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1 Introduction
One of the great triumphs of algebraic topology in the 1980’s was the resolution of the Segal conjecture
for �nite groups, the precise formulation of which will be given in §4. Its formulation and proof is the
concern of the present note. �e interest in this problem before and a�er its resolution led to a �urry of
work and developments in algebraic topology in the 1970’s and 1980’s by many people, culminating in
Gunnar Carlsson’s paper [Car84]. One implication of this is that even the literature for the full treatment
of the core story for �nite groups is quite sca�ered and the inevitable amount of forward references as well
as folklore logical jumps le� unsaid can be quite exhausting for the uninitiated. It is therefore the purpose
of this note to gather and �esh out the various strands in the formulation and proof of this conjecture
for �nite groups, and we hope that this will provide an accessible one-stop resource for fellow graduate
students and/or the interested non-specialist mathematician to what we think is a very beautiful story in
algebraic topology.

A historical context
We hope that this short historical tour provides not just a motivating context for the problem, but also
as a collection of references to the literature. Another good (but inevitably less updated) source for this
material is Carlsson’s paper [Car84].

It all began with Michael Atiyah’s seminal 1961 paper [Ati61], where among other things he computed the
complexK-theory of the classifying spaceBG of a �nite groupG in terms of the complex representation
ring R(G). More precisely, we have the isomorphism R(G)∧I(G)

∼= KU0(BG) = [BG,BU × Z] coming

from the association V 7→
(
EG×GV → BG

)
where V is a �nite-dimensional complex representation of

G. Here I(G) ≤ R(G) is the augmentation ideal and the le� hand side is the completion at this ideal. �is
is supposed to be taken as an amazing result for (at least) two reasons: (1) the usual technology of complex
K-theory is good at handling compact spaces only, and BG is an in�nite space when G is a �nite group
(for example, BC2 ' RP∞); (2) we have related a slightly mysterious topological thing KU∗(BG) to a
reasonably well-understood algebraic gadgetR(G). �is result has come to be known as the Atiyah-Segal
completion theorem.
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Now in the same way that representation rings R(G) are naturally related to BU × Z, which “controls
symmetries of complex vector spaces stably,” as explained above, Graeme Segal wondered if something
similar might be true for the Burnside ring A(G) of the group G - this is just the ring generated by the
�nite G-sets under disjoint unions and products, and it also has an augmentation ideal. More precisely,
a famous result of Barra�-Priddy and �illen says that QS0 ' BΣ+

∞ × Z where (−)+ is �illen’s plus
construction and QS0 is the in�nite loop space representing the cohomology theory of stable comotopy
π∗S . And so we see thatQS0 “controls the symmetries of �nite sets stably,” and we can then wonder about
the analogy

R(G)∧I(G) KU0(BG)

A(G)∧I(G) π0
S(BG)

Atiyah

?

�is was Segal’s Burnside ring conjecture.

�e early a�empts at a�acking the conjecturewas via a nonequivariant approach using the Adams spectral
sequence. �e �rst success was in the work of Lin Wen-Hsiung [Lin] who proved it for the caseG = Z/2.
�is depended on a hard Ext group calculation which was simpli�ed in the paper by Lin, Don Davis, Mark
Mahowald, and Frank Adams [LDMA80]. Jeremy Gunawardena [Gun80] pushed this method and proved
it for the case ofG = Z/p where p is odd. Doug Ravenel [Rav81] built on these and proved it for all cyclic
groups.

In another vein, Erkki Laitinen [Lai79] proved that the map A(G)∧I(G) → π0
S(BG+) is injective for el-

ementary abelians G = (Z/p)r , and Segal and C.T. Stretch [SS81], [Str81] extended this to all abelian
groups. Using Brown-Gitler spectra and the Adams spectral sequence, Carlsson proved in another paper
[Car83] for the case ofG = (Z/2)k . Adams, Gunawardena, and Haynes Miller [AGM85] then generalised
Lin’s methods to se�le the case of all elementary abelian p-groups.

At some point, however, it was realised that a purely computational approach was not feasible for general
groups, and this is the next part of the story. We look back again to the Atiyah-Segal completion theorem
for inspiration. As withmany good theorems, there have beenmany proofs for the completion theorem for
KU (a possibly non-exhaustive list being [Ati61], [AS69], [Jac85], [Hae83], [AHJM88a], [Gre93]). What is
of note, however, is that the �rst proof given in [Ati61] proceededwithout using genuine equivariant stable
homotopy theory and instead used the Atiyah-Hirzebruch spectral sequence, and it was the landmark
paper of Atiyah-Segal [AS69] that formulated and solved the problem more slickly in this language - in
fact, the theorem was generalised to all compact Lie groups there. Here the formulation is strengthened
to the assertion that there is a natural map

KU∗G(S0)∧I(G) → KU∗G(EG+)

which is an isomorphism, where KUG is the equivariant complex K-theory of [Seg68]. �e main lesson,
for which all the subsequent proofs have adhered to, is that it is be�er to formulate a stronger state-
ment at the level of genuine equivariant spectra, where many more tools such as long exact sequences
and subgroup inductions/restrictions are available. See [AHJM88a] for a very short and purely homotopy-
theoretic proof of the Atiyah-Segal completion theorem starting from equivariant Bo� periodicity ofKUG.

�ere is a notion of genuine sphere G-spectrum representing equivariant stable cohomotopy π∗G, and
Segal [Seg70] and Tammo tom Dieck [tD75] showed that π0

G(S0) ∼= A(G). So by analogy we’re led to a
stronger form of Segal’s Burnside ring conjecture, asserting that there is a natural map

π∗G(S0)∧I(G) → π∗G(EG+)

which is an isomorphism. Working in this se�ing, Peter May and Jim McClure [MM82] showed that to
prove the conjecture for general groups, it is enough to show it for p-groups and with p-completions in-
stead. Furthermore, the Adams-Gunawardena-Miller [AGM85] paper mentioned above in fact proved the
stronger form of the Segal conjecture for elementary abelians. Finally, building on these two works, Carls-
son [Car84] proved the strong form of the Segal conjecture for general groups using various ingenious
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inductive techniques via genuine equivariant stable homotopy theory, invoking along the way such clas-
sical results as�illen’s F-isomorphism theorem and�illen’s homotopical analyses of subgroup posets.

To end this subsection, we mention other similar problems in homotopy theory. One general formulation
of such problems is the so-called homotopy limit problem of Bob �omason: there is always a map from
the limit to the homotopy limit and one wants to understand under what circumstances this map is an
equivalence - these are usually very di�cult and deep problems in homotopy theory. For example, in
the Segal conjecture case, one corollary is that the map (SG)G → (SG)hG exhibits the augmentation
completion of (SG)G. See [�o83] or [Car85]. Other spectra for which such homotopy limit/completion
theorems hold are KFq due to D.L. Rector [Rec74], MUG due to John Greenlees and May [GM97], and
KOG [AHJM88a]. �ere is also an unstable analogue of the problem, namely the Sullivan conjecture, the
generalised version of which says that for G a p-group and X a �nite G-complex, there is a natural map
(XG)∧p → (X∧p )hG which is an equivalence. �e original version was proved in a celebrated paper by
Miller [Mil84] and later generalised by [Lan92]. More recent related works include [BBLNR14], [NS18],
and [HW19]: the �rst two streamlined Ravenel’s inductive procedure for cyclic groups from [Rav81] and
the last proves the Segal conjecture for G = Z/2 using new methods from genuine equivariant stable
homotopy theory that is less homological algebra heavy than Lin’s approach. We mention also that there
are various homotopy limit theorems in other areas such as motivic homotopy theory.

Organisation
�e backbone reference for this document is the paper of Caruso-May-Priddy [CMP87], which we follow
closely, where they’ve simpli�ed and slightly generalised some of Carlsson’s original arguments. Other
main references are [Car84], [AGM85], and [MM82]. Sections 2 and 3 introduce the prerequisites on
genuineG-spectra and Mackey functors, respectively. Section 4 gives a precise formulation of the conjec-
ture and section 5 presents the reduction procedure to the case of p-groups and p-completions, following
[MM82]. In section 6 we introduce the algebraic completions that we’d be working concretely with. Sec-
tion 7 will then state all the main theorems and give an overview of Carlsson’s inductive strategy. Section
8 will solve the “singular” part of the problem, and sections 9 and 10 the “free” part. Section 11 deals
with the case of elementary abelian groups. Finally, the appendix gives the proof for the main algebraic
ingredient in the reduction to p-groups step.

Disclaimer: At many points in the document I have chosen to err on the side of being careful and explicit
in arguments both for my own bene�t and also for the bene�t of those who are less familiar with the things
presented but still want to follow the proofs in detail. For example, I found the relationship between the
various types of completions (di�erent ones are used in the statement and the proof of the theorem) quite
confusing at �rst, and so have expended some e�ort in being very explicit about these. Consequently, many
of the proofs appear slightly longer than they should be, as in the original sources, and I apologise for these
in advance to the experts in some or all of the areas. Lastly, while I’ve tried to present complete proofs
to most things, the Ext group calculation of [AGM85] is only sketched as it is a whole other (interesting)
computational story in its own right.

Acknowledgement
First and foremost, I would like to thank my supervisor, Jesper Grodal, for introducing me to this story
and for his continuous support and encouragements. Besides that, I am also grateful to the two Markuses
of stable homotopy theory, namely Markus Land and Markus Hausmann, for very useful conversations
about various points in the proof. Lastly, I would like to express my gratitude to Hood Chatham, whose
Latex package for spectral sequences has been very convenient.

2 Genuine equivariant stable homotopy theory
�ere are many distinct ways to encode the notion of a “spectrum with a symmetry by a group G,”
or equivariant stable homotopy theory. �e �rst de�nition that one might conceivably come up with
is Fun(BG, Sp), which we call spectra with G-action following current conventions. Here, a G-map
f : X → Y in Fun(BG, Sp) is an equivalence if the underlying map of spectra is (that is, it is a π∗-
isomorphism). A more sophisticated notion, however, is that of genuineG-spectra, where part of the data
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of aG-spectrum are its various genuine �xed points and equivalences are tested more stringently againts
all these �xed points. �is is the se�ing that will allow us to prove the Segal conjecture. As a point on
terminology, we will freely interchange between genuine equivariant stable homotopy theory, genuine
G-spectra, and G-spectra.

What makes G-spectra such a useful technology is the presence of di�erent types of �xed points and
transfer maps which provide very powerful inductive methods by relating the information between the
various subgroups - we will see this in action in at least two places in the proof of the Segal conjecture: the
�rst in §5 where we perform reduction to the case of p-groups and p-completions using the transfer (or
Mackey) structure of G-spectra, and the second in §8 where we solve the “singular” part of the problem
by a clever induction via geometric �xed points.

In this section we brie�y review genuine equivariant stable homotopy theory via orthogonal spectra -
this will be the foundation to the rest of the document. We’ve chosen this model simply because we
feel that it’s the most commonly used one these days and which has many good sources out there. We
assume that the reader is more or less familiar with stable homotopy theory. �ere are many models for
genuine equivariant stable homotopy theory: one of the �rst ones being the Lewis-May model [LMS86]
on which our main reference [CMP87] is based; orthogonal spectra (see [HHR16], [Sch], or [Sch18] for
good references); and as spectral Mackey functors (see [Bar17] for an∞-categorical treatment of this).

�e orthogonal spectra model
LetG be a �nite group. We now de�ne orthogonalG-spectra following Schwede’s book [Sch18]. �emain
reason for specifying a model is that we will need to have a concrete de�nition of equivariant cohomology
theories and geometric �xed points in order tomake various calculations in the rest of the document. Since
the precise de�nitions are quite technical and long-winded, we’ve chosen only to give enough detail for our
purposes, and refer the reader to the book for details. All spaces will be pointed, unless stated otherwise.

Construction 2.1 ([Sch18] 3.1.1). Let V,W be inner product spaces (ie. �nite-dimensional R-vector
spaces with inner product). Write L(V,W ) for the space of linear isometric embeddings. �ere is an
“orthogonal complement” vector bundle ξ(V,W )→ L(V,W ) given by

ξ(V,W ) := {(w,ϕ) ∈W × L(V,W ) | w⊥ϕ(V )}

and projection onto the second factor. Write O(V,W ) for the �om space of the bundle, ie. the one-point
compacti�cation of the total space ξ(V,W ). Given a third inner product space U , there is an obvious map

ξ(V,W )× ξ(U, V )→ ξ(U,W )

which induces an associative “composition”

◦ : O(V,W ) ∧ O(U, V )→ O(U,W )

Now de�ne O to be the topological category with objects inner product spaces and morphism space from
V toW given by O(V,W ).

De�nition 2.2. De�ne SG∗ to be the (topological or ∞-)category of based G-complexes and based G-
maps. A map f : X → Y is an equivalence i� fH : XH → Y H is an ordinary based equivalence for all
H ≤ G.

De�nition 2.3. An orthogonalG-spectrum is a based continuous functor from O to the category of based
G-spaces SG∗ , and a morphism of orthogonalG-spectra is just a natural transformation of functors. Write
SpG for the (topological or∞-)category of orthogonal G-spectra.

Remark 2.4. �e de�nition above is basically a very compact way to encode the various structures we
expect from a spectrum. For us the important points will be the following:

• Given any G-representation V , X(V ) is then a based G × G-space, coming from the G-action on
X(V ) ∈ SG∗ and the G-action G→ O(V ) together with the O(V ) functoriality ofX(V ). We then
consider X(V ) as a G-space via the diagonal action.
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• Given two inner product spaces V andW , we always have the suspension structure maps

σV,W : SV ∧X(W )→ X(V ⊕W )

using the canonical inclusion SV → O(W,V ⊕W ) and functoriality ofX , thinking ofO(W,V ⊕W )
as themorphism space betweenW andV ⊕W . See [Sch18] 3.1.4. WhenV,W areG-representations,
then these structure maps automatically become G-equivariant.

De�nition 2.5. For anyA ∈ SG∗ , we can de�ne the suspensionG-spectrumΣ∞A given as (Σ∞A)(V ) :=
SV ∧ A with O(V )-action on SV and G-action on A. �e structure maps σV,W : SV ∧ SW ∧ A →
SV⊕W ∧ A is just given by the canonical homeomorphism SV ∧ SW ∼= SV⊕W . We will also write Σ∞G
when we want to emphasise that we’re taking the suspension spectrum for the group G.

De�nition 2.6. �e sphere G-spectrum SG is given by Σ∞S0, where S0 ∈ SG∗ has trivial G-action.

Warning 2.7. Even though SG was de�ned in terms of spaces with trivial G-actions, it is far from being
equivariantly uninteresting. �e point is that when we evaluate at a G-representation V , SG(V ) has an
interesting G-equivariance coming from V .

Fact 2.8. It turns out that SpG is a closed symmetric monoidal stable (topological or∞-)category with
unit SG, smash product denoted by ⊗, and the function spectrum denoted by F (−,−) (or FH(−,−) if
we want to emphasise that we’re taking it in SpH for H ≤ G). �e suspension spectrum is then a strong
monoidal functor, ie. for X,Y ∈ SG∗ we have

Σ∞(X ∧ Y ) ' Σ∞X ⊗ Σ∞Y

De�nition 2.9. An orthogonal ring G-spectrum is then just a monoid object in SpG. In other words, an
orthogonal ring G-spectrum is some R ∈ SpG equipped with a multiplication R ⊗ R → R and a unit
SG → R such that the associativity and unit diagrams commute. We write CAlg(SpG) for the category
of commutative ring G-spectra with ring morphisms.

Notation 2.10. We will denote by MapSpG(−,−) the mapping space in the (topological or∞-)category
SpG - this is canonically enriched as a spectrumbecause SpGwas a stable category, andwewritemapG(−,−)
for the mapping spectrum. Finally, by limits and colimits, we always mean homotopy limits and homotopy
colimits.

Restrictions, inductions and �nite G-sets
Let H ≤ G. �en we have the following spectral induction-restriction-coinduction adjunction

IndGH : SpH � SpG : ResGH

ResGH : SpG � SpH : CoindGH
Here ResGH is strong monoidal. In terms of our concrete model, ResGH is just given by restricting the G-
action to the H-action on our based G-spaces. We also have the adjunction

IndGH = G+ ∧H − : SH∗ � SG∗ : ResGH

at the level of based G-complexes, such that if X ∈ SG∗ , then IndGHResGHX is G-homeomorphic to
G/H+ ∧X . Furthermore, we also have MapSG

∗
(G/H+, X) ' XH ∈ S∗.

One of the bread and bu�er toolbox in manipulating G-spectra is the following omnibus theorem, all of
whose parts are intimately related.

�eorem 2.11. Let H ≤ G be a subgroup.

1. (Wirthmuller isomorphism) IndGH ' CoindGH . In particular, IndGH and ResGH are both le� and right
adjoints, and so preserve all small limits and small colimits.

2. For X ∈ SpG, IndGHResGHX ' G/H+ ⊗X .
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3. Finite G-sets are canonically self-dual in SpG. In particular, for X,Y ∈ SpG we have

MapSpG(X,G/H+ ⊗ Y ) ' MapSpG(G/H+ ⊗X,Y )

4. (Frobenius formula) IndGH(X ⊗ ResGHY ) ' IndGHX ⊗ Y

Corollary 2.12. Let C ∈ SpH and B, Y, Z ∈ SpG. �en we have

ResGHFG(Y,Z) ' FH(ResGHY,Res
G
HZ) and IndGHFH(ResGHB,C) ' FG(B, IndGHC)

Proof. Let X ∈ SpH . �en

MapSpH (X,ResGHFG(Y, Z)) ' MapSpG(IndGHX ⊗ Y,Z)

' MapSpG(IndGH(X ⊗ ResGHY ), Z)

' MapSpH (X,FH(ResGHY,ResGHZ))

�e other one is done similarly, using the Wirthmuller isomorphism to say IndGH is right adjoint to ResGH .

Genuine �xed points and geometric �xed points
One of the slightly daunting things for those who are seeing G-spectra for the �rst time is the multitude
of �xed points, namely that of homotopy �xed points (−)hG, genuine �xed points (−)G, and geometric
�xed points (−)ΦG. �e notion of homotopy �xed points is already available at the level of spectra with
G-action Fun(BG, Sp): for X ∈ Fun(BG, Sp), this is just taking the limit XhG := limBGX ∈ Sp.

De�nition 2.13. A complete G-universe is a G-representation U of countable real dimension that con-
tains in�nitely many copies of every irreducible G-representation. One concrete model for it is ⊕∞ρG
where ρG is the regular representation of G. Complete universes satisfy the following closure properties:

• For H ≤ G, the in�nite-dimensional H-representation ResGHU is also a complete H-universe.

• For K / H ≤ G, the in�nite-dimensional (H/K)-representation UK = (ResGHU)K is a complete
H/K-universe.

While using a particular complete G-universe involves a choice, all notions in sight will turn out to be
independent of this choice.

De�nition 2.14. Let X ∈ SpG, and K / H ≤ G. Fix a complete G-universe U . We de�ne the H/K-
geometric �xed point of X , ΦH/KX ∈ SpH/K as follows: for any V K ∈ UK de�ne

(ΦH/KX)(V K) := (ResGHX(V ))K ∈ SH/K∗

When the context of K / H is clear (for example when H = G), we simply write ΦKX , and to save on
notation, if we denote H/K by J , we also write ΦJX := ΦH/KX .

Warning 2.15. �e convenient notation ΦJX hides the fact that this really depends on K / H . For
example, in general ΦG/GX 6' ΦeX even though G/G ∼= e.

While we won’t really be needing all the categorical properties of these various �xed points, we think it’s
helpful to lay out the organising principles for them and summarise the situation abstractly by stating the
following omnibus result. See [NS18] II.2 for a good reference and [Wil17] Notation 1.33 for an abstract
but very general treatment of these adjunctions from the spectral Mackey functor point of view.

�eorem 2.16 (Fixed points). Let N / G be a normal subgroup.

(a) (Genuine �xed points) We have the following adjunctions

i! : SpG/N � SpG : (−)N

(−)N : SpG � SpG/N : i∗
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�e functor i! is strong monoidal, and so by abstract nonsense, the genuine �xed point functor (−)N

is lax monoidal. When N = G, i! is the functor that associates to an ordinary spectrum the genuine
G-spectrum with trivial action.

While it won’t be important to know what the functor i∗ is, the point of the second adjunction is that it
shows that (−)N is also a le� adjoint, and so (−)N preserves all small limits and small colimits.

Here we see that forX ∈ SpG,XN is not just an ordinary spectrum, but also has a residual equivariance
on the group G/N . Forge�ing the residual action, the genuine �xed points are corepresentable: that is,
we have XH ' mapSpG(G/H+, X) ∈ Sp.

Fixed points are transitive: ifK /H / G andK / G, then ((−)K)H/K ' (−)H .

(b) (Geometric �xed points) We have the following adjunction

ΦN : SpG � SpG/N : ΞN

where the geometric �xed point functor ΦN is strong monoidal, and being a le� adjoint, preserves small
colimits.

As above, note that for X ∈ SpG, ΦNX has a residual G/N -equivariance and not just an ordinary
spectrum. Following [Wil17] we use the notation XΦN to denote the underlying nonequivariant spec-
trum of ΦNX .

Finally, a very important property of geometric �xed points is that for X ∈ SG∗ , we have that

ΦN (Σ∞GX) ' Σ∞G/NX
N

Geometric �xed points are transitive: ifK /H / G andK / G, then ΦH/KΦK ' ΦH .

(c) (Homotopy �xed points) �ere is a natural functor SpG → Fun(BG, Sp) given by X 7→ Xe and
remembering the G-action which induces, for each H ≤ G, a small limit-preserving functor

(−)hH : SpG → Fun(BG, Sp)→ Sp

A concrete model for XhH when X ∈ SpG is given by

XhH = F (EG+, X)H

Remark 2.17. �e category SpG is compactly generated by the transitive orbits {G/H+}H≤G, and this in
particular means that equivalences in SpG can be tested by applying mapSpG(G/H+,−) for allH ≤ G. By
the corepresentability of genuine �xed points stated above, we get the statement that a map of G-spectra
X → Y is an equivalence i� all the induced maps XH → Y H for all H ≤ G is an equivalence.

Observation 2.18. For SG and K / H ≤ G, we have ΦK(ResGHSG) = Σ∞H/KS
0 = SH/K , and so

the geometric �xed points of sphere spectra are the sphere spectra for subquotient groups. �is closure
property will be crucial to Carlsson’s inductive proof of the Segal conjecture.

�eorem 2.19 (Segal-tom Dieck spli�ing). For X ∈ SG∗ , we have an equivalence

(Σ∞GX)G '
⊕
(H)

Σ∞
(
EWH+ ∧WH XH

)
where the sum runs over conjugacy classes (H) of subgroups of G andWH := NH/H is the Weyl group of
H . In particular when X = S0 we get

(SG)G '
⊕
(H)

Σ∞BWH+

Remark 2.20. �is theorem highlights the subtlety of the notion of genuine �xed points: even for SG
which comes from the G-space S0 with trivial G-action, the genuine �xed points is anything but simple.
In contrast, as stated in �eorem 2.16, geometric �xed points interact very nicely with the suspension
functor.

Remark 2.21. In the proof of the Segal conjecture, this theoremwill be important to us since it guarantees
that the equivariant homotopy groups of SG are �nitely generated abelian groups.
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Equivariant homotopy groups and cohomology theories
Fix a complete G-universe UG once and for all, and write UH := ResGHUG. For K / H ≤ G, write
UH/K = (ResGHUG)K . For U a complete G-universe, we denote by s(U) the poset of �nite-dimensional
G-subrepresentations under inclusions.

Notation 2.22. LetA,B be pointedG-spaces. �en we denote by [A,B]G the set ofG-homotopy classes
of based G-maps from A to B.

De�nition 2.23. Let k ∈ Z, X ∈ SpG, and H ≤ G. We de�ne the k-th H-equivariant stable homotopy
group of X as

πHk (X) :=

{
colimV ∈s(UH)[S

V ∧ Sk,ResGHX(V )]H if k ≥ 0

colimV ∈s(UH)[S
V ,ResGHX(V ⊕ R−k)]H if k < 0

We collect some standard properties of equivariant stable homotopy groups in the following.

Proposition 2.24. Let X ∈ SpG and H ≤ G.

(a) �e equivariant stable homotopy group really does have a canonical abelian group structure, justifying
the name.

(b) �ey are independent of the choice of a co�nal family, and so in particular the co�nal family {nρG}n
can be used.

(c) �ere is a natural isomorphism πHk (X) ∼= πk(XH) where the la�er is just the usual stable homotopy
group of a spectrum.

(d) π(−)
k (X) for the various subgroups of G collect into a Mackey functor, which we shall introduce in the

next section.

Example 2.25. ForM a ZG-module, we can always construct an Eilenberg-MacLane G-spectrum HM
satisfying

πHq HM =

{
MH if q = 0

0 otherwise

Furthermore, evaluating at a G-representation V satis�es HM(V ) ' K(M,n) nonequivariantly, where
n = dimV . See example 2.13 of [Sch] for details.

De�nition 2.26. Let G be a �nite group. �e Burnside ring A(G) is the commutative unital ring that
is �nitely generated as an abelian group by the �nite G-sets under disjoint union, and multiplication is
given by taking products of G-sets.

�eorem 2.27 (Segal). πG0 (SG) ∼= A(G).

De�nition 2.28. Let k ∈ Z, E ∈ SpG, and H ≤ G. �en E de�nes a cohomology theory E∗H : SH∗ →∏
ZAb given as follows: for X ∈ SH∗

EkH(X) :=

{
colimV ∈s(UH)[S

V ∧X,ResGHE(V ⊕ Rk)]H if k ≥ 0

colimV ∈s(UH)[S
V ∧ Sk ∧X,ResGHE(V )]H if k < 0

We also de�ne EHk (X) := E−kH (X). When we take the underlying spectrum of E and consider the
ordinary cohomology theory, we write it as Ek(−).

Notation 2.29. �e cohomology theories above can be interpreted as follows: for E ∈ SpG andX ∈ SG∗
we have for k ∈ Z

EkG(X) ∼= π0MapSpG(Σ∞GX,S
k ⊗ E)

where Sk for k < 0 is the tensor inverse of S−k . Because of this, we will also o�en write [X,ΣkE]G for
EkG(X) and so on.

Notation 2.30. We write πqH(X) := (SG)qH(X) for the equivariant stable cohomotopy groups.
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Proposition 2.31. For X ∈ SG∗ and E ∈ SpG, we have

EqG(G/H+ ∧X) ∼= EqH(X)

Proof. Using �eorem 2.11 we get

EqG(G/H+ ∧X) = [IndGHResGHX,ΣqE]G ∼= [ResGHX,ΣqResGHE]H = EqH(X)

Universal spaces and isotropy separation
For F a family of subgroups of G, that is, a collection of subgroups of G closed under subconjugations,
there is an associated universal space EF ∈ SG uniquely characterised

EFH '

{
∗ if H ∈ F
∅ if H 6∈ F

We can then de�ne the pointed G-space ẼF as the co�bre in SG∗ of

EF+ → S0 → ẼF

�is will then be uniquely characterised by

ẼF
H
'

{
∗ if H ∈ F
S0 if H 6∈ F

Two families will be important for our purposes, namely {e} the trivial family and P the family of proper
subgroups. For the case of F = {e} we write EG := E{e} and ẼG := Ẽ{e} instead. Just like in other
parts of genuine equivariant stable homotopy theory, the co�bre sequence displayed will be one of the
key ideas in the proof of the Segal conjecture, as it separates the problem into the “free” part EG+ and
the “singular” part ẼG.

Construction 2.32 (Carlsson’s model). We introduce a particularly convenient model for ẼP following
Carlsson. Let V be the reduced regular complex representation of G, that is, V = ρG − R{

∑
g∈G g}. Let

X =
⋃
SnV . Since V G = 0 we get XG = S0. If H � G then V has a trivial H-summand (namely the

one-dimensional subspace generated by the sum of all elements of H) and so XH ' S∞ is contractible.

Split theories
ForE ∈ SpG there is always a canonical map of ordinary spectraEG → E (where the target is considered
as the underlying spectrum of E). We say that E is split if there is a map of ordinary spectra E → EG

such that the composite
E → EG → E

is homotopic to the identity. For our purposes, the importance of this notion comes from the following
property:

Proposition 2.33. If E is a split G-spectrum and X ∈ SG∗ is a free based G-space, then E∗G(X) ∼=
E∗(X/G).

Example 2.34. SG is a split theory since the Segal-tomDieck spli�ing 2.19 gives (SG)G '
⊕

(H) Σ∞BWH+,
and then it can be checked that the inclusion of the summand S = Σ∞BWG+ →

⊕
(H) Σ∞BWH+ '

(SG)G gives the required spli�ing.
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Completions
For this part wewill summarise the notionswe need from [GM92]. �e point is that for any ideal I ≤ A(G)
there is a concrete and easily manipulated functor X 7→ X∧I such that:

• X∧I is local in the categorical sense of Bous�eld (which we shall explain below).

• When X is su�ciently �nite, then πG∗ (X∧I ) ∼= (πG∗ X)∧I .

�roughout this section let I ≤ A(G) ∼= πG0 (SG) be an ideal, and since A(G) is Noetherian, we have that
I = (a1, · · · , an) for some choice of generators.

De�nition 2.35. We de�ne
SG/a := SG/a1 ⊗ · · · ⊗ SG/an

andM(ai) as the �bre in the sequence

M(ai)→ SG → SG[a−1
i ]

We then de�neM(a) := M(a1)⊗ · · · ⊗M(an).

Remark 2.36. It turns out thatM(a) is independent of the choice of generators, and so we can also write
M(I) instead. See [GM95a] page 11, for example.

De�nition 2.37. By the remark above, the following is a well-de�ned notion: aG-spectrumW ∈ SpG is
said to be I-acyclic ifW ⊗M(I) ' ∗.

De�nition 2.38 (Bous�eld I-completeness). A G-spectrum X ∈ SpG is said to be I-complete if for any
I-acyclic spectrum W ∈ SpG, we have that MapSpG(W,X) ' ∗. A map of G-spectra X → Y is said
to be an I-completion if Y is I-complete and the �bre is I-acyclic (equivalently, if the map becomes an
equivalence a�er tensoring withM(I)).

�eorem 2.39 ([GM92] 1.6 and 2.3). Let X ∈ SpG.

(a) �e natural mapM(I)→ SG induces the map

X ' F (SG, X)→ F (M(I), X)

exhibiting the I-completion of X .

(b) If X was bounded below and �nite type (that is πHn (X) = 0 for all H for small enough n and each of
them are �nitely generated abelian groups), then πHn (X)→ πHn (X∧I ) exhibits the I-completion in the
usual algebraic sense, that is, it is the canonical map where πHn (X∧I ) ∼= limn π

H
n (X)/In · πHn (X).

Remark 2.40. In particular, we now know what it means to complete aG-spectrum at the augmentation
ideal I(G) ≤ A(G) and to p-complete it, namely using I = (p) ≤ A(G), and we even have a concrete
model for these completions using function spectra. Furthermore, since the sphereG-spectrum is bounded
below and �nite type, these completions behave as expected on the equivariant homotopy groups.

Notation 2.41. For the augmentation ideal I(G) ≤ A(G) we denote I(G)-completion by (−)∧I(G); we
denote p-completion by (−)∧p .

�e remaining part of this section will not strictly be needed to understand the rest of the document and
can be safely skipped, but we’ve included it just to clarify that p-completions commute with genuine �xed
points.

�eorem 2.42 ([GM92] 2.2). For W ∈ SpG, we have that W ⊗ SG/a ' ∗ i� W ⊗M(a) ' ∗. �at is,
I-acyclicity can equally well be tested with SG/a.

Proposition 2.43. Let X ∈ SpG.

(a) If X was p-complete as a G-spectrum, then XH is also p-complete as an ordinary spectrum for all
H ≤ G.

(b) Furthermore, the map XH → (X∧p )H exhibits (X∧p )H as p-completion of XH in Sp.
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Proof. We will apply Corollary 2.12 at various points in the proof to manipulate restrictions and function
spectra. �e main point to note is that if i! : Sp → SpH is the strong monoidal le� adjoint to (−)H then
we have an identi�cation of co�bre sequences

i!

(
S

p−→ S→ S/p
)
'
(

SH
p−→ SH → SH/p

)
since i! is le� adjoint, and so preserves co�bre sequences. Besides that, ResGH commutes with colimits and
so commutes with (−)[p−1] and hence

ResGH
(
MG((p))→ SG → SG[p−1]

)
'
(
MH((p))→ SH → SH [p−1]

)
Also note that ResGH(X∧p ) is a p-complete genuine H-spectrum since X∧p

'−→ FG(MG((p)), X∧p ) gives

ResGH(X∧p )
'−→ ResGHFG(MG((p)), X∧p ) ' FH(MH((p)),ResGH(X∧p ))

and moreover ResGHX → ResGH(X∧p ) exhibits the p-completion of ResGHX since

FH(MH((p)),ResGHX) ' ResGHFG(MG((p)), X) ' ResGH(X∧p )

(a) To see XH = (ResGHX)H is p-complete if X is, let Z ∈ Sp be such that Z ⊗ S/p ' ∗. We need to
show that MapSp(Z,XH) ' ∗. Now

MapSp(Z,X
H) ' MapSpH (i!Z,ResGHX)

and i!Z⊗SH/p ' i!Z⊗ i!S/p ' i!(Z⊗S/p) ' ∗, so the la�er mapping space is contractible since
ResGHX was a p-complete H-spectrum.

(b) Let us note that

i!

(
M((p))→ S→ S[p−1]

)
'
(
MH((p))→ SH → SH [p−1]

)
since i! preserves colimits so commutes with (−)[p−1]. By part (a), to see that XH → (X∧p )H

exhibits p-completion of XH we just need to show that

F (M((p)), XH)→ F (M((p)), (X∧p )H)

is an equivalence. Let Z ∈ Sp, and testing against this by applying MapSp(Z,−) and unwinding
adjunctions we get the equivalence (since ResGH(X∧p ) was p-completion of ResGHX in SpH )

MapSpH (i!Z,FH(MH((p)),ResGHX))→ MapSpH (i!Z,FH(MH((p)),ResGH(X∧p )))

where again we’ve used i!M((p)) ' MH((p)). Hence F (M((p)), XH) → F (M((p)), (X∧p )H) is
equivalence as required.

3 Mackey functors
We now introduce Mackey functors. One of the canonical references for this is chapter 6 of [tD79], and
everything in this section (except possibly the last lemma) are standard. We provide proofs to some of
them to give a taste of how things go with Mackey functors.

De�nition 3.1. LetG be a �nite group andGSet be the category of �niteG-sets andG-maps. A bifunctor

M = (M∗,M∗) : GSet→ Ab

is a pair of functors with M∗ contravariant and M∗ covariant which agree on objects. For a G-map
f : S → T write f∗ := M∗f and f∗ := M∗f . A bifunctorM is called a Mackey functor if it satis�es the
following two properties:
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(a) (Additivity) �e homomorphismM∗(S
⊔
T )→M∗(S)⊕M∗(T ) induced from S → S

⊔
T ← T

is an isomorphism.

(b) (Double coset axiom) For any pullback diagram in GSet

U S

T V

f

h g

k

the diagram

M(U) M(S)

M(T ) M(V )

f∗

k∗

h∗ g∗

commutes.

Remark 3.2. We’ve followed the de�nition in §6 of [tD79], but we point out that there are at least three
di�erent ways to de�ne Mackey functors, some be�er for calculations and some for a more conceptual
understanding. We refer the reader to [Luc96] for example for a nice exposition on this.

Notation 3.3. We will o�en use the underline notation M to emphasise that something is a Mackey
functor. As is common in the literature, we will also freely interchange between writing M(H) and
M(G/H) for H ≤ G - this will usually not cause any confusions.

De�nition 3.4. LetM be a Mackey functor for the group G and S a �nite G-set.

(a) De�ne the Mackey functorMS byMS(T ) := M(S × T ). We then have a map

θS : MS →M and θS : M →MS

given by θS(T ) = π∗ and θS(T ) = π∗ where π : S × T → T is the projection.

(b) We say thatM is S-projective if θS : MS →M is split-surjective.

(c) We say thatM is S-injective if θS : M →MS is split-injective.

Proposition 3.5 ([tD79] 6.1.3). A Mackey functorM is S-projective i� it is S-injective.

Construction 3.6. For S ∈ GSet, let S0 = ∗ and Sk =
∏k−1
i=0 S and πi : Sk+1 → Sk denote the

projection omi�ing the i-th factor for 0 ≤ i ≤ k. ForM a Mackey functor we have two chain complexes

0→M(S0)
d0−→M(S1)

d1−→M(S2)
d2−→ · · ·

0←M(S0)
d0←−M(S1)

d1←−M(S2)
d2←− · · ·

where dk =
∑k
i=0(−1)iπ∗i and dk =

∑k
i=0(−1)iπi∗.

�e following proposition says that these chain complexes give us “S-injective and S-projective resolu-
tions”.

Proposition 3.7 ([tD79] 6.1.6). LetM be a Mackey functor. �en

(a) MS is always S-injective and S-projective.

(b) IfM is S-injective then the chain complexes above are exact.

Proof. We show the exactness of the �rst chain complex in part (b). Let ψ : MS → M be a spli�ing. We
use it as a contracting homotopy for the chain complex as follows: consider the diagram
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0 M(S0) M(S1) M(S2) · · ·

0 M(S0) M(S1) M(S2) · · ·

d0 d1

ψ

d2

ψ ψ

d0 d1 d2

�is is a contracting homotopy since for example

ψ ◦ (π∗0 − π∗1) + π∗0ψ = id− ψπ∗1 + π∗0ψ = id

where we’ve used that we have diagrams like

M(S × Sk−1) M(S × Sk)

M(Sk−1) M(Sk)

ψ

π∗j+1

ψ

π∗j

by the naturality of the spli�ing ψ.

We now introduceGreen functorswhich are the algebra objects in the abelian category ofMackey functors.

De�nition 3.8. AGreen functorU : GSet→ Ab is aMackey functor together with the data of a collection
of bilinear maps

U(S)× U(S)→ U(S) :: (x, y) 7→ x · y

for each S ∈ GSet satisfying:

(a) Each of these maps are bilinear.

(b) For each S ∈ GSet these maps make U(S) into a unital associative ring.

(c) For f : S → T a G-map, f∗ : U(T )→ U(S) is a unital ring map.

(d) (Frobenius conditions) For any G-map f : S → T we have

f∗(f
∗x · y) = x · f∗y

f∗(x · f∗y) = f∗x · y

Remark 3.9. If U is a Green functor then there is an obvious notion of a le� U -module Mackey functor:
that is, a pairing U ×M →M making eachM(S) into a le� U(S)-module.

De�nition 3.10. �e Burnside ring Green functor A for a group G is de�ned as A(G/H) := A(H).
Restrictions, inductions, and conjugations ofH-sets induce the Mackey structure on A, and the levelwise
ring structure induces the Green functor structure.

Fact 3.11. It turns out that all Mackey functors admit a unique structure as modules over the Burnside
ring Green functor - this is analogous to the fact that all abelian groups are modules over Z in a unique
way. See [tD79] Proposition 6.2.3.

�e following theorem says that the splitness condition in the notion of S-projectivity for Green functors
is redundant, and the proof is an archetypal use of the properties in the de�nition of Green functors.

�eorem3.12 ([tD79] 6.2.2). LetU be aGreen functor andS a �niteG-set. �en the following are equivalent:

(a) For f : S → ∗ the unique map, the map f∗ : U(S)→ U(∗) is surjective.

(b) U is S-projective.

(c) All U -modules are S-projective.
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Proof. �e implications (c)⇒ (b)⇒ (a) are clear. To see that (a)⇒ (c), letM be a U -module and we want
to show that

π∗ : MS →M

is split surjective. Since f∗ is surjective, there exists u ∈ U(S) such that f∗u = 1 ∈ U(∗). Now de�ne

ψ(T ) : M(T )→MS(T ) :: m 7→ p∗u · π∗m

where
p : S × T → S π : S × T → T

are the projections. �en

π∗ψ(m) = π∗(p
∗u · π∗m) = (π∗p

∗u) ·m = (g∗f∗u) ·m = 1 ·m = m

where we’ve used the double coset formula associated to the pullback

S × T T ⇒ U(S × T ) U(T )

S ∗ U(S) U(∗)

p

π

g

π∗

f

p∗

f∗

g∗

�e next lemma, which appeared as Lemma 5 in [MM82], is of a su�ciently general nature that we’ve
included it in this section. But it is one of the key lemmas in the reduction of the Segal conjecture to
p-groups that we’ll work on in §5.
Construction 3.13. Let C(G) :=

∏
(H) Z where the product runs over conjugacy classes of subgroups

of G, and write IC(G) ⊂ C(G) for the ideal with 0 for the e-th coordinate. �is is sometimes called the
ghost ring. We then always have a homomorphism

χ : A(G)→ C(G)

where for S a G-set, the H-th coordinate is given by χH(S) := |SH |. �en χ is a monomorphism with
�nite cokernel and |G| · C(G) being in the image of χ (and so also |G| · IC(G) ⊂ χI(G)). See [tD79] §1
for these.
Lemma 3.14. Let M be a Mackey functor and let π : G/e → G/G which induces π∗ : M(G/G) →
M(G/e). �en |G| · kerπ∗ ⊂ I(G) kerπ∗. If G is a p-group, then the p-adic topology {pr kerπ∗}r and the
augmentation topology {I(G)r kerπ∗}r on kerπ∗ coincide.

Proof. First recall that any Mackey functor is a module over the Burnside ring Mackey functor and in fact
multiplication by G/e ∈ A(G) onM(G/G) is given by

M(G/G)
π∗−→M(G/e)

π∗−→M(G/G)

since for 1 ∈ A(G) andm ∈M(G/G) we have

π∗π
∗(1 ·m) = π∗(π

∗1 · π∗m) = (π∗π
∗1) ·m = G/e ·m

�is means that G/e · kerπ∗ = 0, and so

|G| · kerπ∗ = (|G| −G/e) · kerπ∗ ∈ I(G) kerπ∗

Now let G be a p-group with |G| = pn. �en the above clearly gives us

pnm kerπ∗ = |G|m kerπ∗ ⊂ I(G)m kerπ∗

so now we claim that I(G)n+1 ⊂ pI(G) which would imply that

I(G)m(n+1) kerπ∗ ⊂ (pI(G))m kerπ∗ ⊂ pm kerπ∗

giving the other direction. To see the claim, letH,K ≤ GwithH 6= e. �en note that χH(G/K−|G/K|)
is divisible by p since G/K − (G/K)H consists of a disjoint union of nontrivial H-orbits and H is a p-
group. �erefore χHI(G) ⊂ pZ and so χI(G) ⊂ pIC(G), and

χI(G)n+1 ⊂ pn+1IC(G) = p|G|IC(G) ⊂ pχI(G)

By injectivity of χ, we’re done.
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4 Motivation and formulation of the conjecture
We explain here why completion theorems are natural questions to ask and give a general formulation of
the problem at the level of G-spectra.

LetR ∈ CAlg(SpG). �enR0
G(S0) acts onR∗G(G/e+) = π0MapSpG(IndGe ResGe SG, R) ∼= π0MapSp(S,ResGe R) ∼=

R∗(S0) via the restriction homomorphism

ResGe : R0
G(S0)→ R0

G(G/e+)

and so if we de�ne I to be the kernel of this homomorphism, then by de�nition I acts as zero onR∗G(G/e+).

Proposition 4.1. In as de�ned above acts as zero on R∗G(X) for X an (n − 1)-dimensional �nite free
G-complex.

Proof. We show this by induction on n, where the case n = 1 is as above. Suppose true for n and let X
be an n-dimensional �nite free G-complex. �en the co�bre sequence

X(n−1) i−→ X(n) q−→
∨

(Sn ∧G/e+)

gives the long exact sequence

· · · ← [Sk ∧X(n−1), R]G
i∗←− [Sk ∧X(n), R]G

q∗←−
⊕

[Sk+n ∧G/e+, R]G ← · · ·

By induction the le� hand terms are annihilated by In, and the base case says that the right hand terms
are annihilated by I , and hence by exactness the middle term is killed by In+1.

Given these observations, and noting thatEG+ has �nite free skeleta we get that the maps {EGn+ → S0}
induce a factorisation

R∗G(S0) limnR
∗
G(EGn+)

limnR
∗
G(S0)/In

On the other hand the Milnor sequence

0→
1

lim
n
R∗−1
G (EGn+)→ R∗G(EG+)→ lim

n
R∗G(EGn+)→ 0

says that in good cases where the lim1 term vanishes, we have a comparison map

lim
n
R∗G(S0)/In → R∗G(EG+)

and so in the context where there are no lim1 issues in comparing R∗G(EG+) and limnR
∗
G(EGn+), we

can ask when
R∗G(S0)∧I → R∗G(EG+)

becomes an isomorphism. To put it more memorably, we want to know when an “algebraic completion”
on the le� becomes the same as a “geometric completion” on the right.

In fact, we even have the following lim1-free result purely at the level of spectra crystallising the discus-
sions above, although we won’t be needing it in this work.

Proposition 4.2. Suppose X ∈ SpG is Borel complete, that is X ' F (SG, X) → F (EG+, X) is an
equivalence. �en it is also complete with respect to any (�nitely generated) ideal I ≤ I(G) ≤ A(G) where
I(G) is the augmentation ideal.
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Proof. Since I = (a1, · · · , ar) is �nitely generated, and M(I) = M(a1) ⊗ · · · ⊗ M(ar), we get that
Y ∧I = (Y ∧I′ )

∧
a1 , and so by induction, it is enough to show the case of I = (a) a principal ideal. We

think of I ≤ A(G) = πG0 (SG) as representing self maps of S0
G. Since it’s in the augmentation ideal,

ie. in the kernel of ResGe : πG0 (SG) → πS0 (S), we know a : SG → SG is nonequivariantly triv-
ial. And so M(a) → SG is a nonequivariant equivalence since SG[a−1] is nonequivariantly trivial.
�erefore M(a) ⊗ EG+ → EG+ is a G-equivalence (see [GM95b] Proposition 1.1 for example), and
so F (SG, F (EG+, X))→ F (M(a), F (EG+, X)) is a G-equivalence.

�ese considerations together with the spectral completions from §2 lead us naturally to formulate the
following version of the Segal conjecture.

�eorem 4.3 (Segal conjecture for �nite groups). For G a �nite group, the comparison map

ξG : (SG)∧I(G) → F (EG+,SG)

is an equivalence of G-spectra. Equivalently, the comparison map

π∗G(S0)∧I(G) → π∗G(EG+)

is an isomorphism for all �nite groups G.

Proof of equivalence of formulations: A map of G-spectra being an equivalence can be checked on the
equivariant homotopy groups for all subgroups of G. Also, recall that

ResGHF (EG+,SG) ' F (ResGHEG+,ResGHSG) ' F (EH+,SH)

Finally, note from the function spectrum model of completions that

ResGH
(
(SG)∧I(G)

)
' (SH)∧ResGHI(G)

�erefore, the map of G-spectra ξG is an equivalence i�

πH∗ ((SH)∧ResGHI(G))→ πH∗ F (EH+,SH)

is an isomorphism for allH ≤ G. Now the Segal-tom Dieck spli�ing 2.19 says that πH∗ SH are all bounded
below and �nite type, and so �eorem 2.39 says that πH∗ ((SH)∧ResGHI(G)

) ∼= πH∗ (SH)∧ResGHI(G)
. On the

other hand, Lemma A.5 gives that πH∗ (SH)∧ResGHI(G)
∼= πH∗ (SH)∧I(H). And so switching to the cohomology

notation we get that ξG is an equivalence i�

π∗H(S0)∧I(H) → π∗H(EH+)

is an isomorphism for all H ≤ G, as required.

Remark 4.4. �is agrees with Segal’s original Burnside ring formulation since �eorem 2.27 says that
π0
G(S0) ∼= A(G) and splitness of SG and Proposition 2.33 give that π0

G(EG+) ∼= π0
S(BG+).

�e next section will show how, using the theory of Mackey functors, we can reduce this to the case of
p-groups with p-completions instead of augmentation completions. But before ending this section, let us
see how, following [GM92], the language of completions ofG-spectra allow us to generalise this result by
purely formal reasons.

�eorem 4.5. For X any G-spectrum, the comparison map

F (X,SG)∧I(G) → F (EG+, F (X,SG))

is a G-equivalence. In particular, since �nite G-spectra are the dualisable ones, we have that

Y ∧I(G) → F (EG+, Y )

is a G-equivalence if Y is a �nite G-spectrum.

Proof. Recall that for any G-spectrum Z , we have Z∧I(G) ' F (M(I(G)), Z). And so the G-equivalence
is obtained just by applying F (X,−) to the equivalence in the Segal conjecture.
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5 Reduction to the case of p-groups
�is is based on [MM82]. Here is the �rst instance where we see the power of working with the genuine
equivariant formulation where we use that the homotopy groups of genuine objects naturally admit the
structure of Mackey functors which encode the relationships between the group and all its subgroups,
and these structures give very rigid restrictions to what might happen. �ere will be two reductions: �rst
to the case of p-groups, and second, replacing augmentation completions by the strictly more drastic and
be�er understood p-completions.

Reduction to p-groups
�e following is the induction theorem for completed Burnside rings provided in [MM82] which is the
key to this step. We point out here that [AHJM88b] has generalised this reduction step with a topological
transfer argument in their §5 to generalise the Segal conjecture to include localisations.

�eorem 5.1. LetG be a �nite group, and Â the Burnside ring Green functor completed at the augmentation
ideal I(G). For each prime p, let Gp denote a representative Sylow p-subgroup of G. �en the sum⊕

p

i∗ :
⊕
p

Â(Gp)→ Â(G)

is an epimorphism. In other words, together with �eorem 3.12 this implies that all Â-modules are projective
with respect to the set of all Sylow p-subgroups for all p dividing |G|.

Proof. See appendix B.

Our �rst aim now is to show that the Segal conjecture, as formulated in �eorem 4.3, can equivalently be
stated as

π∗G(S0)∧I(G)

∼=−→ π∗G(EG+)∧I(G)

being an isomorphism. To this end, we need to know that π∗G(EG+)∧I(G)
∼= π∗G(EG+), and from the lim1

discussion of §4 and Proposition 4.1 we just need to show that lim1 π∗G(EGn+) = 0. We have not been able
to �nd a source for this folklore result and so have supplied a proof inspired by the statement of Corollary
4.7 in Atiyah’s paper [Ati61]. �ere might be a much simpler way of showing it which we are not aware
of.

Proposition 5.2. �e system {π∗G(EGn+)} satis�es lim1 π∗G(EGn+) = 0.

Proof. Fix a k 6= 0. We show that for each n, there is anm ≥ n such that

Im
(
πkG(EGm+ )→ πkG(EGn+)

)
is �nite, and then the vanishing of lim1 will follow by Mi�ag-Le�er. We’ll say what happens for the case
k = 0 later. To do this, we note that π∗G(EGn+) ∼= π∗S(BGn+) where the la�er is the nonequivariant stable
cohomotopy of a skeleton of BG+ since EGn are all free G-complexes and EGn/G ' BGn. �ese can
in turn can be analysed by the Atiyah-Hirzebruch spectral sequence

Ep,q2 (n) = H̃p(BGn+, π
q
S(S0))⇒ πp+qS (BGn+)

We now recall a couple of basic facts we’ll use:

•

πkS(S0) =


0 if k ≥ 1

Z if k = 0

�nite if k ≤ −1

• H̃p(BG+,Z) is �nite when p ≥ 1 (from the theory of group cohomology, for example), and so for
a �xed p, we can always �nd an m (m = p + 2 say) such that for A any �nitely generated abelian
group, Hs(BGm+ , A) is �nite for all 1 ≤ s ≤ p and becomes 0 for s ≥ p+ 2 for skeletal reasons.
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�e spectral sequence for πp+qS (BGn+) then looks as follows:

p

q

0 1 2 3 4 5

−3

−2

−1

0 Z

where for example the line consists of the contributions to π1
S(BGn+). Here the solid dots are groups

that are �nitely generated abelian groups that are possibly in�nite, and the hollow ones are �nite. By the
second fact above, all the terms vanish for p� 0.

• For a �xed k > 0 and n, it is easy to see by using the second fact that we can just take m � 0

so that Ek,02 (m) is �nite, and then πkS(BGm+ ) itself would be a �nite extension of �nite groups, so
�nite. Hence indeed Im

(
πkG(EGm+ )→ πkG(EGn+)

)
is �nite as required.

• �e case of k < 0 is similar but even easier since all the E2 terms were �nite to begin with.

• Finally, for the case of k = 0, note that π0
S(BGn+) ∼= Z ⊕ An for some An �nite, where the Z

spli�ing is the natural one coming from choices of

S0 → BGn+ → S0

compatible across di�erent n’s. Here theAn’s are �nite as in the arguments above. And so the maps

π0
S(BGm+ )→ π0

S(BGn+)

are going to the identities on the copies of Z, and hence for a �xed n, the groups Im
(
πkG(EGm+ )→

πkG(EGn+)
)
stabilises asm� 0. So this also satis�es the Mi�ag-Le�er condition.

Proposition 5.3. �e Segal conjecture for �nite groups is true i� it is true for all p-groups for all primes p.

Proof. Let S = {Gp}p be the set of Sylow subgroups of G, and let S =
⊔
pG/Gp. We know that

both Mackey functors π∗(S0)∧I(G) and π∗(EG+)∧I(G) are I(G)-complete, and so they are both Â-module
Mackey functors. �eorem 5.1 then says that π∗(S0)∧I(G) and π∗(EG+)∧I(G) are S-projective, and so
Proposition 3.7 says that we have a map of exact sequences

0 π∗(S0)∧I(G)(∗) π∗(S0)∧I(G)(S) π∗(S0)∧I(G)(S × S)

0 π∗(EG+)∧I(G)(∗) π∗(EG+)∧I(G)(S) π∗(EG+)∧I(G)(S × S)

But then Mackey functors turn coproducts into direct sums, and S and S ×S consist of orbits of the form
G/H where H ≤ G is a p-group for some prime p. And so if the Segal conjecture holds for all p-groups
for all primes p, then

π∗G(S0)∧I(G) = π∗(S0)∧I(G)(G/G)
∼=−→ π∗(EG+)∧I(G)(G/G) = π∗G(EG+)∧I(G)

as required since the two right vertical maps are isomorphisms.
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Reduction to p-completions
LetG be a p-group from now on. We show here that instead of working with (π∗G)∧I(G), we can work with
(π∗G)∧p , and this is go�en as Proposition 14 of [MM82].

Warning 5.4. Even though the usual slogan is that “the p-adic topology and the I(G)-adic topology
are the same for p-groups,” this hides the distinction between two di�erent p-adic topologies, namely
{prI(G)}r and {prA(G)}r - it is the former that agrees with the I(G)-adic topology {I(G)r}r , but it is
the la�er which we want to work with. �at is, we have the correspondences

(π∗G)∧I(G)
∼= (π∗G)∧pI(G) ←→ { I(G)r}r = {prI(G)}r

(π∗G)∧p ←→ {prA(G)}r

To illustrate the di�erence, consider the Burnside ring A(G) ∼= Z⊕ I(G). �en A(G)∧pI(G)
∼= Z⊕ I(G)∧p

but A(G)∧p
∼= Zp ⊕ I(G)∧p .

Proposition 5.5. Let G be a p-group. �en

π∗G(S0)∧I(G) → π∗G(EG+)∧I(G)

is an isomorphism i�
π∗G(S0)∧p → π∗G(EG+)∧p

is.

Proof. Consider the diagram of A(G)-modules

0 K π∗G(S0) π∗e(S0) 0

0 L π∗G(EG+) π∗e(EG+) 0

k c ∼=

where the natural spli�ing dashed maps come from the fact that SG is a split G-spectrum as introduced
in §2. �is is good because while the completion functors (−)∧I(G) and (−)∧p are only le� exact in general,
here they preserve the short exact sequences by virtue of the spli�ing. By Lemma 3.14 we get that the
topologies {prK}r and {I(G)rK}r agree onK , and similarly for L. And so

c∧I(G) is iso ⇔ k∧I(G) is iso ⇔ k∧p is iso ⇔ c∧p is iso

as required.

Hence we’ve reduced the original formulation for all �nite groups G in �eorem 4.3 into the following
version.

�eorem 5.6 (Segal conjecture for p-groups). Let G be a p-group. �en the comparison map

π∗G(S0)∧p → π∗G(EG+)∧p

is an isomorphism. In other words, (SG)∧p → F (EG+,SG)∧p is an equivalence of G-spectra.

Remark 5.7. Sometimes people also talk about the Segal conjecture as saying that the Tate construction
of the sphere spectrum exhibits its p-completion. �is concretely means the following: in the case of
G = Cp, the Tate diagram in fact becomes

ShCp
SCp SΦCp

ShCp
ShCp StCp
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Now p-completion is a le� adjoint, and so is an exact functor (ie. preserves stable (co)�bre sequences).
Hence the middle vertical is an equivalence a�er p-completion i� the right vertical is. But recall that
SΦCp ' S in Sp, and so the Segal conjecture for G = Cp is equivalent to saying that S → StCp is an
equivalence a�er p-completion. But then we know that StCp is p-complete since the Tate construction
of any bounded below G-spectrum is p-complete when G is a p-group (see [NS18] I.2.9 for the case of
G = Cp or [GM95b] 4.1 for the general case), and so in fact the map exhibits the p-completion of S. See
for example Remark III.1.6 of [NS18] for this point of view.

Remark 5.8. From �eorem 5.6 we can also get the Sullivan conjecture type statement that (XG)∧p '
(X∧p )hG when G is a p-group and X a �nite G-spectrum. Similarly as in �eorem 4.5, we can get that
forX ∈ SpG �nite,X∧p

'−→ F (EG+, X)∧p ' F (EG+, X
∧
p ) from�eorem 5.6. Now taking genuine �xed

points (−)G and using that it commutes with p-completions (see Proposition 2.43), we get the required
statement.

6 Operational formulation of the conjecture for p-groups
�e version in�eorem 5.6 is still not exactly the version we’ll be working with, and the issue is a familiar
one: we want to have long exact sequences of cohomology groups associated to co�bre sequences, but
p-completion is not an exact functor in general. However, all is not lost since it is exact when the mod-
ules involved are �nitely generated by the Artin-Rees Lemma (see Proposition 10.12 of [AM69]), and this
section is concerned with introducing a variant of (π∗G(−))∧p that will be su�cient for our purposes, and
in giving the form of the conjecture that we shall be working with in �eorem 6.10.

Remark 6.1. In what follows we could equally well have worked with pro-groups as was �rst done in
[AS69] in their proof of the Atiyah-Segal completion theorem and the philosophy is basically the same.
We have however chosen to follow the treatment in [CMP87] so as to avoid the technicalities of the pro-
category.

�e workable variant of algebraic completion
We work now with general G-spectra. Since we will want to use the isotropy separation sequence to
resolve the cohomology theory represented by the sphere spectrum, it will be convenient to introduce the
following notation.

De�nition 6.2. Recall the de�nition of cohomology theories in De�nition 2.28. For E ∈ SpG,X,Y ∈ SG∗
with X �nite, and q ∈ Z we de�ne

EG−q(X;Y ) = EqG(X;Y ) := (Σ∞Y ⊗ E)qG(X)

So this is a cohomology theory in X and a homology theory in Y .

Now we introduce the variant of completion that we shall be working with in the sequel.

De�nition 6.3. When X ∈ SG∗ we de�ne

Ê∗G(X;Y ) := lim
a

(
E∗G(Xa;Y )∧p

)
where the limit runs over Xa �nite G-subcomplexes of X .

Warning 6.4. It is of course not true that [X, E∧p ]G ∼= lima[Xa, E ]G
∧
p - the la�er is not even a cohomology

theory in general since inverse limits do not always preserve exactness. �e point is that while we’re
interested in studying the spectrum E∧p , we need a concrete way to work with it algebraically, and the
la�er is an approximation to this end.

Remark 6.5. Greenlees and May [GM95a] have later on developed the theory of derived completions to
deal with the completions happening at the level of G-spectra, in which case we have instead the exact
sequence

0→ LI1(En+1
G (X))→ (EG∧I )n(X)→ LI0(EnG(X))→ 0

where the functors LI0 and LI1 are exact, and one could conceivably work with these instead. In any case,
we will be working with the classical formulation using inverse limits.
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�e following lemma shows that the notion of completion via inverse limits is good enough to preserve
long exact sequences for our purposes.
Lemma 6.6. Suppose EGq (Y ) is �nitely generated if Y has �nite skeleta. �en associated to the co�bering
EG+ → S0 → ẼG and X a �nite skeleta G-complex, we have the two long exact sequences

· · · → ÊqG(X ∧ ẼG;Y )→ ÊqG(X;Y )→ ÊqG(X ∧ EG+;Y )→ · · ·

· · · → ÊqG(X;EG+ ∧ Y )→ ÊqG(X;Y )→ ÊqG(X; ẼG ∧ Y )→ · · ·
Proof. We break the proof into a series of steps.

1) Apply the cohomology theory EqG(−;Y ) to the co�bering Xk → Xk+1 →
∨nk Sk+1 and use the

assumption to get inductively that EqG(Xk;Y ) is �nitely generated.

2) Since p-completion is exact on �nitely generated things, we have the exact sequence

· · · → EqG(Xk ∧ EGk+;Y )∧p → E
q
G(Xk;Y )∧p → E

q
G(Xk ∧ ẼG

k
;Y )∧p → · · ·

3) Finally we know that inverse limits of compact Hausdor� abelian groups have trivial lim1, so by
the six term lim1 sequence we get that inverse limit is exact on exact sequences consisting of com-
pact Hausdor� groups. And since the sequence in step (2) was a sequence of compact Hausdor�
groups (since they were ⊗Zp of �nitely generated groups), we’re free to take inverse limit to pass
to ÊqG(−;Y ).

�e proof for the other sequence is similar.

How this relates to the original question
It’s all well and good to have Lemma 6.6 to guarantee exactness in cases we care about, but we still need
to relate π̂∗G(X) = lima

(
π∗G(Xa)∧p

)
to what we’re actually interested in, namely π∗G(X)∧p .

Lemma 6.7. Let {An} be an inverse sequence of �nitely generated abelian groups such that lim1An = 0.
�en the natural map

(limAn)∧p → lim((An)∧p )

is an isomorphism.

Proof. Let qAn = {a ∈ An | pqa = 0}. Consider the sequences

0 qAn An pqAn 0 0 pqAn An An/p
qAn 0

Since qAn are �nite, we have lim1
qAn = 0, and from six-term derived limit sequence from the �rst short

exact sequence, we get that lim1 pqAn is a quotient of lim1An = 0, so vanishes also. So both the displayed
sequences remain exact a�er passing to inverse limits over n. Hence the �rst inverse limit sequence gives
limn p

qAn = pq limnAn, and the second gives limn(An/p
qAn) ∼= limnAn/p

q limnAn. Now just take
inverse limits over q.

Lemma 6.8. If X and Y have �nite skeleta and lim1
n E∗G(Xn;Y ) = 0 then

E∗G(X;Y )∧p
∼= lim(E∗G(Xn;Y )∧p )

Proof. Just apply the preceding lemma with An = E∗G(Xn, Y ), where we’ve used the Milnor sequence

0 lim1
n E∗G(Xn;Y ) E∗G(X;Y ) limn E∗G(Xn;Y ) 0

and the vanishing of the le� hand term by hypothesis.

Corollary 6.9. lim
(
π∗G(EGn+)∧p

) ∼= π∗G(EG+)∧p .

Proof. Apply Proposition 5.2 to the lemma above.

Now pu�ing together Lemma 6.6 applied on the co�bre sequenceEG+ → S0 → ẼG in the �rst variable,
that π∗G(S0)∧p = π̂∗G(S0), and the corollary above, we �nally arrive at the operational formulation of the
conjecture as given in Carlsson’s paper [Car84].

�eorem 6.10 (Segal Conjecture). π̂∗G(ẼG) = 0 for all �nite p-groups G.
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7 An overview of the inductive strategy
In this section we present the organising roadmap of Carlsson’s induction. By and large, it consists of very
clever variations on the theme of harnessing the isotropy separation sequence

EG+ → S0 → ẼG

�e �rst lemma uses another isotropy separation to allow us �exibility in working with π̂∗G(ẼP) instead
of π̂∗G(ẼG).

De�nition 7.1. By a contractible based G-space X , we mean an X ∈ SG∗ such that Xe ' ∗ in S∗.

Note that this is not the same as a G-contractible based space, which requires that XH ' ∗ in S∗ for all
H ≤ G.

Lemma 7.2. Assume Ê∗H vanishes on contractibleH-spaces for all proper subgroupsH � G. If Ê∗G(X) = 0

for any contractible based G-space X such that XG ' S0, then Ê∗G vanishes on all contractible based G-
spaces.

Proof. Since XG ' S0, we have a co�bre sequence S0 → X → X/S0. Let X ′ be any other contractible
G-space and consider the co�bre sequence

X ′ → X ′ ∧X → X ′ ∧ (X/S0)

Plugging this into the cohomology theory Ê∗G, we see that it’s enough to show that Ê∗G(X ′ ∧ X) and
Ê∗G(X ′ ∧ (X/S0)) vanish.

For the �rst case, we claim the Ê∗G(W ∧X) = 0 for anyG-complexW . Since by de�nition Ê∗G was de�ned
as an inverse limit over �nite skeleta, we might as well prove it for the caseW �nite. SinceWn/Wn−1 for
n ≥ 0 are all just wedges of Sn ∧ (G/H)+, by the long exact sequence associated to co�bres, we might as
well just deal with the caseW = Sn ∧ (G/H)+. Since we’re working with cohomology theories, and so
are free to translate by suspensions, we might as well prove for the caseW = G/H+. IfH = G, this holds
by the hypothesis Ê∗G(X) = 0, and if H 6= G, then Proposition 2.31 gives Ê∗G((G/H)+ ∧X) ∼= Ê∗H(X)
and this together with our hypothesis gives the claim.

For the second case, we show that Ê∗G(X ′ ∧Z) = 0 for any Z , such asX/S0, such that ZG = ∗. Arguing
as above, we can reduce this to case Z = (G/H)+. Since ZG = ∗, H 6= G necessarily, and for this case
we can use Proposition 2.31 again.

Remark 7.3. �is is good since instead of proving the vanishing of various variants of the completed
cohomotopy on ẼG directly, we will prove these vanishings on ẼP instead, which has much be�er prop-
erties for carrying out inductions, namely that ẼP

H
' ∗ for all H � G, allowing us to have many

vanishing statements when we pass to proper subgroups during an inductive step. Furthermore, it also
has a concrete model in terms of unions of spheres as in Construction 2.32 - this will be used in analysing
the free part of the problem.

We are now ready to state the four main theorems that will organise the inductive procedure. Recall from
§2 that forK/H ≤ G and writing J := H/K , we write ΦJE for theH/K-geometric �xed point ΦH/KE .

�eorem A. Let K / H ≤ G and write J = H/K . Suppose (Φ̂JE)∗J vanishes on contractible J-spaces for
all proper subquotients J . Let X be a G-complex such that XG ' S0 and XH contractible for all proper
subgroups. �en

i) If G is not elementary abelian then Ê∗G(X; ẼG) = 0.

ii) If G = Frp then Ê∗G(X; ẼG) is the direct sum of pr(r−1)/2 copies of Σr−1(Φ̂GE)∗(S0).

�eorem B. Suppose E ∈ SpG is split and the underlying spectrum is bounded below. Let X be a G-space
such that XG ' S0 and XH contractible for all proper subgroups. �en
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i) If G is not elementary abelian then Ê∗G(X;EG+) = 0.

ii) If G = Frp and Hq(E ,Fp) = 0 for all su�ciently large q then Ê∗G(X;EG+) is the direct sum of
pr(r−1)/2 copies of ΣrÊ∗(S0).

Remark 7.4. As we shall see in the subsequent sections, once the right ideas have been set up, the case
of non-elementary abelian p-groups in �eorems A and B is not so hard. In contrast to that, the case of
elementary abelian p-groups is riddled with technical �xes and hard computations.

Remark 7.5. In the proof of �eorem B we will see that it is equivalent to a problem in nonequivariant
topology, whereas the ẼG part is genuinely equivariant. �is makes sense since the free part EG+ kills
information away from the trivial subgroup, whereas ẼG keeps information everywhere except at the
trivial subgroup. �is illustrates the general philosophy of using this kind of isotropy separation: we
shave o� one irreducible slice of the problem in EG+ and deal with the rest by subgroup induction in the
ẼG part.

�ese theorems together with Lemma 7.2 allow us to �nish o� the non-elementary abelian case by induc-
tion in the form of the following theorem - the sphereG-spectrum SG obviously satis�es all the hypothe-
ses.

�eorem C. Let G be a �nite p-group which is not elementary abelian. Let E ∈ SpG satisfying

i) (Φ̂JE)∗J vanishes on contractible J-spaces for all elementary abelian subquotients J of G

ii) ΦJE is split for all non-elementary abelian subquotients J = H/K ofG and ΦK/KE is bounded below
for allK ≤ G.

�en (Φ̂JE)∗J vanishes on contractible J-spaces for all subquotients J = H/K of G, including G itself.

Proof. By hypothesis (i) we need only deal with subquotients K / H ≤ G for which J = H/K are not
elementary abelian. By induction on subquotients we can assume that all proper subquotients of H/K
(meaning those coming from extensionsK ≤ L/M � H orK � L/M ≤ H) have the required property.
Now consider the subquotient coming from an extension K / H such that J = H/K is not elementary
abelian. Let X be a contractible J-space such that XJ = S0 and the other �xed points are contractible.
By �eorem A(i) and induction we have (Φ̂JE)∗J(X; ẼJ) = 0. By hypothesis (ii) and �eorem B(i) we
have (Φ̂JE)∗J(X;EJ+) = 0. And so in total we have (Φ̂JE)∗J(X) = 0. Lemma 7.2 applied to the group J
then says that (Φ̂JE)∗J(Y ) = 0 for all contractible based J-spaces Y .

And �nally to deal with the elementary abelian cases we have the following theorem.

�eorem D. Let G = Frp, and X a G-space such that XG = S0 and XH ' ∗ for all proper subgroups H
of G. Assume that the Segal conjecture holds for Fsp for all s < r, ie. π̂∗Fs

p
(X) = 0. �en

δ : π̂qG(X; ẼG)→ π̂q+1
G (X;EG+)

is an isomorphism for all q.

Idea 7.6. Carlsson’s idea to do this is as follows: looking at the diagram below, part (ii) of�eorems A and
B say that the top δ is a morphism of free π̂∗(S0)-modules, so it’s enough to show bijection on generators,
that is, isomorphism when q = r − 1. In this degree, δ is just a morphism of free Zp-modules with the
same number of generators, so it will su�ce to show that it’s an isomorphism upon reduction mod p. And
for this case, it’s enough to show it’s injective mod p. In order to do this, the idea is to compare the theory
π̂ with a test cohomology theoryK = F (EG+, HFp) whereHFp is the Eilenberg-MacLaneG-spectrum.

π̂r−1
G (X; ẼG) π̂rG(X;EG+)

K̂r−1
G (X; ẼG) K̂rG(X;EG+)

η

δ

η

δ

We will show that the bo�om δ is an isomorphism and that the le� vertical η is injective mod p.
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Remark 7.7. �ese theorems show us that there is a fundamental distinction between non-elementary
abelian p-groups and elementary abelian p-groups in the Segal conjecture story. Both satisfy the conjec-
ture, but they do so for di�erent reasons: the former because all other terms in the isotropy long exact
sequence vanish; the la�er because the boundary map in the sequence is a nontrivial isomorphism.
We end this section with a sketch of the ideas involved in proving �eorems A and B.
(A) For a based G-complex X let SX ⊂ X the singular subcomplex of X , ie. the points of X with

nontrivial isotropy groups. �en we have [X, ẼG ∧ Y ]G ∼= [SX, Y ]G, and we want to show that
[X, ẼG ∧ Y ]G = 0 when X satis�es XG ' S0 and XH ' ∗ for H � G. �e idea is to perform
a “blow-up” of SX , that is, to enlarge SX into a G-equivalent space AX by remembering at each
point of SX the chains of subgroups �xing that point. �is space AX will admit a nice �ltration by
the lengths of the chains, whose subquotients are induced G-spaces, and so by adjunction become
problems in the proper subquotients of G where the statement is true by the inductive hypothesis.

(B) �is is where we use the model ẼP = ∪nSnV where V is the reduced regular complex represen-
tation of G. �e theory of equivariant �om spectra will give the identi�cation EG∗ (SV ;EG+) ∼=
E∗(BG−V ) and so we’re in the realm of nonequivariant algebraic topology. �e la�er groups will be
analysed using the Adams spectral sequence, and we use complex representations in order to have a
good theory of Euler classes. �e non-elementary abelian case will be relatively painless, essentially
just applying�illen’s F-isomorphism theorem on the Euler class. �e elementary abelian case, on
the other hand, will involve a di�cult Ext group calculation due to [AGM85], of which we provide
a sketch.

8 S-functors and the proof of �eorem A
In this section, we will see how Carlsson used the extra structure available onG-spaces, namely that they
have point-set models and so admit the singular set functor, to inductively analyse the spectrum ẼG⊗ E
associated to some E ∈ SpG via his notion of S-functors.
Lemma 8.1. LetX,Y ∈ SG∗ withX �nite andF a family. Denote byXF theG-subcomplex ofX consisting
of cells of orbit types away from F . �en the inclusions XF ↪→ X and S0 ↪→ ẼF induce bijections

[X, ẼF ∧ Y ]G
∼=−→ [XF , ẼF ∧ Y ]G

∼=←− [XF , Y ]G

Proof. �e �rst bijection uses the long exact sequence associated to the co�bration of basedG-complexes
XF → X → X/XF where X/XF is �nite with only cells of orbit types in F , giving an exact sequence
of sets

[XF , ẼF ∧ Y ]G ← [X, ẼF ∧ Y ]G ← [X/XF , ẼF ∧ Y ]G ← · · ·
Now use cellular induction and the fact that

[G/H+ ∧ Sn, ẼF ∧ Y ]G ∼= [Sn,ResGH(ẼF ∧ Y )]H = ∗

forH ∈ F since ResGHẼF ' ∗ to get that the third term is zero, giving that the �rst map is injective. �is
map is also surjective since there is no obstruction to extending a mapXF → ẼF ∧ Y toX → ẼF ∧ Y
because for H ∈ F , [G/H+, ẼF ∧ Y ]G = π0(ẼFH ∧ Y H) = ∗. �e second bijection comes from the
co�bration sequence

EF+ ∧ Y → Y → ẼF ∧ Y
and the fact that [XF , EF+ ∧ Y ]G = 0 because EF+ ∧ Y only have cells of orbit type in F and
[G/K+, G/H+]G = ∗ if K 6∈ F and H ∈ F , just by de�nition of families being closed under sub-
conjugations.

Remark 8.2. Applying Lemma 8.1 to the family F = {e} we get that for �nite G-complexes X

EqG(X, ẼG) =


colim
V ∈s(UG)

[S(ΣVX), EG(V ⊕ Rq)]G if q ≥ 0

colim
V ∈s(UG)

[S(ΣV Σ−qX), EGV ]G if q < 0

where S is the singular set functor, ie. SX = X{e} denotes theG-subcomplex of cells with orbit type not
of the form G/e.
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We now axiomatise the properties of the singular set functor in the notion of S-functors.

De�nition 8.3. a) An S-functor consists of the data (T, τ) where T is an endofunctor of the category
of based G-complexes SG∗ and natural maps τ : T (X ∧ Y )→ (TX) ∧ Y satisfying

i) τ = id when Y = S0

ii) τ transitive
iii) τ is a homeomorphism when G acts trivially on Y

b) A map of S-functors is just a natural transformation of S-functors making the structure maps com-
mute strictly. We say that a map of S-functors is an equivalence or a co�bration if it is component-
wise G-equivalence or G-co�bration.

c) For an S-functor, we can de�ne the groups

EqG(X,T ) =


colim
V ∈s(UG)

[T (ΣVX), EG(V ⊕ Rq)]G if q ≥ 0

colim
V ∈s(UG)

[T (ΣV Σ−qX), EGV ]G if q < 0

using the structure maps τ . For example in case q = 0 and V ↪→W , we have

[T (SV ∧X), EGV ]G → [SW−V ∧ T (SV ∧X), SW−V EGV ]G
τ∗−→ [T (SW ∧X), SW−V EGV ]G
σ∗−→ [T (SW ∧X), EGW ]G

Fact 8.4. S-functors have all the usual operations we like to take on spaces - see [Car84] §IV.

1. We can take wedges, smash product with spaces, pushouts, co�bres in the category of S-functors.
When ϕ : T → T ′ is a co�bration, we can take the quotient S-functor T ′/T as the co�bre de�ned
by

T ′/T (X) = T ′X/TX

2. An equivalence of S-functors induces an isomorphism of the associated groups.

3. A co�bration of S-functors induces the long exact sequence

· · · → EqG(X;T ′/T )→ EqG(X;T ′)→ EqG(X;T )→ · · ·

4. Clearly EqG(X;T ′ ∨ T ) ∼= EqG(X;T ′)⊕ EqG(X;T )

De�nition 8.5. Suppose givenK /H ≤ G, de�ne an S-functor C(K,H) by le�ing

C(K,H)(X) = G+ ∧H XK

�e structure mapG+∧H (XK ∧Y K)→ (G+∧HXK)∧Y is the one induced by inclusionXK ∧Y K →
(G+ ∧H XK) ∧ Y using that G+ ∧H − is the le� adjoint to ResGH .

�e following is the reason why geometric �xed points appear in the proof.

Lemma 8.6. ForK /H ⊂ G and J := H/K , Ê∗G(X;C(K,H)) ∼= (Φ̂JE)∗J(XK).

Proof. Since we’re comparing the p-adic theories on both sides, we might as well work withX �nite. For
notational simplicity we just show for the degree 0 case.

E0
G(X;C(K,H)) = colim

V
[G+ ∧H ΣV

K

XK , EGV ]G

= colim
V

[ΣV
K

XK , EGV ]H

= colim
V

[ΣV
K

XK , (EGV )K ]H/K

= (ΦJE)0
J(XK)

Here we’ve used the fact that if UG was a complete G-universe, then ResGHUG is a complete H-universe
and (ResGHUG)K is a complete H/K-universe.
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�e main theorem of this section is the following, which basically says that we can reconstruct SX , up
toG-homotopy type, from its �xed point setsXH forH elementary abelian subgroups ofG - this should
be quite surprising, and is the content of the extra structure on SG∗ needed in the proof of the Segal
conjecture that wouldn’t have been present had we worked purely with G-spectra. �is is where we will
apply�illen’s homotopical analysis of subgroups posets.

�eorem 8.7 (�e S-functor approximation). Let G be a �nite p-group of rank r. �en

(a) �ere is an S-functor A and an equivalence φ : A→ S, where A has �ltration

F0A ⊂ F1A ⊂ · · · ⊂ Fr−1A = A

by successive co�brations. Writing B0 = F0A and Bq = FqA/Fq−1A for 0 < q < r, there are
isomorphisms of S-functors

Bq ∼=
∨
[ω]

ΣqC(A(ω), H(ω))

where ω are strictly ascending chains of nontrivial elementary abelians subgroups of G, (A0 � . . . �
Aq), A(ω) = Aq , and H(ω) = {g ∈ G | gAig−1 = Ai for 0 ≤ i ≤ q}. �e wedge runs over orbits of
such chains under the conjugation action of G on the set of such chains.

(b) If G = Frp is elementary abelian, then there is another S-functor Ã with a �ltration

F0Ã ⊂ F1Ã ⊂ · · · ⊂ Fr−2Ã = Ã

by successive co�brations. Writing B̃0 = F0Ã and B̃q = FqÃ/Fq−1Ã for 0 < q < r − 1, there are
isomorphisms of S-functors

B̃q ∼=
∨
ω

ΣqC(A(ω), G)

with notation as before. Moreover, there is a co�bration Ã→ A such that the quotientA/Ã is equivalent
to the wedge of pr(r−1) copies of the S-functor Σr−1C(G,G) : X 7→ Σr−1XG.

De�nition 8.8. Let A = A(G) be the poset of nontrivial elementary abelian p-subgroups of G with
opposite inclusion, ie. A → B if B ≤ A. Let Ã ⊂ A be the poset of nontrivial proper subgroups of G.
�ese are G-categories where G acts by conjugation.

In order to proceed, we’ll need to introduce a couple of constructions.

Construction 8.9. Let X be G-space and SX denote the singular subspace.

1. We can considerX as a topological category discretely, ie. the space of objects isX and the space of
morphisms is also X (ie. only identities). �e topological classifying space BX of this topological
category will be X again since the simplicial space will be (NX)0 = X, (NX)1 = X, (NX)2 =
X ×X X = X, . . . with structural maps all idX , so taking the diagonal gives X again.

2. Let A[X] denote the topological G-category with objects (A, x) where A ∈ A and x ∈ XA, and
morphisms (A, x) → (B, y) if B ≤ A and x = y ∈ XA. �e space of objects is topologised as
the disjoint union of XA and morphism space topologised as disjoint union of XA indexed over
inclusions B ≤ A. �e G-action is by g · (A, x) = (gAg−1, gx).

3. �is is equipped with a functor ψ : A[X] → SX given by projecting onto the second coordinate.
WhenX is a based, then the G-co�bration ∗ ↪→ X induces a G-co�bration BA[∗] ↪→ BA[X], and
then clearly Bψ factors through φ : BA[X]/BA[∗]→ SX .

4. Given a second based G-complex Y , we can consider it as a G-category as above, and then de�ne
the G-category A[X] ∧ Y as the (pointed) product of G-categories.

Proposition 8.10 (Carlsson’s Singular Blow Up). For any X the map Bψ : BA[X] → BSX = SX is a
G-homotopy equivalence.
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Proof. We show that (Bψ)H : (BA[X])H → (SX)H is equivalence for allH ≤ G. Note that �xed points
commute with B so we can bring (−)H in into the level of categories. We want to use�illen’s theorem
A, so let x ∈ (SX)H and consider the overcategory ψH/x. Note that the reason we need the singular
locus SX is to ensure that the overcategory ψ/x is not empty for any x ∈ SX in the case H = e.

Observe that ψH/x has objects (A, x) where x ∈ XA, hx = x for all h ∈ H , and A �xed byH . WriteGx
for the stabiliser of x in G. �en H ≤ Gx and ψH/x is just (A(Gx))H , which is nonempty contractible
by Lemma 8.11 below.

Lemma 8.11 (�illen’s Lemma). If G 6= e then BA is G-contractible. In particular (BA)H is nonempty
contractible for all H ≤ G.

Proof. LetC ≤ G be a central subgroup of order p. �en for anyA ∈ Awe getAC ∈ A andA ⊂ AC ⊃ C .
So we get natural transformations of functors on the category A

id⇐ (−) · C and (−) · C ⇒ cC

where cC is the constant functor valued at C . Note that these are G-equivariant natural transformations
since C central. So passing to classifying space gives us equivariant homotopy between idBA and the
constant functor.

De�nition 8.12. For X a based G-complex, we de�ne

AX := BA[X]/BA[∗] and FqAX := FqBA[X]/FqBA[∗]

where the �ltrations come from the usual skeletal �ltrations on realisations of simplicialG-spaces, namely
for X∗ a simplicial G-space, Fq|X∗| is the geometric realisation of the smallest subsimplicial G-space
containing the �rst q levels.

Fact 8.13. ForX∗ a simplicialG-space, we haveF0|X∗| = X0 and for q > 0wehave thatFq|X∗|/Fq−1|X∗|
is G-homeomorphic to Σq(Xq/sXq−1) where sXq−1 ⊂ Xq is the G-space of degenerate q-simplices.

Remark 8.14. We can de�ne a natural transformation of topological categories

A[X ∧ Y ]→ A[X] ∧ Y :: (A, x ∧ y) 7→ (A, x) ∧ y

Since classifying spaces commute with products, and since BY ∼= Y when Y is considered as a discrete
topological category, this passes to

A[X ∧ Y ]→ A[X] ∧ Y

�is is easily seen to give an S-functor structure, since for example, when G acts trivially on Y , Y A = Y
for all A ≤ G and so A[X ∧ Y ]→ A[X] ∧ Y is already an isomorphism of G-categories.

We’re now ready to prove the S-functor approximation theorem - the proof is not hard given all the
ingredients.

Proof of �eorem 8.7. Let’s work on part (a) �rst. �e nondegenerate simplices of A[X] consist of pairs
(ω, x) where ω = (A0 � . . . � Aq) is a chain of strictly ascending nontrivial elementary abelian sub-
groups of G and x ∈ XAq . Recall the notations A(ω) and H(ω) from the statement of the theorem,
and note that A(ω) / H(ω). Observe that if G has p-rank r then Fr−1AX = AX since there are no
nondegenerate q-simplices for q ≥ r. By Fact 8.13 we get that with the G-actions ignored,

BqX = FqAX/Fq−1AX ∼=G

∨
ω

ΣqXA(ω)

and this is because, for example,

BA[X]q = (
⊔
A≤B

XB)×(
⊔

C X
C) (

⊔
A≤B

XB)×(
⊔

C X
C) · · · ×(

⊔
C X

C) (
⊔
A≤B

XB)

and each of the pullbacks for A ≤ B look like
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XB

XB XA

XA

incl

incl

and so taking iterated pullbacks for any choice of chain A0 ≤ · · · ≤ Aq always gives us XAq . We’re
indexed over the strictly ascending chains because we’ve divided out by the nondegenerate simplices as
in Fact 8.13, and we take wedge sum because we’ve divided out by BA[∗]. It is then easy to see that
incorporating the G-actions we have a G-homeomorphism∨

[ω]

G+ ∧H(ω) ΣqXA(ω) ∼=G−−→ BqX

Since everything was natural we get that this induces an isomorphism of S-functors

Bq ∼=
∨
[ω]

ΣqC(A(ω), H(ω))

as required.

As for part (b) in the case ofG = Frp, we can similarly de�ne Ã using Ã instead and run similar arguments
as above. For the statement about comparing Ã and A, note that since the chains ω with A(ω) = G are
all parametrised by XG in AX , we easily get that

AX/ÃX ∼=G (BA/BÃ) ∧XG

Now the sequence BÃ ↪→ BA → BA/BÃ together with G-contractibility of BA by Lemma 8.11 gives
that BA/BÃ 'G ΣBÃ. Applying the following Lemma 8.15 �nishes the proof.

�e following proof is based on�illen’s arguments at the end of §8 of [�i78], but we follow and �esh out
the presentation by Benson [Ben91] �eorem 6.8.5 where it is clearer how we get the number pr(r−1)/2.
�is actually follows from a more general result in the theory of Tits buildings, but we’ve chosen just to
present the following argument since it’s so elementary and does not require the introduction of more new
concepts. We’ve included it here not only for the convenience of readers not familiar with Tits buildings,
but also because it’s such a crucial number thatmakes the Segal conjecture for elementary abelian p-groups
true as was explained in §6.

Lemma 8.15. If G = Frp, then BÃ is equivalent to the wedge of pr(r−1)/2 copies of the sphere Sr−2.

Proof. We write G = V since we want to think of these as vector spaces. We prove by induction on
r. When r = 2, Ã(V ) is just the discrete category of one-dimensional subspaces, for which there are
p + 1 many, so is clearly a wedge sum of pr(r−1)/2 copies of S0. Now suppose r ≥ 3. Choose any
one-dimensional subspace L and let H be the set of all (r − 1)-dimensional complements of L in V . By
GLr(V )-symmetry of V , we might as well assume L = Fp{(1, 0, . . . , 0)}. Note that |H| = pr−1 since all
such will admit a basis of the form

{(a1, 1, 0, 0, . . . , 0), (a2, 0, 1, 0, . . . , 0), . . . , (ar−1, 0, 0, . . . , 0, 1)}

where ai ∈ Fp.

Now let Y = Ã(V )\H considered as a subposet of Ã(V ). We show that the simplicial set associated to it
is contractible. Consider the quotient

q : Y → Ã0(V/L)

induced by V → V/L, where Ã0 denotes the poset of all proper subspaces (including 0). �e target
is of course contractible since 0 is initial. We use �illen’s �eorem A to show that q is an equiv-
alence. Let W ∈ Ã0(V/L). �en the �bre category q/W is clearly contractible since it contains a
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terminal object, namely the preimage of W ⊂ V/L in V , and so �illen’s theorem A implies that
NY ' NÃ0(V/L) ' ∗. Here we really needed to remove H from Ã(V ) for otherwise we will get
instead a functor q : Ã(V ) → A0(V/L) where the target is the full poset of V/L, and then the �bre
category over V/L would just be Ã(V ) again, which is not contractible.

HenceNÃ(V ) ' NÃ(V )/NY , whereN is the nerve functor. We nowdescribe the la�er -NÃ(V )n/NYn
consists of the n-chains

(0 6= V0 ≤ · · · ≤ Vn)

where Vn ∈ H. �us we see that NÃ(V )/NY is just the (pointed simplicial set) wedge sum of subsim-
plicial sets SH consisting of chains ending in H , for all H ∈ H. But then each of these is nothing but
ΣÃ(H) since the datum of the top subspace being H is super�uous, and the suspension is just because
Ã(H)n ∼= (SH)n+1. Hence by induction the SH are wedges of p(r−1)(r−2)/2 copies of (r−3)+1 spheres.
But we’ve argued above that |H| = pr−1, and so we’re done.

We are now ready to apply the �ltration theorem 8.7 to prove �eorem A.

�eorem A. Let K / H ≤ G and write J = H/K . Suppose (Φ̂JE)∗J vanishes on contractible J-spaces for
all proper subquotients J . Let X be a G-complex such that XG ' S0 and XH contractible for all proper
subgroups. �en

i) If G is not elementary abelian then Ê∗G(X; ẼG) = 0.

ii) If G = Frp then Ê∗G(X; ẼG) is the direct sum of pr(r−1)/2 copies of Σr−1(Φ̂GE)∗(S0).

Proof. i) By Remark 8.2 and the equivalence A→ S we have

Ê∗G(X; ẼG) ∼= Ê∗G(X;S) ∼= Ê∗G(X;A)

By Lemma 8.6, and writing J(ω) = H(ω)/A(ω), we have

ÊnG(X;Bq) ∼=
⊕
[ω]

Ên−qG (X;C(A(ω), H(ω))) ∼=
⊕
[ω]

(Φ̂J(ω)E)n−qJ(ω)(X
A(ω))

NowG is assumed not to be elementary abelian, and so A(ω) 6= G, hence by all our hypotheses we
get that the right-hand side vanishes, and so ÊnG(X;Bq) = 0. And so by induction up the �ltration
we get ÊnG(X;A) = 0.

ii) Let G = Frp. If r = 1 then B0 = A and Ê∗G(X;B0) ∼= (Φ̂GE)∗(S0) since ω = (G) is the only
possible chain, so this proves it in this case. Now suppose r ≥ 2. By the arguments of part (i) we get
Ê∗G(X; Ã) = 0, and so by the co�bration Ã→ A→ A/Ã, we have Ê∗G(X;A) ∼= Ê∗G(X;A/Ã). And
now since Ê∗G(X;C(G,G)) = (Φ̂GE)∗(S0) we get that Ê∗G(X; ẼG) is the sum of pr(r−1)/2 copies
of Σr−1(Φ̂GE)∗(S0).

9 �e Ext group calculation of Adams-Gunawardena-Miller
We include here a sketch of the hard calculational input from [AGM85] in the Segal conjecture story. We
have chosen to omit the many intricate technical details and only highlight some of the beautiful ideas
involved.

Let p be a prime, and let A be the mod p Steenrod algebra (where we’ve suppressed writing p since we’ve
�xed a prime once and for all). In this section, let G = V = (Fp)r be an elementary abelian p-group,
where the notation is supposed to suggest that we should think of it as a �nite-dimensional Fp-vector
space instead. We will write H∗(X) to mean H∗(X,Fp).
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Fact 9.1. Recall that the cohomology ring structure of H∗(BV,Fp) is given as follows

H∗(BV,Fp) ∼=

{
Fp[h1, . . . , hr] if p = 2

Fp[βh1, . . . , βhr]⊗ Λ(h1, . . . , hr) if p > 2

Here {hi}i forms a basis for H1(BV,Fp) ∼= V ∗, β is the Bockstein Steenrod operation, and Λ is the
exterior algebra.

We now give the de�nitions of some basic notions.

De�nition 9.2. (a) Let L = χ(V ) = (β · h1) · · · (β · hr) ∈ H2r(BV ) be the Euler class, where {hi}i
is a basis for H1(BV ) ∼= V ∗.

(b) Write H∗(BV )loc for H∗(BV ) a�er inverting∏
06=h∈H1(BV )∼=V ∗

βh

Note that this is the same asH∗(BV )[L−1]. In this section we prefer to work with the former since
it makes certain things clearer, for example, that �xed points under the action of GL(V ) commute
with this localisation, since the product is invariant under the action of GL(V ).

(c) We say that a homomorphism of A-modulesM → N is a Tor-equivalence if the induced map

TorA∗∗(Fp,M)→ TorA∗∗(Fp, N)

is an isomorphism.

(d) Denote by Syl(V ) ≤ GL(V ) the subgroup of upper unitriangular matrices, that is, upper triangular
matrices with 1’s on the diagonal. Note that |Syl(V )| = pr(r−1)/2.

�e following is then the main computational input that we will need to complete the proof of the Segal
conjecture for elementary abelian p-groups.

�eorem 9.3. Consider the Fp-module Fp ⊗A H∗(BV )loc of A-indecomposable elements of H∗(BV )loc
and regard it as a trivial A-module (since Fp was a trivial A-module). �en

(a) �e quotient homomorphism

θ : H∗(BV )loc → Fp ⊗A H∗(BV )loc

is a Tor-equivalence.

(b) Fp ⊗A H∗(BV )loc is concentrated in degree −r where the rank is pr(r−1)/2.

Corollary 9.4. �e quotient homomorphism θ : H∗(BV )loc → Fp⊗AH∗(BV )loc induces an isomorphism

Ext∗∗A (K ⊗ Fp ⊗A H∗(BV )loc,Fp)→ Ext∗∗A (K ⊗H∗(BV )loc,Fp)

for any �nite dimensional A-moduleK .

Remark 9.5. �ese results are really surprising since they allow us to identify the Tor/Ext group of a big
and scary A-module with one of a much smaller and manageable A-module, and the heart of the ma�er
is the result of Gunawardena and Miller in �eorem 9.6 below.

�e proof of this will involve (one of the many variants of) a very important construction in the study of
Steenrod modules, namely the Singer construction. �is is a functor T : ModA → ModA that additively
looks likeM 7→ H∗(BFp)loc⊗M equipped with a natural map ε : TM →M . See [AGM85] §2 for more
details. �e two main results on the Singer construction that we will need are the following:

�eorem 9.6 (Gunawardena, Miller). �e map ε : T (M)→M is a Tor-equivalence.

�eorem 9.7. �ere is an isomorphism of A-algebras T r(Fp) ∼= H∗(BV )
Syl(V )
loc .
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We are now ready to prove �eorem 9.3, and the clever idea is to prove it by downward induction on
certain carefully chosen normal subgroups G of Syl(V ). More precisely [AGM85] §6 shows that there
exists a chain of normal subgroups

e = Gn / Gn−1 / · · · / G1 / G0 = Syl(V )

satisfying Gi/Gi+1
∼= Fp and such that for each i there is a �ltration

0 = M0 ⊂M1 ⊂ · · · ⊂Mp = H∗(BV )Gi

loc

by A-submodules in which each subquotientMj/Mj−1 is isomorphic to H∗(BV )
Gi−1

loc . �e formulation
of the induction hypothesis is then as follows:

�eorem 9.8. For each i the following are true.

(a) �e quotient map
H∗(BV )Gi

loc

q−→ Fp ⊗A H∗(BV )Gi

loc

is a Tor-equivalence.

(b) Fp ⊗A H∗(BV )Gi

loc is concentrated in degree −r, where it is of rank |Syl(V ) : Gi|.

�e case of Gn = e will then give us �eorem 9.3.

Proof of �eorem 9.8. �e case of i = 0 is given by the two preceding theorems: H∗(BV )
Syl(V )
loc

∼= T r(Fp)
by �eorem 9.7, and by �eorem 9.6 we have the sequence of Tor-equivalences

T rFp → T r−1Fp → · · · → TFp → Fp

and so these combine to give part (a) for the i = 0 case. Furthermore, we know already that (b) is also
true for this case.

Now suppose (a) and (b) are true for the case i ≥ 0 and we want to prove them for i+ 1. Suppose as the
hypothesis of a subsidiary induction over j, that the quotient mapMj

q−→ Fp ⊗AMj is a Tor-equivalence
and that Fp ⊗AMj is zero except in degree −r. Now consider the following diagram

0 Mj Mj+1 H∗(BV )Gi

loc 0

TorA1,∗(Fp, H∗(BV )Gi

loc) Fp ⊗AMj Fp ⊗AMj+1 Fp ⊗A H∗(BV )Gi

loc 0

qi qj+1 q

By our main inductive hypothesis (b) we have

TorA1,−r(Fp, H∗(BV )Gi

loc)
∼=
⊕

TorA1,0(Fp,Fp) = 0

so the bo�om row is short exact. �e outer vertical maps are Tor-equivalences by induction, so by the
�ve lemma, themiddle one is too. Going up in this waywe obtain part (a) of the theorem for the case of i+1.

Furthermore, the inductive hypothesis also says that Fp ⊗AMj and Fp ⊗A H∗(BV )Gi

loc are concentrated
in degree −r, so the middle term is too. Finally, using that |Gi/Gi+1| = p, that |Syl(V ) : Gi+1| =
|Syl(V ) : Gi| · |Gi : Gi+1|, and that the subsidiary �ltration of H∗(BV )Gi

loc is of length p, we also get
the rank size in part (b) for the case i+ 1.

10 Nonequivariant theory and the proof of �eorem B
�e idea of this section is to translate the G-cohomology theories accounting for the “free” part of the
Segal conjecture problem into ordinary cohomology theories via �om spectra, and these in turn can be
analysed with an inverse limit Adams spectral sequence (ASS) using the Ext group calculation from the
previous section as an input. All cohomologies here will be cohomology mod p.
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�eorem 10.1 ([CMP87] 8.1). �ere are �om spectraBG−V for complex representations V ofG and maps
f : BG−W → BG−V for inclusions V ⊂W which satisfy

i) H∗(BG−V ) is a freeH∗(BG)-module on one generator ιV of degree−dimRV and f∗ : H∗(BG−V )→
H∗(BG−W ) is the morphism of H∗(BG)-modules speci�ed by f∗(ιV ) = χ(W − V )ιW where
χ(W − V ) ∈ H∗(BG) is the Euler class of the representation bundle EG×G (W − V )→ BG.

ii) If E ∈ SpG is split then E∗(BG−V ) is isomorphic to EG∗ (SV ;EG+) and we have the commuting
diagram where e : SV → SW is the inclusion

E∗(BG−W ) E∗(BG−V )

EG∗ (SW ;EG+) EG∗ (SV ;EG+)

f∗

∼= ∼=

e∗

Corollary 10.2. If E ∈ SpG is split and X =
⋃
SnV Carlsson’s model, then

Ê−qG (X ;EG+) ∼= lim
n
Eq(BG−nV )∧p = lim

n
πq(E ⊗BG−nV )∧p

Proof. Just recall notation that EGq = E−qG , the inverse limit de�nition of Ê theories, and (ii) of the preceding
theorem.

�ese inverse limit homotopy groups can in turn be understood using a certain inverse limit Adams spec-
tral sequence given as follows.

Proposition 10.3. Assume we have a sequence of spectra

· · · → Xn+1 → Xn → · · · → X0

such that each Xn is p-complete, bounded below, and of �nite type over Zp. Let {ErX} be the inverse limit
of the spectral sequences {ErXn}n where the E2 pages are

Es,t2 Xn = Exts,tA (H∗(Xn),Fp)⇒ πt−s(Xn) dr : Es,tr → Es+r,t+r−1
r

�en

1. E2X = ExtA(colimnH
∗(Xn),Fp)

2. ErX is a di�erential ErS0-module

3. �e spectral sequence converges strongly to limn π∗(Xn)

Proof. See Proposition 7.1 of [CMP87].

Note that De�nition 9.2 and�eorem 10.1 give us that colimnH
∗(BG−nV ) = H∗(BG)[L−1] = H∗(BG)loc.

Having laid out all the general machinery, let’s recall �eorem B.

�eorem B. Suppose E ∈ SpG is split and the underlying spectrum is bounded below. Let X be a G-space
such that XG ' S0 and XH contractible for all proper subgroups. �en

i) If G is not elementary abelian then Ê∗G(X;EG+) = 0.

ii) If G = Frp and Hq(E ,Fp) = 0 for all su�ciently large q then Ê∗G(X;EG+) is the direct sum of
pr(r−1)/2 copies of ΣrÊ∗(S0).

By the results above we have the strongly convergent inverse limit ASS {Er} = {Er(E ⊗BG−nV ∧p )}

Es,t2 = Exts,tA (H∗(E)⊗H∗(BG−nV )[L−1],Fp)⇒ Ês−tG (X ;EG+)

where here we’ve used the Kunneth theorem for mod p cohomology.
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Proof of �eorem B(i). We observe that in general, if i : H ↪→ G is a proper subgroup, then χ(V ) ∈
H∗(BG) restricts to zero inH∗(BH). To see this, we record the argument given in [Car84] Lemma III.1.
Now the regular complex representation of G has |G|/|H| trivialH-summands, so the reduced represen-
tation V has |G|/|H| − 1 trivial H-summands. But then H 6= G so |G|/|H| ≥ 2, so i∗V has a trivial
H-summand. �us by the standard characteristic class result that says a complex vector bundle has zero
Euler class if it contains a trivial line bundle, we get χ(i∗V ) = 0. Hence by naturality of characteristic
classes, χ(V ) restricts to χ(i∗V ) = 0.

Coming back to our case, since we suppose G is not elementary abelian, we get that χ(V ) restricts to
zero in every elementary abelian subgroup of G. So by �illen’s F-isomorphism theorem ([�i71] 6.2),
χ(V ) ∈ H∗(BG) is nilpotent. Together with�eorem 10.1(i) this impliesH∗(BG)[L−1] = 0 in this case,
so by the spectral sequence above, we get Ê∗G(X ;EG+) = 0.

Unlike the relatively painless proof of �eorem B(i), the proof of part (ii) utilises the hard computation
result from the previous section. We use it to prove the following theorem which immediately implies
�eorem B(ii) by Corollary 10.2.

Fact 10.4 (See [Ada66] for the case p = 2 and [Liu63] for p > 2). Forh0 ∈ Ext1,1A (Fp,Fp) ∼= Ext1,1A (H∗(S),Fp)
the generator corresponding to the unit 1 ∈ π0(S∧p ), we have for p = 2

Exts,tA (F2,F2) =


0 if t− s < 0

F2{hs0} if t = s

Annihilated by h0 if t = s+ 1

and for p odd

Exts,tA (Fp,Fp) =


0 if t− s < 0

Fp{hs0} if t = s

0 if t = s+ 1

�eorem 10.5. Let E be a p-complete ordinary spectrum which is bounded below, of �nite type over Zp, and
cohomologically bounded above, ie. H∗(E ,Fp) = 0 for ∗ su�ciently large. Let Y be the wedge of pr(r−1)/2

copies of S−r . �en there is a compatible system of maps α : Y → BG−nV which induces an isomorphism

π∗(E ⊗ Y )→ limπ∗(E ⊗BG−nV )

Remark 10.6. We have enough �niteness in the homotopy groups of E and BG−nV , and therefore also
in E ⊗BG−nV , to guarantee that the p-completion of all these spectra is just go�en from smashing with
S∧p . In particular, BG−nV ∧p ' S∧p ⊗BG−nV and E ⊗BG−nV ' (E ⊗S∧p )⊗BG−nV ' (E ⊗BG−nV )∧p .

Proof. First consider case E = S∧p . �eorem 9.3 and Corollary 9.4 gives us

ExtA(H∗(BG)[L−1],Fp)
∼=←− ExtA(H∗(BG)[L−1]⊗A Fp,Fp) ∼= ExtA(Σ−r ⊕p

r(r−1)/2

Fp,Fp)

and so by the facts 10.4 we get for Es,t2 := Es,t2 (limnBG
−nV ) that Es,t2 = 0 if t − s < −r, E0,−r

2 =

⊕pr(r−1)/2

Fp, Es,s−r2 = hs0 · E
0,−r
2 , and Es,s−r+1

2 = 0 when p odd and is annihilated by h0 when p = 2
and s = 1. Hence the elements of Es,s−r2 are all non-bounding permanent cycles, where in the p = 2
case, this is because if there exists a minimal k ∈ Z, an s ∈ Z, and x ∈ Es,s−r+1

k such that dk(x) = l 6=
0 ∈ Es+k,s−r+kk , then

0 = dk(h0x) = h0 · dk(x) = h0 · l 6= 0

where the last term is not 0 by minimality of k - this is a contradiction. Furthermore, we know by the
usual ASS for S∧p that multiplication by h0 induces multiplication by p on the group converged to by the
vertical line t− s = 0 of the spectral sequence, and so since the spectral sequence converges strongly to
limn π∗(BG

−nV ∧
p ), we get that limn π−r(BG

−nV ∧
p ) is a free Zp-module on pr(r−1)/2 generators, in the

same way that π0(S∧p ) ∼= Zp.

Choose the Zp generators {αi}i of limn π−r(BG
−nV ∧

p ). Each of these can be thought of as a compatible
sequence of maps S−r → BG−nV ∧p over the n’s. And now de�ne Y :=

⊕pr(r−1)/2

S−r and de�ne

α = ⊕αi : Y → BG−nV ∧p
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We claim that this α induces the map θ : H∗(BG)[L−1]→ H∗(BG)[L−1]⊗A Fp and then we’d be done,
even for the case of general E , since by the naturality of the ASS we have the following comparison

ExtA(H∗E ⊗H∗(BG)[L−1]⊗A Fp,Fp) =⇒ π∗(E ⊗ Y )

ExtA(H∗E ⊗H∗(BG)[L−1],Fp) =⇒ limn π∗(E ⊗BG−nV )

∼=

where the vertical isomorphism on the le� is by our claim and Corollary 9.4.

To see the claim, note that by the construction of the inverse limit ASS we have

lim
n
π−r(BG

−nV ∧
p )→ E0,−r

2 = Hom−rA (H∗(BG)[L−1],Fp)
θ∗←− Hom−rA (⊕Σ−rFp,Fp)

which is given by passing to cohomology, so indeed our choices of {αi} were precisely the ones realising
the Ext-equivalence θ on cohomology.

11 �e case of elementary abelians and the proof of �eorem D
�is section is based on §6 of [CMP87]. Unless otherwise stated, G will denote an elementary abelian
p-group Frp of rank r. We recall the statement of �eorem D and the aims in the proof.

�eorem D. Let G = Frp, and X a G-space such that XG = S0 and XH ' ∗ for all proper subgroups H
of G. Assume that the Segal conjecture holds for Fsp for all s < r, ie. π̂∗Fs

p
(X) = 0. �en

δ : π̂qG(X; ẼG)→ π̂q+1
G (X;EG+)

is an isomorphism for all q.

�e idea was to show that the bo�om δ in the following diagram is an isomorphism and that the le� η is
injective mod p, where K∗G is the G-cohomology theory represented by the Borel completed Eilenberg-
MacLane spectrum K := F (EG+, HFp).

π̂r−1
G (X; ẼG) π̂rG(X;EG+)

K̂r−1
G (X; ẼG) K̂rG(X;EG+)

η

δ

η

δ

Remark 11.1. Note that theG-spectrum associated toKG(−; ẼG) is the TateG-spectrum ẼG⊗F (EG+, HFp),
and as remarked on page 4 of [GM95b], this was one of the early instances of the Tate construction in
equivariant stable homotopy theory. In hindsight, once we’ve had the idea of showing mod p isomor-
phism of the top δ map by comparison with a test theory, the spectrum F (EG+, HFp) presents itself
quite naturally as a candidate sinceHFp detects mod p equivalences of spectra, and we Borel complete it
to force the isomorphism of the bo�om map.

Remark 11.2. While the general strategy above and most parts of its proof are interesting, this section
also contains some of the most annoying bits of this whole document (Lemma 11.10) with lots of close-call
technical �xes, so readers be warned!

Bottom δ is an isomorphism

�e idea is to justify that we indeed have the long exact sequence of K̂G(X;−) associated to the isotropy
co�bre sequence EG+ → S0 → ẼG. �is is not obvious since it’s not true that KG∗ (Y ) is �nite type for
all G-complexes Y with �nite skeleta, so we couldn’t have just appealed to Lemma 6.6 for exactness.

Proposition 11.3. For any G-complex X we have a long exact sequence

· · · → K̂qG(X; ẼG)→ K̂q+1
G (X;EG+)→ K̂q+1

G (X)→ K̂q+1
G (X; ẼG)→ · · ·
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Proof. Note that KG∗ (Y ) is of �nite type when Y is �nite by cellular induction starting from the fact that
KG−q(G/H+) = KqG(G/H+) = Hq(G/H ×G EG) = Hq(BH). In general we have the long exact
sequence

· · · → KGq+1(Y n/Y n−1)→ KGq (Y n−1)→ KGq (Y n)→ KGq (Y n/Y n−1)→ · · ·

where Y n/Y n−1 are wedges of ΣnG/H+, so for a �xed q there’s no reason to expect that KGq (Y ) =

colimnKGq (Y n) to be a�ained for a �xed n. However, if Y = Y ′+ for Y ′ free, then the only orbit type that
can occur is H = e, so H∗(BH) = 0.

�e upshot of this is thatKGq (EG+) is in particular of �nite type. HenceKGq (X;EG+) is too, forX �nite,
again by cellular induction. By the long exact sequence associated to the isotropy co�bre sequence, the
same is true of KGq (X; ẼG). So everything in the following long exact sequence

· · · → KGq+1(X; ẼG)→ KGq (X;EG+)→ KGq (X)→ KGq (X; ẼG)→ · · ·

is �nitely generated for �niteX , and so p-completion is exact, and produces �nitely generatedZp-modules.
As in the proof of Lemma 6.6 passing to inverse limits over �nite subcomplexes is still exact, and we get
the fundamental exact sequence for K̂G as required.

Lemma 11.4. For every subquotient J of G, including G itself, K̂∗J vanishes on contractible J-spaces.

Proof. Let J = H/K . For a �nite J-complex X and for q ≥ 0,

(ΦJK)qJ(X) = colim
V

[ΣV
K

X,K(V ⊕ Rq)K ]J

= colim
V

[ΣV
K

X,F (EG+, HFp(V ⊕ Rq))]H

= colim
V

[ΣV
K

X ∧ EG+, HFp(V ⊕ Rq)]H

= colim
V

lim
n

[ΣV
K

X ∧ EGn+, HFp(V ⊕ Rq)]H

Here the last step is just because the lim1 term vanishes since everything is �nite. We can do a similar
thing for q < 0. All in all, for a general X we have

(Φ̂JK)qJ(X) = lim
α

colim
V

lim
n

[ΣV
K

Xα ∧ EGn+, HFp(V ⊕ Rq)]H

Note that here we didn’t have to p-complete anything on the right-hand side since everything is already
an Fp-vector space. Now if X was contractible, then X ∧ EG+ is H-contractible since (X ∧ EG+)L =
XL ∧ ∗ = ∗ for all {e} 6= L ⊂ H , and X ∧ EG+ ' X ∧ S0 = X ' ∗. Hence, for a �xed pair
(α, n), there exists a pair (β,m) for n ≤ m such that the inclusion Xα ∧ EGn+ ⊂ Xβ ∧ EGm+ is null
H-homotopic. �is is just by a compactness argument of the following form where the bo�om horizontal
is a H-nullhomotopy

Xα ∧ EGn+ ∧ I+ Xβ ∧ EGm+

X ∧ EG+ ∧ I+ X ∧ EG+

So [ΣV
K

Xβ ∧EGm+ , HFp(V ⊕ Rq)]H → [ΣV
K

Xα ∧EGn+, HFp(V ⊕ Rq)]H is zero for every V , and so
K̂qJ(X) = 0.

�e following is then an easy combination of the preceding two results.

Corollary 11.5. �e map K̂r−1
G (X; ẼG)

δ−→ K̂rG(X;EG+) is an isomorphism when X is a contractible
G-space.
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Injectivity of η

Wewant to show that η : π̂r−1
G (X; ẼG)→ K̂r−1

G (X; ẼG) is injective mod p. To this end, we use�eorem
8.7 from §8 again. We have the diagram⊕

Σr−1π̂0
G(S0) ∼= π̂r−1

G (X;A/Ã) π̂r−1
G (X;A) ∼= π̂r−1

G (X; ẼG)

⊕
Σr−1(Φ̂GK)0(S0) ∼= K̂r−1

G (X;A/Ã) K̂r−1
G (X;A) ∼= K̂r−1

G (X; ẼG)

⊕
Σr−1η

∼=

η

where the top arrow is an isomorphism by the argument in the proof of �eorem A(ii). In this subsection
we shall do two things:

• Show that the le� vertical arrow is an injection mod p in Lemma 11.7 below.

• As in the previous subsection, we don’t have enough �niteness to guarantee long exact sequences
for K̂G, so we cannot just argue as for π̂G that the bo�om map is an isomorphism in general - we
shall show instead that the bo�om map is injective on the image of⊕Σr−1η in Lemma 11.10 below.

Let j := ΦGF (EG+, HFp) ∈ Sp. Using thatHFp was aG-ring spectrum and that ΦG is strong monoidal,
we get a unit map in Sp

η : S→ j

Remark 11.6. We thank Markus Land for the following observation: of course since this is the unit map
for a ring spectrum, it is going to send 1 ∈ π0S to 1 ∈ π0j. �e following lemma that we prove is however
not vacuous since wewant to show that 1 ∈ π0j is not trivial mod p, and not just that 1 ∈ π0j is nontrivial,
which is obvious. For example, for q 6= p another prime, we even have π0HFq vanishes mod p.

Lemma 11.7. �e element 1 ∈ π0j is nonzero mod p.

Proof. We �rst unravel to see what 1 ∈ π0j is represented by. Let ε : EG+ → S0 be the obvious map and
e : SV

G → SV be induced by the inclusion. By de�nition,

π0j = colim
V

[SV
G

, F (EG+, HFp(V ))G] = colim
V

[SV
G

∧ EG+, HFp(V )]G

�en 1 ∈ π0j being the image of 1 ∈ π0S under η is just represented by the followingG-map ofG-spaces

αV : SV
G

∧ EG+
1∧ε−−→ SV

G 1∧e−−→ SV
η−→ HFp(V )

We want to show that this map is not trivial mod p, that is, it is not of the form p · f for some other
map f : SV

G ∧ EG+ → HFp(V ). To do this, we just show that, choosing V a complex representation
with V 6= V G, αV induces a nontrivial map upon taking mod p Borel cohomology, namely that (αV )hG
induces a nontrivial map on mod p cohomology: this is enough since then the cohomology groups are
p-torsion, and so if αV = p · f , then of course the induced map on cohomology is going to be trivial.

Now (EG+ ∧EG+)∧G SV
G ∼= EG+ ∧G (SV

G ∧EG+)
1∧G(1∧ε)−−−−−−→ EG+ ∧G SV

G is of course an equiv-
alence since EG+ ∧ EG+ → EG+ is a G-equivalence, so we can ignore this part of αV and we focus
now on the other two maps in αV .

Recall that nonequivariantly η : SV → HFp(V ) = K(Fp,dimV ) represents the fundamental class
1 ∈ HdimV (SV ,Fp) ∼= Fp. Write µV ∈ H̃∗(EG+ ∧G SV ) for the �om class, W := V − V G, and
n := dimV G. We claim that µV = (1∧G η)∗(v) for some v ∈ H̃∗(EG+∧GHFp(V )) and will prove this
in Lemma 11.8 below. Naturality of �om classes says that µV = ΣnµW . On the other hand, by de�nition
the Euler classχ(W ) = (1∧Ge)∗(µW ). And so applyingmod p cohomology toSV G 1∧e−−→ SV

η−→ HFp(V )
gives

v 7→ µV = ΣnµW 7→ Σnχ(W )

But then W was elementary abelian and so since WG = 0, we get that χ(W ) 6= 0 by Lemma 11.9
below.
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Lemma 11.8. Let G be a �nite group, V a complex representation (so that �om classes always make sense
in mod p cohomology), and η : SV → HFp(V ) the fundamental class. For µV ∈ H̃dimV (EG+ ∧G SV ) the
�om class, there exists some v ∈ H̃∗(EG+ ∧G HFp(V )) such that (1 ∧G η)∗v = µV .

Proof. We look at the map between the spectral sequences associated to mod p Borel cohomology

H̃s(BG+, H̃
tHFp(V )) H̃s+t(EG+ ∧G HFp(V ))

H̃s(BG+, H̃
t(SV )) H̃s+t(EG+ ∧G SV )

η∗ η∗

Now since η was the fundamental class, we know that it induces isomorphism H̃dimV (HFp(V )) →
H̃dimV (SV ). By de�nition of �om classes, for any point x ∈ BG, µV needs to restrict to a generator
H̃dimV (G/e+ ∧G SV ) = H̃dimV (SV ) ∼= Fp. And so looking at the spectral sequence for EG+ ∧G
SV shows that the �om class had to have come from the H̃0(BG+, H̃

dimV (SV )) term in the spectral
sequence, which in turn is isomorphic via η∗ to H̃0(BG+, H̃

dimVHFp(V )) from the spectral sequence
for EG+ ∧G HFp(V ). �is gives the required preimage in H̃dimV (EG+ ∧G HFp(V )).

Lemma 11.9. Let G = Frp be elementary abelian and W be a complex representation without a trivial
summand, that is,WG = 0. �en the Euler class χ(W ) is nonzero.

Proof. Since Euler classes satisfy e(V ⊕ V ′) = e(V )e(V ′), we might as well suppose W was nontrivial
irreducible. Schur’s lemma and abelianness of G say thatW must be one-dimensional, and soW is given
by a homomorphism ρ : G → C×, which is determined by (a1, . . . , ar) ∈ Frp with ρ : (g1, . . . , gr) 7→
ξa1g1 · · · ξargr where ξ = e2πi/p. But we have a well known natural isomorphism (see [Ati61] point (3) of
the appendix, for example) given by taking the Euler class

Hom(G,C×)
∼=−→ H2(BG,Z) ∼= Fp{c1, . . . , cr} :: (a1, . . . , ar) 7→ a1c1 + · · ·+ arcr

And so ifWG = 0 then (a1, . . . , ar) 6= (0, . . . , 0), so χ(W ) = a1c1 + · · ·+ arcr 6= 0.

Lemma 11.10. Let X be a based G-space such that XG = S0 and XH ' ∗ for all H � G. �e map
K̂r−1
G (X;A/Ã)→ K̂r−1

G (X;A) restricts to an injection on the image of ⊕Σr−1η.

Proof. �e proof will consist of two main steps, and we set up some notations �rst before proceeding. For
an S-functor T , de�ne

T ja,V,m =

{
[T (ΣVXa) ∧ EGm+ , HFp(V ⊕ Rj)]G if j ≥ 0

[T (ΣV Σ−jXa) ∧ EGm+ , HFp(V )]G if j < 0

Note that �niteness of [X,HFp(V )]G when X is a �nite G-complex implies that lim1
m[T (ΣVXa) ∧

EGm+ , HFp(V ⊕ Rj)]G = 0, and so we get that

ÊjG(X;T ) = lim
a

colim
V

lim
m
T ja,V,m

Note that, as in the proof of Lemma 11.4, we didn’t need to p-complete anything on the right-hand side
since they’re all already Fp-vector spaces. We’re now ready to proceed with the proof.

• Recall from �eorem 8.7 (b) that we have a �ltration of S-functors

F0Ã ⊂ F1Ã ⊂ · · ·Fr−2Ã = Ã

where B̃q = FqÃ/Fq−1Ã is awedge of suspensions of S-functorsC(K,G)where K̂∗G(X,C(K,G)) =

(Φ̂G/KK)∗G/K(XK). And so by Lemma 11.4 we have that

K̂∗G(X, B̃q) = 0 for 0 ≤ q ≤ r − 2
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We claim that K̂∗G(X ; Ã) = 0. �is is not obvious since, as indicated at the beginning of this subsec-
tion, we don’t have enough �niteness to guarantee that passing from K∗G(Xa;T ) to K̂∗G(X;T ) by
inverse limits preserve exactness of long exact sequences coming from co�brations of S-functors.
But the situation is saved by the method in the proof of Lemma 11.4 as follows.

WhenT = C(K,H)we see fromLemma 8.6which says that K̂∗G(X;C(K,H)) ∼= (Φ̂H/KK)∗H/K(XK)

and from the proof of Lemma 11.4 that for each pair (a,m) there is a pair (b, n) withXa ⊂ Xb and
m ≤ n such that T ∗b,V,n → T ∗a,V,m is zero for every V . �is property is obviously closed under
taking wedges of S-functors, and it is also easy to see that if T ′ → T → T ′′ is a co�bration of
S-functors and the property holds for T ′, T ′′, then it holds also for T . And so since this property
holds for B̃q , we inductively get that it holds for all FqÃ, and in particular for Fr−2Ã = Ã.

• Consider the system of exact sequences

Ãr−2
a,V,m → (A/Ã)r−1

a,V,m → Ar−1
a,V,m

from the co�bration A→ A/Ã→ ΣÃ. Recall from the proof of �eorem 8.7 (b) that we have

(A/Ã)(X) = (BA/BÃ) ∧XG

where BA/BÃ is equivalent to a wedge of pr(r−1)/2 of (r − 1)-spheres. Since XG = S0, we may
setX0 = S0 and restrict toXa ⊃ X0 so thatXG

a = S0 for all a. �en the system {(A/Ã)r−1
a,V,m} is

constant in a with (A/Ã)r−1
a,V,m being the sum of pr(r−1)/2 copies of [SV

G ∧ EGm+ , HFp(V )]G.

Now let x be a nonzero element of

Imη ⊂ K̂r−1
G (X ;A/Ã) = lim

a
colim
V

lim
m

(A/Ã)r−1
a,V,m = colim

V
lim
m

(A/Ã)r−1
0,V,m

We want to show that x gets mapped to something nonzero in K̂∗G(X ;A). Let V be a large enough
complex representation such that x is represented by xV,m ∈ (A/Ã)r−1

0,V,m. Since x ∈ Imη we know
from the proof of Lemma 11.7 that without loss of generality xV,m looks like

αV,m : SV
G

∧ EGm+
1∧ε−−→ SV

G e−→ SV
η−→ HFp(V )

By that lemma we also know that αV was nontrivial mod p for complex representations V 6= V G,
and so since the vanishing of lim1 (since all groups involved are �nite Fp-vector spaces) implies
that [SV

G ∧ EG+, HFp(V )]G ∼= limm[SV
G ∧ EGm+ , HFp(V )]G, we get that αW,m are nontrivial

for allm andW ⊃ V . So in total, we obtain that for allW ⊃ V and allm, xW,m 6= 0 in (A/Ã)r−1
0,W,m.

Now suppose for a contradiction that xmaps to zero in K̃r−1
G (X;A). �ismeans that, writing xa,V,m

for xV,m considered as an element in (A/Ã)r−1
a,W,m, we get that for all a there exists Va ⊃ V such

that xa,V,m maps to 0 ∈ Ar−1
a,Va,m

. On the other hand, K̂∗G(X ; Ã) = 0 from the previous step gives us
that for eachm we can choose a ≥ 0 and n ≥ m such that the map Ãr−2

a,V,n → Ãr−2
0,V,m is zero for all

V . WriteW for Va. Now chasing the following diagram, starting at (A/Ã)r−1
a,V,m and following the

arrows in sequence, we get that xa,W,m = 0 ∈ (A/Ã)r−1
a,W,m, contradicting the previous paragraph.

(A/Ã)r−1
a,V,n

(A/Ã)r−1
a,V,m

Ãr−2
a,W,n (A/Ã)r−1

a,W,n Ar−1
a,W,n

Ãr−2
0,W,m (A/Ã)r−1

0,W,m = (A/Ã)r−1
a,W,m

(1)

(2)

(7)
(4)

(5)0

(3)

(6)
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Appendix A Induction theorem for the completed Burnside ring
Green functor

Here we give the proof of the following theorem that we used for the reduction to p-groups. �e proof
will highlight two standard philosophies in working with the Burnside ring, namely the importance (1) of
understanding the prime ideals of A(G) (which is analogous to the importance of understanding primes
in Z); and (2) of the embedding of A(G) into the ghost ring C(G).

�eorem 5.1. LetG be a �nite group, and Â the Burnside ring Green functor completed at the augmentation
ideal I(G). For each prime p, let Gp denote a representative Sylow p-subgroup of G. �en the sum⊕

p

i∗ :
⊕
p

Â(Gp)→ Â(G)

is an epimorphism. In other words, together with �eorem 3.12 this implies that all Â-modules are projective
with respect to the set of all Sylow p-subgroups for all p dividing |G|.

Observation A.1. Note that Â(G) = Z⊕ Î(G) and so the natural composite

Z ↪→ Â(H)
i∗−→ Â(G)

χe−→ Z

is multiplication by |G/H|. And so since the greatest common divisor of {|G/Gp|}p is one, we see that the
homomorphism in the theorem is always surjective on the Z copy, and so it’s enough to show surjectivity
with Â replaced by Î .

Idea A.2. Vaguely speaking, the point of the proof will be that I(H)/I(H)n appearing as the terms of the
completion will all be �nite, and so it will be enough to show surjectivity at each of these �nite terms. �e
�niteness of these terms, in turn, allows us to work p-locally, where we will want to combine the transfer

G/Gp · − : I(G)/I(G)n · I(G)
i∗−→ I(Gp)/I(G)n · I(Gp)

i∗−→ I(G)/I(G)n · I(G)

with the fact that |G/Gp| is prime to p to show that i∗ is p-locally even a split surjection.

�e proof of the theoremwill depend on knowledge of the prime ideals ofA(G) and three lemmas building
on that, and we discuss them now.

Fact A.3 ([tD79] §1). It turns out that we know all the prime ideals of A(G) and they are of form

q(H, 0) := ker(A(G)
χH−−→ Z) or q(H, p) := ker(A(G)

χH−−→ Z→ Z/p)

Write Hp for the smallest normal subgroup of H such that H/Hp a p-group. �ese prime ideals satisfy

q(H, 0) ⊂ q(H, p)

q(H, 0) = q(K, 0) if H is conjugate toK

q(H, p) = q(K, p) if Hp is conjugate toKp

Note in particular that q(e, p) = q(H, p) i� H is a p-group.

Construction A.4. Let H i−→ G be the inclusion of a subgroup. �en via i∗ : A(G) → A(H), any
A(H)-module is also an A(G)-module. Via χ : A(H)→ C(H), any C(H)-module is an A(H)-module.

�e key to many of the arguments is the following lemma, which is the Burnside ring version of a result
for representation rings going back to [Ati61] �eorem 6.1. �e equivalence of the �rst two topologies is
due to Laitinen [Lai79].

Lemma A.5. �e following topologies on A(H) and I(H) coincide.
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(a) �e I(G)-adic topology.

(b) �e I(H)-adic topology.

(c) �e subspace topology induced from the I(H)-adic topology on C(H) (recall from Construction 3.13
that χ was an injection).

Proof. See Lemma 6 of [MM82].

De�nition A.6. Let H ≤ G, N be some A(H)-module, and n ≥ 1.

(a) De�ne Pn(N,H) := N/I(H)nN . We simply write PnN for Pn(N,G) for short.

(b) De�ne Jn(H) := χ−1(I(H)nC(H)) ⊂ A(H).

(c) De�ne Qn(N,H) := N/Jn(H)N .

Remark A.7. From these we can get the following easy observations.

(a) By Lemma A.5 we get that Pn(A(H), G) is a quotient of Pm(A(H), H) for somem.

(b) Since I(H)n is contained in Jn(H) we have a natural surjection Pn(N,H) → Qn(N,H), and is
just the identity if N = C(H).

(c) �e injection χ induces an injection

Qn(A(H), H) � Qn(C(H), H) = Pn(C(H), H) =
∏
(K)

PnZK

where ZK is just Z considered as an A(H)-module via χK .

Lemma A.8. (a) IfK = e then PnZK = Z for all n.

(b) IfK is not a p-group for any p, then PnZK = 0 for all n.

(c) IfK is a p-group, then PnZK is a p-group for all n.

Proof. See Lemma 7 of [MM82].

Lemma A.9. �e group PnI(H) is �nite for all n ≥ 1.

Proof. �eequivalence of (b) and (c) fromLemmaA.5 gives us thatPn(I(H), H) is a quotient ofQm(I(H), H)
for somem. On the other hand, the injection χ induces an injection

Qm(I(H), H) � Pm(IC(H), H) =
∏

(K)6=e

PmZK

and the la�er is �nite by Lemma A.8.

We are now ready to prove the theorem.

Proof of �eorem 5.1. �e equivalence of (a) and (b) from Lemma A.5 gives us the diagram⊕
p Î(Gp) Î(G)

limn

⊕
p Pn(I(Gp), G) limn PnI(G)

⊕pi∗

∼= ∼=
⊕pi∗

And so our task now is to show that the bo�ommap is surjective. Now Lemma A.9 gives that each compo-
nent of the bo�ommap is �nite, and so by the usual lim1 exact sequence and Mi�ag-Le�er we’re reduced
to showing that

⊕
p Pn(I(Gp), G) → PnI(G) is surjective. Again by �niteness, this will hold provided

the p-th map i∗ is surjective on the p-primary component of PnI(G).
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To this end, we’ll leverage on the transfer maps and show the stronger statement that

PnI(G)
i∗−→ Pn(I(Gp), G)

i∗−→ PnI(G)

becomes an isomorphism when localised at p. As in the proof of Lemma 3.14 we know that this is just
multiplication by G/Gp, now viewed as an element of PnA(G). But then Lemma A.5 again gives us that
PnA(G) is a quotient ofQmA(G) for somem, and so it su�ces to show thatG/Gp is a unit inQmA(G)(p).

On the other hand, recall from Construction 3.13 that QmC(G)/QmA(G) is �nite, and so QmC(G)(p) is
an integral extension ofQmA(G)(p). And so it su�ces to check thatG/Gp is a unit inQmC(G)(p), since
if S ⊂ R was an integral extension and u ∈ S is a unit in R, say with v ∈ R the inverse, then a monic
polynomial with coe�cients in S

vn + an−1v
n−1 + · · ·+ a0 = 0

then gives
v = −(an−1 + an−2u+ · · ·+ a0u

n−1) ∈ S

Now Lemma A.8 shows that
QmC(G)(p) = Z(p) ×

∏
(K)

QmZK

where the product on the right is restricted to the conjugacy classes of p-groups K ≤ G. Recall from
Fact A.3 that q(K, p) = q(e, p) in A(G). Since χe(G/Gp) = |G/Gp| is prime to p, we have that G/Gp 6∈
q(e, p) = q(K, p). Hence we must also have that χK(G/Gp) is prime to p, and so G/Gp is a unit in
QmC(G)(p) as required.
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