+.
To establish (2.39) (again for general k ∈ Z+), we first need to observe that for k > 1, there is

a natural analog to (9.6) which is established by the same computation, namely,

Zkn = V0 +
n∑
i=1

R(k)
i (Vk(i−1))

A1 · · · Ai
. (9.11)

Once this has been observed, we obtain from the argument given in the proof of Theorem 2.1 that
(2.39) holds.

It remains to observe that the constant C obtained in (9.10) is both finite and positive. To this
end, note Z > 0 w.p. 1 in the ξ-shifted measure. Thus both of the terms on the right-hand side of
(9.5) are positive, and hence C > 0. The finiteness of C is then obtained from Lemma 5.5 (ii) for
Lipschitz maps. 2

In Remark 6.3, we observed that an alternative expression for the constant can be obtained by
applying (6.32). For the k-chain, this equation takes the form

P {V > u} = lim
n→∞

1

n
E
[
N(n)
u

]
, where N(n)

u :=
κ(n)∑
i=1

1(u,∞)(Vki) (9.12)

and κ(n) now denotes the first regeneration time after time n for the k-chain {Vki : i = 0, 1, . . .}.
We may then modify Proposition 6.1 exactly as described in Remark 6.3. Note that we do not use
the special stucture of Letac’s Model E in this argument, working there with the general quantity
Zn := Vn/(A1 · · ·An). Also, recall that λ′(ξ) must be replaced with kλ′(ξ) when analyzing the
k-chain (as noted in the proof of Theorem 2.2). We then obtain an analog to (6.45), namely

C =
1

ξ · kλ′(ξ)
lim
n→∞

1

n
E
[
Z̃ξkn

]
=

1

ξλ′(ξ)
lim
n→∞

1

n
E
[
Z̃ξn
]
, (9.13)

where {Z̃n} is the backward process corresponding to {Vn}, and, as in Remark 6.3, it is assumed
that {Vn} is nonnegative. In this way, we deduce an alternative expression for C, which seems of
some theoretical interest.

Example 9.1 (Example 3.5 revisited). Finally, we return to the polynomial recursion studied
earlier in Example 3.5. There we noted that the hypotheses of Theorem 2.2 can be verified by
applying the arguments of Mirek (2011a). However, this leads to the condition (3.17) which appears
to introduce a rather unnatural set of moment assumptions that we now would like to circumvent.
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Specifically, we now show how the proof of Theorem 2.2 may be mimicked to obtain the same
conclusion as in this example, but under a preferable set of moment assumptions. Essentially
what needs to be shown—in this and any example—is the convergence of the forward process {Vn}
to a stationary distribution, and that this stationary distribution possesses appropriate moment
conditions.

To directly verify the existence of a stationary measure, utilizing a technique of Loynes (Goldie
(1991), p. 161), first observe that for any positive constant c, the remainder term in (3.14) satisfies

R(v) ≤

(
j−1∑
i=1

Ãi

)
cj−1/j max {1, v/c}+ Ã0.

Thus, in (3.13), V
D
= f(V ) where

f(v) ≤

(
Ãjc+ cj−1/j

j−1∑
i=1

Ãi

)
max {1, v/c}+ Ã0 := Amax {c, v}+ B, (9.14)

for B = Ã0 and A =
(
A+ c−1/j

∑j−1
i=1 Ãi

)
, where A ≡ Ãj . The upper bound in (9.14) is Letac’s

Model E, which itself converges to a stationary distribution under the conditions of Goldie (1991),
namely under the assumption that ξ > 0 and

E
[
Ãξ
′

i

]
<∞, i = 0, . . . , j − 1, for some ξ′ > ξ. (9.15)

Under these assumptions, the Letac model given on the right-hand side of (9.14) converges to a
stationary distribution. Moreover, observe that if B0 is an independent copy of Ã0 and

E

[
log

(
A+

(
j−1∑
i=1

Ãi

)
/2B0

)]
< 0, (9.16)

then it follows by an argument on p. 162 of Goldie (1991) that the backward iterates of our
polynomial SFPE converge and are independent of the initial value, and hence by Lemma 2.1, the
forward recursive sequence also converges a.s. to the same random variable, which we denote by
V . Thus we have established—by direct argument under a more natural set of conditions—the
convergence of {Vn}. It is also worth observing as a consequence that Rn(Vn) then converges a.s.
to

R(V ) :=

j−1∑
i=0

ÃiV
i/j , (9.17)

where {Ãi} is independent of V on the right-hand side.
At this point, the proof of Theorem 2.2 can be repeated where, once again, we treat the

remainder term Rn(Vn−1) like the random variable Bn appearing in the linear recursion Vn =
AnVn−1 + Bn. Noting that the minorization (M) holds with k = 1, we then obtain that P{V >
u} ∼ Cu−ξ, where C is given as in (2.38), which can be viewed, from a practical perspective, as an
recursive formula. The alternative expression (2.40) could also be used here, but that expression is
also quite complex in the present setting, since the backward sequence of our polynomial recursion
does not reduce to any simple form, and, in addition, (2.40) also introduces a limit as n→∞.

Finally, to see that this constant C is finite, first note that Rn(Vn) has a finite (ξ′)th moment
for some ξ′ > ξ. Indeed, by (9.14), {Vn} is dominated from above by

V̄n := AnV̄n−1 + (Anc+ Bn) , n = 1, 2, . . . , V̄0 = V0,
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which upon iteration yields V̄n = V0(A1 · · ·An)
∑n

i=1(Aic + Bi)(Ai+1 · · ·An). But given α < ξ, we
can choose a constant c such that E

[
Aα
]
< 1. Then a simple computation (using either Minkowskii’s

inequality in the case ξ′ ≥ 1 or otherwise the inequality |x+ y|ξ ≤ |x|ξ + |y|ξ, ξ ∈ (0, 1]) yields that
E
[
V̄ α
n

]
is uniformly bounded in n for any α < ξ. Using the independence of V from the remaining

terms on the right-hand side of (9.17), it now follows that

lim
n→∞

E
[
(Rn(Vn−1))ξ

′
]

=

j−1∑
i=1

E
[
Ãξ
′

i

]
E
[
V ξ′(i/j)

]
<∞, (9.18)

provided that ξ′ has been chosen sufficiently small such that ξ′(j − 1)/j < ξ. Then by repeating
the computation in (3.12) or (5.29), we see that the expectation in (2.38) is bounded above by(

E
[
V ξ

0

]
+
∞∑
n=1

E
[
(Rn(Vn−1))ξ

′
]1/ξ′

P {τ > n}1/ξ
′′

)ξ
, (9.19)

where (1/ξ′) + (1/ξ′′) = 1/ξ, and the latter expression is now seen to be finite by the geometric
ergodicity of {Vn} in its original measure. Hence C <∞.

Thus, by adopting the proof of Theorem 2.2, we have obtained the constant representation in
Example 3.5, but under the more natural conditions (9.15) and (9.16) (as compared with (3.17)).
In conclusion, we see that the proof of Theorem 2.2 actually describes, in effect, an algorithm which
may be adapted individually to obtain sharp asymptotics in a variety of problems beyond Letac’s
Model E, and the correct conditions in each of these problems may vary slightly from those given
in the statement of Theorem 2.2.
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