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1 Introduction

One of the great triumphs of algebraic topology in the 1980’s was the resolution of the Segal conjecture
for finite groups, the precise formulation of which will be given in §4. Its formulation and proof is the
concern of the present note. The interest in this problem before and after its resolution led to a flurry of
work and developments in algebraic topology in the 1970’s and 1980’s by many people, culminating in
Gunnar Carlsson’s paper [Car84]. One implication of this is that even the literature for the full treatment
of the core story for finite groups is quite scattered and the inevitable amount of forward references as well
as folklore logical jumps left unsaid can be quite exhausting for the uninitiated. It is therefore the purpose
of this note to gather and flesh out the various strands in the formulation and proof of this conjecture
for finite groups, and we hope that this will provide an accessible one-stop resource for fellow graduate
students and/or the interested non-specialist mathematician to what we think is a very beautiful story in
algebraic topology.

A historical context

We hope that this short historical tour provides not just a motivating context for the problem, but also
as a collection of references to the literature. Another good (but inevitably less updated) source for this
material is Carlsson’s paper [Car84].

It all began with Michael Atiyah’s seminal 1961 paper , where among other things he computed the
complex K-theory of the classifying space BG of a finite group G in terms of the complex representation
ring R(G). More precisely, we have the isomorphism R(G)/I\(G) =~ KUY(BG) = [BG, BU x Z] coming

from the association V' +— <E GxqgV =+ B G) where V is a finite-dimensional complex representation of

G. Here I(G) < R(G) is the augmentation ideal and the left hand side is the completion at this ideal. This
is supposed to be taken as an amazing result for (at least) two reasons: (1) the usual technology of complex
K-theory is good at handling compact spaces only, and BG is an infinite space when G is a finite group
(for example, BCy ~ R P); (2) we have related a slightly mysterious topological thing KU*(BG) to a
reasonably well-understood algebraic gadget R(G). This result has come to be known as the Atiyah-Segal
completion theorem.



Now in the same way that representation rings R(G) are naturally related to BU x Z, which “controls
symmetries of complex vector spaces stably,” as explained above, Graeme Segal wondered if something
similar might be true for the Burnside ring A(G) of the group G - this is just the ring generated by the
finite G-sets under disjoint unions and products, and it also has an augmentation ideal. More precisely,
a famous result of Barratt-Priddy and Quillen says that QS° ~ BYX% x Z where (—)7 is Quillen’s plus
construction and Q.5 is the infinite loop space representing the cohomology theory of stable comotopy
7%. And so we see that QS° “controls the symmetries of finite sets stably,” and we can then wonder about
the analogy

R(G)je 2% KUO(BG)
?
A(G)} gy +—— m5(BG)
This was Segal’s Burnside ring conjecture.

The early attempts at attacking the conjecture was via a nonequivariant approach using the Adams spectral
sequence. The first success was in the work of Lin Wen-Hsiung [[Lin] who proved it for the case G = Z /2.
This depended on a hard Ext group calculation which was simplified in the paper by Lin, Don Davis, Mark
Mahowald, and Frank Adams [LDMAS80]]. Jeremy Gunawardena [Gun80] pushed this method and proved
it for the case of G = Z/p where p is 0odd. Doug Ravenel [Rav&1]] built on these and proved it for all cyclic
groups.

In another vein, Erkki Laitinen [[Lai79] proved that the map A(G)?(G) — w3 (BG.) is injective for el-
ementary abelians G = (Z/p)", and Segal and C.T. Stretch [SS&1]], [Sir81] extended this to all abelian
groups. Using Brown-Gitler spectra and the Adams spectral sequence, Carlsson proved in another paper
[Car83] for the case of G = (Z/2)*. Adams, Gunawardena, and Haynes Miller [AGM85] then generalised
Lin’s methods to settle the case of all elementary abelian p-groups.

At some point, however, it was realised that a purely computational approach was not feasible for general
groups, and this is the next part of the story. We look back again to the Atiyah-Segal completion theorem
for inspiration. As with many good theorems, there have been many proofs for the completion theorem for
KU (apossibly non-exhaustive list being [Ati61]], [AS69], [Jac85], [Hae83l], [AHJMS88al, [Gre93]). What is
of note, however, is that the first proof given in [Ati61]] proceeded without using genuine equivariant stable
homotopy theory and instead used the Atiyah-Hirzebruch spectral sequence, and it was the landmark
paper of Atiyah-Segal [[AS69] that formulated and solved the problem more slickly in this language - in
fact, the theorem was generalised to all compact Lie groups there. Here the formulation is strengthened
to the assertion that there is a natural map

KUG(8°) 1) — KUG(EG4)

which is an isomorphism, where KUy is the equivariant complex K-theory of [Seg68]. The main lesson,
for which all the subsequent proofs have adhered to, is that it is better to formulate a stronger state-
ment at the level of genuine equivariant spectra, where many more tools such as long exact sequences
and subgroup inductions/restrictions are available. See [AHJM88a] for a very short and purely homotopy-
theoretic proof of the Atiyah-Segal completion theorem starting from equivariant Bott periodicity of KUy

There is a notion of genuine sphere G-spectrum representing equivariant stable cohomotopy 7., and
Segal [Seg70] and Tammo tom Dieck [tD75] showed that 72 (S°) = A(G). So by analogy we're led to a
stronger form of Segal’s Burnside ring conjecture, asserting that there is a natural map

7689 @) = TG (EGL)

which is an isomorphism. Working in this setting, Peter May and Jim McClure [MM82] showed that to
prove the conjecture for general groups, it is enough to show it for p-groups and with p-completions in-
stead. Furthermore, the Adams-Gunawardena-Miller [AGM85]] paper mentioned above in fact proved the
stronger form of the Segal conjecture for elementary abelians. Finally, building on these two works, Carls-
son [[Car84]] proved the strong form of the Segal conjecture for general groups using various ingenious



inductive techniques via genuine equivariant stable homotopy theory, invoking along the way such clas-
sical results as Quillen’s F-isomorphism theorem and Quillen’s homotopical analyses of subgroup posets.

To end this subsection, we mention other similar problems in homotopy theory. One general formulation
of such problems is the so-called homotopy limit problem of Bob Thomason: there is always a map from
the limit to the homotopy limit and one wants to understand under what circumstances this map is an
equivalence - these are usually very difficult and deep problems in homotopy theory. For example, in
the Segal conjecture case, one corollary is that the map (Sg)® — (Sg)"¢ exhibits the augmentation
completion of (Sg)€. See [Tho83] or [Car85]]. Other spectra for which such homotopy limit/completion
theorems hold are KF; due to D.L. Rector [Rec74], MU¢ due to John Greenlees and May [GM97], and
KO¢ [AHJMB88a]). There is also an unstable analogue of the problem, namely the Sullivan conjecture, the
generalised version of which says that for G a p-group and X a finite G-complex, there is a natural map
(X G);)\ — (X ;\)hG which is an equivalence. The original version was proved in a celebrated paper by
Miller [Mil84]] and later generalised by [Lan92]]. More recent related works include [BBLNR14], [NS18],
and [HW19]): the first two streamlined Ravenel’s inductive procedure for cyclic groups from [Rav81]] and
the last proves the Segal conjecture for G = Z/2 using new methods from genuine equivariant stable
homotopy theory that is less homological algebra heavy than Lin’s approach. We mention also that there
are various homotopy limit theorems in other areas such as motivic homotopy theory.

Organisation

The backbone reference for this document is the paper of Caruso-May-Priddy [[CMP87]], which we follow
closely, where they’ve simplified and slightly generalised some of Carlsson’s original arguments. Other
main references are [[Car84l], [AGMS85], and [MM82]]. Sections 2 and 3 introduce the prerequisites on
genuine G-spectra and Mackey functors, respectively. Section 4 gives a precise formulation of the conjec-
ture and section 5 presents the reduction procedure to the case of p-groups and p-completions, following
[MMB82]. In section 6 we introduce the algebraic completions that we’d be working concretely with. Sec-
tion 7 will then state all the main theorems and give an overview of Carlsson’s inductive strategy. Section
8 will solve the “singular” part of the problem, and sections 9 and 10 the “free” part. Section 11 deals
with the case of elementary abelian groups. Finally, the appendix gives the proof for the main algebraic
ingredient in the reduction to p-groups step.

Disclaimer: At many points in the document I have chosen to err on the side of being careful and explicit
in arguments both for my own benefit and also for the benefit of those who are less familiar with the things
presented but still want to follow the proofs in detail. For example, I found the relationship between the
various types of completions (different ones are used in the statement and the proof of the theorem) quite
confusing at first, and so have expended some effort in being very explicit about these. Consequently, many
of the proofs appear slightly longer than they should be, as in the original sources, and I apologise for these
in advance to the experts in some or all of the areas. Lastly, while I've tried to present complete proofs
to most things, the Ext group calculation of [AGM85]] is only sketched as it is a whole other (interesting)
computational story in its own right.
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2 Genuine equivariant stable homotopy theory

There are many distinct ways to encode the notion of a “spectrum with a symmetry by a group G,
or equivariant stable homotopy theory. The first definition that one might conceivably come up with
is Fun(BG, Sp), which we call spectra with G-action following current conventions. Here, a G-map
f X — Y in Fun(BG, Sp) is an equivalence if the underlying map of spectra is (that is, it is a m,-
isomorphism). A more sophisticated notion, however, is that of genuine G-spectra, where part of the data



of a G-spectrum are its various genuine fixed points and equivalences are tested more stringently againts
all these fixed points. This is the setting that will allow us to prove the Segal conjecture. As a point on
terminology, we will freely interchange between genuine equivariant stable homotopy theory, genuine
G-spectra, and G-spectra.

What makes G-spectra such a useful technology is the presence of different types of fixed points and
transfer maps which provide very powerful inductive methods by relating the information between the
various subgroups - we will see this in action in at least two places in the proof of the Segal conjecture: the
first in §5 where we perform reduction to the case of p-groups and p-completions using the transfer (or
Mackey) structure of G-spectra, and the second in §8 where we solve the “singular” part of the problem
by a clever induction via geometric fixed points.

In this section we briefly review genuine equivariant stable homotopy theory via orthogonal spectra -
this will be the foundation to the rest of the document. We've chosen this model simply because we
feel that it’s the most commonly used one these days and which has many good sources out there. We
assume that the reader is more or less familiar with stable homotopy theory. There are many models for
genuine equivariant stable homotopy theory: one of the first ones being the Lewis-May model [LMS86]
on which our main reference [CMP87] is based; orthogonal spectra (see [HHR16], [Schl], or [Sch18] for
good references); and as spectral Mackey functors (see [Barl7] for an co-categorical treatment of this).

The orthogonal spectra model

Let G be a finite group. We now define orthogonal G-spectra following Schwede’s book [Sch18]]. The main
reason for specifying a model is that we will need to have a concrete definition of equivariant cohomology
theories and geometric fixed points in order to make various calculations in the rest of the document. Since
the precise definitions are quite technical and long-winded, we’ve chosen only to give enough detail for our
purposes, and refer the reader to the book for details. All spaces will be pointed, unless stated otherwise.

Construction 2.1 ([Sch18|] 3.1.1). Let V, W be inner product spaces (ie. finite-dimensional R-vector
spaces with inner product). Write L(V, W) for the space of linear isometric embeddings. There is an
“orthogonal complement” vector bundle £(V, W) — L(V, W) given by

VW) = {(w, ) e W x LV, W) [wle(V)}

and projection onto the second factor. Write O(V, W) for the Thom space of the bundle, ie. the one-point
compactification of the total space £(V, W). Given a third inner product space U, there is an obvious map

LV, W) x U, V) = (U W)
which induces an associative “composition”
0:0(V,IW)AO(U,V) = O(U W)

Now define O to be the topological category with objects inner product spaces and morphism space from

V to W given by O(V, W).

Definition 2.2. Define S& to be the (topological or co-)category of based G-complexes and based G-
maps. Amap f : X — Y is an equivalence iff f7 : X — Y'H is an ordinary based equivalence for all
H <G.

Definition 2.3. An orthogonal G-spectrum is a based continuous functor from O to the category of based
G-spaces S¢, and a morphism of orthogonal G-spectra is just a natural transformation of functors. Write
Sp“ for the (topological or co-)category of orthogonal G-spectra.

Remark 2.4. The definition above is basically a very compact way to encode the various structures we
expect from a spectrum. For us the important points will be the following:

« Given any G-representation V, X (V) is then a based G x G-space, coming from the G-action on
X (V) € 8¢ and the G-action G — O(V') together with the O(V) functoriality of X (V). We then
consider X (V') as a G-space via the diagonal action.



« Given two inner product spaces V' and W, we always have the suspension structure maps
ovw :SYAX(W) = X(VaoWw)

using the canonical inclusion SV — O(W, V &W) and functoriality of X, thinking of O(W, V& W)
as the morphism space between W and V@& W. See [Sch18] 3.1.4. When V, W are G-representations,
then these structure maps automatically become G-equivariant.

Definition 2.5. Forany A € S¢, we can define the suspension G-spectrum ¥ A given as (X A) (V) :=
SV A A with O(V)-action on SV and G-action on A. The structure maps oy : SV A SW A A —
SVEW A A is just given by the canonical homeomorphism SV A SW 22 SVEW  We will also write ¥
when we want to emphasise that we’re taking the suspension spectrum for the group G.

Definition 2.6. The sphere G-spectrum S¢ is given by 5%, where S° € S& has trivial G-action.

Warning 2.7. Even though S was defined in terms of spaces with trivial G-actions, it is far from being
equivariantly uninteresting. The point is that when we evaluate at a G-representation V', S¢(V') has an
interesting G-equivariance coming from V.

Fact 2.8. It turns out that Sp” is a closed symmetric monoidal stable (topological or co-)category with
unit S, smash product denoted by ®, and the function spectrum denoted by F'(—, —) (or Fy(—, —) if
we want to emphasise that we’re taking it in Sp” for H < G). The suspension spectrum is then a strong
monoidal functor, ie. for X, Y € S¢ we have

DP(XAY) ~ E¥X @ D°Y

Definition 2.9. An orthogonal ring G-spectrum is then just a monoid object in Sp®. In other words, an
orthogonal ring G-spectrum is some R € Sp® equipped with a multiplication R ® R — R and a unit
S¢ — R such that the associativity and unit diagrams commute. We write CAlg(Sp) for the category
of commutative ring G-spectra with ring morphisms.

Notation 2.10. We will denote by Mapg,c (—, —) the mapping space in the (topological or co-)category

Sp? - this is canonically enriched as a spectrum because Sp“ was a stable category, and we write map(—, —)
for the mapping spectrum. Finally, by limits and colimits, we always mean homotopy limits and homotopy
colimits.

Restrictions, inductions and finite G-sets
Let H < G. Then we have the following spectral induction-restriction-coinduction adjunction
Indg : Spf = Sp¥ : Res§y
Res$ : Sp@ = sp'’ : Coind%

Here Res$, is strong monoidal. In terms of our concrete model, Res$ is just given by restricting the G-
action to the H-action on our based G-spaces. We also have the adjunction

Ind$ = G4 A — : SH = 8% : Res§,

at the level of based G-complexes, such that if X € S, then Inngeng is G-homeomorphic to
G/H: A X. Furthermore, we also have Map g (G/H4, X) ~ X" € S..

One of the bread and butter toolbox in manipulating G-spectra is the following omnibus theorem, all of
whose parts are intimately related.

Theorem 2.11. Let H < G be a subgroup.

1. (Wirthmuller isomorphism) Indg o~ Coindg. In particular, Indg and Res$, are both left and right
adjoints, and so preserve all small limits and small colimits.

2. For X € $p%, Ind5Res$ X ~ G/H, ® X.



3. Finite G-sets are canonically self-dual in Sp®. In particular, for X, Y € Sp© we have

Mapg,c(X,G/Hy ®Y) ~ Mapg,e (G/H ® X,Y)

4. (Frobenius formula) Ind% (X @ Res$Y) ~ Ind5 X @ Y
Corollary 2.12. Let C € Sp’ and B,Y, Z € Sp“. Then we have
Res$ Fq(Y,Z) ~ Fi(ResGY,Res$, Z)  and  Ind$, Fy(Res$ B, C) ~ Fg(B, Ind5,C)
Proof. Let X € Sp*’. Then
Mapg, = (X, Res$ Fa(Y, Z)) ~ Mapg ¢ (nd5 X ®Y, Z)

=~ Mapg,c (Ind$ (X ® ResGY), 2)
~ Mapg, = (X, Fin (Res$ Y, Res% 7))

The other one is done similarly, using the Wirthmuller isomorphism to say Ind$ is right adjoint to Res%.

O

Genuine fixed points and geometric fixed points

One of the slightly daunting things for those who are seeing G-spectra for the first time is the multitude
of fixed points, namely that of homotopy fixed points (—)"“, genuine fixed points (—)¢, and geometric
fixed points (—)®“. The notion of homotopy fixed points is already available at the level of spectra with
G-action Fun(BG, Sp): for X € Fun(BG, Sp), this is just taking the limit X"¢ := limpg X € Sp.

Definition 2.13. A complete G-universe is a G-representation {f of countable real dimension that con-
tains infinitely many copies of every irreducible G-representation. One concrete model for it is &> p¢
where p¢ is the regular representation of G. Complete universes satisfy the following closure properties:

« For H < G, the infinite-dimensional H-representation Res$/ is also a complete H-universe.

« For K < H < G, the infinite-dimensional (H/K)-representation U = (Res%)¥ is a complete
H/K-universe.

While using a particular complete G-universe involves a choice, all notions in sight will turn out to be
independent of this choice.

Definition 2.14. Let X € SpG, and K < H < @. Fix a complete G-universe U. We define the H/K-
geometric fixed point of X, ®/K X e Spf/K a5 follows: for any VX € U define

(@H/EX)(VE) = (ResG X (V) K € SH/K

When the context of K < H is clear (for example when H = G), we simply write ®* X, and to save on
notation, if we denote H/K by J, we also write /X = pH/EK X,

Warning 2.15. The convenient notation ®/ X hides the fact that this really depends on K < H. For
example, in general ®/¢ X o ®¢X even though G/G = e.

While we won’t really be needing all the categorical properties of these various fixed points, we think it’s
helpful to lay out the organising principles for them and summarise the situation abstractly by stating the
following omnibus result. See [NS18] II.2 for a good reference and [Wil17]] Notation 1.33 for an abstract
but very general treatment of these adjunctions from the spectral Mackey functor point of view.

Theorem 2.16 (Fixed points). Let N <G be a normal subgroup.
(a) (Genuine fixed points) We have the following adjunctions
iy SpFN = s ()N

(=) 5p% = p&/N L,



The functor i) is strong monoidal, and so by abstract nonsense, the genuine fixed point functor (—)
is lax monoidal. When N = G, 4, is the functor that associates to an ordinary spectrum the genuine
G-spectrum with trivial action.

While it won’t be important to know what the functor i, is, the point of the second adjunction is that it
shows that (=) is also a left adjoint, and so (=) preserves all small limits and small colimits.

Here we see that for X € Sp©, X is not just an ordinary spectrum, but also has a residual equivariance
on the group G /N. Forgetting the residual action, the genuine fixed points are corepresentable: that is,
we have X ~ mapg,c (G/Hy, X) € Sp.

Fixed points are transitive: if K <« H < G and K < G, then ((—)%)H/K ~ (—)H,
(b) (Geometric fixed points) We have the following adjunction
N : 5p? = /N 2N

where the geometric fixed point functor ® is strong monoidal, and being a left adjoint, preserves small
colimits.

As above, note that for X € Sp©, ®N X has a residual G /N -equivariance and not just an ordinary
spectrum. Following [Wil17] we use the notation X ®N to denote the underlying nonequivariant spec-

trum of ®V X.
Finally, a very important property of geometric fixed points is that for X € S&, we have that

PN(EFX) ~ g n XN

Geometric fixed points are transitive: if K <« H < G and K < G, then ®H/K oK ~ oH

(c) (Homotopy fixed points) There is a natural functor Sp° — Fun(BG,Sp) given by X + X° and
remembering the G-action which induces, for each H < G, a small limit-preserving functor

(=) $p% — Fun(BG, Sp) — Sp
A concrete model for X" when X € Sp© is given by

X" = F(EG,, X))

Remark 2.17. The category Sp” is compactly generated by the transitive orbits {G/H+}n<g, and thisin
particular means that equivalences in Sp© can be tested by applying mapg,c (G/Hy, —)forall H < G. By
the corepresentability of genuine fixed points stated above, we get the statement that a map of G-spectra
X — Y is an equivalence iff all the induced maps X — Y for all H < G is an equivalence.

Observation 2.18. For S and K < H < G, we have @K(Res§SG) = Z%O/KSO = Spy/k, and so
the geometric fixed points of sphere spectra are the sphere spectra for subquotient groups. This closure
property will be crucial to Carlsson’s inductive proof of the Segal conjecture.

Theorem 2.19 (Segal-tom Dieck splitting). For X € S&, we have an equivalence

(E5X)° ~ P (EWH+ Aw i XH)
(H)

where the sum runs over conjugacy classes (H) of subgroups of G and WH := NH/H is the Weyl group of
H. In particular when X = SY we get

(Sc)” ~ EPS~BWH,
(H)

Remark 2.20. This theorem highlights the subtlety of the notion of genuine fixed points: even for S¢
which comes from the G-space S° with trivial G-action, the genuine fixed points is anything but simple.
In contrast, as stated in Theorem [2.16] geometric fixed points interact very nicely with the suspension
functor.

Remark 2.21. In the proof of the Segal conjecture, this theorem will be important to us since it guarantees
that the equivariant homotopy groups of S¢ are finitely generated abelian groups.



Equivariant homotopy groups and cohomology theories

Fix a complete G-universe Ug once and for all, and write Uy = RestZ/lg. For K <« H < @, write
Un/k = (Res&GUg ). For U a complete G-universe, we denote by s(U) the poset of finite-dimensional
G-subrepresentations under inclusions.

Notation 2.22. Let A, B be pointed G-spaces. Then we denote by [A, B] the set of G-homotopy classes
of based G-maps from A to B.

Definition 2.23. Let k € Z, X € Sp®, and H < G. We define the k-th H-equivariant stable homotopy

group of X as
(X)) = {Colimvgs(uH)[S’V ASF ReEX (V)] itk >0
k =

colimy ¢ 54, [SY, Resi X (V@R ¥y ifk<0
We collect some standard properties of equivariant stable homotopy groups in the following.
Proposition 2.24. Let X € Sp and H < G.

(a) The equivariant stable homotopy group really does have a canonical abelian group structure, justifying
the name.

(b) They are independent of the choice of a cofinal family, and so in particular the cofinal family {npg}»
can be used.

(c) There is a natural isomorphism 7 (X)) = 7, (X ) where the latter is just the usual stable homotopy
group of a spectrum.

(d) Tr,Ef) (X)) for the various subgroups of G collect into a Mackey functor, which we shall introduce in the
next section.

Example 2.25. For M a ZG-module, we can always construct an Eilenberg-MacLane G-spectrum H M
satisfying
MHE  ifqg=0

0 otherwise

waM:{

Furthermore, evaluating at a G-representation V' satisfies H M (V') ~ K (M, n) nonequivariantly, where
n = dim V. See example 2.13 of [Sch] for details.

Definition 2.26. Let G be a finite group. The Burnside ring A(G) is the commutative unital ring that
is finitely generated as an abelian group by the finite G-sets under disjoint union, and multiplication is
given by taking products of G-sets.

Theorem 2.27 (Segal). 7§(S¢) = A(G).
Definition 2.28. Let k € Z, E € Sp®, and H < G. Then E defines a cohomology theory Ey:SH —
[T, Ab given as follows: for X € S

colimy ¢ @) [SY A X, ResGE(V @Ry ifk >0

E¥(X) =
i(X) {colimVES(MH)[SV/\Sk/\X,Reng(V)]H ifk<0

We also define Ef!(X) := E;(X). When we take the underlying spectrum of F and consider the
ordinary cohomology theory, we write it as E*(—).

Notation 2.29. The cohomology theories above can be interpreted as follows: for E € Sp© and X € S¢
we have for k € Z
E&(X) = moMapg,e (5F X, 5* @ E)

where S* for k < 0 is the tensor inverse of S~F. Because of this, we will also often write [X, ¥* E]¢ for
EE(X) and so on.

Notation 2.30. We write 7},(X) := (Sg)% (X) for the equivariant stable cohomotopy groups.



Proposition 2.31. For X € S¢ and E € Sp©, we have
EL(G/Hy NX) = B} (X)

Proof. Using Theorem we get

EL(G/H, A X) = [IndGRes% X, 29E] ¢ = [Res§ X, D9ResG By = E4(X)

Universal spaces and isotropy separation

For F a family of subgroups of G, that is, a collection of subgroups of GG closed under subconjugations,
there is an associated universal space EF € S¢ uniquely characterised

BFH ~ x fHeF
|0 fH¢F

We can then define the pointed G-space ET as the cofibre in S of
EF, —8° = EF

This will then be uniquely characterised by

SO ifH¢F

Two families will be important for our purposes, namely {e} the trivial family and P the family of proper
subgroups. For the case of 7 = {¢} we write EG := E{e} and EG := E/ﬁ_e/} instead. Just like in other
parts of genuine equivariant stable homotopy theory, the cofibre sequence displayed will be one of the
key ideas in the proof of the Segal conjecture, as it separates the problem into the “free” part EG and
the “singular” part EG.

Construction 2.32 (Carlsson’s model). We introduce a particularly convenient model for EP following
Carlsson. Let V be the reduced regular complex representation of G, that is, V' = pg — R{>_ 9eG g}. Let
X = [JS"V. Since V¥ = 0 we get ¥ = SO. If H < G then V has a trivial H-summand (namely the
one-dimensional subspace generated by the sum of all elements of H) and so X ~ §° is contractible.

Split theories

For E € Sp© there is always a canonical map of ordinary spectra E¢ — E (where the target is considered
as the underlying spectrum of E). We say that F is split if there is a map of ordinary spectra £ — E¢
such that the composite

E—E°—FE

is homotopic to the identity. For our purposes, the importance of this notion comes from the following
property:

1%

Proposition 2.33. If E is a split G-spectrum and X € S is a free based G-space, then Ef(X)
E*<(X/G).

Example 2.34. S is a split theory since the Segal-tom Dieck splittinggives (Sq)¢ ~ @(H) YX*BWH,,
and then it can be checked that the inclusion of the summand S = X*BWG, — P () ZBWH, ~
(Sc)¢ gives the required splitting.
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Completions

For this part we will summarise the notions we need from [GM92]]. The point is that for any ideal I < A(G)
there is a concrete and easily manipulated functor X +— X' such that:

« X7 islocal in the categorical sense of Bousfield (which we shall explain below).
« When X is sufficiently finite, then 7&(X}\) = (7€ X)),

Throughout this section let I < A(G) = 7§ (S¢) be an ideal, and since A(G) is Noetherian, we have that
I =(aq,--- ,ay) for some choice of generators.

Definition 2.35. We define
S¢/a:=Sg/a1 ® - ®Sqg/an

and M (a;) as the fibre in the sequence
M (a;) = Sa — Sala; ']
We then define M (a) := M(a1) ® --- ® M(ay).

Remark 2.36. It turns out that M (a) is independent of the choice of generators, and so we can also write
M (I) instead. See [GM95al] page 11, for example.

Definition 2.37. By the remark above, the following is a well-defined notion: a G-spectrum W € Sp® is
said to be I-acyclicif W @ M (I) ~ .

Definition 2.38 (Bousfield /-completeness). A G-spectrum X € Sp© is said to be I-complete if for any
I-acyclic spectrum W € Sp®, we have that Mapyg,c (W, X) ~ *. A map of G-spectra X — Y is said
to be an I-completion if Y is /-complete and the fibre is I-acyclic (equivalently, if the map becomes an
equivalence after tensoring with M (1)).

Theorem 2.39 ([GM92] 1.6 and 2.3). Let X € SpG.

(a) The natural map M (I) — S¢ induces the map
X ~ F(Sg, X) = F(M(I), X)
exhibiting the I-completion of X.

(b) If X was bounded below and finite type (that is 721 (X) = 0 for all H for small enoughn and each of
them are finitely generated abelian groups), then w11 (X)) — wH (X7}) exhibits the [-completion in the

usual algebraic sense, that is, it is the canonical map where 711 (X ) 2 lim,, 72 (X)/I" - 72 (X).

Remark 2.40. In particular, we now know what it means to complete a G-spectrum at the augmentation
ideal I(G) < A(G) and to p-complete it, namely using I = (p) < A(G), and we even have a concrete
model for these completions using function spectra. Furthermore, since the sphere G-spectrum is bounded
below and finite type, these completions behave as expected on the equivariant homotopy groups.

Notation 2.41. For the augmentation ideal I(G) < A(G) we denote I(G)-completion by (—) ?(G); we

denote p-completion by (—)7.
The remaining part of this section will not strictly be needed to understand the rest of the document and
can be safely skipped, but we’ve included it just to clarify that p-completions commute with genuine fixed

points.

Theorem 2.42 ([GM92] 2.2). For W € Sp®, we have that W @ Sg/a ~ * iff W @ M(a) ~ *. That is,
T-acyclicity can equally well be tested with Sg /a.

Proposition 2.43. Let X € Sp°©.

(a) If X was p-complete as a G-spectrum, then X! is also p-complete as an ordinary spectrum for all
H<G.

(b) Furthermore, the map X* — (X))" exhibits (X}))" as p-completion of X* in Sp.

11



Proof. We will apply Corollary at various points in the proof to manipulate restrictions and function
spectra. The main point to note is that if 3 : Sp — Sp” is the strong monoidal left adjoint to (—)" then
we have an identification of cofibre sequences

i!(s LAY QN S/p) ~ (SH sy — SH/p)

since i, is left adjoint, and so preserves cofibre sequences. Besides that, Resg commutes with colimits and
so commutes with (—)[p~!] and hence

Res; (Ma((p) = S = Selp™]) = (Mu((p)) = Su = Sulp™"))
Also note that Res% (X)) is a p-complete genuine H-spectrum since X, = Fa(Mg((p)), X)) gives
Resf; (X)) = Resfy Fo(Ma((p)), X}) = Frr (M ((p)), Resf; (X))
and moreover Res$ X — Res% (X »») exhibits the p-completion of Res$ X since
Frr (Mg ((p)), Resf; X) = Resf; Fo(Mc((p)), X) = Resfy (X}))

(a) Tosee X1 = (Res$ X)¥ is p-complete if X is, let Z € Sp be such that Z @ S/p ~ *. We need to
show that Mapy (Z, XH) ~ % Now

MapSp(Za XH) ~ Mapg,n (i Z, Res%X)

and iy Z @Sy /p ~ 1 Z®4S/p ~ i)(Z ®S/p) ~ *, so the latter mapping space is contractible since
Res% X was a p-complete H-spectrum.

(b) Let us note that
in(M((p)) = S = Sp™) = (Mur((9)) = S — Sulp™"])

since i, preserves colimits so commutes with (—)[p~']. By part (a), to see that X# — (X/)#
exhibits p-completion of X we just need to show that

F(M((p), X") = F(M((p)), (X;)™)

is an equivalence. Let Z € Sp, and testing against this by applying MapSP(Z ,—) and unwinding
adjunctions we get the equivalence (since Res% (X /) was p-completion of Res% X in Sp™)

Mapg, i (i1Z, Fir (M ((p)), Resf; X)) — Mapsyu (i1 Z, Fir (M ((p)), Resfy (X))

where again we’ve used i1 M ((p)) ~ Mg ((p)). Hence F(M((p)), X") — F(M((p)), (X)) is
equivalence as required.

O

3 Mackey functors

We now introduce Mackey functors. One of the canonical references for this is chapter 6 of [tD79]], and
everything in this section (except possibly the last lemma) are standard. We provide proofs to some of
them to give a taste of how things go with Mackey functors.

Definition 3.1. Let GG be a finite group and G'Set be the category of finite G-sets and G-maps. A bifunctor
M = (M*, M,) : GSet — Ab

is a pair of functors with M* contravariant and M, covariant which agree on objects. For a G-map
f:S — T write f* := M*f and f, := M., f. A bifunctor M is called a Mackey functor if it satisfies the
following two properties:

12



(a) (Additivity) The homomorphism M*(S| |T) — M*(S) @ M*(T) induced from S — S| |T + T

is an isomorphism.

(b) (Double coset axiom) For any pullback diagram in GSet

v-—1.s
| Is
r——mV
the diagram
I

commutes.

Remark 3.2. We've followed the definition in §6 of [tD79], but we point out that there are at least three
different ways to define Mackey functors, some better for calculations and some for a more conceptual
understanding. We refer the reader to [Luc96l] for example for a nice exposition on this.

Notation 3.3. We will often use the underline notation M to emphasise that something is a Mackey
functor. As is common in the literature, we will also freely interchange between writing M (H) and
M(G/H) for H < @G - this will usually not cause any confusions.

Definition 3.4. Let M be a Mackey functor for the group G and S a finite G-set.
(a) Define the Mackey functor Mg by Mg(T) := M (S x T'). We then have a map
Og:Mg—M and 6°:M — Mg
given by 05(T) = 7, and 0% (T) = 7* where w : S x T — T is the projection.
(b) We say that M is S-projective if g : Mg — M is split-surjective.
(c) We say that M is S-injective if 0° : M — Mg is split-injective.
Proposition 3.5 ([tD79] 6.1.3). A Mackey functor M is S-projective iff it is S-injective.

Construction 3.6. For S € GSet, let SY = % and 5% = Hf:ol S and m; : S*1 — S* denote the
projection omitting the i-th factor for 0 < i < k. For M a Mackey functor we have two chain complexes

0= M(S%) L m(shy L ps?) L

0« M(S%) <22 M(SY) < M(S?) <2 ...
where d¥ = Zfzo(—l)iﬂg‘ and dj, = Zfzo(—l)im*.

The following proposition says that these chain complexes give us “S-injective and S-projective resolu-
tions”.

Proposition 3.7 ([tD79] 6.1.6). Let M be a Mackey functor. Then
(a) Mg is always S-injective and S-projective.
(b) If M is S-injective then the chain complexes above are exact.

Proof. We show the exactness of the first chain complex in part (b). Let ¢) : Mg — M be a splitting. We
use it as a contracting homotopy for the chain complex as follows: consider the diagram
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0 —— M(S") T M(ST) T M(5?) — -

Fearere

0*>MSO)*>M51)—>M(52)—>
This is a contracting homotopy since for example
Yo (my —m1) +motp = id — ] + mo = id

where we’ve used that we have diagrams like

M(S x §51) T2 M(S x §¥)
[ J»
M(S*1) — 2 M(sh)
by the naturality of the splitting . 0
We now introduce Green functors which are the algebra objects in the abelian category of Mackey functors.

Definition 3.8. A Green functor U : GSet — Ab is a Mackey functor together with the data of a collection
of bilinear maps

US)xUWlS)—=US) = (r,y)—zx-y

for each S € G'Set satisfying:
(a
(b
(c
d

Each of these maps are bilinear.
For each S € GSet these maps make U(.S) into a unital associative ring.

For f : S — T a G-map, f*: U(T) — U(S) is a unital ring map.

NN SN

(Frobenius conditions) For any G-map f : S — T we have
fel@- fry) = fur -y

Remark 3.9. If U is a Green functor then there is an obvious notion of a left U-module Mackey functor:
that is, a pairing U x M — M making each M (S) into a left U(.S)-module.

Definition 3.10. The Burnside ring Green functor A for a group G is defined as A(G/H) := A(H).
Restrictions, inductions, and conjugations of H-sets induce the Mackey structure on A, and the levelwise
ring structure induces the Green functor structure.

Fact 3.11. It turns out that all Mackey functors admit a unique structure as modules over the Burnside
ring Green functor - this is analogous to the fact that all abelian groups are modules over Z in a unique
way. See [tD79] Proposition 6.2.3.

The following theorem says that the splitness condition in the notion of S-projectivity for Green functors
is redundant, and the proof is an archetypal use of the properties in the definition of Green functors.

Theorem 3.12 ([tD79] 6.2.2). LetU be a Green functor and S a finite G-set. Then the following are equivalent:
(a) For f : S — x the unique map, the map f. : U(S) — U(x) is surjective.
(b) U is S-projective.
(c) AllU-modules are S-projective.
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Proof. The implications (c) = (b) = (a) are clear. To see that (a) = (c), let M be a U-module and we want
to show that

et Mg — M
is split surjective. Since f, is surjective, there exists u € U(S) such that f,u =1 € U(x). Now define
Y(T): M(T) - Ms(T) = mw—pu-7'm

where
p:SxT—S T SxT—T

are the projections. Then
mp(m) = me(p*u - mm) = (mep*u) -m = (¢ fiu) -m=1-m=m

where we’ve used the double coset formula associated to the pullback

SxT —~5T = US xT) "= U(T)
pi J{q p*T Tg*
S — U(S) — (%)

O

The next lemma, which appeared as Lemma 5 in [MM82], is of a sufficiently general nature that we’ve
included it in this section. But it is one of the key lemmas in the reduction of the Segal conjecture to
p-groups that we’ll work on in §5.

Construction 3.13. Let C(QG) := H( mZ where the product runs over conjugacy classes of subgroups
of G, and write IC(G) C C(G) for the ideal with 0 for the e-th coordinate. This is sometimes called the
ghost ring. We then always have a homomorphism

x: A(G) = C(G)

where for S a G-set, the H-th coordinate is given by x(S) := |S¥|. Then y is a monomorphism with
finite cokernel and |G| - C(G) being in the image of x (and so also |G| - IC(G) C xI(Q)). See [tD79] §1
for these.

Lemma 3.14. Let M be a Mackey functor and let 7 : G/e — G/G which induces 7 : M(G/G) —
M(G/e). Then |G| - ker n* C I(G) ker n*. If G is a p-group, then the p-adic topology {p" ker 7%}, and the
augmentation topology {I(G)" ker 7*},. on ker m* coincide.

Proof. First recall that any Mackey functor is a module over the Burnside ring Mackey functor and in fact
multiplication by G/e € A(G) on M(G/G) is given by

M(G/G) ™ M(GJe) = M(G/G)

since for 1 € A(G) and m € M(G/G) we have
T (1-m) = (71 - 7"m) = (mn™1l) -m=G/e-m
This means that G/e - ker 7* = 0, and so
|G| - ker* = (|G| — G/e) - kern* € I(G) ker 7*
Now let G be a p-group with |G| = p™. Then the above clearly gives us
p""kern* = |G| kern* C I(G)™ ker
so now we claim that I(G)"*! C pI(G) which would imply that
I(G)™ " D ker * € (pI(G))" ker 7 C p™ ker *

giving the other direction. To see the claim, let H, K’ < G with H # e. Then note that x s (G/K —|G/K]|)
is divisible by p since G/K — (G/K)H consists of a disjoint union of nontrivial H-orbits and H is a p-
group. Therefore x yI(G) C pZ and so xI(G) C pIC(G), and

XI(G)™FH € p"HC(G) = plGIIC(G) € pxI(G)
By injectivity of x, we’re done. O
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4 Motivation and formulation of the conjecture

We explain here why completion theorems are natural questions to ask and give a general formulation of
the problem at the level of G-spectra.

Let R € CAlg(Sp®). Then R%(S°) actson R% (G /ey) = ToMapg,c (IndSResCS¢, R) = moMapy, (S, ResC R) =
R*(S°) via the restriction homomorphism

Res® : R%(S%) — R%(G/ey)
and so if we define I to be the kernel of this homomorphism, then by definition I acts as zero on R, (G/e).

Proposition 4.1. I" as defined above acts as zero on R}, (X) for X an (n — 1)-dimensional finite free
G-complex.

Proof. We show this by induction on n, where the case n = 1 is as above. Suppose true for n and let X
be an n-dimensional finite free G-complex. Then the cofibre sequence

X005 X0 L\ /(S™ A Gey)
gives the long exact sequence
e [SFA XD Rl - (8K A XM, Rlg <= @IS AGJes, Rlg -+

By induction the left hand terms are annihilated by I, and the base case says that the right hand terms
are annihilated by I, and hence by exactness the middle term is killed by 7™ **. O

Given these observations, and noting that EG; has finite free skeleta we get that the maps { EG", — S°}
induce a factorisation

R{(SY) ——— lim,, RL(EGT)
l /,)r
lim,, RE(S°)/1™

On the other hand the Milnor sequence
1
0 — lim Ry (EGY) — RE(EGL) — lim RE(EG™) — 0

. .1 . .
says that in good cases where the lim™ term vanishes, we have a comparison map

lim RE(S%)/I" — RL(EG.)

and so in the context where there are no lim" issues in comparing R (EG.) and lim,, RS (EG™ ), we
can ask when

R(8°)7 — RG(EG.)
becomes an isomorphism. To put it more memorably, we want to know when an “algebraic completion”

on the left becomes the same as a “geometric completion” on the right.

In fact, we even have the following lim"-free result purely at the level of spectra crystallising the discus-
sions above, although we won’t be needing it in this work.

Proposition 4.2. Suppose X € Sp© is Borel complete, that is X ~ F(Sq,X) — F(EG,,X) is an
equivalence. Then it is also complete with respect to any (finitely generated) ideal I < I(G) < A(G) where
I1(G) is the augmentation ideal.
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Proof. Since I = (ay,--- ,a,) is finitely generated, and M(I) = M(a1) ® --- ® M(a,), we get that

Y/ = (Y}),,, and so by induction, it is enough to show the case of I = (a) a principal ideal. We

think of I < A(G) = 7§ (Sg) as representing self maps of S. Since it’s in the augmentation ideal,
ie. in the kernel of Res¢ : 7§ (Sg) — 75(S), we know a : S¢ — Sg is nonequivariantly triv-
ial. And so M(a) — Sg is a nonequivariant equivalence since Sg[a~!] is nonequivariantly trivial.
Therefore M (a) ® EGy — EG, is a G-equivalence (see [GM95b] Proposition 1.1 for example), and
so F(Sg, F(EG4, X)) —» F(M(a), F(EG4, X)) is a G-equivalence. O

These considerations together with the spectral completions from §2 lead us naturally to formulate the
following version of the Segal conjecture.

Theorem 4.3 (Segal conjecture for finite groups). For G a finite group, the comparison map
€a : (Se)(a) — F(EG+,Sc)
is an equivalence of G-spectra. Equivalently, the comparison map
7&6(8°) 1) = TG (EGL)
is an isomorphism for all finite groups G.

Proof of equivalence of formulations: A map of G-spectra being an equivalence can be checked on the
equivariant homotopy groups for all subgroups of G. Also, recall that

Res% F(EG,,Sq) ~ F(Res$ EG, ,Res$Sg) ~ F(EH,,Sy)
Finally, note from the function spectrum model of completions that
Resf ((Sa) 7)) =~ (SH)Ress 1(0)
Therefore, the map of G-spectra ¢ is an equivalence iff
Wf((SH)[/{\esg](G)) — ﬂfF(EH+, SH)

is an isomorphism for all H < G. Now the Segal-tom Dieck splittingsays that 77 Sy are all bounded

below and finite type, and so Theorem says that ﬂf((SH)l/z\esGl(G)) = ﬂ-f(SH)l/Q\esGI(G)' On the
H H
other hand, Lemmagives that 72 (S H)l/{\esc Q) =~ rH(s H)?( H) And so switching to the cohomology
H
notation we get that £ is an equivalence iff
1 (S*) 2y = T (EHy)
is an isomorphism for all H < G, as required. O

Remark 4.4. This agrees with Segal’s original Burnside ring formulation since Theorem [2.27] says that
72 (5%) = A(G) and splitness of S¢ and Proposition give that 7% (EG ) & 7% (BG).

The next section will show how, using the theory of Mackey functors, we can reduce this to the case of
p-groups with p-completions instead of augmentation completions. But before ending this section, let us
see how, following [GM92]], the language of completions of G-spectra allow us to generalise this result by
purely formal reasons.

Theorem 4.5. For X any G-spectrum, the comparison map
F(X,Sc)j(q) — F(EG4, F(X,Sc))
is a G-equivalence. In particular, since finite G-spectra are the dualisable ones, we have that
Yf(G) — F(EG.,Y)
is a G-equivalence if Y is a finite G-spectrum.

Proof. Recall that for any G-spectrum Z, we have Z?(G) ~ F(M(I(G)),Z). And so the G-equivalence
is obtained just by applying F'(X, —) to the equivalence in the Segal conjecture. O
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5 Reduction to the case of p-groups

This is based on [MM82]). Here is the first instance where we see the power of working with the genuine
equivariant formulation where we use that the homotopy groups of genuine objects naturally admit the
structure of Mackey functors which encode the relationships between the group and all its subgroups,
and these structures give very rigid restrictions to what might happen. There will be two reductions: first
to the case of p-groups, and second, replacing augmentation completions by the strictly more drastic and
better understood p-completions.

Reduction to p-groups

The following is the induction theorem for completed Burnside rings provided in [MM82] which is the
key to this step. We point out here that [AHJM88b] has generalised this reduction step with a topological
transfer argument in their §5 to generalise the Segal conjecture to include localisations.

Theorem 5.1. Let G be a finite group, and A the Burnside ring Green functor completed at the augmentation
ideal I(G). For each prime p, let G, denote a representative Sylow p-subgroup of G. Then the sum

Pi. - PAG,) - AG)

is an epimorphism. In other words, together with Yheorem this implies that all A-modules are projective
with respect to the set of all Sylow p-subgroups for all p dividing |G|.

Proof. See appendix B. O

Our first aim now is to show that the Segal conjecture, as formulated in Theorem[4.3] can equivalently be
stated as N

768 1@ = TG(BEG1) )
being an isomorphism. To this end, we need to know that 75 (E G+)§\(G) =~ 1% (EG,), and from the lim'

discussion of §4 and Propositionwe just need to show that lim* 75(EG") = 0. We have not been able
to find a source for this folklore result and so have supplied a proof inspired by the statement of Corollary
4.7 in Atiyah’s paper [Ati61]. There might be a much simpler way of showing it which we are not aware

of.

Proposition 5.2. The system {75 (EG™)} satisfies lim" 7, (EG™.) = 0.

Proof. Fix a k # 0. We show that for each n, there is an m > n such that
Im (= (EGT) — 7 (EGT))

is finite, and then the vanishing of lim" will follow by Mittag-Leffler. We’ll say what happens for the case
k = 0 later. To do this, we note that 7, (EG" ) = 7¢(BG" ) where the latter is the nonequivariant stable
cohomotopy of a skeleton of BG since EG™ are all free G-complexes and EG" /G ~ BG". These can
in turn can be analysed by the Atiyah-Hirzebruch spectral sequence

EYY(n) = HP(BGT, 7%(S%)) = 5T (BG™)
We now recall a couple of basic facts we’ll use:

0 ifk>1
eS80 =<7 ifk=0
finite ifk < —1

« H?(BGy,Z) is finite when p > 1 (from the theory of group cohomology, for example), and so for
a fixed p, we can always find an m (m = p + 2 say) such that for A any finitely generated abelian
group, HS(BGT, A) is finite for all 1 < s < p and becomes 0 for s > p + 2 for skeletal reasons.
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The spectral sequence for 7%*?(BG") then looks as follows:

SIS
) AN

where for example the line consists of the contributions to 75(BG'}). Here the solid dots are groups
that are finitely generated abelian groups that are possibly infinite, and the hollow ones are finite. By the
second fact above, all the terms vanish for p > 0.

« For a fixed £ > 0 and n, it is easy to see by using the second fact that we can just take m > 0
so that E5°(m) is finite, and then T (BGT) itself would be a finite extension of finite groups, so
finite. Hence indeed Im (7%, (EGT') — & (EG™)) is finite as required.

+ The case of k < 0 is similar but even easier since all the E'y terms were finite to begin with.

« Finally, for the case of k& = 0, note that W%(BG;‘) ~ Z @ A, for some A, finite, where the Z
splitting is the natural one coming from choices of

S° — BGT — S°
compatible across different n’s. Here the A,,’s are finite as in the arguments above. And so the maps
#3(BGT) — x(BG)

are going to the identities on the copies of Z, and hence for a fixed n, the groups Im(ﬂ"é (EGT) —
Trg(EGi)) stabilises as m > 0. So this also satisfies the Mittag-Leffler condition.

O

Proposition 5.3. The Segal conjecture for finite groups is true iff it is true for all p-groups for all primes p.

Proof. Let S = {Gp}, be the set of Sylow subgroups of G, and let S = [ |, G/G,. We know that
both Mackey functors 7* (S’Oﬁg) and 7* (EG,) f(G) are I(G)-complete, and so they are both A-module

Mackey functors. Theorem [5.1 then says that E*(SO)?(G) and E*(EG+)?(G) are S-projective, and so
Proposition 3.7 says that we have a map of exact sequences

0 —— E*(SO)?(G)(*) —_— E*(SO)/I\(G)(S) E— E*(SO)?(G)(S x )

l l |

0—— E*(EG-#)?(G)(*) — E*(EG-F)?(G)(S) — ﬂ*(EG—&-)?(G)(S x S)

But then Mackey functors turn coproducts into direct sums, and § and § x S consist of orbits of the form
G/H where H < G is a p-group for some prime p. And so if the Segal conjecture holds for all p-groups
for all primes p, then

768 @) = 1 (S°) 1) (G/G) - T (BG4 ) (6)(G/G) = n5(EG) )

as required since the two right vertical maps are isomorphisms. O
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Reduction to p-completions
Let G be a p-group from now on. We show here that instead of working with (7%)?( G)» We can work with

(m&);» and this is gotten as Proposition 14 of [MM82].

Warning 5.4. Even though the usual slogan is that “the p-adic topology and the I(G)-adic topology
are the same for p-groups,” this hides the distinction between two different p-adic topologies, namely
{p"I(G)}, and {p" A(G)}, - it is the former that agrees with the I(G)-adic topology {I(G)"},, but it is
the latter which we want to work with. That is, we have the correspondences

&)1 = Tepne  — {10} ={p" 1[G}
&) — {p"A(G)}
To illustrate the difference, consider the Burnside ring A(G) = Z ¢ I(G). Then A(G)” @ =L@ I(G),

pl
but A(G)) =Z, ® I(G)).

Proposition 5.5. Let G be a p-group. Then
76891 @) = TG (EG1)q)

is an isomorphism iff
(S = TG(BGL),

is.
Proof. Consider the diagram of A(G)-modules

00— K — 75(5°) ——— (8% ——— 0

b

0 — L — 15(EGy) — 7l (EGy) —— 0
€l

where the natural splitting dashed maps come from the fact that S¢; is a split G-spectrum as introduced

in §2. This is good because while the completion functors (7)?((;) and (—); are only left exact in general,

here they preserve the short exact sequences by virtue of the splitting. By Lemma [3.14 we get that the
topologies {p" K}, and {I(G)" K}, agree on K, and similarly for L. And so

c?(c) isiso & k?(G) isiso < k;)\ isiso < Cz/a\ is iso
as required. O

Hence we’ve reduced the original formulation for all finite groups G in Theorem [4.3|into the following
version.

Theorem 5.6 (Segal conjecture for p-groups). Let G be a p-group. Then the comparison map
16 (8%), = mG(EGL),
is an isomorphism. In other words, (Sq);, — F(EG1,Sq);, is an equivalence of G-spectra.

Remark 5.7. Sometimes people also talk about the Segal conjecture as saying that the Tate construction
of the sphere spectrum exhibits its p-completion. This concretely means the following: in the case of
G = C,, the Tate diagram in fact becomes

She, S S*Cr

L

She ShCp StCrp
P
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Now p-completion is a left adjoint, and so is an exact functor (ie. preserves stable (co)fibre sequences).
Hence the middle vertical is an equivalence after p-completion iff the right vertical is. But recall that
S?C ~ S in Sp, and so the Segal conjecture for G = C,, is equivalent to saying that S — S!“ is an
equivalence after p-completion. But then we know that S*C7 is p-complete since the Tate construction
of any bounded below G-spectrum is p-complete when G is a p-group (see [NS18]| 1.2.9 for the case of
G = C, or [GM95b] 4.1 for the general case), and so in fact the map exhibits the p-completion of S. See
for example Remark I11.1.6 of [NS18] for this point of view.

Remark 5.8. From Theoremwe can also get the Sullivan conjecture type statement that (X G)Q o~
(X I/)\)hG when G is a p-group and X a finite G-spectrum. Similarly as in Theorem we can get that
for X € Sp© finite, X7 = F(EG,, X)p ~ F(EG, X)) from Theorem Now taking genuine fixed

points (—)¢ and using that it commutes with p-completions (see Proposition [2.43), we get the required
statement.

6 Operational formulation of the conjecture for p-groups

The version in Theorem|5.6|is still not exactly the version we’ll be working with, and the issue is a familiar
one: we want to have long exact sequences of cohomology groups associated to cofibre sequences, but
p-completion is not an exact functor in general. However, all is not lost since it is exact when the mod-
ules involved are finitely generated by the Artin-Rees Lemma (see Proposition 10.12 of [AM69]), and this
section is concerned with introducing a variant of (7 (—));, that will be sufficient for our purposes, and
in giving the form of the conjecture that we shall be working with in Theorem [6.10]

Remark 6.1. In what follows we could equally well have worked with pro-groups as was first done in
[AS69]] in their proof of the Atiyah-Segal completion theorem and the philosophy is basically the same.
We have however chosen to follow the treatment in [CMP87] so as to avoid the technicalities of the pro-
category.

The workable variant of algebraic completion

We work now with general G-spectra. Since we will want to use the isotropy separation sequence to
resolve the cohomology theory represented by the sphere spectrum, it will be convenient to introduce the
following notation.

Definition 6.2. Recall the definition of cohomology theories in Deﬁnition For £ € SpY, X, Y € 8¢
with X finite, and ¢ € Z we define

EC(X;Y) = EL(X;Y) = (Z*Y @ E)§(X)
So this is a cohomology theory in X and a homology theory in Y.

Now we introduce the variant of completion that we shall be working with in the sequel.

Definition 6.3. When X € S& we define
E&(X:Y) == lim (£5(Xa;Y)D)

where the limit runs over X, finite G-subcomplexes of X.

Warning 6.4. Itis of course not true that [X, £))]¢ = lim,[X,, €]}, - the latter is not even a cohomology
theory in general since inverse limits do not always preserve exactness. The point is that while we're
interested in studying the spectrum £/, we need a concrete way to work with it algebraically, and the
latter is an approximation to this end.

Remark 6.5. Greenlees and May [GM95al] have later on developed the theory of derived completions to
deal with the completions happening at the level of G-spectra, in which case we have instead the exact
sequence

0= L(Eg" (X)) = (€a7)"(X) = Lo(E4(X)) = 0

where the functors L{ and L! are exact, and one could conceivably work with these instead. In any case,
we will be working with the classical formulation using inverse limits.
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The following lemma shows that the notion of completion via inverse limits is good enough to preserve
long exact sequences for our purposes.

Lemma 6.6. Suppose E(IG (Y') is finitely generated if Y has finite skeleta. Then associated to the cofibering
EG, — S — EG and X a finite skeleta G-complex, we have the two long exact sequences

S ELXANEGY) = EL(X;Y) 5 EL(X AEG;Y) — -+
S EL(XGEGL AY) = EL(X;Y) = EL(X;EGAY) — -
Proof. We break the proof into a series of steps.

1) Apply the cohomology theory £%(—;Y') to the cofibering X* — X**+1 — \/™* Sk+1 and use the
assumption to get inductively that £%(X*;Y") is finitely generated.

2) Since p-completion is exact on finitely generated things, we have the exact sequence
—k
o EL(XFNEGE;Y)) — EL(XMY)) = EL(XFANEG YY), — -

3) Finally we know that inverse limits of compact Hausdorff abelian groups have trivial lim', so by
the six term lim' sequence we get that inverse limit is exact on exact sequences consisting of com-
pact Hausdorff groups. And since the sequence in step (2) was a sequence of compact Hausdorff
groups (since they were ®Z,, of finitely generated groups), we’re free to take inverse limit to pass
to gg (—Y).

The proof for the other sequence is similar. 0

How this relates to the original question

It’s all well and good to have Lemmal6.6|to guarantee exactness in cases we care about, but we still need

to relate 7, (X ) = lim, (nf;(X4))) to what we’re actually interested in, namely 7, (X)?).

Lemma 6.7. Let {A,,} be an inverse sequence of finitely generated abelian groups such that lim' 4,, = 0.
Then the natural map

(lim An);,\ — lim((An)ZA,)
is an isomorphism.

Proof. Let 4A,, = {a € A, | p?a = 0}. Consider the sequences

0 qAn A, plA, —— 0 0 plA, A, A, /piA, —— 0

Since 4 A,, are finite, we have lim! qAn = 0, and from six-term derived limit sequence from the first short
exact sequence, we get that lim" p?A,, is a quotient of lim' A,, = 0, so vanishes also. So both the displayed
sequences remain exact after passing to inverse limits over n. Hence the first inverse limit sequence gives
lim,, p?A,, = p?lim, A,, and the second gives lim,, (A, /p?A,) = lim, A, /p?lim,, A,. Now just take
inverse limits over q. O

Lemma 6.8. If X andY have finite skeleta and lim,, £5(X™;Y) = 0 then
E&(X; Y);\ > lim(EL(X™; Y)ZA,)
Proof. Just apply the preceding lemma with 4,, = £5(X™,Y"), where we’ve used the Milnor sequence
0 —— lim,, EL(X™Y) —— E4(X;Y) —— lim, EL(X™;Y) —— 0
and the vanishing of the left hand term by hypothesis. O
Corollary 6.9. lim (75,(EG"))) = n5(EGL)).
Proof. Apply Proposition 5.2] to the lemma above. U

Now putting together Lemmaapplied on the cofibre sequence EG, — S° — EG in the first variable,
that 75(S°), = 7&(S°), and the corollary above, we finally arrive at the operational formulation of the
conjecture as given in Carlsson’s paper [Car84].

Theorem 6.10 (Segal Conjecture). ﬁé(ﬁé) = 0 for all finite p-groups G.
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7 An overview of the inductive strategy

In this section we present the organising roadmap of Carlsson’s induction. By and large, it consists of very
clever variations on the theme of harnessing the isotropy separation sequence

EG, — S — EG

The first lemma uses another isotropy separation to allow us flexibility in working with 7 (E’l/) ) instead
of 75 (EG).
Definition 7.1. By a contractible based G-space X, we mean an X € S such that X¢ ~ x in S,.

Note that this is not the same as a G-contractible based space, which requires that X* ~ x in S, for all
H <G

Lemma 7.2. Assume 51’} vanishes on contractible H -spaces for allproper subgroups H < G. IfEG( )=0
for any contractible based G-space X such that X¢ ~ SO, then EG vanishes on all contractible based G-
spaces.

Proof. Since X ~ S°, we have a cofibre sequence S° — X — X/S°. Let X’ be any other contractible
G-space and consider the cofibre sequence

X 5 X'AX = X' 'AN(X/S9)

Plugging this into the cohomology theory gg, we see that it’s enough to show that EAE;(X "A X) and
EL(X A (X/5%)) vanish.

For the first case, we claim the gg‘;(W A X) = 0 for any G-complex W. Since by definition gg was defined
as an inverse limit over finite skeleta, we might as well prove it for the case W finite. Since W /W"~! for
n > 0 are all just wedges of S™ A (G/H) ., by the long exact sequence associated to cofibres, we might as
well just deal with the case W = S™ A (G/H)... Since we’re working with cohomology theories, and so
are free to translate by suspensions, we might as well prove for the case W = G/H .. If H = G, this holds
by the hypothesis gé(X) = 0, and if H # G, then Propositiongives Eé((G/H)+ NX) = EI*{(X)
and this together with our hypothesis gives the claim.

For the second case, we show that EAE(X’ A Z) = 0 for any Z, such as X/S°, such that Z% = x. Arguing
as above, we can reduce this to case Z = (G/H),. Since Z% = %, H # G necessarily, and for this case
we can use Proposition again. O

Remark 7.3. This is good since instead of proving the vanishing of various variants of the completed
cohomotopy on EG directly, we will prove these vanishings on EP instead, which has much better prop-

erties for carrying out inductions, namely that EPH ~ x for all H < G, allowing us to have many
vanishing statements when we pass to proper subgroups during an inductive step. Furthermore, it also
has a concrete model in terms of unions of spheres as in Construction[2.32]- this will be used in analysing
the free part of the problem.

We are now ready to state the four main theorems that will organise the inductive procedure. Recall from

§2 that for K <H < G and writing J := H/K, we write &/ & for the H / K -geometric fixed point ®H/K &,

Theorem A. Let K < H < G and write J = H/K. Suppose (@')j vanishes on contractible J-spaces for
all proper subquotients J. Let X be a G-complex such that X¢ ~ S° and X ¥ contractible for all proper
subgroups. Then

i) If G is not elementary abelian then gé(X; Eé) =0.

ii) If G = F}, then éA’C*;(X; EQG) is the direct sum of p"("~D/2 copies onT_l(@)*(SO),

Theorem B. Suppose & € Sp© is split and the underlying spectrum is bounded below. Let X be a G-space
such that X¢ ~ S° and X" contractible for all proper subgroups. Then
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i) If G is not elementary abelian then gé(X; EGy) =0.

ii) If G = F, and HY(E,F,) = 0 for all sufficiently large q then é\g(X; EG.) is the direct sum of
pr(r=D/2 copies of LTE* (S0).

Remark 7.4. As we shall see in the subsequent sections, once the right ideas have been set up, the case
of non-elementary abelian p-groups in Theorems A and B is not so hard. In contrast to that, the case of
elementary abelian p-groups is riddled with technical fixes and hard computations.

Remark 7.5. In the proof of Theorem B we will see that it is equivalent to a problem in nonequivariant
topology, whereas the EG part is genuinely equivariant. This makes sense since the free part EG kills
information away from the trivial subgroup, whereas EG keeps information everywhere except at the
trivial subgroup. This illustrates the general philosophy of using this kind of isotropy separation: we
shave off one irreducible slice of the problem in £G4 and deal with the rest by subgroup induction in the

EAC?Y part.
These theorems together with Lemma 7.2 allow us to finish off the non-elementary abelian case by induc-

tion in the form of the following theorem - the sphere G-spectrum S¢ obviously satisfies all the hypothe-
ses.

Theorem C. Let G be a finite p-group which is not elementary abelian. Let £ € Sp© satisfying

i) (@)j vanishes on contractible J-spaces for all elementary abelian subquotients J of G

ii) ®”& is split for all non-elementary abelian subquotients J = H/K of G and ®*/X & is bounded below
forall K < G.

Then (CI:J\E)j vanishes on contractible J-spaces for all subquotients J = H/K of G, including G itself.

Proof. By hypothesis (i) we need only deal with subquotients K < H < G for which J = H/K are not
elementary abelian. By induction on subquotients we can assume that all proper subquotients of H/K
(meaning those coming from extensions K < LaM < H or K < LaM < H)have the required property.
Now consider the subquotient coming from an extension K < H such that J = H/K is not elementary

abelian. Let X be a contractible .J-space such that X’ = S° and the other fixed points are contractible.
By Theorem A(i) and induction we have (®7&)%(X; EJ) = 0. By hypothesis (ii) and Theorem B(i) we

have (/€)% (X; EJy) = 0. And so in total we have (®7&)%(X) = 0. Lemma applied to the group J
then says that ($7E)%(Y") = 0 for all contractible based J-spaces Y. O

And finally to deal with the elementary abelian cases we have the following theorem.
Theorem D. Let G = F}, and X a G-space such that X = 8% and XH ~ x for all proper subgroups H
of G. Assume that the Segal conjecture holds for F;, for all s < r, ie. T¢, (X) = 0. Then
d: %Z;(X;E\é) - 7LN(X EGY)
is an isomorphism for all q.

Idea 7.6. Carlsson’s idea to do this is as follows: looking at the diagram below, part (ii) of Theorems A and
B say that the top § is a morphism of free 7* (.S°)-modules, so it’s enough to show bijection on generators,
that is, isomorphism when ¢ = r — 1. In this degree, J is just a morphism of free Z,-modules with the
same number of generators, so it will suffice to show that it’s an isomorphism upon reduction mod p. And
for this case, it’s enough to show it’s injective mod p. In order to do this, the idea is to compare the theory
7 with a test cohomology theory K = F(EG ., HF,) where HF , is the Eilenberg-MacLane G-spectrum.

o (X EG) —"— 75X EGy)

" "

K YX; EG) —— KL(X; EGY)

We will show that the bottom § is an isomorphism and that the left vertical 7 is injective mod p.
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Remark 7.7. These theorems show us that there is a fundamental distinction between non-elementary
abelian p-groups and elementary abelian p-groups in the Segal conjecture story. Both satisfy the conjec-
ture, but they do so for different reasons: the former because all other terms in the isotropy long exact
sequence vanish; the latter because the boundary map in the sequence is a nontrivial isomorphism.

We end this section with a sketch of the ideas involved in proving Theorems A and B.

(A) For a based G-complex X let SX C X the singular subcomplex of X, ie. the points of X with
nontrivial isotropy groups. Then we have [ X, EG A Y]e = [SX,Y]q, and we want to show that
(X, EG A Y] = 0 when X satisfies X¢ ~ S° and X ~ x for H < G. The idea is to perform
a “blow-up” of SX, that is, to enlarge SX into a G-equivalent space AX by remembering at each
point of SX the chains of subgroups fixing that point. This space AX will admit a nice filtration by
the lengths of the chains, whose subquotients are induced G-spaces, and so by adjunction become
problems in the proper subquotients of G where the statement is true by the inductive hypothesis.

(B) This is where we use the model EP = U, 5™V where V is the reduced regular complex represen-
tation of . The theory of equivariant Thom spectra will give the identification £ (SV; EG ) =
&.(BG~") and so we’re in the realm of nonequivariant algebraic topology. The latter groups will be
analysed using the Adams spectral sequence, and we use complex representations in order to have a
good theory of Euler classes. The non-elementary abelian case will be relatively painless, essentially
just applying Quillen’s F-isomorphism theorem on the Euler class. The elementary abelian case, on
the other hand, will involve a difficult Ext group calculation due to [AGMS85]], of which we provide
a sketch.

8 S-functors and the proof of Theorem A

In this section, we will see how Carlsson used the extra structure available on G-spaces, namely that they
have point-set models and so admit the singular set functor, to inductively analyse the spectrum EG ® &
associated to some £ € Sp“ via his notion of S-functors.

Lemma8.1. Let X,Y € S¢ with X finite and F a family. Denote by X r the G-subcomplex of X consisting
of cells of orbit types away from JF. Then the inclusions Xz — X and S° < EF induce bijections

[X,EF AY]g = [Xr, EF ANY]g < [XF,Y]a

Proof. The first bijection uses the long exact sequence associated to the cofibration of based G-complexes
Xr = X — X/Xx where X/ X # is finite with only cells of orbit types in F, giving an exact sequence
of sets

(X7, EFAY|g « [X,EFAY]q « [X/Xrp, EF AY]g < - --
Now use cellular induction and the fact that
[G/Hy AS™, EF AY]g =[S, ResG(EF AY)]y = =

for H € F since Resgﬁj’? o~ x to get that the third term is zero, giving that the first map is injective. This
map is also surjective since there is no obstruction to extending amap Xr - EF AY to X = EFAY

because for H € F, [G/Hy, EF AY]g = mo(EFH AYH) = «. The second bijection comes from the
cofibration sequence -
EF NY =Y - EFAY

and the fact that [Xz, EF. A Y]g = 0 because EF, A'Y only have cells of orbit type in F and

[G/K;,G/H]lg = #*if K ¢ F and H € F, just by definition of families being closed under sub-
conjugations. O

Remark 8.2. Applying Lemma|8.1]to the family F = {e} we get that for finite G-complexes X

colim [S(ZVX),E6(V @R ifg>0
VesUea)

colim [S(XVE71X), E6V]a ifg <0
VesUea)

EL(X,EG) =

where S is the singular set functor, ie. SX = X/} denotes the G-subcomplex of cells with orbit type not
of the form G/e.
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We now axiomatise the properties of the singular set functor in the notion of S-functors.

Definition 8.3.  a) An S-functor consists of the data (T, 7) where T is an endofunctor of the category
of based G-complexes S¢ and natural maps 7: T(X AY) — (TX) AY satisfying
i) 7 =idwhenY = S°
ii) 7 transitive
iii) 7 is a homeomorphism when G acts trivially on Y’
b) A map of S-functors is just a natural transformation of S-functors making the structure maps com-

mute strictly. We say that a map of S-functors is an equivalence or a cofibration if it is component-
wise G-equivalence or G-cofibration.

¢) For an S-functor, we can define the groups
colim [T(2VX),E(V@RY)]g ifg>0
Ves(Uea)

colim [T(ZVE71X),EV]a ifg<0
VesUea)

EL(X,T) =

using the structure maps 7. For example in case ¢ = 0 and V — W, we have
[T(SY AX),EcV]g =[SV AT(SY A X), SV VEV]a
LTSV A X), SV VERV]e
I TSV A X), EaW]a
Fact 8.4. S-functors have all the usual operations we like to take on spaces - see [Car84]] §IV.

1. We can take wedges, smash product with spaces, pushouts, cofibres in the category of S-functors.
When ¢ : T — T is a cofibration, we can take the quotient S-functor 7" /T as the cofibre defined

by
T'/T(X)=TX/TX

2. An equivalence of S-functors induces an isomorphism of the associated groups.
3. A cofibration of S-functors induces the long exact sequence
c = EL(XGTT) — EL(XGT) — EL(XT) — -+
4. Clearly EL(X;T' VT) = EL(X;T) @ EL(X;T)
Definition 8.5. Suppose given K < H < G, define an S-functor C'(K, H) by letting
C(K,H)(X) =Gy Ay X&

The structure map G | A (XK AYE) = (G4 Ay XE)AY is the one induced by inclusion XX ANY K —
(G4 A X)) AY using that G Ay — is the left adjoint to Res$;.

The following is the reason why geometric fixed points appear in the proof.
Lemma 8.6. For K < H C G and J := H/K, E4(X; C(K, H)) 2 (/)" (XK).

Proof. Since we’re comparing the p-adic theories on both sides, we might as well work with X finite. For
notational simplicity we just show for the degree 0 case.

EQ(X: C(K, H)) = colim[Giy Ay SVEXE 6V
= co‘l/im[EvKXK, &V
- co‘l/im[ZVKXK, (EV) Xk
= (278)5(X")

Here we've used the fact that if 5 was a complete G-universe, then Res&U is a complete H-universe
and (Res$Uq)¥ is a complete H /K -universe. O
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The main theorem of this section is the following, which basically says that we can reconstruct SX, up
to G-homotopy type, from its fixed point sets X for H elementary abelian subgroups of G - this should
be quite surprising, and is the content of the extra structure on S& needed in the proof of the Segal
conjecture that wouldn’t have been present had we worked purely with G-spectra. This is where we will
apply Quillen’s homotopical analysis of subgroups posets.

Theorem 8.7 (The S-functor approximation). Let G be a finite p-group of rank r. Then

(a) There is an S-functor A and an equivalence ¢ : A — S, where A has filtration
WACFHAC---CF_1A=A

by successive cofibrations. Writing By = FyA and By = F,A/F,_1A for0 < q < r, there are
isomorphisms of S-functors
B, = \/ S1C(A(w), H(w))
[w]
where w are strictly ascending chains of nontrivial elementary abelians subgroups of G, (Ag < ... <
Ay), A(w) = Ay, and H(w) = {g € G| gAig™ = A, for0 < i < q}. The wedge runs over orbits of
such chains under the conjugation action of G on the set of such chains.

(b) If G = F}, is elementary abelian, then there is another S-functor A with a filtration
F)ACFRAC---CF,_,A=A

by successive cofibrations. Writing By = FyA and Eq = Fq/Nl/Fq_lgforO < g < r —1, there are
isomorphisms of S-functors

B, =\/21C(Aw),G)

with notation as before. Moreover, there is a cofibration A = Asuch that the quotientA/g is equivalent
to the wedge of p" (") copies of the S-functor 2" 1C(G,G) : X +— YT 1XC,

Definition 8.8. Let A = A(G) be the poset of nontrivial elementary abelian p-subgroups of G with
opposite inclusion, ie. A — B if B < A. Let A C A be the poset of nontrivial proper subgroups of G.
These are G-categories where G acts by conjugation.

In order to proceed, we’ll need to introduce a couple of constructions.
Construction 8.9. Let X be G-space and SX denote the singular subspace.

1. We can consider X as a topological category discretely, ie. the space of objects is X and the space of
morphisms is also X (ie. only identities). The topological classifying space BX of this topological
category will be X again since the simplicial space will be (NX)g = X,(NX); = X,(NX)y =
X xx X = X, ... with structural maps all idx, so taking the diagonal gives X again.

2. Let A[X] denote the topological G-category with objects (A, z) where A € Aand x € X4, and
morphisms (A4,2) — (B,y) if B < Aand 2 = y € X*. The space of objects is topologised as
the disjoint union of X and morphism space topologised as disjoint union of X indexed over
inclusions B < A. The G-actionis by g - (4, 7) = (gAg~!, gx).

3. This is equipped with a functor ¢ : A[X] — SX given by projecting onto the second coordinate.
When X is a based, then the G-cofibration * < X induces a G-cofibration BA[*] — B.A[X], and
then clearly Bt factors through ¢ : BA[X]/BA[x] — SX.

4. Given a second based G-complex Y, we can consider it as a G-category as above, and then define
the G-category A[X]| AY as the (pointed) product of G-categories.

Proposition 8.10 (Carlsson’s Singular Blow Up). For any X the map By : BA[X] - BSX = SX isa
G-homotopy equivalence.
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Proof. We show that (By)* : (BA[X]) — (SX)# is equivalence for all H < G. Note that fixed points
commute with B so we can bring (—)¥ in into the level of categories. We want to use Quillen’s theorem
A, solet z € (SX)H and consider the overcategory 1! /z. Note that the reason we need the singular
locus SX is to ensure that the overcategory ¢/« is not empty for any € SX in the case H = e.

Observe that 1) /x has objects (A, z) where x € X4, hx = x forall h € H, and A fixed by H. Write G,
for the stabiliser of z in G. Then H < G and ¥ /x is just (A(G))*, which is nonempty contractible

by Lemma below. 0

Lemma 8.11 (Quillen’s Lemma). If G # e then BA is G-contractible. In particular (BA)* is nonempty
contractible for all H < G.

Proof. Let C' < G be a central subgroup of order p. Then forany A € Aweget AC € Aand A C AC D C.
So we get natural transformations of functors on the category A

id<=(—)-C and (-)-C=cc

where c¢ is the constant functor valued at C'. Note that these are G-equivariant natural transformations
since C' central. So passing to classifying space gives us equivariant homotopy between ¢dp 4 and the
constant functor. 0

Definition 8.12. For X a based G-complex, we define
AX = BA[X]|/BA[%¥] and F,AX := F,BA[X]|/F,BA[%]

where the filtrations come from the usual skeletal filtrations on realisations of simplicial G-spaces, namely
for X, a simplicial G-space, F,|X,| is the geometric realisation of the smallest subsimplicial G-space
containing the first ¢ levels.

Fact 8.13. For X, a simplicial G-space, we have Fyy| X .| = X and for ¢ > 0 we have that | X |/F,_1|X.|
is G-homeomorphic to X9(X,/sX,_1) where sX,_1 C X, is the G-space of degenerate ¢-simplices.

Remark 8.14. We can define a natural transformation of topological categories
AIXAY] = AIXIAY = (AzAhy)— (Az)Ay

Since classifying spaces commute with products, and since BY = Y when Y is considered as a discrete
topological category, this passes to
AX ANY] = AXIAY

This is easily seen to give an S-functor structure, since for example, when G acts trivially on Y, Y4 =Y
forall A < Gandso A[X ANY] — A[X] AY is already an isomorphism of G-categories.

We’re now ready to prove the S-functor approximation theorem - the proof is not hard given all the
ingredients.

Proof of Theorem[8.7 Let’s work on part (a) first. The nondegenerate simplices of A[X] consist of pairs
(w,z) wherew = (Ag < ... < A,) is a chain of strictly ascending nontrivial elementary abelian sub-
groups of G and x € X“4. Recall the notations A(w) and H(w) from the statement of the theorem,
and note that A(w) < H(w). Observe that if G has p-rank r then F,._1AX = AX since there are no
nondegenerate g-simplices for ¢ > r. By Fact[8.13| we get that with the G-actions ignored,

B,X = FyAX/F, 1 AX =g \/ 57X

and this is because, for example,

BAIX], = (] XP) . xey (L) XP) %o xey - xue xe) (L] XP)
A<B A<B A<B

and each of the pullbacks for A < B look like
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XB
/ incl
XB X
XA

and so taking iterated pullbacks for any choice of chain 4g < --- < A, always gives us X Aa We're
indexed over the strictly ascending chains because we’ve divided out by the nondegenerate simplices as
in Fact and we take wedge sum because we've divided out by BA[*]. It is then easy to see that
incorporating the G-actions we have a G-homeomorphism

A

\/ G Anwy SIXA@ =4 B X
]

Since everything was natural we get that this induces an isomorphism of S-functors

B, = \/ZC(A(w), H(w))
[w]

as required.

As for part (b) in the case of G = F,, we can similarly define A using Ainstead and run similar arguments

as above. For the statement about comparing A and A, note that since the chains w with A(w) = G are
all parametrised by X in AX, we easily get that

AX/AX = (BA/BA) A X©

Now the sequence BA = BA — BA/ BA together with G-contractibility of B.A by Lemma gives
that BA/BA ~¢ X BA. Applying the following Lemmaﬁnishes the proof. O

The following proof is based on Quillen’s arguments at the end of §8 of [Qui78], but we follow and flesh out
the presentation by Benson [Ben91] Theorem 6.8.5 where it is clearer how we get the number p"("—1)/2,
This actually follows from a more general result in the theory of Tits buildings, but we’ve chosen just to
present the following argument since it’s so elementary and does not require the introduction of more new
concepts. We’ve included it here not only for the convenience of readers not familiar with Tits buildings,
but also because it’s such a crucial number that makes the Segal conjecture for elementary abelian p-groups
true as was explained in §6.

Lemma 8.15. If G = F, then BA is equivalent to the wedge of p"("=1)/2 copies of the sphere S”~2.

Proof. We write G = V since we want to think of these as vector spaces. We prove by induction on
r. When r = 2, ./Z(V) is just the discrete category of one-dimensional subspaces, for which there are
p + 1 many, so is clearly a wedge sum of p"("~1/2 copies of S°. Now suppose 7 > 3. Choose any
one-dimensional subspace L and let 7 be the set of all (r — 1)-dimensional complements of L in V. By
GL,(V)-symmetry of V, we might as well assume L = F,{(1,0,...,0)}. Note that |H| = p"~! since all
such will admit a basis of the form

{(a1,1,0,0,...,0), (a2,0,1,0,...,0),...,(ar—1,0,0,...,0,1)}

where a; € F),.

Now let Y = A(V)\’H considered as a subposet of A(V). We show that the simplicial set associated to it
is contractible. Consider the quotient

q:Y — Ay(V/L)

induced by V. — V/L, where Ay denotes the poset of all proper subspaces (including 0). The target
is of course contractible since 0 is initial. We use Quillen’s Theorem A to show that ¢ is an equiv-
alence. Let W € Ay(V/L). Then the fibre category q/W is clearly contractible since it contains a
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terminal object, namely the preimage of W C V/L in V, and so Quillen’s theorem A implies that
NY ~ NAy(V/L) ~ . Here we really needed to remove H from A(V) for otherwise we will get
instead a functor ¢ : A(V) — Ay(V/L) where the target is the full poset of V/L, and then the fibre
category over V/L would just be A(V) again, which is not contractible.

Hence NA(V) ~ NA(V)/NY,where N is the nerve functor. We now describe the latter - NA(V),, /NY,,
consists of the n-chains

where V,, € ‘H. Thus we see that N A (V)/NY is just the (pointed simplicial set) wedge sum of subsim-
plicial sets Sy consisting of chains ending in H, for all H € H. But then each of these is nothing but
EA( ) since the datum of the top subspace being H is superfluous, and the suspension is just because
A(H)n & (SH)n+1. Hence by induction the Sy are wedges of p(r=1("=2)/2 copies of (r — 3) 4 1 spheres.
But we’ve argued above that |H| = p"~!, and so we’re done. O

We are now ready to apply the filtration theorem[8.7|to prove Theorem A.

Theorem A. Let K < H < G and write J = H/K. Suppose ((I>/J\€)*J vanishes on contractible J-spaces for
all proper subquotients J. Let X be a G-complex such that X¢ ~ S° and X contractible for all proper
subgroups. Then

i) If G is not elementary abelian then é\é(X; EG) = 0.
ii) If G = F, then gé(X; Eé) is the direct sum of p"("=1)/2 copies ofET’l(CITG\E)*(SO).

Proof. i) By Remark|[8.2]and the equivalence A — S we have
EL(X;EG) 2 EH(X;8) = EL(X; A)

By Lemma 8.6 and writing J(w) = H(w)/A(w), we have

EE(X; B,) = @Eg—Q(X; C(A(w), H(w))) = @(@J(“)E);'}(w’l)(XA(“’))
[w] o]

Now G is assumed not to be elementary abelian, and so A(w) # G, hence by all our hypotheses we
get that the right-hand side vanishes, and so £3(X; B;) = 0. And so by induction up the filtration
we get EL(X; A) =0.

ii) Let G = F. If r = 1 then By = A and ég(X;Bo) = (@)*(SO) since w = (G) is the only
p0351ble chain, so this proves it in this case. Now suppose 1 > 2. By tl the arguments of part (i) we get
SG(X A) = 0, and so by the coﬁbratlon A— A— A/A, we have EG(X A) = EL(X;AJA). And
now since EG(X C(G,G)) = (<I>G5) (59) we get that EG(X EG’) is the sum of p"("~1)/2 copies
of L= H( @G E)*(S9).

O

9 The Ext group calculation of Adams-Gunawardena-Miller

We include here a sketch of the hard calculational input from [AGMS85] in the Segal conjecture story. We
have chosen to omit the many intricate technical details and only highlight some of the beautiful ideas
involved.

Let p be a prime, and let A be the mod p Steenrod algebra (where we’ve suppressed writing p since we’ve
fixed a prime once and for all). In this section, let G = V' = (F,)” be an elementary abelian p-group,
where the notation is supposed to suggest that we should think of it as a finite-dimensional F,-vector
space instead. We will write H*(X) to mean H* (X, F,).
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Fact 9.1. Recall that the cohomology ring structure of H*(BV,F,) is given as follows

Fp[hl,...,hr] lfp:2

H*(BV,F,) =
( ») {Fp[ﬂhl,...,ﬁhr]®A(h1,...,h,.) ifp>2

Here {h;}; forms a basis for H'(BV,F,) = V*, 3 is the Bockstein Steenrod operation, and A is the
exterior algebra.

We now give the definitions of some basic notions.

Definition 9.2. (a) Let L = x(V) = (8- h1)--- (B h,) € H*"(BV) be the Euler class, where {h;};
is a basis for H1(BV) &~ V*.

(b) Write H*(BV ). for H*(BV) after inverting

o

0£he H (BV)=V*

Note that this is the same as H*(BV')[L™1]. In this section we prefer to work with the former since
it makes certain things clearer, for example, that fixed points under the action of GL(V') commute
with this localisation, since the product is invariant under the action of GL(V).

(c) We say that a homomorphism of A-modules M — N is a Tor-equivalence if the induced map
TOl”f*(Fp, M) — TOI‘f*(Fp, N)
is an isomorphism.

(d) Denote by Syl(V) < GL(V) the subgroup of upper unitriangular matrices, that is, upper triangular
matrices with 1’s on the diagonal. Note that | Syl (V)| = p"("—1)/2,

The following is then the main computational input that we will need to complete the proof of the Segal
conjecture for elementary abelian p-groups.

Theorem 9.3. Consider the F,,-module F, ® 4 H*(BV )0 of A-indecomposable elements of H*(BV );oc
and regard it as a trivial A-module (since F, was a trivial A-module). Then

(a) The quotient homomorphism
0: H*(BV)j0c = Fp @4 H*(BV )i0e
is a Tor-equivalence.
(b) Fp @4 H*(BV )10 is concentrated in degree —r where the rank is prr—1/2,

Corollary 9.4. The quotient homomorphism 0 : H*(BV)15c — F,®4 H*(BV )0 induces an isomorphism
Exty (K @ F, @4 H*(BV )ioc, Fp) = Ext’y (K @ H*(BV )10, Fp)
for any finite dimensional A-module K.

Remark 9.5. These results are really surprising since they allow us to identify the Tor/Ext group of a big
and scary A-module with one of a much smaller and manageable A-module, and the heart of the matter
is the result of Gunawardena and Miller in Theorem 0.6 below.

The proof of this will involve (one of the many variants of) a very important construction in the study of
Steenrod modules, namely the Singer construction. This is a functor 7' : Mod4 — Mod 4 that additively
looks like M +— H*(BF,)ioc ® M equipped with a natural map € : TM — M. See [AGM83] §2 for more
details. The two main results on the Singer construction that we will need are the following:

Theorem 9.6 (Gunawardena, Miller). The mape : T(M) — M is a Tor-equivalence.

Syl(V)
loc :

Theorem 9.7. There is an isomorphism of A-algebras T" (F,) = H*(BV)
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We are now ready to prove Theorem and the clever idea is to prove it by downward induction on
certain carefully chosen normal subgroups G of Syl(V'). More precisely [AGM85] §6 shows that there
exists a chain of normal subgroups

e=Gp4Gp_14---<4G1 <Gy = Syl(V)
satisfying G;/Gi+1 = F,, and such that for each i there is a filtration

O0=MyCM, C---C ]V[ f{*<]9‘/)

loc

1o ' The formulation

by A-submodules in which each subquotient M /M, _; is isomorphic to H* (BV)
of the induction hypothesis is then as follows:

Theorem 9.8. For each i the following are true.

(a) The quotient map

H*(BV)% % F, @4 H*(BV)S:

loc loc

is a Tor-equivalence.

(b) F, @4 H*(BV)i is concentrated in degree —r, where it is of rank |Syl(V)) : Gy.

The case of G, = e will then give us Theorem[9.3]

Proof of Theorem[9.8 The case of i = 0 is given by the two preceding theorems: H* (BV)foil(V T"(Fp)
by Theorem([9.7] and by Theorem[9.6] we have the sequence of Tor-equivalences

TF, =T 'F, —» - —TF, - F,

and so these combine to give part (a) for the ¢ = 0 case. Furthermore, we know already that (b) is also
true for this case.

Now suppose (a) and (b) are true for the case ¢ > 0 and we want to prove them for ¢ 4+ 1. Suppose as the

hypothesis of a subsidiary induction over j, that the quotient map M; 4, Fp, ® 4 M; is a Tor-equivalence
and that F, ® 4 Mj is zero except in degree —r. Now consider the following diagram

— 0

0 M; My, ——— H*(BV)S:

b e

Torl*(Fp,H*(BV)loé) — Fp®aM; — Fp @4 M1 —— F,®4 H*(BV)

loc

— 0

loc

By our main inductive hypothesis (b) we have
Tori' . (Fp, H*(BV)i) 2 @ Tori! =0

so the bottom row is short exact. The outer vertical maps are Tor-equivalences by induction, so by the
five lemma, the middle one is too. Going up in this way we obtain part (a) of the theorem for the case of i+1.

Furthermore, the inductive hypothesis also says that F, ® 4 M; and F, @ 4 H*(B V)glc are concentrated

in degree —r, so the middle term is too. Finally, using that |G;/G;y1| = P, that |Syl(V) : Giya| =
ISyl(V)) = Gi|-|G; : Giyi], and that the subsidiary filtration of H*(BV)%: is of length p, we also get
the rank size in part (b) for the case i + 1. O

10 Nonequivariant theory and the proof of Theorem B

The idea of this section is to translate the GG-cohomology theories accounting for the “free” part of the
Segal conjecture problem into ordinary cohomology theories via Thom spectra, and these in turn can be
analysed with an inverse limit Adams spectral sequence (ASS) using the Ext group calculation from the
previous section as an input. All cohomologies here will be cohomology mod p.
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Theorem 10.1 ([CMP87] 8.1). There are Thom spectra BG~"" for complex representations V of G and maps
f:BG™W — BG™V forinclusions V. C W which satisfy

i) H*(BG™Y) isafree H*(BG)-module on one generator 1y, of degree —dimpgV and f* : H*(BG™") —
H*(BG~W) is the morphism of H*(BG)-modules specified by f*(vy) = x(W — V)uw where
X(W — V) € H*(BG) is the Euler class of the representation bundle EG xg (W — V) — BG.

i) If€ € Sp© is split then £.(BG~Y) is isomorphic to EG(SV; EG, ) and we have the commuting

diagram wheree : SV — SW is the inclusion

£(BGW) — I e.(BGV)

i k-

ES(SVBEG,) —— £9(SV EG,)

Corollary 10.2. If€ € Sp© is split and X = |J S™V Carlsson’s model, then

EGU (X BGL) 2 lim E(BG™Y)) = limm, (€ ® BG™"V))
Proof. Justrecall notation that & g = &7, the inverse limit definition of & theories, and (ii) of the preceding
theorem. O

These inverse limit homotopy groups can in turn be understood using a certain inverse limit Adams spec-
tral sequence given as follows.

Proposition 10.3. Assume we have a sequence of spectra
= X 2 X == Xo

such that each X, is p-complete, bounded below, and of finite type over Z,,. Let { E, X} be the inverse limit
of the spectral sequences { E. X, }, where the E5 pages are

Ey'X, = Exty (H*(X,),Fp) = m—s(Xpn)  dp: BT — BP0t
Then
1. E;X = Exta(colim, H*(X,,),F,)
2. E,.X is a differential E,.S°-module
3. The spectral sequence converges strongly to lim,, 7.(X,,)
Proof. See Proposition 7.1 of [CMP87]. O

Note that Deﬁnitionand Theoremgive us that colim,, H*(BG™"Y) = H*(BG)[L™!] = H*(BGQ)je-
Having laid out all the general machinery, let’s recall Theorem B.

Theorem B. Suppose £ € Sp© is split and the underlying spectrum is bounded below. Let X be a G-space
such that X ~ S° and X contractible for all proper subgroups. Then

i) If G is not elementary abelian then gé(X; EGy) =0.

ii) If G = F, and HY(E,F,) = 0 for all sufficiently large q then EA&'}(X; EG.) is the direct sum of
pr(r=1/2 copies of SE*(S0).

By the results above we have the strongly convergent inverse limit ASS {E,.} = {E,.(£ ® BG™"V )}
Eyt = BatS'(H* (&) ® H*(BG™"V)[L7Y),F,) = £ 71(X; EG,)

where here we’ve used the Kunneth theorem for mod p cohomology.
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Proof of Theorem B(i). We observe that in general, if ¢« : H < G is a proper subgroup, then x(V) €
H*(BG) restricts to zero in H*(BH ). To see this, we record the argument given in [Car84] Lemma IIL.1.
Now the regular complex representation of G has |G|/|H| trivial H-summands, so the reduced represen-
tation V has |G|/|H| — 1 trivial H-summands. But then H # G so |G|/|H| > 2, so i*V has a trivial
H-summand. Thus by the standard characteristic class result that says a complex vector bundle has zero
Euler class if it contains a trivial line bundle, we get x(i*V) = 0. Hence by naturality of characteristic
classes, x (V) restricts to x(:*V) = 0.

Coming back to our case, since we suppose G is not elementary abelian, we get that x (V) restricts to
zero in every elementary abelian subgroup of G. So by Quillen’s F-isomorphism theorem ([Qui71]] 6.2),
x(V)) € H*(BG) is nilpotent. Together with Theorem[10.1i) this implies Z*(BG)[L™'] = 0 in this case,
so by the spectral sequence above, we get EE(X; EGy) =0. O

Unlike the relatively painless proof of Theorem B(i), the proof of part (ii) utilises the hard computation
result from the previous section. We use it to prove the following theorem which immediately implies

Theorem B(ii) by Corollary[10.2]

Fact 10.4 (See [Ada66] for the case p = 2 and [[Liu63]] for p > 2). For hg € Extkl(Fp, Fp) = Extzl(H* (S),Fp)
the generator corresponding to the unit 1 € Wo(SI/)\), we have for p = 2

0 ift—s<0
Ext%"(Fa, F2) = { Fo{hg} ift =s
Annihilated by hy ift =541
and for p odd
0 ift—s<0
Ext;'(F,, Fp) = { Fp{hg) ift=s
0 ift=s+1

Theorem 10.5. Let £ be a p-complete ordinary spectrum which is bounded below, of finite type over Z,,, and
cohomologically bounded above, ie. H*(E,F,) = 0 for * sufficiently large. Let Y be the wedge of p(r—1/2
copies of S™". Then there is a compatible system of maps o : Y — BG~™Y which induces an isomorphism

T (ERY) = limm,(§ ® BG™"Y)

Remark 10.6. We have enough finiteness in the homotopy groups of £ and BG~"V, and therefore also
in £ ® BG™"V, to guarantee that the p-completion of all these spectra is just gotten from smashing with
S). In particular, BG™"V ) ~ S/ @ BG™"V and £ @ BG™"Y ~ (£E®S)) @ BG™" ~ (E@ BG™"V)).

Proof. First consider case £ = S;). Theorem 9.3|and Corollary gives us

r(r—1)/2

Ext(H*(BG)[L™Y],F,) <= Ext4(H*(BG)[L™"| ®4 Fp,F,) = Exto (3" &P Fp, Fp)

and so by the factswe get for E5' = E3'(lim, BG™"Y) that E5' = 0ift —s < —r, By " =

gp V" Fp, E3*" = hg- Ey ", and Ey* "' = 0 when p odd and is annihilated by ho when p = 2
and s = 1. Hence the elements of E5° " are all non-bounding permanent cycles, where in the p = 2
case, this is because if there exists aminimal £k € Z,ans € Z,and x € Ei’siﬂrl such that dy(z) =1 #

0 e EJtFs7"E then
0= dk(hol') = ho dk(fIJ) = ho -1 75 0

where the last term is not O by minimality of k - this is a contradiction. Furthermore, we know by the
usual ASS for S that multiplication by kg induces multiplication by p on the group converged to by the
vertical line t — s = 0 of the spectral sequence, and so since the spectral sequence converges strongly to
limy, 7, (BG~"Y/"), we get that lim,, 7_.(BG~"V) is a free Z,,-module on p"("=1/2 generators, in the
same way that 7(S))) = Z,,.

Choose the Z,, generators {o }; of lim,, 7_.(BG~"V ). Each of these can be thought of as a compatible
sequence of maps ST — BG_"VZ/)\ over the n’s. And now define Y := @pr(r_lw S™" and define

a=®0q:Y — BG‘”VQ
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We claim that this « induces the map 6 : H*(BG)[L™'] — H*(BG)[L™'] ® 4 F, and then we’d be done,
even for the case of general &, since by the naturality of the ASS we have the following comparison

Exto(H*€ ® H*(BG)[L~Y ®4 F,,F,) — (DY)
Ext(H*€ ® H*(BG)[L™1],F,) — lim,, 7, (£ ® BG™)

where the vertical isomorphism on the left is by our claim and Corollary[9.4]
To see the claim, note that by the construction of the inverse limit ASS we have
limr_, (BG™" ) — By™" = Homy" (H*(BG)[L™'],F,) & Hom " (@3"F,,F,)

which is given by passing to cohomology, so indeed our choices of {«; } were precisely the ones realising
the Ext-equivalence € on cohomology. O

11 The case of elementary abelians and the proof of Theorem D

This section is based on §6 of [CMP87]. Unless otherwise stated, G will denote an elementary abelian
p-group F of rank . We recall the statement of Theorem D and the aims in the proof.

Theorem D. Let G = F}, and X a G-space such that X = 8% and X ~ x for all proper subgroups H
of G. Assume that the Segal conjecture holds for F;, for all s < r, ie. Tg, (X) = 0. Then

§:TL(X; EG) — 74 (X; EGY)
is an isomorphism for all q.

The idea was to show that the bottom ¢ in the following diagram is an isomorphism and that the left 7 is
injective mod p, where K, is the G-cohomology theory represented by the Borel completed Eilenberg-
MacLane spectrum K := F(EG 1, HF,).

7YX EG) —2— 75,(X; EG)

L b

K& ' (X3 BG) —— K&(X; BGY)

Remark 11.1. Note that the G-spectrum associated to g (—; E\C:’) is the Tate G-spectrum E\C/¥®F(EG+ ,HE,),
and as remarked on page 4 of [GM95b], this was one of the early instances of the Tate construction in
equivariant stable homotopy theory. In hindsight, once we’ve had the idea of showing mod p isomor-
phism of the top J map by comparison with a test theory, the spectrum F(EG y, HF ) presents itself

quite naturally as a candidate since HF,, detects mod p equivalences of spectra, and we Borel complete it

to force the isomorphism of the bottom map.

Remark 11.2. While the general strategy above and most parts of its proof are interesting, this section
also contains some of the most annoying bits of this whole document (Lemma|11.10) with lots of close-call
technical fixes, so readers be warned!

Bottom J is an isomorphism

The idea is to justify that we indeed have the long exact sequence of E(;(X ; —) associated to the isotropy
cofibre sequence EG, — S° — EG. This is not obvious since it’s not true that X (Y) is finite type for
all G-complexes Y with finite skeleta, so we couldn’t have just appealed to Lemmal6.6|for exactness.

Proposition 11.3. For any G-complex X we have a long exact sequence

= KL(X; EG) — KE™H(X; BEGL) — KETH(X) —» KETH(X, EG) — -
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Proof. Note that K& (Y') is of finite type when Y is finite by cellular induction starting from the fact that
KC,(G/H,) = K&L(G/Hy) = HY(G/H xg EG) = HY(BH). In general we have the long exact

sequence
e K (YY) s KRGV s G (YY) = K (YY) =

where Y /Y"1 are wedges of ¥"G/H., so for a fixed g there’s no reason to expect that IC,?(Y) =

colim,, ICqG(Y”) to be attained for a fixed n. However, if Y = Y| for Y free, then the only orbit type that
can occur is H = e, so H*(BH) = 0.

The upshot of this is that X' (EG..) is in particular of finite type. Hence K¢ (X; EG..) is too, for X finite,
again by cellular induction. By the long exact sequence associated to the isotropy cofibre sequence, the

same is true of IC(?(X ; EZ’) So everything in the following long exact sequence
= KGL (X5 BEG) — KS(X; EGL) — K8 (X) = KS(X;EG) — -

is finitely generated for finite X, and so p-completion is exact, and produces finitely generated Z,,-modules.
As in the proof of Lemma [6.6] passing to inverse limits over finite subcomplexes is still exact, and we get

the fundamental exact sequence for K¢ as required. O
Lemma 11.4. For every subquotient J of G, including G itself, ﬁ?} vanishes on contractible J-spaces.
Proof. Let J = H/K. For a finite J-complex X and for ¢ > 0,
(®7K)%(X) = colim[E"" X, K(V &R,
= colvim[z"KX, F(EG,HF,(V ®R))]y
- colvim[zVKX ANEG., HE,(V &Ry

= colim 117131[2VKX AEGY, HE,(V &Ry

Here the last step is just because the lim' term vanishes since everything is finite. We can do a similar
thing for ¢ < 0. All in all, for a general X we have

(@710)5(X) = lim colimlim[S"" X, A EGY, HE,(V & R)]y

Note that here we didn’t have to p-complete anything on the right-hand side since everything is already
an F,-vector space. Now if X was contractible, then X A EG. is H-contractible since (X A EG )t =
XLAx =xforal {e} # L € H,and X A EGy ~ X A S° = X ~ . Hence, for a fixed pair
(a,n), there exists a pair (8, m) for n < m such that the inclusion X, A EG" C Xg A EG'} is null
H-homotopic. This is just by a compactness argument of the following form where the bottom horizontal
is a H-nullhomotopy

Xo NEGY ALy <= Xg N EGT

| l

XANEG, NI, — X NEG,

So [EVKXﬁ NEGT,HE,(V ORIy — Ve X, A EG", HE,(V @ RY)] g is zero for every V, and so
K4(X) =o0. O

The following is then an easy combination of the preceding two results.

Corollary 11.5. The map IETG*l(X; E\é) LN I/C\E(X; EG.) is an isomorphism when X is a contractible
G-space.
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Injectivity of n

We want to show that 7 : 7 (X EG) — Iee_l (X; EG) is injective mod p. To this end, we use Theorem
[8.7]from §8 again. We have the diagram

P I 17Y(80) 2 7N X AJA) ——— 7NXGA) 2 7YX EG)
l@ x7 1y lﬂ
DI (@FK)(SY) = K5 (X5 A/A) —— K (X:4) = K5 (X EG)
where the top arrow is an isomorphism by the argument in the proof of Theorem A(ii). In this subsection
we shall do two things:
« Show that the left vertical arrow is an injection mod p in Lemmal[11.7 below.

« As in the previous subsection, we don’t have enough finiteness to guarantee long exact sequences
for K¢, so we cannot just argue as for T that the bottom map is an isomorphism in general - we
shall show instead that the bottom map is injective on the image of ©X" 17 in Lemma(11.10|below.

Letj := ®“F(EG,, HF,) € Sp. Using that HF , was a G-ring spectrum and that ¢ is strong monoidal,
we get a unit map in Sp

n:S—j
Remark 11.6. We thank Markus Land for the following observation: of course since this is the unit map
for a ring spectrum, it is going to send 1 € mpSto 1 € myj. The following lemma that we prove is however

not vacuous since we want to show that 1 € 7y is not trivial mod p, and not just that 1 € 77 is nontrivial,
which is obvious. For example, for ¢ # p another prime, we even have 7o HF, vanishes mod p.

Lemma 11.7. The element 1 € mgj is nonzero mod p.

Proof. We first unravel to see what 1 € g is represented by. Let ¢ : EG, — S be the obvious map and
e:SV? = SV be induced by the inclusion. By definition,

Toj = co‘l/im[SVG,F(EGJr, HF,(V))¢] = colvim[svc NEG., HE,(V)]a
Then 1 € myj being the image of 1 € myS under 7 is just represented by the following G-map of GG-spaces
ay: SV A EG, 5 5VE 2% gV I HE (V)

We want to show that this map is not trivial mod p, that is, it is not of the form p - f for some other
map f : SV A EG, — HE,(V). To do this, we just show that, choosing V' a complex representation
with V' # V&, ay induces a nontrivial map upon taking mod p Borel cohomology, namely that (ay)xg
induces a nontrivial map on mod p cohomology: this is enough since then the cohomology groups are
p-torsion, and so if vy = p - f, then of course the induced map on cohomology is going to be trivial.
Now (EG+ ANEG,) Ag SV EG. Ng (SVG NEGY) Meline), EGy Ng SV is of course an equiv-
alence since EG+ AN EGL — EGY is a G-equivalence, so we can ignore this part of oy and we focus
now on the other two maps in ay .

Recall that nonequivariantly n : SV — HF, (V) = K(F,,dimV) represents the fundamental class
1 € HImV(SV F,) = F,. Write uy € H*(EG4 Ag SY) for the Thom class, W := V — VC, and
n := dim V. We claim that py = (1 Agn)* (v) for some v € H*(EG4 Ag HF,(V)) and will prove this
in Lemmal(11.8]below. Naturality of Thom classes says that s,y = X" jy. On the other hand, by definition
the Euler class x (W) = (1Age)*(uw ). And so applying mod p cohomology to Ve 1ne, gv 1, HE,(V)
gives
v py =S uw = B (W)

But then W was elementary abelian and so since W& = 0, we get that (W) # 0 by Lemma m
below. O

37



Lemma 11.8. Let G be a finite group, V' a complex representation (so that Thom classes always make sense
in mod p cohomology), andn : SV — HF (V') the fundamental class. For juy € HI™V(EG, Ng SY) the
Thom class, there exists some v € ﬁ*(EG+ Aa HE,(V')) such that (1 Ag n)*v = py.

Proof. We look at the map between the spectral sequences associated to mod p Borel cohomology

H*(BG, H'HF,(V)) == H**'(EG Ag HE,(V))

[ [
H*(BG4,H'(SV)) =——= H*"'(EG4 N\g SY)

Now since 7 was the fundamental class, we know that it induces isomorphism H dimv(ﬂp(V)) —
HYmV(SV) By definition of Thom classes, for any point 2 € B@, iy needs to restrict to a generator
HImV(Gle, A SV) = HImV(GV) =~ F,. And so looking at the spectral sequence for EG4 Ag
SV shows that the Thom class had to have come from the H°(BG., H™V (SV)) term in the spectral
sequence, which in turn is isomorphic via * to H° (BG4, Hdim Vﬂp(V)) from the spectral sequence

for EGy Ag HE, (V). This gives the required preimage in HImV(EG, A HE,(V)). O

Lemma 11.9. Let G = F] be elementary abelian and W be a complex representation without a trivial
summand, that is, W& = 0. Then the Euler class x (W) is nonzero.

Proof. Since Euler classes satisfy e(V & V') = e(V)e(V’), we might as well suppose W was nontrivial
irreducible. Schur’s lemma and abelianness of G say that W must be one-dimensional, and so W is given
by a homomorphism p : G — C*, which is determined by (ay,...,a,) € F, with p : (g1,...,9;) —
€191 ... £ar0r where £ = ¢2™/P. But we have a well known natural isomorphism (see [Ati61] point (3) of
the appendix, for example) given by taking the Euler class

Hom(G,C*) =N H*(BG,Z) = F,{c1,...,c;} = (a1,...,a,) > aje; + -+ azc,

And so if W& = 0 then (ay,...,a,) # (0,...,0),s0 x(W) = ajc; + - - - + a,c, # 0. O

Lemma 11.10. Let X be a based G-space such that X¢ = S° and X ~ x for all H < G. The map
K& (X5 AJA) — K51 (X A) restricts to an injection on the image of @Y7~ 'n).

Proof. The proof will consist of two main steps, and we set up some notations first before proceeding. For
an S-functor T, define

j _ JIT(EY X0 AEGT HE,(V&R)g ifj>0
“Vm TSV X,) AEGT HE,(V)]e i <0

Note that finiteness of [X, HF ,(V)]c when X is a finite G-complex implies that lim} [T(ZV X,) A
EGT,HE,(V ®R7)]q = 0, and so we get that

aaXﬂU:h?u%m%yﬁMm

Note that, as in the proof of Lemma[11.4] we didn’t need to p-complete anything on the right-hand side
since they’re all already F,-vector spaces. We’re now ready to proceed with the proof.

« Recall from Theorem 8.7)(b) that we have a filtration of S-functors
FbACFAC---F,_,A=A

where Eq = Fqg/Fq,lﬁis awedge of suspensions of S-functors C' (K, G) where IE?;(X, C(K,G)) =
(@G/KIC)E/K(XK). And so by Lemmawe have that

I%E(X,Eq):() for0<g<r-—2

38



We claim that IEE(X ; Z) = 0. This is not obvious since, as indicated at the beginning of this subsec-
tion, we don’t have enough finiteness to guarantee that passing from K}, (X,; T) to I%*G (X;T) by
inverse limits preserve exactness of long exact sequences coming from cofibrations of S-functors.
But the situation is saved by the method in the proof of Lemma [11.4)as follows.

WhenT = C(K, H) we see from Lemmawhich says that I/C\ZV(X; C(K,H)) = (@WIC)E/K (X

and from the proof of Lemma|[11.4]that for each pair (a, m) there is a pair (b, n) with X, C X, and

m < n such that Tj'y, . — T7y,, is zero for every V. This property is obviously closed under

taking wedges of S-functors, and it is also easy to see that if 77 — T — T" is a cofibration of
S-functors and the property holds for 77, 7", then it holds also for 7. And so since this _property
holds for Bq, we inductively get that it holds for all F, A, and in particular for F)._ WA= A.

Consider the system of exact sequences

Ayl = (AJA)

a,V,m

— AL

a, V m a,V,m

from the cofibration A — A/ A — L A. Recall from the proof of Theorem (b) that we have
(A/A)(X) = (BA/BA) N X€

where BA/BA is equivalent to a wedge of p"("~1)/2 of (r — 1)-spheres. Since X¢ = $°, we may

set Xg = S and restrict to X D X so that X& = SO for all a. Then the system {(A/A)a Vm} is
constant in a with (A/A)" 7}, being the sum of p"("~1)/2 copies of [SV ANEGT, HE,(V)]c-

an

Now let 2 be a nonzero element of

Imn C l%g_l()(; A/A) =lim co‘l/irn hm(A/Z)Zj = cohm hm(A/A)O Vim

We want to show that x gets mapped to something nonzero in ICG(X A) Let V be a large enough
complex representation such that « is represented by v, € (4/ A)O V.m- Since z € Imn we know
from the proof of Lemma|11.7] that without loss of generality v, looks like

avm s SV N EGT 25 9V 5 8V I HE (V)

By that lemma we also know that ay was nontrivial mod p for complex representations V # V&,
and so since the vanishing of lim" (since all groups involved are finite F,-vector spaces) implies

that [SVG NEGy, HE, (V)] = limm[S’VG AN EGT, HE,(V)]a, we get that aw,, are nontrivial
forallm and W D V. Soin total, we obtain that forall W > V and all m, zw,,, # Oin (A/A)0 W

Now suppose for a contradiction that = maps to zero in I%TG_ 1(X; A). This means that, writing T, V,m
for zvy,, considered as an element in (A/ A)a w.m> We get that for all a there exists V, D V such

that x4 v, mapsto0 € A’ On the other hand, ICE (X; A) = 0 from the previous step gives us

a, V ,m*
that for each m we can choose a > 0 and n > m such that the map g’;}?n Zlg}fm is zero for all
V. Write W for V,. Now chasing the following diagram, starting at (A/A)"

arrows in sequence, we get that x4y, =0 € (A4/ A)a W,m» contradicting the previous paragraph.

and following the

an

(A/A)n ,Vin
(&)

@) (A/A

A/ZjVIZ/,n — (A/A)a W,n

Ar— (6) A\r—
AO,V&',m (A/A)O,I/Il/, (A/A)a W,m
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Appendix A Induction theorem for the completed Burnside ring
Green functor

Here we give the proof of the following theorem that we used for the reduction to p-groups. The proof
will highlight two standard philosophies in working with the Burnside ring, namely the importance (1) of
understanding the prime ideals of A(G) (which is analogous to the importance of understanding primes
in Z); and (2) of the embedding of A(G) into the ghost ring C(G).

Theorem 5.1. Let G be a finite group, and A the Burnside ring Green functor completed at the augmentation
ideal I(G). For each prime p, let G, denote a representative Sylow p-subgroup of G. Then the sum

Pi.: P AG,) — AG)

is an epimorphism. In other words, together with Yheorem this implies that all A-modules are projective
with respect to the set of all Sylow p-subgroups for all p dividing |G].

Observation A.1. Note that A(G) = Z @ I(G) and so the natural composite
Z— AH) 5 AG) 25 Z

is multiplication by |G/ H|. And so since the greatest common divisor of {|G/G)|}, is one, we see that the
homomorphism in the theorem is always surjective on the Z copy, and so it’s enough to show surjectivity
with A replaced by I.

Idea A.2. Vaguely speaking, the point of the proof will be that I(H)/I(H )™ appearing as the terms of the
completion will all be finite, and so it will be enough to show surjectivity at each of these finite terms. The
finiteness of these terms, in turn, allows us to work p-locally, where we will want to combine the transfer

GGy = 1(G)/1(G)" - 1(G) = I(Gy)/I(G)" - 1(Gy) =+ I(G)/1(G)" - I(G)
with the fact that |G/G,| is prime to p to show that i, is p-locally even a split surjection.

The proof of the theorem will depend on knowledge of the prime ideals of A(G) and three lemmas building
on that, and we discuss them now.

Fact A.3 ([fD79] §1). It turns out that we know all the prime ideals of A(G) and they are of form
q(H,0) :=ker(A(G) X2, 7) or q(H,p) := ker(A(G) X7 Z/p)
Write HP for the smallest normal subgroup of H such that H/HP a p-group. These prime ideals satisfy

q(H,0) C q(H,p)
q(H,0) = q(K,0)if H is conjugate to K
q(H,p) = q(K,p) if H? is conjugate to K”
Note in particular that g(e, p) = q(H, p) iff H is a p-group.

Construction A.4. Let H - G be the inclusion of a subgroup. Then via i* : A(G) — A(H), any
A(H)-module is also an A(G)-module. Viay : A(H) — C(H), any C'(H)-module is an A(H )-module.

The key to many of the arguments is the following lemma, which is the Burnside ring version of a result
for representation rings going back to [Ati61] Theorem 6.1. The equivalence of the first two topologies is
due to Laitinen [Lai79]].

Lemma A.5. The following topologies on A(H) and I(H) coincide.
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(a) The I(G)-adic topology.
(b) The I(H)-adic topology.

(c) The subspace topology induced from the I(H)-adic topology on C'(H) (recall from Construction [3.13
that x was an injection).

Proof. See Lemma 6 of [MM82]]. O
Definition A.6. Let H < G, N be some A(H)-module, and n > 1.

(a) Define P, (N, H) := N/I(H)"N. We simply write P, N for P,,(N, G) for short.

(b) Define J"(H) := x~Y(I(H)"C(H)) C A(H).

(c) Define Q,(N,H) := N/J"(H)N.
Remark A.7. From these we can get the following easy observations.

(a) By LemmalA.5|we get that P, (A(H),G) is a quotient of P,,(A(H), H) for some m.

(b) Since I(H)™ is contained in J"(H) we have a natural surjection P, (N, H) — Q,(N, H), and is
just the identity if N = C(H).

(c) The injection x induces an injection

(K)

where Z is just Z considered as an A(H )-module via x k.
Lemma A.8. (a) If K = e then P,Zx = Z for alln.
(b) If K is not a p-group for any p, then P,Zx = 0 for alln.
(c) If K is a p-group, then P,,Z i is a p-group for all n.
Proof. See Lemma 7 of [MM82]]. O
Lemma A.9. The group P,I(H) is finite for alln > 1.

Proof. The equivalence of (b) and (c) from Lemmal[A.5|gives us that P, (I(H), H) isa quotient of Q,,, (I(H ), H)
for some m. On the other hand, the injection y induces an injection

Qum(I(H),H) — P, (IC(H),H) = [] PuZk

and the latter is finite by Lemmal[A.8| O
We are now ready to prove the theorem.

Proof of Theorem[5.1] The equivalence of (a) and (b) from Lemmal[A.5|gives us the diagram

~ ®pin ~

D, [(Gp) ——— 1(G)

- !

lim, @, P.(I(Gy), G) —2 lim,, P,I(G)
And so our task now is to show that the bottom map is surjective. Now Lemma[A.9]gives that each compo-
nent of the bottom map is finite, and so by the usual lim" exact sequence and Mittag-Leffler we’re reduced
to showing that P, P, (I(Gp), G) — P,I(G) is surjective. Again by finiteness, this will hold provided
the p-th map ¢, is surjective on the p-primary component of P,,I(G).
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To this end, we’ll leverage on the transfer maps and show the stronger statement that

PI(G) 5 P(I(G,),G) = PI(G)

becomes an isomorphism when localised at p. As in the proof of Lemma [3.14 we know that this is just
multiplication by G/G,,, now viewed as an element of P, A(G). But then LemmaA.5|again gives us that
P, A(G) is a quotient of Q,,, A(G) for some 1, and so it suffices to show that G/ G, is a unit in Q,, A(G) ().

On the other hand, recall from Constructionthat QmC(GQ)/QmA(G) is finite, and so Q,, C(G) (p) is
an integral extension of 0, A(G) ;). And so it suffices to check that G/G), is a unit in Q,,,C(G) ), since
if S C R was an integral extension and v € S is a unit in R, say with v € R the inverse, then a monic
polynomial with coefficients in S

V4 ap 0" g =0

then gives
v = —(Cln—l +ap_ou—+---+ aounfl) cs

Now Lemma [A.8] shows that
QmC(G)(p) = Z(p) X H QmZK

(K)

where the product on the right is restricted to the conjugacy classes of p-groups K < G. Recall from
Fact[A3|that ¢(K,p) = q(e,p) in A(G). Since x.(G/G}) = |G/Gy| is prime to p, we have that G /G, ¢
g(e,p) = q(K,p). Hence we must also have that xx(G/G,) is prime to p, and so G/G,, is a unit in
QmC(G)p) as required. O
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