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ABSTRACT

In several applications arising in computer science, cascade theory, and finance, it is of interest to evaluate
P(V > u) for a random variableV satisfying a distributional fixed point equation of the formV d

=∑
N
i=1 AiVi+B,

where V1,V2, · · · are i.i.d. copies of V , independent of {Ai} and of B, and N is an integer-valued random

variable. Recently, methods have been developed for the linear recursion V d
= AV +B and some of its

extensions, yielding tail estimates and importance sampling methods for these recursions. However, such
methods do not routinely generalize to the non-homogeneous recursions described in the above fixed
point equation. Drawing on the techniques from the weighted branching process literature, we describe a
modification of the importance sampling algorithm of Collamore et al. (2011) which yields an estimate
for the tail probability P(V > u) which is consistent and also strongly efficient, exhibiting bounded relative
error.

1 INTRODUCTION

This paper is concerned with rare event simulation related to the non-homogeneous stochastic fixed point
equations of the form

V d
=

N

∑
i=1

AiVi +B, (1.1)

where V ≡ {V,Vi : i≥ 1} is a collection of independent and identically distributed (i.i.d.) random variables;
A ≡ {Ai : i ≥ 1} is a collection of non-negative random variables and B a real valued random variable,
both independent of V ; and N is an integer-valued random variable, independent of V , A , and B. When
B = 0, (1.1) is referred to as a homogeneous stochastic fixed point equation (SFPE). These SFPEs arise in
a variety of examples; for instance: (i) the Quicksort algorithm, where V represents the stationary solution
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to the normalized key comparisons needed to sort a random permutation of length n; (ii) the Hausdorff
dimension of Cantor sets; (iii) the stochastic approximation of Google’s page rank algorithm; and (iv) the
study of martingale limits of Mandelbrot’s cascades and of branching random walk.

The solution to (1.1) with N = ∞ has received much attention, starting with the work of Durrett and
Liggett (1983) and culminating in the work of Alsmeyer et al. (2012). We note that (1.1) describes a fixed
point of a mapping T—referred to as the smoothing transform—on the space of probability measures. In
this paper, we use a weighted branching process to describe the solution to (1.1) and focus on estimating
P(V > u) for large values of u. It is well-known that under suitable moment and regularity conditions,

lim
u→∞

uξ P(V > u) =C, (1.2)

where C is a finite positive constant and ξ > 0 is the solution to the equation E
[

∑
N
i=1 Aξ

i

]
= 1 (see Liu

(2000), Iksanov and NegadaÄlov (2007), Jelenković and Olvera-Cravioto (2012)). The constant C is
typically defined in terms of the SFPE (1.1) and hence is not very useful from a computational perspective.
Recently, in a related problem, Collamore and Vidyashankar (2013b) developed a general method to provide
a probabilistic characterization of the constant C in the case where V d

= AV +B and for certain extensions
of the form

V d
= f (V ), (1.3)

where f (·) is a random Lipschitz function satisfying appropriate regularity conditions. It is natural to ask
whether such an extension is feasible for the SFPE in (1.1). A key ingredient to the characterization in
Collamore and Vidyashankar (2013b) involves representing the SFPE as a stationary limit of the forward
iterates of a corresponding Markov chain. However, in the context of (1.1), a representation of this type is
not available and, for this reason, we have developed an alternative approach (Collamore and Vidyashankar
(2013a)), studying an associated linear SFPE and representing the tails of V in terms of the stationary
solution to this associated SFPE. This approach yields a probabilistic characterization of C in (1.2).

While (1.2) provides an asymptotic description of the rare event probability P(V > u) as u→ ∞, it is
also of interest to obtain exact values for P(V > u) for fixed values of u. When u is large, it is well-known
that direct Monte Carlo (MC) methods are not useful, since

limsup
u→∞

Var(Eu)

P(V > u)2 = ∞, (1.4)

where Eu (defined below) represents an unbiased estimator of P(V > u). In various contexts, alternative
methods based on importance sampling—utilizing an exponential change of measure—successfully address
the inadequacy of the direct MC approach. Specifically, in the context of (1.3), Collamore et al. (2011)
have developed a dynamic importance sampling algorithm, involving a dual change of measure, to compute
the tail probabilities. However, this technique does not routinely carry over to more general recursions,
such as those described in (1.1).

In this article, we utilize the relationship between the SFPE and a weighted branching process to derive
an associated linear SFPE, V ∗ d

= A∗V ∗+B∗, for a specific choice of A? and B? (dependent on {Ai}, N, B and
{Vi}). We then represent P(V > u) as a functional of P(V ? > u), and adopt the algorithm of Collamore et al.

(2011) to estimate P(V > u) in (1.2) after approximating the associated SFPE with V ? d
= A?V ?+B?

n, where
B?

n converges to B with probability one. Implementation of this algorithm, however, leads to several subtle
issues concerning the simulation of size-biased distributions, exponentially shifted size-biased distributions,
convergence of the solutions of an approximation to the associated SFPE, and some issues concerning
nested simulation.

The rest of the article is structured as follows: Section 2 contains a description of the weighted branching
processes and branching random walk, while Section 3 is devoted to a description of an associated linear
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SFPE. In Section 4, we present the importance sampling algorithm and some implementation details and
numerical results.

2 WEIGHTED BRANCHING PROCESSES AND BRANCHING RANDOM WALK

We begin with a brief description of the Galton-Watson (GW) process. (For further details, see Athreya
and Ney (1972).) The process starts with a single ancestor at time 0. This ancestor lives one unit of time
and reproduces according to a probability distribution {p j : j ≥ 0}. Let Z1 denote the size of the first
generation. Then

P(Z1 = j) = p j, j = 0,1,2, · · · , (2.1)

referred to as the offspring distribution. Each individual of the first generation, in turn, lives one unit of
time and reproduces, independent of one another and of the ancestors, according to the same offspring
distribution. Let Zn denote the propulation size of the nth generation, and let m = E[Z1]. It is well-known
(Athreya and Ney (1972)) that the process Zn either diverges or it converges to zero. Let S = {Zn→ ∞}.
Then S is called the survival set of the process, and P(S )> 0 if and only if m > 1. In this paper, we will
assume that p0 = 0, implying that the process survives with probability one. Now, the weighted process is
the same as the GW process except that each individual carries a random weight, obtained as a product of
the weight of the parent and a random factor introduced at the edge adjoining the parent and its offspring.
The weight of the initial ancestor is taken to be one.

To provide a precise description of the weighted branching processes, let φ denote the initial ancestor
and denote the members of the kth generation, k≥ 1, by (v1,v2, · · · ,vk). These elements are then members
of the Ulam-Harris tree T, defined as follows. Let N denote the set of natural numbers with discrete
topology, and let

T=
∞⋃

k=0

Nk, where N0 := {φ}. (2.2)

For v ∈ T, let |v| denote the length (i.e., generation) of v.
Let X = (X1,X2, · · ·) be an infinite vector of positive random variables whose components have expec-

tation one, possessing an arbitrary dependence structure. We now associate with every vertex v ∈T an i.i.d.
copy of X and denote it by X(v). These vectors represent the random factors described in the previous
paragraph. In particular, the vector (X1(φ),X2(φ), · · ·) represents the weight factor associated with the root
vertex, while the weight factor associated with offspring 1 of this ancestor (corresponding to v = 1) is
X(1) = (X1(1),X2(1), · · ·). We stress here that X(1) is an i.i.d. copy of X(φ). We now define the weights
of the vertices v ∈ T as follows. First set L(φ) = 1. Then for v ∈ Nn ⊂ T, define

L(v) = Xv1(φ)
n−1

∏
i=1

Xvi+1(v1,v2, · · · ,vi). (2.3)

Let
Zn = ∑

|v|=n
L(v) and Wn =

Zn

mn , (2.4)

where we recall that m := E[Z1]. Then Zn can be interpreted as the total weight of the nth generation, while
Wn is the normalized total weight. It is easy to see that E[Wn] = 1, as in the GW case, since we assume
the weight factors satisfy E[L(v)] = 1. Thus, {Wn} is positive martingale sequence converging to random
variable W∞ almost surely. Under the assumption that E[W1 logW1]< ∞, Rösler et al. (2000) establish the
L1 convergence of Wn to W∞. This yields E[W∞] = 1.
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2.1 FORWARD AND BACKWARD RECURSIONS

To relate a weighted branching process to an SFPE, it is convenient to consider the forward and backward
recursions associated with a weighted branching process. To this end, let N be a positive integer-valued
random variable with E[N]> 1. Let {Nv : v ∈ T} denote a collection of i.i.d. random variables having the
same distribution as N. In particular, Nφ represents the number of direct descendants (offspring) of the
initial ancestor φ . To obtain alternate expressions for Zn, note that by conditioning on the first generation,

Zn =
Nφ

∑
i=1

Xi(φ)Zn−1,i, (2.5)

where {Zn−1,i : 1≤ i≤ Nφ} are i.i.d. copies of Zn−1. This is called the backward recursion. Dividing (2.5)
by mn and letting n→ ∞ , it follows that

W∞ =
Nφ

∑
i=1

Xi(φ)

m
W∞,i, (2.6)

where W∞,i are i.i.d. copies of W∞ and independent of F1 = σ(X1(φ),X2(φ), · · ·). This yields the homoge-
neous SFPE obtained in (1.1) when B = 0. Alternatively, conditioning on the (n−1)th generation, it can
be seen that

Zn = ∑
|v|=(n−1)

L(v)
Nv

∑
i=1

Xi(v). (2.7)

This is referred to as the forward recursion. We point out here that, while the backward recursion yields
the SFPE, the forward recursion is helpful in designing the algorithm.

2.2 BRANCHING RANDOM WALK

A closely related model to the weighted branching process is the branching random walk (BRW) model
studied in Biggins (1977), Biggins (1992), Kingman (1975), and several recent papers. In this model,
we start with a single ancestor located at the origin at time 0. The offspring of this ancestor form the
first generation, and their positions are described by a point process Z1 on R. The individuals in the nth

generation reproduce independent of each other and of the preceding generations to form the (n+ 1)th

generation. The displacements of offspring of a parent have the same distribution as Z1. The Laplace
transform of the point process describing a BRW can be seen to be closely related to a weighted branching
process. To describe this correspondence, let Yn,r denote the positions of the nth generation population, and
define

Wn(θ) = (m(θ))−n
∑
r

exp(−θYn,r), (2.8)

where m(θ) = E [∑r exp(−θY1,r)]. Alternatively,

Wn(θ) = (m(θ))−n
∑
|v|=n

L(v), (2.9)

where L(ν) is as in (2.3) and Xi(v) = exp(−θY1,i)I{Z(1)(R)≥i}, i ≥ 1. Thus, it is clear that the BRW is
closely related to the weighted branching process. However, in a general weighted branching process, it
is sometimes allowed for v ∈ T that Nv = ∞ with positive probability, while it is typically assumed that
Nv < ∞ w.p.1 in the case of a branching random walk.

It is well-known that, in the case of a branching random walk, {Wn(θ)} is a non-negative martingale and
hence converges almost surely to a random variableW (θ). Under the assumption that E[W1(θ) log+W1(θ)]<
∞ and the additional assumption that θ ∈D, where

D= {θ ∈ R : m(θ)< ∞} (2.10)



Collamore, Vidyashankar, and Xu

is a convex subset of R, Biggins (1977, 1992) established the L1 convergence of {Wn(θ)} to W∞(θ), which
implies E[(W (θ)] = 1. Similar to the case of a weighted branching process, one can use the branching
property to verify that W∞(θ) satisfies the SFPE

W∞(θ) = m(θ)−1
Nφ

∑
i=1

Xi(φ)W∞,i(θ), (2.11)

where {W∞,i(θ) : 1≤ i≤ Nφ} consists of i.i.d. copies of W∞. In the remainder of this section, by a slight
abuse of notation, we write Xi(φ) also to denote Xi(φ)/m(θ). Then (2.11) becomes

W∞(θ) =
Nφ

∑
i=1

Xi(φ)W∞,i(θ), (2.12)

which is the same as the SFPE (1.1) with B = 0; that is, the homogeneous SFPE. A slightly modified
construction, incorporating an immigration term into each of the terms Xi(φ) in (2.6), yields the SFPE
(1.1) with B 6= 0; that is, the non-homogeneous SFPE. We observe that in the above discussion, one can
obtain the BRW and weighted branching process from one another; the purpose of including both of these
descriptions is to emphasize that they are the same, although they have been used in different contexts
historically.

3 THE ASSOCIATED SFPE

While the SFPE described in (2.11) is complex, one can develop an alternative linear SFPE by considering
the expectations of the martingale limits described in Sections 2.1 and 2.2. Recalling that E[W∞] = 1, it
is known (Liu (2000), Iksanov and NegadaÄlov (2007)) that if V ? is a random variable with distribution
Q(·), where

Q(·) def
= E

[
W∞I{W∞∈·}

]
, (3.1)

then V ∗ satisfies the linear SFPE
V ∗ d

= A∗V ∗+B∗, (3.2)

where the distributions of A∗ and B∗ are determined by the equation

E[g(A∗,B∗)] := E

[
Nφ

∑
i=1

Xi(φ)g
(

Xi(φ),
Nφ

∑
j 6=i

X j(φ)Z∞, j

)]
, (3.3)

for all bounded Borel functions g(·, ·) of two variables. In particular, taking g(x,y) = f (x), it follows that

E[ f (A∗)] := E

[
Nφ

∑
i=1

Xi(φ) f (Xi(φ))

]
. (3.4)

Then the tail probabilities of V can be obtained from those of V ?, since, if F(·) represents the distribution
of W∞, then

P(V > u) =
∫

∞

u
dF(v)

=
∫

∞

u

1
v

dQ(v)

= E
[
(V ?)−1I{V ?>u}

]
. (3.5)
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One can now modify the algorithm in Collamore et al. (2011) to derive an estimator for P(V > u). To this
end, we consider the forward recursion

V ∗n+1 = A∗n+1V ∗n +B∗n+1, (3.6)

where {(A∗n,B∗n)} is a collection of i.i.d. random variables with distribution described in (3.3). Then, using
(3.4) together with the representation for ξ in (1.2), one can show that there exists α > 0 such that

E[(A∗)α ] = 1, (3.7)

where necessarily α = ξ −1. Now, to apply the algorithm of Collamore et al. (2011), we notice that V ∗n is
a positive recurrent Markov chain with stationary distribution π(·) and C-set C = [0,M] for some M ≥ 0.
Then, as in Collamore et al. (2011), we perform a dual change of measure; namely, simulate from the
α−shifted distribution of (A∗,B∗) until V ∗n exceeds u, then revert back to the original distribution thereafter.
We stop when the process returns to C . Let Tu denote the time it takes the process to first reach the level
u, that is,

Tu = inf{ j ≥ 1 : V ∗j > u}, (3.8)

and let K denote the first return time to C ; that is, K = inf{ j ≥ 1 : V ∗j ∈ C }. Then our method can be
succinctly written as an algorithm, as stated in the next section.

4 THE ALGORITHM

The following is the rare event simulation algorithm that can be used for calculating the tail probabilities
of the SFPE (1.1) with B = 0. In the description below, we denote by µ the distribution of (log A∗,B∗),
and set

dµα(x,y) =
eαx

λ (α)
dµ(x,y), α ∈ R,

where λ (α) := E[(A∗)α ]. Set Sn = ∑
n
k=1 log A∗k . Moreover, let γ denote the stationary distribution of {V ∗n }

restricted to C ; namely, π(E)/π(C ), for any Borel set E ⊂ C . Then, as C is near the center of the
distribution of V ∗n , this stationary distribution may easily be approximated by a direct MC procedure (as
described in more detail in Collamore et al. (2011)), leading to an approximation γ̂k for γ .

Let {E ( j)
u : 1≤ j≤ N} denote N samples obtained from the above algorithm, and let Êu ≡ 1

N ∑
N
j=1 E

( j)
u .

Then, following Collamore et al. (2011), estimate P(V > u) by setting it to be equal to Êuπ̂(C ), where
π̂(C ) is an estimate of the stationary distribution of C . Using techniques from Collamore et al. (2011),
one can verify that this estimator is consistent and exhibits bounded relative error (under the moment and
regularity conditions stated there); in particular,

sup
u≥0

u2ξ E[E 2
u ]< ∞. (4.1)

Additionally, under further regularity conditions, it can be shown that the running of the algorithm grows
as a constant multiple of logu as u→ ∞. These results are analogues of Theorems 2.1, 2.2, and 2.3 of
Collamore et al. (2011).

4.1 IMPLEMENTATION OF THE ALGORITHM

We implemented the above algorithm with B = 0 in (1.1). For the sake of concreteness, we simulated
the SFPE using the recursions of the BRW model described in Section 2.2. The random variable Nφ was
assumed to be distributed as 1+ Ñ, where Ñ is a Poisson random variable with parameter 0.25; hence
E[Nφ ] = 1.25. Conditioned on Nφ , we took the positions of the offspring, {Y1,r : 1≤ r ≤ Nφ}, to be i.i.d.
Normally distributed with mean zero and variance σ2 = 0.14876. We took θ = 1 in (2.8). A simple
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Algorithm 1 *
V0 ∼ γ̂k, s = 0
repeat

s← s+1
V ∗s = A∗sV ∗s−1 +B∗s , (log A∗s ,B

∗
s )∼ µα

until V ∗s > u or V ∗s ∈ C

if V ∗s > u then
repeat

s← s+1
V ∗s = A∗sV ∗s−1 +B∗s , (log A∗s ,B

∗
s )∼ µ

until Vs ∈ C

Eu = ∑
K−1
r=0

1
V ∗r

1{V ∗r >u}e−αSTu

else
Eu = 0

end if
Rare Event Simulation Algorithm using Forward Iterations of the linear associated SFPE.

calculation then yields ξ = 3 and α = 2. Hence, based on (1.2), it follows that P(W∞ > u) ∼ Cu−3 as
u→ ∞.

To express the above quantities in terms of the weighted branching process, observe that m(θ) =

E
[
∑

Nφ

i=1 eθY1,i

]
= E

[
Nφ

]
E
[
eθY1,1

]
= 1.25×e0.14876/2 = 1.3465 for θ = 1. Thus Xi(φ)∼ LN(0,σ2)/m(1)∼

LN(0,0.14876)/1.3465. To implement the algorithm, we first have to simulate from the associated SFPE,
whose forward iterates are obtained by sampling from A∗ and B∗ in their shifted distributions. Since the
expression for B∗ involves the random variable W∞, we approximate W∞ by Wn∗ for some n∗ ∈ Z+. In our
implementation, we chose n∗ = 20. This choice was determined by an exploratory analysis.

We first observe that, under the assumptions on the SFPE, it can be shown that the random variables
A∗ and B∗ are independent. To simulate the i.i.d. copies of A∗, we notice that in Equation (3.4), taking
f (x) = I{x∈F} for some Borel set F and conditioning on Nφ , we have

P(A∗ ∈ F) = E

[
Nφ

∑
i=1

Xi(φ)I{Xi(φ)∈F}

]
= E

[
Nφ

]
E
[
Xi(φ)I{Xi(φ)∈F}

]
.

Noticing that the second term represents a sized-biased distribution, it is easy to see (cf. Patil and Rao (1978))
that A∗ ∼ LN(0.14876,0.14876)/1.3465. Using a similar calculation, one can show that the distribution
of the α-shifted random variable A∗ is given by LN(0.44628,0.14876)/1.3465.

We now turn to the problem of simulating B∗. A standard calculation shows that for any Borel set G,

P(B∗ ∈ G) = E
[
N∗I{∑ j 6=1 X j(φ)W∞, j∈G}

]
. (4.2)

Thus, to simulate B∗, we adopt a variant of the acceptance-rejection algorithm. The following steps describe
this algorithm:

1. Fix q, a “high” quantile of the distribution of N∗.
2. Sample N∗ ∼ f (·) and U ∼ Unif(0,1).
3. If X

q >U , return L =
{

∑ j 6=1 X j(φ)W∞, j
}

. Else go to Step 2.
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Table 1: Importance sampling estimation for the tail probability P(V > u).

u P(V > u) RE Tu K CMC
10 6.06e-3 1.28e3 13.8 54.1 3.89e-3
50 6.06e-5 4.21e2 23.8 75.1 NA
100 8.06e-6 6.07e2 28.3 84.3 NA
500 6.19e-8 4.84e2 39.0 106 NA
1000 8.23e-9 6.86e2 43.7 115 NA

We note that this choice of the high quantile of the distribution of X enables one to produce approximate
samples from the distribution with density x f (x). If the distribution of X has bounded support, one can
replace q by the maximum possible value of this random variable.

The results of our implementation are summarized in Table 1. The variable CMC represents the crude
Monte Carlo estimate. The importance sampling estimates are based on 107 simulations, while the CMC
estimate is based on 108 simulations. For large u, CMC is not applicable (N/A). We notice from the table
that the relative error remains bounded and the running time, Tu, and the return time, K, grow roughly
logarithmically in u. Additionally, simple calculations illustrate that the constant C in (1.2) is approximately
8. Perhaps more importantly, the ratio of the probabilities for different values of u in Table 1 exhibit the
same scaling as described in (1.2). This provides partial evidence that the algorithm described in this paper
works in practice. A key difficulty in implementing the algorithm is the challenge of simulating from the
size-biased distributions. This problem was partly resolved in our implementation, since the lognormal
family is closed, in the sense that the size-biased distribution of a lognormal is also lognormal. Several other
distributions belonging to the Pearson type III family of distributions also possess this property, and hence
other choices for the distribution of the weight factor in a weighted branching process (or the positions of
the offspring in a BRW) are possible.

5 CONCLUSION

In this article, we developed an algorithm for estimating the tails of the non-homogeneous SFPE (1.1).
In particular, we showed that the methods of Collamore et al. (2011) can be extended to this setting,
yielding an efficient importance sampling algorithm. While the algorithm is seen to work very efficiently,
a difficulty in the implementation arises from the implicit expressions for the distributions of (A∗,B∗),
which can be made explicit in a wide class of examples. In a more comprehensive study, the authors are
also considering and comparing other related approaches to this problem, where these quantities can be
obtained more explicitly. For the method described in this paper, efficiency and sharp asymptotics for the
running time follow along the lines of Collamore et al. (2011), where similar results have been recently
obtained for the related linear recursions.
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