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Summary

This thesis examines two topics in the intersection between topology and ge-
ometry: sheaves and moduli spaces of manifolds. These themes are tied to-
gether by the fourth and last article contained in the synopsis below. In this
article, we use the six-functor formalism for sheaves on locally compact Haus-
dorff spaces (as developed by Verdier, Lurie, and Volpe) to produce relations
in the cohomology of moduli spaces of manifolds with boundary. The key
ingredient in this work is a sheaf-theoretic enhancement of the family Stokes
theorem, which we hope may be of independent interest.

Of the remaining three articles, the first gives a new proof of Harer’s
celebrated stability theorem for moduli spaces of two-dimensional manifolds
(also known as surfaces) with the optimal slope. This is joint work with Max
Vistrup and Nathalie Wahl.

The second and third article are concerned with sheaf categories. Specifi-
cally, the second article classifies the compact objects in the category of sheaves
on a locally compact Hausdorff space with values in an arbitrary presentable
stable co-category, extending results of Neeman. Interestingly, it follows from
our classification that the subcategory of compact sheaves on a nice compact
space only depend on the homotopy type of the space. In the third article,
we pursue further the problem of extracting information about a topologi-
cal space from its category of sheaves. In this direction, we show that the
homeomorphism type of a locally finite one-dimensional CW complex can be
recovered from its category of sheaves by examining the Serre functor on this
category.



Sammenfatning

Denne afhandling undersgger to emner i krydsfeltet mellem topologi og ge-
ometri: knipper og modulirum af mangfoldigheder. Bindeleddet mellem disse
temaer er den fjerde og sidste artikel, der indgar i synopsen nedenfor. I denne
artikel bruger vi seksfunktorformalismen for knipper pa lokalkompakte Haus-
dorffrum (udviklet af Verdier, Lurie og Volpe) til at fremstille relationer i ko-
homologien af modulirum af mangfoldigheder med rand. Hovedingrediensen
i dette arbejde er en knippeteoretisk forbedring af Stokes’ seetning for fiber-
bundter, som vi haber kan have uafhasengig interesse.

Blandt de resterende tre artikler giver den fgrste et nyt bevis for Harers
bergmte stabilitetssaetning for modulirum af todimensionelle mangfoldigheder
(det vil sige flader) med den optimale haeldning. Dette projekt er udfert i
samarbejde med Max Vistrup og Nathalie Wahl.

Den anden og tredje artikel omhandler knippekategorier. Naermere bestemt
klassificerer den anden artikel de kompakte objekter i kategorien af knipper
pa et lokalkompakt Hausdorffrum med veerdier i en vilkarlig praesentabel sta-
bil co-kategori og udvider derved Neemans resultater. Det fglger interessant
nok af vores klassifikation, at delkategorien af kompakte knipper pa et paent
kompakt rum kun afhsenger af rummets homotopitype. I den tredje artikel
forfalger vi yderligere problemet om at udlede information om et topologisk
rum fra dets kategori af knipper. I denne retning viser vi, at homeomor-
fitypen af et lokalt endeligt endimensionelt CW-kompleks kan rekonstrueres
ud fra dets kategori af knipper ved at undersgge Serre-funktoren pa denne
kategori.
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Introduction

I veed vel nok det hedder: lgst Knippe kan let glippe!
— Saxo Grammaticus, Gesta Danorum||]

One of the most fruitful ideas in geometry is that we should not only work
with one thing at a time, but also with the collection of all things of a given
kind treated as a single whole. Frequently, this collection—known as a moduli
space—has a rich geometric, topological or algebraic structure in its own right,
containing subtle information about the original objects of interest.

An early and influential manifestation of this idea is the moduli space of
surfaces, first introduced by Riemann [Rie57]. In this moduli space, points
correspond to surfaces and nearby points represent surfaces that differ by a
small deformation, see Figure [I] or the painting by Hilma af Klint on the
cover. The study of Riemann’s moduli space remains a central and active
area of research, connecting geometry, physics, and number theory. In this

/

Figure 1: Nearby points in the moduli space of surfaces

thesis, we focus on one particular aspect of moduli spaces of surfaces and
higher-dimensional manifolds, namely their cohomology.

Like moduli spaces, the notion of cohomology first emerged in the second
half of the 19th century. Cohomology, even more than moduli spaces, has
proved to be such a powerful idea that it now pervades mathematics and
mathematical physics.

'translated from the original Latin by N. F. S. Grundtvig

ix



X INTRODUCTION

It is particularly illuminating to view cohomology through the lens of sheaf
theory. From this perspective, cohomology arises from the subtleties of assem-
bling global information from local information. Furthermore, sheaf theory
comes with a so-called formalism of siz operations, which is an exceptionally
powerful and user-friendly interface for studying and calculating cohomology.
Cohomology with or without sheaves plays a key role in this thesis.

In the first article of this thesis, we give a new proof of Harer’s stability
theorem for the moduli space of surfaces. Usually, homological stability results
are proved by placing the groups of interest (implicitly or explicitly) in a
monoidal category with a braiding. The monoidal category that appears in
our work does not admit a braiding. It does however come with a Yang—
Baxter operator on the stabilizing object, and we observe that this structure is
sufficient to run the stability machine of Randal-Williams—Wahl and Krannich.
The upshot is a very simple proof of Harer’s stability theorem with the optimal
slope. This is joint work with Max Vistrup and Nathalie Wahl, and has
appeared in Higher Structures 8(1), 193-223.

In article two, we classify the compact objects in the category of sheaves on
a locally compact Hausdorff space valued in a presentable stable co-category.
The classification shows that there are few compact objects; in particular,
we recover Neeman’s result that there are no non-trivial compact objects in
the derived category of sheaves of abelian groups on a non-compact connected
manifold. It follows from our classification that the category of derived sheaves
on a locally compact Hausdorff space is compactly generated if and only if the
space is totally disconnected. This paper was first published in Proceedings
of the American Mathematical Society, vol. 153(1), American Mathematical
Society, Providence, RI, 2025.

In the third article, we consider the problem of extracting information
about a space from its derived category of sheaves. Analogous problems have
received a lot of attention in algebraic geometry, and have given rise to the
field of non-commutative geometry (& la Kontsevich). The maximal amount
of information that one could hope to extract from the category of sheaves on
a space is its homeomorphism type. This is trivially possible if the space is
discrete, or in other words a zero-dimensional CW complex. We show that it
is also possible for one-dimensional CW complexes. The proof is inspired by
Bondal and Orlov’s proof of their non-commutative reconstruction theorem
for Fano and anti-Fano varieties.

In the fourth article, we apply sheaf-theoretic methods to study the unsta-
ble cohomology of moduli spaces of manifolds with boundary. The strategy is
closely inspired by work of Randal-Williams on moduli spaces of closed man-
ifolds. The key ingredient in our proof (which distinguishes it from the closed
manifold case) is a sheaf-theoretic enhancement of the family Stokes theorem.
We hope that this theorem will be of interest beyond our applications to the
cohomology of moduli spaces.
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DISORDERED ARCS AND HARER STABILITY

OSCAR HARR, MAX VISTRUP, AND NATHALIE WAHL

ABSTRACT. We give a new proof of homological stability with the best
known isomorphism range for mapping class groups of surfaces with re-
spect to genus. The proof uses the framework of Randal-Williams—Wahl
and Krannich applied to disk stabilization in the category of bidecorated
surfaces, using the Euler characteristic instead of the genus as a grading.
The monoidal category of bidecorated surfaces does not admit a braid-
ing, distinguishing it from previously known settings for homological
stability. Nevertheless, we find that it admits a suitable Yang—Baxter
element, which we show is sufficient structure for homological stability
arguments.
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1. INTRODUCTION

Let Sg, be a surface of genus g with r boundary components and s
punctures. The mapping class group I'(S;,) := moHomeo(S, rel 95)
of S satisfies homological stability: the homology group H;(I'(S;,);Z)

Date: September 7, 2025.



DISORDERED ARCS AND HARER STABILITY 3

is independent of g and r when g is large relative to i. This stabil-
ity result was originally proved by Harer in [Har85|, and later improved
by Ivanov, Boldsen and Randal-Williams [Iva89, Boll2, RW16|, see also
[Har93, Wah13, HV17, GKRW19]. We recast the result here as a stabil-
ity theorem in the category of bidecorated surfaces, and give a new proof of
the best know stability range using the most straightforward inductive ar-
gument originally designed by Quillen, and formalized in [RWW17, Kral9|.
Our proof at the same time illustrates how little is needed to run the stability
machines of these two papers.

Our main stability result is the following, recovering precisely the ranges
of [Bol12, Thm 1] and [RW16, Thm 7.1 (i),(ii)]:

Theorem A. Let Sgb be a surface of genus g > 0, with » > 1
marked boundary components and s > 0 punctures, and let F(S;T) =
moHomeo(Sj , rel 9S) denote its mapping class group. The map

Hi(T(S;,); Z) — Hy(T(S] 11); Z)

induced by gluing a pair or pants along one boundary component is always
injective, and an isomorphism when ¢ < 2?97 and the map

HZ(F( ;,r+1);Z) — Hz(r( 5+17r);Z)

induced by gluing a pair of pants along two boundary components is an
epimorphism when ¢ < @ and an isomorphism when ¢ < —293_ 2

Combining the two maps in the theorem gives a genus stabilization that
is known to be close to optimal by a computation of Morita [Mor03| and low
dimensional computations, see Remarks 2.5 and 4.11. While we do not know
whether the two ranges in the above statement can be individually improved,
it is remarkable that three rather different proofs (those of Boldsen [Bol12],
Randal-Williams [RW16], and ours) end up with the exact same ranges.

A particular feature of our proof is that the two maps occurring in the
theorem will be for us “the same map”, namely a disk stabilization in the
category My of bidecorated surfaces. A bidecorated surface is a surface S
with two marked intervals Iy, I; in its boundary. The two intervals may lie
on the same or on different boundary components. Morphisms in My are
mapping classes, i.e. isotopy classes of homeomorphisms, and My admits a
monoidal structure # defined by identifying the marked intervals in pairs.

Our main example of a bidecorated surface will be the bidecorated disk
D. As shown in Lemma 3.1, taking sums of the disk with itself in My
produces surfaces of any genus: D*2971 is a surface S, of genus g with a
single boundary component, while D¥29%2 is a surface S, 2 of genus g with
two boundary components, each containing a marked interval. To obtain
any surface Sy, with 7 > 1, we will consider the object S # D*29 in M, for
S =57, a genus 0 surface with r boundary components and s punctures.
Now the maps in Theorem A are precisely the disk stabilization maps in Ms:

Autag, (S # D*9) 225 Auty, (S # D¥0+1) 225 Autyg, (S # D*2972)

for these particular choices of surfaces.
Theorem A is thus the statement that disk stabilization #D in My induces
isomorphisms on the homology of these automorphism groups in a range.
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We show in the present paper that this result can be obtained as a direct
application of the main result of [Kral9|, from which an additional stability
statement with twisted coefficients automatically follows. We start by stating
this additional result.

Twisted coefficients. Fix » > 1 and s > 0. In our setting, a coefficient
system [’ for the mapping class group I'(S; ;) is a collection of Z[I'(S; ,.)]-
modules Fyg and Z[I'(Sy . ,1)]-modules Fygyy for each g > 0, together with
maps
Fy — Fyp
equivariant with respect to the disk stabilization and satisfying that a certain
Dehn twist acts trivially on the image of F, in F, 12 under double stabiliza-
tion (see Definition 4.6). Given a coefficient system, one can define a notion
of degree; a constant coefficient systems has degree 0 and for example the
coefficient system Fogy; = Hi( ;’Hi;Z)@k, i € {0,1}, has degree k (see
Example 4.7).
We obtain the following twisted stability result:

Theorem B. Let I'(S; ) be as in Theorem A, and F' be a coefficient system
of degree k. The stabilization map

Hi(T(Sg,); Fag) — Hi(D(S5 41); Fagy1)

2g—3k—2 2g—3k—5
3 3

is an epimorphism for ¢ < and

the map

and an isomorphism for ¢ <

Hi(T(Sg p41)5 Fog+1) — Hi(T(Sg11,); Fag+2)

2g—3k—1 2g—3k—4
S S In

is an epimorphism for i < and an isomorphism for ¢ <
these bounds, 3k can be replaced by k if F' is in addition split in the sense
of Definition 4.6.

Stability theorems for mapping class groups with twisted coefficients
can be found in the work of Ivanov, Boldsen, Randal-Williams—Wahl, and
Galatius—Kupers—Randal-Williams [Bol12, Iva93, RWW17, GKRW19|. The
results are not easy to compare as the types of coefficient system that are
permitted depend on the paper, but some classical examples such as the
one described above fit all frameworks (see Remarks 4.8 and 4.11 for more
details).

Braided action and Yang—Baxter operators. We want to obtain Theo-
rems A and B as consequences of Theorems A and C of [Kral9|. For this, we
first have to show that disk stabilization in the monoidal category (Ma, #)
comes from an action of a braided monoidal groupoid.

Let B denote the groupoid of braid groups, with object the natural num-
bers and the braid group B, as automorphisms of n. We will construct an
action of B on My using an appropriate Yang—Baxter operator in My: The
sum of bidecorated disks D # D in My is a cylinder, whose mapping class
group is an infinite cyclic group generated by the Dehn twist 1" along the core
circle of the cylinder. It turns out that this morphism 7" € Auty, (D # D) is
a Yang—Baxter operator in Mo, in the sense that it satisfies the equation

(T#1)(L#T)(T#1) = (1#T)T#1)(1#T)
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in Autpg, (D*). The same holds for the inverse twist 771, that will turn
out more convenient for us. As explained in Section 5.1, we get an associ-
ated strong monoidal functor B — M, taking the object n to D**. The
corresponding homomorphism B,, — Autpg, (D*?) can be identified with
the geometric embedding in the sense of [Waj99|, associated to the chain of
curves aj,...,a,—1 in
D¥"=D#D#---#D,

where the ith curve a; is the core circle in the ¢th cylinder D# D in the above
sum, see Lemma 3.5 and Example 5.3.

The strong monoidal functor B — M from above endows My with
the structure of an Fj-module over the braid groupoid B, and since the
latter is braided monoidal, we can apply the results of [Kral9| to study disk
stabilization in M.

Remark 1.1. Homological stability frameworks such as [RWW17, Kral9,
GKRW19| require an Ep-algebra, or the weaker structure of Ej-module over
an Fs-algebra, as input. This is a priori a lot of data, and it may be that the
most natural choice in a given context simply does not admit an Es-structure.
This turns out to be the case for the monoidal category of bidecorated sur-
faces Mjy: In the context of categories, Fs-structures are given by braided
monoidal structures and we show in Section 5.3 that even the full monoidal
subcategory of My generated by our stabilizing object, the disk D, does
not admit a braiding. This distinguishes our situation from most previous
examples of homological stability.

On the other hand, it does not take much to equip a given monoidal
category 2  with the structure of an Fj-module over a braided monoidal
category. In fact, as shown in Section 5.1, any Yang—Baxter operator in 2
determines a strong monoidal functor B — 2" from the braid groupoid
B, and thus endows 2~ with the structure of an Ej-module over B. This
perspective also makes sense if 2 itself acts on a category ., and one is
interested in the stabilization

M2 o B

induced by acting with an object X of 2" admitting a Yang-Baxter operator
T € Auty (X @ X). The category .# becomes this way likewise a module
over B, where the object n of B acts on A € .# via A®n =A@ X,

Disordered arcs. Given a category .# as above, with the structure of an
E1-module over a monoidal category 2 with a distinguished Yang—Baxter
operator (X, 7), such that acting by X satisfies a certain injectivity property
(see Proposition 3.4), the main result of [Kral9| implies that homological
stability for stabilization with X is controlled by the connectivity of cer-
tain complexes of destabilizations. In the category of bidecorated surfaces
M, stabilizing with the bidecorated disk D corresponds homotopically to
attaching an arc, and we show in Proposition 4.4 that the relevant complex
of destabilizations for stabilizing a surface S with a disk n times identifies
with the “disordered arc complex”! associated to the surface S # D*". This

1We called those disordered arcs because it is the opposite ordering convention than
the one used in the “ordered arc complex” of [RW16].
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is a simplicial complex whose vertices are isotopy classes of non-separating
arcs in the surface with endpoints by = In(Y,) and by = I1(Y,), and where a
collection of isotopy classes forms a simplex if the classes can be represented
by arcs that are disjoint away from the endpoints, are jointly non-separating,
and such that the arcs have the same ordering at Iy and ;.

Writing 2" (Sg,r, bo, b1) for the disordered arc complex of a surface Sy,
with marked points by and b7 in ¥ = 1 or ¥ = 2 boundary components,
the main ingredient of our proof of homological stability is the following
connectivity result:

Theorem C. (Theorem 2.4) The disordered arc complex 2"(Sy.,, by, b1) is
(%)—cenneeted.

Remark 1.2. It is conjectured in [RWW17, Conj C| that the complex of
destabilizations is highly connected if and only if stability holds with all
appropriate twisted coefficients. The slope 2/3 bounds in Theorems A and B
is precisely dictated by the same slope 2/3 in Theorem C in the connectivity
of the arc complex, which is the complex of destabilizations in that case.
This connectivity bound is best possible among linear bounds as a better
bound would prove an incorrect stability statement, see Remark 2.5.

Organization of the paper. In Section 2 we prove the high connectivity
of the disordered arc complex. In Section 3 we define the monoidal category
of bidecorated surfaces (Mo, #), as well as the action of the braid groupoid
B on this category. In Section 4, we show Theorems A and B by showing
that the disordered arc complex agrees with the complex of destabilizations,
and applying the main result of [Kral9|. Finally, in Section 5 we explain the
relationship between homological stability and Yang—Baxter operators, and
show the non-braidedness of the category of bidecorated surfaces.

Acknowledgements. The first and third authors were partially supported
by the Danish National Research Foundation through the Copenhagen Cen-
tre for Geometry and Topology (DRNF151), and the third author by the
European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement No. 772960).

2. HIGH CONNECTIVITY OF THE DISORDERED ARC COMPLEX

In this section, we prove that the disordered arc complex is highly con-
nected. It will be defined as a subcomplex of the following simplicial complex
of non-separating arcs:

Definition 2.1. Let S be an orientable surface? with nonempty boundary,
and let by, by be distinct points in 0S5. The complex of non-separating arcs
PB(S,bg,b1) is the simplicial complex whose p-simplices are collections of
p—+1 distinct isotopy classes of arcs between by, by that admit representatives
aop, . .., ap such that

(a) ajNaj = {bg, b1} for each i # j and

2By surface we mean a topological 2-manifold S which is compact except for a finite
number of punctures, i.e. there is a compact topological 2-manifold S and an embedding
i: S — S so that S\ i(S) is a (possibly empty) finite union of points.
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(b) S —(agU---Uayp) is connected.

For convenience, we will add a superscript %" (S, by, b1) to the notation
of the complex, with v = 1 indicating that bg, b1 lie on the same boundary
component and v = 2 indicating that they do not.

Note that the orientation of the surface defines orderings of the arcs
aop, . . ., a, representing a simplex at both by and b;.

Definition 2.2. Let (S,bg,b1) be as before. The disordered arc complex
is the subcomplex 2" (Sy,bo,b1) C %Y (S,bo,b1) consisting of those sim-
plices o that admit arc representatives ao, ..., ap, again subject to (a), (b),
satisfying in addition
(c) the ordering of the arcs at by agrees with the ordering of the arcs at
b1.

The name “disordered” was chosen to contrast with the pre-existing or-
dered arc complez used by Ivanov [Iva89] in the case v = 1 and Randall-
Williams [RW16] in their proofs of homological stability for the mapping
class group of surfaces; the “ordered” version is also a subcomplex of the
A (S, by, b1), but with the requirement that the order of the arcs at b is
reversed compared to the order at by. Fixing an ordering condition has the
effect that the action of the mapping class group is transitive on the set of
p-simplices for every p, see [Har85, Lem 3.2|. The ordered and disordered arc
complexes represent the two extremes of how fast the genus of the surface
decreases when cutting along larger and larger simplices: for the ordered arc
complex, the genus goes down as fast as possible, essentially every time one
removes an arc, while for the disordered arc complex, the genus goes down
as slow as possible, only every other time:

Proposition 2.3. For a p-simplex o = (ag,...,ap) € P"(Sqr,bo,b1), the
surface Sq, \ 0 obtained by removing a tubular neighborhood of a; for each i
has genus g' with r' boundary components for

Jd=qg-— \‘p_}'?’—VJ and 1’ — {7’+ (—=1)¥, ifp is even,

2 r else.

Proof. The number of boundary components 7’ can be obtained by a direct
inductive computation, with the genus ¢’ then deduced using the Euler char-
acteristic. The computation is a special case of [Bol12, Prop 2.11], applied
to the case where the permutation « is the inversion [p(p — 1)...0], once
one computes that the genus S(«) of a neighborhood of the arcs is L#J
e.g. using Corollary 2.15 of the same paper. O

The complex (S, bg, b1) is known to be (2¢g + v — 3)-connected. (This
was first stated in [Har85|; see [Wah08, Thm 3.2| or [Wah13, Thm 4.8] for a
complete proof.) We will here use this fact to deduce that 2”(Sy ., by, b1) is
also highly-connected. While the ordered arc complex is (¢ — 2)-connected
[RW16, Thm A.1], the following result shows that the disordered arc complex
is only slope % connected with respect to the genus, despite being ~ 2g-
dimensional.

)
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FIGURE 1. Maximal regular bad simplex {ao,...,a,} and
simplex {ag, ..., ag} in its link.

Theorem 2.4. The disordered arc complex 2P"(Sqr,bo,b1) is (%)—
connected.

To prove the result, we use essentially the same argument as the one given
in [RW16] in the ordered case.

Proof. Let S = S,,. In the case g = 0, the statement for 2'(S) is vacuous,
and for 22(9) it states that the complex is (—1)-connected, i.e. nonempty,
which holds as any arc in the surface connecting by and b; defines a vertex
in 22(S). We prove the remaining cases by induction on g.

Let ¢ > 0. Suppose we are given f : dD*1 — 9¥(S by, b;) for some
k < (29 +v —5)/3. We wish to exhibit a nullhomotopy of this map. Since
(29+v—5)/3 <2g+v—3, Theorem 3.2 in [Wah08| enables us to choose a
map f such that the outer diagram

DM Ly V(8 by, by)
(2.1) j e j
DMy (8 by, by),

commutes. Using PL-approximation, we may assume that f and f are sim-
plicial with respect to some PL-triangulation of D*+1. We will repeatedly
replace f until the dotted arrow exists, thereby giving the desired nullhomo-

topy.

Write <g and <3 for the anti-clockwise orderings at by and b;. We call a
p-simplex o in D*L regular bad if f(o) = (ag,- -+ ,a,), indexed in such a
way that ag <o --- <g a, are anticlockwise at by, and there is j > 0 with

aj <j ap at by. Here p’ < p is the dimension of the image simplex f(a), and
p’ > 1if o is regular bad. This condition is “dense” in the sense that any
simplex o in D**! with image not included in 2(S,bg,b;) must contain
a regular bad simplex as a face. Thus it suffices to give a procedure for
exchanging f with a map having strictly fewer regular bad simplices, while
maintaining commutativity of the outer diagram (2.1).

Let o be a regular bad simplex of D**! of maximal dimension p and
consider its link Lk ¢ € D*+1. Maximality implies that f |Lk o factors as

fliko: Lka — 2#(S\ f(0), by, b)) — 2”(S,bo, b1) € B"(S, bo, by),
where S\ f(o) is the closure of the surface obtained from S by cutting out

the collection of arcs f(o), and by and ¥ in S\ f(c) are the first copies
of by and by in the cut surfaces as depicted in Figure 1. Indeed, suppose
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FIGURE 2. Regular bad 1-simplex with v = 1.

that 7 € Lko and write f(7) = (aj, - -- sag). 1f ag <o aj at by for any a,
then the simplex o * (a}) is regular bad of a larger dimension, contradicting
maximality. So we must have a <¢ ag for each i, i.e. the arcs of T are at by
in the cut surface. Now we must also have that each a] <; ag as otherwise
o * (a;) would again be regular bad. Finally, maximality of ¢ would also
be contradicted if the orderings of the arcs af, - - - ,afl does not agree at by
and by as, if a] <o o} with a} <y a] for some 4, j, then o * (a},a}) would
again be regular bad, of larger dimension. Thus f (7) must be disordered
and, after cutting the surface at the arcs of o, can be viewed as a simplex of
97(S\ (o), by bh):

The link Lk(o) is a simplicial sphere S¥=P ¢ D¥*1. We want to show that
the map f|1x(,) extends to a simplicial map
(2.2) F:DFPHL s g8 — f(0), b, b)) — 2"(S, by, b1) C B(S, b, b1)
for D*=P+1 g disk with some PL-structure extending that of Lk(c). This
will follow if we can show that the complex 2*(S \ f(0),by,b}) is at least
(k — p)-connected. Note that necessarily have g(S \ f(0)) < g as f(o) is
a non-separating p’-simplex with p’ > 1. Hence we can use our induction
hypothesis. We consider the cases v = 1 and v = 2 separately.
Case 1: v = 1. We have that g(S\f(a)) >g—p' —1>g—p—1, as removing
p' + 1 arcs reduces the genus by at most p’ +1 < p+ 1. Hence by induction
we have that 2#(S \ f(0),b(, b)) is at least (W)—connected, using
also that 4 > 1. If p > 2, we have
< 29 —4 S 2g—3p—14 < 2(g—p—1)—4'

3 3 3

For p = p' = 1, note that b, b} necessarily lie in different boundary com-
ponents, so that 4 = 2 in that case. (See Figure 2.) Hence in that case
DS\ f(o), b, b) is (2U=2=2) connected, and
2g — 4 20—-7 2(9g—2)—-3

3 3 3 '
so we get the desired extension in both subcases.

k—p

k—1< —1=

Case 2: v = 2. The fact that bg, by lie in different components implies that

g(S\f@)>g-p >g-p
as cutting along the first arc has no effect on the genus. Hence induction
here gives that 2#(S\ f(o),b), b)) is at least (%)—connected Now for
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all p > 1,

3 7 3 - 3
yielding the desired connectivity.

We will use the map F of (2.2) to modify f in the star St(c). For this
purpose, note that as simplicial subcomplexes of D¥*1,

St(o) = o x Lk(0),
0St(o) = 0o * Lk(0).

In particular, we get an identification 9(da * DF=P*1) = 9St (o) for DF—P+!
the simplicial disk that is the source of the map F above.
We replace f | St(o) Py the unique simplicial map

f*F: 00 DF Pl — V(S by, by).

It remains to show that this has improved the situation. Indeed, suppose
that 7 = 79 * 71 is a regular bad simplex in o * D*PT1. By construction, 71
has image in 2*(S\ f(0), b, b}) C 2¥(S,bo,b1), so the ordering of the arcs
of T at by and by starts with the arcs of 71, all in anti-clockwise order. Hence,
if 7 is regular bad, we must have 7 = 7y is a strict face of o. In particular,
no new regular bad simplices have been added. As the simplex o has been
removed, we have thus reduced the total number of regular bad simplices in
the disk. Repeating this procedure, we will after finitely many stages remove
every regular bad simplex, thus making the dashed arrow exist, which proves
the result. g

k:—p§2g_4 :2g—3p—4<2(g—p)—4

Remark 2.5. The connectivity estimate above can be shown to be opti-
mal in certain low-genus examples, corresponding to known computations of
the unstable homology of mapping class groups. Indeed, QQ(SM) is discon-
nected. To see this, consider the spectral sequence associated to the action
of the mapping class group I'(Si,) on the simplicial complex 22(S; ). This
is the spectral sequence arising from the vertical filtration of the double
complex Z@Q(SM). Rr(s;.,) F,, where Fy, — 7Z is a free resolution of the
trivial I'(S1,,)-module. By a standard argument using Shapiro’s lemma (see
e.g. [HW10, Thm 5.1] or [HV17, Sec 1]), one finds that the first page of this
spectral sequence is given by

Hy(T(S1,))  itp=-1,

]irq(r‘(sl,r—l)) ifp = 0,
Ep = { Hy(T(So,))  ifp=1,

Hy(T'(Sor-1)) ifp=2,

0 otherwise.

Assume for contradiction that 2?%(9 ) is connected. Then an analysis of the
horizontal filtration of the double complex Z@Q(Sl7r). ®r(sy.,) F, shows that

E2% =0 for p+¢q <0, so the differential d': Hy(T'(S1,r-1)) — H1(I'(S1,))
must be surjective. This contradicts the fact that Hy(I'(S1,s)) = Z° for s > 1
(see [Kor02, Thm 5.1]). Hence it is not true that 2" is (W)—connected

when v = 2.
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FIGURE 3. Gluing a disk X; = D? to a bidecorated surface S

Similarly, one finds that Hy(2'(Ss,)) # 0 by considering the spectral
sequence associated to the action of T'(S3,) on 21(Ss,+1) and noting that
the differential d*: Hy(T'(S2,41)) — H1(I'(S3,)) cannot be injective since
the source identifies with Z/10Z and the target is zero (see [Kor02, Thm

5.1]). Thus 2" fails to be W -connected when v = 1 also.

Note that these low dimensional computations also show that the first and
last ranges in Theorem A cannot be improved by a constant.

3. THE MONOIDAL CATEGORY OF BIDECORATED SURFACES

In this section, we describe a monoidal groupoid (Mg, #) of surfaces deco-
rated by two intervals in their boundary, where the monoidal structure glues
the intervals in pairs. We show that this groupoid is a module over the
braided monoidal groupoid B of braid groups, giving, on classifying spaces,
the structure of an Ej-module over an Es-algebra in the sense of [Kral9].

3.1. Bidecorated surfaces and the monoidal structure. The groupoid
M, has objects bidecorated surfaces, that are, informally, surfaces with two
intervals marked in their boundary. To give a precise definition of the objects
that is convenient for the monoidal structure, we start by constructing a
special sequence of bidecorated surfaces X,,, built out of disks, and defined
inductively.

Let X; = D? C C denote the unit disk in the complex plane, and define
the embeddings «{,:l: T — X by

L(l](t) _ ei(ﬂ/4+t7r/2) and L% (t) _ ei(57r/4+t7r/2)'

We denote by E I — X the reversed map t — ¢t (1 —¢t) for i = 0, 1.

Recursively, suppose we have defined (X,,,:2,, ) for some m > 1. We

mybmoyrbm
construct X,,+1 from X, by gluing an additional disk along two half inter-
vals, with new markings ¢0, .1, (7., | coming from the first half of the markings

of X, and the second half of the markings of the attached disk:

Xm U X,

U, (1)~ (1), te[Yy,1],

(1), ift<1/2,

m
t(t), else.

X1 1= with 4, (t) = {
for ¢ = 0,1. Note that the marked intervals in the boundary of X, might
live in different boundary components (in fact this will happen every other
time). Figure 3 shows what happens when a disk is glued to a surface in the
above described manner, in each of these two possible cases.
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Lemma 3.1. Let m > 1. Then X,,, = Sy, is a surface of genus g with r
boundary components, where

- —1,2), ifm is even,
(97T) = (31,1 ) . )
("5=,1), if m is odd.

Proof. Note first that X, is a connected surface for each m, since X; is a
disk and X, is obtained from X; by successively adding disks (or strips),
attached along two disjoint intervals in the boundary. For the same reason,
we get that the Euler characteristic of X, is

X(Xm41) = x(Xm) —1=-=1-m.

By the classification of surfaces, we are left to compute the number of bound-
ary components of X,,. For this, observing Figure 3, we notice that if we
glue a disk along two intervals of S that lie in the same boundary compo-
nent, the new marked intervals given by the above procedure will give new
intervals in different boundary components and vice versa, and no boundary
component without marked intervals are ever created. It follows that the
number of boundary components of X, alternates between 1 and 2. The
result follows. O

We are now ready to define the objects of the groupoid Ms. We will use
the boundary of the above defined surfaces X,,, to parametrize the boundary
components of the surfaces that contain the marked intervals, to allow us to
work with parametrized boundary components instead of parametrized arcs,
in order to simplify some definitions.

Definition 3.2. A bidecorated surface is a tuple (S, m,p) where S is a
surface, m > 1 is an integer, and

©: 0X, U (UpSY) = 08

is a homeomorphism, giving a parametrization of the boundary of S. We
think of (S, m, ) as a surface with two parametrized arcs

Ip:=¢o0l and I;:=¢po.l

in its boundary, and k additional parametrized boundaries. The surface S
may also have punctures.

The monoidal groupoid (Mg, #,U) has objects the bidecorated surfaces
together with a formal unit U. There are no morphisms between two bidec-
orated surfaces (S, m, ) and (S',m’,¢’) unless S and S" are homeomorphic
and m = m’, in which case we define the set of morphisms to be all the map-
ping classes of homeomorphisms that preserve the boundary parametriza-
tions

Hom, ((S,m, ¢), (8", m, ¢")) := moHomeoy (S, S)
= mo{f € Homeo(S,S") | fop =¢'},

where Homeo(S,S’) is endowed with the compact-open topology, and
Homeoy(S, S") with the subspace topology. The only morphism involving
the unit U is the identity idy.
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Remark 3.3. Our definition of the morphisms in the category My is such
that punctures in a surfaces S can be permuted by automorphisms of S in
Msj. Our argument works just as well with labeled punctures, that are not
permutable by homeomorphims, or both labeled and unlabeled punctures,
just like we could also have additional boundary components that are only
marked up to a permutation. The only changes this would cause to the
argument would be that it would make the notations and conventions more
cumbersome.

The monoidal structure # is defined as follows. The object U is by def-
inition a unit for #. For the remaining objects, the monoidal product # is

defined by

(S’ m7 SO) # (S/’ m/’ (p/) = <
where ¢ = 0,1, and where
o# 0 OX oy U (UpyrSY) — 0(S# 5",
is obtained using the canonical identification 90X, 1. = (8Xn\bm(%, 1) u

(0X 0\t (0, %)) On morphisms, the monoidal product is given by juxta-
position.

Sus
L~ (L)t 1),

m+m’,s&#s0’>,

The monoidal category My has the following injectivity property with re-
spect to gluing a disk, that will be useful in the proof of our stability result.

Proposition 3.4. For any object S = (S, m,¢) of Mg, and any p > 0, the

map

Autag, (S) 270 Autag, (S # DL

is injective, where D = (X1, 1,id) is our chosen disk.

Proof. Recall that the underlying surface of D*T! is the surface X, de-
fined above. Picking a smooth representative of the underlying surface of
S# Xpy1, with S a smooth subsurface in its interior, we can model the map
in the statement using the description of the mapping class group of surfaces
in terms of isotopy classes of diffeomorphisms rather than homeomorphisms.
(See e.g., [Bol09, Thm 1.2| for a detailed account of the classical isomor-
phism moHomeop(S) = moDiff5(S) when S is compact.) Now the result
follows by essentially the same argument as the case of attaching of surface
along a single arc instead of two, as treated in [RWW17, Prop 5.18|, using
the fibration

DIH(S # Xp+1 rel E)S U Xp+1) — DIH(S # Xp+1 rel 8(S # Xp+1))
— Emb((Xp_A,_l,IQ“%,l] U Il|[%71]), (S#Xp+1,fo‘[%’1] U ]1’[%71]))

where the fiber identifies with Diff (S rel 89.5) and where we note that Io|| 1Y
Il|[%’1] = 0Xp411 NO(S # X,11). Injectivity of the first map on m follows
if we can show that the base is simply-connected. In fact the base can
be shown inductively to have contractible components, using that X, is
built inductively by attaching disks along two intervals, or homotopically
attaching arcs, and using the contractibility of the components of embeddings
of arcs in a surface, as proved in [Gra73, Thm 5]. O
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FIiGURE 4. The curve a; in D; # D;41

3.2. Braided action. We want to apply the homological stability machine
of [Kral9| to stabilization in My with the bidecorated disk

D = (X1,1,id).

For this, we need that the classifying space of My is an Ej—module over an
Es-algebra. This will follow if we can show on the categorical level that
M admits an appropriate action of a braided monoidal groupoid. We will
build such an action in this section, using as braided monoidal groupoid
the groupoid of braid groups. In constrast with most classical examples of
homological stability, we will show in Section 5.3 that this action of the braid
groupoid does not come from a braided structure on Moy, or the full monoidal
subcategory generated by D. It is instead constructed using a Yang—Baxter
element in My, associated to a braid subgroup of the mapping class group
of X,,, that we will describe now.

Write

D* =Dy #.. #(D;#Dijy1)#...# Dy,

where we use subscript to enumerate the disks, and where the underlying
surface is X,,. We let a; denote the isotopy class of a curve in the interior
D;#D; 1 = S' x I that is parallel to its boundary components, as shown in
Figure 4.

Lemma 3.5. The curves ai,...,am—1 form a chain in D*™ ie. a; and
ai+1 have intersection number 1 for each i, and a; Naj; =0 if [i — j| > 1.

Proof. The curve a; lives in the disks D; and D;41, so it can only intersect
a;—1 and a;4+1 non-trivially, and hence it suffices to consider the subsurface
of D¥™ corresponding to D; # D; 1 # D; 2. Here the claim can be checked
by hand, see Figure 5. (|

Let T; € Autpg, (D*™) denote the Dehn twist along the curve a; in D*™,
A classical fact states that the Dehn twists along a chain of embedded curves
satisfy the braid relations (see e.g. [FM11, 3.9 and 3.11]):

TiTiT; = Ti1 T;Tipn for all 4,

3.1
(3 1T, = 11T, it fi— jl > 1,
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an

FIGURE 5. Intersection of a; (blue) and a;+1 (green) in the
underlying surface of D; # D1 # D; 0.

Note that the same relations are satisfied by the inverse twists Ti_l, that will
turn out to be more convenient for us. Also, adding a disk to the right or
left of D*™ gives the relations

T;#idp =71; and idp#7T; =T
in Autpg, (D*¥+1). In particular (3.1) includes the relation
(T; #idp)(idp # Ty (T #idp) = (idp # Ty H)(Ty ! #idp)(idp # T )
in Auty, (D*), so in other words, the inverse Dehn twist T; ' €
Autyg, (D#D) is a Yang-Baxter operator in the sense of Section 5.1.
Recall from the introduction that B denotes the groupoid of braid groups,
with objects the natural numbers {0, 1,2, ...}, automorphisms of n the braid

group By, and no other non-trivial morphisms. In Section 5.1 we show that,
being a Yang-Baxter operator, T} ! yields a strong monoidal functor

@ = <I>D7T1—1: (B, EB) e (M27#)’
uniquely determined up to monoidal natural isomorphism by the fact that
®(1) = D and, for the standard generator oy € By = Autg(1), ®(01) = T} .
Such a functor ® endows My with the structure of an E1-module over B
via the associated functor
a = (—#@(—))Z M2 x B —>M2,

given on objects by a(S,n) = S# ®(n) = S # D**, and likewise for mor-
phisms. On classifying spaces, this yields exactly the kind of input needed
in Krannich’s homological stability framework, see [Kral9, Lem 7.2].

Remark 3.6. For each m, the restriction of the functor & : B — Moy
to B,, = Autg(m) maps the standard generator o; to the inverse Dehn
twist T, ' € Auty,(D¥™) = moHomeoy(X,,). By Birman-Hilden the-
ory [BH72, BH73| the homomorphisms ®|p, : B, — Autmy,(D*™) are
actually injective.
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4. HOMOLOGICAL STABILITY

Generalizing the main result of [RWW17|, Krannich associates to an Fi-
module .#Z over an Fs-algebra 2 with a chosen stabilizing object X € 2,
a space of destabilizations at every A € .4, whose high connectivity implies
homological stability at A when stabilizing by X. We are interested in the
case where .# = BMj is the classifying space of My and 2™ = BB, acting
on BM; via the map a: Mo x B — My, defined in Section 3.2. We will pick
A =5 € My to be some surface, with X = 1 € B modelling stabilization
with the disk as a(—,X) = — # D is the sum with the bidecorated disk
D = (Xy,1,id) of Section 3.1.

Generally, the space of destabilizations is a semi-simplicial space, but in
settings such as ours, it is actually levelwise homotopy discrete. Indeed, by
[Kral9, Lem 7.6]), when the structure of Ej-module over an FEs-algebra is
induced by an action of a braided monoidal category on a groupoid, and
under the injectivity condition given in Proposition 3.4, the space of desta-
bilizations is equivalent to the following semi-simplicial set, defined just as
in [RWW17| in the case of a braided monoidal groupoid acting on itself.

Definition 4.1. ([Kral9, Def 7.5]) Let (.#,®) be a right module over a
braided monoidal groupoid (£, @, b), where we denote also by @ the module
action. Let A and X be objects of .# and 2" respectively. The space of
destabilizations Wy, (A, X )e is the semi-simplicial set with set of p-simplices

Wn(A, X), ={(B,f) | BEOb(A) and f: BE XPPT — A@ X®" in .4}/

where (B, f) ~ (B', f') if there exists an isomorphism g: B — B’ in ¢
satisfying that f = f' o (g ® idyep+1). The face map d;: Wy (4, X), —

Wi (A, X)p—1 is defined by d;[B, f] = [B @ X, d; f] for
idp ©b L

Xﬂ)i’x@idX@p_i

dif: B& X @ XP BaX%aXax® L, Aq xon

for b;(gi i X®XY — X% @ X coming from the braiding in 2.

4.1. Disk destabilizations and disordered arcs. Given a bidecorated

orientable? surface S = (S, m, ), with Iy, I; compatibly oriented, let 2(S) =
D" (S, by, b1) denote the disordered arc complex of S as in Section 2, where

b(] = 10(1/2) and b1 = 11(1/2)

are the midpoints of the marked intervals, and v = 1 if Iy and I lie on
the same boundary component and v = 2 otherwise. The vertices of a
simplex in Z(S) are canonically ordered by the anti-clockwise ordering at by
(or equivalently at by). Hence we can associate to this simplicial complex a
semi-simplicial set that we denote Z(S),, with same set of p-simplices and
whose ith face map is given by forgetting the (i + 1)st arc with respect to
that ordering. As Z(S) and Z(S). have homeomorphic realizations, they
have the same connectivity.

3The definition of the disordered arc complex naturally extend to non-orientable bidec-
orated surfaces, ordering the arcs according to the orientations of Iy and I;, but we will
only consider orientable surfaces here
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FIGURE 6. Ordering of the arcs p; at their endpoints

Write W, (S, D), for the space of destabilization of Definition 4.1 associ-
ated to the module .#Z = My over the Fs—algebra 2 = B acting on My
as above, with X =1 € B, and A = S = (5],,m,¢) some bidecorated
orientable surface of small genus g > 0, with r» boundary components and s
punctures. The space W,,(S, D), is then the space of destabilizations of the

stabilization map

Auta, (S # D1 225 Autyg, (S # D)

that attaches an additional disk to the surface along the two marked intervals.
We want to identify W, (S, D)es with 2(S # D*"),. For this, we start by
constructing a particular disordered collection of arcs in D**. Write again

D™ =D #---#D;#---#D,,

and let p; denote the unique isotopy class of arc in the ¢th disk D; going
from by = I()<1/2) to by = 11(1/2)

Lemma 4.2. The arcs pi,...,pm are ordered anti-clockwise at both by and
by.

Proof. 1t suffices to show that p; and p; 11 are ordered anti-clockwise at bg
and by for each i. Thus we need only consider what happens in the subsurface
D; # D;y1. The gluing being defined in exactly the same way at Iy and I,
the arcs are ordered in the same way at both endpoints, and the particular
choice of gluing gives the anti-clockwise ordering, see Figure 6. O

Recall from Section 3.2 the Dehn twist T; along the curve a; in D; # D; 1.
The union of the arcs p; in D*™ define a deformation retract of the surface, as
each disk D; retracts onto the corresponding arc p;, and we can understand
the action of the twists T; on the surface by considering their action on the
arcs p;. The action is given by the following result, that will be needed to
compare the face maps in the semi-simplicial sets Wy, (S, D)s with Z(S #
D#n).‘
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©—©
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FIGURE 7. The action of the Dehn twist T; on the arcs p;
(top) and p;4+1 (bottom)

Lemma 4.3. The action of the Dehn twist T; along the curve a; on the
homotopy classes of the arcs p;, relative to their endpoints, is

pipixipi i j =1,
Ti(pj) = pi ifj=i+1,
Pj else.
Equivalently,
T, pi) = pis1 and T H(pis1) = piy1Pipit1
and T[l leaves the other p; invariant.

Proof. The Dehn twist T; can only affect p; and p;11 as the curve a; only
intersects these two arcs, from which the last case in the statement follows.
The computation for the arcs p; and p;11 is local to D; # D; 11, where, as
shown in Figure 7, we have T;(p;) ~ pipitipi, giving the first case in the
statement, and T;(p;+1) ~ p;, giving the second case. O

Proposition 4.4. Let S = (S,m, ) be an object of My. There is an iso-
morphism of semi-simplicial sets

Wn(S,D)e = 27 (S # D*),

where the marked points by and by are the midpoints of the intervals Iy and
Iy in S # D* and with v = parity(m +n), that is v = 1 if Iy and Iy lie in
the same boundary component of S # D*"* and v = 2 otherwise.

Proof. We first show that both W,,(S, D),, and 2 (S # D*"),, are isomorphic
to Auty, (S # D¥)/Autm, (S # D*P~1) for every p > 0. This holds by
definition for the first semi-simplicial set. For 2¥(S # D*"),, it will follow
from two facts: (1) the natural action of

Autyg, (S # D*") = moHomeoy (S # D*™)

on this set of p-simplices is transitive, and (2) the stabilizer of a p-simplex is
isomorphic to Auty, (S#D**~P~1). The first fact follows because the homeo-
morphism type of the complement S\ o of a collection of non-separating arcs
o = (ap,...,ap) is determined by the orderings of the arcs at the endpoints
as this determines the number of boundary components of the complement
(see [Har85, Lem 3.2]), and the second from the fact that this complement
is precisely diffeomorphic to S# D**~P~! for any p-simplex in the disordered
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S

F1GURE 8. Cutting along the core of a disk

arc complex. Indeed, this diffeomorphism type does not depend on the sim-
plex by transitivity of the action, so it is enough to check the claim for any
chosen simplex. Let
Op = <Pn—p7 cevsPn)
be the collection of arcs in S # D*" consisting of the cores p; of the last p+ 1
disks. Recall from Lemma 4.2 that this is a disordered simplex, once we note
additionally that the arcs are also non-separating. Now Figure 8 shows that
the operation of cutting along the core p of a disk exactly undoes the gluing
operation, which proves the claim in that case.
Note that the actions on both sets of simplices are given by post-
composition with mapping classes, where we think here of an arc as an
isotopy class of embedding. There is then a unique equivariant isomorphism

op: Wi(S,D), = gv(S# D*"),, taking the p-simplex
fp == (S # D#nipil, idS#D#n)

of W, (S, D) to the p-simplex o, = (pp—p, . - ., pn) of the target already con-
sidered above.

We are left to check that the face maps d; correspond to each other under
the isomorphisms ¢,,. Because the face maps are equivariant with respect
to the Autp, (S # D**)-action in both cases, and the actions are transitive,
it is enough to check that the face maps agree for the simplices f, and
op = ¢p(fp). By definition,

dify = ((S#D*" " P~1) # D, idgypen-—v-1 #bpu; p #id pap—:)
while
diop = (pn—p; - - - vpn/—p\-i-iv ces Pn)
is the simplex obtained by forgetting the (i + 1)st arc. In particular, we
immediately have that do(fp) = fp—1 and do(op) = op—1 = ©p—1(fp-1)
giving that the face maps agree in that case.
For the remaining face maps, note that

idS#D#n—p—l #b5£27D @ idD#pf'L - Tn7p+i,1 C--+0 Tn,p: S # D#n — S # D#?’L

as composition of Dehn twists T; of Section 3.2. We need to compute the
image of p,—pt1,...,pn under this map. By Lemma 4.3, we have that for
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1<j<i,
Tnprrifl ©:--0 Tnfp(pnprrj) = Tnprrifl ©---0 Tnprrjfl(pnprrj)
=Tnpti-10--- 0Ty pyj (Pnprrjfl)

= Pn—p+j—1
while for i +1 < j < p,

Tn—pti-10 0 Tnep(Prn—p+j) = Pr—p+j-
Hence d;(f,) takes the arcs pp—py1, ..., pn to the arcs

Prn—ps -3 Pn—p+i—1; Pn—p+i+ls - -5 Pn;

i.e. precisely to the arcs of d;(0,). So we indeed have that ¢,—1(d;i(fp)) =
di(wp—1(fp)), which finishes the proof. O

4.2. Coefficient systems. Having identified the space of destabilizations
with the semi-simplicial set of disordered arcs in Proposition 4.4, we can
now input the connectivity computation of the disordered arc complex of
Section 2 into the general stability theorem of [Kral9]. To state the resulting
stability theorem in full generality, we need to introduce the notions of (split)
finite degree coefficient systems. We follow [Kral9, Sec 4], which generalizes
[RWW17, 4.1-4] that unify the earlier definitions of Dwyer for the general
linear groups [Dwy80] and Ivanov for the mapping class groups [Iva93]. (The
papers [Kral9, RWW17| consider in addition abelian coefficient systems, but
these are not relevant here, because the abelianization of the mapping class
group of surfaces of large enough genus is trivial by a theorem of Mumford—
Birman—Powell, see Lemma 1.1 in [Har83].)

Fix a bidecorated surface S = (S, m, ¢), and let D be the bidecorated disk
as above. Definition 4.1 of [Kral9| becomes in our case:

Definition 4.5. A coefficient system for the groups Autn, (S # D*?) with
respect to the stabilization by D is a collection of Z[Aut(S # D**)]-modules
M, for n > 0, together with maps s,: M,, — My, that are equivariant

with respect to the stabilization map Aut(S # D*7) 225 Aut(S # D#n+1),
satisfying the following condition:
(4.1)

Tpi1 € Aut(S # D*"2) acts trivially on the image of M,

Sn+10Sn

Mn+2

for T),4+1 the Dehn twist of Section 3.2 with support the last two disks in
S # D#nt2,

We will encode the data of a coefficient system as a pair (F, o) with
F: M2|5”D — MOdZ

a functor from the full subcategory of My on the objects S # D** for n > 0
to abelian groups, where M, = F(S # D*") with its Aut(S # D*")-action
induced by F, and

of': F(-) — F(—# D)
is a natural transformation encoding the suspension maps s,, where we
assume that F(id#T) acts trivially on the image of (¢f)2: F(—) —
F(—# D*) for T the Dehn twist supported on the added disks D*2.
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Given a coefficient system F', we define its suspension LF: Ma|sp —
Mody by ¥F(—) = F(— # D) with
o=F . SF(—) = F(— # D) 2 F(— # D*?) ¥, p(_ 4 D*2) = SF(— # D),
where one checks that the triviality condition 4.1 is satisfied with this choice
of structure map o= (See [Kral9, Def 4.4].)

The structure map of induces a natural transformation F — S F, called
the suspension map. We define the kernel ker F' and cokernel cokerF' to be
the kernel and cokernel functors of that natural transformation. We call
F split if the suspension map is split injective in the category of coefficient
systems.

Definition 4.6. [RWW17, Def 4.10] A coefficient system F' is
(a) of (split) degree —1 at N if F(S# (D**)) =0 for all n > N;
(b) of degree k > 0 at N if ker(F) has degree —1 at N and coker(F) has
degree (k —1) at (N —1);
(c) of split degree k > 0 at N if F is split and coker(F') is of split degree
(k—1)at (N—1).
Example 4.7.

(a) A coefficient system F is of degree 0 at 0 if and only if o is a natural
isomorphism. This is in particular the case for constant coefficient
systems.

(b) The functor Fj: My — Mody defined by

Fi.(S) = H,(S,Z)%*

is a split coefficient system of degree k at 0. (This is essentially
a result of Ivanov [Iva93, Sec 2.8|, who considers a version of the
composite stabilization #D*2. See also [Bol12, Ex 4.3 for the case
k =1, and [Sou20, Lem 2.9| that proves this in a very general set-up,
though in the case of a braided groupoid acting over itself only.)

(c) Given a k-connected space X, the coefficient system FF: My —
Mody defined by

Fr]f(s) = Hn(Map(S/aS),X),

which appears in the work of Cohen—Madsen [CMO09], is a coefficient
system of degree |n/k] (see [Boll2, Ex 4.3]).

Remark 4.8. Although the above examples all makes sense in the different
set-ups considered in the literature, one should keep in mind that there
are variations in what precisely a finite degree coefficient system for the
mapping class groups of surfaces means in e.g. the papers [Iva93, CMO09,
Bol12, RWW17| and [Kral9]. This is due to two facts: first, the definition of
the coefficient system depends on the category of surfaces considered and on
the stabilization map(s) one works with, and second, the triviality condition
(4.1) arising from Krannich’s framework is actually weaker than the one used
in earlier frameworks, see e.g. [Kral9, Rem 7.9].

In addition, the paper [GKRW19| uses a homological condition instead of
a finite degree condition (see 5.5.1 in that paper). The relationship between
that condition and finite degree conditions is discussed in [GKRW18, Rem
19.11].
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4.3. The stability theorem. We are now ready to state our main theorem:

Theorem 4.9. Let S = (S,m,¢) be an object of My with m odd, i.e. such
that Io, 11 are in the same boundary component. Let F': M2|S7D — Mody,
be a coefficient system and write F,, = F(S # D**). The map

H;(Auty, (S # D*): ) — H;(Auty, (S # DY) Fuyq)
18

(a) an epimorphism for i < g and an isomorphism for i < ”T_‘g if F is
constant.

(b) an epimorphism for i and an isomorphism for i
if I has degree k at N >0 and n > N.

(¢) an epimorphism for i < ”_15_2 and an isomorphism for i < "_TH if
F has split degree k at N >0 and n > N.

n—3k—2 n—3k—5
S T3 S T3

Remark 4.10. We have stated the theorem in the case of an initial surface
S with Iy and [; in the same boundary component for simplicity. The case
of a surface S’ where the two intervals lie in different components is actually
also included in the statement, by writing S’ = S # D for S of the previous
type, or considering S"#D if S’ does not admit such a decomposition. Indeed,
as we have already seen in Section 3 (see Figure 3), gluing in a disk exactly
changes whether Iy and I; are in the same boundary or not.

We will first show that the above results implies the two main theorems
stated in the introduction.

Proof of Theorems A and B from Theorem 4.9. Let S§, be a surface of
genus 0 with » > 1 boundary components and s punctures, and consider
the associated object S = (Sg’,r, 1,¢) of My, with two marked intervals in

the first boundary component. Then S # D*29 has the form (Sgr1+29,9)

while S # D#29*1 has the form (S5 41,2+ 29, ). Moreover, the maps

S# D" *D, gy pt2otl *D, gy p2g+2

precisely induce on automorphism groups in My the two maps appearing in
Theorems A and B.

The fact that the first map is always injective in homology follows from
the fact that postcomposing the map S, — S .1, defined by the sum
#D, with the map S;, .1 — 57, Usi D? ~ Sy, filling in one of the
newly created boundary component, is homotopic to the identity. Now The-
orem 4.9(a) gives that the map

Hi(Autag, (S # D¥9)) 225 Hy(Autng, (S # D¥971))

is surjective for ¢ < %g in homology with constant coefficients. Given that the
map is always injective, we get an isomorphism in that same range, proving
the first part of Theorem A. Applying (b) and (c) instead gives Theorem B
for the first map.

For the second map, we now apply Theorem 4.9 in the case n = 2g+1, but
in that case, there is no additional argument for injectivity, so the bounds
translate directly to surjectivity and isomorphism bounds. O
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Proof of Theorem 4.9. Proposition 4.4 together with Theorem 2.4 give that
Win(S,D)e is (%)—comnec‘ced, for g the genus of S # D** and v = 1 if

Iy and I are in the same boundary component of S # D**, which is the case
precisely when n is even, and v = 2 otherwise. The surface S # D*" has
genus greater than or equal to the genus of D # D*" that is 5 if n is even
and "T_l if n is odd (see Lemma 3.1). Hence 2g + v > n + 1 is both cases,
and W, (S, D), is at least (”§4)-connected.

Now W,(S, D), is the semi-simplicial set denoted WEW(S # D*"), in
[Kral9| (see Definition 7.5 in that paper). By Lemma 7.6 in the same paper,
using Proposition 3.4, this semi-simplicial set has the same connectivity as
the semi-simplicial space W (S # D**), of [Kral9|, which by Remark 2.7 of
that paper determines the connectivity assumption of Theorem A in that
paper: the canonical resolution of the assumption of the theorem is m-
connected, if and only if the space W (S # D**), is (m — 1)-connected. Given
that W (S # D*"), is ("T_Zl)fconnected, we have that the canonical resolu-
tion of is (%H’)fconnected. Hence we can apply [Kral9, Thm A] with
k = 3 and grading gm, : Ma|s,p — N given by gm, (S # D**) = n — 2; see
also [Kral9, Rem 2.24|, where we can take m = 4. The theorem, with the
improvement given by (i) in the remark, then gives that

H;(Auty, (S # D*); Z) — H;(Autn, (S # D11 7)

. . . . n_3 . . . n P
is an isomorphism for ¢ < *3= and an epimorphism for ¢ < %, giving the

stated result in the case of constant coefficients. For a coefficient system F
of degree k at N, [Kral9, Thm C] gives that

fIZ‘(Autl\/I2 (S # D#n); Fn) — H; (AutM2 (S # D#n+1); Fn+1)
< n—?gk:—B

is an isomorphism for ¢ and an epimorphism for ¢ < %"3_2 for

n—

n > N, improved to an isomorphism for i < ]3“_5 and an epimorphism for

i < 2=E=2 4 F s split. O

Remark 4.11 (Optimality of the stability bounds). Combining the two
maps in Theorem A, we obtain that the genus stabilization

Hi(D(S5,); Z) — Hi(T(S511,): Z)

is an epimorphism when ¢ < %g and an isomorphism when ¢ < %. The
slope % is known to be optimal by a computation of Morita [Mor03|, with op-
timal isomorphism range since for instance Hy(I'(S2,); Z) — H1(I'(S5,); Z)
is not injective as the source is isomorphic to Z/12 and the target is trivial,
see e.g. [Kor02, Theorem 5.1]. Our combined genus epimorphism range, on
the other hand, falls short of the range ¢ < @, as given in [GKRW19],
a range that is optimal by Morita’s computation (see Theorem B (i) of
[GKRW19]).

Our results for twisted coefficients are most easily compared with those
of Boldsen [Bol12, Thm 3|, whose coefficient systems are coefficient systems
of finite split degree in our sense, though with a stricter triviality condition
upon double stabilization. For these coefficient systems, he obtains slightly
better ranges, with improvement +% for the first map and +7%; for the
second. The papers [RWW17, GKRW19| only consider genus stability. In
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[RWW17], the stability slope obtained is only %, while in [GKRW19, Sec
5.5.1], the finite degree condition is replaced by a more general homological
condition that applies to some finite coefficient systems [GKRW18, Sec 19.2].
In the particular case of the kth tensor power of the first homology of the
surface, they do however only get the epimorphism range ¢ < % and

2g—2k—2
3

isomorphism range ¢ < , see Example 5.22 in that paper.

5. BRAIDING AND HOMOLOGICAL STABILITY FOR GROUPS

In order to use the framework of Krannich [Kral9| to prove homological
stability for a sequence of groups, one needs the structure of an “ F1-module
over an Fs-algebra”. We give in Proposition 5.1 below a simple way to con-
struct such a module structure, in terms of Yang—Baxter operators. Com-
pared to earlier approaches to homological stability such as [RWW17|, which
Krannich’s work generalizes, this has the advantage of being very lightweight.
Instead of having to provide the structure of a braiding on the monoidal cat-
egory whose automorphism groups one is interested in, it suffices to provide
a single morphism satisfying a simple equation.

Our main example of a Yang-Baxter operator is the inverse Dehn twist
T, ! € Autyr, (D # D), defined in Section 3.2 and used to prove our main
result. In Section 5.3, we show that this Yang—Baxter operator is not part
of a braided monoidal structure on the category My, but gives instead a
twisted version of such a structure.

5.1. Yang—Baxter operators and braid groupoid actions. Let 2™ =
(Z°,@,1) be a monoidal category. A Yang—Baxter operator in 2 is a pair
(X, 7) consisting of an object X € 2~ and a morphism 7 € Auty (X @ X),
satisfying the Yang—Baxter equation

(rel)(len(rel)=1arn)(rel)(1e7) € Auty(X & X & X),

where we suppress associators from the notation.

Yang—Baxter operators are closely related to the braid groupoid: Recall
from Section 3.2 the braid groupoid B, with objects the natural numbers
and only non-trivial morphisms Autg(n) = B,. A variant of the coherence
theorem for braided monoidal categories says that the category of strong
monoidal functors from the braid groupoid into £~ is equivalent to a natu-
rally defined category of Yang-Baxter operators in 2~ [JS93, Prop 2.2].* To
a Yang—Baxter operator (X, 7) in 2, this equivalence associates the strong
monoidal functor ®x ,: B — 2" given by ®x (n) = X®" on objects, and
on morphisms by letting

Ox,: B, — Aut o (X&)
send the ith standard generator o; to idyxei-1 @ 7 @ id xyen-i-1, where the
required maps ®x (m)®Px ,(n) — Px -(m+n) are given by the monoidal
structure of 2.

Suppose now that the monoidal category 2~ acts on a category .# via
a functor A4 x & — 4, which we also denote by @, compatible with

4n other words, the pair consisting of the braid groupoid B and the Yang—Baxter
operator o1 € Autg(2), is the initial monoidal category with a distinguished Yang—Baxter
element.
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the monoidal sum in % . The following result shows that the choice of a
Yang—Baxter operator defines an action of the braid groupoid B on .#, and
hence is appropriate data to apply the stability framework of [Kral9|:

Proposition 5.1. Let (2, ®, 1) be a monoidal category with T € Aut 9 (X ®
X) a Yang—Baxter operator in Z . Suppose Z acts on a category # . Then
there is an action of the braid groupoid

or: MxB — M
given on objects by a-(A,n) = A® X" and determined on morphisms by
ar(f,0i) = f @ idxei-1 & T P idyen—i-1,

for o; the ith elementary braid in B,. Furthermore, taking classifying spaces
this endows B.# with the structure of an Ei-module over the Fs-algebra
BB.

Note that if we are interested in homological stability for stabilization by
X for the automorphism groups G, := Aut_y (A @& X®") for some object A
of ./, only the full subcategory .#4 x C .# spanned by objects of the form
A® X®" s relevant. So for stability purposes, it is enough to consider the
subfunctor

(677 «//A,X xB — ///ij.
In fact, to make sure that the structure of F1—module over the Es—algebra
BB is graded, one can even replace the category .#4 x by a category with
objects the natural numbers and setting Aut(n) = Aut_, (A®X®"), avoiding
any potential issue coming from unwanted equalities A @ X% = A @ Xo™
for m # n.

Proof. The functor a,: # x B — # is defined as the composite functor
a(= =)= (=) & Px,(-),

for ®x,: B — %2 as above. The result follows from [Kral9, Lem 7.2

because a makes . into a module over B and B is braided monoidal. [J

Example 5.2. If 2" = (Z',®, 1) admits a braiding b, then 7 = bx x €
Auty (X @ X) is a Yang—Baxter operator for any object X. For 2  a
groupoid acting on itself or 2~ acting on a category .#, this recovers the
basic set-up for homological stability of the paper [RWW17], or Section 7 of
[Kral9].

Example 5.3 (Mapping class groups of surfaces). As explained above, a
Yang-Baxter operator 7 € Auty (X @ X) gives in particular a collection
of homomorphisms ®x ;: B, — Autg (X®") from the braid groups to
the automorphism group of n copies of X. There are two standard ways to
embed braid groups in mapping class groups of surfaces, and we explain here
how they both come from Yang—Baxter elements in appropriate categories
of surfaces.

(a) Let My be the category of bidecorated surfaces of Section 3. As
explained in Section 3.2, the Dehn twist 7' € Autny, (D # D) =
7o Homeog (S x I) = Z, or its inverse 7!, is a Yang-Baxter op-
erator. The associated map ®pr: B, — Autm, (D*") is the em-
bedding of braid group in the mapping class groups of Sy (when
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n = 29 + 1) and of Sgo (when n = 2g + 2) associated to Dehn
twists along the chain of embedded curves in the surfaces described
in Lemma 3.5. This embedding goes back at least to the work of
Birman and Hilden [BH72, BH73|.

(b) Let M; denote instead the category of surfaces decorated by a single
interval, with monoidal structure @ defined just as in the case of My
but gluing only along one interval. Then M; in braided monoidal,
see [RWW17, Sec 5.6.1]. Hence by Example 5.2, for any object X
of My, we have a Yang-Baxter element 7x € Autpy, (X @ X). For
X = Si2, this can be used to prove genus stabilization (albeit with
the suboptimal slope Y,), and in the case X = S! x I marked by
an interval in one of its boundary components, we have that X®"
has underlying surface an n-legged pair of pants DQ\(unfﬂ) and the
associated morphism

Dx it Bn — Autyg, (X)) = 7o Homeoy(D?\ (L, D?))

is the standard embedding of the braid group as the subgroup of the
mapping class group of the multi-legged pants that does not twist
the legs, see e.g. [RWW17, Sec 5.6.1].

We will show in Proposition 5.7 below that the Yang—Baxter operator T' of
the first example, in the category My, does not come from a braiding in M.

5.2. Homological stability from Yang—Baxter elements. Suppose we
are given the data of a monoidal category (27, @, 1) acting on a category .4,
along with a choice of stabilizing object X € 2" and Yang—Baxter operator
T € Aut9 (X @ X). Proposition 5.1 above allows to apply [Kral9, Thm A],
which in this case says that for any A € .Z, there is a sequence of simplicial
spaces Wy, (X, A)e, for n > 0, so that if W, (X, A) is highly-connected for
large n, then the sequence

Auty(A) =25 Aut (A X) =25 Aut (A0 X 0 X) =25 ...

satisfies homological stability. Theorem B of the same paper gives in ad-
dition a stability statement with twisted coefficients. Under an injectivity
assumption of the form of Proposition 3.4, this simplicial space is homo-
topy discrete, and modeled by the space of destabilizations as described in
Definition 4.1.

Remark 5.4. The fact that (X,7) is a Yang-Baxter operator is pre-
cisely what is needed for the collection of sets W;,(A,X), and maps
di: Wip(A, X)), — Wy(A, X)p—1, defined as in Definition 4.1, to assem-
ble into a semi-simplicial set; indeed, the Yang—Baxter equation implies the
necessary simplicial identities.

For a fixed monoidal category 2" = (£, ®, 1) acting on a category .,
and a stabilizing object X € %, the choice of Yang—Baxter element will
not affect the stabilizing map, but it will affect the spaces W,,(X, A)s. The
identity map 1 € Auty (X @ X) is a trivial choice of Yang—Baxter operator.
But, as is to be expected, this trivial twist is not useful for proving stability:
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Proposition 5.5. Let ", . #, A and X be as above. If we choose the Yang—
Baxter operator 7 € Autg (X @ X) to be the identity element, then the
semi-simplicial set Wy, (A, X)e is connected if and only if the map

Gno1 = Aut y(A® X1 =25 Aut 4(A® X®) = G,
18 an isomorphism.

Proof. If 7 is the identity element, all face maps d; are equal to the canonical
map G, /Gp—p—1 — Gr/Gpn—p. In particular, the vertices of any p-simplex
are all equal, so the semi-simplicial set W,,(A, X ), is isomorphic to a disjoint
union of semi-simplicial sets, one for each 0-simplex. The result follows from
the fact that the set of 0-simplices is precisely the quotient Gy, /Gp—1. O

In fact, Barucco proved in his master thesis a result that translates to
the following stronger statement (stated in the thesis in the context of a
groupoid acting on itself, i.e. # = 27):

Lemma 5.6. [Barl7, Lem 3.1| The space W, (A, X) is connected if and only
if 1972 @ 1 and Gp_1 ® 1 together generate G, = Aut(A @ X",

The connectivity of the semi-simplicial set W, (A, X) (or of the associated
simplical complex defined in [RWW17, Def 2.8]) can be thought of as a
measure a form of higher generation of the group G, by the cosets of the
subgroups G,—, for p > 1 and braid subgroups generated by the chosen
Yang—Baxter element ¢, in a way similar to the notion of higher generation
for a family of subgroups of a group defined in [AH93, 2.1].

5.3. Braidings and bidecorated surfaces. We show in this section that
the Yang—Baxter operator T" on the bidecorated disk D in the groupoid Ms
does not come from a braiding on the subcategory of My generated by the
disk. In fact, we will show that this subcategory does not admit a braiding.

Let D = (D?,1,id) be the standard bidecorated disk of Section 3, where we
recall that X1 = D?. We define a “rotated” bidecorated disk D = (D?,1,7,),
where r;; is the rotation of 9X; = dD? by 7 radians, which has the effect of
interchanging the intervals Iy and I;. Rotating all of D? by 7 then induces
a morphism ¢: D — D in Mo, and likewise morphisms

Jm. pEm "
for every m > 1, each which we will by abuse of notation also denote by
t. The morphism ¢ can be identified with the hyperelliptic involution of
the underlying surface depicted in Figure 9 for the two cases m = 2g and

m = 2g+1, where in the latter case the boundary components are exchanged
by ¢. The morphism ¢ induces an identification

Autyy, (D*™) == Auty, (D)
f——tofo L

In order to precisely state the failure of T' to extend to a braiding, we will
also need the identification

I: AutM2 (D#m) i AutM2 (b#m)
fr—1
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FIGURE 9. The hyperelliptic involutions ¢ of Sy and S, 2

that comes from the fact that an element f € Autyg, (D*™) is just a mapping
class for the underlying surface of D*™, which is the same as the underlying
surface of D', 50 f can just as well be viewed as an element of Autyg, (D*™).
In contrast with the identification induced by ¢, the second identification is
“external”, in the sense that it does not come from a morphism in Mo.

Viewing ¢ as a diffeomorphism of the underlying surface X,, of D*™ that
does not fix the boundary, and specifically exchanges the marked points
bo = Io(Y,) and by = I;(Y,), we see that it takes the isotopy class of arc p; of
Section 4.1 to the reversed arc p;. We will use in the proof of the following
result that the homotopy classes p; generate the fundamental groupoid of
X, based at the points by, b;.> The mapping class ¢ is in fact completely
determined by the fact that ¢(p;) = p;.

Proposition 5.7. Let D C My denote the full monoidal subcategory gener-
ated by D.
(i) The monoidal category D does not admit a braiding. In particular,
the monoidal functor

P: (Ba@) - (Dv#) C (M27#)
does not come from a braiding on D.
(ii) Let f € Autp, (D*™) and g € Autn, (D*), and put Bmn = P(bm.n),
where the block braid by, ,, is the braid which passes the last n strands
over the first m strands. Then

g# (1" lofor) ifn is odd,

m,n # r:in:
Brmn o (f#9) o ’ {g#f else,

for v: D¥™ — D" the involution defined above, and where f in
the rightmost expression is the map f considered as an element of

Auty, (D#m) via the isomorphism I defined above.

Proof. We start by proving (ii). It is enough to check the statement when
f and g are Dehn twists, as those generate the mapping class groups. Note
that if ¢ is a curve in the underlying surface X,, , of D*¥™*" and T, denotes

SAs a full subgroupoid of the ordinary fundamental groupoid of X,,, this groupoid is
the one spanned by the objects corresponding to the points by, b1 € X,
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the Dehn twist along ¢, then conjugating T, by a diffeomorphism ¢ of the
surface gives
pol,.o0 90—1 = T(p(c)'

Recall further that the isotopy class of a Dehn twist T, depends only on the
free homotopy class of the curve c. We are therefore to compute the images
of curves in D*™ and D*" under the map S, as free homotopy classes. A
curve ¢ can be written, up to free homotopy, as a concatenation of the arcs
pi and their inverses p;, as the homotopy classes of these arcs generate the
fundamental groupoid of the surface X,,1, based at by, b;. In particular,
write

(51> C’:ph*ﬁig*pm"'*ﬁik'
The mapping class 3, can be written as the composition
/Bmyn:(Tno...o m+n71)o...o(T20...o erl)O(Tloon)

and hence we can compute the image of each p; using Lemma 4.3. For r > 0,
denote by T; ;4 the composition of Dehn twists T; 0o T;41 0 --- o T;,. Note
first that

Tij(pj+1) = Tij-1(pj) = -+ =~ pi.
From this, it follows that for ¢ > 1,
B (om+i) = (Tnmtn—1) © -+ 0 (T1,m) (Pmti)
~ (Tnm+n—1) © © (Tim+i—1)(Pmti)
~ (Tnmtn—1) © o (Tit1,m+:)(pi)
~ p;.
On the other hand, for ¢ < k < j, we have
Tij(px) ~ Tin(pr) = Tip—1(pk * Pry1 * Pk) = pi * P41 * Pis
from which we can deduce that for i < m,
B (pi) = (Tnmtn—1) o (T1,m)(pi)
>~ (Thmtn—1) © - 0 (Tam+1)(p1 * Pig1 * p1)
>~ (Thm+n—1) © - 0 (T3m+2)(p1 * Dy * pit2 * P * p1)

~ ...

"Hon) + " (pign) * " (pn) * -k u(p2) % pr

since ¢7(p;) is p; when j is even and p; when j is odd.
If the curve c lies in the last n disks D*? inside D¥7*" it can be written
as a product (5.1) with each i; > m. Then the above computation gives that

~pr*i(pg) k- xL

Bm,n(c) = Pip—m * pigfm * Pig—m ¥ 1 ¥ ﬁikfma

that is, ¢ is mapped to the corresponding curve in the first n disks D*" inside
D#n+m — D#m—i—n'

If the curve c instead lies in the first m disks D*™ inside D¥™t" it can be
written as a product (5.1) with each i; < m. Then the above computation



30 OSCAR HARR, MAX VISTRUP, AND NATHALIE WAHL

gives that
B (€) = p1x 1(p2) % - % " () % L (piyin) * " (pigen) * -+
%" (pn) % 2 (p2) * (p1)
~ " (piyn) * T (Pign) * M (Pign) -+ T (piyan)
2 1" (Pirtn * Digyn * Pig+n " * Piyin)

Hence ¢ is mapped to the curve :"(c) in the last m disks D*™ inside D*"t™ =
D#¥mtn from which the statement follows.

We are left to prove (i). To see that the images 3, of block braids under
B do not define a braiding in D, using (ii) it is enough to find a curve ¢ in
D*™ for some m so that t(c) % ¢, and such curves are plentiful. The same
argument shows that the inverses 6,;% likewise do not define a braiding.

* Ln+1 (kaJrn)

_ Now suppose that E is a braiding on D. The braiding is determined by
B11 € Auty,(D*) 2 Z, a group generated by the Dehn twist T7. We
have excluded the possibilities 5171 = Tli ! and 5171 = id is similarly ruled
out using now the fact that curves are not moved at all by the identity.
So assume that 311 = TF, with |k| > 1. Then (21 = TFTS would have
to satisfy TFT¥(a1) = ap in order for naturality to hold, where T is the
Dehn twist along the curve a; as in Section 3.2. Applying Proposition
3.2 in [FM11] twice, we get that the intersection number i(ag, T4 (a1)) =
((Tf (T3 (1)), T3 (ar)) = |kli(ar, T5(a1)® = [k[*i(a1,a2)* = [k[*. On the
other hand, using Proposition 3.4 in [FM11] we obtain

k> = i(as, T5'(a1)) = |i(T3 (a1), az) — |klia1, a1)i(a1, az)| <'i(a1,a9) = 1,

where we have also used that i(aq,a;) = 0. This contradicts our assumption
Of ,8171. O
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COMPACT SHEAVES ON A LOCALLY COMPACT SPACE

OSCAR BENDIX HARR

ABSTRACT. Let X be a hypercomplete locally compact Hausdorff space
and let C be a compactly generated stable oco-category. We describe
the compact objects in the oco-category of C-valued sheaves Shv(X,C).
When X is a non-compact connected manifold and C is the unbounded
derived oco-category of a ring, our result recovers a result of Neeman.
Furthermore, if C is a nontrivial compactly generated stable co-category,
we show that Shv (X, C) is compactly generated if and only if X is totally
disconnected.

The aim of this paper is to clarify and expand on a point made by Neeman
[NeeO1|. Let M be a non-compact connected manifold, and let Shv(M, D(Z))
denote the unbounded derived oco-category of sheaves of abelian groups on
M. Neeman shows that the only compact object in Shv(M,D(Z)) is the
zero sheaf. This implies that Shv(M, D(Z)) is very far from compactly gen-
erated. Nevertheless, it follows from Lurie’s covariant Verdier duality the-
orem |Lurl7, Thm 5.5.5.1| that Shv(M,D(Z)) satisfies a related smallness
condition: it is dualizable in the symmetric monoidal oco-category Prgab of
stable presentable co-categories and left adjoints, which holds more generally
if M is replaced with any locally compact Hausdorff space X. Although ev-
ery compactly generated presentable stable co-category is dualizable [Lurl8,
Prop D.7.2.3], Neeman’s example thus shows that the converse is false. The
existence of this large and interesting class of stable presentable co-categories
that are dualizable but not compactly generated forms part of the motiva-
tion behind Efimov’s continuous extensions of localizing invariants [Efi24],
see also [Efi22, Hoy18].

Let X be a locally compact Hausdorff space and let C be a compactly
generated stable oco-category (e.g. the unbounded derived oo-category of
a ring or the oo-category of spectra). This paper is concerned with the
following two questions about the co-category of C-valued sheaves on X:
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(1) How rare is it for Shv(X,C) to be compactly generated?
(2) How far is Shv(X,C) from being compactly generated in general?

With a relatively mild completeness assumption on X (see Section 1), we
answer question (2) by showing that a C-valued sheaf % on X is compact
as an object of Shv(X,C) if and only if it has compact support, compact
stalks, and is locally constant (Theorem 2.6).! Thus if X is for instance
a CW complex, the subcategory of compact objects Shv(X,C)¥ remembers
only the homotopy type of the compact path components of X. Therefore,
it is impossible to reconstruct the entire sheaf co-category Shv(X,C) from
this information.

In his 2022 ICM talk, Efimov mentions that the co-category of D(R)-
valued sheaves on a locally compact Hausdorff space X ‘is almost never com-
pactly generated (unless X is totally disconnected, like a Cantor set)’ [Efi22,
slide 13]. Modulo the same completeness assumption mentioned above, as a
corollary to our description of the compact objects of Shv(X,C), we verify
that the only locally compact Hausdorff spaces X with Shv(X,C) compactly
generated, for some nontrivial C, are the totally disconnected ones (Propo-
sition 3.1). This answers question (1).

Notation and conventions. Throughout this paper, we use the theory
of higher categories and higher algebra, an extensive textbook account of
which can be found in the work of Lurie [Lur09, Lurl7, Lurl8|. We will
also make frequent use of the six-functor formalism for derived sheaves on
locally compact Hausdorff spaces, as described classically by [Ver65, KS90|
and with general coefficients by [Vol23].

For convenience, we assume the existence of an uncountable Grothendieck
universe U of small sets and further Grothendieck universes U’ and U” of
large and very large sets respectively, such that & € U’ € U”. ‘Topological
space’ always implicitly refers to a small topological space, and similarly with
‘spectrum’. On the other hand, ‘oco-category’ refers to a large oo-category
unless otherwise stated. We let E:Roo denote the very large oo-category of
(large) co-categories.

Because we are dealing with sheaves on topological spaces, thinks it is
best to make a clear distinction between actual topological spaces on the
one hand, and on the other hand the objects of the oo-category S of ‘spaces’
in the sense of Lurie. Following the convention suggested in [CS23], we will
refer to the latter as anima.

Recall that an object C' in an oco-category C is said to be compact if the
presheaf of large anima D +— Mapg(C, D) preserves small filtered colimits.
We let C¥ C C denote the subcategory spanned by the compact objects.

1. C-HYPERCOMPLETE SPACES

Given a oo-category C and a topological space X, we let Shv(X,C) denote
the oo-category of C-valued sheaves on X in the sense of Lurie [Lur09]. That

ISince posting this paper on the arXiv, we became aware that Scholze has indicated a
proof of this statement for C = D(Z) in his notes on six-functor formalisms [Sch, Prop 7.11].
The approach taken there, which uses descent to deduce the general statement from the
case where X is a profinite set, is different from the one we take.



36 OSCAR BENDIX HARR
is, Shv(X,C) is the full subcategory of the presheaf co-category
Fun(Open(X)°?,C)

consisting of presheaves .7 satisfying the sheaf condition: for any open set
U C X and any open cover {U; — U };c1, the canonical map

Z(U) = limy Z(V)

is an equivalence, where V ranges over open sets V C U; C X, ¢ € I,
considered as a poset under inclusion. When C = § is the oo-category of
anima, we will abbreviate Shv(X) = Shv(X,S).

Remark 1.1. When C = D(R) is the unbounded derived oco-category of a
ring, the oco-category Shv(X, D(R)) is related to, but generally not the same
as, the derived oo-category D(Shv (X, R)) of the ordinary category of sheaves
of R-modules on X, which is the object studied (via its homotopy category)
by Neeman [NeeOl|. However, they do coincide under the completeness as-
sumption that we will impose on X below, see [Sch, Prop 7.1|. Since this
completeness assumption is verified when X is a topological manifold, our
results include those of Neeman.

We are interested in topological spaces satisfying the following condition:

Definition 1.2. Let C be a presentable co-category. A topological space
X is C-hypercomplete if the stalk functors z*: Shv(X,C) — C are jointly
conservative for x ranging over the points of X.

The reason for our choice of terminology is that X is S-hypercomplete
if and only if the 0-localic oo-topos Shv(X) has enough points, which is
equivalent to Shv(X) being hypercomplete as an oo-topos by Claim (6) in
[Lur09, § 6.5.4]. (This is not true for arbitrary oo-topoi, i.e. there are
hypercomplete oco-topoi that do not have enough points.) This subtlety,
whereby a morphism of sheaves may fail to be an equivalence even though
it is so on all stalks, does not occur for non-derived sheaves In fact, if C is
an n-category for n < oo, i.e. has (n — 1)-truncated mapping spaces, then
every topological space X is C-hypercomplete, see e.g. [Hai22a, Rem 1.8|.

We refer to [Lur09, § 6.5.4] for a discussion of why it is often preferable
to work with non-hypercomplete sheaves, rather than, say, imposing hyper-
completeness by replacing Shv(X) with its hypercompletion Shv(X)".

The following observation will provide us with a source of C-hypercomplete
spaces. First, recall that a presentable oco-category is compactly assembled
if, when viewed as an object of the oo-category of presentable co-categories
and left adjoints, it is a retract of a compactly generated oco-category.

Proposition 1.3. Let X be an S-hypercomplete topological space. Then X
is also C-hypercomplete for any compactly assembled co-category C.

Proof. Given x € X, let us write x3: Shv(X,C) — C to distinguish the C-
valued stalk functor from the S-valued stalk functor z*: Shv(X) = Shv(X,S) —
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S. For each x there is a commutative diagram

Shv(X)®C 225 SwcC

Shv(X,C) —=< . ¢

where the vertical maps are the equivalences of [Lurl8, Rem 1.3.1.6], see also
[Jan22, Lem B.3]. By assumption the maps z* are jointly conservative as
x varies over X, and it follows from [Hai22b, Lem 2.12] that the functors
x* ®C are also jointly conservative. But then the C-valued stalk functors zj
must also be jointly conservative. Il

The literature describes several classes of topological spaces that are S-
hypercomplete. Here is a list of some classes of topological spaces that have
this property:

e paracompact spaces that are locally of covering dimension < n for
some fixed n |Lur09, Cor 7.2.1.12],

e arbitrary CW complexes [Hoy16],

e finite-dimensional Heyting spaces [Lur09, Rem 7.2.4.18], and

e Alexandrov spaces associated to posets with binary joins |Aok23,
Exmp A.12].2

e spectral spaces (recalled in Subsection 3.2 below) of finite Krull di-
mension [CM21, Thm 3.12].

2. WHEN IS A SHEAF COMPACT?

Let C be a compactly generated stable co-category, e.g. the unbounded
derived oo-category D(R) of a ring R or the oco-category of spectra Sp.

Definition 2.1. Given a sheaf # € Shv(X,C), the support of .7 is the
subspace
supp.# ={r e X | %, #0} C X.

As in [NeeOl], our study of the compact objects of Shv(X,C) proceeds
from an analysis of their supports. By slightly adapting the proof of [Nee01,
Lem 1.4], we get the following description of the support of a compact sheaf:

Lemma 2.2. Let X be a C-hypercomplete locally compact Hausdorff space
and let # € Shv(X,C)“. Then the support supp F is compact.

Proof. We first show that supp.# is contained in a compact subset of X.
Consider the canonical map

(2.1) colimy (ju)jyF — Z,

where the colimit ranges over the poset of relatively compact open sets or-
dered by the rule U < V if U C V, and for each such U we have denoted
by ju: U — X the inclusion. Since X is locally compact Hausdorff, the
relatively compact open subsets of X form a basis for its topology. Hence

the map (2.1) is an equivalence of sheaves. Let ¢: .% = colimy (jy )i(ju)*F

2Contrary to what was stated in an earlier version of this article, not all Alexandrov
spaces are S-hypercomplete, see [Aok23, Exmp A.13].
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be some choice of inverse. Any finite union of relatively compact open sets is
again relatively compact open, so the poset of relatively compact open sets is
filtered. Hence compactness of .# implies that ¢ factors through (ju)ijj;-#
for some relatively compact open U, and it follows that supp .# is contained
in a compact subset U C X, as claimed.

By the above, it remains only to be seen that supp .% is closed, or equiv-
alently that its complement X \ supp .# is open. Suppose z € X \ supp Z.
Then we have a recollement fiber sequence

JI*F = F = i F,

where j: X \ {#} — X and i: {} — X are the inclusions, and since
x & supp # we have jj*.% ~ %. Since j is a fully faithful left adjoint, it
reflects compact objects, and we conclude that j*.% is again compact. But
then j*.7 is supported on a compact subset of X \ {z} by the above, which
must be closed as a subset of X, and hence z lies in the interior of X \supp .#
as desired. O

Notation 2.3. Let X be a topological space. Given E € C, we denote by
FEx the constant sheaf on X with value E.

Lemma 2.4. If f: X — Y s a proper map of locally compact Hausdorff
spaces, then the pullback functor f* preserves compact objects. In particular,
if X is a compact Hausdorff space and E € C¥, then Ex € Shv(X,C)“.

Proof. Since f is proper, the pullback f* is left adjoint to f, ~ fi, which
is itself left adjoint to f'. Hence f, preserves colimits, and it follows that
its left adjoint f* preserves compact objects. The statement about constant
sheaves follows by taking f to be the projection from X to a point. O

Remark 2.5. As pointed out by the anonymous referee, the previous lemma
is also true without our standing assumption that C is stable. Indeed, the
proof only used that f, preserves filtered colimits, and the fact that f is
proper means that this holds with coefficients in any (not necessarily stable)
compactly generated oco-category, see [Lur09, Rem 7.3.1.5, Thm 7.3.1.16] and
[Hai22b, Cor 3.11].

Our main result is the following description of the compact objects in

Shv(X,C):

Theorem 2.6. Let X be a C-hypercomplete locally compact Hausdorff space.
A sheaf F € Shv(X,C) is compact if and only if
(i) supp F is compact;
(ii) F is locally constant; and
(iii) F, € C¥ for each x € X.

In particular, note that conditions (i) and (ii) together imply that if .#
is compact, then the support of % must be a compact open subset of X.
Indeed, every locally constant sheaf .# € Shv(X,C) has open support. To
see this, suppose x € supp.%#. Since % is locally constant, there is some
open neighborhood U of z in which .% is constant. It follows in particular
that every y € U will have .%, ~ .%,, which is nonzero by assumption; hence
U C supp %, showing that supp.# is open.
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Proof. ‘Necessity.” Suppose we are given .% € Shv(X,C)¥. Lemma 2.2 shows
that .# satisfies (i). For each x € X the inclusion i,: {z} — X is proper
and the stalk .%, is the same as the pullback i%.%#, hence Lemma 2.4 shows
that .% satisfies (iii). It remains only to be seen that .# is locally constant.
Fix a point x € X, and let i, again denote the inclusion of this point into
X. Let E =1i%.% denote the stalk of .# at z. By [Lur09, Cor 7.1.5.6], there
is an equivalence E =~ colimy % (U), where U ranges over the poset of open
neighborhoods of x. As FE is compact, this equivalence must factor through
the canonical map .# (V) — colimy .Z (V) for some V, exhibiting F as a
retract of % (V). Pick a relatively compact open neighborhood W 3 z with
W C V, and let i: W < X denote the inclusion. As the canonical map

F (V) — FE factors through the restriction # (V) — (i*.7)(W) — F(W),

the map (i*.#)(W) — E also admits a section E — (¢*.%)(W). Viewing the
latter as a morphism from the constant presheaf with value F to i*.%, we
get an induced map o: Ey — i*.% of sheaves over W which by construction
induces an equivalence of stalks at z. Here both Fy;; and i*.% are compact, so
the cofiber 2 = cofib(o) is again compact. But then supp 2 is compact, so
W' = W \supp £ is open and 2, ~ 0 so x € W’ (see Figurefig:espace-etale).
Furthermore, o restricts to an equivalence of sheaves on W’ by construction,

/N /\ Ewr

E

F
/N = /\Q X
W_/
W' =W \ supp £
FIGURE 1. ‘Espace étale’ visualization of the fiber sequence

Ey— =2

s0 Z|w is equivalent to the constant sheaf on W’ with value E, as desired.

‘Sufficiency.” Let i: supp.# — X denote the inclusion. Recall from the
discussion following the statement of the theorem that since % is locally
constant, its support supp.%# is open. Thus ¢ is both proper and an open
immersion, and we therefore have that the functors i, ~ i, and i* ~ i' both
preserve compact objects. By replacing X with supp.#, we may therefore
assume that X is compact. Pick a finite collection of closed subsets Z; C X,
i =1,...,n, such that .# is constant in a neighborhood of each Z; and such
that X is covered by the interiors Z?. Descent (Corollary A.3) implies that
the canonical functor

Shv(X,C)
— —
— lima_, ( Shv(N7 Z;,C) - [, Shv(Zin Z5,0) = 11, Shv(Z;,0) )
— —
is an equivalence. Write I = {1,...,n} for short and put Z; = ﬂjEJ Z;
for each J C I. The canonical projection from Shv(X,C) to Shv(Z;,()
is the restriction map. By construction, we have that for each J C I, the
restriction .% |z, is constant with value a compact object, and hence compact
as an object of Shv(Z;,C) by the preceding lemma. According to [Lur09,

Lem 6.3.3.6], the identity functor id: Shv(X,C) — Shv(X,C) is the colimit
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of a diagram A<,, — Fun(Shv(X,C), Shv(X,C)) which sends the object [k] €
A<y, to the composition

- %
*k

T

“Shv(X,C) — [] Shv(Z,,€) ~ Shv < I1 ZJ,C> Ul Shv( X, 0),
|J|=k |J|=k

and so for any filtered system {%,},c4, we find

Map(Z, colimy ¥,) ~ limpyea., Map(.Z, (ix)«iy, colim %)
~ lim[k}EA;n Map(ir.Z, colim 4 i1%,,)
~ lim[k}eA;n colimg Map(i;,.Z,i;%x)
~ colimy I{m[k]€A<n Map (i}, 7, i;%)
~ colim 4 Map(f:ga)a

where the third equivalence uses that the restriction ;.7 is compact® and
the second-last equivalence uses that filtered colimits commute are left exact

in S. O

As an immediate corollary, we have:

Corollary 2.7. Let X be a C-hypercomplete locally compact Hausdorff space
whose quasicomponents are all non-compact. Then F € Shv(X,C)* if and
only if F ~ 0.

Note that this recovers Neeman’s result when X is a connected non-
compact manifold and C is the co-category D(Z).

As a further corollary to our theorem, we will describe the dualizable
objects in the co-category of sheaves on a locally compact Hausdorff space.
Suppose that C has the structure of a presentably monoidal oco-category
Cc® e Algg, (Prgab), meaning roughly that C has a coherently associative
and unital tensor product ® that commutes with colimits in each variable.
We let 1 € C denote the unit with respect to ®. Recall that an object D € C
is said to be right dualizable if there exists an object DV € C and a morphism
e: DV ® D — 1 such that for all E, F € C, the map

(2.2)
vy —®D v (F®e)o
Mapq(E,F®D") —— Map (E® D, F®D"®D) ——— Map.(E® D, F)

is an equivalence. Right dualizability is an algebraic smallness condition,
just as compactness is a purely categorical smallness condition. Indeed, if
the unit 1 is compact as an object of C, then by a well-known observation
every right dualizable object of C is compact. To see this, suppose D € C
is right dualizable and I — C, ¢ — Ej;, is a filtered diagram of objects in C.

3Indeed, we have already observed that .%|z, is compact for each J, and hence the
associated object i%.# in the product I1; Shv(Z;,C)is also compact according to [Lur09,
Lem 5.3.4.10].
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Then we have the following commutative diagram

Map (D, colimy E;) ——— colim; Map¢ (D, E;)

~ l/\d
~

Map.(1 ® D, colimy E;) ——— colim; Map¢(D, E;)

~ l/\/
~

Mape(1, (colimy E;) ® DY) —— colim; Map,(1, E; ® DY)

~
~ —
~

Mape(1, colim;(E; ® DV))

where the vertical maps in the top square are induced by the unit equiva-
lences D ~ 1® D, the vertical maps in the second square are the equivalences
of the form (2.2) coming from the assumption that D is dualizable, and the
lower triangle shows that the lowest straight horizontal arrow factors as post-
composition with the canonical equivalence

(colimy E;) ® DY ~ colimy(E; ® DY),
where we use that ® preserves colimits, followed by the canonical map
Map (1, colim;(E; ® DY)) — colim; Map,(1, E; ® DY),
which we know to be an equivalence by our assumption that 1 is compact.

Given a presentably monoidal stable co-category C® as above and a topo-
logical space X, we can equip also the oo-category of C-valued sheaves
Shv(X,C) with the structure of a presentably monoidal co-category, which
is roughly given by defining the tensor product of #,¥4 € Shv(X,C) to be
the sheafification of the presheaf

U Z(U)29(U).

(For a precise definition, see e.g. the discussion following [Vol23, Thm 1.3].)
The unit with respect to this tensor product is the constant sheaf 1x at
the unit 1 € C, and for each continuous map f:Y — X, the pullback
functor f*: Shv(X,C) — Shv(Y,C) can be canonically endowed with the
structure of a monoidal functor. In a similar vein to the question answered
by Theorem 2.6, one could ask for a classification of the dualizable objects
of Shv(X,C)® with respect to the monoidal structure defined above, when
X is a C-hypercomplete locally compact Hausdorff space. For an Ey-ring
R and C® = Mod% the associated category of module spectra, this question
has been answered in great generality by Martini and Wolf [MW22]; they
characterize the dualizable sheaves of Modg-modules on an arbitrary oo-
topos, and in particular they do not require a hypercompleteness assumption.
We extend their characterization to other coefficient categories, but assume
hypercompleteness in order to invoke Theorem 2.6:

Corollary 2.8 (cf. [MW22, Thm E|). Let C® be a presentably monoidal
stable co-category, whose underlying co-category is compactly generated and
such that the unit 1 € C is compact. Let X be a C-hypercomplete locally
compact Hausdorff space. With respect to the induced symmetric monoidal
structure on Shv(X,C), a sheaf F € Shv(X,C) is dualizable if and only if
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(i) F is locally constant, and
(ii) Fy is dualizable for each x € X.

Proof. ‘Sufficiency.” Let .# be a sheaf satisfying conditions (i) and (ii), and
let U be an open cover of X such that .|y is equivalent to a constant sheaf
for each U € U. Cech descent implies that Shv(X,C) is equivalent to the
limit limy Shv(V,C), as V runs over the poset of open sets V' such that V- C U
for some U € U. For each of these V' we have that .Z |y is equivalent to a
constant sheaf, which if V' # @ will be of the form 7*.%,, where 7: V — x
is the projection and %, is the stalk at any € V. But n* is monoidal
and hence preserves right dualizable objects, whence by dualizability of .%,
we know that .Z |y is right dualizable too. It now follows from the descent
property for dualizability [Lurl7, Prop 4.6.1.11] that .# is right dualizable
as an object of Shv(X,C).

‘Necessity.” Assume that .# is dualizable, and let z € X be some point.
The condition on the stalks is immediate, since pullback preserves dualizable
sheaves. We must show that .%# is locally constant in a neighborhood of x.
Pick a relatively compact open neighborhood U > z. Then .Z|; is again
dualizable, and since the monoidal unit Ry = 7*R € Shv(U,C) is compact,
it follows that Z|z is compact as an object of Shv(U,C). But then the
previous theorem implies that it must be locally constant on U, and hence
also on the subset U as desired. U

3. WHEN IS Shv(X,C) COMPACTLY GENERATED?

In this section, we prove the following characterization of those locally
compact Hausdorff spaces X that have Shv(X,C) compactly generated:

Proposition 3.1. Let C be a non-trivial compactly generated stable co-
category, and let X be a C-hypercomplete locally compact Hausdorff space.
Then Shv(X,C) is compactly generated if and only if X is totally discon-
nected.

3.1. Proof of the proposition. The proof will use the following observa-
tion:4

Lemma 3.2. Let C be a compactly generated stable oco-category, and let
{Ci}ier and {D;}icr be filtered systems in C indexed over the same poset I.

(1) Suppose that for each i € I, there is some j > i so that the transition
map C; — Cj factors through the zero object x. Then colimj C; ~ *.
If each C; is compact, then the converse holds.

41 am thankful to Maxime Ramzi for pointing out that an earlier incarnation of this
lemma, which appeared in the first arXiv version of this paper, was incorrect. The follow-
ing proof of the more restricted lemma was suggested to me by Jesper Grodal (and also
by Ramzi when he pointed out the error). Fortunately, the arguments in this paper only
ever required the current version of the lemma.
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(2) Suppose that for each comparable pairi < j in I there are horizontal
equivalences making

C; -5 Dy
L
C; --—=- Dj

commute, where the vertical maps are the transition maps. If each
C; is compact, then colimy C; ~ * if and only if colimy D; ~ .

Proof. Note that (2) follows from (1), since the existence of such commu-
tative squares implies that {C;}; has the vanishing property for transition
maps described in (1) if and only if {D;}; has that property.

For the first claim in (1), it suffices to show that Map (D, colim;e C;) is
contractible for each compact object D € C*. For this, first observe that

mo Mape (D, colim;e C;) = colim;er mo Map(D, C;) = ,

since our assumption guarantees that any homotopy class D — C; is identi-
fied D — * — C; after postcomposing with the transition map C; — Cj for
sufficiently large j > ¢, where we have also used that 7y preserves filtered
colimits. Applying the same argument for the compact object X" D, n > 1,
we find that

mn Mape (D, colim;er C;) = mo Mapg (X" D, colim;er C;)

vanishes also.
Assume now that each C; is compact and that colim; C; ~ . Then

colim;er Mape (Ci, Cj) ~ Map(Cj, colimjer Cj) = ,

and since my commutes with filtered colimits of anima, it follows that for
sufficiently large j > ¢ the transition map C; — C; is homotopic to C; —
* — Cj. O

Proof of Proposition 3.1. ‘Sufficiency.” The co-category of sheaves of anima
Shv(X) is compactly generated by [Lur09, Prop 6.5.4.4], and hence so is
Shv(X,C) ~ Shv(X) ® C according to [Lurl7, Lem 5.3.2.11].

‘Necessity.” Let x € X. We must show that if y € X lies in the same
connected component as X, then y = x. For this, pick an object C 22 0 in C
and let x,C denote the skyscraper sheaf at x with value C'. By assumption
there is a filtered system {.%,};cs of compact sheaves with colim; .%#; ~ z,C.
For each i, the fact that .%; is locally constant and that x and y lie in the
same connected component means there is a non-canonical equivalence of
stalks z*.%; ~ y*.%;. One should not expect to find a system of such non-
canonical equivalences assembling into a natural transformation, essentially
because the neighborhoods on which the .%; are constant could get smaller
and smaller as ¢ increases. Nevertheless, given a comparable pair ¢ < j in I,
one can pick equivalences making the diagram

(3.1) l ) l
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where the vertical maps are the transition maps. To see this, simply note
that the set of z € Z for which there is a commutative diagram

is a clopen subset of X, since any point admits a neighborhood on which
both .%; and .%; are constant. Since all of the .%; have compact stalks by
Theorem 2.6, it follows from Lemma 3.2 that the stalk (z.C), ~ colimj y*.%;
is nonzero. But X is Hausdorff, so this implies that y = x as desired. O

Remark 3.3. Lemma 3.2 is also true if C is any ordinary pointed category,
e.g. the category of abelian groups Ab. It is illuminating to consider why
the lemma holds in this concrete setting. Given a filtered system of abelian
groups {A;}icr, the associated colimit can be described as the quotient of
@, Ai by the subgroup consisting of elements a — ¢;;(a) where a € A; and
@ij: A; — Aj is the transition map for some j > . Clearly colim; A; = 0 is
implied by the assumption that for every ¢ € I, there is j > ¢ with ¢;; = 0.
For the partial converse, assume now that each A; is a compact object of
Ab, i.e. a finitely generated abelian group, and that colimy 4; = 0. Let
i € I and pick a generating set a1,...,a, € A;. Since colimy A; = 0, there
is ji,...,Jn with @;;, (as) = 0 for each s. Using that I is filtered, pick j € I
so that j > j, for each s. Then ¢;; = ¢j,;¥ij,(a) = 0 for each s, and hence
pij = 0.

3.2. Hausdorff schemes. A topological space is said to be locally spectral
if it is homeomorphic to the underlying space of a scheme, and spectral if this
scheme can be taken to be affine. A celebrated result of Hochster completely
characterizes these spaces in terms of point-set topology, and allows us to
give a conceptual rephrasing of Proposition 3.1.

Recall that a topological space X is quasi-separated if the compact open
subsets of X are closed under finite intersections and sober if every nonempty
irreducible closed subset A C X contains a unique point a € A such that

A ={a}.

Theorem 3.4 (Hochster [Hoc69, Thms 6,9]). A topological space X is spec-
tral if and only if X is compact, quasi-separated, and sober, and has the
property that its compact open subsets form a basis for its topology. Simi-
larly, X is locally spectral if it has an open cover X = Uy U where each
U €U 1is spectral.

Note that if X is Hausdorff, then it is automatically sober and quasi-
separated, so in this case X is spectral if and only if (i) it is compact and (ii)
the compact open subsets of X form a basis. Similarly, X is locally spectral
if and only if it satisfies (ii).

Unlike in point-set topology, compactly generated categories of sheaves
are abundant in algebraic geometry. Intuitively, there are very few locally
compact Hausdorff spaces which also appear in the category of schemes; in
the latter, these are exactly the zero-dimensional schemes. The point of
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Proposition 3.1 is that if X is locally compact Hausdorff and C is a nontriv-
ial compactly generated stable oo-category, then the oo-category of sheaves
Shv(X,C) will only very rarely be compactly generated. One way to em-
phasize this is to reinterpret our result as saying that this only occurs if X
belongs to the small class of Hausdorff spaces which happen to also appear
in the category of schemes:

Proposition 3.5. Let C be a nontrivial compactly generated stable co-category,
and let X be a C-hypercomplete locally compact Hausdorff space Then Shv(X,C)
is compactly generated if and only if X is the underlying space of a zero-
dimensional scheme.

Proof. By Hochster’s theorem (see also the discussion following Theorem 3.4)
and Proposition 3.1, it suffices to show that a locally compact Hausdorff
space is totally disconnected if and only if it admits a basis of open sets.

We first show that if the compact open subsets of X form a basis, then X
is totally disconnected. Note that every x € X has

(32) @=Nv
Usx

with U ranging over compact open neighborhoods of x. Indeed if y # =,
then since X is Hausdorff there is some open neighborhood V' > z with
y ¢ V, and since the compact open subsets of X form a basis, there is some
compact open U > x with U C V, and in particular y ¢ U. Since each
compact open neighborhood is clopen, the equality (3.2) shows that {z} is
a quasi-component in X, and hence that X is totally disconnected.

For the other direction, we must show that for every z € X and every
open neighborhood V' > z, there is a compact open W with z €¢ W C V.
Since X is locally compact, we may assume that V is relatively compact.
By assumption {z} = (5, U, with U ranging over clopen neighborhoods
of z. Since each of these U is in particular closed, we have that each U N9V
is compact. By the finite intersection property, it therefore follows from
Nus. UNOV = @ that for small enough clopen U 3 z, UNJV = @. Hence

UNV =UNYV is a compact open neighborhood of = contained in V, as
desired. O

3.3. When is Shv(X) compactly generated? Proposition 3.1 says that
the oco-category of sheaves on X with coefficients in a stable oco-category is
rarely compactly generated when X is a locally compact Hausdorff space. If
we had asked the same question ‘without coefficients,” this would have been
an easier observation:

Proposition 3.6. Let X be a quasi-separated topological space. The co-topos
Shv(X) of sheaves of anima on X is compactly generated if and only if the
sobrification of X is the underlying space of a scheme.

Proof. A topological space and its sobrification have the same frame of open
sets. Thus if the sobrification of X is the underlying space of a scheme, it
follows that the compact open subsets of X must form a basis for its topology.
But then Shv(X) is compactly generated by [Lur09, Prop 6.5.4.4]. For the
other direction, assume that Shv(X) is compactly generated. Then so is
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the frame U ~ 7<_; Shv(X) of open subsets of X by [Lur09, Cor 5.5.7.4].
But this means that X admits a basis of compact open sets, and hence the
sobrification of X is the underlying space of a scheme according to Hochster’s
theorem. O

APPENDIX A. DESCENT FOR MAPS WITH LOCAL SECTIONS

In this short appendix, we prove a descent lemma that was used in the
proof of Theorem 2.6, which is an immediate generalization of [SD72, Cor 4.1.6].

Let C be a presentable co-category and let f: X — Y be a continuous
map of topological spaces. Recall that the Cech nerve of f is the augmented
simplicial topological space X, with X_; =Y and p-simplices

Xp=X Xy - xy X

N———

p times
for p > 0, with face maps given by projections and degeneracy maps given
in the obvious way. More formally, if A, is the category of finite (pos-
sibly empty) ordinals and Top is the category of topological spaces, then
Xo: AS? — Top is defined by right Kan extending (f: X — Y): AP —
: - op op
Top along the inclusion functor AJ“SO C A7 -

Letting Shv*(—,C) denote the contravariant functor from 7op to Cat

given informally by X + Shv(X,C) on objects and f + f* on morphisms,
we then have the following useful definition:

Definition A.1. The map f is of C-descent type if the canonical functor
Shv(X,C) — lima Shv*(X,,C)
is an equivalence.

Let us say that f admits local sections if for every x € X, there is an open
set U 3 x such that the restriction f: f~1(U) — U admits a section.

Proposition A.2. If f admits local sections, then f is of C-descent type.

Proof. By ordinary Cech descent (see e.g. |[JT24, Cor B.5|), after possibly
passing to an open cover of X, we may assume that f admits a section
globally on X. Let €: Y — X be a choice of such a section. The section &
allows us to endow the Cech nerve X, with the structure of a split augmented
simplicial space, by defining the extra degeneracies h;: X, — Xpq1 by

hi(xo,...,xp) = (20, ..., Ti-1,6(Y), i, ..., Tp)
where y = f(z9) = --- = f(xp). It then follows that the split coaug-
mented cosimplicial oco-category Shv*(X,,C) is a limit diagram by |[Lur09,
Lem 6.1.3.16] U

Corollary A.3. Let {A;}icr be a collection of subsets of X such that X =
U; A2, where A? is the interior of A;. Then the canonical map [[; Ay = X
is of C-descent type.

Proof. The canonical map [[; 4; — X admits a section on A7 given by
A7 = Aj — [1; Ai, where the second map is the canonical injection. d
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RECONSTRUCTION OF A ONE-DIMENSIONAL SPACE
FROM THE DERIVED CATEGORY

OSCAR HARR

ABSTRACT. We prove that the homeomorphism type of a one-dimensional
CW complex is uniquely determined by its derived category of sheaves.
The proof is inspired by Bondal and Orlov’s non-commutative recon-
struction theorem for Fano and anti-Fano varieties. As in their proof,
a key role is played by the Serre functor. We also discuss the general
problem of finding Fourier—Mukai partners in topology.
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Let C = {X,Y, Z,...} be a category of geometric objects which comes with
some theory of sheaves encoded by a category-valued functor X +— D(X),
such that the pushforward f, = D(f) has a left adjoint f* for each morphism
f: X — Y in C. If C has a terminal object pt, then we can produce an
invariant of our geometric objects for every M € D(pt) by sending an object

X € C to the cohomology of X with coefficients in M
(1) X.X*M € D(pt),

where we abuse notation by writing X : X — pt for the unique map to the
terminal object. Many invariants in geometry and topology arise in such a

way, or by slight variations on this theme.

Date: September 7, 2025.
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In general, we expect the invariants X — X, X*M to lose information
about X. For instance, if C is the category of CW complexes and D =
D Shv(—; Ab) is the functor which sends a CW complex X to the category of
derived sheaves of abelian groups on X, then the invariant X — X, X*M =
C*(X; M) cannot tell the difference between homotopy equivalent CW com-
plexes

Going one categorical level up, we can also consider the entire category
D(X) as an invariant of X. This may be a much stronger invariant than
X = X, X*M, ie. it may remember much more information about X.
A maximal instance of this is given in algebraic geometry by the following
celebrated theorem:

Theorem (Bondal-Orlov [BOO01]). Let X be a smooth irreducible projective
variety such that either its canonical sheaf wx is ample or anti-ample, where
the latter means that w;(l 1s ample. IfY is a smooth algebraic variety with
Drerf(Y') ~ DPH(X) then Y is isomorphic to X.

The theorem of Bondal and Orlov fits into a well-developed story in
algebraic geometry, starting with the 1962 thesis of Gabriel [Gab62|. If
we have access to more structure on the category DPe™(Y), such as the
standard t-structure or the standard symmetric monoidal structure, then
Y can be reconstructed under very mild assumptions by work of Gabriel
and Rosenberg [Ros98| or Balmer [Bal02|, respectively. Without this ex-
tra information, examples are known of non-isomorphic varieties X and Y
(whose canonical sheaves are necessarily neither ample nor anti-ample) with
DrPerf(Y) ~ prerf(X) [Muk81, Orl97] and are predicted to exist in abundance
[BO95|.

In topology, analogous questions have received little attention.! One no-
table exception is the recent result of Aoki showing that a sober topological
space can be recovered from its derived category together with its pointwise
symmetric monoidal structure [Aok24|, giving a topological counterpart to
Balmer’s Tannakian reconstruction theorem in algebraic geometry.

The following question remains: how much does the derived category of
sheaves on a CW complex remember about the topological space if we forget
about monoidal structures? Trivially a zero-dimensional CW complex (i.e. a
discrete space) can be reconstructed from its derived category. In this article
we study the question in the simplest case where it is non-trivial, namely
one-dimensional CW complexes. For these we prove the following topological
pastiche of Bondal and Orlov’s theorem:

Theorem A. Let X be a one-dimensional locally finite CW complez, and
let Y be an arbitrary CW complex. Let k be a field and let Mody denote its
derived category. If Shv(X;Mody) and Shv(Y;Mody) are equivalent, then
Y is homeomorphic to X.

Remark 0.1. As in the theorem of Bondal and Orlov, we do not require the
equivalence Shv(X; Modg) ~ Shv(Y'; Mody) to be induced by a map X — Y.

1One reason for this might be that the category of derived sheaves on a topological
space (assumed to be locally compact and Hausdorff) is frighteningly large, in the sense
that it is almost never compactly generated [NeeOl, Har25, Efi25].
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The statement is therefore not just that the functor X — Shv(X;Mody) re-
flects equivalences whose source or target is a one-dimensional CW com-
plex, but that it creates such equivalences.? In fact, the functor X —
Shv(X;Mody) is conservative for all sober topological spaces X, since it
factors as

{sober topological spaces} — CA]g(Pr§’®) — Prk,

where the first functor is conservative by Aoki’s theorem and the second
functor is conservative by general nonsense, e.g. [Lurl7, Lem 3.2.2.7]. As
in algebraic geometry, the subtletly lies in the possible existence of exotic
equivalences of derived categories, which are not induced by maps of the
underlying geometric objects or by twisting with an invertible sheaf.

The proof of Theorem A is inspired by Bondal and Orlov’s proof. As
in their proof, we start by contemplating the inherent duality of the de-
rived category of a locally compact Hausdorff space, as exhibited by Verdier
[Ver65] and Lurie [Lurl7]. Part of this duality is captured by a Serre functor.
Bondal and Orlov use the Serre functor on the derived category of a variety
to identify those sheaves which are skyscrapers at closed points. The Serre
functor in topology is less generous, but it does allow us to identify singular
points (§ 3.1). By removing the singular points (categorically, by forming a
Verdier quotient), we are left with the derived category of a one-dimensional
manifold. We identify the components of this manifold and their homeo-
morphism types (§ 3.2), and finally use the gluing functor of the Verdier
sequence to reconstruct our space (§ 3.3).

0.1. Acknowledgements. I thank Shaul Barkan for stimulating conversa-
tions about the problem of finding non-homeomorphic CW complexes with
equivalent derived categories.

1. NOTATION AND TERMINOLOGY

In this article, the word “category” refers to an oco-category. With this
convention, a category in the classical sense is simply a category with the
property that all its mapping spaces are homotopy discrete. We let PlrsLt de-
note the category of presentable stable categories. The Lurie tensor product
endows this category with a symmetric monoidal structure Prft’(g). In gen-
eral, a symmetric monoidal category is written C® where C is its underlying
category and ® is notation for the symmetric monoidal structure.

We let Sp® denote the category of spectra, viewed as a symmetric monoidal
category under the smash product ®. Given a commutative algebra R €
CAlg(Sp), we let Modpr denote the category of R-modules. If R is a classical
ring, in the sense that R belongs to the heart Sp¥ = Ab of the standard t-
structure on spectra, then our convention means that Modg is the category
which is classically known as the derived category of R, and denoted D(R).

Given a topological space X, we abuse notation by also writing X: X —
pt for the projection from X to a point. Given a point z € X, we similarly

2Recall that a functor F: C — D is said to create I -shaped limits if it preserves and
reflects I-shaped limits, and for every universal cone j: I® — D lifts to a universal cone
j': I — C. Creating equivalences is the special case I = A°.
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abuse notation by writing x: pt — X for the map sending the unique point
in pt to X. We use the six-functor formalism for sheaves on locally compact
Hausdorff spaces. Given a stable category C, this theory assigns to every
map f: X = Y (of locally compact Hausdorff spaces) a pair of adjunctions

I f
Shv(X;C) Z Shv(Y;C) and Shv(X;C) _ L Shv(Y;C)
I f

where f, and f* are the usual pushforward and pullback, and f; and f' are the
so-called exceptional pushforward and pullback, respectively. These functors
satisfy various properties that make them amenable to calculation. Classical
references for this theory are [Ver65, KS90], and a good modern reference is
[Vol23b]. If C is the underlying category of a presentably symmetric monoidal
stable category C® € CAlg(PrsLt’®), we get two further kinds of functors in
the form of the pointwise symmetric monoidal structure ® on sheaves and
its internal Hom. If 1 € C is the monoidal unit, we write

(constant sheaf) 1y = X*1 € Shv(X;C),
which is the monoidal unit for the pointwise tensor product, and
(dualizing sheaf) wyx = X'1 € Shv(X;0).

2. PRELIMINARIES
We start by fixing some basic notions that will be needed for the proof.

2.1. One-dimensional spaces. Bondal and Orlov reconstruct varieties by
gradually reconstructing the graded coordinate rings of their canonical sheaves.
Since a smooth projective variety with ample or anti-ample canonical sheaf is
isomorphic to the projectivization of this coordinate ring [Sta25, Tag 01Q1],
this suffices to prove their reconstruction theorem. Whereas Bondal and
Orlov reconstruct varieties by extracting algebraic data from their derived
categories, we will reconstruct spaces by extracting combinatorial data from
their derived categories.

First, some pedantry. Recall that a CW complex is a Hausdorff space X
together with a stratification Xo C X3 C --- C X = Uk X by closed sub-
spaces, such that for each component e’(; (referred to as a cell) of the stratum
Xk \ Xp—1 there exists a continuous surjection @, : DF — E]; which restricts
to a homeomorphism int D* — £ and has ¢, (0D¥) C Xj_1. The filtration
is extra combinatorial structure on X, and are not at all uniquely determined
by its homeomorphism type. This is also true in the one-dimensional case:
there is no canonical CW complex structure on the circle or the real line
(see Figure 1). It is therefore hopeless to reconstruct a CW complex from its

FIGURE 1. Three CW complex structures on a circle
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derived category, which only depends on the underlying topological space.

Our reconstruction theorem concerns spaces that admit one-dimensional
CW complex structures. In order to emphasize this distinction between
structure and property, we will take the view that these spaces are equiva-
lently one-dimensional manifolds with singularities, & la [Baa73]. With this
as our starting point, we show that the line and the circle are the only ob-
structions for one-dimensional spaces to have canonical CW complex struc-
tures, and by modifying the definition of a CW complex slightly one can
describe the homeomorphism type of a one-dimensional space in terms of
well-defined combinatorial data. It is this combinatorial data which our re-
construction theorem extracts from the derived category.

Like ordinary manifolds, manifolds with singularities are defined in terms
of local charts. We recall the local charts in the one-dimensional case here.
For each k > 1, the open corolla with k legs, denoted Cory, is the union of
the non-negative parts of all the coordinate axes in R¥; that is,

(open corolla) Cory, = U Rso - e; C R,
1<i<k

where {e;}1<i< denotes the standard basis of R*. We will also put Corg =

{0}
N
7

FIGURE 2. From left to right: Cory, Cory, Corsg, and Corio

Definition 2.1. A one-dimensional space is a paracompact Hausdorff space
X such that every x € X has an open neighborhood which is homeomorphic
to the open corolla Corg, for some k£ which may depend on z.

Remark 2.2. By our definition, a zero-dimensional (i.e. discrete) space is
a special case of a one-dimensional space.

Note that a one-dimensional space is the same as a topological space
which admits the structure of a one-dimensional locally finite CW complex.
A CW complex structure on a one-dimensional space is a representation
of the space as a graph, determined by appropriately distributing vertices
around the space. Although a one-dimensional space without this structure
does not have vertices per se, it does retain the graph-theoretical notion of
valence:

Definition 2.3. The wvalence of a point x in a one-dimensional space X,
denoted v(z), is zero if x is an isolated point of X and

v(z) =rank Hy (X, X \ {z};Z) + 1

otherwise.
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FIGURE 3. A one-dimensional space with its singular locus
highlighted in red.

Alternatively, excision implies that the valence k = v(x) of a point x in a
one-dimensional space X is also the unique non-negative integer k£ such that
there is a pointed open map (Corg,0) — (X, x) which is a homeomorphism
onto its image.

The valence of a point classifies the type of singularity at that point. In
particular, a point has valence two if and only if it has an open neighborhood
homeomorphic to the real line; in other words, the points of valence two are
exactly the non-singular points. This gives rise to a canonical two-term
stratification of X, with open and closed stratum given as follows:

Definition 2.4. Let X be a one-dimensional space. The singular locus of
X, denoted Xgjng, is the closed subspace

Xsing ={r € X |v(z) #2} C X.

The (open) complement of this subspace is called the regular locus, and is
denoted X,eg; that is,

Xreg =X \ Xsing - X.

By the classification of one-dimensional manifolds, components E of the
regular locus X;eg come in five flavors:

(A) E~Rand £E=[0,1] (edge with two endpoints);
(B) E~Rand £ S! (edge with one multiplicity-two endpoint);
(C) E~Rand E=[0,1) (edge with one multiplicity-one endpoint);
(D) E=E=R (edge without endpoints); and
(E) E=FE=g! (isolated circle).
We relax the definition of a one-dimensional CW complex to allow all of
these flavors of cells:

Definition 2.5. A generalized one-dimensional CW complex is a Hausdorft
space X together with a discrete subset Xg C X such that every compo-
nent F, C X \ Xy admits a continuous surjection ¢,: A, — FE,, which
restricts to a homeomorphism int A, — E, and has ¢, (0A,) C Xo, where
Ay € {[0,1],[0,1),R, S'}. We refer to the choice of such an Xg C X as a
generalized CW structure on X.

Like an (ordinary) one-dimensional CW complex (aka a graph), the un-
derlying homeomorphism type of a generalized one-dimensional CW complex
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can be reconstructed from combinatorial data. Namely, if (X, Xy) is a gen-
eralized one-dimensional CW complex, we define an endpoint function

(2) 7T0(X\X0) L) PSQ(XO)

E, —— E, N Xo,

where P<2(Xp) denotes the set of subsets of X that are of cardinality less
than or equal to two.

Lemma 2.6. A generalized one-dimensional CW complex (X, X) is uniquely
determined by the tuple (Xo, mo(X \ Xo), ¥, W([)O’l),w%%), where £ is the endpoint
function (2), and W([)O’l) and 75 C mo(X \ Xo) are the subsets consisting of

components E C X \ Xo with E C X homeomorphic to the half-open interval
and the real line, respectively.

Proof. Let 75§2(X0) denote the set of totally ordered subsets of X of cardi-
nality less than or equal to two, and pick a lift £: mo(X \ Xo) — P<2(Xo).
The topological space X fits into a pushout diagram

Ugerox\x0) 942 — Xo

i J

Uperox\xo) A8 — X,

where
o Ap = [0,1]if /(E) has cardinality two, and {0,1} = dAg — X, maps
0 to the minimal element of /(E) and 1 to the maximal element;
o A =[0,1] if £(E) has cardinality one and E ¢ 7750’1), and {0,1} =
d[0,1] — Xy maps both 0 and 1 to the unique element of ¢(E);
o Ap = [0,1) if {(E) has cardinality one and E € W([)O’l), and {0} =
0[0,1) — X maps to the unique element of ¢(E);
o Ap =Rif Z(E) is empty and F € mg; and
o Ap = Stif Z(E) is empty and E & my.
Clearly the tuple (Xo, mo(X\Xo), ¢, 77([]0’1), i) also determines the generalized
CW structure on X. g

Definition 2.7. Let X be a one-dimensional space. A generalized CW
structure X, C X is said to refine another generalized CW structure Xy C X
if Xo C X{.. A generalized CW structure is minimal if it is minimal with
respect to refinement.

The benefit of working with the combinatorics of generalized one-dimensional
CW structures (as opposed to ordinary CW structures) is that they are
canonical, and hence we can hope to reconstruct them from the derived
category:

Proposition 2.8. Every one-dimensional space admits a unique minimal
generalized CW structure.

Proof. Let X be a one-dimensional space. We put Xo = X, and note
that this is a generalized CW structure on X by design. It is also the unique
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minimal one; indeed, one can check locally on a corolla Cory that every
generalized CW structure X, C Corj must contain the point 0 € Cory. O

2.2. Serre functors. As in [BOO1|, our proof starts by extracting infor-
mation from the Serre functor of the derived category. From a modern
perspective, Bondal and Orlov consider Serre functors via their action on
the compact objects of compactly generated stable categories. This will
not suffice for our purposes, since the derived category of a locally compact
Hausdorff space is almost never compactly generated and often contains no
non-trivial compact objects; indeed, specializing the results of [Har25] to one-
dimensional spaces, we find that the derived category of a one-dimensional
space is only compactly generated in the degenerate case where the space is
discrete (see Remark 2.2).

In [Lurl7|, Lurie upgrades Verdier’s duality theory for locally compact
Hausdorff spaces [Ver65| by proving that the derived category of such a space
is dualizable as an object of Pré@. This theorem implies that these derived
categories have non-trivial Serre functors, even in the absence of non-trivial
compact objects.

Let R € CAlg(Sp), and let
LinCaty, = Modygoa, (Pr)®#

denote the category of (presentable) R-linear stable categories equipped with
the R-linear tensor product @ g = ®moa,. We also denote by Funé (C, D) the
category of R-linear colimit-preserving functors from C to D, which functions
as an internal Hom with respect to ® g. A dualizable R-linear stable category
C has, by definition, an essentially unique duality datum

(3) (CY,ev: CY ®@r C — Modg, coev: Modgr — C @5 CY)
witnessing CV as a dual to C. This means in particular that the functor
(4) C ®rCY — Funk(C,0)

adjoint to C @ CY ®@g C L8, ¢ is an equivalence.

Example 2.9. Let X be a locally compact Hausdorff space. The sheaf
category Shv(X;Modpg) is a dualizable R-linear stable category by [Lurl?7,
Thm 5.5.5.1|. Recall that there is a canonical equivalence Shv(X;Modg)®r
Shv(Y;Modg) ~ Shv(X x Y;Modg), according to [Lur09, Prop 7.3.1.11]
and |Lurl7, Exmp 4.8.1.19]. Under this identification, an explicit duality
datum witnessing Shv(X; Modpg) as its own dual is given by the functors

Shv(X x X;Modg) ESN Shv(X;Modpg) X Modpg
and

Modg s Shv(X; Modg) =% Shv(X x X; Modpg),
where A: X — X x X is the diagonal inclusion.

Since the evaluation ev and coevaluation coev of a duality datum (3) are
both morphisms in LinCatg g, they admit R-linear right adjoints. We will
use the right adjoint of the evaluation functor to define the Serre functor
(cf. [Lurl8, Cons D.1.5.3]):
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Construction 2.10. Let C be a dualizable stable R-linear category, and
choose a duality datum (CV,ev,coev) for C. The Serre functor is the value
of the unit R € Modg under the functor
R ~
Modp == CV @rC~C@rC¥ = Funé(C,C),
where evf denotes the right adjoint of ev and the last map is the equiva-
lence (4).

As explained in [Lurl8, Rem 11.1.5.2|, the construction above recovers
Bondal and Orlov’s definition of Serre functors in the compactly generated
case.

Specializing to the case of sheaves on locally compact Hausdorff spaces,
we get:

Proposition 2.11. Let X be a locally compact Hausdorff space, and consider
the dualizable stable R-linear category Shv(X;Modg). The Serre functor is
given by

wx ® —: Shv(X;Modg) — Shv(X; Modg).

Proof. By Example 2.9, the Serre functor on Shv(X;Modg) is the value of
the unit 1 = R € Modg under the functor

Modg 5 Shv(X; Modg) 2% Shv(X x X; Modg)
~ Shv(X;Modg) ®pr Shv(X; Modpg).
Here the last identification is given by the Fourier—-Mukai functor
Shv(X x X;Modg) —— Fun(Shv(X;Modg), Shv(X;Modg))
F (p2)1(F @ pi(=)),

where p1,p2: X X X — X are the projections onto the first and second
coordinates, respectively. Hence the Serre functor is given by

(p2)1(AX'1 @ p—) =~ (p2)i(Awx @ pi-)
~ (p2)1Al(wx ® A*pi—)
~ Wy,

where the second equivalence is the projection formula and the last equiva-
lence is the identity p1 A = po A = id. O

Remark 2.12. Bondal and Orlov observe that the Serre functor on the
derived category of a smooth variety is given by tensoring with (a shift of)
the canonical sheaf, see Eq. (7) in [BO01|. The previous proposition is a
direct topological analog of this description.

Remark 2.13. The Serre functor on a dualizable stable R-linear cate-
gory does not depend on the R-linear structure. This follows from [Lurl?7,

Cor 4.6.5.14]. More broadly, Arinkin-Gaitsgory—Kazhdan—Raskin—Rozenblyum-—

Varshavsky have shown that if A € CAlg(Prk) is locally rigid, then an A-
linear stable category M € Mod4(Prk) is dualizable if and only if it is so

as an object of PrsLt, and duality data are related via the unit morphism

Sp — A, see [KNP24, Thm 4.3.1].
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On well-behaved spaces, the dualizing sheaf can be described more explic-
itly in terms of singular homology. Let us write Cy,(X;R) ~ R ® XX for
the homology of an co-groupoid X with coefficients in R.

Proposition 2.14. Let X be a locally compact Hausdorff space with dualiz-
ing sheaf wx.
(a) The stalk wx g, = x*wx at a point v € X is given by

cofib (Fc(Xa j!WU) — FC(X7 WX)) ,

where U = X \ {z} and j: U — X denotes the inclusion. (Recall
that T'o(X, —) = X1.)

(b) If X is locally of singular shape in the sense of |[Lurl7, Defn A.4.15],
then wx , s giwen by the local homology

Cu(X, X \ {z}; R) = cofib (C.(X \ {z}; R) — C.(X; R)).

Proof. Part (a) is the content of Remark 4.6.19 in [KNP24|. The statement in
(b) now follows from Lurie’s monodromy theorem [Lurl7, Thm A.1.15]. O

Remark 2.15. The purpose of the shape assumption in (a) is to ensure
that sheaf (co)homology agrees with singular (co)homology. For this, a much
milder assumption suffices. Namely, Petersen has shown that it is enough
for the space to be locally connected with respect to the coefficient ring
R assuming R is discrete [Pet22], and this has been extended to general
coefficient rings by [Vol23al.

2.3. Connected components of stable categories. In the proof of our
reconstruction theorem, we will need a way to extract the set of connected
components of a space from its derived category.

Definition 2.16. Let C be a stable category.

(i) Say that C is connected if whenever C ~ C; x Ca, then either C; or Co
is the trivial stable category.

(ii) A connected component of C is a maximal connected stable subcat-
egory of C. The collection of connected components of C is denoted
7Toc.

Remark 2.17. Note that in many other contexts, a category C is said to be
connected if the groupoid C[all™!] produced by inverting all morphisms in C
is connected, or in other words if any pair of objects in C is connected by a
zigzag of morphisms. If C is stable, this will always be true, since any pair of
objects is connected by the zero morphism. The definition we are working
with here is very different from this definition; indeed, it follows from the
results below that there are many stable categories which are not connected
in our sense.

Proposition 2.18. Let R € CAlg(Sp). The following are equivalent:

(i) The ring moR has no nontrivial idempotents.
(i1) R is indecomposable as a R-module.
(iii) R is indecomposable as a R-algebra.

(iv) The category Modp is connected.



60 OSCAR HARR

Proof. To see that (i) and (ii) are equivalent, observe that moR = my Homg(S, R) ~
mo Homp(R, R) and a nontrivial idempotent in the latter is exactly a non-
trivial retract of R as a R-module.

In order to see that conditions (ii)-(iv) are equivalent, consider the functors

R Mod%
Modp +2— CAlg(Modg) —%— CAlg(LinCaty ) —> LinCate g

lfgt

L
Prg

It now suffices to observe that each of these functors preserve and create
finite products. For @ this follows from [Lurl7, Cor 4.8.5.22| and |[Lurl8,
Lem D.3.5.5], and for the remaining functors it is general nonsense. O

Recall that a topological space X is said to be R-hypercomplete if the
stalk functors z*: Shv(X;Modr) — Modpg are jointly conservative as x
varies over points in X [Har25|. For example, a space which admits the
structure of a CW complex is R-hypercomplete for any choice of R [Hoy16].

Proposition 2.19. Let R € CAlg(Sp) be a ring such that moR has no non-
trivial idempotents, and let X be a locally compact Hausdorff space.

(a) The category Shv(X;Modg) is connected if and only if X is con-
nected.

(b) Assume that X is R-hypercomplete, and let 1o X denote the collection
of connected components of X. There is a bijection

(5) m0X — 7o Shv(X; Modpg)

given by sending a connected component Z C X to the essential image
of
ix: Shv(Z;Modg) — Shv(X;Modpg)

where i: Z — X is the inclusion.

Proof. We first prove (a). Assume first that X is not connected. Then
we can pick a separation X = U UV, with U and V open, disjoint, and
nonempty. It now follows from the sheaf condition that Shv(X;Modg) ~
Shv(U;Modgr) x Shv(V;Modpg), where neither factor is equivalent to the
trivial stable category. Thus Shv(X;Modpg) is not connected either. For the
opposite implication, assume that X is connected, and suppose

(6) Shv(X;Modg) ~ C; x Cy

with projection functors p;: Shv(X;Modg) — C; for i = 1,2. We must show
that either C; or Cy is trivial. Since the forgetful functor CAlg(Prl) — Prk
creates finite products, we can pick symmetric monoidal structures ®; and
®9 on C1 and Cy in such a way that the projections promote to symmetric
monoidal functors. It will therefore suffice to show that the unit 1x €
Shv(X; Modpg) projects to zero in either Cy or Cs.

From the decomposition (6), we get that

(7) 1x ~ I @ Fy,
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where F; projects to zero in Ci_;. We claim that F; and Fb are locally
constant sheaves. Since X is locally compact, it is enough to check this
upon restricting to a compact subset K of X. On K we again get 1x ~
Fi|x ® F3|k. Since 1k is a compact object of Shv(K;Modg) and compact
objects are closed under retracts, we get that Fi|x and Fs|x are compact as
well. It then follows from [Har25, Thm 2.6] that Fi|x and Fb|g are locally
constant, and since K was arbitrary this proves that F; and Fy are also
locally constant. In particular, the sheaves F} and F> have open supports.
Furthermore, since R is indecomposable as an R-module and R ~ z*1x ~
¥ Fy @ x*F5 for each x € X, we find that the supports of F} and F5, are
disjoint. But X = supplx = supp(Fi) U supp(F3), so without loss of
generality we can assume that supp(F)) = &. Since F} is locally constant,
this implies that F; ~ 0 as desired.
We now prove (b). We must first show that the essential image of

Shv(Z; Modg) — Shv(X;Modg)

is a mazximal connected subcategory of Shv(X; Modg), or in other words that

the map (5) is well-defined. Given a subspace A C X, we will abuse notation

by identifying Shv(A; Modr) with its essential image in Shv(X; Modg) under

(ordinary) pushforward. Suppose that Shv(Z; Modg) C C C Shv(X;Modg)

where C is again connected. We must show that Shv(Z; Modg) = C.
Because of our hypercompleteness assumption, the subcategory

Shv(Z;Modg) C Shv(X; Modg)

is equal to the full subcategory spanned by sheaves F' such that supp(F') C Z.
Suppose x € X \ Z. Since Z is a connected component of X, we can pick a
separation X = Uy UUs of X into disjoint nonempty open subsets such that
Z C Uy and z € Us. But then we get an equivalence

Shv(X; Modg) 2, Shv(U71: Mod ) x Shv(Un: Mod ),

where 4,: U, — X denote the inclusions, for »r = 1,2. Here the projection
i} restricts non-trivially to C because the latter contains Shv(Z; Modg). If
the projection i3 also restricted non-trivially to C, then this would induce a
non-trivial decomposition, which cannot exist by connectedness of C. Thus
i5 must be zero when restricted to C, and it follows in particular that x*
must be zero when restricted to C, i.e. that any F € C has supp F C Z.
Hence C = Shv(Z; Modpg).

It is also clear from our description of Shv(Z;Modg) C Shv(X;Modg)
that the map (5) is injective, so it only remains to be seen that it is surjective.
For this, let C C Shv(X;Modg) be a maximal connected subcategory. By a
similar argument to the one in the previous paragraph, one finds that

suppC ={x € X | 2*F ~ 0 for some F € C}

must be connected, otherwise a choice of separation would give rise to a non-
trivial decomposition of C. But then supp C it is contained in some connected
component Z C X, and clearly C C Shv(Z; Modg), finishing the proof. O
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3. PROOF OF THE RECONSTRUCTION THEOREM

Throughout this section, fix a ring R € CAlg(Sp) such that moR has no
non-trivial idempotents.

3.1. Reconstruction of the singular locus. We first show how to recon-
struct the singular locus of a one-dimensional space from its derived category.
This is the step where we extract information from the Serre functor.
Given a one-dimensional space X, it follows from Proposition 2.14 that
the stalk of wx at a point © € X of valence k is given by the local homology

YLROLif k> 1,

(8) Ci(X, X\ {x}; R) ~ C\(Cory, Cory \ {0}; R) ~ {R Fhk—0

where Cory, is the k-legged corolla and the first equivalence is excision. Since
the Serre functor S on Shv(X; Modg) is given by tensoring with the dualizing
sheaf according to Proposition 2.11, the calculation (8) suggests that S is
sensitive to singularities.

Definition 3.1. Let X be a one-dimensional space, and let k be a non-
negative integer different from two. A sheaf V' € Shv(X;Modg) is vertex-like
of valence k if it is indecomposable and satisfies

V, ifk=0
S V ~ Y Y
V) { YLVOE=1 " otherwise,

where S: Shv(X;Modg) — Shv(X;Modg) denotes the Serre functor on the
sheaf category Shv(X;Modpg).

Proposition 3.2. Let X be a one-dimensional space, and let k be a non-
negative integer different from two. The following are equivalent for V &
Shv(X; Modpg):

(a) The sheaf V is vertex-like of valence k;

(b) There is a point x € X of valence k such that V' is equivalent to the

skyscraper sheaf x, I for some indecomposable R-module I.
Proof. It follows from (8) and indecomposability of the skyscraper sheaves
x4 that (b) implies (a).
To see that (a) implies (b), suppose that V' € Shv(X;Modpg) is vertex-like

of valence k. Let y be an element of the support supp V. We set | = v(y) to
be the valence of y. Then the calculation (8) implies that

V, ifl=0
S(V)y = (V@wx)y =V, ®wxy { o -1 :
EVy@ , otherwise.

On the other hand, we have by assumption that
14 ifk=0
S(V), ~¢ 7 ’
V) {(zv@kl)y ~ XV PE-L otherwise.
Since V,, % 0 by assumption, this implies that [ = k. Thus suppV C {y €

X | v(y) = k} € Xging. In particular, supp V' is discrete, so by the sheaf
condition we must have
Ve P wvi

yesupp V
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Since V is indecomposable we find that supp V must consist of a single
point z. The functor z,: Modr — Shv(X;Modg) is fully faithful, and its
essential image consists of sheaves F' with supp F' C {z}. Hence we must
have V ~ z,I for some indecomposable R-module I as desired. O

Corollary 3.3. Let X be a one-dimensional space, and let i: Xgng — X
denote the inclusion of its singular locus. The essential image of

ix: Shv(Xging; Modg) — Shv(X; Modpg)
s equal to the localizing subcategory generated by vertez-like sheaves.

Notation 3.4. Given a one-dimensional space X, we let Shving(X;Modpg)
denote the essential image of the functor i, in the previous proposition.
We have shown that this subcategory of Shv(X;Modg) only depends on
Shv(X;Modpg) as a category.

Corollary 3.5. Let X be a one-dimensional space. There is a bijection
Xsing — TF()ShVSing (X; MOdR)
given by sending v € Xging to the full subcategory spanned by F' with supp F' C

{z}.

Remark 3.6. The closest analog to Proposition 3.2 in [BOO01]| is the char-
acterization of the skyscrapers concentrated at closed points. We recall this
here for contrast. Bondal and Orlov define a point object of a dualizable
stable R-linear category C with Serre functor S to be an object P € C such
that S(P) ~ ¥°P for some s, and such that the canonical map

R —— Hom(P, P)
ar——a-—

is an equivalence. If X is a smooth projective variety with ample or anti-
ample canonical sheaf and C is its derived category, Bondal and Orlov show
that the point objects of C are exactly the skyscraper sheaves of the form z, [
for I indecomposable and x a closed point. If C is the derived category of
a locally compact Hausdorff space, there are many point objects in C which
do not correspond to closed points. For instance, any interval [a,b] C R
gives rise to a point object ix1lj,y € Shv(R;Modg), where i: [a,b] — R
denotes the inclusion. We are not aware of a way to distinguish between
these point objects and the ones arising from actual points. Bondal and
Orlov’s proof crucially uses that tensoring with an ample sheaf is highly
nontrivial, and more specifically that any sheaf which is fixed by this action
must be supported on a finite collection of points, and there is no obvious
replacement for this in topology.

3.2. Reconstruction of the regular locus. Now that we have a handle
on the singular locus, reconstructing the regular locus is an easy application
of the theory of recollements and the results from § 2.3.

Proposition 3.7. Let X be a one-dimensional space, and let j: Xieg — X
denote the inclusion of its reqular locus. The essential image of

Jxt Shv(Xieg; Modpr) — Shv(X; Modpg)
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is equal to the full subcategory Shving (X; Modg)t C Shv(X; Modg) spanned
by sheaves F' such that Map(V, F') is contractible for each V' € Shvging(X; ModR).

Proof. Recall that Shvging(X; Modpg) is the essential image of the functor
i1 Shv(Xging; Modg) — Shv(X;Modg)

induced by the inclusion i: X, < X of the singular locus. The functors
ix and j, exhibit Shv(X;Modpg) as a recollement, and the characterization
of the open part

img (j.: Shv(Xyeq; Modg) — Shv(X;Modg))

as the right orthogonal complement of the closed part Shvging(X;Modpg) is
a standard fact about recollements, see [Lurl7, Prop A.8.20]. O

Notation 3.8. Given a one-dimensional space X, we let Shv,eq(X;Modpg)
denote the essential image of the functor j, in the previous proposition.

Again we have shown that this subcategory only depends on the category
Shv(X;Modpg).

Corollary 3.9. Let X be a one-dimensional space. There is a bijection
(9) 7T0Xreg — WQStheg (X; MOdR)

given by sending a component E of X,es to the full subcategory spanned by
F with supp F' C E.

We still need to be able to identify whether a given component £ € mo X g
is homeomorphic to the circle or to the real line. Here we have several
options, since there are several ways to tell the topological spaces S' and R
apart. One way to tell them apart is that S* is compact, which R is not:

Proposition 3.10. Let X be a one-dimensional space, and let m (Shvyeg(X; ModRg))
denote the collection of connected components C C Shvyeg(X; Modp) such
that C contains a nontrivial compact object. The bijection (9) restricts to a
bijection

T — 70 Shvyeg (X; Modg),
where 7'(‘%% C moXyeg 15 the subset of components E such that E = ECXis
homeomorphic to the real line.

Proof. This follows immediately from the previous corollary together with
[Har25, Thm 2.6]. O

3.3. Gluing everything back together. Given a one-dimensional space
X, the results of the previous subsections show how to reconstruct full sub-
categories

Shvging (X; Modg) and Shv,ee(X; Modg) € Shv(X; Modg),

such that if we denote the inclusions by i, and j. respectively, we have a
recollement

i* ji!
(10)  Shvging(X;Modr) —— Shv(X;Modgr) ——— Shvyes(X; Modg).
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Furthermore, these subcategories categories were used to reconstruct the sets
Xsing, T0Xreg, and W%R (in the notation of § 2.1).
Note that from the recollement we also have access to the gluing functor

(11) i* jx: Shvyeg(X; Modpr) — Shvging (X; Modpg),

which can be thought of informally as sending a sheaf on X,¢g to the “inter-
section” of its “closure” inside X with the singular locus X,e,. We use this
functor to retrieve the final piece of data needed to recover the homeomor-
phism type of X, namely the endpoint function

l: 7T0Xreg — PSQ(Xsing)
constructed in § 2.1.

Proposition 3.11. Let X be a one-dimensional space, let E € m9X,eg be a
component of the reqular locus which is homeomorphic to the real line, and let
z € Xging. Let Cp € Shvyeg(X;Modp) and Cp C Shvging (X; Modpr) denote
the corresponding connected components. Then x belongs to £(E) if and only

(12) Cr — Shvreg(X; Modg) 25 Shvging (X3 Modg) — Ca
s monzero, where the functor on the right is left adjoint to the inclusion.

Proof. Equivalently, we must show that x belongs to ¢(E) if and only if z* f
is nonzero, where f: E < X is the inclusion. Recall that z belongs to ¢(E)
if and only if  is contained in E, where E denotes the closure of E inside X.
Let g: E < E and h: E < X denote the inclusions. Thus we must show
that z € FE if and only if z*h.g, is nonzero. If x & FE, then z*h, ~ 0 since h
is a closed inclusion, so we can apply proper base change to the diagram

g —— F

b

pt —— X.

If on the other hand z € E, we can rewrite 2*h.g. ~ *gs. Assume first
that the pair (F,z) is homeomorphic to (R>g,0), so we can pick a cofinal
sequence of contractible open neighborhoods Uy D U1 DUy D --- 3> x in E
such that U, N E is also contractible (and in particular nonempty) for each
n. Then we have equivalences

(9:18)(Uo) —— (g:1E)(U1) —— (g:1g)(Us) — - --

3 3 3

]_E(UoﬁE) E—— ]_E(UlﬂE) E— ]_E(UgﬁE) —_—

Lo,k

R id R id R id o

showing that x*g,1g, which is computed as the colimit of the top row, is
equivalent to R, and since R % 0 this proves the claim. If on the other
hand (E, z) is homeomorphic to (S!,1). Then we can instead pick a cofinal
sequence of open neighborhoods Uy D Uy D Uy O --- 3 x with U, N E ~
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AT~

FIGURE 4. Two situations in which the edge E only has a
single endpoint x € Xing.

pt L pt. We now get a diagram as above, but with the bottom row replaced
by

ReRS ReRS ReRY .
showing that z*g,1p ~ R® R # 0. O

In the notation of § 2.1, it remains to determine the set 77([]0’1) C moXreg Of

components whose closure in X is homeomorphic to the half-open interval.
More specifically, it remains to separate these components from the only
other components that have exactly one endpoint, namely those components
E C Xy characterized by E = R and E 2 S1. see Figure 4. In order to
distinguish between these cases, we can again use that we know how to detect
compactness:

Proposition 3.12. Let X be a one-dimensional space, and let E € moXyeg
be a component of its reqular locus homeomorphic to the real line such that
((E) only contains a single point x. Let Cp C Shvyeg(X;Modg) and C, C
Shving (X; ModRr) denote the corresponding connected components, and let
Cg denote the lax limit over the Al-indexed diagram corresponding to this
functor coming from the functor (12). Then E = S' if and only if Cs
contains a nonzero compact object.

Proof. By |Lurl7, A.8.11|, the category C is equivalent to Shv(E;Modg),
where either E is homeomorphic either to S or [0,1). The result now follows
from [Har25, Thm 2.6] and the fact that S! is compact which [0,1) isnot. O

We now assemble all the results of this section into a proof of our main
theorem:

Proof of Theorem A. Suppose ®: Shv(Y;k) — Shv(X;k) is an equivalence
of categories. Also, let Sy and Sx denote the Serre functors on Shv(Y; k)
and Shv(X; k), respectively. We start by showing that Y is one-dimensional.
For this, we assume for contradiction that Y is not one-dimensional. Then
we can find F € Shv(Y;k) such that Sy (F) ~ %¢F for some d > 1, but
YFF ot F for any 0 # k € Z (e.g. take F = y.k for y an interior point of a
top-dimensional cell in V). Then

Sx®(F) ~ &(Sy(F)) ~ X4 (F),
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and a stalkwise consideration shows that we must have supp ®(F) C Xyeg-
From this we get Sx®(F) ~ X ®(F), whence X 1®(F) ~ ®(F). But then

Y4-1F ~ F, contradiction.
Since X and Y are both one-dimensional spaces, it follows from the results
of this section together with Lemma 2.6 that X and Y are homeomorphic.
O

Remark 3.13. With a little extra work, one can probably prove a recon-
struction result for one-dimensional spaces without the paracompactness as-
sumption in Definition 2.1. By the classification of non-paracompact one-
dimensional manifolds [Fro62|, one needs to distinguish between components
E C X,eg which are homeomorphic to the circle, the real line, the long line,
and the open long ray.

We have already shown how to recognize circle components using compact-
ness. Unlike the long line and the open long ray, the real line is second count-
able, which implies that Shv(R;Modg) has a countable set of Nj-compact
generators, see for instance [Cla25, Exmp 6.14|. On the other hand, if L is
the long line or the open long ray, then Shv(L; Modg) does not admit such a
generating set. Indeed, assume for contradiction that such a generating set
existed. We can pick a closed subspace S C L which is both uncountable
and discrete. Since the pullback functor Shv(L;Modgr) — Shv(S;Modpg)
is a strongly continuous localization, we find that Shv(S;Modg) must also
admit a countable set of Nj-compact generators.

We claim that a sheaf F' € Shv(S; Modg) is Ny-compact if and only supp F'
is countable and each stalk z*F' is X;-compact. Here the ‘if” direction follows
from the fact that Nj-compact objects are closed under countable sum. As
for ‘only if’, we can write

F =~ colimpcg(ir)«F|r,

where T ranges over the poset of countable subsets T' C S. This poset if N;-
filtered, so we find that F' must be a retract of (ir).F|r for some countable
subset T" C S, proving the support condition. The stalk condition follows
from the fact that taking stalks is strongly continuous.

If { F}, }3° were a countable set of Rj-compact generators for Shv(S; Modpg),
we would have that S = (JI° supp F;, But we have shown that each supp F},
is countable, and a countable union of countable sets is again countable,
contradiction.

4. FOURIER-MUKAI PARTNERS IN TOPOLOGY AND HOMOTOPY THEORY

Let C = {X,Y,Z,...} be a category of geometric objects equipped with
a sheaf theory functor X — D(X) as in the introduction.

Definition 4.1. Two objects X and Y € C are said to be Fourier—Mukai
partners if D(X) ~ D(Y).

The phenomenon of Fourier—-Mukai partners is well-studied in algebraic
geometry, but has not been considered in topology. The problem of find-
ing Fourier—-Mukai partners in topology is further related to an analogous
question in homotopy theory:
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Proposition 4.2. Let X andY be a compact topological spaces, both locally
of singular shape, and let R € CAlg(Sp). If X and Y are Fourier—Mukai
partners in the sense that

Shv(X;Modg) ~ Shv(Y;Modg),

then their underlying homotopy types |X| and |Y| are Fourier—Mukai part-
ners in the sense that

Fun(| X|, Perfr) ~ Fun(|Y|, Perf ),
where Perfp = Mod%, is the category of perfect R-modules.

Proof. By [Har25, Thm 2.6|, the full subcategory of compact objects
Shv(X;Modgr)¥ C Shv(X; Modg)

is spanned by sheaves F' which are locally constant and have 2*F' € Mod% =
Perfr for each x € X. Because of our shape assumption, Lurie’s mon-
odromy theorem |[Lurl7, Thm A.1.15] lets us identify this subcategory with
Fun(]X|, Mod%). O

Remark 4.3. The topological Fourier—-Mukai problem is interesting also for
topological spaces that are homotopy equivalent. One may as well look for
partners of this type, so as to remove the obstruction posed by the previous
proposition. For instance, by analogy with Bondal and Orlov’s conjecture
that smooth projective varieties that are related by a flop (a kind of con-
tractible surgery in algebraic geometry) are Fourier-Mukai partners, one
might hope to prove that h-cobordant manifolds are derived equivalent.

APPENDIX A. HOMOLOGY MANIFOLDS AND THE TOPOLOGICAL SERRE
FUNCTOR

Recall that a Fuclidean neighborhood retract X is said to be a homology
manifold of dimension d if

Hi(X, X\ {z};2) = {Z’ if i =d,

0, else,

for each x € X. The Serre functor lets us rephrase this condition in a
non-commutative way, i.e. referencing only the category Shv(X;Modyz):

Proposition A.1. Let X be a Euclidean neighborhood retract. Then X is
a homology manifold if and only if the Serre functor S: Shv(X;Modyz) —
Shv(X;Mody) is an equivalence.

Proof. 1t is well-known that X is a homology manifold if and only if wy is in-
vertible with respect to the pointwise tensor product, see [KNP24, Cor 4.6.20].
The result now follows immediately from the description of the Serre functor
given in Proposition 2.11. g

Remark A.2. Kontsevich showed that the derived category D(X) of a
scheme X remembers whether X is smooth. Namely, for a scheme X (over
a base field k) subject to some mild conditions, we have that X is smooth
if and only if the coevaluation functor Modyx — D(X) ®x D(X) is strongly
continuous [Kon05|. This is not a useful notion in topology: the derived cat-
egory of a locally compact Hausdorff space X is smooth if and only if X is
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finite discrete [Har23]. The proposition above provides a non-commutative
criterion for checking that a locally compact Hausdorff space is smooth, in
a topologically reasonable sense.
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STOKES THEOREM FOR SHEAVES AND MODULI
SPACES OF MANIFOLDS WITH A FREE BOUNDARY

OSCAR HARR

ABsTRACT. We lift the family Stokes theorem to a formula in the de-
rived category of the family’s base space. This makes it possible to
extract information about fiber integrals from information about the
cohomology of the fiber. We give an application of this to the cohomol-
ogy of moduli spaces with a free boundary, giving new relations among
k-classes and 1-classes.
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0. INTRODUCTION

Let p: E — B be a smooth submersion, where B is a closed connected
smooth manifold and F is a smooth manifold with boundary, and let i: OF <

Date: September 9, 2025.
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FE denote the inclusion of the boundary. An orientation of p is a smoothly
varying choice of orientation of every fiber E, = p~1(b), b € B. Integrating
differential forms against this fiberwise orientation defines fiber integration
maps

(0.1) / : (B, 0E) — Qir(B) and /  URITHOE) — QiR(B)

p P
where d is the fiber dimension of p, see [GHV72, Ch VII|. The family Stokes
theorem is a folklore formula relating fiber integration along the bundle p
and its associated boundary bundle pi (see e.g.[GHV72, Ch VII Prob 4]),

which we can express as a commutative diagram

Q" (OF)

(0.2) l \

QB OF) T Qir(B)

in the derived category of real vector spaces.

The usual family Stokes theorem is not sensitive to information about
the fiber of p. We correct this defect here by lifting (0.2) to a formula
in the derived category of sheaves of real vector spaces on the base space
B of the bundle. Recall that a map of topological spaces f: X — Y in-
duces two pushforward functors on derived categories of sheaves f, and
fi: D(Shv(X; Vectr)) — D(Shv(Y; Vectr)), defined as the total derived
functors of ordinary pushforward and compactly-supported pushforward, re-
spectively (see [KS90, Ch IT §§ 2.5-6]). We let Rx denote the constant sheaf
on X with value R.

Theorem A (Stokes theorem for sheaves). Let W — E 2 B be an oriented
fiber bundle, where W is a compact topological manifold with boundary. Let
i:OPE — E and j: E\ OPE — FE denote the inclusions of the fiberwise
boundary and interior, respectively.

There is a commutative diagram

Ed_l(pi)*RapE
(0.3) la Ly

2p i) Rp\ore — " Rs
pi
in the derived category of sheaves D(Shv(B; Vectr)), such that the derived
global sections of this diagram is equivalent to (0.2) if B happens to be a
closed smooth manifold.

Furthermore, the diagram (0.3) is natural in maps of bundles, in the sense
that if f: B' — B is a map of topological spaces, then applying the derived
pullback f*: D(Shv(B;Vectg)) — D(Shv(B’; Vectr)) to (0.3) produces a
commutative diagram which is canonically identified with the version of (0.3)
for the pullback bundle f~'E — B’.

By naturality of the diagram (0.3) in maps of bundles, taking stalks at
some b € B recovers the ordinary Stokes theorem for the fiber Wj. This
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makes it possible to extract properties of the fiber integration maps (0.1) in
terms of the cohomology of the fiber. We will give an application of this idea
to the study of characteristic classes of bundles of manifolds with boundary.
In fact, we prove a version of this theorem for sheaves with coefficients
in an arbitrary presentably symmetric monoidal stable co-category (Theo-
rem 2.29), provided that p is oriented with respect to this category. For
instance, the notion of orientation associated with spectral sheaves® is that
of a fiberwise stable framing. Given such an orientation of p, we get an ana-
log of (0.3) for stable cohomotopy. Crucially, however, our version of Stokes
theorem is already an improvement on the usual family Stokes theorem (that
is, for singular cohomology with coefficients in a field of characteristic zero
such as R or Q), and it is this case that is relevant for our application.

0.1. Characteristic classes of handlebody bundles. Let V;, = (S x
D"1% be a (2n + 1)-dimensional genus g handlebody. We consider the
topological group Diff *(V}) of orientation-preserving diffeomorphisms. We
will be especially interested in the cohomology H*(BDiff*(V,); k) of the
classifying space of Diff " (V;) with coefficients in some ring k, or equivalently
in characteristic classes

¢: (V, - EL B)— ((p) € H(B; k)

of smooth Vj-bundles. We also consider the closed subgroup Diff(V}, D) C
Diff (V,) of diffeomorphisms which restrict to the identity on a neighbor-
hood of a disk D = D?" C 8Vg.2 There are maps

(0.4) BDiff(V,, D) — BDiff(V,,1, D)

defined by extending diffeomorphisms by the identity. Letting g go to infinity
along the maps (0.4), there is also a scanning map

(0.5) colim, B Diff(V;, D) — QF¥°BSO(2n + 1)(n)

which is a homology equivalence for n = 1 according to a theorem whose
proof was sketched by Hatcher |[Hat12]| and which is proved in upcoming
work of Barkan—Steinebrunner (personal communication), and for n > 4
and by work of Botvinnik—Perlmutter [BP17|. (Here X (n) denotes the nth
stage of the Whitehead tower of X, see [HatO1, Exmp 4.20].) Computing
the cohomology of the right side of (0.5) is an easy task using standard tools
from homotopy theory, especially with coefficients in a field k. Together
with homological stability results of Hatcher-Wahl [HW10| and the author
[Har25b] in the n = 1 case and Perlmutter [Perl8| for n > 4, this allows
us to completely describe the cohomology H*(BDiff™(V;); k) in the stable
range, which is * < %(g —1)ifn=1and x < J(g—4)ifn>4.

Outside of this range, the cohomology of the moduli space B Diff™ (V)
remains largely mysterious.> We focus on the case of rational coefficients
k = Q. As an approximation to H*(BDiff*(V,);Q), one can consider the

lie. sheaves valued in the oo-category of spectra

2Up to conjugation, this subgroup does not depend on the choice of D, which we
therefore sweep under the rug for the purpose of exposition.

3For instance, the second cohomology of B Diff™(V}) is unknown outside the stable
range even for n = 1.
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image of the scanning map B Diff " (V) — Q5°E°BSO(2n+1)(n) in rational
cohomology. This is a subalgebra R*(V,) € H*(BDiff"(V,); Q), which we
refer to as the tautological algebra of V. It follows from [BP17, Cor D] that
it is generated by the k-classes (aka Miller—Morita—Mumford classes) pulled
back from the usual x-classes . € H*(B Diff 7 (9V,); Q) along the restriction
map
BDifft(V,) — BDifft(9V,),

which classifies the procedure of replacing a smooth Vy-bundle with its fiber-
wise boundary bundle. Describing R*(V,) is thus equivalent to determining
the relations between x-classes that are satisfied by every smooth V-bundle.
Recall that if W is an orientable closed smooth manifold, k is a commutative
ring, and ¢ € H*(BSO(d); k), the corresponding k-class is the characteristic
class defined by sending a smooth fiber bundle W — E 2 Bto

(0.6) el(p) = / «(TPE) € H4(B;k),

where TP F is the vertical tangent bundle of p. In order to study these classes,
we prove the following general theorem about fiber integration:

Theorem B (Theorem 4.2). Let W — E £ B be an oriented fiber bundle,
where W is a compact odd-dimensional topological manifold with boundary.
Leti: OPE — E denote its fiberwise boundary.

Suppose that H.(W;Q) is concentrated in odd degrees. If a € H*(OPE;Q)
is an even-degree cohomology class such that the fiber integral fpia 18 zero
and b € H*(E;Q) is arbitrary, then

(o) "

where g = dimg ]EIJ'*(I/V7 Q).

Note that the (2n + 1)-dimensional handlebody Vj satisfies the assump-
tions of the theorem if n is odd, and there is furthermore no conflict of nota-
tion in this case since the genus g is equal to the dimension dimg H,(Vy; Q).

Theorem B complements analogous results for bundles of even-dimensional
manifolds without boundary by Grigoriev [Gril7, Thm 2.7], Randal-Williams
[RW18, Thm 2.8|, and others. As with these results, Theorem B is well-
suited for studying the cohomology of moduli spaces of manifolds. We will
give examples of this in § 4.3.

The definition of the tautological algebra R*(V,) is inspired by the follow-
ing definition, which is originally due to Mumford [Mum83| in the surface
case. If W is a closed orientable smooth manifold, the tautological ring of W,
denoted R*(W), is the subalgebra R*(W) C H*(BDiff"(W); Q) generated
by the r-classes (0.6).

The first subtlety in defining tautological rings for manifolds with bound-
ary is that (0.6) no longer makes sense. Indeed, if W — E 2, Bis an oriented
smooth bundle where W is a compact smooth manifold with boundary, then
the associated fiber integration map is only defined on the relative coho-
mology H*(E,0PE; k), where OPE C E is the fiberwise boundary along p.
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A natural substitute for this definition is to use the Becker—Gottlieb trans-
fer trf,: H*(E;k) — H*(B;k) in lieu of the fiber integral in (0.6), thereby
defining the p-class

(0.7) pe(p) = trfy(c) € H*(B; k)

associated with ¢ € H*(BSO(d); k). This gives another potential definition
of the tautological algebra of a manifold with boundary, namely as the subal-
gebra of H*(B Diff " (W); Q) generated by the p-classes. In order to compare
this definition with the definition of the tautological algebra R*(V;) given
above, we prove:

Theorem C (Theorem 3.12). Let W< be a compact smooth orientable man-
ifold with boundary, let

r: BDifft (W) — BDiff " (oW)

denote the map induced by restriction to the boundary, and let k be a com-
mutative ring.

If ¢ € H*(BSO(d); k) is a stable class, in the sense that it lies in the
image of H*(BO; k) — H*(BSO(d); k), then

(0.8) ke = 0.

If in addition d is odd and 2 € k is either zero or invertible, then
(0.9) T Kee = 2p¢,

where e € HYBSO(d); k) is the Euler class.

Here (0.8) is a theorem of Giansiracusa and Tillmann [GT11]. We give a
new proof of this theorem using the ordinary family Stokes theorem, giving
further evidence of the usefulness of Stokes theorem for the study of moduli
spaces of manifolds with boundary. We take the opportunity to also answer
a question posed in the same article of Giansiracusa and Tillmann:

Theorem D (Theorem 5.2). Let g > 2 and let LMod, < Mod, denote the
Lagrangian mapping class group (see § 5). Then koiv1 = 0 € H*(LModg; Q)
for each i > 0.

Remark 0.1. Crucially, we do not limit ourselves to considering diffeomor-
phisms f € Diff " (W) which fix the boundary pointwise; in the language of
[Ebel3|, we consider bundles of manifolds with a free boundary as opposed
to a fized boundary. Indeed, if we insist on the condition that the boundary
is fixed, then there are no nontrivial bundles of this kind in the case of the
three-dimensional handlebody, as Hatcher has shown that the fibers of the
restriction map Diff (V) — Diff(0V}) are empty or contractible [Hat99].

0.2. Relation to the work of Randal-Williams. The proof of Theo-
rem B is closely inspired by the proof of the analogous theorem for closed
manifolds by Randal-Williams [RW18, Thm 2.8:

Theorem. Let W2 — E 2 B be an oriented fiber bundle, where W is
a closed even-dimensional topological manifold such that H°<*<*"(W;Q)
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is concentrated in odd degrees. Let d = dimg HO<*<*"(W;Q). If a,b €
H*(E;Q) have [,a= [ b=0 and |a| is even, then

([o)" o

We briefly review his strategy here. Let W — FE 2y B be an oriented
smooth bundle, where W is a closed manifold. Let Loc(E; Q) and Loc(B; Q)
denote the derived categories of local systems of Q-vector spaces on E and
B, respectively. The map p induces a functor

p«: Loc(E;Q) — Loc(B; Q),

namely the total derived functor of the usual pushforward of local systems.
Poincare duality for W can be generalized to a self-duality property for the
local system p,Qp, where Qg € Loc(F; Q) denotes the constant local system
at Q.

The fiber integration map fp: H*(E;Q) — H*~%(B;Q) has a straightfor-
ward interpretation in terms of the self-duality of p,Qp. This perspective
has the advantage that p,Qpg also contains cohomological information about
the fiber W; namely, the stalk (p.Qg), at some b € B is equivalent via a
Beck—Chevalley map to the cochains C*(Wjy; Q) of the fiber W, = p~1(b).
Informally, the local system p,Qp is C*(W;Q) parametrized over B via
the bundle p. It is by exploiting the tension between stalkwise information
and the total derived global sections functor I': Loc(B;Q) — Modg that
Randal-Williams proves the closed manifold counterpart to Theorem B.

If W is instead an orientable compact manifold with boundary, duality
becomes more subtle. Instead of a perfect pairing between the cohomology
and homology of W, Poincare duality now supplies a perfect pairing

H*(W;Z) ® Hy,(W,0W;Z) — Z.

In order to capture the interactions between W and W —or rather, between
the total space of a bundle and its fiberwise boundary—we work with the
derived categories of all sheaves, not just local systems. The key to proving
Theorem B is to give a kind of compatibility in this setting between the
duality of a smooth bundle and the duality of its fiberwise boundary. This is
exactly the content of our sheaf-theoretic enhancement of the family Stokes
theorem (Theorem A).

0.3. Organization of the article. In § 2, we prove the general form of The-
orem A. We have aimed to make this section as self-contained as possible by
giving a summary of the yoga of six operations for sheaves on locally com-
pact Hausdorff spaces, and the interpretation of orientations and integration
in this framework. A reader who is familiar with these ideas may wish to
jump directly to the proof of the Stokes theorem for sheaves in § 2.5. In § 3,
we prove Theorem C (including the theorem of Giansiracusa-Tillmann); in
§ 4, we prove Theorem B; and in § 5 we prove Theorem D.

0.4. Acknowledgements. I am deeply grateful to Oscar Randal-Williams
for many insightful (on his part) discussions and for guiding me to several
useful references on tautological rings, especially his article [RW18], which
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inspired this work. Many thanks to Johannes Ebert for pointing out that
a previous version of Theorem C was incorrect and suggesting the current
corrected version. I also thank Jesper Grodal, Florian Riedel, and Nathalie
Wahl for their helpful inputs, and the University of Cambridge for its hos-
pitality during the initial phase of this project.

1. NOTATION AND TERMINOLOGY

In this article, we use the word “category” to mean an oco-category. Thus
for us categories in the ordinary sense are simply those categories whose
mapping spaces are all homotopy discrete. We let PrSLt denote the category
of presentable stable categories, considered as a symmetric monoidal category
under the Lurie tensor product. We let Sp denote the category of spectra,
viewed as a symmetric monoidal category under the smash product ®. For a
commutative ring spectrum R € CAlg(Sp), we let Modg denote the (stable)
category of R-modules. If R is an ordinary commutative ring, our convention
means that the category that we write as Modpg is equal to the category
which classically is known as the derived category of R. We let S denote
the category of “spaces” in the sense of Lurie [Lur09], i.e. S is the category
of homotopy types/oo-groupoids. It is unfortunate that the word “space” is
overloaded in mathematics; we use it here both in the sense of Lurie and in
the sense of topological spaces. We have tried to make it clear when the word
is used in the second sense, e.g. by prepending the adjectives “topological” or
“(locally compact) Hausdorff,” or by appending “having the homeomorphism
type of a (locally finite) CW complex”.

We let pt denote the one-point topological space. Given a topological
space X and a point z € X, we will abuse notation by writing X: X — pt
for the unique map and z: pt — X for the map which picks out x.

2. STOKES THEOREM REVISITED

The family Stokes theorem computes the fiber integral of the exterior
derivative of a cohomology class on a family of manifolds with boundary in
terms of the fiber integral along the boundary family. The usual formula is
not sensitive to cohomological information about the fiber of the family. We
correct this defect here by lifting the family Stokes theorem to an equation in
the derived category of sheaves on the family’s base space, which interpolates
between Stokes theorem for the fiber and the family Stokes theorem for the
bundle.

2.1. Recollection I: Stokes theorem. Let M be an oriented d-dimensional
smooth compact manifold with boundary OM. Restricting differential forms
along the inclusion i: OM < M defines a map of de Rham chain complexes

Qir(M) — Qar(OM).

Furthermore, this map is an epimorphism in each degree e.g. by the existence
of collar neighborhoods and bump functions. Putting

Qir (M, OM) = ker(Qqr (M) — Qqr (9M),
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we get a long exact sequence of de Rham cohomology groups
5 HE OM) D HE (M, 0M) — HY (M) 55 Hig (0M)
The orientation of M induces an orientation of the boundary dM , referred
to as the Stokes orientation, by defining vy A -+ Avg_1 € A (TROM) to

be positively-oriented if u Avy A---Avg_q1 € /\d(TzM ) is positively-oriented,
where u is an outwards-pointing vector at x, see Figure 1.

FiGURE 1. The Stokes orientation on the boundary of an
oriented surface.

We then have the following avatar of Stokes theorem:

Theorem (Stokes theorem). If a € HgRl (OM) is a top-degree class, then

fuoe= e

Remark 2.1. Stokes theorem is often stated in terms of integrating the
exterior derivative of a (non-closed) differential form on M. The fact that
these statements are equivalent follows from the snake lemma description of
the connecting homomorphism . To see that the usual formulation implies
the statement above, let a € Hggl(aM ). Then we can pick a differential
form o € Q4 (OM) representing a, and a form 3 € ng_{l (M) with Blay = .
The exterior derivative df is a representative of da, and the theorem above

becomes
/ dp = / o= [ Blou,
M oM oM

which is the usual formulation of Stokes theorem. On the other hand, the
usual formulation of Stokes theorem follows from the statement given here
by well-definedness of the connecting homomorphism.

Folklore extends Stokes theorem to a family of manifolds parametrized
over a smooth base manifold B, see e.g. Problem 4 in [GHV72, Ch VII].
Namely, suppose M is as above and let p: F — B be a smooth submersion
with fiber M, equipped with a fiberwise orientation. Let i: 0P E < E denote
the inclusion of the fiberwise boundary, see Figure 2. Integrating differential
forms against the fiberwise orientation defines a fiber integration map

/ : Hip(E,0°E) — HizY(B).
p

Note that the composition pi is again a smooth submersion, and equipping
each fiber OM; with the Stokes orientation defines a fiberwise orientation of
pi. Thus we have an analogous fiber integration map

. Hip(OPE) — Hiz(B).

pt
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OM,
— S -
M,

b

FIGURE 2. Three fibers in a family of surfaces p: F — B,
with the fiberwise boundary 9P E highlighted in red.

The family-version of Stokes theorem relates these integrals:

Theorem (Family Stokes theorem). For each a € H (9PE),

/5a—/m

Our goal in the next few subsections is to provide a sheaf-theoretic inter-
pretation of the family Stokes theorem. This perspective has several advan-
tages over the usual approach via differential forms.

First, by de Rham’s theorem we can interpret the family Stokes theorem
above as having to do with singular cohomology with coefficients in R. Our
approach has no bias when it comes to coefficients, and hence we get a version
of the family Stokes theorem with coefficients in an arbitrary cohomology
theory, provided the family is oriented with respect to this theory. (E.g. we
get a family Stokes theorem in stable cohomotopy for families of manifolds
equipped with a fiberwise stable framing.)

Second, the sheaf-theoretic perspective works just as well for topological
manifolds, or even homology manifolds, as it does for smooth manifolds.

Most importantly (at least for our purposes), we improve the family Stokes
theorem even for singular cohomology with coefficients in R. In fact, this is
the case which is relevant for the main results of this article.

In order to explain our improvement, note that the usual Stokes theorem
can be seen as giving a commutative diagram in the derived category of
sheaves on a point:

QLB 0PE)

lg \j‘p‘
*+d—1 *
QU0 F) —— U (B),
pi
where § is the connectlng homomorphism associated to the fiber sequence

R(E,OPE) = QR(E) LN QiR (OPE). We show that this commutative di-
agram arises as the global sectlons of a commutative diagram in the derived
category of sheaves on the base space of the family. This latter commutative
diagram (“sheafy Stokes”) is richer than the usual formulation of Stokes the-
orem. In the opposite direction to taking global sections, taking stalks of our
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sheafy Stokes theorem recovers the usual Stokes theorem for each individual
fiber. The situation is summarized in the following heuristic diagram:

stalks global sections .
Stokes for the fiber +~~~ sheafy Stokes ~~~rrrnrnnny family Stokes

The dialectic between the two directions in this diagram allows us to prove
new quantitative results about fiber integration in terms of the cohomology
of the fiber.

We hope that the sheafy Stokes theorem will be useful beyond the appli-
cations in this article. Because of this, we have tried to make the exposition
as self-contained as possible.

2.2. Recollection II: The six operations in topology. We briefly recall
some basic facts about the six-functor formalism for derived sheaves on lo-
cally compact Hausdorff spaces. In its original form, this theory is due to
Verdier [Ver65]. The six-functor formalism has been enhanced and vastly
generalized by Lurie [Lurl7, Lurl4| and Volpe [Vol23]. We present here a
brief summary of the relevant parts of Volpe’s article. Textbook references
for the classical theory are [KS90, Ive86].

Convention 2.2. For the remainder of this subsection, fix a presentably
symmetric monoidal stable category C € CAlg(Prk).4

Given a topological space X, we consider the category of C-valued sheaves
Shv(X;C). Just as for sheaves valued in a 1-category, the category Shv(X;C)
is defined as the full subcategory of the presheaf category Fun(Open(X)°P,C)
spanned by those F' that satisfy the sheaf condition, meaning that for every
open U C X and every open cover {V;}ier of U, the canonical map

F(U) = limy F(V)

is an equivalence, where the limit ranges over open subsets V' C X such that
V CV; for some i € I. The inclusion Shv(X;C) — Fun(Open(X)°,C) has
a left adjoint, which we call sheafification.

Remark 2.3. If X is a sufficiently nice topological space (e.g. a CW com-
plex) and C = Mody, for some ordinary commutative ring k& € CAlg(Ab),
then the category Shv(X;Mody) is canonically equivalent to the derived
category D Shv(X; Modg) of the category of sheaves of ordinary k-modules
[Sch23, Prop 7.1|. In particular, the triangulated homotopy category of
Shv(X; Modyg) is equivalent to the triangulated category of derived sheaves
considered by pre-Lurie authors.

Observe that a map of topological spaces f: X — Y gives rise to a map
of posets f~1: Open(Y) — Open(X), defined by U — f~1(U). Restriction
along f~! defines a functor on presheaf categories Fun(Open(Y)°P,C) —
Fun(Open(X)°P,C). This functor preserves the sheaf condition, and hence
restricts to a pushforward functor

f«: Shv(X;C) — Shv(Y;C).

4For instance, one can take C to be the derived category Modg or Modz, or the category
of spectra Sp.
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For formal reasons this functor admits a left adjoint
f*: Shv(Y;C) — Shv(X;C),
which we refer to as pullback. We summarize the situation in the diagram
(2.1) Shv(X;C) %\ Shv(Y;C).
; T ;

If X and Y are both locally compact Hausdorff spaces, Verdier realized
that the adjunction (2.1) is complemented by a further adjunction

N
(2.2) Shv(X;C) L ” Shv(Y;C),
f!

where fi and f' are the so-called exceptional pushforward and exceptional
pullback, respectively. The exceptional pushforward fiF' of a sheaf F €
Shv(X;C) is defined by sending an open subset U C Y to the sections of F'
on f~Y(U) having compact support, in a way that can be made precise. The
functor f'is more mysterious, but will be described under the assumptions
relevant for our work in § 2.3 below. However, when X is a locally compact
Hausdorff space having the homeomorphism type of a CW complex®, we have
the following useful description of the stalks of the dualizing sheaf:

Proposition 2.4. Let X be a locally compact Hausdorff space having the
homeomorphism type of a CW complex, and suppose that C = Modg is the
category of modules over some commutative ring spectrum R € CAlg(Sp).
For each x € E, the stalk x*w, is equivalent to the local homology

Cy(X, X\ {z}; R) = cofib (57X \ {z} — T X) @ R.

Proof. This is a straightforward argument using the recollement fiber se-
quences, see [KNP24, Rem 4.6.19]. O

Crucially, the invariants classically studied by topologists can be described
in terms of these functors in the special case where f = X: X — pt is the
projection to a point, we have the following dictionary:

cohomology X X*M
homology X\ X'M

compactly supported cohomology X X*M
Borel-Moore homology X, X'M

where everything is understood to have coefficients in some M € C =

Shv(pt; C).
Notation 2.5. Given a topological space X and an object M, we write
My = X*M € Shv(X;C),

and refer to this sheaf as the constant sheaf (on X with value M ).

5Equivalently, assume X has the homeomorphism type of a locally finite CW complex.
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Notation 2.6. Let X be a locally compact Hausdorff space. We refer to
the functors X, and X;: Shv(X;C) — Shv(pt;C) ~ C as global sections and
compactly supported global sections, respectively. We also write

I(X,~) =X, and T.(X,—)=X.
Note that by definition I'( X, F') = F(X). We also write
I'U,—)=X.j* and T (X,—)=Xy"

for j: U < X the inclusion of some open subset.
If z: pt — X is the inclusion of a point, we refer to the functors x* and
z': Shv(X;C) — Shv(pt;C) ~ C as the stalk and costalk (at x), respectively.

Remark 2.7. To be precise, the invariants in the left column above should
be prepended by the word “sheaf”. For a general locally compact Hausdorff
space, sheaf cohomology does not agree with singular cohomology, although
there is always a comparison map. This comparison is an equivalence under
mild assumptions on the space, see e.g. |Pet22] for for the case where C =
Mody, is the derived category of an ordinary ring k. Since all the spaces that
we care about in the present article have the homeomorphism types of CW
complexes, it follows from Lurie’s monodromy theorem [Lurl7, Thm A.1.15]
that their sheaf-theoretical invariants agree with their singular invariants
with arbitrary coefficients, or in other words for C = Sp = Mods.

Most properties of the functors defined above are captured by saying
that they assemble into a six-functor formalism, as formalized by Liu—Zheng
|[LZ24] (see also [Man22| and [Sch23|). In order to state this, recall that a
category T with finite limits has an associated category of correspondences
Corr(T). This category has the same objects as T, but morphisms from X
to Y € T are instead given by correspondences

X/Z\Y

in 7T, with composition given by pullback
w
A 7z
X Y Y’

i.e. the composition of the two correspondences X < Z — Y and Y <«
7' — Y’ is given by the outer correspondence X <+ W — Y’. Note that
if T is a l-category, the category of correspondences will be a 2-category
since pullback is only defined up to canonical equivalence. The cartesian
symmetric monoidal structure induces a symmetric monoidal structure on
Corr(T), which we also write X.
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A (C-linear symmetric monoidal®) siz-functor formalism on T is a a sym-
metric monoidal functor

D: Corr(T)* — Mode(Prk)®e,
where ®¢ is the C-linear Lurie tensor product.

Theorem 2.8 (Lurie |Lurl4], Volpe [Vol23|). Let LCHaus denote the 1-
category of locally compact Hausdorff spaces and continuous maps. There is
a siz-functor formalism

Shv(—;C): Corr(LCHaus)* — Mod¢(Prk)®c

given on objects by X — Shv(X;C) and on morphisms by sending a corre-
spondence

7
1,70 = gf Shv(X;C) = Shv(Y:C).
X Y

Furthermore,

(1) There is a canonical natural transformation fi — f. which is an
equivalence if f is proper.

(2) Similarly, there is a canonical equivalence f* ~ f' if f is an open
inclusion.

(3) Let Shv*(—;C): LCHaus® — Modc (PrsLt) denote the restriction of
Shv(—;C) to the wide subcategory of Corr(LCHaus) which only has
morphisms of the form

X
YZARN
Y X.
Then Shv*(—;C) satisfies descent with respect to open covers, in the
sense that for every open cover {U;}icr of a space X, the canonical
map
Shv(X;C) — limy Shv*(U;C)

1s an equivalence, where the limit ranges over open subsets U C X
such that U C U; for some i € I.

(4) Let X be a locally compact Hausdorff space and let Z C X be a
closed subspace. Leti: Z — X denote the inclusion, and let j: U —
X denote the inclusion of the open complement U = X \ Z. The
pushforwards ix and j. are both fully faithful and exhibit Shv(X;C)
as the recollement of Shv(Z;C) and Shv(U;C) in the sense of [Lurl7,
Sec A.8|. In particular, there are fiber sequences

j1j*F - F — i,i*F and i4'F — F — j,j*F,

where the maps are the units and counits of the obvious adjunctions.

(5) The canonical map f'(1) @ f* — f' is an equivalence if f is a fiber
bundle whose fiber has the homeomorphism type of a CW complex,
or more generally if f is a shape submersion in the sense of [Vol23,
Defn 3.21].

6A general six-functor formalism is only required to be lax symmetric monoidal, to
encompass the case of etale sheaves.
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Notation 2.9. Given amap f: X — Y of locally compact Hausdorff spaces,
we write

wp = f'1 € Shv(X;0),
and refer to this sheaf as the relative dualizing sheaf (of f). If f=X: X —
pt is the projection to a point, we refer to wx simply as the dualizing sheaf
(of X).
Remark 2.10 (Base change and projection formula). We will frequently use
the following two consequences of the theorem above. Suppose

x 1,y
[
P

X —Y
is a pullback diagram in the category of locally compact Hausdorff spaces.
We can also interpret this as a Composition

/\
/\/\

Functoriality now gives a canonical equivalence

() fl ~ fig®
There is an analogous equivalence for pushforward and exceptional pullback.
These equivalences are collectively known as base change. Note that if f is
proper we recover Lurie’s proper base change theorem (¢')* f ~ f.g* [Lur09].
The correspondences

X X x X

— \ and — \
pt X X X xX

endow X with the structure of an algebra object in the category of corre-
spondences. (In fact, the symmetry of the category of correspondences imply
that X is canonically a Frobenius algebra in this category, but we will not go
into this here.) From the theorem above, it therefore follows that Shv(X;C)
is canonically a C-algebra, i.e. it has a symmetric monoidal structure com-
patible with the C-linear structure. This is the so-called pointwise tensor
product on sheaves, given informally by defining the tensor product F' ® G
of sheaves F' and G € Shv(X;C) to be the sheafification of the presheaf
U F(U)®G(U), for U C X open.
Given a map f: X — Y in C, the correspondence

(2.3) % \

Y X
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defines a map of algebras in the category of correspondences. Hence the
pullback functor f*: Shv(Y;C) — Shv(X;C) has a canonical symmetric
monoidal structure. The map of algebras (2.3) also endows X with a Y-
module structure, and with respect to this structure the correspondence

X

RN

X Y

is a map of Y-modules. Symmetric monoidality of our six-functor formalism
then means that the pushforward fi: Shv(X;C) — Shv(Y;C) is a map of
Shv(Y;C)-modules. In particular, we have a canonical equivalence

NfF®G) ~F® hHG

for sheaves F' € Shv(X;C) and G € Shv(Y;C); this equivalence is called the
projection formula.

Remark 2.11. By the definition of Mod¢ (PrSLt), a commutative algebra
C® e CAlg (Modc (Prft)) also has an internal Hom, i.e. a right adjoint
to the tensor product. We denote the internal Hom corresponding to the
pointwise tensor product on Shv(X;C) by Homy.

The projection formulae from the previous remark then give rise to canon-
ical equivalences

(24) f*MX(F> f'G) ZMY(ﬁF’ G)v and
(2.5) f'Homy (G, G") ~ Homy (f*G, f'G')

for a map f: X — Y and sheaves G and G’ € Shv(Y;C) and F € Shv(X;()
[Vol23, Prop 6.12].

2.3. Orientations. In order to have a well-defined notion of integration,
one first needs to choose some orientation. In the setting of sheaves, this is
captured by the following definition:

Definition 2.12. Let W¢ — E & B be a fiber bundle, where W is a
topological manifold with OW = @&. Assume that B is locally compact
Hausdorff. A C-orientation of p is an equivalence

Edl E l> Wp-
If on the other hand OW # @&, a C-orientation is defined to be an orientation
of the associated interior bundle W\ 0W — E\ OPE — B.
If C = Modp, is the category of modules over a commutative ring spectrum

R € CAlg(Sp), we will abbreviate by referring to a Mod g-orientation simply
as an R-orientation.

In the remainder of this section, we will compare the definition given above
with classical notions of orientation.

2.3.1. Smooth submersions. In the smooth case, recall that a smooth sub-
mersion p: £ — B has an associated vertical tangent bundle TPE on E,
defined by the exact sequence

0— TPE - TE 22 p*(TB) - 0
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of vector bundles. That is, TY E C T, F is the subspace consisting of vectors
that are tangent to the fiber. Classically, the notion of an orientation of
p is defined in terms of the vertical tangent bundle TPE. The equivalence
between the classical notion of orientation and Definition 2.12 is then pro-
vided by Volpe’s version of relative Atiyah duality, which we state here for
completeness.

Before stating Volpe’s theorem, we need will need a construction. Given
a paracompact Hausdorff space X, Volpe defines a Thom functor

Th: Vect§ — Pic (Shv(X;Sp)),

natural in X [Vol23|. Here Vectx is the symmetric monoidal groupoid of real
vector bundles over X (under direct sum) and Vect§’ is its group completion,
and Pic (Shv(X;Sp)) C Shv(X;Sp) is the Picard subgroupoid of the sheaf
category, i.e. the (non-full) subcategory on invertible sheaves (with respect
to the pointwise tensor product) and equivalences between these. Informally,
the Thom functor is defined by sending a vector bundle classified by a map
X — BGL4(R) ~ BO(d) to its underlying stable spherical fibration.
The following is [Vol23, Thm 7.11]:

Theorem 2.13 (relative Atiyah duality). Let p: E — B be a smooth sub-
mersion between smooth closed manifolds.
There is a canonical equivalence

wp ~ Th(-TPE) ® 1E.

It is well-known that the notion of vertical tangent bundles

2.3.2. Bundles of topological manifolds. We now deal more generally with
the topological case. Here the classical notion of an orientation can also be
phrased in terms of vertical tangent bundles.

Definition 2.14. Let W — E 2 B be a fiber bundle, where W is a topo-
logical manifold. The vertical tangent microbundle of p, denoted TPE), is the
microbundle

(26) (EXBE,ﬂ'liEXBE%E,A:E%EXBE),
where 71 is the projection onto the first factor and A is the diagonal inclusion.

By the Kister—Mazur, the vertical tangent microbundle TP E corresponds
to an essentially unique R%bundle on E, where d is the dimension of W
[Kis64]. Namely, there is an open neighborhood U of the diagonal in Exp E
such that the restriction 71 : U — F is an R? bundle, with zero section given
by A.

The key to comparing Definition 2.12 with classical notions of orientations
is the following calculation, done for smooth s:

Theorem 2.15. Let W — E 2 B be a fiber bundle, where W is a topological
manifold. Let A: E — E xpg E be the diagonal inclusion.

(a) There is a canonical equivalence Hom(w,, 1) ~ A'lpy 5.
(b) If OW = @, then wy, is invertible and w, ' = Mgy,



88 OSCAR HARR

Proof. Let mo: E xp ' — FE denote the projection onto the second factor.
We start by proving (a). By [Vol23, Lem 3.24|, the pullback functors p* and
75 both have left adjoints, which we denote py and (m2)4 respectively. In
the language of [HM24|, the map p is suave. Lemma 4.5.6 in [HM24| gives
an equivalence
Wp >~ (WQ)#Ag]_.

(This is a completely formal calculation, true for a suave map in any six-
functor formalism.) Using the projection formula (see Remark 2.11) and the
smooth projection formula [Vol23, Cor 3.26], we then calculate

HOIH((TFQ)#A!]_E, ]—E) ~ (ﬂg)*H0m<A!1E,7r;1E)
~ (m2).AHom(1p, ALy 1)
~ Alpy,n,

where the last equivalence uses that mo A = id.

In (b), the claim that w, = p'1 is invertible is local on B, and for this we
may therefore assume that p is a trivial fiber bundle. But then we may even
assume that p is the projection from W to a point by [Vol23, Prop 6.16].
The statement is again local on W, and thus follows from the case W = R¢,
where it is [Vol23, Prop 6.18|. But if w), is invertible, then its inverse must
be given by Hom(wy, 1E). O

Remark 2.16. Let X be a locally compact Hausdorff space. A sheaf F €
Shv(X;C) is invertible if and only if F' is locally constant and has invertible
stalks. This is due to [MW22] if C = Modp, is the category of modules over
a commutative ring spectrum R € CAlg(Sp), and to [Har25a] in the general
case.

Corollary 2.17. Let W — E 5 Bbea fiber bundle, where W is a topolog-
ical manifold without boundary. Let A: E — E xp E denote the diagonal
inclusion. There is a canonical equivalence

Map:(ZdlE, wp) Mapg(A!lEXBE, E_dlE),

where we denote by Map™(F, G) C Map(F, Q) the subspace spanned by equiv-
alences. That is, the space of orientations of p is canonically equivalent to
the space of equivalences A!1E><BE = ndy .

Remark 2.18. An equivalence A'lgy BE 2y 27915 is the sheaf-theoretic
incarnation of a Thom class for the microbundle TPFE. Indeed, assume that
B has the homeomorphism type of a CW complex and that C = Modpg is
the category of modules over a commutative ring spectrum R € CAlg(Sp).
An argument using recollements (as in [KNP24, Rem 4.6.19]) and Lurie’s
monodromy theorem [Lurl7, Thm A.1.15] shows that Alp, »E 1s the sheafi-
fication of the presheaf

(2.7) U Cp= ' (U),p~ (U)\ (A(E) Np~ ' (U)) : R),

see e.g. [Ive86, p 333]. By excision, we can replace E xp E with the
neighborhood V' O A(E) supplied by the Kister—-Mazur theorem, and the
sheafification of (2.7) is then the local system given informally by b —

C(Vy, Vi \ {b}; R); an equivalence between this local system and =1
is precisely a Thom class for the R%bundle m;: V — E.
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It follows from this description that a Z-orientation of a fiber bundle p
(as in Definition 2.12) is the same as an orientation of p in the usual sense,
i.e. a coherent choice of orientations of the vertical tangent spaces. On the
other hand, an S-orientation is a fiberwise stable framing of p, or in other
words a reduction of the structure group for the map E — B Top(d) — BG
classifying the underlying stable spherical fibration of TPFE along the map
BSG — BG, where BTop(d), BG = colim, BhAut(S"), and BSG =
colim,, BhAut*(S™) are the classifying spaces for R%-bundles, stable spher-
ical fibrations, and oriented stable spherical fibrations respectively.

2.4. Integration. We can now define the notion of integration with coeffi-
cients in the category C.

Construction 2.19. Let W be a closed topological manifold, and let W —
E 2 B be a fiber bundle such that B is locally compact Hausdorff. Suppose
that

0: 241 B = Wp

is an orientation of p. We define the map

(2.8) /d@: pXp — 15
p
to be the composite of p.0: p,X%1y = Psp = p«p'lp and the counit
pp'lp — 1p, where we have used that W is compact (or in other words
that p is proper) to get a canonical identification p; — p,.
By abuse of notation, we also let

(2.9) /daz YE1p — B,

p
denote the map defined by applying the global sections functor I'( B, —) = B,
to (2.8).

Remark 2.20. Given an oriented fiber bundle W — E % B with W a
closed topological manifold and B a space having the homeomorphism type
of a CW complex, there is a fiber integration map

/: H*(E;Z) — H*4B;7),
p

generalizing the fiber integration in de Rham cohomology for smooth sub-
mersions [Gril7, Defn 3.5], see also [Boa70|. If B is also locally compact (i.e.
if it has the homeomorphism type of a locally finite CW complex), this map
agrees with the one we have defined. Indeed, Grigoriev defines fiber inte-
gration using the Leray—Serre spectral sequence, which is the Grothendieck
spectral sequence for the composition of B, = T'(B,—) and p.. Passing
to parametrized homotopy groups in our construction exactly recovers his
definition.

In the non-closed case, we need the following lemma:

Lemma 2.21. Let W¢ be a manifold with boundary, and let W — E 2,
B be a smooth fiber bundle such that B is locally compact Hausdorff. Let
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j: E\ OPE — E denote the inclusion of the fiberwise interior. Then the
counit map
Jiitwp = wp

18 an equivalence.
Proof. By Theorem 2.8, there is a fiber sequence

3Pl = p'lp = iiplp,
where i: 0P — FE is the inclusion of the fiberwise boundary. We must show
that i,i*p'lp ~ 0. Since F has the homeomorphism type of a CW complex,
it follows from [Hoyl6] that it suffices to show that the stalk z*i,i*p'lp
vanishes for every x € E. By proper base change, it is enough to show
that z*p'lg ~ 0 for every & € OPE. This is a local condition, so we can
assume that p = p;: B x W — B is a projection. Then p'lp =~ p}(ww) by
[Vol23, Prop 6.16]. Thus we are reduced to the absolute statement z*wy, for
x € OW. Since this statement is local, we may even assume that

W=H"={(z1,...,2n) € R" |z, >0} and =z =0.

But the statement now follows from Proposition 2.4, since H" \ {0} — H"
is a homotopy equivalence. O

Remark 2.22. In the absolute case where p = W: W — pt is the projection
to a point, the lemma above recovers the useful calculation wy =~ jiwyn g,
where j: W\ OW < W is the inclusion of the interior [Ive86, p. 298|. That
is, the dualizing sheaf of W is the dualizing sheaf of its interior extended by
zero to all of W.

Using the previous lemma, we can now define fiber integration for a family
of manifolds with boundary.

Construction 2.23. Let W¢ be a compact topological manifold with bound-

ary, and let W — F 2, B be a fiber bundle such that B is locally compact
Hausdorff.
Let j: E\OPE — E denote inclusion of the fiberwise interior, and suppose
that
0: EdlE\apE l) Wpj
is an orientation of the interior bundle pj. We define the map

(2.10) /de; Py — 15
p

to be the composite of
P J1x1E Tj!@) DxJ1Wpj o PsWp

and the counit p.w, = p«p'lp — 1p, where we have also used that p is

proper to get a canonical identification pi = p,.
By abuse of notation, we also let

(2.11) /d@: YE,jlp — B,y
p

denote the map defined by applying the global sections functor I'( B, —) = B,
to (2.10).
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Remark 2.24. Given b € B, the proper base change lets us identify the
stalk b* of the map (2.10) with a map

ZdF(Wlh j!llVVb\aWb) - 17

where j': Wy, \ W}, — W} is the inclusion of the interior. If C = Mody is
the derived category of R, Lurie’s monodromy theorem [Lurl7, Thm A.1.15]
lets us identify this with a map

»AC* (W, OWy; R) — R

implementing integration for Wj. The same theorem lets us identify (2.11)
with a map

»IC*(E,0PE;R) — C*(B;R)
implementing fiber integration.

2.5. The sheafy Stokes theorem. In the classical (family) Stokes theo-
rem described in § 2.1, one must first define the Stokes orientation on the
boundary, and then prove the theorem by calculating integrals (essentially
by repeated application of the fundamental theorem of calculus). In our
sheafy Stokes theorem, all the mathematical work goes towards defining the
sheaf-theoretic Stokes orientation, which then gives rise to our sheafy Stokes
theorem by construction.

Let X be a topological space, and let i: Z < X and j: U < X denote
the inclusions of a closed subspace Z and its complement U = X \ Z. We
have the recollement

i* J

(2.12) Shv(Z;C) —— Shv(X;C) ——— Shv(U;C).

In particular, we have the functors
i*j, and i'ji: Shv(U;C) — Shv(Z;C).

Conceptually, the gluing functor ¢*j, is a sheaf-theoretic incarnation of taking
the closure of a subset A C U inside X, and then intersecting with Z. The
functor 4'ji is more mysterious, but is related to the procedure of interior
multiplication by a normal tensor field to Z. We will use this functor to
produce the Stokes orientation.

Convention 2.25. Throughout this subsection, let W¢ — E 2, B be a fiber
bundle where W is a compact topological manifold and B is locally compact
Hausdorff, and let ¢: OPFE — E and j: E\ OPE — E denote the inclusions
of its fiberwise boundary and interior, respectively.

Lemma 2.26. If F' € Shv(E;C) is locally constant, then

i'F ~ 0.
Proof. Since the statement is local on E, we may suppose that p =p;: B X
W — B is a trivial fiber bundle. But then by [Vol23, Prop 6.16] we are

reduced to the absolute case p = W: W — pt.
We have the recollement fiber sequence

ii'F — F — j,j*F,
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so it will suffice to show that F' — j,j"F is an equivalence. For this it suffices
to observe that the restriction map
DU, F) = T(U, juj*F) = T(U \ OW, F)

is an equivalence for every open subset U C W. By the sheaf condition, it
suffices to show this for small U, whence we are reduced to considering the
restriction map

MH", F) —» T'(H"\ oH", F)
where H" = {(z1,...,2,) € R" | ,, > 0}. Here the statement follows from
homotopy invariance of locally constant sheaves (see Appendix A in [Lurl7])
and the fact that H" \ O0H" < H" is a homotopy equivalence. U

Lemma 2.27. Let F € Shv(FE;C) be a locally constant sheaf on E, and let
§: XY F — i F
denote the connecting homomorphism associated to the recollement fiber se-
quence jj*F — F — i, " F.
The exceptional pullback
iH(0): BTV T F — it F
s an equivalence.

Proof. We have the fiber sequence

s, 0 O i'jii*F — i'F.

The previous lemma shows that i'F' ~ 0, proving that i'(d) is an equivalence
as desired. O

Construction 2.28. Suppose 6: EdlE\apE = wp; is an orientation of p. We
define the associated Stokes orientation of the boundary bundle pi: OPE — B
to be the equivalence

(93 . Ed_llapE l) Wpi
defined as the composite

Y110 —— 2451 s iwy — Wy
PE ") NEENOPE o7 N o WP

where i'(8) is an equivalence by Lemma 2.27 and the rightmost map is an
equivalence by Lemma 2.21.

Theorem 2.29 (Sheafy Stokes). Suppose 0 is an orientation of the fiber

bundle W — E % B, and let 0, denote the associated Stokes orientation of
the boundary bundle pi: OPE — B.
There is a commutative diagram

Ed_lp*i*lapE
(2.13) p0) \“9

Edp*jllE\apE W 1p,

in Shv(B;C), where the arrows are as indicated. Furthermore, this diagram
18 natural in bundle maps.
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Note that in the setting of higher categories, commutativity of a diagram
is structure and not just property, hence the awkward phrasing “there is a
commutative diagram ... where the arrows are as indicated.” The proof be-
low supplies a specific 2-cell which fills the map 0A% — Shv(B;C) indicated
by (2.13), and the naturality is respect to these 2-cells.

Proof. By construction, we have the commutative diagram

—_1 - ~ PR I ~ PR I ~ .
Y4 1gwp —0 Zdz*Z'jllE\apE 2 sl JiWpj —— TxWp;

sl i1 51(0)
Edj!]_E\apE Tf\:g)> j!ij % wp

where the vertical maps are the counits for the i, - 7' adjunction and the
rightmost horizontal maps are the counits for the j - j' adjunction. The
composition of the upper horizontal arrows is the Stokes orientation #s. Ap-
plying the pushforward p, and postcomposing with the counit p,p'ly — 1p
produces the desired commutative diagram. Note that all of the 2-cells
in (2.14) are compatible with base change along bundle maps, as they them-
selves are given by unit and counit maps, whence we get the desired natu-

rality of (2.13). O

Remark 2.30. Suppose that C = Mody, is the category of modules over an
ordinary commutative ring k € CAlg(Ab). Passing to pointwise homology
groups in (2.13), we get a commutative diagram

HF— —d+1 aWb,

(2.15) ~_ Jow,
H Wb7aWba

fwb\awb

in the 1-category of ordinary local systems Fun(I1; B, Modg). In other words,
the ordinary Stokes theorem for the fiber is compatible with the monodromy
of the bundle p. For some readers, it might be tempting to try to re-
place (2.13) with (2.15) in the arguments appearing in subsequent sections.
Here Grothendieck’s philosophy is pertinent: the total derived functors pyi,
and p,ji are both richer and much easier to work with than their homology
groups. Indeed, in order to apply (2.15) to questions about the fiberwise
integration map fp: H*~4E,0PE;k) — H*(B;k) such as those considered
in this article, one must go through the Leray—Serre spectral sequence for the
fiber bundle p. Already for bundles of closed manifolds, the analogous spec-
tral sequence arguments are complicated, see [Gril7|. The situation seems
significantly worse for bundles of manifolds with boundary, as one would
need to keep track of pairings of various spectral sequences.

Corollary 2.31. Suppose 0 is an orientation of the fiber bundle W — E 2

B, and let 05 denote the associated Stokes orientation of the boundary bundle
pi: OPE — B.
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There is a commutative diagram

YT (OPE; 1ov )

[

ST (E; jilp\ore) W I'(B;1p),
where the arrows are as indicated. In particular, if B has the homeomorphism
type of a CW complex and C = Modpg is the category of modules over a
commutative ring spectrum R € CAlg(Sp), we get the commutative diagram

$4-1C* (0P E; R)

s K

Y4C*(E,0PE; R) @ C*(B; R).

3. TAUTOLOGICAL CLASSES AND THE BOUNDARY BUNDLE

In this section, we define the tautological ring of a compact smooth man-
ifold with boundary. The definition is modelled on the definition of the tau-
tological ring of a closed manifold. For an odd-dimensional manifold with
boundary, we show that its tautological ring is generated by the tautological
ring of its boundary.

3.1. Smooth bundles and tautological classes. We start by recalling
some basic notions.

Definition 3.1. Let W be a smooth manifold. A smooth W-bundle is a
fiber bundle W — E £ B with structure group Diff ¥ (W) (see e.g. [Spa8l,
p. 90]), which we assume to have a numerable local trivialization.
Equivalently, a smooth bundle with base space B is classified by the ho-
motopy class of a map f: B — BDiff(W). The underlying fiber bundle
associated with f is pulled back from the universal smooth W -bundle

W — W Diff (W) — BDiff(W).

For instance, a smooth submersion p: F — B between smooth manifolds
can be viewed as a smooth bundle in a canonical way by Ehresmann’s fibra-
tion theorem.

For the rest of this subsection, fix an ordinary commutative ring k£ €
CAlg(Ab). Classically k£ = Q, and we will restrict ourselves to this case
later.

3.1.1. The tautological ring of a closed manifold. We wish to describe char-
acteristic classes of oriented smooth bundles

0: (W S EL B) — n(p) € H*(B; k).

Equivalently, we will study the cohomology ring H*(B Diff*(W); k) of the
classifying space for such bundles. When W is closed, a systematic source
of such characteristic classes are those coming from the characteristic classes
associated to the vertical tangent bundle, namely the so-called (generalized)
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Miller—Morita—Mumford classes. We recall their definition here for complete-
ness.

In § 2.3.2, we defined the vertical tangent R%bundle associated to a fiber
bundle W — E — B, where W was a topological manifold and B was an
arbitrary space. On the other hand, a smooth submersion p: £ — B has a
vertical tangent bundle, which is an actual vector bundle on the total space
E. Tt is well-known among topologists that such a vertical tangent bundle
can be defined more generally for a smooth bundle (see e.g. [BG76, § 4]):

Construction 3.2. Let W — E 2 B be a smooth fiber bundle over B,
classified by a map f: B — B Diff(W). Assume that B has the homeomor-
phism type of a CW complex. We can identify B Diff (W) with the groupoid
having one object W whose automorphism space is the space of diffeomor-
phisms of W. Since diffeomorphisms induce maps of tangent bundles, there
is a forgetful functor

. fgt
B lef(W) — S/BO(d)'
The unstraightening theorem provides a canonical homotopy equivalence

|E| ~ colim (B L BDIEW) 5 S pog) 25 s) .

There is an obvious natural transformation from B %5 B Diff (W) = S/Boy —
S to the constant functor with value BO(d). This classifies a d-dimensional
vector bundle on F, which we denote by TPE and refer to as a the vertical
tangent bundle of p.

Given an oriented smooth bundle, the vertical tangent bundle refines to
an oriented vector bundle by replacing Diff (W) with Diff ™ (W) and BO(d)
with BSO(d) above.

We leave it as an exercise to the reader to check that if W — E % Bis a
smooth bundle, then the underlying R%bundle of the vertical tangent bun-
dle TPE as constructed above agrees with the R%bundle of the underlying
bundle of topological manifolds, as given in Definition 2.14.

In particular, the universal oriented smooth bundle

W — W) Difft (W) & BDiff+ (W),
has an associated oriented vertical tangent bundle.

Definition 3.3. Suppose W is a closed smooth manifold. Given a cohomol-
ogy class ¢ € H*(BSO(d); k), the associated k-class’ is given by

(3.1) Ko = / o(TPE) € H* 4 BDiff*(W); k),
P
where p: E = W)/ Diff (W) — BDiff" (W) is the universal smooth bundle
with fiber W.

The tautological ring of W is the k-subalgebra
(3.2) R*(W;k) C H*(BDiff " (W); k),

generated by the x-classes. We are especially interested in the case k = Q,
so we abbreviate R*(W) = R*(W;Q) in this case.

Taka Miller—Morita—M: umford class
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Although (3.3) may seem ad hoc, the study of R*(W) is vindicated by the
Madsen—Weiss theorem and its many variants, which roughly state that the
inclusion (3.3) becomes an equality as the genus of W tends to infinity.

Remark 3.4. Ebert and Randal-Williams have shown that k-classes can be
defined more generally for fiber bundles W — E — B, where W is a closed
topological manifold, and even more generally for block bundles [ERW14].
It would be interesting to apply our methods to this more general situation.

3.1.2. The tautological ring of a manifold with boundary. Note that (3.1)
does not make sense if W is a manifold with boundary, since fiber integration
is only defined on relative classes. Instead, recall that for any fiber bundle

F — E % B with finitely-dominated fiber, there is an associated Becker—
Gottlieb transfer trf,: ¥°B — XFE [BG76]. This transfer induces wrong-
way maps in cohomology that we also denote trf,: H*(E; k) — H*(B; k).

Definition 3.5. Let W be a compact smooth manifold with boundary
and let k € CAlg(Ab) be an ordinary commutative ring. For any ¢ €
H*(BSO(d); k), we define the associated p-class by the formula

pe = trf,(c(TPE)) € H*(BDiff H(W); k),
where
W — E = W)/ Diff* (W) & BDiff+(W)
is the universal oriented smooth bundle with fiber W and TPE is its vertical

tangent bundle.
The tautological ring of W is the k-subalgebra

(3.3) R*(W;k) C H*(BDiff " (W); k),
generated by the p-classes. Asin the closed case, we put R*(W) = R*(W; Q).
Remark 3.6. The definition of R*(W;k) C H*(BDiff"(W);k) can be

rewritten in the following way. The spectrum-level Becker—Gottlieb transfer
SPBDIff (W) — W, pig+ ) is adjoint to a map
BDiff " (W) — QCZFW, g+ (-
By postcomposing this with (the functor Q>°XS° applied to) the map W), Diff+ (W) —
BSO(d) classifying the vertical tangent bundle, we get a map
(3.4) aw : BDHfT (W) = Q®EPBSO(d).
The tautological ring R*(W; k) is simply the image of this map in cohomol-
ogy with k-coefficients.

Remark 3.7. Let V, = (S" x D""1)# denote the (2n+ 1)-dimensional han-
dlebody of genus g, and suppose that n = 1 or n > 4. By Remark 3.6 and the
work of Hatcher [Hat12]|, Barkan-Steinebrunner (personal communication),
and Botvinnik-Perlmutter [BP17| cited in the introduction, we can view

R*(Vy, D) = img (R*(W) C H*(BDiff"(V,); Q) — H*(BDiff(V,, D); Q)
as the subring spanned by stable classes under genus-stabilization, i.e.

R*(V,, D) = img (H*(colimy, B Diff(V},, D); Q) — H*(B Diff(V,, D); Q)) .
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Homological stability results of Hatcher—-Wahl [HW10] as well as the au-
thor [Har25b| in the n = 1 case and Perlmutter [Perl8| in the n > 4 case
imply that the map H*(colimy, B Diff(V},, D);Z) — H*(BDiff(V,, D);Z) is
an isomorphism for x < 2(g — 1) if n = 1 and * < (g — 4) otherwise.
In this stable range of degrees, we therefore have a complete description of
H*(BDiff(Vy, D); Q). The tautological ring R*(V,, D) can therefore be seen
as sitting somewhere between the stable cohomology, of which we have a
complete description, and the unstable cohomology, about which we know
very little.

Remark 3.8. The definition of the p-classes make sense more generally if
W is a finitely-dominated smooth manifold, e.g. if W is the interior of a
compact manifold with boundary.

3.2. A theorem of Giansiracusa and Tillmann. Let W be a compact
orientable manifold with boundary. Restricting to the boundary defines a
map of classifying spaces

(3.5) r: BDiff Y (W) — BDiff " (0W).

In terms of fiber bundles, the map r classifies the operation of replacing a
smooth fiber bundle W — E — B with its associated boundary bundle
W — 0PE — B.

Informally, one can view tautological rings as consisting of “geometrically
defined classes.” Since the boundary of a manifold is certainly a geometric
notion, we would expect r to be compatible with tautological rings. In order
to show that this is the case, we will need a theorem of Giansiracusa and
Tillmann [GT11]. The original proof of this theorem proceeds via an analysis
of Madsen—Tillmann spectra. We will instead derive it as a consequence of
the ordinary family Stokes theorem.

We work over a commutative ring k. Let us say that a characteristic class
c € H*(BSO(d); k) is stable if it lies in the image of the map H*(BO; k) —
H*(BSO(d); k). For instance, it is well-known that if 2 € k is invertible,
then

H*(BSO(d); k) = klp1, ... ’pd/27e]/(62 _pd/z), if d is even,
, klp1, ... ’p(d—l)/Q]v if d is odd,

where the p; are the Pontrjagin classes and e is the Euler class, see [MS74,
Thm 15.9]. In this case, a class ¢ € H*(BSO(d); k) is stable if and only if it
is a polynomial in Pontryagin classes. On the other hand, if 2 = 0 € k, then

H*(BSO(d), k’) = k[wg, e ,wd],

where the w; are the Stiefel-Whitney classes, see [MS74, Thm 12.4|. In this
case H*(BSO(d); k) consists entirely of stable classes.

The integral cohomology ring H*(BSO(d);Z) is more complicated, but
has been completely computed by Brown [Bro82|. In particular, this ring is
generated by

(1) the Pontrjagin classes p; € H*(BSO(d); Z) for 0 < i < |d/2];
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(2) the classes of the form Blws, .. w;,) for 0 < iy < -+ <ip < |d/2],
where w; € H*(BSO(d);F2) is the ith Stiefel-Whitney class and

B: H*(BSO(d); Fy) — H*T(BSO(d); Z)
is the Bockstein homomorphism; and
(3) the Euler class eq € HY(BSO(d); Z).
For our purposes, it will not be necessary to know the relations between
these classes, except that e = B(wg—1)/2) if d is odd. In particular,
H*(BSO(d);Z) consists entirely of stable classes if d is odd, whereas if d

is even then the stable classes are precisely those that are polynomials in
Pontryagin classes and Bockstein images of Stiefel-Whitney classes.

We will use the following basic observation:

Lemma 3.9. Let W — E % B be an oriented fiber bundle, where W is a
compact manifold with boundary. Let i: OPE — E denote the inclusion of
the fiberwise boundary.

If a € H*(OPE; k) extends to a cohomology class on all of E, in the sense
that a = i*(b) for some b € H*(E; k), then

/azO.
pi

Proof. By the family Stokes theorem, we have

/a:/(si*b:(),
pi p

where §: H*(OPE; k) — H*(E,0PFE;k) is the connecting homomorphism.
O

Theorem 3.10 (Giansiracusa-Tillmann [GT11]). Let W? be smooth com-
pact orientable manifold with boundary. If c € H*(BSO(d — 1); k) is stable,
then

ke = 0 € H*(BDiff " (W); k).
In particular, if d is even then r*k. = 0 for all c € H*(BSO(d); k).

Proof. Let W — FE 2 Bbean arbitrary smooth bundle, and let i: OPE — E
denote the inclusion of the fiberwise boundary. By picking an outwards-
pointing vector field for TP E along OPFE, we get a splitting

(3.6) *TPE = TPIOPE & Ror s,

where Rgr denotes the trivial line bundle on 0P E.

Since BSO(d—1) — BO factors through BSO(d) — BO, our assumption
implies that ¢ has a canonical lift ¢ € H*(BSO(d); k) - H*(BSO(d—1); k).
Since BSO(d —1) — BSO(d) classifies the procedure of replacing a (d — 1)-
dimensional vector bundle V' with the Whitney sum of V and a trivial line
bundle, we find

co(TP'OPE) = {TVOPE @ Rorp) = &(i*(IPE)) = i*A(TPE).

The statement now follows from the preceding lemma. O
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Remark 3.11. A crucial step in the preceding proof was the choice of an
outwards-pointing vector field along the boundary bundle. Such a choice
also exists for bundles of topological manifolds. Suppose W — E % Bisa
fiber bundle, where W is a topological manifold with boundary and B is a
paracompact Hausdorff space. As in the smooth case, the vertical tangent
microbundle TPE admits a nonzero section when restricted to the fiberwise
boundary 0PE. Indeed, let i: 9P — E denote the inclusion. The pasting
lemma for pullbacks implies that the restriction ¢*TPFE is the microbundle

(8pE XBE,7T1: OPE ><BE—>8”E,A: OPE — OPF XBE).
Since the space of collars of a manifold with boundary is contractible, we

can pick a fiberwise collar neighborhood ¢: R>¢ x OPE — E. This defines a
splitting of the restriction ¢*TPFE.

3.3. Boundary tautological classes. We can now prove the main result
of this section, comparing the tautological ring of a manifold with boundary
and the tautological ring of its boundary. We thank Oscar Randal-Williams
for suggesting the method of proof.

Theorem 3.12. Let W? be a compact smooth orientable manifold with
boundary. Let

r: BDifft (W) — BDiff T (oW)
denote the map induced by restriction to the boundary. Assume that 2 € k

18 invertible or zero, or otherwise that k = 7.
If ce H*(BSO(d — 1);k) is a stable class and d is odd, then

2p. = 1" ke € H*(BDIfft (W); k).

Proof. Let W — E 2, B be a smooth bundle with fiber W, and let i: 9P E —»
E denote the inclusion of its fiberwise boundary. We must show that

trf,(c(TPE)) = / e(TP'OPE)c(TPOPE).
i
Here
/ (TP E)e(T™) = trfy (c(TOPE))

by [BG76, Thm 4.3]. In order to compare the two Becker—Gottlieb transfers,
we will use that every bundle of manifolds with boundary has an associ-
ated double bundle. Recall that the double of W can be identified with (a
canonical smoothing of) the boundary 0(W x [0,1]). We consider the map

(3.7)  BDiff" (W) — BDiff (W x [0, 1]) LN BDifft (0 (W x [0,1])),
where the first map is induced by sending ¢ € Diff "(W) to ¢ x id €
Diff " (W x [0, 1]) and the second map is given by restricting to the boundary.
The map (3.7) classifies the procedure of replacing a bundle W — E 54 B
with the double bundle

W Usw W — EUgrp E = B,
where W — F i B denotes the oriented smooth bundle which has the same

underlying smooth bundle as p, but where the orientation of p has been
reversed.
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We write T™ = T™(EUgr g E) for the vertical tangent bundle of 7. The ex-
cision property of the Becker-Gottlieb transfer [BS98, Thm 1.3] now implies
that

trfre(T7) = trfy (¢(T7)|g) + trfy (c(T7)|5) -trfpi (c(T7)|ove)
= trfy, (c(T7|g)) + trfp (c(T7|5)) — trlp (c(T™|orE)) -
Here T™|g = TPE, whereas T™| is isomorphic to TP E with the reversed ori-
entation. On the other hand, the subbundle pi: OPF — B has an essentially

unique bicollaring, which gives an isomorphism 177 |gpp = TP'OPE @ Rovp.
Since c is independent of orientation, we have

trfp (c(T7| ) = trfp (c(T7|5)) = pe(p)-
But then we get

20c(p) + (1" ee) (p) = trfre(T7) = ()" Kee) (),
and (')*kee = 0 by Theorem 3.10, since H*(BSO(d); k) consists entirely of
stable classes on account of d being odd. U

Corollary 3.13. Let W% be a compact smooth orientable manifold with
boundary, and let

r: BDifft (W) — BDiff T (oW)
denote the map induced by restriction to the boundary. Let k € CAlg(Ab) be

an ordinary commutative ring, with Z[3] C k C Q.
If d is odd, then

R*(W;k) = img (R*(aW; k) C H*(BDift* (9W; k) = H* (B Dift ™ (W; k)) .

Example 3.14. In the proof of Theorem 3.12; one might have hoped instead
to prove that the double of a bundle of manifolds with boundary is trivial,
or even just that it has a trivial vertical tangent bundle. Here we show that
this is not true in the case of three-dimensional handlebodies.

Let V, = (S! x D?)% be a genus g three-dimensional handlebody. The
double V, Uy, Vy is diffeomorphic to (S* x $%)#9. Put Wy = (5! x 52)#9 for
short. By passing to fundamental groups, the doubling map (3.7) induces a
homomorphism of mapping class groups®

9 mo Diff T (V) — mo Diff T (Wy).
We claim that this is an epimorphism. First note that there is a commutative
diagram

7o Diff (V) ——— Out(m V)
(3.8) la lﬁ

mo Diff (W) —— Out(m W),

e.g. by the van Kampen theorem. Both horizontal maps are epimorphisms,
by [Zie62, McM63| in the handlebody case and [Whi36a, Whi36b] in the case
of Wy.

8We use the Norse/Old English letter 0 (pronounced “eth”) for the doubling map so as
not to overload the more familiar symbols d, 4,0, ...
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Luft has shown that the kernel of the top horizontal map in (3.8) is equal
to the subgroup Tw(V,) < mo Diff 7 (V;) generated by meridian Dehn twists
[Luf78]. For Wy, a similar description was given by Laudenbach. Let S C W,
be an embedded sphere and let [0,1] x .S C W, be a bicollaring, such that
% x S corresponds to the original copy of S. Fix a loop v € ©;950(3) which
is not homotopic to the constant loop.? The sphere twist associated to this
data is the isotopy class of the diffeomorphism 7: W, — W, which is given
by (t,x) = (t,7(e?™)z) on [0,1] x S, and by the identity elsewhere. It is
not hard to show that the isotopy class of 7 only depends on the homotopy
class of the sphere S. Laudenbach proved that the kernel of the bottom
horizontal map in (3.8) is the subgroup Tw(W,) < mo Diff " (W,) consisting
of products of sphere twists, and furthermore that this subgroup is generated
by the g many sphere twists corresponding to the S' x S%-factors in Wy
[Lau73, Lau74|, see also [BBP23|. To prove that J is surjective, it therefore
suffices by the five lemma to show that d(Tw(V})) = Tw(Wy).

Let o be an oriented meridian curve in V,. The meridian Dehn twist
to is supported on a solid cylinder [0,1] x D C V; with [0,1] x 9D C 9V,
and % x 0D = «, where it is given by (¢t,7) — (t,e*™z). The doubled
mapping class d(t,) is therefore supported in [0, 1] x D Ujg 1jxap [0, 1] X D =
[0,1] x S? C Wy, which we depict in Figure 3 as a continuous family of
concentric spheres with 0 x S? being the outermost sphere. One copy of

FIGURE 3. The sphere twist d(t,) rotates the layer ¢t x S% C
I x S? by a 27t radian rotation around the central vertical
axis.

the handlebody contributes the family of northern hemispheres, whereas
the other contributes the family of southern hemispheres. On this family of
spheres, the mapping class d(t,) acts by rotating ¢ x .52 by 2t radians. Hence
(ta) is the sphere twist associated to the embedded sphere § x S C W,
In particular, taking a to be the curve 1 x 9D? corresponding to one of the
S x D?-summands of V;, we find that d(¢,) is the sphere twist associated to

9In order to ensure that the construction we are giving defines a diffeomorphism, one
should require v: (S*,1) — (SO(3),id) to be constant at the identity in a neighborhood of
1 € S'. We ignore this issue in this example, since it is easily fixed using bump functions.
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the corresponding St x S?-summand of W, whence d(Tw(Vy)) = Tw(W,)
as desired.

4. RELATIONS IN THE TAUTOLOGICAL RING OF A MANIFOLD WITH
BOUNDARY

Our goal in this section is to prove Theorem B. Like its analogs for bundles
of closed manifolds [Gril7, RW18|, our theorem can be used to produce
relations between characteristic classes of manifold bundles, and we also
give some examples of this here.

4.1. Recollection III: Schur functors. In the article of Randal-Williams
[RW18|, a key part is played by the Schur functors acting on the category
of derived local systems of QQ-vector spaces on a space. We briefly recall
the construction of these functors given there, together with some basic
properties that we will need.

Let n be a non-negative integer. For every (unordered) partition A of
n, there is a corresponding irreducible representation V) of the symmetric
group ¥,. For instance, one can take V), C Q[X,] to be the right principal
ideal generated by the Young symmetrizer ¢y € Q[X,] corresponding to
a Young tableau for A. Different choices of Young tableaux give rise to
isomorphic representations. Young showed that the rule A — V) defines a
bijection between partitions of n and isomorphism classes of irreducible ¥,,-
representations. Furthermore, the Young symmetrizer ¢ is idempotent after
rescaling; that is, there is some n) € Q~¢ such that

ex =2 QS
[N

is an idempotent element. We refer to [FH91, p. 46] for all of these state-
ments.

Suppose now that (C,®,1) is a Q-linear symmetric monoidal category.
For any object X € C, the ¥,-action on X®" defined by permuting factors
defines a morphism of QQ-algebras

Q[,] — End(X®™).

In particular, the idempotent e) mentioned above is sent to an idempotent
ex(X) € End(X®"). If C is idempotent-complete (e.g. if C is cocomplete),
then we define the Schur functor Sy: C — C informally by sending X to the
retract associated to the idempotent ey(X). (See Appendix A for a precise
and highly coherent definition.)

The Schur functors associated to the partitions (n) and (1,...,1) are
particularly interesting for us, and we write

Sym" X = S(n) (X) and A"X = 5(1,...,1)(X)'

This recovers the usual definitions of symmetric and alternating powers when
C is the ordinary category of Q-vector spaces Vectg = Modg. On the other
hand, if C is the category of graded Q-vector spaces Vectg = Fun(Z, Vectq)
(with usual symmetric monoidal structure, namely Day convolution), then
the Schur functors are sensitive to parity due to the Koszul sign rule, e.g. if
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V € Vectg and V[d] € Vectg is the associated graded vector space concen-
trated in degree d, then

Sym"(V)[nd], if dis even,

Sym"™(V[d]) ~ {/\n(v) [nd], if d is odd.

Lemma 4.1. Let X be a space having the homeomorphism type of a CW
complez. If F € Shv(X;Modg) has S*(H.(z*F)) =~ 0 for every xz € X, then
SMNF) ~0.

Proof. The proof is the same as for the analogous result for local systems
[RW18, Lem 2.4]. The assumption on X implies that S*(F) ~ 0 if and
only if 2*S*F) ~ 0 for each 2 € X. But the pullback z* is symmetric
monoidal, so 2*S*(F) ~ S*(x*F). Since taking homology is a symmetric
monoidal functor Modg — Vectg (by the Kunneth theorem), the result now
follows. O

4.2. Proof of Theorem B. We now prove Theorem B, whose statement
we recall here:

Theorem 4.2. Let W — E 2 B be an oriented fiber bundle, where W is a
compact odd-dimensional topological manifold with boundary. Let i: OPE <>
E denote its fiberwise boundary.

Suppose that H.(W;Q) is concentrated in odd degrees. If a € H*(OPE; Q)
18 an even-degree cohomology class such that

/azO
pt

and b € H*(E;Q) is arbitrary, then

(4.1) </pa : i*(b))ﬁl =0,

where g = dimg H,(W;Q).

Proof. We may assume that B is locally compact Hausdorff. Let j: E \
OPE — E denote the inclusion of the fiberwise interior. In the sheaf cate-
gory Shv(B;Modg), the cohomology classes a and b correspond to homotopy
classes

a: Ele — (pi)*lapE and b: EllB — pelE,
where k,l € Z and k is even. By the sheafy Stokes theorem (Theorem 2.29),
our assumption on a means that there is a dashed arrow making the diagram

Sktd-11 5 2708 sd-1 (i) 10,
p)] \fpdg

M ———— Y4 (pj)lpors T 1p,
p

(4.2)

commute, where

M = fib (/d9 de*j!lE\é)PE — 1B> .
p
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Let us write @: 2¥t9=115 — M for this dashed arrow.

The connecting homomorphism 6: X9 13,155 — ZdjllE\apE is (triv-
ially) a map of 1g-modules, and so by lax symmetric monoidality of the
pushforward p,, the map p. () is a map of p,1g-modules. The fiber integral
i @4*(b) is thus represented by the map Yhtltd=1] p ~ Yhtd-1] i1 —
15 from the commutative diagram

d
SR @ 21 280 S4-1(pi), 19 @ pulp —— 29 (pi)lop — 1p

J{a@b lﬁ@id Ls

M @ plp ———— Y jilpop @ plp —— Xp.jilpop.

N
As in the proof of [RW18, Thm 2.8|, we find that the class <fpi a- z*(b)) :
N >0, is represented by the composition

QN
(Zkerfl 13) ® (Ele>

where we have used that k + d — 1 is even to rearrange the factors without
picking up a sign. Invoking the parity assumption again, we find that the
map a®V factors through Sym® (M). Hence it will suffice to show that
Sym9TH (M) ~ 0.

Let b € B. Base change identifies the stalk b* of the map fp df with the
integration map for the fiber W3, = p~!(b), which is a map

®N ZONGp@N QN ~
%M‘@N@(le]g) — 19V 5 1p,

/ : EdC*(Wb, 8Wb; Q) — Q
0

inducing an isomorphism H%(W;, 0W;; Q) — Q in degree zero. It follows
from the long exact sequence in homology that the fiber My = b*M of this
map has

H, (EdC*(Wb,GWb;Q)) , forx<0<d,

0, otherwise.

Here

H, (SC*(Wy, 0Wy; Q) ) = H™ (Wi, Wy Q) = H,(W); Q)

by Poincare duality. Since H,~o(Wp; Q) = ﬁ*(Wb; Q) is concentrated in odd
degrees and has total dimension g, it follows that

Sym?™! H, (M) ~ 0,
and we thus have Sym9*! M ~ 0 by Lemma 4.1. U

Remark 4.3. Let n be an odd positive integer, and let V, = (S™ x D"*1)t9
be a genus g handlebody of dimension 2n + 1. Then V; satisfies the con-
ditions of the preceding theorem. Note also that the genus g is equal to
dimg ﬁI*(V;J; Q), justifying the choice of notation.

By Theorem 3.12, tautological classes for V,-bundles are pulled back along
the map

BDiff ™ (V,) — BDiff* (V)
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induced by restricting a diffeomorphism to the boundary. The boundary
OV, is canonically diffeomorphic to W, = (S™ x S™)#9. The analog of The-
orem 4.2 for W, was first proved by Grigoriev [Gril7| (and reproved using
different methods by [RW18]). For these manifolds, the exponent in the
counterpart of (4.1) is 2¢g + 1 rather than g + 1. Our result therefore gives
sharper relations for V,-bundles than the relations which are known for Wy-
bundles; these sharper relations can be seen as obstructions for a smooth
Wy-bundle to admit a fiberwise nullcobordism, or in other words a reduction
of the structure group along the canonical map B Diff*(W,) — B Diff *(V}).

4.3. Example computations. We give here some examples of new rela-
tions among characteristic classes for bundles of manifolds with boundary
coming from Theorem 4.2. For moduli spaces of closed manifolds, the stan-
dard procedure (starting with the original article of Mumford [Mum83|) has
two steps:

(1) first prove relations in the cohomology of various pointed versions of
the moduli space B Diff *(W);
(2) then use these to derive equations in the cohomology of B Diff*(W).

The pointed moduli spaces and their tautological cohomology rings are in-
teresting in their own right. In this subsection, we will carry out step (1)
and leave step (2) for future work.

Let W be an oriented smooth compact manifold with boundary. We write
My = BDifft (W),

which we may think of as the moduli space of manifolds diffeomorphic to
W. We consider also the moduli space of manifolds diffeomorphic to W
together with n ordered marked points on their boundary (that are allowed
to coincide); that is

My (n) =Map ({1,...,n},0W), pig+ ) -

where Diff ™ (W) acts on Map ({1,...,n}, W) via its action on OW. Here
we adopt the convention that My (0) = Myy. For each 1 <1i < n, there is
a projection map

pi: Mw(n) = Mw(n—1)

given by forgetting the ith marked point. This is an oriented smooth bundle
with fiber W, which is the fiberwise boundary the oriented smooth bundle

T My (n) — My (n — 1),
where

M%/V(n) = Map(({l, s vn}v {17 ce 7n} \ i)v (W7 aW))hDiff*(W)’

ie. Mi,(n) is the moduli space of manifolds diffeomorphic to W with n
ordered marked points of which all but the ith is required to lie on the
boundary.

For each n, there is a canonical map

Muw (n) = Maw (n),
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and the bundles p; have been constructed precisely so that the diagram

My (n) ——— Mow(n)

J» Jo

My (n—1) — Mow(n—1)

is a pullback diagram (and in particular commutes), where the map ¢; is
defined analogously to p;. In particular ¢; is the universal oriented smooth
bundle with fiber OW and 7 is the universal oriented smooth bundle with
fiber W.

Definition 4.4. Let n be a positive integer. For 1 < i < n, the associated
-class'®, denoted 1, is given by

i = e(TP My (n)) € H (M (n); Q).

We will also consider the cohomology class associated to the locus in
My (n) on which the ith and jth marked points coincide. These classes
are also defined, for instance, in |Gril7]. We give another definition here
to emphasize (again) the convenience of working with sheaves. In order to
define this cohomology class, suppose that OW — FE 2, B is an oriented
smooth bundle together with a section s: B — E. Assume for now that B
has the homeomorphism type of a locally finite CW complex. Applying ss'
to the inverse of the orientation 6: : ¥415 = p'1p defines a map

S«lp ~ S!S!p!].B = Zngs!lE,
where we have used that s is proper (since any section of a map of Hausdorff
spaces is automatically a closed inclusion) and that ps = id. By composing
with the counit of the s, 4 s' adjunction, we get a map
S«lp — Edl E,
which descends to the Gysin map
H*(B;Q) —» H(E; Q).

Under this map, the unit 1 € H°(B;Q) is sent to a class that we abusively
denote [s(B)] € H*(F;Q). We can remove the assumption on B by defining
[s(B)] to be the uniquely determined cohomology class such that f*[s(B)] =
[¢'(B")] for every map of oriented smooth bundles

o)

B"—— B
for which B’ has the homeomorphism type of a locally finite CW complex,
where s is defined by pulling back s.

Definition 4.5. For 1 < 4,j < n such that i # j, the associated v-class'!,
denoted v; j, is given by

vij = [siMw(n —1))] € H*(Mw(n); Q),

Oaka (gravitational) descendant class
Haka diagonal class
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where s; is the section of p; induced by the map
Map({1,...,n}\ 7,0W) — Map({1,...,n},0W)
given by precomposing with the map {1,...,n} — {1,...,n}\ j defined by

b i, if k=j,
k, else.
Definition 4.6. Let n be a non-negative integer. The tautological ring of
My (n) is the Q-subalgebra

R (Mw(n); Q) € H*(Mw(n); Q)

generated by the x-classes, ¥-classes, and v-classes.

For the remainder of this section, let W be smooth manifold satisfying the
hypotheses of Theorem 4.2 and let n be a positive integer. We abbreviate
P=Dni1: Mw(n+1) = My (n) and 7 = mp1: M (n + 1) = My (n).
Put g = dimg H,(W;Q).

Example 4.7. Let (4;)7 € Q" be a tuple of rational numbers such that
> 1 Ai =0. The class

a = ZAiVi,n-H € H*(Mw(n+1);Q)

i=1
has fp a=0,e.g. by|Gril7, Lem 5.11]. Since 92, = pl(T“MWI(n))]MW(nH),
Theorem 4.2 gives

n g+1 n g+1 n g+1

0 (3 i) = (35 famenst) = (Sant]
i=1"P i=1"P i=1

where we have again used [Gril7, Lem 5.11].

Example 4.8. Let x = x(0W). By [Gril7, Lem 5.2], we have fp Yoyl =
X(OW). Hence the class

G = XVin+1 — Uny1 € H*(MW(n + 1); Q)

satisfies fp a = 0. As in the previous example, we thus find

g+1
0= (/p (XVin+1 — ¥na1) ¢Z+1>

) g+1
= <X/¢7; Vin+1 —/1/)2+1>
p p

= (X%’Q - H2)g+1
g+1

-y (92;— 1) U ()T
k=0

Example 4.9. Let V}, = (S™ x D" be a genus h handlebody of dimen-
sion 2n+1, where n is odd. Then V}, satisfies the hypotheses of Theorem 4.2,
and _

g = dimg H,(Vj; Q) = h.
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We have x(0V,) = 2 — 2g. The class

a = ¢n+1 + 221/1"”4_1 S H*(./\/lvg(n + 1),@)
=1

satisfies fp a = 0. Thus

n g+1 n g+1
0= (/(wn—&-l +2) Vi,n+1)¢721+1> = (f@ +2) %2) :
i=1

p i=1
5. VANISHING RESULTS FOR LAGRANGIAN MAPPING CLASS GROUPS

Let V, = (S' x D?)% be a three-dimensional handlebody of genus g. The
boundary X, = 9V} is a genus g surface. We write Mod, = mo Diff ¥ (%) for
the usual (surface) mapping class group and HMod, = m Diff *(V}) for the
handlebody mapping class group. It is well-known that the restriction map
HMod, — Mody is injective, and by identifying Mod, with its image under
this map, we can therefore view HMod, as a subgroup of Mod,.

Suppose that Vj is equipped with an orientation. The resulting Stokes
orientation on X, gives rise to a non-degenerate intersection pairing

(5.1) \: Hi(S4:Z) @ Hi(Sg;Z) — Z.

Let L denote the kernel of the map Hq(X4;Z) — H1(Vy;Z) induced by the
inclusion. A straightforward calculation shows that L is a Lagrangian for A,
meaning a maximal summand in H;(X4;Z) on which A restricts to a trivial
pairing. By construction, if f € HMody, then f,L = L. The subgroup
of Mod, consisting of all mapping classes that have this property was first
studied by Hirose [Hir06|, who referred to it as the “homological handlebody
group.” We follow instead the terminology of Sakasai:

Definition 5.1. The Lagrangian mapping class group, denoted LMod,, is
the subgroup
LMody = {f € Mody | f«L = L}.

Sakasai [Sak12, Thm 7.3] showed that the s-class ko;—1 € H*(LMody; Q)
vanishes in the stable range. Giansiracusa and Tillmann [GT11] asked
whether this vanishing holds outside of the stable range, and with inte-
gral rather than rational coefficients. In this appendix, we answer the first
question in the affirmative.

Let Sp%g(Z) < Spy,(Z) denote the subgroup consisting of transformations
which fix the Lagrangian L C H;(X,;Z) = Z%2?9, and similarly for R instead
of Z. Consider the commutative diagram

BLMody, —— BSp%,(Z) —— BSpj,(R) +~— BO(g)
e | | |
BMody, —— BSpy,(Z) —— BSpy,(R) +—— BU(g),

where the vertical maps are induced by inclusions; the (top and bottom)
rightmost horizontal maps are induced by the standard symplectic represen-
tation of the mapping class group; the middle horizontal maps are induced by
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inclusions; and the rightmost horizontal maps are the homotopy equivalences
induced by including maximal compact subgroups.

Assume that g > 2, so that BMod, is homotopy equivalent to the moduli
space M, = BDiff " (X,) of genus g surfaces [EE69]. The bottom horizontal
composition in (5.2) classifies a rank g complex vector bundle on M, of genus
g surfaces, and it is a standard fact that this agrees with the Hodge bundle
considered by algebraic geometers, which is traditionally denoted E. Using
the Grothendieck-Riemann-Roch formula, Mumford [Mum83| calculated the
Chern character

(5.3) ch(E) =g+ Z (123;;'%21‘1 € H*(My;Q),
i=1 )

where By, = —k((1 — k) denotes the kth Bernoulli number, k£ > 2.
Theorem 5.2. Let g > 2. Then koiy1 =0 € H*(LMody; Q) for each i > 0.

Proof. Let \; = ¢;(E) denote the ith Chern class of E, 1 < i < g. It
follows by comparing sides in (5.3) degreewise that every “even” Chern class
Xoj € H*(Mg;Q), i > 1, is a polynomial in the “odd” Chern classes that
precede it, i.e. the classes {A\ory1 |0 < k < i}.

Let £, = BLMod,. The rightmost vertical arrow in (5.3) classifies the
procedure of replacing a real vector bundle with its complexification. Hence
the complex vector bundle E|, is isomorphic to the complexification of a
real vector bundle. It follows from [MS74, Lem 14.9] that

Xoit1le, = c2ir1 (Elz,) =0 € H*(Ly; Q)
for each ¢ > 0. But since the even Chern classes are polynomials in the odd

ones, it then follows that A\; = 0 € H*(L4; Q) for all 7 > 0. Since By; # 0 for
i > 1, it follows from (5.3) that ko411 =0 € H*(Ly; Q) for all i > 0 also. O

Since the handlebody mapping class group HMod, is a subgroup of LMod,
by construction, Theorem 5.2 also gives another proof of Giansiracusa and
Tillmann’s vanishing result in the handlebody case [GT11, Thm A], albeit
only with rational coefficients.

With integral coefficients, the fact that E[., is the complexification of a
real vector bundle only implies that the odd integral Chern classes Ag;41 €
H*(L4;Z) are 2-torsion [MS74, Lem 14.9]. By combining this with the inte-
gral Grothendieck-Riemann-Roch formula of [Pap07] or [Mad10| applied to
the Hodge bundle, one can determine explicit positive integers n; such that
nikoi+1 = 0 € H*(Ly;Z), i > 0. For instance, using [Pap07, Thm 2.2|, we
compute

dk1 =0 € H*(Ly; Z).
This method cannot answer the question of whether the odd k-classes vanish
in the integral cohomology H*(Ly;Z).

Let W?7*2 be an oriented smooth closed manifold. As in § 4.3, we write
My = BDiff " (W). We let \y: Hpy1(W;Z) ® Hy1(W;Z) — Z denote
the intersection pairing, and consider the group Aut(H,i1(W;Z), \w) of
automorphisms of this formed space. Note that Ay is skew-symmetric
due to the Koszul sign rule, so (Hn+1(W;Z), Aw) is a symplectic space.
Pick a Lagrangian L C H, 1(W;Z), and let Aut®(H, 1(W;Z),\w) <
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Aut(Hy,41(W;Z), A\w) denote the subroup of automorphisms that fix L as a
subspace.

Definition 5.3. The Lagrangian moduli space of W, denoted Lyy, is defined
by the following pullback

Lyw —— BAuwt!(H, 1(W;Z), \w)

! |

My —— B Aut(Hn_H(W; Z), Aw)
in the category of spaces S.

We thank Oscar Randal-Williams for pointing out the following general-
ization of Theorem 5.2:

Theorem 5.4. Let W — Ly (1) & Ly be the pullback of the univer-
sal oriented smooth bundle along the canonical map Ly — My, and let
Zi(TPLw (1)) denote the ith Hirzebruch L-class of its vertical tangent bun-
dle. Then

/z(Tpﬁw(n) — 0 € H*(Lw; Q).
p

Proof. Let H be the complex vector bundle classified by the composition
B Aut(H, 1 (W;Z), \w) — B Aut(H,1(W;R), \w @ R) <~ BU(d),

where d = dimg H,,+1(W;R). Let ¢ = H—H € K°(B Aut(H+1(W;Z), \w))
denote the difference of H and its complex conjugate in complex K-theory.
By the rational family signature theorem [RW24, Thm 2.6], we have

/ Li(TPLw (1)) = 22" Lchy—n_1(8*(€)),
p

where ¢: Ly — B Aut(Hp41(W;Z), Aw) is the composition

Lyw — Mw — BAut(Hn+1(W; Z), Aw),
But by construction the map ¢ factors through B Aut”(H,1(W;R), Ay ®
R), and as in the proof of Theorem 5.2 we then find that ¢*(H) is the

complexification of a real vector bundle. It follows that ¢*(H) = ¢*(H) =
¢*(H) € K%(Lw), whence ¢*(¢) = 0, giving the desired result.

O

As with Theorem 5.2, a more careful application of the integral family
signature theorem of Randal-Williams [RW24] yields upper bounds on the
orders of characteristic classes in integral cohomology.

APPENDIX A. SCHUR FUNCTORS AS POWER OPERATIONS

In this appendix, we will briefly explain a more categorical perspective
on the Schur functors appearing in § 4 above. In the setting of ordinary
categories, this perspective is worked out in great detail by Baez, Moeller,
and Trimble [BMT24].

Schur functors are certain non-monoidal functors that operate on the un-
derlying category of a symmetric monoidal linear category. To motivate the
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description given below, recall that the ring of stable power operations asso-
ciated to a commutative ring spectrum k € CAlg(Sp) is the endomorphism
ring of the forgetful functor

fgt: CAlg(Mody) — Sp.

(We refer to [GL20] for a treatment of power operations from this perspec-
tive.) Since the forgetful functor is represented by the free k-algebra k{c}
on a single generator, the spectrum-enriched Yoneda lemma implies that
the ring of power operations can be identified with the homology of k{c}.
The description of this ring when k£ € CAlg(Ab) is a finite prime field by
Mandell [Man01]—as well as the earlier closely related work of Araki-Kudo
|[KA56|, Dyer-Lashof [DL62|, Cohen [CLMT76|, and others—are among the
most useful results in homotopy theory.

The notion of power operations also makes sense after going one cate-
gorical level up. Let Pr’ denote the (very large) category of presentable
categories and colimit-preserving functors between them equipped with the
Lurie tensor product. Let k € CAlg(Sp~() be a connective ring spectrum.
The symmetric monoidal category Mod$" of connective k-modules is an al-
gebra object of Prr. Write

LinCaty = Modygoas (Pr”)

for the symmetric monoidal category of k-linear cocomplete categories. Let

Cat denote the (very large) category of large categories. We consider the
functor

(A.1) fgten;: CAlg(LinCaty) — Cat,

which sends C € CAlg(LinCaty) to its underlying category. Both the source
and target of this functor admit in a canonical way the structure of 2-
categories, and the functor fgt., extends to a functor between these 2-
categories.

Recall that the symmetric monoidal groupoid (Fin, L, &) of finite sets
under disjoint union is the free symmetric monoidal category on a single
generator. Let (Fun(Fin®?, Modf"), ®day,1) € CAlg(LinCaty) be the cate-
gory of functors with the symmetric monoidal structure of Day convolution.
The universal property of Day convolution [Lurl7, Exmp 2.2.6.9] implies that
(Fun(Fin°P, Modj"), ®day, 1) represents the functor (A.1) in the 2-categorical
sense. By the 2-categorical Yoneda lemma |GR17, p. 485, we thus get an
equivalence of categories

(A.2) fgt e, f8tear) =~ Fun(Fin®?, Modg").

cat» cat

NIapFun(CAlg(LinCat,rC ) ,63?5) (

Assume now that k € CAlg(Ab) is a field of characteristic zero. In this case,
the right side of (A.2) is well-understood. Specifically, the full subcategory

Fun(Fin®?, Perf) C Fun(Fin°?, Mod§")
of finite-dimensional representations is semisimple, and its irreducible objects
were classified by Young. Namely, for each unordered partition A of n, one

can construct an irreducible representation V) of the symmetric group %,,
and this defines a bijection

{unordered partitions of n} — {irreducible representations of ¥, }/ =,
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see [JK81, Thm 2.1.11]. Hence irreducible objects of Fun(Fin°?, Perf}") cor-
respond (up to shift) to pairs (n, A) consisting of a non-negative integer n and
an unordered partition A of n. Namely, to such a pair (n,A), we associate
the functor

Sx = (in)1 Vi,
where i, is the inclusion into Fin of the full subcategory spanned by the
object {1,...,n}, and (i,,); denotes left Kan extension along this inclusion.

Definition A.1. Let k € CAlg(Ab) be a field of characteristic zero. The
Schur operation associated to an unordered partition A of a non-negative
integer n is the natural transformation

s e Mapyp, . cAlg(LinCaty),Gat) (8teat: [8teat)
corresponding to
Sy € Fun(Fin°?, Modj")
under (A.2). Given a k-linear presentably symmetric monoidal stable cate-
gory C € CAlg(LinCaty), the Schur operation S restricts to an endofunctor

s*:c—c,
which we refer to as the Schur functor on C associated to A.

Unwinding definitions, we see that S*: C — C is given on objects by
(A3) X — (V)\ & X®n)h2n,

where ¥, acts on X®" by permuting the factors. It follows from this de-
scription that S* agrees with the definition of Schur functors given in § 4.1
above.
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