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Abstract
This bachelor thesis investigates group cohomology, focusing on computation with an algebraic
approach. In the first section of this project, we introduce the theory of group cohomology, as
well as our chosen machinery for computing group cohomology. In the second section, we perform
concrete calculations of the cohomology of, for example, the cyclic groups Z/2n, the Klein four
group Z/2⊕ Z/2 and the dihedral group D8 of order 8. We limit our calculations to cohomology
with coefficients in F2. Initially, we perform calculations using explicit resolutions. Thereafter,
we move on to the more powerful machinery provided by the Lyndon-Hochschild-Serre spectral
sequence.
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1 Homological algebra

1.1 Basic definitions

This subsection serves to lay down some notational conventions and recall some basic homological
algebra. For a more detailed exposition, see e.g. Rotman (2009) or Weibel (1994).

Let R be a ring. A graded R-module is a sequence C = (Cn)n∈Z of R-modules. We say that
x ∈ Cn has degree n and write deg(x) = |x| = n. A map of degree p from C to another graded R-
module C ′ is a sequence f = (fn : Cn → C ′

n+p)n∈Z or R-module homomorphisms. A chain complex
(C, d) over R is a graded R-module C together with a map d of degree -1 satisfying d ◦ d = 0.
We call d the differential. The homology of a chain complex (C, d) is Hn(C) = Zn(C)/Bn(0)

where Zn(C) = ker dn and Bn(C) = im dn+1 which we call the cycles and boundaries, respectively.
A cochain complex (C, d) over R is a graded R-module C = (Cn)n∈Z together with a map d =

(dn : Cn → Cn+1) of degree 1 satisfying d ◦ d = 0. We still call d the differential, but note
that we use superscript instead of subscript. The cohomology of a cochain complex (C, d) is
Hn(C) = Zn(C)/Bn(0) where Zn(C) = ker dn and Bn(C) = im dn−1 which we call the cocycles
and coboundaries, respectively. If (C, d) and (C ′, d′) are cochain complexes over R, then a chain
map f : C → C ′ is a graded module homomorphism over R of degree 0, satisfying d′f = fd. Note
that a cochain map f : C → C ′ induces a map on cohomology H∗(f) : H∗(C) → H∗(C ′) and
similarly for chain maps and homology (boundaries are sent to boundaries, since d′f = fd).

A cochain homotopy or homotopy h from a chain map f : C → C ′ to a chain map g : C → C ′

is a graded module homomorphism h : C → C ′ of degree -1 satisfying d′h + hd = f − g. We can
visualize the maps by the following (noncommutative) diagram.

· · · Cn−1 Cn Cn+1 · · ·

· · · C ′
n−1 C ′

n C ′
n+1 · · ·

dn

(d′)n−1 (d′)n

fn−gn fn+1−gn+1hn hn+1

dn−1

fn−1−gn−1

If such an homotopy exists, we say that f is homotopic to g and write f ≃ g. Note that if
f ≃ g then H∗(f) = H∗(g) (this follows from a diagram chase). The same could be said for chain
homotopies and homology.

A (co)chain map f : C → C ′ is a homotopy equivalence if there is a (co)chain map f ′ : C ′ → C

satisfying f ′f ≃ idC and ff ′ ≃ idC′ . A (co)chain complex C is contractible if it is homotopy
equivalent to the zero complex. In other words, if idC ≃ 0. Such a homotopy from idC to 0 is
called a contracting homotopy. A (co)chain complex is exact if its (co)homology is zero. Note in
particular, that contractible complexes are exact.
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For the rest of this project, we will work over a base ring k. So we use abbreviations
Hom(M,N) = Homk(M,N) and M ⊗ N = M ⊗k N . Let G be a group. By a G-module, we
mean a kG-module. Note that a G-module can be viewed as a k-module together with a G-action.
The Hom-functor in the category of G-modules, HomkG, will be abbreviated HomG. We can think
of a map f : M → N of G-modules as a map of k-modules which further satisfies gf(m) = f(gm)

for all g ∈ G and m ∈ M . For G-modules M and N , we consider Hom(M,N) and M ⊗ N as
G-modules by assigning them the actions

(g.f)(m) = gf(g−1m),

g.(m⊗ n) = gm⊗ gn,

for f ∈ Hom(M,N), m ∈ M , n ∈ N and g ∈ G. We will consider k as a G-module, by assigning
it the trivial G-action.

There exists a projective resolution

· · · ∂3→ P2
∂2→ P1

∂1→ P0

of k over kG with augmentation ε : P0 → k. We abbreviate this chain by P . This makes

· · · → P2 → P1 → P0
ε→ k → 0

into an exact sequence, which we will abbreviate ε : P → k and refer to as the augmented chain
complex associated to the resolution. In both chains we consider Pi as laying in degree i. A maybe
surprising fact about projective resolutions is that they are, unique up to (canonical) homotopy
equivalence in the following sense.

Proposition 1.1.1. Let P and P ′ be projective resolutions of k. There is an augmentation-
preserving map f : P → P ′, unique up to homotopy, and f is a homotopy equivalence.

Proof. See Brown (1982, Chapter I, Theorem 7.5).

In this project, we will in practice only construct free resolutions, i.e. where each Pi is free. To
use free resolutions, we simply note the following.

Proposition 1.1.2. Free modules are projective.

Proof. One characterization of projective modules is, that a module P is projective if and only if
there exist another module Q such that P ⊕Q is a free module.

It is sometimes useful to look at the so-called standard resolution of k over kG. To construct
it, we let Pi be the free k-module with generating set Gi+1 and with G-action g.(g0, . . . , gi) =
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(gg0, . . . , ggi). The differentials are given by

∂i =
i∑

j=0

(−1)jdj,

where dj(g0, . . . , gi) = (g0, . . . , ĝj, . . . , gi), and the augmentation is given by ε(g0) = 1.

Proposition 1.1.3. The standard resolution of k over kG defined above is a resolution.

Proof. We see that P is a chain complex, since

∂i ◦ ∂i+1 =
i∑

ℓ=0

i+1∑
j=0

(−1)j+ℓdℓ ◦ dj

=
∑

0≤j≤ℓ≤i

(−1)j+ℓdℓ ◦ dj +
∑

0≤ℓ<j≤i+1

(−1)j+ℓdℓ ◦ dj

=
∑

0≤j≤ℓ≤i

(−1)j+ℓdj ◦ dℓ+1 +
∑

0≤ℓ<j≤i+1

(−1)j+ℓdℓ ◦ dj

=
∑

0≤j<ℓ≤i+1

(−1)j+ℓ−1dj ◦ dℓ +
∑

0≤j<ℓ≤i+1

(−1)ℓ+jdj ◦ dℓ

= 0.

In the third equality, we used that

(dℓ ◦ dj)(g0, . . . , gi+1) =

(g0, . . . , ĝj, . . . , ˆgℓ+1, . . . , gi) if j ≤ ℓ

(g0, . . . , ĝℓ, . . . , ĝj, . . . , gi) if j > ℓ.

In the fourth equality we used the substitution ℓ := ℓ− 1 in the first sum and (ℓ, j) := (j, ℓ) in the
second sum. Furthermore, the whole of ε : P → k is a chain, since also

(ε ◦ ∂1)(g0, g1) = ε(g1 − g0) = ε(g1)− ε(g0) = 1− 1 = 0.

We almost already knew all this from algebraic topology, since these differentials are essentially
the same as the differentials in simplicial homology.

Now to show, that ε : P → k is an exact sequence. It is sufficient to construct a contracting
homotopy h from the identity on the augmented chain complex to the zero chain map (Rotman,
2009, p. 337). Choose hi(g0, . . . , gi) = (1, g0, . . . , gi) for i ≥ 0 and h−1(a) = a1 ∈ P0 for all a ∈ k.
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Now, since hi ◦ dj = dj+1 ◦ hi, we get for i > 0 that

∂i+1 ◦ hi + hi−1 ◦ ∂i =
i+1∑
j=0

(−1)jdj ◦ hi +
i∑

j=0

(−1)jdj+1 ◦ hi

=
i+1∑
j=0

(−1)jdj ◦ hi +
i+1∑
j=1

(−1)j−1dj ◦ hi

= d0hi

= idPi
.

Also,

(∂1 ◦ h0 + h−1 ◦ ε)(g0) = ∂1(1, g0) + h−1(1)

= g0 − 1 + 1

= idP0(g0),

and

(ε ◦ h−1)(a) = ε(a1)

= a

= idk(a).

So the identity map on the augmented chain map is homotopic to the zero chain map, and they
thus induce the same maps on homology. Since the identity chain map induces an isomorphism
on homology, and the zero chain map induces the zero map on homology, the homology of the
augmented chain map must be trivial. In other words ε : P → k is exact.

1.2 Group cohomology

Let G be a group, P a projective resolution of Z over ZG and M a G-module. The cohomology of
G with coefficients in M is given by

H∗(G;M) = H∗(HomG(P,M)).

Note that this definition is independent of the choice of projective resolution, since projective
resolutions are unique up to homotopy equivalence.

Luckily, group cohomology is a (contravariant) functor in the first variable. Let ϕ : G → G′ be
a group homomorphism and M a G-module. We can consider M as a G′-module through ϕ, by
letting g′.m = ϕ(g′).m for all g′ ∈ G′ and m ∈ M . It can then be shown, that ϕ induces a map
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ϕ∗ : H∗(G′;M) → H∗(G;M) in a functorial manner (Brown, 1982, Section III.8).
Group cohomology is also a functor in the second variable, but we will not use this fact.
While this definition of group cohomology is very algebraic, it is also possible to use a more

topological definition. We say that a topological space X is a K(G, 1) if π1(X) = G and πn(X) = 0

for all n > 1. Such an X exists for any group G and is unique up to homotopy equivalence (Hatcher,
2001, Example 1B.7 and Theorem 1B.8).

Theorem 1.2.1. Let G be a group and M a G-module with trivial action. Then

H∗(G;M) ∼= H∗(K(G, 1);M)

as k-modules.

Proof. See Benson (1991, Theorem 2.2.3).

Let us now present an interesting application of the functoriality of group cohomology. Let
H ⊴ G be a normal subgroup of G. For each g ∈ G we have a map cg : H → H with cg(h) =

ghg−1 ∈ gHg−1 = H. This map induces a map c∗g : H
∗(H;M) → H∗(H;M). Note that c∗g is

the identity, for all g ∈ G, if H ≤ Z(G), where Z(G) denotes the center of G. This gives us the
following Lemma.

Proposition 1.2.2. Let G be a group, H ⊴ G a normal subgroup and M a G-module. The
conjugation action of G on H induces an action of G/H on H∗(H;M).

(a) This action is trivial if H ≤ Z(G). In particular, it is trivial if G is abelian.

(b) If P is a projective resolution of k over kG, then the action on cohomology is induced by the
action of G on HomG(P,M) given by

(gf)(x) = gf(g−1x),

for each g ∈ G, f ∈ HomG(P,M) and x ∈ P .

Proof. See Brown (1982, p. 80).

We end this subsection with another way to interpret H0 and H1.

Proposition 1.2.3. Let G be a group and M a G-module. Then

H0(G;M) ∼= {m ∈ M | ∀g ∈ G : g.m = m}

as k-modules.
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Proof. Let ε : P → k be the standard resolution of k over kG. Then HomG(P,M) is the (co)chain

HomG(kG,M)
δ0→ HomG(k[G⊕G],M)

δ1→ · · · .

So H0(G;M) ∼= ker δ0. Let f ∈ HomG(kG,M). Note that for g0, g1 ∈ G,

g.δ0(f)(g0, g1) = g.f(∂1(g0, g1)) = f(g.∂1(g0, g1)) = f(∂1(gg0, gg1)) = δ0(f)(gg0, gg1).

We get the chain of implications

δ0(f) = 0 =⇒ ∀g0, g1 ∈ G : δ0(f)(g0, g1) = 0

=⇒ ∀g ∈ G : δ0(f)(1, g) = 0

=⇒ ∀g0, g1 ∈ G : g0.δ0(f)(1, g
−1
0 g1) = 0

=⇒ ∀g0, g1 ∈ G : δ0(f)(g0, g1) = 0

=⇒ δ0(f) = 0,

so δ0(f) = 0 if and only if δ0(f)(1, g) = 0 for all g ∈ G. Since for any g ∈ G,

δ0(f)(1, g) = f(∂1(1, g)) = f(g − 1) = gf(1)− f(1),

this tells us that f ∈ H0(G;M) ⇐⇒ ∀g ∈ G : g.f(1) = f(1). Since f is determined completely
by its value on 1, we are done.

Proposition 1.2.4. Let G be a group and M a G-module with trivial action. Then

H1(G;M) ∼= HomGroups(G,M)

as abelian groups.

Proof. Note that M is abelian as a group, so the right-hand side is an abelian group. See Weibel
(1994, Theorem 6.4.6) for a proof.

1.3 The cup product

It is possible to endow H∗(G; k) with a multiplicative structure which turns it into a commutative
graded ring. This means that we will get an associative product

Hr(G; k)⊗Hs(G; k) → Hr+s(G; k)

with αβ = (−1)deg(α) deg(β)βα. Let 1 be the identity element of k = H0(G; k). Then 1 will be the
identity element with respect to the product.
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First, we define the “cross product”. Let G and G′ be groups. Let X → k be a projective
resolution over kG and Y → k a projective resolution over kG′. We define the cross product1

HomG(X; k)⊗ HomG′(Y ; k) → HomG×G′(X ⊗ Y ; k)

by
(f × g)(x⊗ y) = f(x)⊗ g(y),

where we identify k ⊗ k with k. This induces a map on cohomology which together with the
Künneth map gives a homomorphism

H∗(G; k)⊗H∗(G′; k) → H∗(G×G′; k)

which preserves total degree. We denote the image of α⊗ β under this map by α× β.
Now, define the diagonal homomorphism ∆: G → G× G given by ∆(x) = x× x. By functo-

riality we get an induced homomorphism

∆∗ : H∗(G×G; k) → H∗(G; k).

Finally, define the cup product of α ∈ Hr(G; k) and β ∈ Hs(G; k) as

αβ = α ∪ β = ∆∗(α× β) ∈ Hr+s(G; k).

It can be shown, that the cup product respects the properties written in the start of this
subsection (Evens, 1991, Section 3.1).

1.4 The Universal Coefficients Theorem

A basic result from homological algebra, the Universal Coefficients Theorem, can be written nicely
in terms of group cohomology. We here present a useful special case.

Corollary 1.4.1. Let k be a field, G a group and M a kG-module with trivial action. Then

H∗(G;M) ∼= H∗(G; k)⊗k M.

Proof. See Evens (1991, p. 30).
1We haven’t introduced the tensor product of chain complexes, but we work with one in the proof of Proposi-

tion 2.2.3.
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1.5 Spectral sequences

The Lyndon-Hochschild-Serre spectral sequence will help us in cohomology calculations, by ap-
proximating the cohomology of a group through the cohomology of a normal subgroup and the
cohomology of its quotient group. In this subsection we introduce the concept of a bigraded co-
homological spectral sequence. Then in subsection 1.6 we specialize to the spectral sequence of a
double complex. Finally, in subsection 1.7 we specialize to the LHS spectral sequence. For further
technical details about spectral sequences, see e.g. Benson (1991, Chapter 3).

By a spectral sequence we will mean a sequence {Er, dr}r≥0 of bigraded G-modules Er =⊕
p,q∈Z2 Epq

r and endomorphisms dr = {dpqr : Epq
r → E

(p+r)(q−r+1)
r } satisfying dr ◦ dr = 0 and

Epq
r+1

∼= Hpq(Er, dr) := ker(dpqr )/ im(d
(p−r)(q+r−1)
r ). We call Er the Er-page, since we can think of a

spectral sequence as a book, where flipping to the next page corresponds to taking homology of
the page. We call the drs differentials.

We will only work with spectral sequences, where Er vanishes outside the first quadrant, i.e.
where Epq

r = 0 if p < 0 or q < 0. For a fixed position (p, q), both the differential dpqr starting
at Epq

r and the differential d(p−r)(q+r−1)
r ending at Epq

r will be trivial for sufficiently large r, since
they will end or start outside the first quadrant. If d

(p−r)(q+r−1)
r = dpqr = 0 for some r, then

Epq
r+1 = Hpq(Er, dr) = Epq

r , so Epq
r′ = Epq

r for all r′ > r, and we will denote this stabilized value
Epq

∞ = Epq
r . Note that this doesn’t guarantee the existence of a global value r such that Epq

r = Epq
∞

for all positions (p, q).

1.6 The spectral sequence of a double complex

Let G be a group. Let E0 = (Epq
0 , d0, d1) denote a double cochain complex of G-modules, where d1

and d0 are maps of bidegree (1, 0) and (0, 1), respectively. This means that we require d21 = d20 =

d1d0+ d0d1 = 0. We will restrict to the case where E0 vanishes outside the first quadrant. We can
visualize E0 by the following (anticommutative) diagram.

...
...

...

E0,2
0 E1,2

0 E2,2
0 · · ·

E0,1
0 E1,1

0 E2,1
0 · · ·

E0,0
0 E1,0

0 E2,0
0 · · ·

d0

d1 d1 d1

d1 d1 d1

d1 d1 d1

d0

d0 d0 d0

d0 d0

d0 d0
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We can take cohomology of this complex with respect to d0, getting

...
...

...

H02(E0, d0) H12(E0, d0) H22(E0, d0) · · ·

H01(E0, d0) H11(E0, d0) H21(E0, d0) · · ·

H00(E0, d0) H10(E0, d0) H20(E0, d0) · · ·(d1)∗ (d1)∗ (d1)∗

(d1)∗ (d1)∗ (d1)∗

(d1)∗ (d1)∗ (d1)∗

We will denote the qth row by Hq(E0, d0). Note that each row is a chain, since (d1)
∗ ◦ (d1)

∗ =

(d1 ◦ d1)
∗ = (0)∗ = 0. We could then take cohomology of each row with respect to d1, i.e.

H∗(Hq(E0, d0), d1).
To turn E0 into a single chain complex, we define the total complex T n = Tot(E0)

n =⊕
p+q=n E

pq
0 and let d = d1 + d0. By the above required relations on d1 and d0, we have

d2 = d21 + d1d0 + d0d1 + d20 = 0. Note that the summands of T n lie on an “antidiagonal” line
in the above diagram.

To filter the complex T , we let

F pT n =
⊕
p′≥p

E
p′(n−p′)
0 .

Then F 0T = T and F pT n = 0 for p > n. Now F pT p+q/F p+1T p+q ∼= Epq
0 . Each F pT is of course

again a chain complex with maps induced by restricting d. We define

F pHp+q(T ) = im(Hp+q(F pT ) → Hp+q(T )),

i.e. the image of the map on cohomology induced by the inclusion of chains F pT → T .

Theorem 1.6.1. Let (Epq
0 , d0, d1) be a double complex and T its total complex. There is a spectral

sequence with

Epq
1 = Hpq(E0, d0),

Epq
2 = Hp(Hq(E0, d0), d1),

Epq
∞ = F pHp+q(T )/F p+1Hp+q(T ).

Proof. See Benson (1991, Theorem 3.4.2).

9



The shorthand for this theorem is

Hp(Hq(E0, d0), d1) ⇒ Hp+q(Tot(E0), d1 + d0).

1.7 The LHS spectral sequence

In this subsection, we construct the Lyndon-Hochschild-Serre spectral sequence of a group ex-
tension 0 → H → G → G/H → 0. Let G be a group, H ◁ G a normal subgroup and M a
kG-module. Let X → k be a projective resolution over kG and let Y → k be a projective resolu-
tion over k(G/H). We can consider X → k also as a projective resolution over kH, through the
inclusion map. Recall that G acts on HomH(X,M) by (gf)(x) = gf(g−1x), so H acts trivially
since (hf)(x) = hf(h−1x) = hh−1f(x) = f(x). Therefore, we can consider HomH(X,M) as a
G/H-module. We thus have a double complex

Apq = HomG/H(Yp,HomH(Xq,M)),

with

(d0)
pq = (−1)pHomG/H(id,HomH((dX)q, id)),

(d1)
pq = HomG/H((dY )p,HomH(id, id)).
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As required, we get

(d0)
p(q+1) ◦ (d0)pq = (−1)p+pHomG/H(id,HomH((dX)q+1, id)) ◦ HomG/H(id,HomH((dX)q, id))

= HomG/H(id,HomH((dX)q+1, id) ◦ HomH((dX)q, id))
= HomG/H(id,HomH((dX)q ◦ (dX)q+1, id))
= HomG/H(id,HomH(0, id))
= 0,

(d1)
(p+1)q ◦ (d1)pq = HomG/H((dY )p+1,HomH(id, id)) ◦ HomG/H((dY )p,HomH(id, id))

= HomG/H((dY )p ◦ (dY )p+1,HomH(id, id))
= HomG/H(0,HomH(id, id))
= 0,

(d0)
(p+1)q(d1)

pq = (−1)p+1HomG/H(id,HomH((dX)q, id)) ◦ HomG/H((dY )p,HomH(id, id))
= (−1)p+1HomG/H((dY )p ◦ id,HomH((dX)q, id) ◦ HomH(id, id))
= (−1)p+1HomG/H(id ◦ (dY )p,HomH(id, id) ◦ HomH((dX)q, id))
= −HomG/H((dY )p,HomH(id, id)) ◦ (−1)pHomG/H(id,HomH((dX)q, id))
= −(d1)

p(q+1)(d0)
pq.

The double complex can be visualized by the following anticommutative diagram.

...
...

HomG/H(Y0,HomH(X2,M)) HomG/H(Y1,HomH(X2,M)) · · ·

HomG/H(Y0,HomH(X1,M)) HomG/H(Y1,HomH(X1,M)) · · ·

HomG/H(Y0,HomH(X0,M)) HomG/H(Y1,HomH(X0,M)) · · ·

d0

d1

d1

d1

d0

d0 d0

d0

d0

d1

d1

d1

By Theorem 1.6.1 we get the following theorem.

Theorem 1.7.1. Let G be a group, H ◁G a normal subgroup and M a G-module. Then we have
a spectral sequence with

Epq
1 = HomkG/H(Yp;H

q(H;M)),

Epq
2 = Hp(G/H;Hq(H;M)),

Epq
∞ = F pHp+q(G;M)/F p+1Hp+q(G;M),
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where for each n ≥ 0,

Hn(G;M) = F 0Hn(G;M) ⊇ F 1Hn(G;M) ⊇ · · · ⊇ F nHn(G;M) ⊃ F n+1Hn(G;M) = 0

is some filtration of Hn(G;M).

Proof. This follows from Theorem 1.6.1 and HomkG/H(Yp,−) commuting with cohomology. See
Benson (1991, p. 113) for a more detailed argument.

The shorthand for this theorem is

Hp(G/H;Hq(H;M)) ⇒ Hp+q(G;M).

In the concrete computations we will perform, the following result will be useful.

Proposition 1.7.2. Let k be a field, G be a group and M a kG-module. Then

Hn(G;M) ∼= E0n
∞ ⊕ E1(n−1)

∞ ⊕ · · · ⊕ En0
∞

for all n ≥ 0.

Proof. Since k is a field, every kG-module is a vector space. There is a filtration Hn(G;M) ∼=
F0 ⊇ F1 ⊇ · · · ⊇ Fn ⊃ Fn+1 = 0 with Fi/Fi+1

∼= E
i(n−i)
∞ and, in particular, Fn

∼= En0
∞ . We

therefore have
Hn(G;M) ∼= F0/F1 ⊕ F1/F2 ⊕ · · · ⊕ Fn−1/Fn ⊕ Fn,

which gives us what we want.

When performing calculations, we will start with determining the E2-page, skipping the E0-
and E1-pages. One of the first steps is to determine the first row and column on the E2-page.
In our calculations, the rest of the E2-page will follow, since we know a graded multiplicative
structure of the page. We collect the following small results for easy reference.

Proposition 1.7.3. Let G be a group, H ⊴ G a normal subgroup and M a G-module. Then

E0∗
2

∼= H0(G/H;H∗(H;M)).

Proof. Clear from the above.

Corollary 1.7.4. Let G be a group, H ⊴ G a normal subgroup and M a G-module. If H ≤ Z(G),
(or in particular if G is abelian) then

E0∗
2

∼= H∗(H;M).
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Proof. Combine Proposition 1.7.3, Proposition 1.2.2 and Proposition 1.2.3.

Proposition 1.7.5. Let G be a group, H ⊴ G a normal subgroup and M a G-module. Then

E∗0
2

∼= H∗(G/H;H0(H;M)).

Proof. Clear from the above.

Corollary 1.7.6. Let G be a group, H ⊴ G a normal subgroup and M a G-module. If the action
of H on M is trivial, then

E∗0
2

∼= H∗(G/H;M).

In particular, the identity holds if the action of G on M is trivial.

Proof. Combine Proposition 1.7.5 and Proposition 1.2.3.

We finish this subsection with a coverage of the interplay between the cup product in group
cohomology and the multiplicative structure of the E∞-page in the LHS spectral sequence.

Theorem 1.7.7. Let G be a group, H ⊴ G a normal subgroup and M a G-module.

(a) There is a graded product structure on the E2-page which matches the tensor product structure
we will see in computations. (This statement is of course very informal.)

(b) The product on the Er-page for r ≥ 2 induces a graded product structure on the Er+1-page.

(c) The cup product in H∗(G;M) restricts to maps F pHm(G;M)×F sHn(G;M) → F p+sHm+n(G;M),
which induce maps

F pHm(G;M)/F p+1Hm(G;M)× F sHn(G;M)/F s+1Hn(G;M)

→ F p+sHm+n(G;M)/F p+s+1Hm+n(G;M).

These quotient maps induce maps E
p(m−p)
∞ × E

s(n−s)
∞ → E

(p+s)(m+n−p−s)
∞ , or in other words

Epq
∞ × Ep′q′

∞ → E(p+p′)(q+q′)
∞ .

And this product structure matches the one induced by the one originating from the E2-page.

Proof. See Benson (1991, Section 3.9).

The E∞-page thus tells us the cup product structure of H∗(G;M) up to a filtration.
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2 Group cohomology calculations
We will calculate the cohomology of select finite groups with coefficients in F2. Where F2 is viewed
as a G-module by assigning it the trivial action.Note that we see F2 as a G-module by assigning it
the trivial action. First, we employ the algebraic topological approach using Eilenberg-MacLane
spaces. Then, in subsequent subsections, we take an approach based more in homological algebra.

In this section, we work over the base field k = F2 and coefficient ring M = F2.

2.1 Calculations using Eilenberg-MacLane spaces

Proposition 2.1.1.
H∗(Z/2;F2) ∼= F2[x].

Proof. This follows from RP∞ being a K(Z/2, 1) (Hatcher, 2001, Example 1B.3) and the singular
cohomology of RP∞ being F2[x] where the polynomial ring indicates the cup product structure
(Hatcher, 2001, Theorem 3.19).

2.2 Calculations using explicit resolutions

We now turn to more purely algebraic approaches. Sometimes it is possible to calculate the
cohomology of a group G, by constructing an explicit resolution of Z over ZG. In this subsection,
we don’t make claims about the cup product structure of the graded cohomology rings we calculate.
Nonetheless the results of this subsection will be useful, for our upcoming calculations using
spectral sequences, where we do make claims about the cup product structure.

Proposition 2.2.1. Let n be an even positive integer. Then for all m ∈ Z≥0, we have

Hm(Z/n;F2) ∼= F2.

Proof. Let Cn = ⟨t | tn = 1⟩. We have the following free resolution of k over kCn.

· · · t−1→ kCn
N→ kCn

t−1→ kCn
ε→ k → 0,

where N = 1 + t + t2 + · · · + tn−1. It is clearly a chain, since Nt = N , so N(t − 1) = 0. We
will show exactness by constructing a contracting homotopy h. Let h−1(1) = 1. For i ≥ 0 and
0 ≤ k < n, let

hi(t
k) =


∑k−1

j=0 t
j if i even and k > 0

1 if i odd and k = n− 1

0 else.
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Now for even i > 0 we have

((t− 1) ◦ hi + hi−1 ◦N)(1) = (t− 1)0 + hi−1(N)

= 1.

For even i > 0 and 0 < k < n we have

((t− 1) ◦ hi + hi−1 ◦N)(tk) = (t− 1)
k−1∑
j=0

tj + hi−1(Ntk)

= tk − 1 + hi−1(N)

= tk − 1 + 1

= tk.

For odd i > 0 and 0 ≤ k < n− 1 we have

(N ◦ hi + hi−1 ◦ (t− 1))(tk) = Nhi(t
k) + hi−1(t

k+1 − tk)

= N0 + hi−1(t
k+1)− hi−1(t

k)

= tk.

For odd i > 0 we have

(N ◦ hi + hi−1 ◦ (t− 1))(tn−1) = Nhi(t
n−1) + hi−1(1− tn−1)

= N1 + hi−1(1)− hi−1(t
n−1)

= N + 0−
n−2∑
j=0

tj

= tn−1.

Furthermore,

((t− 1) ◦ h0 + h−1 ◦ ε)(1) = (t− 1)0 + h−1(1)

= 1,
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and for 0 < k < n,

((t− 1) ◦ h0 + h−1 ◦ ε)(tk) = (t− 1)
k−1∑
j=0

tj + h−1(1)

= tk − 1 + 1

= 1.

Finally, (ε ◦h−1)(1) = 1. This shows, that h is a contracting homotopy from the augmented chain
associated to our claimed resolution to the zero chain. Thus the augmented chain is exact and the
claimed resolution is actually a resolution.

Note that HomCn(kCn,F2) = F2 since any f : kCn → F2 must have f(tk) = f(tk)
n
= f(ttn) =

f(1). Because of this, we furthermore have f ◦ tk = f for all k. Therefore, f ◦ (t− 1) = f − f = 0

and f ◦N = nf = 0 since n is even. When we apply HomCn(−,F2) to the resolution, we thus get

F2
0→ F2

0→ F2
0→ · · · .

The cohomology of this chain is F2 in each degree. And the cohomology of this chain is exactly
the cohomology of Cn

∼= Z/n with coefficients in F2.

Proposition 2.2.2. Let n be an odd positive integer. Then

H∗(Z/n;F2) ∼= F2.

Proof. We can reuse the resolution from the the proof of Proposition 2.2.1. We still have
HomCn(kCn,F2) = F2. For any f ∈ HomCn(kCn,F2) we also still have f ◦ (t − 1) = 0. But we
no longer have f ◦ N = 0, since n is not even. Instead we have f ◦ N = f . So when we apply
HomCn(−,F2) to the resolution, we get

F2
0→ F2

id→ F2
0→ F2

id→ · · · .

So here the cohomology is F2 in degree 0 and trivial in all other degrees.

Proposition 2.2.3. For all m ∈ Z≥0, we have

Hm(Z/2⊕ Z/2;F2) ∼= Fm+1
2 .

Proof. Let G = C2 ⊕ C2. We have already established that

· · · t−1→ kC2
N→ kC2

t−1→ kC2
ε→ k → 0,

is a projective resolution of k over kC2. Denote this resolution by ε : P → k. Then by Brown (1982,

16



Chapter V, Proposition 1.1), ε⊗ε : P ⊗P → k is a projective resolution of k over k[C2×C2] = kG.
We can visualize the tensor product P ⊗ P as follows.

...

kC2 ⊗ kC2 . .
.

kC2 ⊗ kC2 kC2 ⊗ kC2 . .
.

kC2 ⊗ kC2 kC2 ⊗ kC2 kC2 ⊗ kC2 · · ·−id⊗(t−1)

(t−1)⊗id

id⊗(t−1)

(t−1)⊗id

−id⊗(t+1)

(t+1)⊗id

(t−1)⊗id

−id⊗(t−1)

(t+1)⊗id

id⊗(t+1)

(t−1)⊗id

−id⊗(t−1)

Here
(P ⊗ P )n =

⊕
j+k=n

Pj ⊗ Pk = (kC2 ⊗ kC2)
n+1

is the sum along each antidiagonal. If d is the differential of P , then

(d⊗ d)n(xn ⊗ y0, . . . , x0 ⊗ yn)

= (dnxn ⊗ y0 + (−1)n−1xn−1 ⊗ d1y1, . . . , d1x1 ⊗ yn−1 + x0 ⊗ dnyn)).

To get cohomology, we first want to take HomG(−,F2) of the chain

· · · → (kC2 ⊗ kC2)
3 → (kC2 ⊗ kC2)

2 → kC2 ⊗ kC2
ε⊗ε→ k → 0.

Note that if f ∈ HomG((kC2 ⊗ kC3)
n+1,F2), then

f(0, . . . , 0, 1⊗ 1, 0, . . . , 0) = (tα, tβ).f(0, . . . , 0, 1⊗ 1, 0, . . . , 0)

= f(0, . . . , 0, tα ⊗ tβ, 0, . . . , 0),
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for all α, β ∈ {0, 1}. Therefore HomG((P ⊗ P )n,F2) = Fn+1
2 . Since e.g.

f(0, . . . , 0, ((t+ 1)⊗ id)(tα ⊗ tβ), 0, . . . , 0) = f(0, . . . , 0, tα+1 ⊗ tβ + tα ⊗ tβ, 0, . . . , 0)

= f(0, . . . , 0, tα+1 ⊗ tβ, 0, . . . , 0)

+ f(0, . . . , 0, tα ⊗ tβ, 0, . . . , 0)

= 0,

we get (d⊗ d)n = 0 for all n. So the chain HomG(P ⊗ P,F2) looks like

F2
0→ F2

2
0→ F3

2
0→ · · · .

We conclude Hn(Z/2⊕ Z/2,F2) ∼= Hn(HomG(P ⊗ P,F2)) ∼= Fn+1
2 .

2.3 Calculations using the LHS spectral sequence

In this section we present the major results of the project. Using the LHS spectral sequence will
allow us to examine cup product structure of our group cohomologies.

We will denote by
∧
(x) the exterior algebra

∧
Fp
(x) = Fp[x]/x

2.

Proposition 2.3.1. We have

H∗(Z/4;F2) ∼= F2[z]⊗
∧

(y),

where |z| = 2, |y| = 1.

Proof. Let G = Z/4 and H = 2Z/4. Then H◁G with G/H ∼= Z/2. Recall that the action induced
by conjugation of G/H on H∗(H;M) is trivial by Proposition 1.2.2, since G is abelian. Using the
LHS spectral sequence, we have

E∗∗
2

∼= H∗(G/H;H∗(H;M))

∼= H∗(G/H; k)⊗H∗(H;M)

∼= H∗(Z/2;F2)⊗H∗(Z/2;F2)

∼= F2[y]⊗ F2[x],

where the second equality follows by Corollary 1.4.1 and the last by Proposition 2.1.1. By Corol-
lary 1.7.4 we get

E0∗
2

∼= H∗(H;M) ∼= F2[x].
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By Corollary 1.7.6 we get

E∗0
2

∼= H∗(G/H;M) ∼= F2[y].

The E2-page is drawn below, where e.g. xy2 represents F2xy
2.
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0

0

E3-page.

We have drawn the differential d012 , which is either trivial or the identity. Note that E10
2

∼= E10
∞ ,

since the differential into and out of y are trivial on all pages. If d012 is trivial, then E01
2

∼= E01
∞ ,

since all differentials in and out of E01
r are trivial on higher pages. This implies that H1(Z/2;F2) ∼=

E01
∞ ⊕ E10

∞ is 2-dimensional as an F2-vector space. But this contradicts Proposition 2.1.1. So d012

is the identity, i.e. d2(x) = y2.
From the Leibniz identity we get by induction that d2(x

n) = nxn−1y2 which is trivial for even
n and the identity for odd n. Using the Leibniz identity once more, together with the fact that
d2(y

m) = 0 for all m, we get that d2(x
nym) = d2(x

n)ym + xnd2(y
m) = d2(x

n)ym is trivial for even
n and the identity for odd n.

For any m > 0 and odd n > 0 we thus get Emn
3 = 0, since dmn

2 is injective. For any m ≥ 2 and
even n > 0 we get Emn

3 = 0, since d
(m−2)(n−1)
2 is surjective. For any 0 < m < 2 and even n > 0 we

get Emn
3

∼= Emn
2 , since dmn

2 = 0 and d
(m−2)(n−1)
2 = 0 since m− 2 < 0. The E3-page is drawn above.

On this E3-page all differentials are trivial, and thus E∗∗
∞

∼= E∗∗
3 . Since each diagonal on the

page has exactly one non-trivial entry, (or using Proposition 1.7.2) we regain that Hn(G;M) ∼= F2

for all n > 0. And H2n(G;M) is generated by x2n and H2n+1 is generated by x2ny. With respect
to the product structure on the E3

∼= E∞-page, we have

E∞ ∼= F2[x
2]⊗

∧
(y).

This matches the cup product structure up to a filtration. But since only one filtration quotient
is non-trivial in each degree, this product matches the cup product directly. So

H∗(Z/2;F2) ∼= F2[x
2]⊗

∧
(y).
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Proposition 2.3.2. For positive integers n ≥ 2 we have

H∗(Z/2n;F2) ∼= F2[z]⊗
∧

(y),

where |z| = 2, |y| = 1.

Proof. We will perform induction over n. The base case n = 2 is just Proposition 2.3.1. Let n > 2

be given and assume
H∗(Z/2n−1;F2) ∼= F2[z]⊗

∧
(y),

where |z| = 2 and |y| = 1. Let G = Z/2n and H = 2n−1Z/2n. Then H ∼= Z/2 and G/H ∼= Z/2n−1.
Let us construct the LHS spectral sequence for H → G → G/H. By the same argument as in the
proof of Proposition 2.3.1, we get

E∗∗
2

∼= H∗(G/H;H∗(H;M))

∼= H∗(G/H; k)⊗H∗(H;M)

∼= H∗(Z/2n−1;F2)⊗H∗(Z/2;F2)

∼= F2[z]⊗
∧

(y)⊗ F2[x],

E0∗
2

∼= H∗(H;M)

∼= F2[x],

E∗0
2

∼= H∗(G/H;M)

∼= F2[z]⊗
∧

(y),

where |x| = |y| = 1 and |z| = 2. The E2-page is drawn below.
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E3-page.

Just like in the proof of Proposition 2.3.1, we know that d012 = 0 would imply that H1(Z/2n)
is 2-dimensional as an F2-vector space. But that would contradict by Proposition 2.2.1, so d012 is
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the identity. In other words, d2(x) = z. Also, d2(y) = d2(z) = 0, since d102 and d202 exit the first
quadrant. By the Leibniz identity, we get

d2(x
αyβzγ) = d2(x

α)yβzγ + xαd2(y
βzγ)

= αxα−1yβzγ+1

=

xα−1yβzγ+1 if α odd

0 else.

This is the same situation as in Proposition 2.3.1, so we get the E3-page drawn above. This is the
same E3-page as in the proof of Proposition 2.3.1, so we again get

H∗(Z/2n;F2) ∼= F2[z]⊗
∧

(y).

Proposition 2.3.3. We have

H∗(Z/2⊕ Z/2;F2) ∼= F2[x, y].

Proof. Let G = Z/2⊕Z/2 and H = Z/2⊕ 0. Then H ◁G with G/H ∼= Z/2 and H ∼= Z/2. Recall
that the action induced by conjugation of G/H on H∗(H;M) is trivial by Proposition 1.2.2, since
G is abelian. Using the LHS spectral sequence, we have

E∗∗
2

∼= H∗(G/H;H∗(H;M))

∼= H∗(G/H; k)⊗H∗(H;M)

∼= H∗(Z/2;F2)⊗H∗(Z/2;F2)

∼= F2[y]⊗ F2[x],

where the second equality follows by Corollary 1.4.1 and the last by Proposition 2.1.1. By Corol-
lary 1.7.4 we get

E0∗
2

∼= H∗(H;M) ∼= F2[x].

By Corollary 1.7.6 we get

E∗0
2

∼= H∗(G/H;M) ∼= F2[y].

The E2-page is drawn below.
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E2-page.

Note that d012 is either trivial or the identity map. If it were the identity, then x would vanish
on higher pages of the spectral sequence. Which would imply, that H1(G;M) is 1-dimensional
as an F2-vector space. But we know from Proposition 2.2.3 that H1(G;M) is 2-dimensional. So
d2(x) = 0. Since d102 exits the first quadrant, we also know d2(y) = 0. Thus d2 = 0 and so
E∞ ∼= E2

∼= F2[x, y].
Using Proposition 1.7.2, we conclude that

Hn(Z/2⊕ Z/2;F2) ∼= F2[x
n, xn−1y, . . . , yn].

It remains to be shown, that the product structure of the E∞-page lifts nicely to H∗(Z/2 ⊕
Z/2;F2).

Proposition 2.3.4. We have

H∗(D8;F2) ∼= F2[z
2]⊗ F2[x, y]/(x

2 + xy).

Proof. Let us write G = D8 = ⟨σ, τ | σ4 = τ 2 = (στ)2 = 1⟩ and H = Z(D8) = ⟨σ2⟩, where
Z(D8) = {z ∈ D8 | ∀g ∈ D8 : gz = zg} denotes the center of D8. Then H ∼= Z/2 and
G/H ∼= Z/2 ⊕ Z/2. Since H is the center of G, the G/H-action on H∗(H;M) is trivial by
Proposition 1.2.2. We get an associated LHS spectral sequence with

E2
∼= H∗(G/H;H∗(H;M))

∼= H∗(G/H; k)⊗H∗(H;M)

∼= H∗(Z/2⊕ Z/2;F2)⊗H∗(Z/2;F2)

∼= F[x, y]⊗ F2[z],

where the second equality follows by Corollary 1.4.1 and the last by Proposition 2.3.3 and Propo-
sition 2.1.1. By Corollary 1.7.4 and Proposition 1.2.2 and we have

E0∗
2

∼= H∗(H;M) ∼= F2[z]
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and by Corollary 1.7.6 we have

E∗0 ∼= H∗(G/H;M) ∼= F2[x, y].

Part of the E2-page is drawn below.

0 1 2 3

0

1

2

1

z

z2

x,y x2,y2,xy

E2-page.

We want to determine d012 . We know that it is on the form d012 (z) = ax2+ by2+ cxy for a, b, c ∈
F2. By Proposition 1.2.4, we have H1(G/H;F2) ∼= HomGroups(D8/⟨σ2⟩,F2) which is represented
by x and y. Without loss of generality, we can assume x(σ) = y(τ) = 1 and x(τ) = y(σ) = 0,
since x and y then form a basis of H1(G/H).

Let us restrict the spectral sequence to the group extension ⟨σ2⟩ → ⟨σ⟩ → ⟨σ⟩/⟨σ2⟩, which
is isomorphic to 2Z/2 → Z/4 → Z/2. This restriction corresponds to setting y = 0, since we’ve
removed τ . So in the restricted spectral sequence, d012 = ax2. We know the restricted spectral
sequence from Proposition 2.3.1, where d012 was non-zero. We claim that we must therefore have
a = 1. This follows from the fact that the map of group extensions

⟨σ2⟩ ⟨σ⟩ ⟨σ⟩/⟨σ2⟩

H G G/H

induces a map of spectral sequences, commuting with differentials. This is known as the naturality
of the Serre spectral sequence.

Let us now instead restrict to ⟨σ2⟩ → ⟨σ2, τ⟩ → ⟨σ2, τ⟩/⟨σ2⟩, which is isomorphic to Z/2 →
Z/2⊕Z/2 → Z/2. This corresponds to setting x = 0, since we’ve removed all powers of σ from the
factor group. So in the restricted spectral sequence, d012 = by2. We know the restricted spectral
sequence from Proposition 2.3.3, where d012 was trivial. So b = 0.

Let us finally restrict to ⟨σ2⟩ → ⟨σ2, στ⟩ → ⟨σ2, στ⟩/⟨σ2⟩, which is isomorphic to Z/2 →
Z/2⊕ Z/2 → Z/2. This corresponds to setting x = y, since the factor group is generated by στ .
So in the restricted spectral sequence, d012 = (a+ b+ c)x2. We again know the restricted spectral
sequence from Proposition 2.3.3, where d012 was trivial. So a+ b+ c = 0, i.e. c = 1.
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We conclude that d2(z) = x2+xy in the original spectral sequence. Using the Leibniz identity,
we get d2(z

2) = d2(z)z + zd2(z) = 0, and can further conclude by induction, that

d2(z
γ) = d2(z)z

γ−1 + zd2(z
γ−1)

=

x2zγ−1 + xyzγ−1 if γ odd

0 else.

Since d102 exits the first quadrant, it is trivial, so we get

d2(x
αyβzγ) = d2(x

αyβ)zγ + xαyβd2(z
γ)

= xαyβd2(z
γ)

=

xα+2yβzγ−1 + xα+1yβ+1zγ−1 if γ odd

0 else.

This tells us, that ker dpq2 = 0 for odd q, i.e. Epq
3 = 0 for odd q. Since im d012 is generated by

x2 + xy, we get
E20

3
∼=

F2[x
2, y2, xy]

x2 + xy
∼= F2[x

2, y2]

and similarly, by observing im d
(p−2)(q−1)
2 for p ≥ 2 and even q ≥ 1, we get Epq

3 = F2[x
p, yp]. So we

get E3 = F2[z
2]⊗ F2[x, y]/(x

2 + xy) which can be visualized as follows.

0 1 2 3 4

0

1

2

3

1

0

z2

0

x,y

0

xz2,yz2

0

x2,y2

0

x2z2,y2z2

0

x3,y3

0

x3z2,y3z2

0

E3-page.

We know d023 is of the form d3(z
2) = ax3 + by3 for some a, b ∈ F. We can once again restrict

the spectral sequence to two the group extensions mentioned above. In each case, we know from
previous proofs that d3 is trivial in the restriction. Since one of the restrictions corresponded to
setting x = 0 and another to setting y = 0, we get b = 0 and a = 0, respectively, in the restrictions,
and thus also in the original spectral sequence. We also have d3(x) = d3(y) = 0, since d103 exits
the first quadrant. So we have d3 = 0, and therefore E∞ ∼= E3

∼= F2[z
2]⊗ F2[x, y]/(x

2 + xy).
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Using Proposition 1.7.2, we conclude that

Hn(G;M) ∼= F2[x
n, yn, xnz2, ynz2, . . . , xnzn, ynzn]

for even n, and
Hn(G;M) ∼= F2[x

n, yn, xnz2, ynz2, . . . , xnzn−1, ynzn−1]

for odd n.
The multiplicative structure F2[z

2]⊗F2[x, y]/(x
2+xy) of the E3

∼= E∞-page in the proof above
corresponds to the cup product structure of H∗(D8;F2) up to a filtration. It remains to be shown,
how this structure lifts to H∗(D8;F2).
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