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RANDOM RECURRENCE EQUATIONS AND RUIN
IN A MARKOV-DEPENDENT STOCHASTIC

ECONOMIC ENVIRONMENT1

BY JEFFREY F. COLLAMORE

University of Copenhagen

We develop sharp large deviation asymptotics for the probability of
ruin in a Markov-dependent stochastic economic environment and study
the extremes for some related Markovian processes which arise in finan-
cial and insurance mathematics, related to perpetuities and the ARCH(1) and
GARCH(1,1) time series models. Our results build upon work of Goldie
[Ann. Appl. Probab. 1 (1991) 126–166], who has developed tail asymptotics
applicable for independent sequences of random variables subject to a ran-
dom recurrence equation. In contrast, we adopt a general approach based on
the theory of Harris recurrent Markov chains and the associated theory of
nonnegative operators, and meanwhile develop certain recurrence properties
for these operators under a nonstandard “Gärtner–Ellis” assumption on the
driving process.

1. Introduction and summary. In a variety of problems in insurance mathe-
matics and risk management, as well as other applied areas, it is relevant to study
the tail probability of a random variable satisfying a stochastic recurrence equation.
An example of this type arises in risk theory, where the objective is to character-
ize the probability of ruin of an insurance company whose losses are governed by
Lundberg’s (1903) classical model, but where the company earns stochastic in-
terest on its capital. In the setting of stochastic investments, the analysis of ruin
departs substantially from the renewal-theoretic approach typically employed for
Lundberg’s original model. Instead, one introduces an associated process {Wn},
defined below, and observes that

P{ruin} = P

{
sup
n

Wn > u
}
,

where u is the initial capital of the company and W := supn Wn satisfies the ran-
dom recurrence equation

W
d= B + Amax{0,W }(1.1)

for certain random variables A (associated with the investment process) and B (as-
sociated with the insurance business); see Section 2.1 below. The characterization
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of ruin then centers around (1.1) and, in particular, the tail decay of its solution as
u → ∞. In this setting, it is known that the probability of ruin decays at a certain
polynomial rate, namely,

P{W > u} ∼ Cu−r as u → ∞(1.2)

for constants C and r; see, for example, Goldie (1991), Nyrhinen (2001), and,
for the continuous time case, Kalashnikov and Norberg (2002), Paulsen (2002),
Pergamenshchikov and Zeitouny (2006) and Klüppelberg and Kostadinova (2008).
Rough large deviation asymptotics in a general setting have also been developed
in Nyrhinen (1999).

Related recurrence equations arise, for example, in life insurance mathemat-
ics, where attention is focused on perpetuities, which describe the discounted
future payments of a life insurance company; and in financial time series mod-
eling, where it is relevant to describe the tail decay for the now-standard ARCH(1)

and GARCH(1,1) models, used to quantify the logarithmic returns on an in-
vestment [cf. Engle (1982), Bollerslev (1986), Embrechts, Klüppelberg and
Mikosch (1997)]. In these cases, the solution is obtained by solving a random
recurrence equation closely related to (1.1), namely,

V
d= B + AV.(1.3)

In the case of perpetuities, the random variables A and B are once again deter-
mined by the investment and insurance processes, respectively, and V describes the
future financial obligations of the company; see Section 2.3 below. It is known—
both for the case of perpetuities and for the ARCH(1) and GARCH(1,1) financial
models—that

P{V > u} ∼ C̃u−r as u → ∞(1.4)

for constants C̃ and r [cf. Goldie (1991), Mikosch (2003), and, for a continous-time
version, Carmona, Petit and Yor (2001)]. Other relevant results for perpetuities can
be found, for example, in Dufresne (1990) and Cairns (1995).

These diverse problems are unified through (1.1) and (1.3), which state that the
random variable of interest statisfies an equation of the general form

Z
d= �(Z)(1.5)

for some real-valued random function �. Solutions to such recurrence equations
have been developed in Kesten (1973), Grincevicius (1975) and Grey (1994), and
particularly Goldie (1991), who introduced an approach based on “implicit” re-
newal theory, which is widely applicable in the setting of (1.5). Based on the results
of Goldie’s paper, one readily obtains estimates such as (1.2) and (1.4), as well as
various estimates relevant, for example, in queuing theory and other applied areas.

If, however, the financial or insurance process arising above is Markov depen-
dent, then the above approach breaks down and the situation is actually quite dif-
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ferent, and it is not possible to develop corresponding estimates to (1.2) and (1.4)
based on the recurrence equations (1.1) and (1.3). Such extensions are nonetheless
of considerable applied relevance. For example, the investment returns of an insur-
ance company would not generally be independent, nor could they be described as
a Markov chain in finite state space. A realistic model would typically involve a
state space which is, say, real-valued and therefore uncountable, and would have
increments which are unbounded. This is the situation in many of the standard fi-
nancial models, such as the ARMA, stochastic volatility and GARCH time series
models.

The objective of this article is to study (1.2) and (1.4) in a Markovian setting
where the insurance and, especially, financial processes involved are driven by a
Harris recurrent Markov chain. Based on the regeneration technique of Athreya
and Ney (1978) and Nummelin (1978), we shall show that recurrence relations
similar to (1.1) and (1.3) can be obtained. [It should be noted that this approach
differs markedly from known methods for similar problems; cf., e.g., Nyrhi-
nen (2001), de Saporta (2005).] In a general Markovian setting, the analysis of
these equations turns out, however, to be considerably more complicated than in
the independent case, and a main aspect of our study will be centered upon the reg-
ularity properties of certain random quantities formed over the regeneration cycles
of the Markov chain. In Theorem 4.2 below—a central result of this paper—we
develop regularity properties closely related to geometric r-recurrence for the op-
erator P̂r, where

P̂α(x, dy) := eαf (y)P (x, dy) ∀α,

and P is the transition kernel of the underlying Markov chain and f a real-valued
function. Geometric r-recurrence plays an important role in the large deviations
theory for general Markov chains [cf. Ney and Nummelin (1987a, 1987b)].

In particular, there has been much recent attention focused on establishing
geometric recurrence for a given Markov transition kernel P , which is typically
achieved by verifying a Lyapunov drift condition, namely,∫

V (y)P (x, dy) ≤ ρV (x) + b1C(x)(D)

for some function V ≥ 1, “small set” C and constants b < ∞ and ρ < 1 [cf. Meyn
and Tweedie (1993), Chapter 15]. However, validating a condition such as (D)
with the operator P̂r in place of P —which would yield geometric r-recurrence
and some extensions developed here—is generally much more difficult. In this pa-
per, we propose an alternative approach, based on the introduction of an auxiliary
“h-function” and the verification of an associated “Gärtner–Ellis” limit and mi-
norization condition. These conditions provide an alternative to (D) which, at least
in the context of our examples, can be verified somewhat more naturally. [An al-
ternative approach has recently been introduced in Kontoyiannis and Meyn (2003,
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2005). The relationship between their approach and ours is discussed in more de-
tail in Section 2 below.] In our development, we shall rely heavily on the theory of
nonnegative operators, as summarized in Nummelin (1984).

We conclude by mentioning some recent work on Markov-driven perpetuities,
as described in (1.4) above. An extension of (1.4) to finite state space Markov
chains has recently been obtained in de Saporta (2005). Also, an extension to
functionals of continuous-time Markov processes has been given in Blanchet and
Glynn (2005), but under a boundedness assumption on the functionals which is
violated in the examples we consider here. Specifically, their assumptions in our
problem would imply that the sequence {∑n

i=1 Ai } is bounded, leading to exponen-
tial rather than polynomial decay for the probability of ruin. In fact, our emphasis
on unbounded processes {An} will lead to the main technical difficulties which
we shall encounter below. In contrast to both of these papers, our methods will be
based on the regeneration properties of the underlying Markov chain, and regener-
ation will be central to our approach here.

An outline of this paper is as follows. In the next section, we give a more pre-
cise description of the ruin problem with stochastic investments, as introduced in
(1.1), (1.2), and then turn to a Markovian formulation of this problem. Next, we
describe the same Markovian formulation, but for perpetuities and the ARCH(1)

and GARCH(1,1) financial models. Some examples are given in Section 3, proofs
are given in Sections 4 and 5 and generalizations are briefly discussed in Section 6.

2. Statement of results.

2.1. A description of the insurance risk model in the i.i.d. setting. We begin
by recalling the classical Cramér–Lundberg model for the capital growth of an
insurance company, namely,

Yt = u + ct −
Nt∑
i=1

ξi,(2.1)

where u is the initial capital of the company, c is the premiums income, {ξi } are
the i.i.d. claims losses and {Nt } is a Poisson process, independent of {ξi }, which
describes the occurrence times of the claims. These assumptions imply that {Yt } is
a Lévy process, with i.i.d. losses over unit intervals given by

Bn := −(Yn − Yn−1), n = 1,2, . . . .

It is assumed that {Yt }t ≥0 has a positive drift or, equivalently, that {Bn}n∈Z+ has
a negative mean.

We now depart from this model by introducing a financial process describing
the investment returns. Assume that the return rate during the nth discrete time
interval is given by rn, and let Zn denote the total capital of the insurance company
at time n. Then

Zn = (1 + rn)(Zn−1 − Bn), n = 1,2, . . . and Z0 = u.(2.2)
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[One could alternatively assume that Zn = (1 + rn)Zn−1 − Bn, and the analysis
would carry through without significant change.] Setting Rn = 1 + rn and solv-
ing (2.2) recursively for Zn yields

Zn = Rn(Zn−1 − Bn) = RnRn−1(Zn−2 − Bn−1) − RnBn

(2.3)
= · · · = (Rn · · · R1)Z0 − (Rn · · · R1)B1 − · · · − RnBn.

Assuming rn > −1 a.s. for all n, we may set An := 1/(1 + rn) to be the stochastic
discount factor, and multiplying left- and right-hand sides of (2.3) by A1 · · · An

yields

(A1 · · · An)Zn = u − Wn,(2.4)

where

Wn := B1 + A1B2 + · · · + (A1 · · · An−1)Bn,(2.5)

that is, Wn represents the total discounted losses incurred at times 1 ≤ i ≤ n.
Let

W = sup
n≥1

Wn.

Then {Zn < 0, for some n} ⇐⇒ {W > u}, by (2.4), and hence the probability of
ruin is given by

�(u) := P{W > u}.(2.6)

2.2. The Markovian case and a statement of our results. Our next objective
is to generalize the above formulation so that it allows for Markov dependence.
In the interest of simplicity we shall first assume that there is dependence only
in the investment process {An}, and that the insurance process {Bn} is i.i.d. and
independent of {An}. In Section 6.1 below, we shall discuss a slight generalization
which allows for Markov dependence also in the sequence {Bn}.

We begin, then, with a Markov chain in general state space, denoted by {Xn},
and assume

logAn = f (Xn),(2.7)

where f : S → R and is typically unbounded. (We could equally well assume that
the function f is random; see Remark 2.3 below.)

We suppose that {Xn} is time-homogeneous, taking values in a countably gen-
erated measurable state space (S,S) with transition kernel P(x,E) and k-step
transition kernel P k := PP k−1 for k > 1. Assume that {Xn} is aperiodic and irre-
ducible with respect to a maximal irreducibility measure ϕ. [For the definitions and
a further characterization of these conditions, see Nummelin (1984) or Meyn and
Tweedie (1993).] As an additional regularity condition, we suppose that for ϕ-a.a.
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initial states x ∈ S, the distribution of
∑n

i=1 logAi is spread out for all n ≥ N(x),
where N(x) is some positive integer.

Under the assumption that {Xn} is irreducible with respect to ϕ, there exists
a minorization for {Xn} [Nummelin (1984), Theorem 2.1]; namely,

δ1C(x)ν(E) ≤ P k(x,E) ∀x ∈ S, E ∈ S,(M0)

for some k ∈ Z+, δ ∈ (0,1], a probability measure ν on (S,S) and a “small set”
C ∈ S, where ϕ(C) > 0. Here we will work with a strengthening of this property,
condition (M), which will be described below.

Notation.

Sn = logA1 + · · · + logAn, n = 1,2, . . . and S0 = 0;
S(h)

n = h(X1) + · · · + h(Xn), n = 1,2, . . . ,

for any measurable function h : S → [0, ∞);

(α) = lim sup

n→ ∞
1

n
log E[eαSn ] ∀α ∈ R;


B(α) = log E[|B1|α ] ∀α ∈ R;
�(α) = lim sup

n→ ∞
1

n
log E

[
eαSn+βS

(h)
n
] ∀α = (α,β) ∈ R

2;
Lah = {x ∈ S :h(x) ≤ a} ∀a ∈ R, for any function h : S → R.

Also let 1C denote the indicator function on C, and for any measure ν, let suppν

denote the support of ν. (In the notation for 
 and �, we have suppressed the
dependence on the initial state of the Markov chain. However, in Proposition 5.1
below, it will be shown that these quantities are actually independent of this initial
state.)

The functions 
 and � are the “Gärtner–Ellis” limits arising in large deviation
theory [cf. Dembo and Zeitouni (1998), Chapter 2]. Roughly, 
 can be equated to
the spectral radius of the transform kernel

P̂α(x,E) :=
∫
E

eαf (y)P (x, dy) ∀x ∈ S, E ∈ S,(2.8)

where f is given as in (2.7), and similarly for �; cf. de Acosta (1988), Section 7.
We turn now to some assumptions on the Markov-additive process {(Xn,Sn) :

n = 0,1, . . .}. First note that, if the average return rate is positive, then 1 + r1 > 1
“on average,” and hence it is reasonable to expect that

Eπ [A1] := Eπ [(1 + r1)
−1] ∈ (0,1),

where π is the stationary probability measure of {Xn}. By Ney and Num-
melin (1987a), Lemmas 3.3 and 5.2 (and their proofs) and an application of
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Jensen’s inequality, we then obtain under very weak regularity conditions on the
Markov chain that, if 
 is finite in a neighborhood of zero,


′(0) = Eπ [logA1] < 0.(2.9)

Hence

r := sup{α :
(α) ≤ 0} > 0.(2.10)

Moreover, if Pπ {A1 > 1} > 0, then r < ∞, so the solution to (2.10) is in fact a
proper solution.

In addition to the existence of the solution in (2.10), we will also need to assume
a further regularity condition on 
, roughly stating that it is finite in a neighbor-
hood of r, and that for some choice of h, the generating function of {h(Xn)} is
sufficiently well behaved around the origin. To motivate this condition, set

h(x) = |f (x)| and S−
n =

n∑
i=1

(−f (Xi)) ∨ 0

and observe by Hölder’s inequality that

E
[
eαSn+βS

(h)
n
] ≤ (

E
[
ep(α+β)Sn

])1/p
(E[e2qβS−

n ])1/q,(2.11)

where p−1 + q−1 = 1. Then

�((α,β)) ≤ 1

p

(α̃) + 1

q

(−ε),(2.12)

where α̃ = p(α + β) and ε = 2qβ . Choosing (α,β) sufficiently close to (r,0),
then p sufficiently close to one, and finally letting β ↘ 0, we conclude that if 
 is
finite in a neighborhood of the interval [0, r], then

�((α,β)) < ∞ for some α > r and β > 0.(2.13)

More generally, if we take h to be an arbitrary function, then in place of (2.11) we
obtain

E
[
eαSn+βS

(h)
n
] ≤ (E[epαSn ])1/p(

E
[
eqβS

(h)
n
])1/q(2.14)

and hence (2.13) still holds, provided that 
 is finite in a neighborhood of r and the
generating function of {S(h)

n } is finite in a neighborhood of zero. Hence, we may
also choose h(x) = ‖x‖ or a more slowly increasing function, such as log ‖x‖ ∨ 0.
Later, we will relate the function h to the minorization condition (M), given below,
and for this reason it will often be necessary to choose h to be different from |f |.
This is because we will need h(x) to tend to infinity as ‖x‖ ↗ ∞ in order for (M)
to be satisfied. See, for example, Example 3.3 below. (Also see Example 3.1 for
another case where we would generally not choose h = |f |.)

The above considerations provide motivation for the following.
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Hypotheses.

(H1) r ∈ (0, ∞).
(H2) There exists a function h : S → R and points α > r and β > 0 such that

�((α,β)) < ∞ and 
B(α) < ∞.

Next we introduce a further condition which regulates the behavior of {An}
and {Xn} on the level sets of the function h appearing in (H2). To motivate this
condition, note that for a very large class of financial processes, there is some form
of stochastic domination. A simple example of this type is the AR(1) process,

Xn = cXn−1 + ζn, n = 1,2, . . . and X0 = x,(2.15)

for |c| ∈ (0,1) and {ζn} an i.i.d. sequence of standard Gaussian random variables.
Then

X0 = z ⇐⇒ X1 ∼ Normal(cz,1).

Consequently, if c > 0 then

x ≤ y �⇒ P(x,E) ≤ P(y,E) for all sets E ⊆
[
c

2
(x + y), ∞

)
;(2.16)

and conversely,

x ≤ y �⇒ P(y,E) ≤ P(x,E)
(2.17)

for all sets E ⊆
(

−∞,
c

2
(x + y)

]
,

where P denotes the Markov transition kernel of {Xn}. Therefore, if Lah ⊆
[−b, b] then

P(x,E) ≤ P(−b,E) + P(b,E) for all x ∈ Lah and E ∈ S.(2.18)

If c < 0, then the inequalities on the right-hand sides of (2.16) and (2.17) are
reversed, but (2.18) remains valid. This type of reasoning can be generalized to
include, for example, general ARMA(p, q) models by using a vector representa-
tion for the process {Xn}; cf. Meyn and Tweedie (1993), Chapter 2 and Section 6
below. More complicated financial processes can be handled similarly.

Of course, a representation such as (2.18) would be quite meaningless if it
were only to hold for the individual points b and −b, which have ϕ-measure zero,
whereas (2.18) actually holds for every b̃ ≥ b. For this reason, in (2.18) it is natural
to substitute sets of positive ϕ-measure for the individual points −b and b; and in
this way we arrive at the following general condition.

(H3) For any a > 0, there exist ϕ-positive sets E1, . . . ,El ⊆ S, possibly dependent
on a, and a finite constant Da such that

P(x,E) ≤ Da inf

{
l∑

i=1

P(xi,E) :xi ∈ Ei,1 ≤ i ≤ l

}
∀x ∈ Lah, E ∈ S.
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Finally, we introduce a strengthening of the minorization (M0) described above.

MINORIZATION (M). For any a > 0 sufficiently large, there exists a constant
δa > 0 and a probability measure νa on (S,S) with νa(Lah) > 0 such that

δa1Lah(x)νa(E) ≤ P(x,E) ∀x ∈ S,E ∈ S.(M)

It should be emphasized that the function h in (M) is the same function as
that appearing in (H2). Thus, while (H2) benefits from a small choice of h, the
minorization (M) benefits from a large choice of h and, in practice, a balance is
needed in selecting a proper choice for this function.

REMARK 2.1. There is no loss of generality in assuming that suppνa ⊆
Lah ∩ Lbf , where b ∈ R is arbitrarily large, since we may always truncate the
measure νa in (M) and the minorization will still hold. In the sequel, it will always
be assumed that νa has been chosen in this manner.

REMARK 2.2. For simplicity, we have taken k = 1 in (M) [compare (M0)],
which may be restrictive in certain examples. A generalization to the case where
k > 1 will be discussed below in Section 6.2.

To see how (M) relates to some more standard conditions, suppose for the mo-
ment that {Xn} is uniformly recurrent, that is,

δν0(E) ≤ P(x,E) ≤ dν0(E)
(R)

∀x ∈ S, E ∈ S, for some probability measure ν0.

In this case, the C-set in (M0) may be taken to be the entire state space, which
means that (M) then holds with h ≡ 1. Incidentally, from (R) we also obtain

P(x,E) ≤ d

δ
P (x0,E) ∀x ∈ S, E ∈ S, for any x0 ∈ S.(2.19)

Consequently (H3) holds. Thus, in this setting, our conditions reduce essentially
to (H2) with h ≡ 1, namely, we require that 
(α) < ∞ and 
B(α) < ∞, for some
α > r.

In the examples below, the upper and lower bounds in (R) will not be satisfied,
but in place of the lower bound we will have

δj 1Cj
(x)νj (E) ≤ P(x,E) ∀x ∈ S, E ∈ S, j ∈ Z+,(M′)

along an appropriately chosen sequence of sets Cj ↗ S. Then an unbounded func-
tion h may essentially always be found which satisfies condition (M), although
this imposes an additional constraint on (H2) as compared with the case h ≡ 1. For
example, a typical choice for h would be to take h(x) = ‖x‖, in which case the
level sets Lah would tend to S as a → ∞. In essence, then, (M) requires that the
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minorization (M0) hold for an arbitrarily large choice of C, but it is not required
that C = S. In particular, our assumptions lie somewhere between the minorization
condition (M0), which is essentially always valid, and the much stronger condi-
tion that the Markov chain be uniformly recurrent. Nonetheless, these conditions
are flexible enough to handle some reasonably complicated financial models, as
will be seen in Section 3 below.

We note that if P were replaced with P kj on the right-hand side of (M′), then
this condition would indeed be an exceedingly mild requirement [cf. Meyn and
Tweedie (1993), Proposition 5.2.4].

THEOREM 2.1. Let {(Xn,Sn) :n = 0,1, . . .} be a Markov-additive process
and let h : S → [0, ∞) be a function satisfying conditions (H1)–(H3) and (M).
Then for ϕ-a.a. x ∈ S,

lim
u→ ∞ ur�x(u) = C,(2.20)

where C ∈ [0, ∞), and r ∈ (0, ∞) is given as in (2.10).

REMARK 2.3. As an extension, one could suppose that the function f in (2.7)
is random. In Ney and Nummelin (1987a, 1987b), Markov-additive processes are
studied which take the general form Sn = ξ1 + · · · + ξn, where

P{(Xn, ξn) ∈ E × �|Fn−1} = P{(Xn, ξn) ∈ E × �|Xn−1} =
∫
E

P (x, dy)Q(y,�)

for some family of probability measures {Q(x,�) :x ∈ S,� ∈ R}, where R de-
notes the Borel σ -algebra on R and Fn = σ {X0, . . . ,Xn, ξ1, . . . , ξn}. Thus, with
a slight abuse of notation, we may write ξn = fn(Xn), where {fn(x) :x ∈ S, n =
1,2, . . .} is a family of independent random variables, also independent of {Xn},
whose elements have, for fixed x, a common distribution function. But then
{(Xn, ξn)} is itself a Markov chain, which inherits a minorization from {Xn}, and
clearly ξn = f (Xn, ξn) for the deterministic function f (x, y) = y. In short, the in-
troduction of a random function in (2.7) does not lead to additional generality, at
least in principle, and the previous theorem could also have been phrased at that
level of generality.

REMARK 2.4. A precise representation for the constant C can be ascertained
from the proof in Section 4. Under very weak conditions, it can be shown that this
constant is positive. However, we will not explore the precise conditions here.

2.3. Further remarks on our hypotheses. Before turning to our next result we
would first like to comment, briefly, on the comparison of our approach to some
other methods in the literature.
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An alternative approach would be to replace (H2) and (H3) with a weaker Lya-
punov drift condition, namely,∫

S

V (y)erf (y)P (x, dy) ≤ ρV (x) + b1C(x),(D1)

where C is a small set, say, and ρ < 1. Indeed, we shall actually utilize (H2)
and (H3) together with the inherent eigenvalue and eigenfunction properties of
the chain to deduce∫

Cc
V (y)erf (y)P (x, dy) ≤ ρV (x) ∀x ∈ S,(D2)

where C = Lah is the small set in (M), and this is roughly equivalent to (D1).
[More precisely, if r = 0 then either condition may be used to obtain geometric re-
currence; cf. Nummelin (1984), Meyn and Tweedie (1993). It should be remarked
that we will actually establish and apply a condition slightly stronger that (D2).] In
this paper, the deduction of (D2) will be obtained by an indirect argument, which
will constitute an important part of the proof of Theorem 4.2 below.

Nonetheless, (D1) could also be viewed as a possible starting point for our re-
sults, and this approach has recently been followed, for example, by Chan and
Lai (2007) and Balaji and Meyn (2000). For countable state space chains Bal-
aji and Meyn (2000) have shown that (D1) is equivalent to geometric recurrence
for the r-shifted chain. This r-shifted chain will also appear in our analysis, in Sec-
tion 5, and in Theorem 4.2 we shall develop similar recurrence properties, although
our methods and the exact statement of our results will be quite different. Specif-
ically, instead of geometric recurrence, we shall establish certain related moment
properties. The connection between these two notions will be explained in more
detail in Section 5.

In a comprehensive study, Kontoyiannis and Meyn (2003, 2005) have consid-
ered certain extensions of Balaji and Meyn (2000) to general state space chains.
Specifically, they have developed multiplicative mean ergodic theory and its con-
nection with the multiplicative Poisson equation. These results relate closely to
the existence and characterization of the eigenvalues and eigenfunctions associ-
ated with the kernel P̂α . We refer the reader to Kontoyiannis and Meyn (2003,
2005), where a survey of some other related results can also be found.

In the context of our examples, it often seems more natural to verify (H2)
and (H3) than a condition such as (D1), assuming that the driving Markov chain
has finite exponential moments around the origin and therefore fits within the
framework typically studied in modern large deviations theory. As mentioned in
the previous section, a sufficient condition for (H2) to hold is the finiteness of the
Gärtner–Ellis limit, 
, in a neighborhood of r, and the finiteness of an associ-
ated limit for {S(h)

n } in a neighborhood of zero, where necessarily 
(r) < ∞ if
the conclusions of our main results are to hold. While it is often difficult to obtain
closed-form expessions for Gärtner–Ellis limits, their finiteness can frequently be
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verified by indirect means. In Example 3.3 below, finiteness is obtained along the
positive axis due to the boundedness from above of the function f ; whereas in
this example, it would not be transparent that any function V should satisfy (D1).
(This distinction would be even more striking if the interest process in that exam-
ple were taken to be stochastic.) In any case, our approach exposes an interesting
interplay between the Gärtner–Ellis limit of large deviations theory and geomet-
ric recurrence of the kernel P̂α , and the latter property has important implications
in the large deviations theory for Markov chains; cf. Ney and Nummelin (1987a,
1987b).

2.4. Perpetuities and the GARCH(1,1) process. A related but simpler prob-
lem to the one considered in Section 2.2 is the study of perpetuities. Assume for
the moment that {(An,Bn) :n = 1,2, . . .} is an i.i.d. sequence of random variables,
and consider the tail of limn→ ∞ Wn where, as before,

Wn = B1 + A1B2 + · · · + (A1 · · · An−1)Bn.(2.21)

In the context of life insurance mathematics, the sequence {Bn} typically de-
notes the future payments from an insurance company to its policy holders (or
vice versa) at times n = 1,2, . . . , while {An} denotes the discount factors associ-
ated with the investment returns, that is, An = (1 + rn)

−1, where rn is the return
rate at time n. Here, both the processes {An} and {Bn} are assumed to be random.
Then (A1 · · · An−1)Bn denotes the amount of capital which needs to be set aside
to cover payments at time n to the policy holders, and

W∞ := lim
n→ ∞ Wn(2.22)

represents the company’s total future financial commitment. Under our hypothe-
ses, the a.s. existence of the limit (2.22) follows from Goldie and Maller (2000),
Theorem 2.1.

An analogous mathematical problem arises when characterizing the extremal
behavior of the ARCH(1) and GARCH(1,1) financial time series models. In the
GARCH(1,1) model, the logarithmic return of a stock at time n, denoted R∗

n , is
governed by the system of equations

R∗
n = σnξn, where σ 2

n = a0 + b1σ
2
n−1 + a1(R

∗
n−1)

2, n = 1,2, . . . ,(2.23)

for {ξn} an i.i.d. sequence of standard Gaussian random variables, where a0, a1
and b1 are positive constants. Setting W ∗

n = σ 2
n gives

W ∗
n = AnW

∗
n−1 + Bn, n = 1,2, . . . , and W ∗

0 = y ∈ R,(2.24)

where An = b1 + a1ξ
2
n−1 and Bn = a0. Solving (2.24) yields

W ∗
n = (An · · · A1)W

∗
0 + (An · · · A2)B1 + · · · + AnBn−1 + Bn,(2.25)

which has a similar, although not identical, form to (2.21). Then it is of in-
terest to study the tail of W ∗∞ := limn→ ∞ W ∗

n . [Here we consider the limit in
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law. The existence of the limit distribution is then guaranteed by Goldie and
Maller (2000), Theorem 3.1.] For a more detailed description of the ARCH(1) and
GARCH(1,1) financial time series models, see, for example, Embrechts, Klüp-
pelberg and Mikosch (1997) or Mikosch (2003). What the random variables W∞
and W ∗∞ have in common is that they both satisfy the random recurrence equation

V
d= B + AV,(2.26)

where (A,B)
d= (A1,B1).

It is of theoretical and applied interest to consider (2.21) and (2.25) in a set-
ting where the process {An} represents a general Markov-dependent sequence of
random variables. Let

�̃x(u) = P{W∞ > u|X0 = x} and �̃∗
x (u) = P{W ∗∞ > u|X0 = x}.

If we adopt the same assumptions as in Section 2.2, then as a natural variant of
Theorem 2.1 we obtain the following.

THEOREM 2.2. Let {(Xn,Sn) :n = 0,1, . . .} be a Markov-additive process
and let h : S → [0, ∞) be a function satisfying conditions (H1)–(H3) and (M).
Then for ϕ-a.a. x,

lim
u→ ∞ ur�̃x(u) = C̃,(2.27)

where C̃ ∈ [0, ∞), and r ∈ (0, ∞) is given as in (2.10). Moreover, (2.27) also holds
if �̃x(u) is replaced with �̃∗

x (u).

3. Examples. The objective of this section is to relate our theorems and con-
ditions to some standard processes arising in insurance and financial mathematics.

From a mathematical point of view, it should first be noted that if the Markov
chain has finite state space or is uniformly recurrent, then our conditions hold
without further restrictions on the Markov chain. [However, in that setting, the
proofs of our main results could be simplified considerably.] Our primary objective
is to consider the case of general, Harris recurrent chains, and this setting is indeed
realistic from a financial perspective, as the most reasonable models often involve
a more intricate dependence structure than can be described with, say, a finite-state
chain. Nonetheless, we will begin with the finite-state case and first illustrate our
conditions in that context before turning to some more complicated examples.

EXAMPLE 3.1. Assume that an insurance company receives premiums and
incurs claims according to the classical Cramér–Lundberg model described in Sec-
tion 2.1; thus the one-period losses, {Bn}, form an i.i.d. sequence of random vari-
ables. Suppose that the company invests its excess capital and that the investment
returns are governed by the standard Black–Scholes model, but modified to allow
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for regime switching. More precisely, assume that the investment returns follow
the stochastic differential equation

dSt =
1∑

i=0

St (μi dt + σi dWt)1{X�t � =i},(3.1)

where {Xn} is a discrete-time Markov chain taking values in {0,1}, {Wt } is stan-
dard Brownian motion, μi and σi are constants for each i, and it is assumed that the
processes {Wt } and {Xn} are independent. Here the motivation is that, under dif-
ferent external conditions, represented by “states,” the returns on the investments
change. Integration of (3.1) then yields

An := Sn−1

Sn

= 1{Xn=0}A(0)
n + 1{Xn=1}A(1)

n ,(3.2)

where

A(i)
n = exp

{
−
(
μi − σ 2

i

2

)
− σiZn

}
, {Zn} ∼ i.i.d. Normal(0,1).(3.3)

Regime-switching models have been introduced, for example, in Hamil-
ton (1989), and have subsequently appeared rather widely in the literature; see, for
example, Hardy (2001). (Such models could also allow for dependence between
the underlying Markov chain and the conditional returns on the investments.)

A slightly more general model than (3.2) would be to assume that {An} is
modulated by a k-state Markov chain and that the discounted returns, conditional
on {Xn}, are independent [but not necessarily dictated by the distribution described
in (3.3)]. Namely, assume

An =
k−1∑
i=0

1{Xn=i}A(i)
n ,(3.4)

where {(A(0)
n , . . . ,A

(k−1)
n )} is an i.i.d. sequence of random variables and {Xn} is

a Markov chain on {0,1, . . . , k − 1}.
In this setting, it is easy to verify our conditions based on the observation that

a finite-state Markov chain satisfies a condition tantamount to uniform recurrence,
namely,

δν0(E) ≤ P(x,E) ≤ dν0(E) ∀x ∈ S, E ∈ S,(R)

for some probability measure ν0 and certain positive constants δ and d . There-
fore, as already noted in the discussion following Remark 2.2, we immediately
obtain (H3), and we obtain (M0) with k = 1 and C = S, that is, we may choose C

to be the entire state space of the Markov chain. Because (M0) holds with C = S,
we consequently conclude that (M) holds with h ≡ 1. Choosing h ≡ 1, we see
that a sufficient condition for (H2) to hold is that 
 is finite in a neighborhood



1418 J. F. COLLAMORE

of the set {α :
(α) ≤ 0}, which is a rather weak requirement. Finally, it is well
known that (2.9) holds under (R) [cf. Iscoe, Ney and Nummelin (1985)], and
thus (H1) holds provided that Eπ [logA1] < 0, where π is the stationary measure
of the Markov chain.

The above reasoning also applies in general state space if the underlying Markov
chain is uniformly recurrent, but this reasoning will fail in the absence of uniform
recurrence. Specifically, in that case we will not be able to choose h ≡ 1.

For a discussion of uniformly recurrent chains see, for example, Iscoe, Ney and
Nummelin (1985) and references therein.

EXAMPLE 3.2. Assume again the Cramér–Lundberg model for the insurance
business, but now assume that the discounted logarithmic investment returns are
modeled as an AR(1) process with negative drift; more precisely,

logAn = Xn − μ,(3.5)

where μ > 0 and {Xn} satisfies (2.15). Then all of our hypotheses hold with
h = |f |, provided that 
B(α) < ∞ for some α > r. The Markov chain {Xn} is
not uniformly recurrent, but the minorization (M) and other conditions are easily
verified, as follows.

Let P denote the transition kernel of {Xn}, and let �x denote the Normal(x,1)

density function. For any fixed a > 0, set

�a(y) = inf{�cx(y) : |x| ≤ a} = min
x∈{−a,a} �cx(y) ∀y ∈ R.

Then ∫
E

�a(y) dy ≤ P(x,E) ∀x ∈ {x̃ ∈ S : |x̃| ≤ a}, E ∈ S.(3.6)

Hence (M) holds with νa(dy) = b�a(y) dy and b ∈ (0, ∞) a normalizing con-
stant.

To verify the remaining conditions, first compute the cumulant generating func-
tion,


(α) = lim sup
n→ ∞

1

n
log E[eαSn ] = −αm + σ 2α2

2
∀α,(3.7)

where m and σ are positive constants. The form of the function on the right-hand
side is obtained by observing that Sn := logA1 + · · · + logAn is clearly normally
distributed, and so the computation of the limit in (3.7) reduces to calculating its
limiting normalized mean and variance. Now 
 is finite everywhere and we have
chosen h = |f |. Consequently the general remarks in Section 2 may be applied to
obtain (H1), (H2) and (H3).

If {Xn} is an AR(p) process with p > 1, then {Xn} is not itself a Markov chain,
but instead we may consider the Markov chain Xn = (Xnp, . . . ,Xn(p−1)+1). The
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Markov chain {Xn} does not satisfy the minorization (M) [since we would need to
take k > 1 in (M0)]. However, the chain {Xn} does satisfy the minorization (M1)
presented in Section 6.2 below, and hence the results of this paper may still be
applied. For further discussion of this case and the verification of our conditions
here, see Section 6.2 below. Finally, if {Xn} is a general ARMA(p, q) process,
then a slight modification of our assumptions is necessary, but the basic approach
still applies, in essence; see Section 6.2 for details.

Financial modeling by means of ARMA processes is now quite standard. In an
insurance context, this forms the basis for the so-called Wilkie model; for an intro-
duction in this setting, see Panjer (1998). A general introduction to ARMA models
and their applications can be found, for example, in Box and Jenkins (1976) or
Brockwell and Davis (1991).

EXAMPLE 3.3. Assume once again the Cramér–Lundberg model for the in-
surance business, but assume that the investments are split between a fixed pro-
portion in a stock and bank, respectively. Suppose that the bank investment earns
interest at a constant rate, say r , while the logarithmic stock returns, {R∗

n }, are mod-
eled according to a stochastic volatility model, namely R∗

n = σnξn, where {ξn} is an
i.i.d. Gaussian sequence of random variables, and {logσn} is rather arbitrary and
may, for example, be taken to be an ARMA(p, q) process, independent of {ξn}.
Such a choice for {logσn} is fairly typical, and with this choice, the statistical
properties of {R∗

n } become mathematically tractable, leading to their popularity as
an alternative to, say, GARCH models. For a futher description of these models
and their statistical properties see, for example, Mikosch (2003) and Davis and
Mikosch (2008a, 2008b). Recent developments can also be found, for example, in
Shephard (2005).

Under the above assumptions,

An = (
p(1 + r) + (1 − p)eR∗

n
)−1 where R∗

n = σnξn,(3.8)

for some constant p ∈ (0,1), and thus An is deterministically bounded from above,
uniformly in n.

In this example, the Markov chain is {Xn} = {(logσn, ξn)} ⊆ R
2, and we may

take h(x) = ‖x‖ for all x ∈ R
2. Note, in particular, that we would not want to

choose h = |f | since: (i) in order for (M) to be satisfied, we would need h to tend
to infinity when ‖Xn‖ ↗ ∞; and (ii) in order for (H2) to be satisfied, we would
need 
 to be finite in a neighborhood of zero, but {f (Xn)} has heavy tails along
the negative axis. Thus, h = |f | is not a suitable choice in this case.

Now, although the Markov chain {(logσn, ξn)} is two-dimensional, the analysis
of it simplifies considerably due to the fact that {ξn} is i.i.d. and {logσn} is inde-
pendent of {ξn}. Indeed, since E[eαξ1 ] < ∞ for all α, and since the A-sequence is
deterministically bounded from above, it is actually sufficient to verify (M), (H2)
and (H3) for the process {logσn} [using that h(x) := ‖x‖ ≤ |x1| + |x2| in the veri-
fication of (H2), and using (2.14) in place of (2.11) for this verification]. Moreover,
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since {logσn} is assumed to be an AR(1) process, these properties can be obtained
just as in the previous example, while more general ARMA processes may also be
considered, as discussed in Section 6.2 below.

The verification of (H1) is, however, somewhat more complicated than in the
previous example. Since the function 
 is actually infinite along the negative axis,
the reasoning leading to (2.10)—which gave the positivity of r in (H1)—is no
longer applicable. To circumvent this difficulty, introduce the left-truncated sums

S(M)
n = f (M)(X1) + · · · + f (M)(Xn),

where f (M)(x) = f (x) ∨ −M and M ↗ ∞.

Then S
(M)
n ≥ Sn for all n and M , and therefore 
(M)(α) ≥ 
(α) for all α > 0,

where 
(M) is defined the same way as 
, but with {S(M)
n } in place of {Sn}. Then

Eπ [f (M)(X)] < 0 for large M , and consequently the reasoning leading to (2.10)
applies to {S(M)

n } and yields (�(M))′(0) < 0, for large M , where exp(−�(M)) is the
convergence parameter associated with {S(M)

n } [as defined in Nummelin (1984),
page 27; see also Section 5 below]. In Proposition 5.1 and Remark 5.1 below, we
will show that under (M), (H2) and (H3), the function �(M) is convex and

�(M)(rM) = 
(M)(rM) = 0, where rM = sup
{
α :
(M)(α) ≤ 0

}
.

Therefore, (�(M))′(0) < 0 �⇒ rM > 0. Since 
(M) ≥ 
 for all α > 0, we conse-
quently obtain (H1).

EXAMPLE 3.4. Consider a GARCH(1,1) process with Markov regime
switching, namely,

R∗
n = σnξn, where σ 2

n = a0 + b1σ
2
n−1 + a1(R

∗
n−1)

2, n = 1,2, . . . ,(3.9)

and where (a0, a1, b1) is now viewed as a random vector which will typically os-
cillate between a finite number of states. As before, {ξn} is an i.i.d. sequence of
Gaussian random variables. [The following discussion applies equally well for an
ARCH(1) process in place of a GARCH(1,1) process.] Such models have been
studied rather extensively; for an introduction, see Lange and Rahbek (2008) and
references therein. One motivation for considering this type of dependence is that it
yields some of the statistical properties of long-range dependence. This viewpoint
has been introduced in Mikosch and Stărică (2004). In any case, it is reasonable to
assume that the parameters (a0, a1, b1) will change over time due, for example, to
external economic factors, and this gives intuitive motivation for the dependence
in (a0, a1, b1).

Under Markov regime switching, it is usually assumed that the observed para-
meter values at time n are given by

aXn := (a0(Xn), a1(Xn), b1(Xn)) ∈ R
3,
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where {Xn} is a k-state Markov chain which is exogeneous and hence unobserved.
Given the transition matrix of the finite-state chain, the extremes of this economet-
ric process can then be analyzed by our methods, just as in Example 3.1.

An interesting variant would be to assume that {Xn} is an ARMA process,
driven by certain observed economic factors such as, for example, traded volume
in the market, and then the extremes may be analyzed according to the methods in
Example 3.2. It should be remarked in this example that if both (a1, b1) and a0 de-
pend on {Xn}, then one needs a slight modification of the formulation of Section 2,
as will be discussed below in Section 6.1.

To summarize, our conditions hold for a wide class of financial processes, such
as regime-switching models, ARMA models and certain stochastic volatility mod-
els. Here we have developed the connection especially with ARMA models and
with more complicated models which can be constructed from these, but it should
be emphasized that our conditions are actually quite general. Indeed, our primary
assumption is that the underlying Markov chain is light-tailed and therefore satis-
fies the usual moment conditions of modern large deviations theory, and for such
processes, our results hold under very weak regularity conditions. It should, more-
over, be pointed out that the investment process in Example 3.3 is actually not
light-tailed—it is the driving Markovian process which is light-tailed, and for this
reason our conditions can still be verified there.

Finally, we mention that the recurrence equations studied here are also broadly
relevant for a wide class of related processes arising outside of the areas of financial
and insurance mathematics. For some recent results along these lines see, for ex-
ample, Gnedin (2007) or the survey article of Aldous and Bandyopadhyay (2005).
Applications in the direction of computer science can be found, for example, in
Neininger and Rüschendorf (2005) and references therein.

4. Proofs of the main theorems.

4.1. Sketch of the proofs. We begin with a brief sketch of the main ideas. Our
starting point is the well-known regeneration lemma of Athreya and Ney (1978)
and Nummelin (1978). This lemma asserts the existence of a sequence of random
times, T0, T1, T2, . . . , such that the blocks

{XTi−1, . . . ,XTi −1}, i = 0,1, . . . ,

are independent for i ≥ 0 and identically distributed for i ≥ 1 (where T−1 = 1).
Thus, in particular, the increments

STi −1 − STi−1 −1 := f (XTi−1) + · · · + f (XTi −1)(4.1)

are independent for i ≥ 0 and identically distributed for i ≥ 1. However, it is not
immediately evident that a similar independence structure should exist for the risk
process

Wn := B1 + A1B2 + · · · + (A1 · · · An−1)Bn,(4.2)
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which is our primary object of study. In Lemma 4.2 below, we shall show that

Wn = B̌0 + Ǎ0B̌1 + · · · + (Ǎ0 · · · ǍK∗ −1)B̌K∗ + (Ǎ0 · · · ǍK∗ )Rn,(4.3)

where {(Ǎi, B̌i) : i = 0,1, . . .} is an independent sequence of random variables
which, for i ≥ 1, is identically distributed, Rn is a negligible remainder term, and
K∗(n) ↗ ∞ as n → ∞. It follows as a consequence of (4.3) that W := supn Wn

“nearly” satisfies the random recurrence equation

W = B̌ + max{M̌ − B̌, ǍW }(4.4)

for some random variable M̌ , where (Ǎ, B̌)
d= (Ǎi, B̌i) for i ≥ 1. [A more precise

statement will be given in Lemma 4.2.] The random recurrence equation (4.4) is
very similar in form to (1.1), which applied in the i.i.d. case.

In Section 2 we argued that the probability of ruin is given by ψ(u) := P{W >

u}. Thus, to determine this probability, we need to find the tail distribution of W .
To this end, we apply a result of Goldie (1991), which states that under appropriate
conditions, (4.4) implies

lim
u→ ∞ uη

P{W > u} = D(4.5)

for certain constants D and η. Equation (4.5) provides a complete solution to our
problem, but it remains to check that Goldie’s conditions are actually satisfied
and to identify the constant η (which will be shown to equal r in the proof of
Theorem 2.1).

It is, in fact, quite challenging to verify that Goldie’s conditions actually hold.
To do so, we shall need to establish certain moment conditions for the random
variables Ǎ, B̌, M̌ appearing in (4.4); in particular,

E[Ǎα ] < ∞, E[|B̌|α ] < ∞ and E[|M̌|α ] < ∞
(4.6)

for some α > r;

see Theorem 4.2 below. The simplest of these studies Ǎα d= exp{α(STi −1 − STi−1)};
cf. (4.1). After a change of measure it can be shown that, roughly speaking,

E[Ǎα ] ≈ E
Q[eε(Ti −Ti−1)

]
for some ε > 0,(4.7)

for an α-shifted kernel Q, and thus we see that such moment conditions are closely
related to geometric recurrence for the α-shifted chain. The random variables |B̌|α
and |M̌|α are more complicated, but can be handled by somewhat similar tech-
niques.

We now proceed more formally.
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4.2. Formal proofs of Theorems 2.1 and 2.2. We begin with a precise state-
ment of the regeneration lemma, first established by Athreya and Ney (1978) and

Nummelin (1978). Here and in the following, set T−1 = 1 and let τ
d= Ti − Ti−1

(i ≥ 1) denote a typical regeneration time.

LEMMA 4.1. Assume (M0) holds with k = 1. Then there exists a sequence of
random times, 0 < T0 < T1 < · · ·, such that:

(i) T0, T1 − T0, T2 − T1, . . . are finite a.s. and mutually independent;
(ii) the sequence {Ti − Ti−1 : i = 1,2, . . .} is i.i.d.;

(iii) the random blocks {XTi−1, . . . ,XTi −1} are independent, i = 0,1, . . . ;
(iv) P{XTi

∈ E|FTi −1} = ν(E), for all E ∈ S.

REMARK 4.1. The regeneration times {Ti }i≥0 of Lemma 4.1 can be related to
the return times of {Xn} to the set C in (M0), as follows. First introduce an aug-
mented chain {(Xn,Yn)}, where {Yn :n = 0,1, . . .} is an i.i.d. sequence of Bernoulli
random variables, independent of {Xn}, with P{Yn = 1} = δ, where δ ∈ (0,1] is
given as in (M0). Then Ti − 1 can be identified as the (i + 1)th return time of
{(Xn,Yn)} to the set C × {1}. At the subsequent time, Ti , the random variable XTi

has the distribution ν given in (M0), independent of the past history of the Markov
chain.

To apply the lemma in the context of our problem, assume now that (M) holds,
and let T0, T1, . . . denote the resulting regeneration times. Then define the follow-
ing random quantities formed over the independent random blocks of the previous
lemma:

Ǎi = ATi−1 · · · ATi −1, i = 0,1, . . . ;
B̌i = BTi−1 + ATi−1BTi−1 +1 + · · · + (ATi−1 · · · ATi −2)BTi −1, i = 0,1, . . . ;
M̌i = sup{BTi−1 + ATi−1BTi−1 +1 + · · ·

+ (ATi−1 · · · Aj −1)Bj :Ti−1 ≤ j < Ti }, i = 0,1, . . . .

By Lemma 4.1, {(Ǎi, B̌i, M̌i) : i = 1,2, . . .} is an i.i.d. sequence of random vectors
which is also independent of (Ǎ0, B̌0, M̌0).

Our objective is to study the tail behavior of the random variable W defined
in Section 2.1. Let WR be defined in the same as W , but under the assumption
that T0 = 1, that is, under the assumption that regeneration occurs at time one.

Also let (Ǎ, B̌, M̌)
d= (Ǎ1, B̌1, M̌1), and assume that (Ǎ, B̌, M̌) is independent of

{(Ǎi, B̌i, M̌i) : i = 0,1, . . .}.
We begin by establishing the following.

LEMMA 4.2. WR d= B̌ + max{M̌ − B̌, ǍWR} and W
d= B̌0 + max{M̌0 −

B̌0, Ǎ0W
R}.
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PROOF. For n ≥ 1, set

K∗ = K∗(n) := inf{i :Ti > n} − 1.

Then for any n ≥ 1,

Wn = (
B1 + A1B2 + · · · + (A1 · · · AT0 −2)BT0 −1

)
+ (A1 · · · AT0 −1)

(
BT0 + · · · + (AT0 · · · AT1 −2)BT1 −1

)
+ · · · + (A1 · · · ATK∗ −1 −1)

(
BTK∗ −1 + · · · + (ATK∗ −1 · · · ATK∗ −2)BTK∗ −1

)
+ (A1 · · · ATK∗ −1)

(
BTK∗ + · · · + (ATK∗ · · · An−1)Bn

)
.

Hence

Wn = B̌0 + Ǎ0B̌1 + · · · + (Ǎ0 · · · ǍK∗ −1)B̌K∗ + (Ǎ0 · · · ǍK∗ )Rn,(4.8)

where

Rn := BTK∗ + ATK∗ BTK∗ +1 + · · · + (ATK∗ · · · An−1)Bn.

Note that this last definition and the definition of M̌i imply

M̌i = sup{Rn :Ti−1 ≤ n < Ti } for all i = 0,1, . . . .

Hence by (4.8),

W := sup
n≥1

Wn = sup
i≥0

Vi,(4.9)

where

Vi :=

⎧⎪⎪⎨
⎪⎪⎩

M̌0, i = 0;
B̌0 + Ǎ0M̌1, i = 1;
B̌0 + Ǎ0B̌1 + · · · + (Ǎ0 · · · Ǎi−2)B̌i−1

+ (Ǎ0 · · · Ǎi−1)M̌i, i = 2,3, . . . .

Moreover, by a repetition of the same argument,

WR = sup
i≥0

V
(1)
i ,(4.10)

where V
(1)
i is defined the same as Vi , but with all subscripts increased by a factor

of one, so that V
(1)
0 = M̌1, and so on.

Next observe that

W = sup
i≥0

Vi := sup{M̌0, B̌0 + Ǎ0M̌1, B̌0 + Ǎ0B̌1 + Ǎ0Ǎ1M̌2, . . .}

= B̌0 + sup{M̌0 − B̌0, Ǎ0M̌1, Ǎ0(B̌1 + Ǎ1M̌2), . . .}(4.11)

= B̌0 + max
{
M̌0 − B̌0, Ǎ0W

(1)},



RANDOM RECURRENCE EQUATIONS AND RUIN 1425

where

W(j) := sup{M̌j , B̌j + Ǎj M̌j +1, B̌j + Ǎj M̌j +1 + Ǎj Ǎj +1M̌j +2, . . .} d= WR

∀j ≥ 1.

This establishes the second assertion of the lemma. For the first assertion, note by
a repetition of (4.11) that

WR = sup
i≥0

V
(1)
i = B̌1 + max

{
M̌1 − B̌1, Ǎ1W

(2)}
d= B̌ + max{M̌ − B̌, ǍWR}. �

Set

η = sup{α : log E[Ǎα ] ≤ 0}.(4.12)

Now under our basic assumptions on {An}, log Ǎ is nonarithmetic. Hence by com-
bining Lemma 4.2 with Theorem 6.2 of Goldie (1991), we obtain:

THEOREM 4.1. Suppose η > 0 and E[Ǎα ] < ∞ for some α > η. Further as-
sume

E[|B̌|η] < ∞ and E[|M̌ − B̌|η] < ∞.(4.13)

Then

lim
u→ ∞ uη

P{WR > u} = D,(4.14)

where D ∈ [0, ∞) is given by

D = 1

ηm̌
E
[(

(B̌ + max{M̌ − B̌, ǍWR})+)η − ((ǍWR)+)η
]

(4.15)

and m̌ := E[Ǎη log Ǎ].

To apply the above result, we first need to develop some properties loosely re-
lated to geometric r-recurrence, which describe the moments associated with Ǎ,
B̌ and M̌ .

THEOREM 4.2. Assume that (M), (H2) and (H3) are satisfied. Then for suffi-
ciently large a > 0, there exists an α > r such that

E[Ǎα ] < ∞, E[|B̌|α ] < ∞ and E[|M̌|α ] < ∞(4.16)

and for a.a. x ∈ S,

Ex [Ǎα
0 ] < ∞, Ex [|B̌0|α ] < ∞ and Ex [|M̌0|α ] < ∞.(4.17)
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The proof of Theorem 4.2 is not straightforward and poses a main mathematical
obstacle for our approach. This proof will be given below in Section 5. We now
proceed directly to the proofs of Theorems 2.1 and 2.2.

PROOF OF THEOREM 2.1. First assume r = η, where η is defined as in (4.12).
By Theorem 4.2, the conditions of Theorem 4.1 are then satisfied; and hence
by (4.14) we obtain

lim
u→ ∞ ur

P{WR > u} = D as u → ∞,(4.18)

where D < ∞ is given as in (4.15).
Since E[Ǎα ] < ∞, some α > r, it follows by (4.18) and a result of Breiman

(1965) that

lim
u→ ∞ ur

P{Ǎ0W
R > u} = DE[Ǎr

0] as u → ∞.(4.19)

Also, by Theorem 4.2 and an application of Chebyshev’s inequality,

P{B̌0 > u} ≤ D1u
−α and P{M̌0 − B̌0 > u} ≤ D2u

−α,(4.20)

where α > r and D1, D2 are finite constants. Moreover by Lemma 4.2,

W
d= B̌0 + max{M̌0 − B̌0, Ǎ0W

R}.(4.21)

Hence

lim
u→ ∞ ur

P{W > u} = DE[Ǎr
0] as u → ∞,(4.22)

which establishes (2.20).
It remains to show that r = η. Suppose false. Let (θ(α))−1 denote the conver-

gence parameter of the kernel P̂α in (2.8), and let � = log θ . [For the definition,
see Nummelin (1984), page 27.] Then it is well known that �(α) ≤ 
(α); cf.
Proposition 5.1(ii) below. Hence

r = sup{α :
(α) ≤ 0} ≤ sup{α :�(α) ≤ 0}.(4.23)

Moreover, it follows from Nummelin [(1984), Proposition 4.7(ii)] that

Eνa

[
eαŠ−τ�(α)] ≤ 1,(4.24)

where τ
d= Ti − Ti−1 and Š

d= STi −1 − STi−1 −1 for i > 1. [See Ney and Num-
melin (1987a), Section 4, and Proposition 5.1(iv) below for closely related results.]
It follows as a consequence of (4.24) that

�(α) ≤ 0 �⇒ �(α) := E[eαŠ ] ≤ 1(4.25)

and therefore by (4.23), r ≤ η. Hence, if r �= η, then we must have r < α < η for
some α.



RANDOM RECURRENCE EQUATIONS AND RUIN 1427

Now assume that this is the case, and choose α ∈ (r, η). Set

Li = sup{Sj − STi−1 :Ti−1 ≤ j < Ti }, i = 0,1, . . .

(where T−1 := 1), and set L
d= Li for i ≥ 1. By taking {B1,B2, . . .} = {1,1, . . .} in

Theorem 4.2, we obtain that for sufficiently small α > r,

E[eαL] < ∞, E[eαL0 ] < ∞ and E[eαST0 −1 ] := E[Ǎα
0 ] < ∞.(4.26)

Then by the independence of the regeneration cycles [cf. Lemma 4.1],

E[eαSn ] ≤ E

[
eαL0 +

∞∑
i=1

exp{α(STi−1 −1 + Li)}
]

(4.27)

≤ E[eαL0 ] + E[eαL]E[eαST0 −1 ]
∞∑
i=0

E[eαŠ ]i < ∞,

where the last step follows since α < η �⇒ �(α) < 1, by the strict convexity
of �. By (4.27) and the definition of 
, we conclude that 
(α) ≤ 0, that is, α ≤ r,
a contradiction. Therefore r = η. �

PROOF OF THEOREM 2.2. The proof is very similar to that of Theorem 2.1,
but easier, so we only sketch the details. The main modification is in Lemma 4.2.
In particular, we need to develop analogous random recurrence equations for W∞
and W ∗∞.

Let {(Ǎi, B̌i, M̌i) : i = 0,1, . . .} be defined as in the discussion prior to
Lemma 4.2, and recall from the proof of Lemma 4.2 [cf. (4.8)] that

Wn = B̌0 + Ǎ0B̌1 + · · · + (Ǎ0 · · · ǍK∗ −1)B̌K∗ + (Ǎ0 · · · ǍK∗ )Rn,(4.28)

where K∗ := inf{i :Ti > n} − 1.

Observe that W∞ := limn→ ∞ Wn exists a.s. by Theorem 2.1 of Goldie and
Maller (2000) and Theorem 4.2 above. Moreover, since K∗ → ∞ a.s. as n → ∞,
the last term in (4.28) converges to zero a.s. as n → ∞. Hence

W∞ d= B̌0 + Ǎ0W
R∞,(4.29)

where WR∞ is defined the same as W∞, except that now T0 = 1, so that regener-
ation occurs at the initial time. Furthermore, a repetition of the argument leading
to (4.29) yields

WR∞
d= B̌ + ǍWR∞,(4.30)

where (Ǎ, B̌)
d= (Ǎi, B̌i), i ≥ 1; cf. the proof of Lemma 4.2. The last equation

is a random recurrence equation, which can be analyzed using Goldie’s (1991)
Theorem 4.1. First note by Theorem 4.2 that the moment conditions in Goldie’s
theorem are satisfied. The required result then follows from (4.29), (4.30) and
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Goldie (1991), Theorem 4.1. [Specifically, by employing (4.29), (4.30) in place
of Lemma 4.2 above, and by employing Goldie’s Theorem 4.1 in place of his The-
orem 6.2, and then reasoning as in the proof of Theorem 2.1, the desired limit
result is obtained.]

For the process {W ∗
n }, define {Ǎi } as before, and let

B̌∗
i = (ATi −1 · · · ATi−1 +1)BTi−1 + · · · + ATi −1BTi −2 + BTi −1 ∀i ≥ 0,

M̌∗
i = sup{(ATi −1 · · · Aj +1)|Bj | + · · · + |BTi −1| :Ti−1 ≤ j < Ti } ∀i ≥ 0.

[Note that the definition of B̌∗
i differs from that of B̌i , because a given element Bn

is now multiplied by (An+1 · · · ATi −1) rather than by (ATi−1 · · · An−1).]
Let Z∗

i := W ∗
Ti −1 denote the value of {W ∗

n } at its (i + 1)th regeneration time
(i = 0,1, . . .). Since

W ∗
n = Bn + AnW

∗
n−1, n = 1,2, . . . ,

it follows after a short argument that

Z∗
i = B̌∗

i + ǍiZ
∗
i−1, i = 1,2, . . . .(4.31)

First consider Z∗∞ := limi→ ∞ Z∗
i . By Theorem 3.1 of Goldie and Maller (2000)

and Theorem 4.2 above, the limit exists a.s., and by (4.31), it satisfies the recur-
rence equation

Z∗∞
d= B̌∗ + ǍZ∗∞,(4.32)

where (Ǎ, B̌∗)
d= (Ǎi, B̌

∗
i ) for i ≥ 1. Then by (4.32) and Goldie [(1991), Theo-

rem 4.1],

P{Z∗∞ > u} ∼ C̃u−r as u → ∞(4.33)

for some constant C̃ < ∞. As before, the required moment conditions are verified
using Theorem 4.2.

It remains to show that limn→ ∞ W ∗
n = limi→ ∞ Z∗

i . To this end, let L(n) :=
inf{i :Ti > n} denote the first regeneration time after time n. Then, for example,
the term “Bn” forms a part of the sum B̌∗

L(n), and the discrepency of W ∗
n from

Z∗
L(n) is bounded by M̌L(n). More precisely,

Z∗
L(n) − M̌∗

L(n) ≤ W ∗
n ≤ Z∗

L(n) + M̌∗
L(n).(4.34)

By a minor variant of Theorem 4.2, M̌∗ is asymptotically negligible compared
with limn→ ∞ Z∗

L(n). Consequently W ∗∞ = Z∗∞. �

5. Proof of Theorem 4.2 and some related regularity results.

5.1. Notation and preliminary remarks. In the following discussion, it will
always be assumed that the minorization (M) holds for a given parameter a > 0.
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First we introduce some additional notation. For any kernel K , let

K̂α(x,E) =
∫
E

eαf (y)K(x, dy) ∀α ∈ R,

and let

K̂α(x,E) =
∫
E

eαf (y)+βh(y)K(x, dy) ∀α = (α,β) ∈ R
2.

Let (θ(α))−1 denote the convergence parameter of P̂α [as defined in Num-
melin (1984), page 27], and let (θ(α))−1 denote the convergence parameter of P̂α .
Let �(α) = log θ(α) and �(α) = log θ(α), for all α = (α,β) ∈ R

2. [We will re-
peatedly use the notation α = (α,β) and generally do this without stating so ex-
plicitly.]

Below, we will often need to work with a perturbed kernel, namely,

P (ε)(x,E) := P(x,E) + ενa(E) ∀E ∈ S, ε ≥ 0,

where νa is given as in (M). In this connection, let P̂
(ε)
α , P̂

(ε)
α , θ(ε), θ (ε), �(ε) and

�(ε) be defined the same as P̂α , P̂α and so on, but with P replaced everywhere in
these definitions with P (ε).

For each x ∈ S, set

r(ε)
α (x) =

∞∑
n=0

(
θ(ε)(α)

)−n−1(
P̂ (ε)

α − δa1Lah ⊗ ν̂(α)
a

)n
δa1Lah(x)

and

r(ε)
α (x) =

∞∑
n=0

(
θ (ε)(α)

)−n−1(
P̂ (ε)

α − δa1Lah ⊗ ν̂(α)
a

)n
δa1Lah(x),

where, for arbitrary g : S → R and μ :S → R:

g ⊗ μ(x,E) = g(x)μ(E); μ̂(α)(E) =
∫
E

eαf (y)μ(dy);

μ̂(α)(E) =
∫
E

eαf (y)+βh(y)μ(dy).

In the special case that ε = 0, we shall simply write rα , rα in place of r
(0)
α , r(0)

α .
The function r

(ε)
α is known to be (θ(ε)(α))−1-subinvariant with respect to

the kernel P̂α , and moreover to be (θ(ε)(α))−1-invariant in the case that P̂α is
(θ(ε)(α))−1-recurrent; see Nummelin (1984), Theorem 5.1 and its proof [and the
proof of Proposition 5.1(iv) below]. Likewise, the function r(ε)

α is known to be
(θ (ε)(α))−1-subinvariant with respect to the kernel P̂α , and to be (θ (ε)(α))−1-
invariant in the case that P̂α is (θ (ε)(α))−1-recurrent.

Let

�(ε)(α) = lim sup
n→ ∞

1

n
log
(
P̂ (ε)

α

)n
(x,S) ∀α ∈ R

2,
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where x is the initial state of the Markov chain. [If we replace P (ε) with P in this
definition, then the right-hand side reduces to the Gärtner–Ellis limit, �, which
was introduced in Section 2.]

Finally, in the proofs below we will make use of the “shifted” kernel

Q(ε)
α (x,E) :=

∫
E

eαf (y)r
(ε)
α (y)

θ(ε)(α)r
(ε)
α (x)

P (ε)(x, dy).

Under the minorization (M), observe that the kernel Q
(ε)
α itself satisfies a mi-

norization, namely,

g(ε)
α (x)μ(ε)

α (E) ≤ Q(ε)
α (x,E) ∀x ∈ S, E ∈ S,(MQ)

where

g(ε)
α (x) :=

(
δaB

θ(ε)(α)r
(ε)
α (x)

1Lah(x)

)
∧ 1

2
,

μ(ε)
α (E) := 1

B

∫
E

eαf (y)r(ε)
α (y)νa(dy)

and B is a normalizing constant chosen so that μ
(ε)
α is a probability measure. After

a truncation of νa as described above in Remark 2.1, the integral in the definition
of μ

(ε)
α will always be finite and hence 0 < B < ∞.

5.2. Some regularity properties. In the next two propositions, we collect var-
ious regularity properties which will be needed in Section 5.3. After reading the
statement of the propositions, the reader may want to proceed directly to Sec-
tion 5.3—which contains the core results of this part of the paper—and refer back
to the present section as necessary.

In the following discussion, set inf{∅} = ∞ and let D
, D� and D� denote
the domains of 
, � and �, respectively. [To be entirely precise, α ∈ D� means
that �(α) < ∞ for ϕ-a.a. initial states x, cf. part (i) of the next proposition; and
our main results will be valid away from an appropriate set of measure zero.]

We remark that in (i)–(iii) of the following proposition, we develop properties
of �(ε)(α), �(ε)(α), etc., but the same properties hold also for 
(ε)(α), �(ε)(α),
etc., as can be seen by setting α = (α,0) and observing that �(ε)(α) = 
(ε)(α),
�(ε)(α) = �(ε)(α), and so on.

PROPOSITION 5.1. Assume (M). Then:

(i) For any α ∈ D�,

�(α) = �νa (α), ϕ-a.a. x,(5.1)
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where �νa denotes the same limiting quantity as �, but conditioned on regener-
ation at time zero. Thus, � is independent of its initial state. Moreover for all
N ≥ 1,

�̄N(α) := sup
n≥N

1

n
log E

(1)
νa

[
eαSn+βS

(h)
n
]
< ∞ ∀α ∈ D�,(5.2)

where E
(1)
νa [·] denotes that regeneration occurs at time one.

(ii) The function �(ε) is convex, and �(ε)(α) ≤ �(ε)(α) for all α ∈ D� and
ε ≥ 0.

(iii) For any α ∈ D�,

lim
ε→0

�(ε)(α) = �(α).(5.3)

(iv) If α ∈ D
 and ε ≥ 0, then Q
(ε)
α is either a subprobability or probability

measure. Moreover, if P̂
(ε)
α is (θ(α))−1-recurrent, then Q

(ε)
α is actually a probabil-

ity measure.

PROOF. (i) Let � > 0, and set

F� = {x ∈ S :�x(α) ≥ �νa (α) + �},
where �x denotes—now explicitly—that we are conditioning on the Markov chain
starting in state x. Also, set

μm(E) = Eνa

[
e〈α,Sm〉 ; Xm ∈ E

] ∀m ∈ Z+, E ∈ S,

where Sn = (Sn, S
(h)
n ).

Note that

Eνa

[
e〈α,Sm+n〉] ≥ Eνa

[
e〈α,Sm〉 ; Xm ∈ F�

]
inf

x∈F�

Ex

[
e〈α,Sn〉].(5.4)

Hence it follows from the definitions of F� and {μm} that

�νa (α) ≥ lim inf
n→ ∞

1

n
logμm(F�) + (

�νa (α) + �
)
.(5.5)

Since μm(F�) obviously does not depend on n, this last equation is only possible if
μm(F�) = 0 for all m. Consequently, P{Xm ∈ F�} = 0 for all m. Since ϕ(F�) > 0
would imply that {Xm} would visit F� with positive probability over a regenera-
tion cycle [Athreya and Ney (1978), Section 6], we conclude that ϕ(F�) = 0. Since
the last equality holds for any � > 0, it now follows from the definition of F� that
�x(α) ≤ �νa (α) for ϕ-a.a. x.

Conversely, if Em denotes the event that regeneration occurs at time m, then

Ex

[
e〈α,Sm+n〉] ≥ Ex

[
e〈α,Sm〉 ; Em

]
Eνa

[
e〈α,Sn〉].(5.6)

If m is chosen such that P{Em} > 0, then Ex [e〈α,Sm〉 ; Em] > 0. Hence it follows
upon taking lim supn→ ∞ n−1 log(·) in (5.6) that �x(α) ≥ �νa (α).
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It remains to study (5.2). Taking lim supm→ ∞ m−1 log(·) on the left- and right-
hand sides of (5.6), where Em now denotes the event that Xm ∈ Lah [the “small
set” in (M)], yields

�(α) ≥ �(α) + lim
m→ ∞

1

m
log E

(1)
νa

[
e〈α,Sn〉],(5.7)

where the first term on the right-hand side was obtained from the definition of the
convergence parameter [cf. Nummelin (1984), page 27. On the right-hand side,
we have also used the fact that regeneration occurs with probability δa upon each
return to Lah, independent of the prior evolution of the chain].

Now the term on the left-hand side of (5.7) is finite, by assumption; while the
first term on the right-hand side is greater than −∞, by Nummelin (1984), Theo-
rem 3.2. Since the second term on the right (but inside the limit) does not depend
on m, we conclude that it must also be finite, that is,

E
(1)
νa

[
e〈α,Sn〉]< ∞ ∀n ∈ Z+, α ∈ D�.(5.8)

Furthermore, for any α ∈ D�, it follows by Remark 2.1 (and the fact that we have
just shown � = �νa ) that

lim sup
n→ ∞

1

n
log E

(1)
νa

[
e〈α,Sn〉] = �(α) < ∞.(5.9)

[After truncation of νa , as described in Remark 2.1, we have supp νa ⊆ Lah ∩
Lbf , where max{a, b} < ∞, and hence e〈α,S1 〉 is deterministically bounded,
meaning that the superscript “(1)” may be removed when taking the limit on the
left-hand side of (5.9).] Hence, the terms inside the limit in (5.9) are all finite and,
in the limit, they converge to a finite constant. Consequently, (5.2) follows from
(5.8) and (5.9).

(ii) The convexity of �(ε) is obtained as in Iscoe, Ney and Nummelin (1985),
Lemma 3.4. For further details, see Collamore (2002), Lemma 4.2.

To see that �(ε) ≤ �(ε), note that the minorization (M) implies a corresponding
minorization for P̂α , namely,

δa1Lah(x)ν̂(α)
a (E) ≤ P̂α(x,E) ∀x ∈ S, E ∈ S.(M̂)

Then by the definition of the convergence parameter [Nummelin (1984), page 27]
and Proposition 3.4 of Nummelin (1984), we see that (�(ε)(α))−1 is the radius of
convergence of the power series

∞∑
n=0

γ nν̂(α)
a

(
P̂ (ε)

α

)n
(Lah)

(since Lah is a “small set”). But (�(ε)(α))−1 is the radius of convergence of
∞∑

n=0

γ nν̂(α)
a

(
P̂ (ε)

α

)n
(S).

Hence Lah ⊆ S �⇒ �(ε)(α) ≤ �(ε)(α).
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(iii) First observe [following the proof in Collamore (2002), Theorem 3.1] that

L(ε)
n (α) : =

∫
S

ν̂(α)
a (dx)

(
P̂ (ε)

α

)n−1
(x,S)

(5.10)
= ∑

(i1,...,in−1)∈I

∫
Sn

ν̂(α)
a (dx1)J

(i1)(x1, dx2) · · · J (in−1)(xn−1, dxn),

where J (0) = εν̂a , J (1) = P̂α and I consists of all elements of the form (i1, . . . ,

in−1) such that ij ∈ {0,1}, j = 1, . . . , n − 1. What needs to be shown is that

�(ε)
νa

(α) := lim sup
n→ ∞

1

n
logL(ε)

n (α) → �νa (α) as ε → 0.(5.11)

[The required result then follows from (5.11), since by (i) we have �(α) = �νa (α),
and a repetition of the same argument also gives �(ε)(α) = �(ε)

νa
(α).]

Let

logbN = N {�̄1(α) − �̄N(α)} ∀N ≥ 1,

where �̄N is defined as in (5.2). Setting σN(α) = exp �̄N(α), then by definition

bN =
(

σ1(α)

σN(α)

)N

.(5.12)

Note that if α ∈ D�, then it follows by (5.2) that bN < ∞ for all N . Fix N ∈ Z+
and consider the products on the right-hand side of (5.10). Note that

εν̂(α)
a (dx1)

(
J (i1)(x1, dx2) · · · J (in)(xn−1, dxn)

)
,

consists of a product of blocks which each have the form

εν̂(α)
a (dxj )

(
P̂α(xj , dxj +1) · · · P̂α(xj +l−1, dxj +l)

)
where j ≥ 1 and l ≥ 0.

(When l = 0, it is understood that the product involving the P̂α terms is empty.
Also, the leading “ε” term only appears for j > 1.) Now the total number of blocks
is k, where k is the cardinality of {j : ij = 0,1 ≤ j < n} + 1. Moreover for each
block, ∫

Sl
ν̂(α)
a (dxj )

(
P̂α(xj , dxj +1) · · · P̂α(xj +l−1, dxj +l)

)
(5.13)

= E
(1)
νa

[
e〈α,Sl+1 〉] ≤ (σl+1(α))l+1,

where the last step follows from (5.2) and the definition of σl given just prior
to (5.12). Now by definition, σl(α) is decreasing in l for any fixed α. Hence if
l + 1 ≥ N then σl+1(α) ≤ σN(α), while if l + 1 < N then σl+1(α) ≤ σ1(α), and
hence

(σl+1(α))l+1 ≤ bN(σN(α))l+1
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by (5.12). Substituting these estimates into (5.13) yields∫
Sl+1

ν̂(α)
a (dxj )

(
P̂α(xj , dxj +1) · · · P̂α(xj +l−1, dxj +l)

) ≤ bN(σN(α))l+1.(5.14)

If the total number of such blocks attached to a given (i1, . . . , in−1) ∈ I is denoted
by k, then we obtain for each individual integral on the right-hand side of (5.10)
that ∫

Sn
ν̂(α)
a (dx1)J

(i1)(x1, dx2) · · · J (in−1)(xn−1, dxn)

(5.15)
≤ εk−1(bNσN(α))k(σN(α))n−k.

Summing over all (i1, . . . , in−1) ∈ I, it follows from (5.10) and (5.15) that

L(ε)
n (α) ≤ 1

ε

(
σN(α) + εbNσN(α)

)n
.(5.16)

Hence

lim sup
n→ ∞

1

n
logL(ε)

n (α) ≤ log
(
σN(α)(1 + εbN)

)
.(5.17)

Now let ε → 0 and then N → ∞. Note that

logσN(α) = �̄N(α) → �νa (α) as N → ∞.

Consequently (5.11) follows from (5.17).
(iv) This is a variant of Nummelin (1984), Theorem 5.1. First set γ =

(θ(ε)(α))−1, and set

K = γ
(
P̂ (ε)

α − δa1Lah ⊗ ν̂(α)
a

)
and G =

∞∑
n=0

Kn.

Then Proposition 2.1 of Nummelin (1984) gives that G = I + KG, and thus

γGδa1Lah = γ δa1Lah + γ 2(P̂ (ε)
α − δa1Lah ⊗ ν̂(α)

a

)
Gδa1Lah.(5.18)

The first term on the left-hand side is

γGδa1Lah :=
∞∑

n=0

γ n+1(P̂ (ε)
α − δa1Lah ⊗ ν̂(α)

a

)n
δa1Lah := r(ε)

α .(5.19)

This equivalence also identifies the middle term on the right-hand side of (5.18);
namely,

γ 2P̂ (ε)
α Gδa1Lah = γ P̂ (ε)

α r(ε)
α .(5.20)
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Moreover, the last term on the right-hand side of (5.18) is

γ 2(δa1Lah ⊗ ν̂(α)
a

)
Gδa1Lah

= γ δa1Lah

{ ∞∑
n=1

γ nν̂(α)
a

(
P̂ (ε)

α − δa1Lah ⊗ ν̂(α)
a

)n−1
δa1Lah

}
(5.21)

{
= γ δa1Lah, if P̂

(ε)
α is γ -recurrent,

< γδa1Lah, if P̂
(ε)
α is γ -transient,

where the final step was obtained from Nummelin (1984), Proposition 4.7. [In
Nummelin’s notation, the quantity in brackets is identified as b̂(γ ), which is equal
to one in the γ -recurrent case and is less than one in the γ -transient case.] Substi-
tuting (5.19), (5.20) and (5.21) into (5.18) yields

r(ε)
α = γ P̂ (ε)

α r(ε)
α , if P̂ (ε)

α is γ -recurrent,(5.22)

and

r(ε)
α > γ P̂ (ε)

α r(ε)
α , if P̂ (ε)

α is γ -transient.(5.23)

Hence, r
(ε)
α is γ -invariant when P̂

(ε)
α is γ -recurrent and γ -subinvariant when P̂

(ε)
α

is γ -transient. Moreover, after rearranging terms in (5.22) and (5.23), we obtain
by definition that

Q(ε)
α (x,S) := γ (P̂

(ε)
α r

(ε)
α )(x)

r
(ε)
α (x)

{
= 1, if P̂

(ε)
α is γ -recurrent,

< 1, if P̂
(ε)
α is γ -transient.

Hence, Q
(ε)
α is a probability kernel in the γ -recurrent case and a subprobability

measure in the γ -transient case. �

REMARK 5.1. In Proposition 5.1(ii), it has just been observed that

�(α) ≤ 
(α) = 0 ∀α,

but the reverse inequality need not be true, in general. However, under (M), (H2)
and (H3), it can be shown that

�(r) = 0 = 
(r).(5.24)

This last equation can be obtained as a consequence of Theorem 4.2 and the proof
of Theorem 2.1.

To establish (5.24) based on the aforementioned results, first note that 
 is
convex [by Hölder’s inequality] and finite in a neighborhood of r [by (H2), since
�((α,β)) is nondecreasing in β]. Consequently 
 is continuous at r. The defini-
tion of r then implies that 
(r) = 0; thus, it is sufficient to show that �(r) = 0.

To this end, note that in the proof of Theorem 2.1, we have shown that

r = η := sup{α : log Eνa [eαŠ ] ≤ 0} where Š
d= STi −1 − STi−1 −1 for i ≥ 1.
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Let

r̃ = sup{α :�(α) ≤ 0}.
Now if r̃ > r, then for any α ∈ (r, r̃) we would have �(α) ≤ 0 [since � is convex

and α < r̃], and Eνa [eαŠ ] > 1 [since α > r]. Hence

Eνa

[
eαŠ−τ�(α)] ≥ Eνa [eαŠ ] > 1(5.25)

and this is a contradiction to (4.24). We conclude that r̃ ≤ r, which means that
�(α) > 0 for all α > r. Now � ≤ 
, and so (H2) �⇒ r ∈ intD�. Since a convex
function is continuous on the interior of its domain, it follows that � is continuous
at r. Moreover, as we have observed, �(r) ≤ 0, and �(α) > 0 for all α > r. By
continuity, we conclude that �(r) = 0, thus establishing (5.24).

PROPOSITION 5.2. Suppose that (M) and (H3) are satisfied, and suppose that
there exist β > 0 and ε > 0 such that (r, β) ∈ intD�(ε) . Then:

(i) The functions r
(ε)
α and r(ε)

α are uniformly bounded from above on Lah.
Moreover, there exists a sequence {(αj , εj )}j ∈Z+ , where (αj , εj ) ↘ (r,0) as j →

∞, and the sequence {αj } := {(αj , β)}, such that if

Cj := sup
x∈Lah

r
(εj )
αj (x) and Dj := sup

x∈Lah

r
(εj )
αj

(x) ∀j,

then {Cj }j ∈Z+ and {Dj }j ∈Z+ are bounded from above by finite constants.

(ii) The functions r
(ε)
α and r(ε)

α are uniformly positive on S. Furthermore, if
{(αj , εj )} and {αj } are given as in (i) and

C̃j := inf
x∈Lah

r
(εj )
αj (x) and D̃j := inf

x∈Lah
r
(εj )
αj

(x) ∀j,

then, possibly after passing to a subsequence, we have that {C̃j }j ∈Z+ and
{D̃j }j ∈Z+ are bounded from below by positive constants.

PROOF. (i) Without loss of generality, we may assume that the constant Da

in (H3) is greater than or equal to one.
For any x ∈ Lah and E ∈ S, it follows from (H3) that

P̂ (ε)
α (x,E) =

∫
E

eαf (y)P (x, dy) + εν̂(α)
a (E) ≤ Da

l∑
i=1

P̂ (ε)
α (xi,E),(5.26)

where xi ∈ Ei for all i. Consequently, for any x ∈ Lah,

K(x,E) : = (
P̂ (ε)

α − δa1Lah ⊗ ν̂(α)
a

)
(x,E)

(5.27)

≤ Da

l∑
i=1

K(xi,E) + (Dal − 1)δaν̂
(α)
a (E).
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Hence for all x ∈ Lah and n ≥ 1,

Kn(x,E) ≤
∫
y

(
Da

l∑
i=1

K(xi, dy) + (Dal − 1)δaν̂
(α)
a (dy)

)
Kn−1(y,E)

(5.28)

= Da

l∑
i=1

Kn(xi,E) + (Dal − 1)δa

(
ν̂(α)
a Kn−1)(E).

It follows from (5.28) and the definition of r
(ε)
α that, for any x ∈ Lah,

r(ε)
α (x) : =

∞∑
n=0

(
θ(ε)(α)

)−n−1
(Knδa1Lah)(x)

(5.29)

≤ Da

l∑
i=1

r(ε)
α (xi) + Dal − 1

θ(ε)(α)
,

where, in the last step, the second quantity on the right-hand side was obtained
from Nummelin (1984), Proposition 4.7(ii). Thus r

(ε)
α is bounded from above on

Lah, provided that the quantity on the right-hand side is finite. But r
(ε)
α is neces-

sarily finite ϕ-a.s. [Nummelin (1984), Proposition 5.1]. Since the Ei -sets in (H3)
are ϕ-positive, we may then choose x1, . . . , xl such that r

(ε)
α (xi) is finite for each i.

To establish uniform boundedness along a sequence {(αj , εj )}, where (αj ,

εj ) ↘ (r,0) as j → ∞, set

q1(x) = lim inf
(α,ε)↘(r,0)

r(ε)
α (x) ∀x ∈ S,(5.30)

where the limit is taken along the straight-line path joining (r,0) to some point
(α̂, ε̂) with α̂ > r and ε̂ > 0.

We begin by identifying the limit of �(ε)(α) as (α, ε) ↘ (r,0). It follows im-
mediately from the definition of �(ε) that �(ε)(α) ≥ �(α) for all (α, ε); and hence

lim inf
(α,ε)↘(r,0)

�(ε)(α) ≥ lim
α↘r

�(α) = �(r) > −∞ ∀α, ∀ε > 0,(5.31)

where the last two inequalities follow from Theorem 3.2 of Nummelin (1984) and
the convexity of �. Moreover, it follows by Proposition 5.1 that

�(ε)(α) ≤ 
(ε)(α) ↘ 
(r) as (α, ε) ↘ (r,0);(5.32)

and from the definition of r, we also have that 
(r) ≤ 0. [In the last step of (5.32),
we have used the fact that 
 is convex, which follows from an application of
Hölder’s inequality, and we have used our assumption that (r,0) ∈ intD�, which
implies that r ∈ intD
.] From (5.31) and (5.32) we conclude that

lim inf
(α,ε)↘(r,0)

θ (ε)(α) = a ∈ (θ(r),1].(5.33)
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Recalling the definition of q1 in (5.30), now apply Fatou’s lemma to the equation∫
S

eαf (y)r(ε)
α (y)P (ε)(x, dy) ≤ θ(ε)(α)r(ε)

α (x)

to obtain ∫
S

erf (y)q1(y)P (x, dy) ≤ q1(x).(5.34)

Thus q1 is a subinvariant function for the kernel P̂r. Also, by Nummelin (1984),
Proposition 5.1, the set {x :q1(x) < ∞ } is full; hence, either q1 < ∞ ϕ-a.s. or
q1 ≡ ∞.

To see that the latter is not the case, observe by the definition of r
(ε)
α and Propo-

sition 4.7(ii) of Nummelin (1984) that∫
S

r(ε)
α (x)ν̂(α)

a (dx) ≤ 1.

Applying Fatou’s lemma to this equation yields∫
S

q1(y)ν̂(r)
a (dx) ≤ 1.(5.35)

Consequently q1 �≡ ∞.
Hence, if E1 is given as in (H3), then

lim inf
(α,ε)↘(r,0)

r(ε)
α (x1) := q1(x1) < ∞, ϕ-a.a. x1 ∈ E1.(5.36)

Therefore, for any given x1 ∈ E1, there exists a subsequence {(α′
j , ε

′
j )}j ∈Z+ such

that

sup
j

r
(ε′

j )

α′
j

(x1) < ∞.(5.37)

Next, repeat the same argument but with

q2(x) := lim inf
j → ∞ r

(ε′
j )

α′
j

(x)

in place of q1, to establish the existence of an element x2 ∈ E2 and a subsequence
{(α′′

j , ε′′
j )} ⊆ {(α′

j , ε
′
j )} such that

sup
j

r
(ε′ ′

j )

α′ ′
j

(x2) < ∞.(5.38)

Continuing in this manner, we obtain elements xi ∈ Ei , i = 1, . . . , l, and a se-
quence {(αj , εj )} where (αj , εj ) ↘ (r,0) as j → ∞, such that

sup
j

r
(εj )
αj (xi) < ∞, i = 1, . . . , l.(5.39)
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Substituting this expression and (5.33) into (5.29) yields that for some positive
integer J0,

sup
j ≥J0

r
(εj )
αj (x) ≤ Dal

(
sup
i,j

r
(εj )
αj (xi) + 1

a

)
∀x ∈ Lah.

Since the quantity on the right-hand side is independent of x ∈ Lah and j ≥ J0,
we conclude that {Cj }j ≥J0 is bounded.

The proof of these properties for the function r(ε)
α is essentially the same. The

main modification arises in the definition of q1, which is now replaced with

q1(x) := lim inf
j → ∞ r

(εj )
αj

(x),

where {(αj , εj )} is given as above. The previous argument may then be repeated
to obtain successive subsequences corresponding to functions q1, q2, . . . . (The
choice of the elements xi ∈ Ei may, of course, be different in this case.) As be-
fore, we obtain boundedness for the sequence {Dj }, but now along a subseqence
{(αjk

, εjk
)} of {(αj , εj )}. Thus (i) holds.

(ii) To show that r
(ε)
α is uniformly positive, note by definition that

P̂ (ε)(x,E) ≥ ε

∫
E

eαf (y)νa(dy) := εν̂(α)
a (E).

Since r
(ε)
α is (θ(ε)(α))−1-subinvariant with respect to the kernel P̂

(ε)
α , it follows

that

r(ε)
α (x) ≥ (

θ(ε)(α)
)−1

∫
S

r(ε)
α (y)P̂ (ε)

α (x, dy)

(5.40)
≥ (

θ(ε)(α)
)−1

ε

∫
S

r(ε)
α (y)ν̂(α)

a (dy) = const. > 0,

where the last inequality was obtained from the positivity of r
(ε)
α . Hence r

(ε)
α is

uniformly positive.
To establish the uniform positivity of {C̃j }, note by the definition of r

(ε)
α and the

definition of K [in (5.27)] that

r(ε)
α (x) :=

∞∑
n=0

(
θ(ε)(α)

)−n−1
(Knδa1Lah)(x) ≥ δa1Lah(x)

θ(ε)(α)
.(5.41)

Since lim infj → ∞ θ(εj )(αj ) = a ∈ (θ(r),1] [by (5.33)], it follows that for some
positive integer J1 ≥ J0,

inf
j ≥J1

r
(εj )
αj (x) ≥ δa

2a
> 0 ∀x ∈ Lah.(5.42)

Hence—possibly after redefining the sequence {(αj , εj )} so that (αJ1, εJ1) is actu-
ally the initial term of this sequence—we obtain that {C̃j } is bounded from below
by a positive constant.
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The same reasoning shows that the sequence {D̃j } is likewise bounded from
below by a positive constant. �

5.3. Proof of Theorem 4.2. The proof will be based on two lemmas. To mo-
tivate the first of these lemmas, recall that a Markov chain is geometric recurrent
if

sup
x∈Lah

Ex [ρτ ] < ∞ for some ρ > 1,(G)

where τ is a typical regeneration time. To establish (G), one usually begins by
showing that (G) holds under the additional assumption that there exists an atom,
namely,

sup
x∈Lah

Ex [ρT] < ∞ for some ρ > 1,(G′)

where T denotes the first return time of the chain to its regeneration set, that is,
T := inf{n :Xn ∈ Lah}.

Let Qα, rα be defined as Q
(ε)
α , r

(ε)
α but with ε = 0; cf. Section 5.1. Then the goal

of our first lemma will be to establish (G′) for the shifted kernel Qα ; that is,

sup
x∈Lah

E
Q
x [ρT] := sup

x∈Lah

Ex

[
ρTeαST−T�(α)rα(XT)

rα(X0)

]
< ∞,(5.43)

where E
Q[·] denotes the expectation under the measure Qα (and for this heuristical

discussion, we assume that Qα is indeed a probability measure). Since �(α) ↘
�(r) ≈ 0 as α → r, it is a natural strengthening of (G′) to require that

sup
x∈Lah

Ex

[
ρTeαSTrα(XT)

rα(X0)

]
< ∞ for some α > r.(5.44)

While (5.44) has a straightforward probabilistic interpretation, it is not suffi-
ciently strong for our purposes because we will ultimately need the eigenfunc-
tions rα to be uniformly positive, which may not be true in general. Hence we will
need to work with the perturbed kernel P (ε) rather than P . But P (ε) is not a prob-
ability kernel, and consequently, we must first replace (5.44) with a more general
series representation. To this end let

P(ε)(x,E) =
∫
E∩(Lah)c

P (ε)(x, dy)(5.45)

and

P (ε)(x,E) =
∫
E∩Lah

P (ε)(x, dy) ∀ε ≥ 0,(5.46)

and set P = P(0) and P = P (0). Qualitatively, P is a kernel which is nonzero and
equal to P when {Xn} avoids the regeneration set Lah, and P is a kernel which
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is nonzero when {Xn} enters Lah. Thus, in particular, Pn−1P(x,S) describes the
event that {Xn} begins at state x, avoids the set Lah during its first n − 1 time
steps, and enters the set Lah during the nth time step. Thus it follows from the
definitions that

Ex

[
ρTeαSTrα(XT)

rα(X0)

]
= 1

rα(x)

∞∑
n=1

ρn(P̂n−1
α P̂ αrα)(x).(5.47)

Our first objective is to establish the following variant of (5.44), (5.47).

LEMMA 5.1. Assume that (M), (H2) and (H3) are satisfied. Then for suffi-
ciently large a > 0 and any constant ρ > 0, there exist a constant D < ∞ such
that

sup
x∈Lah

{
1

r
(ε)
α (x)

∞∑
n=1

ρn((P̂(ε)
α

)n−1
P̂

(ε)

α r(ε)
α

)
(x)

}
≤ D,(5.48)

uniformly for (α, ε) ∈ {(αj , εj )}j ≥J , where (αj , εj ) ↘ (r,0) is given as in Propo-
sition 5.2 and J is a positive integer.

PROOF. By (H2), there exist points α̂ > r and β̂ > 0 such that �(α̂, β̂) < ∞.
Set α̂ = (α̂, β̂), and observe by Proposition 5.1 that

�(ε)(α̂) ≤ �(ε)(α̂) ↘ �(α̂) as ε → 0.

Hence

�(ε)(α̂) < ∞ for ε ≥ 0 sufficiently small.

By a similar argument,

�(ε)(0) ≤ 1 for ε ≥ 0 sufficiently small.

Then it follows from the convexity of �(ε) that on the line segment joining the
origin to (α̂, β̂), the function �(ε) always lies below max{�(ε)(0),�(ε)(α̂, β̂)}. In
other words, for some ε̂ > 0 we have

�(ε̂)

(
α,

β̂

α̂
α

)
≤ max

{
1,�(ε̂)(α̂, β̂)

}
< ∞ ∀α ∈ [0, α̂].(5.49)

Now by definition, �(ε)(α,β) is nondecreasing in β [for fixed (α, ε) and increas-
ing β], and �(ε)(α,β) is nondecreasing in ε [for fixed (α,β) and increasing ε].
Consequently it follows from (5.49) that

�(ε)(α,β) ≤ max
{
1,�(ε̂)(α̂, β̂)

}
< ∞

(5.50)

∀α ∈ [r, α̂], ε ∈ [0, ε̂], and for β = β̂

α̂
r.
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In other words, �(ε)(α,β) is bounded uniformly when (α, ε) ∈ [r, α̂] × [0, ε̂].
Therefore, for any ρ > 0, and for α = (α,β) and β is given as in (5.50), there
exists a finite constant a such that

θ (ε)(α) := exp�(ε)(α) ≤ eβa

2ρ
∀(α, ε) ∈ [r, α̂] × [0, ε̂].(5.51)

For the remainder of the proof, the constants β and a will now be fixed, while
the parameters α and ε will be allowed to vary within the range of values specified
in (5.51). [Later, we will restrict (α, ε) to those elements belonging to the sequence
{(αj , εj )} which appeared in the statement of Proposition 5.2.]

By the subinvariance of r(ε)
α ,∫

S

eαf (y)+βh(y)P (ε)(x, dy)r(ε)
α (y) ≤ θ (ε)(α)r(ε)

α (x).(5.52)

Hence

eβa
∫
(Lah)c

eαf (y)P (ε)(x, dy)r(ε)
α (y) ≤ θ (ε)(α)r(ε)

α (x).(5.53)

By setting

K(x,E) =
∫
E∩(Lah)c

ρP̂ (ε)
α (x, dy) and V = r(ε)

α

and substituting (5.51) into (5.53), we then obtain

KV ≤ 1

2
V.(5.54)

Now if (α, ε) ∈ {(αj , εj )}, then it follows by Proposition 5.2 that r
(ε)
α is uni-

formly bounded from below on Lah. Hence for some positive constant c,

θ (ε)(α)r(ε)
α (x) ≥

∫
Lah

P̂ (ε)
α (x, dy)r(ε)

α (y) ≥ c

∫
Lah

P̂ (ε)
α (x, dy)

(5.55)
≥ c

∫
S

P̂
(ε)

α (x, dy),

where, in the last inequality, we have used the fact that h ≥ 0 �⇒ P̂α ≥ P̂α for

all β ≥ 0 and α = (α,β), and we have used the fact that P̂
(ε)

α (x, ·) = 0 on (Lah)c

[cf. (5.46)]. If we now define the constant � > 0 and function � : S → R by

� = c

2θ (ε)(α)
and �(x) = �, ∀x ∈ S,(5.56)

then from (5.55) we obtain

P̂
(ε)

α � ≤ 1

2
r(ε)
α := 1

2
V.(5.57)
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From (5.54) and (5.57), we conclude

KV ≤ V − P̂
(ε)

α �,(5.58)

which may roughly be viewed as a drift condition satisfied by the kernel K .
Next, we claim that

V − KmV ≥
m∑

n=1

Kn−1P̂
(ε)

α � ∀m ∈ Z+.(5.59)

To establish this claim, proceed by induction, observing that (5.59) holds when
m = 1, by (5.58). Now assume that (5.59) holds for arbitrary m. Multiply (5.59)
on the left by K and apply (5.58) to the first term on the left-hand side to obtain

(
V − P̂

(ε)

α �
) − Km+1V ≥

m+1∑
n=2

Kn−1P̂
(ε)

α �,(5.60)

which is (5.59) with m + 1 in place of m.
Since KmV ≥ 0, it follows upon letting m → ∞ in (5.59) that

V (x) ≥
∞∑

n=1

(
Kn−1P̂

(ε)

α �
)
(x)

(5.61)

: =
∞∑

n=1

ρn−1((P̂(ε)
α

)n−1
P̂

(ε)

α �
)
(x).

Now by the definition of P (ε), we have that P̂
(ε)

α (x, ·) = 0 on (Lah)c, and by
Proposition 5.2, r

(ε)
α is bounded from above on Lah for all (α, ε) ∈ {(αj , εj )}.

Hence for any (α, ε) ∈ {(αj , εj )}, there exists a finite constant d such that∫
E

P̂
(ε)

α (x, dy)r(ε)
α (y) ≤ d

∫
E

P̂
(ε)

α (x, dy) = d

�
P̂

(ε)

α �(x) ∀E ∈ S;

that is, P̂
(ε)

α � ≥ (�/d)P̂
(ε)

α r
(ε)
α . Substituting this inequality into (5.61) yields

1

r
(ε)
α (x)

∞∑
n=1

ρn((P̂(ε)
α

)n−1
P̂

(ε)

α r(ε)
α

)
(x) ≤ ρd

�r
(ε)
α (x)

V (x).(5.62)

Thus we have established (5.48), except that the constant D on the right-hand side
of that equation must be replaced with the quantity on the right-hand side of (5.62),
which [from the definition of � given in (5.56)] may be identified as

D(ε)
α = 2ρdθ (ε)(α)

cr
(ε)
α (x)

V (x).

It remains to show that D
(ε)
α is uniformly bounded from above when x ∈ Lah

and (α, ε) ∈ {(αj , εj )}. But by (5.51), θ (ε)(α) is uniformly bounded from above
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for α ∈ [r, α̂] and ε ∈ [0, ε̂]. Moreover, by Proposition 5.2, r
(ε)
α and V := r(ε)

α

are uniformly bounded from above and below on the set Lah, provided that
(α, ε) ∈ {(αj , εj )}. Thus we conclude that D

(ε)
α is uniformly bounded from above

for x ∈ Lah and α ∈ {(αj , εj )} ∩ ([r, α̂] × [0, ε̂]) = {(αj , εj )}j ≥J , for some posi-
tive integer J . �

LEMMA 5.2. Assume that (M), (H2) and (H3) are satisfied, and let S′
n =

Sn + f (X0). Then for a > 0 sufficiently large and ρ > 1 sufficiently small,

Eνa

[
τ −1∑
n=0

ρneαS′
n

]
< ∞ for some α > r.(5.63)

PROOF. For any x ∈ S and E ∈ S, set

Q(ε)
α (x,E) =

∫
E∩(Lah)c

Q(ε)(x, dy).

Then it follows directly from the definitions in Section 5.1 that

Q(ε)
α (x,E) =

∫
E

r
(ε)
α (y)

θ(ε)(α)r
(ε)
α (x)

P̂ (ε)
α (x, dy)

and

Q(ε)
α (x,E) =

∫
E

r
(ε)
α (y)

θ(ε)(α)r
(ε)
α (x)

P̂(ε)
α (x, dy).

Now by Proposition 5.1, Q(ε)
α is a probability measure when P̂

(ε)
α is (θ(ε)(α))−1-

recurrent, and Q
(ε)
α is a subprobability measure when P̂

(ε)
α is (θ(ε)(α))−1-transient.

First assume that P̂
(ε)
α is (θ(ε)(α))−1-recurrent.

Let ρ̃ > a−1, where a is given as in (5.33), and apply Lemma 5.1. This states
that, uniformly in x ∈ Lah and (α, ε) ∈ {(αj , εj )}j ≥J , there exists a finite con-
stant D such that

D ≥
∞∑

n=1

∫
S

ρ̃n r
(ε)
α (y)

r
(ε)
α (x)

((
P̂(ε)

α

)n−1
P̂

(ε)

α

)
(x, dy)

=
∞∑

n=1

∫
S

ρ̃n(θ(ε)(α)
)n(

Q(ε)
α

)n−1
Q(ε)

α (x, dy)1Lah(y)(5.64)

= E
Q
x

[(
ρ̃θ (ε)(α)

)T]
,

where E
Q[·] denotes the expectation under the shifted measure Q

(ε)
α . Now the

probability measure Q
(ε)
α satisfies the minorization (MQ) introduced in Sec-

tion 5.1. It follows that upon each return to the set Lah, regeneration occurs with
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probability g
(ε)
α (x). Let Ê

Q
x [·] denote expectation conditioned on the event that

regeneration does not occur at the start of a cycle evolving from Lah. Then as
a consequence of (5.64), we obtain

(
1 − g(ε)

α (x)
)
Ê

Q
x

[(
ρ̃θ (ε)(α)

)T] ≤ D(5.65)

uniformly in x ∈ Lah and (α, ε) ∈ {(αj , εj )}j ≥J .

We begin by obtaining a lower bound for the function g
(ε)
α . By the definition

of g
(ε)
α [given in Section 5.1 under (MQ)],

g(ε)
α (x) ≥ γ (ε)

α ∧ 1
2 ∀x ∈ Lah,

where

γ (ε)
α := δa

θ(ε)(α)

(
sup

x∈Lah

r(ε)
α (x)

)−1
∫

S

eαf (y)r(ε)
α (y)νa(dy)

and we now assert that γ
(ε)
α ≥ γ0 for some positive constant γ0. To establish this

assertion, first recall by (5.33) that lim infj → ∞ θ(εj )(αj ) = a ∈ (θ(r),1], and by
passing to an appropriate subsequence, we obtain the convergence as a limit rather
than as a lower limit; that is,

lim
j → ∞ θ(εj )(αj ) = a ∈ (θ(r),1].(5.66)

Next recall by Proposition 5.2 that, for all (α, ε) ∈ {(αj , εj )}, r
(ε)
α is bounded from

above on Lah. Therefore, there exists a finite constant b such that

lim inf
j → ∞ γ

(εj )
αj ≥ δa

b
lim inf
j → ∞

∫
S

eαjf (y)r
(εj )
αj (y)νa(dy).(5.67)

Moreover, from the series representation of r
(ε)
α [given in its definition in Sec-

tion 5.1], we also obtain that

lim inf
j → ∞ r

(εj )
αj (x) ≥ δa1Lah(x)

a
∀x ∈ S.(5.68)

Then applying Fatou’s lemma to the last term on the right-hand side of (5.67)
yields

lim inf
j → ∞

∫
S

eαjf (y)r
(εj )
αj (y)νa(dy) ≥ δa

a

∫
Lah

erf (y)νa(dy) > 0,(5.69)

where the last inequality follows since suppνa ⊆ Lah; cf. Remark 2.1. Thus we

conclude that—possibly after passing to a subsequence—{γ (εj )
αj } is bounded from

below by some positive constant, which we call γ0, and we may assume that this
constant has been chosen sufficiently small such that γ0 ∈ (0,1/2].
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Now choose t > 1 sufficiently large such that

D <
1

2(1 − γ0)t
.(5.70)

Then choose (α, ε) ∈ {(αj , εj )}j ∈J and ρ > 1 sufficiently small such that

ρt

a

(
θ(ε)(α)

a

)t −1

≤ ρ̃.(5.71)

[This choice is possible due to (5.66) and the fact that we have chosen ρ̃ > a−1.
The point (α, ε) and constant ρ satisfying (5.71) will now be fixed for the remain-
der of the proof.] Since g

(ε)
α (x) ≤ 1/2, substituting (5.71) into (5.65) gives

2D ≥ Ê
Q
x

[(
ρθ(ε)(α)

a

)tT]
≥ Ê

Q
x

[(
ρθ(ε)(α)

a

)T]t
∀x ∈ Lah,(5.72)

where the last step was obtained by Hölder’s inequality. Then (5.70) and (5.72)
yield

D0 := sup
x∈Lah

Ê
Q
x

[(
ρθ(ε)(α)

a

)T]
<

1

1 − γ0
.(5.73)

Our next objective is to show that if

ζ := ρθ(ε)(α)

a
,

then (5.73) implies that E
Q
x [ζ τ ] < ∞, all x ∈ Lah. To this end, let N denote the

random number of returns to the set Lah which occur before regeneration actually
takes place; that is to say, regeneration occurs directly following the N th visit
to Lah. Then

sup
x∈Lah

E
Q
x [ζ τ |N ] ≤

(
sup

x∈Lah

Ê
Q
x [ζT]

)N = DN
0 .(5.74)

Now the probability that regeneration occurs upon any given return to Lah is given
by gα(x) ≥ γ0. Thus (5.73) and (5.74) yield

sup
x∈Lah

E
Q
x [ζ τ ] ≤

∞∑
n=1

(1 − γ0)
n−1Dn

0 < ∞.(5.75)

Moreover, since θ(ε)(α) ↘ a implies that ζ > 1, we have

E
Q
x

[
τ −1∑
n=1

ζ n

]
≤ E

Q
x

[
ζ τ

(
1

ζ
+ 1

ζ 2 + · · ·
)]

= const. · E
Q
x [ζ τ ]

(5.76)
∀x ∈ Lah.



RANDOM RECURRENCE EQUATIONS AND RUIN 1447

Therefore, since a ≤ 1,

sup
x∈Lah

E
Q
x

[
τ −1∑
n=1

(
ρθ(ε)(α)

)n] ≤ sup
x∈Lah

E
Q
x

[
τ −1∑
n=1

ζ n

]
< ∞.(5.77)

Finally observe that

E
Q
x

[(
ρθ(ε)(α)

)n1{τ>n}
] = (

ρθ(ε)(α)
)n(

Q(ε)
α − g(ε)

α ⊗ μ(ε)
α

)n
(x,S).

More explicitly, under the minorization (MQ), 1 − g
(ε)
α describes the probabil-

ity that regeneration does not occur at any given time step, and (Q
(ε)
α − g

(ε)
α ⊗

μ
(ε)
α )/(1 − g

(ε)
α ) describes the transition kernel in the event that regeneration does

not occur. It then follows from the series representation of a regeneration cycle [as
utilized, e.g., in Nummelin (1978) or Ney and Nummelin (1987a), Lemma 4.1] that

E
Q
x

[
τ −1∑
n=1

(
ρθ(ε)(α)

)n] =
∞∑

n=1

(
ρθ(ε)(α)

)n(
Q(ε)

α − g(ε)
α ⊗ μ(ε)

α

)n
(x,S)

≥ 1

r
(ε)
α (x)

∞∑
n=1

ρn((P̂α − δa1Lah ⊗ ν̂(α)
a

)n
r(ε)
α

)
(x)(5.78)

= Ex

[
τ −1∑
n=1

r
(ε)
α (Xn)

r
(ε)
α (X0)

ρneαSn

]
.

[The inequality comes from the fact that, in the definition of g
(ε)
α , we have truncated

this quantity at the level 1/2. Also, inequality results since we have substituted P̂α

for P̂
(ε)
α .] Hence

sup
x∈Lah

Ex

[
τ −1∑
n=1

r
(ε)
α (Xn)

r
(ε)
α (X0)

ρneαSn

]
< ∞.(5.79)

The eigenvectors can effectively be removed from this last expression, since
(α, ε) may now be fixed, and then r

(ε)
α is uniformly bounded from below by a

positive constant, while r
(ε)
α is uniformly bounded from above on Lah. More-

over, suppνa ⊆ Lbf (cf. Remark 2.1), so X0 ∼ νa �⇒ f (X0) ≤ b < ∞. Hence
S′

n ≤ Sn + b, all n ≥ 0. Therefore it follows from (5.79) that

Eνa

[
τ −1∑
n=0

ρneαS′
n

]
< ∞(5.80)

as required.
If P̂

(ε)
α is (θ(ε)(α))−1-transient, then we can normalize the measure Q

(ε)
α , multi-

plying it by an appropriate constant λ > 1, so that λQ
(ε)
α is a probability measure.

Let

R(ε)
α (x,E) = λQ(ε)

α (x,E) and R(ε)
α (x,E) = λQ(ε)

α (x,E) ∀x,E.
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Since λ > 1, the measure R
(ε)
α satisfies the same minorization as Q

(ε)
α , namely,

g(ε)
α (x)μ(ε)

α (E) ≤ R(ε)
α (x,E) ∀x ∈ S, E ∈ S;(MR)

cf. (MR) in Section 5.1. Hence the regularity properties that have just been devel-
oped for g

(ε)
α may also be applied to the present case without any modification.

To obtain (5.63), choose ρ̃ > λ/a and apply Lemma 5.1, just as in (5.64), (5.65),
to obtain

D ≥ E
R
x

[(
ρ̃θ (ε)(α)

λ

)T]
≥ (

1 − g(ε)
α (x)

)
Ê

R
x

[(
ρ̃θ (ε)(α)

λ

)T]
,(5.81)

uniformly in x ∈ Lah, where Ê
R
x [·] denotes expectation under R conditioned on

the event that regeneration does not occur at the start of the regeneration cycle.
Choose t ≥ 1 sufficiently large so that (5.70) holds, and then choose (α, ε) and

ρ > λ sufficiently small such that

ρt

a

(
θ(ε)(α)

λa

)t −1

≤ ρ̃.(5.82)

[As (α, ε) ↘ (r,0) and ρ ↘ λ, the left-hand side of (5.82) converges to λ/a < ρ̃,
where the last equality follows from the original choice of ρ̃. Thus, it is always
possible to find appropriate elements (α, ε) and ρ satisfying (5.82).] Using (5.82)
in place of (5.71), we then obtain (5.72), but with Ê

Q
x [·] replaced everywhere

with Ê
R
x [·] and “θ(ε)(α)” replaced everywhere with “θ(ε)(α)/λ.” The remainder of

the proof may now be repeated without change [except that “θ(ε)(α)” is replaced
everywhere with “θ(ε)(α)/λ”] to obtain (5.77) or, more precisely,

sup
x∈Lah

E
R
x

[
τ −1∑
n=1

(
ρθ(ε)(α)

λ

)n
]

< ∞.(5.83)

To complete the proof, note that

E
R
x

[
τ −1∑
n=1

(
ρθ(ε)(α)

λ

)n
]

=
∞∑

n=1

(
ρθ(ε)(α)

λ

)n(
R(ε)

α − g(ε)
α ⊗ μ(ε)

α

)n
(x,S)

≥
∞∑

n=1

(
ρθ(ε)(α)

)n(
Q(ε)

α − g(ε)
α ⊗ μ(ε)

α

)n
(x,S)(5.84)

≥ Ex

[
τ −1∑
n=1

r
(ε)
α (Xn)

r
(ε)
α (X0)

ρneαSn

]
.

An inequality arises in the second equation when, on the right-hand side, we
replace λ−1g

(ε)
α (x) with the larger quantity g

(ε)
α (x). The final inequality is then

obtained as in (5.78). Consequently we conclude that (5.79) holds and hence
also (5.80). �
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PROOF OF THEOREM 4.2. Set

S′
n = Sn + f (X0) ∀n ≥ 0,

and

Š
d= STi −1 − STi−1 −1 ∀i ≥ 1.

Then by Lemma 5.2,

E[Ǎα ] := E[eαŠ ] < ∞ for some α > r,(5.85)

which establishes the first assertion of the theorem.
We now turn to the remaining estimates stated in (4.16). Assume that regenera-

tion occurs at time zero and let τ denote the subsequent regeneration time. Let

M̌∗ = sup{|B0| + A0|B1| + · · · + (A0 · · · Aj −1)|Bj | : 0 ≤ j < τ }
and observe that

E[|B̌|α ] ≤ E[(M̌∗)α ] ≤ Eνa

[(
|B0| +

∞∑
n=1

eS′
n−1 |Bn|1{τ>n}

)α]
.(5.86)

Now if α ≥ 1, then by Minkowski’s inequality and the independence of {Bn} from
(τ , {An}),

Eνa

[(
|B0| +

∞∑
n=1

eS′
n−1 |Bn|1{τ>n}

)α]1/α

≤ E[|B|α ]1/α +
∞∑

n=1

E[|B|α ]1/α
Eνa

[
eαS′

n−11{τ>n}
]1/α(5.87)

≤ (1 + E[|B|α ])
(

1 +
∞∑

n=0

Eνa

[
eαS′

n1{τ>n+1}
]1/α

)
< ∞,

where the final inequality holds for sufficiently small α > r, since (H2) yields
E[|B|α ] < ∞, while Lemma 5.2 yields

Eνa

[
eαS′

n1{τ>n}
] ≤ Kρ−n, n = 0,1, . . . ,(5.88)

for some constants K < ∞ and ρ > 1.
On the other hand, if α < 1, then in place of Minkowski’s inequality we may

apply the deterministic inequality

(y + z)γ ≤ yγ + zγ ∀y ≥ 0, z ≥ 0 and 0 ≤ γ ≤ 1,(5.89)

and the result follows in the same way as before.
Finally consider (4.17). Assume, to the contrary, that there exists a ϕ-positive

set F ∈ S and a finite constant b such that

f (x) ≥ −b and Ex [M̌α
0 ] = ∞ ∀x ∈ F.(5.90)
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Note

M̌∗
0 : = sup{|B0| + A0|B1| + · · · + (A0 · · · Aj −1)|Bj | : 0 ≤ j < T0}

≥ |B0| + A0 sup{B1 + A1B2 + · · · + (A1 · · · Aj −1)Bj : 1 ≤ j < T0}
: = |B0| + A0M̌0.

If α > 1, then it follows by Minkowski’s inequality and (5.90) that

Ex [(M̌∗
0 )α ]1/α ≥ −E[|B|α ]1/α + e−b/α

Ex [M̌α
0 ]1/α ∀x ∈ F.(5.91)

Then by (5.90),

Ex [(M̌∗
0 )α ] = ∞ ∀x ∈ F.(5.92)

If α ≤ 1, then we may apply (5.89) in place of Minkowski’s inequality, and the
conclusion still holds.

Now suppose that regeneration occurs at time zero, and set

T = inf{n ∈ Z+ :Xn ∈ F } ∧ τ.

Since ϕ(F ) > 0, {Xn} will visit the set F over the given regeneration cycle with
positive probability. Since E[M̌α ] < ∞ implies νa(F ) = 0, this means that P{T <

τ } > 0. Let

Ň ∗ = sup{|BT | + AT |BT +1| + · · · + (AT · · · Aj −1)|Bj | :T ≤ j < τ }
and observe by definition that

M̌∗ ≥ (A1 · · · AT −1)Ň
∗.(5.93)

Now conditional on the event E := {T < τ },

EE
[
EE [(A1 · · · AT −1Ň

∗)α |T ,A1, . . . ,AT −1,XT ]]
(5.94)

= EE
[
(A1 · · · AT −1)

α
EXT [(Ň ∗)α ]].

Moreover, the left-hand side of (5.94) is finite, since (5.93) holds and we have
shown that E[(M̌∗)α ] < ∞. However, on the right-hand side of (5.94), the term
EXT [(Ň ∗)α ] is infinite due to (5.92). (In particular, note that the definitions of
Ň ∗ and M̌∗

0 are the same, except that the quantities in the definition of Ň ∗ are
conditional on an initial state XT ∈ F , while the quantities in the definition of M̌∗

0
are conditional on an initial state X0 = x ∈ S.) Consequently, we conclude

EE [(A1 · · · AT −1)
α ] = 0.

But since T ≤ τ < ∞ a.s. and An > 0 for all n, this is impossible. Hence
Ex [M̌α

0 ] < ∞ for ϕ-a.a. x, and then Ex [B̌α
0 ] ≤ Ex [M̌α

0 ] < ∞, ϕ-a.a. x. Setting
Bn ≡ 1 and observing that in this case B̌0 ≥ Ǎ0, we also obtain Ex [Ǎα

0 ] < ∞,
ϕ-a.a. x. �
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6. Some extensions.

6.1. A general Markovian model. In this section, we consider an extension
which allows the sequence {Bn} to be Markov dependent, and for there to be de-
pendence between {An} and {Bn}. Now assume

logAn = f (Xn) and Bn = G(Xn),(6.1)

where f : S → R and G : S → R. For simplicity, suppose for the moment that
|Bn| ≥ 1 for all n, and set g(x) = logG(x). Let

S̃n = logA1 + · · · + logAn−1 + log |Bn|,
and let �̃ be defined as �, but with S̃n in place of Sn. In addition to (H2), assume
that �̃(α) < ∞ for some α = (α,β), where α > r and β > 0.

An approach to this more general problem is to introduce the kernel

K̂α(x,E) :=
∫
E

eαF(x,y)P (x, dy) ∀x ∈ S, E ∈ S,(6.2)

where F(x, y) = f (x) + (g(y) − g(x)). Note from this definition that

K̂n
α(x,S) = Ex [|B0|−α(A0 · · · An−1)

α |Bn|α ],(6.3)

that is, K̂α now plays the role of P̂α , and similarly for the kernel K(x,E) :=∫
E∩(Lah)c K̂α(x, dy), K(ε), and so on. We note that the random quantity |B0| may

be bounded under an appropriate choice of suppνa , as in Remark 2.1. In this way
we obtain as a direct extension of Lemma 5.2 that

Eνa

[(
|B0| +

τ −1∑
n=1

ρn−1eSn−1 |Bn|
)α]

< ∞,(6.4)

which is the critical estimate needed to handle the present generalization. Finally,
the assumption |Bn| ≥ 1 may be dropped by replacing |Bn| with |Bn| + 1 in the
relevant parts of the proofs.

In practice, dependence arises in the sequence {Bn} if, for example, the pre-
miums of the insurance company are determined by a bonus system, in which
case they depend on the observed claims in the previous time intervals. In this
setting, {Bn} may be modeled as a function of a Markov chain on R, say. See
Lemaire (1995) for general background on bonus systems, or Bonsdorff (2005)
for some recent developments.

6.2. Generalizations of (M). Finally we discuss certain generalizations of the
minorization condition (M). A simple extension—still general enough to handle,
for example, the AR(p) model when p > 1—is to replace the Markov chain {Xn}
with

Xn := (
X(n−1)k+1, . . . ,Xnk

)
, n = 0,1, . . . ,(6.5)
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for any positive integer k, and to introduce the following minorization condition:

δa1Lah(x)νa(E) ≤ P{X1 ∈ E|X0 = x} ∀x ∈ S
k, E ∈ Sk.(M1)

Set An = A(n−1)k+1 · · · Ank and assume that the analogs of (H1)–(H3) hold.
Then a repetition of the argument given in Lemma 5.2 yields

E[Aα
0 + ρAα

0Aα
1 + · · · + ρτ −1Aα

0 · · · Aα
τ −1] < ∞

(6.6)
for some α > r and ρ > 1,

where τ denotes a typical regeneration time of the chain {Xn}. From (6.6) we
immediately obtain the estimate for Ǎ given in Theorem 4.2 [although not the
estimates for B̌ or M̌ , since (6.6) omits terms from the sequence on the left-hand
side of (5.63)]. To obtain the remaining estimates of that theorem, we could, for
example, introduce the random variable

Bn = B(n−1)k+1 + · · · + A(n−1)k+1 · · · Ank−1Bnk(6.7)

and follow the approach just outlined in the previous section. As an alterna-
tive and more direct approach, we could work explicitly with the original se-
quence {Bn} and with (M1), but introduce a strengthening of (H2). Namely set
log Ān = max{logAn,0} and Ān = Ā(n−1)k+1 · · · Ānk , and assume the further re-
quirement:

(H′
2) Hypothesis (H2) holds with S̄n := log Ā1 + · · · + log Ān in place of Sn.

[A precise statement of this condition would also involve a slight change in the
definition of h; see the discussion below, where we explicitly verify this condition
in the AR(p) case.] A slight variant on our argument then yields

E[Āα
0 + ρAα

0 Āα
1 + · · · + ρτ −1Aα

0 · · · Aα
τ −2Ā

α
τ −1] < ∞

(6.8)
for some α > r and ρ > 1,

which is a mild extension of (6.6). If {Bn} is i.i.d. and independent of {An}, then
we consequently obtain the required estimates in Theorem 4.2 for B̌ and M̌ and
hence the limit results stated in our two main theorems. In summary, if we as-
sume the stronger condition (H′

2), then our main results hold under the alternative
minorization condition (M1).

For example, if {Xn} is an AR(p) process with p > 1, that is,

Xn =
p∑

i=1

aiXn−i + ζn, n = 1,2, . . . ,(6.9)

where {ζn} is an i.i.d. Gaussian sequence and X0 = x ∈ R, and if

f (x) = x − μ for some μ > 0,
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then (M0) will not hold with k = 1. However, the minorization (M1) and associ-
ated regularity conditions can be verified explicitly.

To demonstrate that our conditions actually hold in this case, we begin by ex-
pressing (6.9) in matrix form. Namely, for each n ∈ Z+ set

Xn =
⎛
⎜⎝

Xn
...

Xn−p+1

⎞
⎟⎠ , ζ n =

⎛
⎜⎜⎝

ζn

0
...

0

⎞
⎟⎟⎠ and A =

⎛
⎜⎜⎝

a1 · · · · · · ap

1 0
. . .

...

0 1 0

⎞
⎟⎟⎠

(where X0, . . . ,X−p+1 are taken to be arbitrary deterministic values). It follows
from these definitions that

Xn = AXn−1 + ζ n, n = 0,1, . . . .(6.10)

Set X0 = X0,X1 = Xp,X2 = X2p, . . . .

From (6.10) we obtain

Xn = AnX0 + An−1ζ 1 + · · · + ζ n, n = 0,1, . . . .(6.11)

Hence, in particular,

Xp = ApX0 + Wp(6.12)

for some random vector Wp ∼ Normal(0, S), where S is a covariance matrix
which is easily seen to have rank p.

From (6.12) it follows that for any a > 0, there exists a finite constant b such
that

X0 ∈ Ba(0) �⇒ ApX0 ∈ Bb(0),(6.13)

where Br (x) denotes a ball of radius r about x. Let �x denote the Normal(x, S)

density function, and let

�b(y) = inf{�x(y) :x ∈ Bb(0)} ∀y ∈ R
p.

Note that �b is positive everywhere since, for any fixed y, �x(y) is continuous as
a function of x and hence achieves its minimum on the compact set Bb(0). Then
by (6.13), ∫

E
�b(y) dy ≤ P(x,E) ∀x ∈ Ba(0), E ∈ Sp.(6.14)

Consequently (M1) holds with νa(dy) = c�b(y) dy and c ∈ (0, ∞) a normalizing
constant.

The verification of (H1) is likewise straightforward. For example, the rate func-
tion r appearing in (H1) is just the nonzero point at which 
(r) = 0, where 


is the Gärtner–Ellis limit for the process {Sn}, and this limit may be computed,
as in Example 3.2, by observing that Sn is normally distributed for all n, so it
is sufficient to calculate the limiting values of its normalized mean and variance,
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which can be shown to converge as n → ∞. In this way we obtain, more explicitly,
that 
(α) = −αm + σ 2α2/2 for certain positive constants m and σ (the cumu-
lant generating function for an appropriate normal distribution); thus, in particular,

′(0) < 0.

For (H3), first recall that under an appropriate linear transformation, L, we have
that Wk  → W̃k ∼ Normal(0, I ), where I is the identity matrix. Let �̃ denote the
Normal(0, I ) density function, and fix ã > 0. Then there exists a finite constant b

such that if x̃ ∈ ∂Bb(0), then

�̃z(y) ≤ �̃x̃(y) ∀z ∈ Bã(0), y ∈ Cγ (x̃),(6.15)

where

Cγ (x̃) := {ωz :ω ≥ 1, z ∈ Bγ (x̃)}
is a γ -cone eminating from x̃ and γ > 0 is a sufficiently small constant. Thus there
exists a finite collection of points {x̃1, . . . , x̃l } ∈ ∂Bb(0) such that

P̃ (z,E) ≤
l∑

i=1

P̃ (x̃i ,E) ∀z ∈ Bã(0), ∀E,

where P̃ denotes the transition kernel of {Xn} under the transformation L. Under
the inverse transformation, L−1, we then obtain that for any given a > 0, there
exist points {x1, . . . , xl } lying on the boundary of some ellipse such that

P(z,E) ≤
l∑

i=1

P(xi,E) ∀z ∈ Ba(0), ∀E,(6.16)

and by a slight extension, we may replace xi with Bε(xi) (for some ε > 0) on the
right-hand side.

The remaining condition to be verified is that (H2) holds with

S̄n := log Ā1 + · · · + log Ān

in place of Sn, where log Ān := max{logAn,0}. Since logAn = f (Xn) = Xn − μ

for some μ > 0, we clearly have

S̄n ≤ |X1| + · · · + |Xn|.
To characterize the quantity on the right-hand side, note as a consequence of (6.11)
that

|Xn| ≤ D̃(λn|X0| + λn−1|ζ1| + · · · + |ζn|) ∀n,(6.17)

where λ is the spectral radius of A and D̃ is a finite constant. Now under the
standard conditions needed to ensure stationarity of the Markov chain in (6.9) [cf.
Brockwell and Davis (1991)], the spectral radius of A is less than one. Hence

S̄n ≤ D(|X0| + |ζ1| + · · · + |ζn|)(6.18)
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for some finite constant D. Since the sequence {ζn} is i.i.d., it follows that

E
[
e(α/D)|ζ1 |]< ∞ �⇒ lim sup

n→ ∞
1

n
log E[eαS̄n ] < ∞.(6.19)

As ζ1 has a standard Gaussian distribution, we conclude

lim sup
n→ ∞

1

n
log E[eαS̄n ] < ∞ ∀α.(6.20)

Now in a precise statement of (H2), we would also need to specify a function
h : Sp → R which corresponds to the Markov chain {Xn} rather than to {Xn}. What
is actually needed is that

lim sup
n→ ∞

1

n
log E

[
eαS̄pn+βS

(h)
n
]
< ∞, some α > r and β > 0,(6.21)

where S
(h)
n = h(X1) + · · · + h(Xn). In the above discussion, we have chosen

h(x) = ‖x‖ ≤ |x1| + · · · + |xp |, where x = (x1, . . . , xp).

But then (6.21) follows from (6.20) [and its proof, since we may replace S̄n with∑n
i=1 |Xn| in the deduction following (6.18)].
From these considerations, we conclude that if {Xn} is an AR(p) process with

p > 1, then the results of this paper still apply; in particular, the examples in Sec-
tion 3 can all be considered in this more general setting.

Finally, in the general ARMA(p, q) case, where

Xn =
p∑

i=1

aiXn−i +
q∑

j =0

bj ζn−j , n = 1,2, . . . ,(6.22)

it may easily be shown [cf. Meyn and Tweedie (1993), page 28] that

Xn = b0Yn + · · · + bqYn−q,(6.23)

where {Yn} is the corresponding AR(p) process obtained by setting each bj

in (6.22) to zero. Thus letting

Yn = (
Yn(p−1)+1, . . . , Ynp

)
and An = A(n−1)p+1 · · · Anp,

we see that An = F(Yn−1,Yn) (where, if necessary, we set cj = 0 to force p ≥
q + 1).

In this and more general situations, it is useful to consider a further extension
of (M), as follows. Let {An} again be defined as in the discussion prior to (6.6)
(i.e., with index “k” in place of “p”), and let {Bn} be defined as in (6.7). Let
Vn = h(Xn−1,Xn), and assume that

ξn := (An,Bn,Vn) = F(Xn−1,Xn),
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for some function F : S2k → R
3. Next introduce the following minorization con-

dition:

δa1Lah(x)νa(E × �) ≤ P{(X1, ξ1) ∈ E × �|X0 = x}
(M2)

∀x ∈ S
k, E ∈ Sk, � ∈ R3.

Using a result in Ney and Nummelin [(1986), page 4] in place of Lemma 4.1, we
obtain under (M2) that {(Xn, ξn)} exhibits a regeneration structure and, moreover,
that its transform kernel exhibits a minorization of the form (M̂) [where (M̂) is
given as in the proof of Proposition 5.1]. Then one can proceed as before, although
a rigorous analysis requires a careful treatment and further moment conditions on
the process (An,Bn,Vn), which we do not pursue here.
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