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Maka tertambatlah hatiku ini;

Hamba datang sehelai sepinggang,
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Abstract

In this thesis, we explore various aspects of genuine G–equivariant K–theory on
stable ∞–categories for finite groups G. The main theme is establishing equivariant
multiplicative norms - in the sense of Hill–Hopkins–Ravenel - on these K–theories
and our formalism of choice is that of the parametrised higher category theory
by Barwick–Dotto–Glasman–Nardin–Shah. This thesis is divided into three parts,
each one building up towards the next.

In Part I, we develop the theory of G–presentable and G–perfect–stable ∞–
categories. This will serve as the technical underpinnings for our investigations
on G–equivariant algebraic K–theory in Part II where we show that when G is a 2–
group, algebraic K–theory refines to the structure of a ring G–spectrum equipped
with the Hill–Hopkins–Ravenel norms. Along the way, we will obtain a “multi-
plicative Borelification principle” via a simple categorification–decategorification
procedure which provides a huge source of examples of equivariant K–theory with
norms. Finally, in Part III, we initiate the study of genuine equivariant hermi-
tian K–theory by introducing the notion of G–Poincaré ∞–categories, generalising
in the equivariant direction the recent advances made by Calmés–Dotto–Harpaz–
Hebestreit–Land–Moi–Nardin–Nikolaus–Steimle. Among other things, we refine
Borel equivariant Grothendieck–Witt theory to the structure of a normed ring G–
spectrum when G is a 2–group, and we also obtain a new source of equivariantly
periodic ring G–spectra in the form of equivariant L–theory.
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Resumé

I denne afhandling udforsker vi nogle aspekter af ægte G–ækvivariant K–teori
for stabile ∞–kategorier, når G er en endelig gruppe. Det overordnede mål er
at etablere ækvivariante multiplikative normer - i betydningen af Hill–Hopkins–
Ravenel - på disse K–teorier. Til den ende bruger vi formalismen af parametris-
eret højere kategoriteori af Barwick–Dotto–Glasman–Nardin–Shah. Afhandlingen
er opdelt i tre dele, hvor hver del bygger op til den næste.

I Del I udvikler vi teorien om G–præsentable og G–perfekte–stabile ∞–kategorier.
Målet er at udvikle nødvendige tekniker til vores undersøgelser ved G–ækvivariant
algebraisk K–teori. I Del II, vi beviser at algebraisk K–teori kan gives strukturen af
et G–ringspektrum udstyret med Hill–Hopkins–Ravenel normer, når G er en en-
delig 2–gruppe. Undervejs viser vi et “multiplikativt Borelificeringsprincip”, som
følger af et enkelt kategorifiseringafkategoriseringsargument, og som giver mange
eksempler på G–ækvivariante K–teorier med normer. I den sidste Del III indleder
vi en undersøgelse af ægte ækvivariant hermitisk K–teori ved at indføre begre-
bet en G–Poincaré ∞–kategori, som er en ækvivariant generalisering af teorien af
Calmés–Dotto–Harpaz–Hebestreit–Land–Moi–Nardin–Nikolaus–Steimle. Blandt
andet forfiner vi Borelækvivariant Grothendieck–Witt teori med strukturen af et G–
ringspektrum udstyret med multiplikative normer, når G er en endelig 2–gruppe.
Det leder også til en ny kilde til ækvivariante periodiske G–ringspektre i form af
ækvivariant L–teori.
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Introduction

Som kun den sande kunstner ved:
den sande kunst er kunstløshed.

Piet Hein

Contextual overview
It can be argued that the two most fundamental structures in algebra are rings and
modules - which govern additions and multiplications - on the one hand, and on
the other, groups - which govern symmetries of mathematical objects. In some
sense, the latter notion is much harder to study owing to the noncommutativity of
abstract symmetries, whereas the former is amenable to powerful linear algebraic
techniques. A desire to understand groups via linear methods leads us naturally
to the rich discipline of representation theory, which roughly speaking, animates
the abstract symmetries encoded in a group by a ring or a module which it sym-
metrises, bringing to bear a suite of module-theoretic ideas to the study of groups.
However, this relationship between groups and modules is far from a unilateral
one as many naturally occurring rings and modules admit important symmetries:
the case of the complex numbers C with its conjugate action immediately comes to
mind. Consequently, representation theory should rather be viewed as the study of
rings and modules equipped with symmetries by groups as interesting objects in
their own right.

Now, enter topology. One of the great triumphs of early twentieth century math-
ematics was the birth of algebraic topology, whose basic insight was that many prop-
erties of a geometric space are reflected in the ring/module structures of various al-
gebraic constructions one can associate to it. As with the case of rings and modules,
many geometric spaces that arise in nature come with certain symmetry groups
which can be exploited to understand the space better. For example, the circle tau-
tologically has circular symmetry. This means that the module-theoretic algebraic
invariants we attach to these spaces also attain a natural symmetry coming from the
symmetry of the input space, making a connection to representation theory that we
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would do well not to overlook. The study of such situations is usually called equiv-
ariant homotopy theory (the adjective “equivariant” being a standard indication that
the situation considered has an additional symmetry by a group).

As it was with representation theory, the relationship between topology and al-
gebra is very much a two-way street. One particularly deep approach to studying
modules, due to Alexander Grothendieck, is by assembling all the isomorphism
classes of modules over a particular ring R into another module called its K–group
K0(R) and studying this object instead; this can be seen as a “global” way to study
a ring R as it involves detecting large-scale structures present on the collection of
all R–modules. This is a very robust formalism which applies to many module-
theoretic settings, and in particular applies to representation theory where one can
assemble all the isomorphism classes of representations of a group G over a ring
R. And yet, it soon became apparent that considering these K–groups as bare mod-
ules was not enough as it did not exploit all the higher structures involved. Thus,
in the 1970’s and 80’s, Daniel Quillen and Friedhelm Waldhausen pioneered the
field of higher algebraic K–theory where the K–groups are no longer just a module
but a module-like space. This approach quickly turned into a whole industry as it
allowed one to attack these K–groups with the combined powers of topology and
algebra. And as before, in the presence of a symmetry by a group G on the ring R,
the associated K–theory space also inherits this symmetry and it governs the repre-
sentation theory of the group G over the ring R. In this way, we can fairly term as
higher representation theory the study of K–theory spaces of rings in the presence
of equivariance by a group.

With the advent of ∞–categories as developed by Lurie in [Lur09; Lur17], we now
have the correct language in which to speak of Quillen and Waldhausen’s higher
K–theories, and many mathematical luminaries - too many to mention here - have
worked in recent decades to fully realise the higher algebraic K–theory program.
As hinted at by the preceding paragraphs, one subprogram of this is the study
of equivariant higher algebraic K–theory and we offer a small contribution to this
story in this thesis.

In slightly more detail, a recent series of papers by Calmés-Dotto-Harpaz-
Hebestreit-Land-Moi-Nardin-Nikolaus-Steimle [CDH+20a; CDH+20b; CDH+20c]
further developed the ideas of Lurie [Lur11], which was in turn based on ideas
of Andrew Ranicki from the 1980’s, into a fully-fledged theory of higher algebraic
K–theory for hermitian forms, or hermitian K–theory for short. This series of work
can be viewed as the distillation of decades of insights from many mathematicians
such as Max Karoubi, Marco Schlichting, and others. Hermitian K–theory is a deep
invariant which governs many disparate fields of mathematics, among others, the
surgery theory of manifolds. In this particular setting, equivariance by a group
feature prominently via the fundamental group of the manifold, and so an under-
standing of equivariant hermitian K–theory is an integral part of perfoming surg-
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eries on manifolds, and much more so when the manifolds themselves are endowed
with a symmetry by a group.

One of the main themes of this thesis is to establish the important and subtle
extra structure of G–equivariant power operations - a structure which featured cru-
cially in the stunnning resolution of the Kervaire invariant one problem by Hill,
Hopkins, and Ravenel [HHR16] - on algebraic and hermitian K–theory where G
is a finite group. To achieve this, we will introduce and develop the foundations
of hermitian K–theory for so-called G–stable ∞–categories using the formalism of
parametrised homotopy theory by Barwick-Dotto-Glasman-Nardin-Shah [BDG+16a],
which should be of independent interest. Along the way, we will also further de-
velop the parametrised formalism, obtaining various fundamental results in this
line.

Technical overview
This thesis consists of seven chapters distributed over three parts, each one build-
ing towards the next. The first two parts roughly correspond to the two articles
[Hil22b; Hil22a]. Part I will be concerned with further developing the parametrised
homotopy theory formalism of [BDG+16a] for our purposes.

In Part II we will use the theory developed in the previous part to investigate
equivariant algebraic K–theory for G–stable ∞–categories and show that when G is
a finite 2–group, the pointwise version of G–equivariant algebraic K–theory refines
to the structure of a G–ring spectrum equipped with the Hill-Hopkins-Ravenel
norms. To prevent potential confusion, we point out that there are two versions
of higher algebraic K–theory: on the one hand, there is the group-completion K-
theory whose input is a small symmetric monoidal ∞–category C and one group
completes the E∞–space C≃ to obtain a connective spectrum - classically, this is
related to Quillen’s +-construction and the reader is referred to [GGN15] for an ∞–
categorical treatment; on the other hand, there is the stable K-theory whose input
is a small stable ∞–category - this corresponds to Quillen’s Q-construction and Se-
gal and Waldhausen’s S•–construction. Most of the work on equivariant algebraic
K–theory in the literature [Mer17; BMM+21; Sch19; Len21] deal with the former
version; this thesis is rather in the company of [BGS20; CMN+20] in treating the
latter.

In the final Part III, we prove that Borel equivariant GW–theory canonically ad-
mits the structure of the multiplicative norms when G is a 2–group, similar to the
case of algebraic K–theory above. We then introduce a genuine equivariant re-
finement of the hermitian K–theory of [CDH+20a] by overlaying the theory of the
prior part with a notion of G–quadratic structures, and we then explore some ap-
plications of this point of view. The remainder of this introduction will provide a
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more detailed overview of the entire thesis, progressing according to the themes of
the respective parts.

Parametrised homotopy theory is the study of higher categories fibred over a
base ∞–category. This is a generalisation of the usual theory of higher categories,
which can be viewed as the parametrised homotopy theory over a point. The ad-
vantage of this approach is that many structures can be cleanly encoded by the
morphisms in the base ∞–category. For example, in the algebro-geometric world,
various forms of pushforwards exist for various classes of scheme morphisms (see
[BH21] for more details). Another example, which is the main motivation of our
work, is that of genuine equivariant homotopy theory for a finite group G - here
the base ∞–category would be Oop

G , the opposite of the G–orbit category. In this
case, for subgroups H ≤ K ≤ G, important and fundamental constructions such as
indexed coproducts, indexed products, and indexed tensors

⨿
K/H

∏
K/H

⊗
K/H

can be encoded by the morphisms inOop
G . One framework in which to study this is

the series of papers following [BDG+16a] and the results in Part I should be viewed
as a continuation of the vision from the aforementioned series. We refer the reader
to these papers for more motivations and examples.

For an ∞–category to admit all small colimits and limits is a very desirable prop-
erty as it means that many constructions can be done in it. However, this property
entails that it has to be large enough and we might lose control of it due to size is-
sues. Fortunately, there is a fix to this problem in the form of the very well-behaved
class of presentable ∞–categories: these are cocomplete ∞–categories that are “es-
sentially generated” by a small subcategory. One of the most important features of
presentable ∞–categories is the adjoint functor theorem which says that one can test
whether or not a functor between presentables is right or left adjoint by checking
that it preserves limits or colimits respectively. The ∞–categorical theory of pre-
sentability was developed by Lurie in [Lur09, Chapter 5], generalising the classical
1-categorical notion of locally presentable categories.

One of the goals of Part I of the thesis is to translate the above-mentioned theory
of presentable ∞–categories to the parametrised setting and to understand the rela-
tionship between the notion of parametrised presentability and its unparametrised
analogue in [Lur09]. We will adopt the convention of [Nar17] by defining a T –
category, for a fixed based ∞–category T , to be a cocartesian fibration over the
opposite, T op. This convention is geared towards equivariant homotopy theory as
introduced in the motivation above where T = OG. Note that by the straightening-
unstraightening equivalence of [Lur09], a T –category can equivalently be thought
of as an object in Fun(T op, Ĉat∞). The first main result of Chapter 2 is then the
following straightened characterisation of parametrised presentable ∞–categories.
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Theorem A (Full version in Theorem 2.2.2). Let C be a T –category. Then it is
T –presentable if and only if the associated straightening C : T op → Ĉat∞ factors
through the non-full subcategory PrL ⊂ Ĉat∞ of presentable categories and left ad-
joint functors, and morevoer these functors themselves have left adjoints satisfying
certain Beck-Chevalley conditions (1.2.8).

In the full version, we also give a complete parametrised analogue of the charac-
terisations of presentable ∞–categories due to Lurie and Simpson (cf. [Lur09, Thm.
5.5.1.1]), which in particular shows that the notion defined in [Nar17, §1.4] satis-
fies all the expected descriptions. While it is generally expected that the theory of
∞–cosmoi in [RV22] should absorb the statement and proof of the Lurie-Simpson-
style characterisations of presentability, the value of the theorem above is in clarify-
ing the relationship between the notion of presentability in the parametrised sense
and in the unparametrised sense. Indeed, the description in Theorem A is a gen-
uinely parametrised statement that is not seen in the unparametrised realm where
T = ∗. One consequence of this is that we can easily deduce the parametrised
adjoint functor theorem from the unparametrised version instead of repeating the
same arguments:

Theorem B (Parametrised adjoint functor theorem, Theorem 2.2.3). Let F : C → D
be a T –functor between T –presentable ∞–categories. Then:

(i) If F strongly preserves T –colimits, then F admits a T –right adjoint.
(ii) If F strongly preserves T –limits and is T –accessible, then F admits a T –left

adjoint.

Another application of Theorem A is the construction of presentable Dwyer-Kan
localisations, Theorem 2.2.10. This is deduced essentially by performing fibrewise
localisations, which are in turn furnished by [Lur09]. Other highlights include the
localisation-cocompletions construction in Theorem 2.2.12, the idempotent-complete-
presentables correspondence Theorem 2.2.16, as well as studying the various inter-
actions between presentability and functor categories in §2.2.7.

Having set up the theory of parametrised presentability, we then move on to
studying parametrised semiadditive-presentable categories, in preparation for our
K–theoretic investigations in Part II. Along these lines, we will use Theorem A to
deduce the following:

Theorem C (Precise version in Theorem 2.3.4). We have a fully faithful inclusion of
T –presentable-stable ∞–categories into T –Mackey functors valued in presentable-
stable ∞–categories. The essential image consists of the T –Mackey functors such
that the Mackey semiadditivity norm map is an equivalence and the Mackey unit
map exhibits the transfer f! as being left adjoint to f ∗.

This theorem says that the genuinely parametrised notion of presentable stabil-
ity considered in [Nar17] can be viewed as Mackey functors valued in ordinary
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presentable-stable ∞–categories satisfying some further conditions. One argu-
ment as to why this internal notion of T –presentable-stabilility is better than just
presentable-stable-valued T –Mackey functors is that as far as we know, it is the
internal notion that admits a G–symmetric monoidal structure (due to [Nar17]), ie.
the structure of categorical Hill-Hopkins-Ravenel norms. This structure will play
a crucial role in our formulation for the norm structures on equivariant algebraic
K–theory.

Before moving on to describing the next part, we first comment on the meth-
ods and philosophy of our work on parametrised homotopy theory. The approach
taken here is an axiomatic one, and is slightly different in flavour from the series of
papers in [BDG+16a] in that we freely pass between the viewpoint of parametrised
∞–categories as cocartesian fibrations and as ∞–category-valued functors via the
straightening-unstraightening equivalence of Lurie. This allows us to work model-
independently, ie. without thinking of our ∞–categories as simplicial sets. The
point is that, as far as presentability and adjunctions are concerned, the founda-
tions laid in [BDG+16b; BGN14; Sha22a; Sha22b; Nar17] are sufficient for us to
make model-independent formulations and proofs via universal properties. In-
deed, a recurring method here is to say that relevant universal properties guarantee
the existence of certain functors, and then we can just check that certain diagrams
commute by virtue of the essential uniqueness of left/right adjoints.

As mentioned above, Part II will be concerned with equivariant algebraic K–
theory where we specialise the parametrised theory to the equivariant situation
by setting T = OG for a finite group G. As preparation, we will provide a brief
summary of the structures available in the notion of a G–category in Chapter 3.
There are two findings that we think deserve being highlighted here. The first is
the following very general “monoidal Borelification principle”:

Theorem D (Precise version in Theorem 3.3.4). Any symmetric monoidal ∞–
category D induces a G–symmetric monoidal ∞–category BorBorBorBorBorBorBorBorBorBorBorBorBorBorBorBorBor(D) which is fibre-
wise given by Fun(BH,D) for H ≤ G. Moreover, any G–symmetric monoidal
G–category CCCCCCCCCCCCCCCCC gives rise to a G–symmetric monoidal functor CCCCCCCCCCCCCCCCC → BorBorBorBorBorBorBorBorBorBorBorBorBorBorBorBorBor(ResG

e CCCCCCCCCCCCCCCCC). In
particular, a right adjoint canonically refines to a G–lax symmetric monoidal func-
tor.

As far as we are aware, this is the first treatment of the relationship between G–
symmetric monoidal categories and their Borelifications, which clarifies the link be-
tween a G–symmetric monoidal structure on a G–category and the one on the Borel
objects induced by the symmetric monoidal structure of the underlying ∞–category
with G–action. The final statement in the theorem is a situation that is often satis-
fied, and therefore gives us a very general procedure to produce G–commutative
algebra objects by endowing an ordinary commutative algebra object with a G–
action (Proposition 3.3.6). As we shall soon point out, this will be an ingredient in
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obtaining a large source of examples for normed equivariant algebraic K–theory.
We should comment here that this was one of the problems that we were stuck

with for the longest time for the special case of C = Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
G , and the solution turned

out to be much easier to solve in the vast generality of Theorem D, proceeding by
first categorifying the formulation and then decategorifying it to obtain the desired
statement. In hindsight, it was very much inspired by the philosophy of [GGN15]
in dealing with monoidal structures via the properties of categorical products.

The second is a genuine equivariant refinement of the Nikolaus-Scholze Tate di-
agonal in the case when G is odd and p = 2. Let T2 : SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG → SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG be the functor
X 7→ (X⊗ X)tΣ2 .

Theorem E (Precise version in Theorem 3.6.5). Let G be an odd group. Then T2 is
G–linear and there is a natural transformation of G–linear functors

id TTTTTTTTTTTTTTTTT2
∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆2

which refines the Nikolaus-Scholze Tate diagonal to genuine G–spectra.

This will be a corollory of a more general statement about G–linearity of diago-
nalisations of G–bilinear functors upon passing to (−)tΣ2 when G is odd (Corol-
lary 3.5.3); it will involve some double-coset counting arguments. Much like in
the nonequivariant theory of [CDH+20a], this will be an input in constructing the
universal G–Poincaré category in §7.1.7.

We now discuss the approach to algebraic K–theory that we have taken in this
thesis. As a functor K: Catperf

∞ → Sp, algebraic K–theory is the universal additive
spectral invariant on the ∞–category Catperf

∞ of small perfect stable ∞–categories
by the work of [BGT13] and moreover behaves well with respect to symmetric
monoidal structures by [BGT14]. The methods of these papers were to construct
the initial stable ∞–category receiving an additive functor (in the sense of sending
exact sequences of ∞–categories to exact sequences in the target category) called the
∞–category of noncommutative motives NMot through which the functor K above
factors.

It is then natural to ask for an analogue of this in the equivariant setting where
the objects in Catperf

∞ are moreover equipped with actions by a finite group G and
their algebraic K-theories sometimes admit “equivariant power operations” known
as the multiplicative norms. As noted above, this extra structure - first enlisted into
stable homotopy theory by Greenlees and May [GM97] where it was used to prove
a completion theorem for equivariant MU - has most famously led to the stun-
ning resolution of the Kervaire invariant one problem in [HHR16] and is well-
known to be very tricky to construct. For example, by way of the Day convolution,
[BGS20] only constructed a symmetric monoidal structure on equivariant algebraic
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K–theory without these norms, which they termed Green functors (in analogy with
the classical theory of Mackey functors).

Something interesting happens when one pursues this line of thought: it turns
out that there are two natural candidates for a definition of equivariant algebraic K–
theory. For one, we can just tack on G–Mackey objects on the functor K: Catperf

∞ →
Sp to obtain

KKKKKKKKKKKKKKKKKpw
G : MackMackMackMackMackMackMackMackMackMackMackMackMackMackMackMackMackG(Catperf

∞ ) −→ MackMackMackMackMackMackMackMackMackMackMackMackMackMackMackMackMackG(Sp) ≃ SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG

where the decoration (−)pw indicates that this is a pointwise construction (this is
for example the construction considered in [BGS20; CMN+20]). Theorem C then
tells us that this is a reasonable definition of equivariant algebraic K–theory for
G–perfect-stable ∞–categories which after all sits in MackMackMackMackMackMackMackMackMackMackMackMackMackMackMackMackMackG(Catperf

∞ ) as a full sub-
category. But then one can also mimic [BGT13] in carrying out a genuine motivic

construction to obtain KKKKKKKKKKKKKKKKKG : CatCatCatCatCatCatCatCatCatCatCatCatCatCatCatCatCat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
G −→ SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG. The advantage of this definition is it

admits the sought-after multiplicative norms by design. There is then a canoni-
cal comparison KKKKKKKKKKKKKKKKKpw

G ⇒ KKKKKKKKKKKKKKKKKG, and the main theorem of Chapter 4 is that this is an
equivalence when G is a finite 2–group:

Theorem F (cf. Corollary 4.3.20 and Corollary 4.3.21). Let G be a 2–group. Then
KKKKKKKKKKKKKKKKKpw

G canonically refines to a G–lax symmetric monoidal functor. Together with
Theorem D, this implies that for any small symmetric monoidal perfect-stable ∞–
category C⊗ ∈ CAlg(Catperf

∞ ), the collection
{

K(Fun(BH, C))
}

H≤G assembles to a
G–normed ring spectrum when G is a 2–group.

This theorem should be read as a normed refinement of the Green functors
considered in [BGS20] in the case G is a finite 2–group. As of now, we do not know
if the comparison KKKKKKKKKKKKKKKKKpw

G ⇒ KKKKKKKKKKKKKKKKKG is an equivalence for a general group G, but our
expectation is that it is so.

Having obtained a good understanding of G–perfect-stable ∞–categories and
their algebraic K–theories, we are now ready to overlay these with the struc-
ture of hermitian forms: this is the subject of Part III. In [CDH+20b], we learn
that hermitian K–theory is the addition of two extra spectral invariants, called
the Grothendieck-Witt spectrum GW and L–theory L respectively, to the algebraic
K–theory functor K. These are both functors Catp

∞ → Sp where Catp
∞ is the ∞–

category of Poincaré ∞–categories - here Poincaré ∞–categories refer to a refine-
ment of small stable ∞–categories with duality which was introduced by Lurie in
[Lur11] and further developed in [CDH+20a]. Roughly speaking, the datum of a
Poincaré ∞–category is a pair (C, Ϙ) where C is a small stable ∞–category, Ϙ is a
functor Ϙ : Cop → Sp which is quadratic (ie. it is reduced and 2–excisive in the
sense of Goodwillie calculus), and that a canonically constructed duality functor
DϘ : Cop → C associated to Ϙ is an equivalence.
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Similarly as explained above in the case of algebraic K–theory, the first natural
candidates one might come up with as a genuine equivariant refinement of these
are gotten by applying the functor MackG to these spectral invariants, yielding

GWGWGWGWGWGWGWGWGWGWGWGWGWGWGWGWGWG(−), LLLLLLLLLLLLLLLLLG : MackMackMackMackMackMackMackMackMackMackMackMackMackMackMackMackMackG(Catp
∞) −→ MackMackMackMackMackMackMackMackMackMackMackMackMackMackMackMackMackG(Sp) ≃ SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG

However, when one seriously considers the possibility of multiplicative norms, an
immediate problem arises: the data structure of MackG(Catp

∞) cannot see this in
general, essentially because an object in this category is a collection of Poincaré
∞–categories {

(CH , ϘH : Cop
H → Sp)

}
H≤G

equipped with restriction and transfer maps, satisfying some properties. Nowhere
in this are genuine G–spectra featured, and these are of course sine qua non in any
theory that features the multiplicative norms on genuine G–spectra.

Before proceeding further with this line of investigation, we nevertheless show
how Borel equivariant GW–theory attains the structure of the multiplicative norms
when G is a 2–group. Here, by Borel equivariant GW, we mean the composite
functor

Fun(BG, Catp
∞) MackG(Catp

∞) MackG(Sp) = SpG
Bor GW (0.1)

so that it is the input that is Borel equivariant, and not the output. In general, the
output is very far from being Borel equivariant, and it is indeed the business of
descent theory to study situations where this might be the case, up to various kinds
of completions. In any case, augmenting the methods used to obtain Theorem F
with some understanding of the quadratic structures, we obtain the following:

Theorem G (Precise version in Corollary 5.4.6). Let G be a 2–group. Then the Borel
equivariant GW–theory canonically refines to a G–lax symmetric monoidal functor.
Consequently, for any small symmetric monoidal Poincaré ∞–category (C, Ϙ)⊗ ∈
CAlg(Catp), the collection of spectra{

GW(Fun(BH, C), ϘhH)
}

H≤G

assembles canonically to a G–normed ring spectrum.

Coming back to considering a truly genuine refinement of hermitian K–theory,
we are led to define the notion of G–Poincaré ∞–categories which are pairs (CCCCCCCCCCCCCCCCC, ϘϘϘϘϘϘϘϘϘϘϘϘϘϘϘϘϘ)
where CCCCCCCCCCCCCCCCC is now a small G–stable G–category and ϘϘϘϘϘϘϘϘϘϘϘϘϘϘϘϘϘ is a G–functor ϘϘϘϘϘϘϘϘϘϘϘϘϘϘϘϘϘ : CCCCCCCCCCCCCCCCCopopopopopopopopopopopopopopopopop → SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG
which is G–quadratic - this notion will involve Dotto’s theory of equivariant Good-
willie calculus [Dot17] and requires slightly more than just being pointed and 2G–
excisive to guarantee in our setting the quadratic-linear-bilinear stable recollement
so crucial in [CDH+20a; CDH+20b; CDH+20c]. Unfortunately, and importantly, the
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theory we develop so far only works for when G is an odd group, essentially by the
same reason that Theorem E also only works for odd groups.

Notwithstanding, in order to realise this goal, in Chapter 6 we will trans-
late Dotto’s model category approach to equivariant Goodwillie calculus into the
parametrised homotopy theory framework, whose methods will roughly follow
the scheme {

Goodwillie
} {

Lurie
}

{
Dotto

} {
Chapter 6

}⌜

We think it worth pointing out that, while we claim no originality in the results for
this chapter, we have written arguments down in a manner slightly more axiomatic
than that of Lurie’s (thanks to our standing assumption that the relevant Kan ex-
tensions exist), reducing many proofs to the same circle of Kan extension yoga and
spotting appropriate poset adjunctions which might be useful in other settings.

With the parametrised theory of equivariant Goodwillie calculus in place, we are
then ready to define G–Poincaré categories in the final Chapter 7. Via Theorem D,
our definition will be seen in §7.3.2 to contain Fun(BG, Catp

∞) as a full subcategory,
situating our notions as a faithful enlargement of those of [CDH+20a]. While most
of the proof methods will be a direct mimicry of those of [CDH+20a], the section
on G–symmetric monoidal matters §7.2 will involve new arguments owing to the
seemingly essential and unavoidable fact that currying of tensor products does not
work in the equivariant setting: this is because when we take an equivariant tensor⊗

G/H , there is no way to induct by currying over separate components in the same
way that we are used to in the nonequivariant setting, where Map(X ⊗ Y, Z) ≃
Map(X, map(Y, Z)). We think that these methods give a more general explanation
as to why the linear and bilinear parts of a quadratic functor commutes with tensor
products - an observation first made, as far as we are aware, in [CDH+20a, Prop.
5.1.3] and whose importance is difficult to overstate. We are extremely grateful to
Maxime Ramzi who provided a crucial perspective in allowing these arguments
to go through. Among other things, we prove that our G–category of G–Poincaré
categories Cat

ppppppppppppppppp
G is G–semiadditive-presentable and refines to the structure of a G–

symmetric monoidal category (cf. §7.3).

In the last §7.4, we will assume a much more exploratory tone to indicate po-
tential applications of the general approach of “genuinising” equivariant hermi-
tian K–theory. In the first subsection, we analyse the particularly concrete case of
G = C2 when 2 is inverted in the input: recall that while our theory above only
works when G is odd, if we invert 2 in our quadratic structures, then it will also
work for even groups G. This can be a potentially confusing situation as we have
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the equivariance coming from G = C2 but also a C2–equivariance coming from the
hermitian structure, which is already present even in the nonequivariant case. We
emphasise that this distinction is not something new: it is analogous to the differ-
ence between Segal’s equivariant complex K–theory KUG for G = C2 and Atiyah’s
C2–real K–theory KR, and our setting for the case G = C2 is then a combination
of these two structures analogous to the combination in the complex K–theory case
which yields KRG for G = C2. For this reason, we have opted to denote by Σ2 the
equivariance coming from the hermitian structure to distinguish it from G = C2. In
any case, one consequence of the theory is the following:

Theorem H (Theorem 7.4.11). Suppose we have a C2–Poincaré category (C, Ϙ)
where 2 is inverted (ie. Ϙ is a C2–quadratic functor Ϙ : Copopopopopopopopopopopopopopopopop → SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpC2 [

1
2 ]) such that we

have an equivalence (Ce, Ϙ
q
e ) ≃ (Ce, Σ2

Ϙ
q
e ) on the underlying Poincaré ∞–category,

for instance, when it is induced by a C2–ring spectrum which is 2–periodic away
from 2. Then there is a natural equivalence

Ω2σLLLLLLLLLLLLLLLLL(C, Ϙ) ≃ LLLLLLLLLLLLLLLLL(C, Ω2σ
Ϙ)

where σ is the real sign representation. In particular, since Segal’s equivariant
complex K–theory KUC2 satisfies equivariant complex Bott periodicity and since
2σ ∼=C2 1 + σ ∼=C2 C, we obtain an equivalence Ω2σLLLLLLLLLLLLLLLLLs(KUC2 [

1
2 ]) ≃ LLLLLLLLLLLLLLLLLs(KUC2 [

1
2 ]).

This seems to suggest that our genuine equivariant L–theory might be a good
factory to manufacture potentially interesting equivariant rings with equivariant
periodicity. Finally, we cannot resist but to come full circle and give a conjectural
descent application of our theory in §7.4.2 which was the original motivation for
the materials in this thesis: we will indicate how one can exploit the multiplicative
norms on L–theory, if they exist, to obtain enough equivariant periodicity so as to
be able to run the argument of [Gre93] in proving some completion theorems for
equivariant L–theory. This concludes the general introduction and we refer the
reader to the schematic summary on the next page for a bird’s eye view of this
thesis.

Conventions and assumptions From now on we will drop the adjective ∞– and
mean ∞–categories when we say categories. Accordingly, we will write Cat in lieu
of Cat∞ to denote the ∞–category of small ∞–categories, and we will denote by
Cat(1) ⊆ Cat the full ∞–subcategory of 1–categories (ie. the ∞–categories with the
property that the mapping spaces are in fact mapping sets). Recall that Cat(1) is
itself a 1–category. The advantage of this choice of notation will be clear in the
parametrised setting where it is necessary to carry many extra decorations. Fur-
thermore, Ĉat will be used to denote the ∞–category of large ∞–categories.
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PART I

FOUNDATIONS



Chapter 1

Elements of parametrised ho-
motopy theory

We collect here basic definitions and foundational results from [Sha22a; Sha22b;
Nar17; BDG+16b] for the convenience of the reader interested in using this for-
malism. We also develop some basic theory to the level of detail that we will be
needing. To orientate the reader with our notational convention, we will always
think of T = OG and that everything is parametrised over T op = Oop

G , so that
we mean working with Fun(T op, Ĉat) where Ĉat is the huge category of large cat-
egories. We gradually increase the restrictions on our base categories, starting with
general base categories in §1.1, imposing orbitality in §1.2, and further imposing
atomicity in §1.3 (cf. Definition 1.1.11 for the definitions of these terms). A gen-
eral guideline for this is that orbitality is required for the theory of (co)limits to go
smoothly, and atomicity is required for algebraic notions such as semiadditivity,
stability, and operads. In both sections, we have denoted by “Recollections” those
subsections that contain mostly statements already proved in the literature and are
included in order to establish notational consistency as well as to make the reading
of this chapter as self-contained as possible. We point out that, in this chapter, we
have organised these results thematically instead of chronologically, and so we will
occasionally refer ahead to results from subsequent (sub)sections.

1.1 Preliminaries: general base categories
1.1.1 Recollections: basic objects and constructions

Recollections 1.1.1. For a category T , there is Lurie’s straightening-
unstraightening equivalence coCart(T op) ≃ Fun(T op, Cat) (cf. for example
[HW21, Thm. I.23]). The category of T –categories is then defined simply as
Fun(T op, Cat) and we also write this as CatT . We will always denote a T –category
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with an underline C. Under the equivalence above, the datum of a T –category
is equivalent to the datum of a cocartesian fibration p : Total(C) → T op, and
a T –functor is defined just to be a morphism of T –categories C → D, is then
equivalently a map of cocartesian fibrations Total(C)→ Total(D) over T op. For an
object V ∈ T , we will write CV or CV for the fibre of Total(C)→ T op over V.

Remark 1.1.2. The product C ×D in CatT of two T –categories C,D is given as the
pullback Total(C)×T op Total(D) in the cocartesian fibrations perspective. We will
always denote with ×when we are viewing things as T –categories and we reserve
×T op for when we are viewing things as total categories. In this way, there will be
no confusion as to whether or not ×T op denotes a pullback in CatT : this will never
be the case.

Notation 1.1.3. Since CatT = Fun(T op, Cat) is naturally even a 2–category,
for C,D ∈ CatT , we have the category of T –functors from C to D:
this we write as FunT (C,D). Unstraightening, we obtain FunT (C,D) ≃
Funcocart(Total(C), Total(D)) ×Fun(Total(C),T op) {p} where Funcocart is the full sub-
category of functors preserving T op–cocartesian morphisms.

Example 1.1.4. We now give some basic examples of T –categories to set notation.

• (Fibrewise T –categories) Let K ∈ Cat. Write constT (K) ∈ CatT for the con-
stant K–valued diagram. In other words, Total(constT (K)) ≃ K× T op.

• We write ∗ := constT (∗). This is clearly a final object in CatT =
Fun(T op, Cat).

• (Corepresentable T –categories) Let V ∈ T . Then we can consider the left
(and so cocartesian) fibration associated to the functor MapT : T op → S and
denote this T –category by V. Note that Total(V) ≃ (T/V)

op. By corepre-
sentability of V, we have FunT (V, C) ≃ CV . To wit, for K ∈ Cat, by Construc-
tion 1.1.13, we have

MapCat
(
K, FunT (V, C)

)
≃ MapCatT

(
V, FunT (const(K), C)

)
≃ MapCat(K, CV)

Definition 1.1.5. The category of T –objects of C is defined to be FunT (∗, C).

Remark 1.1.6. If T op has an initial object T ∈ T op, then this means that the category
of T –objects in C is just CT .

Construction 1.1.7 (Parametrised opposites). For a T –category C, its T –opposite
Copopopopopopopopopopopopopopopopop is defined to be the image under the functor obtained by applying Fun(T op,−)
to (−)op : Cat → Cat. In the unstraightened view, this is given by taking fibrewise
opposites in the total category. In [BDG+16b] this was called vertical opposites
(−)vop to invoke just such an impression.
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Observation 1.1.8. Let V be a corepresentable T –category. Then Vopopopopopopopopopopopopopopopopop ≃ V since the
functor (−)op : Cat→ Cat restricts to the identity on S .

Construction 1.1.9. The cone and cocone are functors (−)◁, (−)▷ : Cat → Cat
which add a (co)cone point to a category. Applying Fun(T op,−) to this functor
yields the T –cone and –cocone functors (−)◁ and (−)▷ respectively. We refer to
[Sha22a] for more on this.

Definition 1.1.10. A T –functor is T -fully faithful (resp. T -equivalence) if it is so
fibrewise. There is the expected characterisation of T –fully faithfulness in terms of
T –mapping spaces, see Remark 1.2.19.

Definition 1.1.11. We say that the category T is orbital if the finite coproduct co-
completion FinT admits finite pullbacks. Here, by finite coproduct cocompletion,
we mean the full subcategory of the presheaf category Fun(T op,S) spanned by fi-
nite coproduct of representables. We say that it is atomic if every retraction is an
equivalence.

Notation 1.1.12 (Basechange). As in [Nar17], we will write CV := C × V =
Total(C) ×T op Total(V) for the basechanged parametrised category, which is now
viewed as a T/V–category. The (−)V is a useful reminder that we have basechanged
to V, and so for example we will often use the notation FunV to mean FunT/V and
not FunTotal(V) ≃ Fun(T/V)

op .

Construction 1.1.13 (Internal T –functor category, [BDG+16b, §9]). For C,D ∈
CatT , there is a T –category FunT (C,D) such that

FunT (E , FunT (C,D)) ≃ FunT (E × C,D)

This is because Fun(T op, Cat) is presentable and the endofunctor −× C has a right
adjoint since it preserves colimits. In particular, by a Yoneda argument we get
FunT (∗,D) ≃ D. Moreover, plugging in E = ∗ we see that T –objects of the in-
ternal T –functor object are just T –functors. Furthermore, the T –functor categories
basechange well in that

FunT (C,D)V ≃ FunV(CV ,DV)

so the fibre over V ∈ T op is given by FunV(CV ,DV). To wit, for any T/V–category
E ,

Map(CatT )/V
(E , FunT (C,D)V) ≃ MapCatT

(E , FunT (C,D))

≃ Map(CatT )/V
(E × C,DV)

≃ Map(CatT )/V
(E ×V CV ,DV)

≃ Map(CatT )/V
(E , FunV(CV ,DV))
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Notation 1.1.14 (Parametrised cotensors). Let I be a small unparametrised cate-
gory. Then the adjunction −× I : Cat ⇄ Cat : Fun(I,−) induces the adjunction

(−× I)∗ : Fun(T op, Cat) ⇄ Fun(T op, Cat) : Fun(I,−)∗

Under the identification Fun(T op, Cat) ≃ CatT where CatT is the cate-
gory of T -categories, it is clear that (− × I)∗ corresponds to the T -functor
constT (I) × −, whose right adjoint we know is FunT (constT (I),−). Therefore
FunT (constT (I),−) implements the fibrewise functor construction. We will intro-
duce the notation fun(I,−) for FunT (constT (I),−). This satisfies the following
properties whose proofs are immediate.

(i) CatT is cotensored over Cat in the sense that for any T -categories C,D we
have

FunT (C, fun(I,D)) ≃ fun(I, FunT (C,D))

(ii) fun(I,−) preserves T -adjunctions.

Observation 1.1.15. There is a natural equivalence of T –categories

FunT (C,D)opopopopopopopopopopopopopopopopop ≃ FunT (C
opopopopopopopopopopopopopopopopop,Dopopopopopopopopopopopopopopopopop)

This is because (−)opopopopopopopopopopopopopopopopop : CatT → CatT is an involution, and so for any T –category
E ,

MapCatT
(E , FunT (C,D)opopopopopopopopopopopopopopopopop) ≃ MapCatT

(Eopopopopopopopopopopopopopopopopop, FunT (C,D))
≃ MapCatT

(Eopopopopopopopopopopopopopopopopop × C,D)
≃ MapCatT

(E × Copopopopopopopopopopopopopopopopop,Dopopopopopopopopopopopopopopopopop)

≃ MapCatT
(E , FunT (C

opopopopopopopopopopopopopopopopop,Dopopopopopopopopopopopopopopopopop))

Construction 1.1.16 (Cofree parametrisation, [Nar17, Def. 1.10]). Let D be a
category. There is a T –category Cofree(D) : T op → Cat classified by V 7→
Fun((T/V)

op,D). This has the following universal property: if C ∈ CatT , then
there is a natural equivalence

FunT (C, Cofree(D)) ≃ Fun(Total(C),D)

of ordinary ∞-categories. This construction is of foundational importance and it
allows us to define the following two fundamental T –categories.

Notation 1.1.17. We will write CatT := CofreeT(Cat) for the T –category of T –
categories; we write ST := CofreeT(S) for the T –category of T –spaces.

Theorem 1.1.18 (Parametrised straightening-unstraightening, [BDG+16b, Prop.
8.3]). Let C ∈ CatT . Then there are equivalences

FunT (C, CatT ) ≃ coCart(Total(C)) FunT (C,ST ) ≃ Left(Total(C))
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Proof. This is an immediate consequence of the usual straightening-
unstraightening and the universal property of T –categories of T –objects above.
For example,

FunT (C, CatT ) ≃ Fun(Total(C), Cat) ≃ coCart(Total(C))

and similarly for spaces.

1.1.2 Parametrised adjunctions

T –adjunctions as introduced in [Sha22a] is based on the relative adjunctions of
[Lur17].

Definition 1.1.19 ([Lur17, Def. 7.3.2.2]). Suppose we have diagrams of categories

C D C D

E E
q

G

p q

F

p

Then we say that:

• For the first diagram, G admits a left adjoint F relative to E if G admits a left
adjoint F such that for every C ∈ C, q sends the unit η : C → GFC to an
equivalence in E (equivalently, if qη : q ⇒ p ◦ F exhibits a commutation
p ◦ F ≃ q by [Lur17, Prop. 7.3.2.1]).

• For the second diagram, F admits a right adjoint G relative to E if F admits a
right adjoint G such that for every D ∈ D, p maps the counit ε : FGD → D
to an equivalence in E (equivalently if pε : q ◦ G ⇒ p exhibits q ◦ G ≃ p by
[Lur17, Prop. 7.3.2.1]).

Observe that when E ≃ ∗, this specialises to the usual notion of adjunctions.

Remark 1.1.20. These two definitions are compatible. To see this, assume the first
condition for example, ie. that G has a left adjoint F relative to E . We need to
see that F then admits a right adjoint G relative to E in the sense of the second
condition, ie. that p sends the counit ε : FGD → D to an equivalence in E . For this
just consider the commutative diagram

qG qGFG pFG

qG p

qηG
≃

qGε

≃

pε

≃

where the triangle is by the adjunction, and the square is by the natural equivalence
qG ≃ p.
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Definition 1.1.21. Let C,D ∈ CatT . Then a T -adjunction F : C ⇄ D : G is defined
to be a relative adjunction such that F, G are T –functors. A T -Bousfield localisation
is a T –adjunction where the T –right adjoint is T –fully faithful.

Proposition 1.1.22 (Stability of relative adjunctions under pullbacks, [Lur17, Prop.
7.3.2.5]). Suppose we have a relative adjunction

C D

E
q

F

G

p

Then for any functor E ′ → E the diagram of pullbacks

C ×E E ′ D ×E E ′

E ′
q

F

G

p

is again a relative adjunction.

We now have the following criteria to obtain relative adjunctions - these are just
modified from Lurie’s more general assumptions.

Proposition 1.1.23 (Criteria for relative adjunctions, [Lur17, Prop. 7.3.2.6]). Sup-
pose p : C → E , q : D → E are cocartesian fibrations. If we have a map of cocarte-
sian fibrations F

C D

E
q

F

p

Then:

(1) F admits a right adjoint G relative to E if and only if for each E ∈ E the map
of fibres FE : CE → DE admits a right adjoint GE. The right adjoint need no
longer be a map of cocartesian fibrations.

(2) F admits a left adjoint L relative to E if and only if for each E ∈ E the map
of fibres FE : CE → DE admits a left adjoint LE and the canonical comparison
maps (constructed in [Lur17, Prop. 7.3.2.11])

L f ∗ → LF f ∗L ε−→ f ∗L

constructed from the fibrewise adjunction are equivalences - here f ∗ is the
pushforward given by the cocartesian lift along some f : E′ → E in E . The
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relative left adjoint, if it exists, must necessarily be a map of cocartesian fibra-
tions.

Proof. We prove each in turn. To see (1), suppose F has an E -right adjoint G. Then
for each e ∈ E the inclusion {e} ↪→ E induces a pullback relative adjunction over
the point {e} by Proposition 1.1.22, and so we get the statement on fibres. Con-
versely, suppose we have fibrewise right adjoints. To construct an E -right adjoint
G, since adjunctions can be constructed objectwise by the unparametrised version
of Proposition 1.2.26 below, we need to show that for each e ∈ E and d ∈ De, there
is a Gd ∈ Ce and a map ε : FGd→ d such that:

(a) For every c ∈ C the following composition is an equivalence

MapC(c, Gd) F−→ MapD(Fc, FGd) ε−→ MapD(Fc, d)

(b) The morphism pε : pFGd→ pd is an equivalence in E .

We can just define Gd := Ge(d) ∈ Ce given by the fibrewise right adjoint and let
ε : FGd→ d be the fibrewise counit. Since these are fibrewise, point (b) is automatic.
To see point (a), let c ∈ Ce′ for some e′ ∈ E . Since the mapping space in the total
category of cocartesian fibrations are just disjoint unions over the components lying
under MapC(c, Gd), we can work over some f ∈ MapE (e

′, e). Consider

Map f
C(c, Gd) MapDe

( f ∗Fc, d) ≃ Map f
D(Fc, d)

MapCe
( f ∗c, Gd) MapDe

( f ∗Fc, FGd)

≃

F

≃
ε

where we have used also that F was a map of cocartesian fibrations so that
f ∗F ≃ F f ∗ and that the diagonal map is an equivalence since we had a fibrewise
adjunction Fe ⊣ Ge by hypothesis. This completes the proof of part (1).

For case (2), to see the cocartesianness of a relative left adjoint L, note

MapC(L f ∗d, c) ≃ MapD( f ∗d, Fc) ≃ Map f
D(d, Fc)

≃ Map f
C(Ld, c) ≃ MapC( f ∗Ld, c)

The proof for right adjoints in (1) go through in this case but now we use

Map f
C(Ld, c) MapDE

( f ∗d, Fc) ≃ Map f
D(d, Fc)

MapCE
( f ∗Ld, c) MapCE

(L f ∗d, c)

≃ ≃
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and so the technical condition in the statement says that there is a canonical map
inducing the bottom map in the square which must necessarily be an equivalence.

Remark 1.1.24. One might object to the notation we have adopted for the push-
forward being f ∗ instead of f!. This convention is standard in the framework of
[BDG+16a] because the latter notation is reserved for the left adjoint of f ∗ (the so-
called T –coproducts) that will be recalled later.

Corollary 1.1.25 (Fibrewise criteria for T –adjunctions). Let F : C → D be a T –
functor. Then it admits a T –right adjoint if and only if it has fibrewise right adjoints
GV for all V ∈ T and

CW DW

CV DV

GW

f ∗

GV

f ∗

commutes for all f : W → V in T . Similarly for left T –adjoints.

Proof. The commuting square ensures that the relative right adjoint is a T –functor.

Proposition 1.1.26 (Criteria for T –Bousfield localisations, “[Lur09, Prop. 5.2.7.4]”).
Let C ∈ CatT and L : C → C a T –functor equipped with a fibrewise natural trans-
formation η : id ⇒ L. Let j : LC ⊆ C be the inclusion of the T –full subcategory
spanned by the image of L. Suppose the transformations Lη, ηL : L =⇒ L ◦ L are
equivalences. Then the pair (L, j) constitutes a T –Bousfield localisation with unit
η.

Proof. We want to apply Corollary 1.1.25. Since we are already provided with the
fact that L was a T –functor, all that is left to show is that it is fibrewise left adjoint
to the inclusion LC ⊆ C. But this is guaranteed by [Lur09, Prop. 5.2.7.4], and so we
are done.

Finally, we show that parametrised adjunctions have the expected internal char-
acterisation in terms of the parametrised mapping spaces recalled in Construc-
tion 1.2.18.

Lemma 1.1.27 (Mapping space characterisation of T –adjunctions). Let F : C ⇆ D :
G be a pair of T –functors. Then there is a T –adjunction F ⊣ G if and only if we
have a natural equivalence

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapD(F−,−) ≃ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(−, G−) : Copopopopopopopopopopopopopopopopop ×D −→ ST



1.2 PRELIMINARIES: ORBITAL BASE CATEGORIES 22

Proof. The if direction is clear: since F and G were already T –functors, by Corol-
lary 1.1.25 the only thing left to do is to show fibrewise adjunction, and this is
easily implied by the equivalence which supplies the unit and counits. For the only
if direction, by definition of a relative adjunction, we have a fibrewise natural trans-
formation η : idC ⇒ GF (ie. a morphism in FunT (C, C)) and so we obtain a natural
comparison

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapD(F−,−) G−→ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(GF−, G−) η∗−→ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(−, G−)

Since equivalences between T –functors are checked fibrewise, let c ∈ CV , d ∈ DV .
Then

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapD(F−,−) : (c, d) 7→
(
(W

f−→ V) 7→ (MapDV
(Fc, d)→ MapDW

( f ∗Fc, f ∗d)
)
∈ SV

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(−, G−) : (c, d) 7→
(
(W

f−→ V) 7→ (MapCV
(c, Gd)→ MapCW

( f ∗c, f ∗Gd)
)
∈ SV

Since F, G were T –functors, we have F f ∗ ≃ f ∗F and G f ∗ ≃ f ∗G, and so the
natural comparison coming from the relative adjunction unit given above ex-
hibits a pointwise equivalence between MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapD(F−,−) and MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(−, G−) by Corol-
lary 1.1.25.

1.2 Preliminaries: orbital base categories
Some of the notions here still make sense for general T , but we want orbitality
in order to make formulations involving Beck-Chevalley conditions. Hence, from
now on, we assume that T is orbital.

1.2.1 Recollections: colimits and Kan extensions

Definition 1.2.1. Let K ∈ CatT and q : K → ∗ be the unique map. Then precom-
position induces the T –functor q∗ : D ≃ FunT (∗,D) −→ FunT (K,D). The T –left
adjoint q!, if it exists, is called the K–indexed T –colimit, and similarly for T-limits q∗.

Example 1.2.2. Here are some special and important classes of these:

• A T –(co)limit indexed by constT (K) for some ordinary ∞–category K is called
a fibrewise T -(co)limit.

• A T –(co)limit indexed by a corepresentable T –category V (cf. Example 1.1.4)
of some V ∈ T is called the T-(co)product.

Definition 1.2.3 ([Sha22a, Def. 11.2]). Let F : C → D be a T –functor.

• We say that it preserves T -colimits if for all T –colimit diagrams d : K▷ → C,
the post-composed diagram F ◦ d : K▷ → D is a T –colimit. Similarly for
T –limits.
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• We say that F strongly preserves T -colimits if for all V ∈ T , FV : CV → DV
preserves T/V–colimits. Similarly for T –limits.

Warning 1.2.4 ([Sha22a, Rmk. 5.14]). Note that being T –cocomplete is much
stronger than just admitting all T –colimits. This is because admitting all T –colimits
just means that any T/V–diagram KV → CV pulled back from a T –diagram K → C
admits a T/V–colimit. However not every T/V–diagram is pulled back as such. We
will elaborate on the distinction of these definitions in the next subsection. In this
document, we will never consider preservations, but only strong preservations.

Definition 1.2.5 ([Sha22a, Def. 5.13]). Let C ∈ CatT . Then we say C is T –
(co)complete if for all V ∈ T and T/V–diagram p : K → CV with K small, p admits a
T/V–(co)limit.

Terminology 1.2.6. When we want to specify particular kinds of parametrised
(co)limits that a T –category admits, it is convenient to use the following termi-
nology: for K = {KV}V∈T some collection of diagrams varying over V ∈ T , we
say that C strongly admits K–(co)limits if for all V ∈ T , CV admits K–colimits for all
K ∈ KV . Examples include:

• C strongly admits all T –(co)limits means that it is T –(co)cocomplete,
• Let κ be a regular cardinal. We say that C strongly admits κ–small T –

(co)products to mean that it has T –(co)limits for any diagram indexed over
⨿a∈A Va where A is a κ–small set. Hence, strongly admitting finite T –
(co)products means admitting finite fibrewise (co)products and (co)limits for
all corepresentable diagrams V.

Lemma 1.2.7 (Decomposition of indexed coproducts). Let Ra, V ∈ T and ⨿a fa :
⨿a Ra → V be a map where the coproduct is not necessarily finite. Suppose C
strongly admits finite T –coproducts and arbitrary fibrewise coproducts. Then C ad-
mits ⨿a fa-coproducts and this is computed by composing fibrewise T –coproduct
⨿a with the individual indexed T –coproducts.

Proof. We will in fact show that we have T/V–adjunctions

FunV(⨿a Ra, CV) = ∏a FunV(Ra, CV) ∏a FunV(V, CV) FunV(V, CV)
∏a( fa)! ⨿a

∏a( fa)∗ ∆

That these T/V–adjunctions exist is by our hypotheses, and all that is left to do is
check that ∏a( fa)∗ ◦ ∆ ≃ (⨿a fa)∗. But this is also clear since we have the commut-
ing diagram

⨿a Ra V

⨿a V

⨿a fa

fa ⨿a idV
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Applying (−)∗ to this triangle completes the proof.

Terminology 1.2.8 (Beck-Chevalley conditions). Let C ∈ CatT that admits finite
fibrewise coproducts (resp. products) and such that for each f : W → V in T ,
f ∗ : CV → CW admits a left adjoint f! (resp. right adjoint f∗). We say that C satisfies
the left Beck-Chevalley condition (resp. right Beck-Chevalley condition) if for every pair
of morphisms f : W → V and g : Y → V in T : in the pullback (whose orbital
decomposition exists by orbitality of T )

⨿a Ra = Y×V W Y

W V

⌟
⨿a fa

⨿a ga g

f

the canonical basechange transformation

⨿
a

ga! f ∗a =⇒ f ∗g!

(
resp. f ∗g∗ =⇒∏

a
ga∗ f ∗a

)
is an equivalence.

Here is an omnibus of results due to Jay Shah.

Theorem 1.2.9 ([Sha22a, 5.5-5.12 and §12], [Nar17, Prop. 1.16]). Let C ∈ CatT .
Then:

(1) (Fibrewise criterion) C strongly admits T –colimits indexed by constT (K) if
and only if for every V ∈ T the fibre CV has all colimits indexed by K and for
every morphism f : W → V in T the cocartesian lift f ∗ : CV → CW preserves
colimits indexed by K. A cocone diagram p : constT (K)▷ → C is a T –colimit
if and only if it is so fibrewise.

(1) (T-coproducts criteria) C strongly admits finite T –coproducts if and only if
we have:

(a) For every W ∈ T the fibre CW has all finite coproducts and for every
f : W → V in T the map f ∗ : CV → CW preserves finite coproducts,

(b) C satisfies the left Beck-Chevalley condition (cf. Terminology 1.2.8).
(3) (Decomposition principle) C is T –cocomplete if and only if it has all fibrewise

colimits and strongly admits finite T –coproducts.

Similar statements hold for T –limits, and the right adjoint to f ∗ will be denoted f∗.

Theorem 1.2.10 (Omnibus T –adjunctions, [Sha22a, §8]). Let F : C ⇄ D : G be a
T –adjunction and I be a T –category. Then:
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(1) We get adjunctions F∗ : FunT (I, C) ⇄ FunT (I,D) : G∗, G∗ : FunT (C, I) ⇄
FunT (D, I) : F∗. By Corollary 1.1.25 this implies ordinary adjunctions when
we replace FunT by FunT .

(2) F strongly preserves T –colimits and G strongly preserves T –limits.

Proof. In [Sha22a, Cor. 8.9], part (2) was stated only as ordinary preservation, not
strong preservation. But then strong preservation was implicit since relative ad-
junctions are stable under pullbacks by Proposition 1.1.22, and the statement in
[Sha22a] also holds after pulling back to −×V for all V ∈ T .

Proposition 1.2.11 (T –cocompleteness of Bousfield local subcategories). If L : C ⇄
D : j is a T –Bousfield localisation where C is T –cocomplete, then D is too and
T –colimits in D is computed as L applied to the T –colimit computed in C.

Proof. This is an immediate consequence of Lemma 1.1.27.

Proposition 1.2.12 (T –(co)limits of functor categories is pointwise). Let K, I, C be
T –categories. Suppose C strongly admits K–indexed diagrams. Then so does
FunT (I, C) and the parametrised (co)limits are inherited from that of C.

Proof. This is a direct consequence of the adjunction (colimK)∗ :
FunT (K, FunT (I, C)) ≃ FunT (I, FunT (K, C)) ⇄ FunT (I, C) : const for T –colimits.
The other case is similar.

Definition 1.2.13 (T –Kan extensions). Let j : I → K be a T –functor. If j∗ :
FunT (K,D) −→ FunT (I,D) has a T –left adjoint, then we denote it by j! and call it
the T-left Kan extension. Similarly for T –right Kan extensions.

Proposition 1.2.14 (Fully faithful T –Kan extensions, [Sha22a, Prop. 10.6]). Let i :
C ↪→ D be a T –fully faithful functor and F : C → E be another T –functor. If the
T –left Kan extension i!F exists, then the adjunction unit F ⇒ i∗i!F : C → E is an
equivalence.

Theorem 1.2.15 (Omnibus T –Kan extensions, [Sha22a, Thm. 10.5]). Let C ∈ CatT
be T –cocomplete. Then for every T –functor of small T –categories f : I → K, the
T –left Kan extension f! : FunT (I, C) −→ FunT (K, C) exists.

1.2.2 Strong preservation of T -colimits

We now explain in more detail the notion of strong preservation. In particular, the
reader may find Proposition 1.2.17 to be a convenient alternative description, and
we will have many uses of it in the coming sections.

Observation 1.2.16 (Strong preservations vs preservations). Here are some com-
ments for the distinction. Proposition 1.2.17 will then characterise strong preserva-
tions more concretely.
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(1) Recall Warning 1.2.4 that admitting T –colimits is weaker than being T –
cocomplete. In the proof of the Lurie-Simpson characterisation Theorem 2.2.2,
we will see that we really need T –cocompleteness via Proposition 1.2.17.

(2) However, C admitting T –colimits indexed by p : K → T op does imply
CV admits T/V–colimits indexed by KV . This is because the adjunction
p! : FunT (K, C) ⇄ FunT (∗, C) : p∗ pulls back to the p! : FunV(KV , CV) ⇄
FunV(V, CV) : p∗ adjunction by Proposition 1.1.22. We have also used that
functor T –categories basechange well by Construction 1.1.13.

(3) Strongly preserving fibrewise T –(co)limits is equivalent to preserving these
(co)limits on each fibre since by Theorem 1.2.9 fibrewise (co)limits are con-
structed fibrewise.

The following result was also recorded in the recent [Sha22b, Thm. 8.6].

Proposition 1.2.17 (Characterisation of strong preservations). Let C,D be T –
cocomplete categories and F : C → D a T –functor. Then F strongly preserves
T –colimits if and only if it preserves colimits in each fibre and for all f : W → V in
T , the following square commutes (and similarly for T –limits)

CW CV

DW DV

f!

FW FV

f!

Proof. To see the only if direction, that F preserves colimits in each fibre is clear since
F in particular preserves fibrewise T –colimits. Now for f : W → V, we basechange
to V. Since F strongly preserves T –colimits, we get commutative squares

FunV(W, C ×V) FunV(V, C ×V)

FunV(W,D ×V) FunV(V,D ×V)

f!

(FV)∗ (FV)∗

f!

Taking global sections by using that FunV(W, C × V) ≃ FunT (W, C) ≃ CW from
Example 1.1.4, we get the desired square.

For the if direction, we know by Theorem 1.2.9 that all T –colimits can be decom-
posed as fibrewise T –colimits and indexed T –coproducts, and so if we show strong
preservation of these we would be done. By Observation 1.2.16 (3) strong preser-
vation of fibrewise T –colimits is the same as preserving colimits in each fibre, so
this case is covered. Since arbitrary indexed T –coproducts are just compositions of
orbital T –coproducts and arbitrary fibrewise coproducts by Lemma 1.2.7, we need
only show for orbital T –coproducts, so let f : W → V be a morphism in T . We
need to show that the canonical comparison in
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FunV(W, C ×V) FunV(V, C ×V)

FunV(W,D ×V) FunV(V,D ×V)

f!

(FV)∗ (FV)∗

f!

is a natural equivalence. Since equivalences is by definition a fibrewise notion, we
can check this on each fibre. So let φ : Y → V be in T , and consider the pullback

⨿a Ra Y

W V

⨿ fa

⌟
⨿ φa φ

f

by orbitality of T . We need to show that

FunV(W, C ×V)Y FunV(V, C ×V)Y

FunV(W,D ×V)Y FunV(V,D ×V)Y

f!

(FV)∗ (FV)∗

f!

commutes. But then by the universal property of the internal functor T –categories
from Construction 1.1.13, this is the same as

FunY(⨿a Ra, C ×Y) ≃ FunY(W ×V Y, C ×Y) FunY(Y, C ×Y)

FunY(⨿a Ra,D ×Y) ≃ FunY(W ×V Y,D ×Y) FunY(Y,D ×Y)

f!

(FY)∗ (FY)∗

f!

and this is in turn

∏a CRa CY

∏aDRa DY

⨿( fa)!

∏ Fa FV

⨿( fa)!

which commutes by hypothesis together with that F commutes with fibrewise T –
colimits (and so in particular finite fibrewise coproducts). This finishes the proof of
the result.
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1.2.3 Recollections: mapping spaces and Yoneda

Construction 1.2.18 (Parametrised mapping spaces and Yoneda, [BDG+16b, Def.
10.2]). Let C be a T –category. Then the T –twisted arrow construction gives us a
left T –fibration

(s, t) : TwArT(C) −→ Copopopopopopopopopopopopopopopopop × C

T –straightening this via Theorem 1.1.18 we get a T –functor

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC : Copopopopopopopopopopopopopopopopop × C −→ ST

By [BGN14, §5] we know that MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(−,−) : Copopopopopopopopopopopopopopopopop × C → ST is given on fibre over
V by the map Cop

V × CV → Fun((T/V)
op,S)

(c, c′) 7→
(
(W

f−→ V) 7→ (MapCV
(c, c′)→ MapCW

( f ∗c, f ∗c′)
)

Moreover, by currying we obtain the T –Yoneda embedding

j : C −→ PShT (C) = FunT (C
opopopopopopopopopopopopopopopopop,ST )

which on level V ∈ T is given by

jV : CV ↪→ Total(Copopopopopopopopopopopopopopopopop)×T op Total(V) ↪→ FunV(Copopopopopopopopopopopopopopopopop ×V,SV)

≃ Fun(Total(Copopopopopopopopopopopopopopopopop)×T op Total(V),S)

Remark 1.2.19. By the explicit fibrewise description of the parametrised mapping
spaces above, we see immediately that a T –functor F : C → D is T –fully faithful if
and only if it induces equivalences on MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMap(−,−).

Lemma 1.2.20 (T –Yoneda Lemma, [BDG+16b, Prop. 10.3]). Let C be a T –category
and let X ∈ CV for some V ∈ T . Then for any T/V–functor F : Copopopopopopopopopopopopopopopopop ×V −→ SV , we
have an equivalence of T/V–spaces

F(X) ≃ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPShV(CV)

(
jV(X), F

)
In particular, the T –Yoneda embedding j : C −→ PShT (C) is T –fully faithful.

Proof. First of all note that the V-fibre Yoneda map above factors as

CV Fun(Total(Copopopopopopopopopopopopopopopopop)×T op Total(V),S)

(Total(Copopopopopopopopopopopopopopopopop)×T op Total(V))op

jV

j̃V



1.2 PRELIMINARIES: ORBITAL BASE CATEGORIES 29

This already gives that jV is fully faithful, and so by definition of parametrised
fully faithfulness, the T –yoneda functor j : C → PShT (C) is T –fully faithful. On
the other hand, by the universal property of the T –category of T –objects from
Construction 1.1.16, we can regard F as an ordinary functor F : Total(Copopopopopopopopopopopopopopopopop) ×T op

Total(V)→ S . And so by ordinary Yoneda we get

MapFunV(Copopopopopopopopopopopopopopopopop×V,SV)

(
jV(X), F

)
≃ MapFun(Total(Copopopopopopopopopopopopopopopopop)×T op Total(V),S)

(
jV(X), F

)
≃ F(X) ∈ S

as required.

Theorem 1.2.21 (Continuity of T –Yoneda, [Sha22a, Cor. 11.10]). Let C ∈ CatT . The
T –yoneda embedding j : C → PShT (C) strongly preserves and detects T –limits.

Corollary 1.2.22. Let f : V → W be a map in T . Let B ∈ CV , X ∈ CW , and
f! ⊣ f ∗ ⊣ f∗. Then

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapCW
( f!B, X) ≃ f∗MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapCV

(B, f ∗X) ∈ SW

Proof. Applying Theorem 1.2.21 on Copopopopopopopopopopopopopopopopop, we see that

Copopopopopopopopopopopopopopopopop ↪→ Fun(C,S) :: A 7→ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapCopopopopopopopopopopopopopopopopop(−, A) ≃ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(A,−)

strongly preserves T –limits. Hence, since f∗ in Copopopopopopopopopopopopopopopopop is given by f! in C, we see that

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapCW
( f!B,−) ≃ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapCWopopopopopopopopopopopopopopopopop (−, f!B) ≃ f∗MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapCVopopopopopopopopopopopopopopopopop (−, B) ≃ f∗MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapCV

(B,−)

as required.

Theorem 1.2.23 (T –Yoneda density, [Sha22a, Lem. 11.1]). Let j : C ↪→ PShT (C)
be the T –yoneda embedding. Then idPShT (C) ≃ j! j, that is, everything in the T –
presheaf is a T –colimit of representables.

Theorem 1.2.24 (Universal property of T –presheaves, [Sha22a, Thm. 11.5]). Let
C,D ∈ CatT and suppose D is T –cocomplete. Then the precompositions j∗ :
FunL

T (PShT (C),D) −→ FunT (C,D) and j∗ : FunL
T (PShT (C),D) −→ FunT (C,D)

are equivalences with the inverse given by left Kan extensions. Here FunL
T means

those functors which strongly preserve T –colimits (cf. Notation 1.2.27).

We learnt of the following useful procedure from Fabian Hebestreit.

Definition 1.2.25 (Adjoint objects). Let R : D → C be a T –functor. Let x ∈ C and
y ∈ D and η : x → R(y). We say that η witnesses y as a left adjoint object to x under R
if

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapD(y,−) R−→ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(Ry, R−) η∗−→ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(x, R−)
is an equivalence of T –functors D → ST .
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The following observation, due to Lurie, is quite surprising for ∞-categories: ad-
junctions can be constructed objectwise, ie. to check that we have an adjunction, it
is enough to construct a left adjoint object for each object.

Proposition 1.2.26 (Pointwise construction of adjunctions). R : D → C admits a
left adjoint L : C → D if and only if all objects in C admits a left adjoint object.
More generally, writing CR for the full subcategory of objects admitting left adjoint
objects, we obtain a T –functor L : CR → D that is T –left adjoint to the restriction
of R : D → C to the subcategory of D landing in CR.

Proof. The trick is to use the T –Yoneda lemma to help us assemble the various left
adjoint objects into a coherent T –functor. We consider MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(−, R−) : Copopopopopopopopopopopopopopopopop ×D →
ST as a T –functor H : Copopopopopopopopopopopopopopopopop → FunT (D,ST ). Hence by definition of CR, the bottom
left composition lands in the essential image of the Yoneda embedding and so we
obtain a lift Lopopopopopopopopopopopopopopopopop in the commuting square

Copopopopopopopopopopopopopopopopop
R Dopopopopopopopopopopopopopopopopop

Copopopopopopopopopopopopopopopopop FunT (D,ST )

Lopopopopopopopopopopopopopopopopop

y

H

To see that when CR = C, we get a T –left adjoint, note that by construction y ◦
Lopopopopopopopopopopopopopopopopop ≃ H in FunT (C

opopopopopopopopopopopopopopopopop, Fun(D,ST )), and hence MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapD(L−,−) ≃ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(−, R−) in
FunT (C

opopopopopopopopopopopopopopopopop ×D,ST ). By the characterisation of T –adjunctions from Lemma 1.1.27,
we are done.

Notation 1.2.27. We write RFunT (resp. LFunT ) for the T –full subcategories in
FunT of T –right adjoint functors (resp. T –left adjoint functors). This is distin-
guished from the notations FunR

T (resp. FunL
T ) by which we mean the T –full

subcategories in FunT of strongly T –limit-preserving functors (resp. strongly T –
colimit-preserving functors).

Proposition 1.2.28 (“[Lur09, Prop. 5.2.6.2]”). Let C,D ∈ CatT . Then there is a
canonical equivalence LFunT (D, C) ≃ RFunT (C,D)opopopopopopopopopopopopopopopopop.

Proof. Let j : D ↪→ PShT (D) be the T –Yoneda embedding. Then the T –functor

j∗ : FunT (C,D) ↪→ FunT (C, PShT (D)) ≃ FunT (C ×D
opopopopopopopopopopopopopopopopop,ST )

which is T –fully faithful by Corollary 1.2.34 has essential image consisting of those
parametrised functors φ : C × Dopopopopopopopopopopopopopopopopop → ST such that for all c ∈ C, φ(c,−) : Dopopopopopopopopopopopopopopopopop →
ST is representable. The essential image under j∗ of RFunT (C,D) ⊆ FunT (C,D)
will then be those parametrised functors as above which moreover satisfy that for
all d ∈ D, φ(−, d) : C → ST is corepresentable - this is since T –adjunctions can be
constructed objectwise by Proposition 1.2.26. Let E ⊆ FunT (C × D

opopopopopopopopopopopopopopopopop,ST ) be the
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T –full subcategory spanned by those functors satisfying these two properties, so
that RFunT (C,D) ≃−→ E .

On the other hand, repeating the above for FunT (D
opopopopopopopopopopopopopopopopop, Copopopopopopopopopopopopopopopopop) gives

FunT (D
opopopopopopopopopopopopopopopopop, Copopopopopopopopopopopopopopopopop) ↪→ FunT (D

opopopopopopopopopopopopopopopopop × C,ST )

where the essential image of RFunT (D
opopopopopopopopopopopopopopopopop, Copopopopopopopopopopopopopopopopop) will be precisely those that satisfy

the two properties, and so also RFunT (D
opopopopopopopopopopopopopopopopop, Copopopopopopopopopopopopopopopopop)

≃−→ E . Thus, combining with
RFunT (D

opopopopopopopopopopopopopopopopop, Copopopopopopopopopopopopopopopopop) ≃ LFunT (D, C)opopopopopopopopopopopopopopopopop from Observation 1.1.15, we obtain the desired
result.

1.2.4 (Full) faithfulness

In this subsection we provide the parametrised analogue of the Lurie-Thomason
formula for limits in categories, Theorem 1.2.30, as well as show that parametrised
functor categories preserve (fully) faithfulness in Corollary 1.2.34.

Notation 1.2.29. For p : C → I a T –functor which is also a cocartesian fibration, we
will write Γcocart

T (p) for the T –category of cocartesian sections of p. In other words,
it is the T –category Funcocart

T (I, C)×FunT (I,I) ∗ where Funcocart
T (I, C) means the full

T –subcategory of those that parametrised functors that preserve cocartesian mor-
phisms over I, and the T –functor ∗ → FunT (I, I) is the section corresponding to
the identity on I.

The following proof is just a parametrisation of the unparametrised proof that
we learnt from [HW21, Prop. I.36].

Theorem 1.2.30 (Lurie-Thomason formula). Given a T –diagram F : I → CatT , we
get

limI F ≃ ΓI−cocart
T (UnStrcocart(F))

In particular, if it factors through F : I → ST , then we have limI F ≃
ΓT(UnStrcocart(F)).

Proof. Let d : I → ∗ be the unique map. Since CatT has all T –limits, we know
abstractly that we have the T –right adjoint

d∗ : CatT ⇄ FunT (I, CatT ) : d∗ =: limT

so now we just need to understand the fibrewise right adjoint formula (by virtue of
Corollary 1.1.25). Without loss of generality, we work with global sections and we
want to describe the right adjoint in

d∗ : Fun(T op, Cat) ⇄ FunT (I, CatT ) ≃ Fun(Total(I), Cat) : d∗
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We can now identify d∗ concretely via the straightening-unstraightening equiva-
lence to get d∗ : coCart(T op)→ coCart(Total(I)) given by

C 7→
(
πC : Total(C)×T op Total(I)→ Total(I)

)
Let (p : EF → Total(I)) := UnStrcoCart(F) be the cocartesian fibration associated to
F : Total(I)→ Cat. We need to show that ΓI−cocart

T (p) satisfies a natural equivalence

MapcoCart(Total(I))(πC , p) ≃ MapcoCart(T op)(C, ΓI−cocart
T (p))

for all C ∈ coCart(T op). First of all, by definition we have the pullback

MapcoCart(T op)/ Total(I)
(πC , p) MapcoCart(T op)(Total(C)×T op Total(I), EF)

∗ MapcoCart(T op)(Total(C)×T op Total(I), Total(I))

⌟
πC

which by currying is the same as the pullback

MapcoCart(T op)/ Total(I)
(πC , p) MapcoCart(T op)(C, FunT (I, EF))

∗ MapcoCart(T op)(C, FunT (I, I))

⌟
idI

Now recall that MapcoCart(Total(I))(πC , p) ⊆ MapcoCart(T op)Total(I)
(πC , p) consists pre-

cisely of those components of functors over Total(I) (in the left diagram)

Total(C)×T op Total(I) EF = C FunT (I, EF)

Total(I) FunT (I, I)
πC

p πC
p

preserving cocartesian morphisms over Total(I). Since the cocartesian morphisms
in the cocartesian fibration πC : Total(C) ×T op Total(I) → Total(I) are pre-
cisely the morphisms of Total(I) and an equivalence in C, we see that this con-
dition corresponds in the curried version on the right to those functors landing in
FunI−cocart

T (I, EF). Finally for the statement about the case of factoring over ST re-
call that unstraightening brings us to left fibrations EF → Total(I), and since in left
fibrations all morphisms are cocartesian, we need not have imposed the condition
above. This shows us that we have a bijection of components

π0 MapcoCart(Total(I))(πC , p) ≃ π0 MapcoCart(T op)(C, ΓI−cocart
T (p))

We now need to show that this would already imply that we have an equivalence
of mapping spaces. For this, we will need to first construct a map of spaces realising
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the bijection above. First note that we have a map of cocartesian fibrations over
Total(I)

ε : ΓI−cocart
T (p)× I −→ EF

from the evaluation. Therefore we get the following maps of spaces

MapcoCart(T op)(−, ΓI−cocart
T (p))

I×−−−→ MapcoCart(Total(I))(I ×−, I × ΓI−cocart
T (p))

ε∗−→ MapcoCart(Total(I))(I ×−, EF)

(1.1)

On the other hand, we know by the pullback definition of ΓT that

MapcoCart(T op)(−, ΓT(p)) ≃ MapcoCart(T op)/ Total(I)
(I ×−, EF) (1.2)

and so the comparison map Eq. (1.1) is induced by this equivalence. Our bijection
on components then gives that the equivalence Eq. (1.2) restricts to an equivalence
of spaces Eq. (1.1). This completes the proof of the result.

As far as we are aware the following proof strategy first appeared in [GHN17,
§5].

Proposition 1.2.31 (Mapping space formula in T –functor categories). Let C,D ∈
CatT and F, G : C → D be T –functors. Then we have an equivalence of T –spaces

NatT(F, G) ≃ lim(x→y)∈TwArT(C)MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapD(F(x), G(y)) ∈ ST

Proof. Recall from [BDG+16b, §10] that by definition, the parametrised mapping
spaces are classified by the parametrised twisted arrow categories. By Theo-
rem 1.2.30 we have

lim(x→y)∈TwAr(C)MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapD(F(x), G(y)) ≃ ΓT
(

P→ TwArT(C)
)

where p : P → TwArT(C) is the associated unstraightening. By considering the
pullbacks

P P′ TwArT(D)

TwArT(C) Copopopopopopopopopopopopopopopopop × C Dopopopopopopopopopopopopopopopopop ×D ST

⌟ ⌟

(s,t) Fopopopopopopopopopopopopopopopopop×G MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapD(−,−)

we get that
ΓT
(

P→ TwArT(C)
)
≃ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMap/Copopopopopopopopopopopopopopopopop×C(TwArT(C), P′)
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Now by the parametrised straightening of Theorem 1.1.18 we see furthermore that

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMap/Copopopopopopopopopopopopopopopopop×C(TwArT(C), P′) ≃ NatT
(
MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC , MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapD ◦ (Fopopopopopopopopopopopopopopopopop × G)

)
Currying FunT (C

opopopopopopopopopopopopopopopopop × C,ST ) ≃ FunT (C, PShT (C)) we see that

NatT
(
MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC , MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapD ◦ (Fopopopopopopopopopopopopopopopopop × G)

)
≃ NatT

(
yC , F∗ ◦ yD ◦ G)

)
But then now we have the sequence of equivalences

NatT
(
yC , F∗ ◦ yD ◦ G)

)
≃ NatT

(
F! ◦ yC , yD ◦ G)

)
≃ NatT

(
yD ◦ F, yD ◦ G)

)
≃ NatT(F, G)

where the last equivalence is by Lemma 1.2.20 and the second by the square

C D

PShT (C) PShT (D)

F

yC yD

F!

which commutes by functoriality of presheaves.

Definition 1.2.32. A T –functor is called T -faithful if it is so fibrewise, where an
ordinary functor is called faithful if it induces component inclusions on mapping
spaces.

Observation 1.2.33. For f : X → Y a map of spaces, it being an inclusion of com-
ponents is equivalent to the condition that for each x ∈ X, the fibre fib f (x)

(
X → Y

)
is contractible. On the other hand, it is an equivalence if and only if for each y ∈ Y,
the fibre fiby

(
f : X → Y

)
is contractible. We learnt of this formulation and of the

following proof in the unparametrised case from [Lei22, Appendix B].

Corollary 1.2.34. Let F : C → D be a T –(fully) faithful functor and I another T –
category. Then F∗ : FunT (I, C)→ FunT (I,D) is again T –(fully) faithful.

Proof. Since T –(fully) faithfulness was defined as a fibrewise condition, we just
assume without loss of generality that T has a final object and work on global
sections. In the faithful case, let φ, ψ : I → C be two T –functors. We need to show
that

NatFunT (I,C)(φ, ψ) −→ NatFunT (I,D)(Fφ, Fψ)

is an inclusion of components. By the preceeding observation, we need to show
that for each η ∈ NatFunT (I,C)(φ, ψ), the fibre

fibη

(
NatFunT (I,C)(φ, ψ)→ NatFunT (I,D)(Fφ, Fψ)

)
∈ Γ(ST → T op)
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is contractible. But then we are now in position to use Proposition 1.2.31:

fibη

(
NatFunT (I,C)(φ, ψ)→ NatFunT (I,D)(Fφ, Fψ)

)
≃ lim(x→y)∈TwArT(I)fibη

(
MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapD(φ(x), ψ(y))→ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapD(Fφ(x), Gψ(y))

)
≃ lim(x→y)∈TwArT(I)∗T ≃ ∗T

as was to be shown, where the second last step is by our hypothesis that F was
T –faithful. The case of T –fully faithfulness can be done similarly.

1.2.5 Recollections: filtered colimits and Ind-completions

Construction 1.2.35. Let κ be a regular cardinal. We define the T -Ind-completion
functor Indκ : CatT → CatT to be the one obtained by applying Fun(T op,−) to the
ordinary functor Indκ : Cat→ Cat.

Notation 1.2.36. We will write Funfilt
T for the full T –subcategory of parametrised

functors preserving fibrewise ω–filtered colimits, and similarly Funκ -filt
T for those

that preserve fibrewise κ-filtered colimits.

Remark 1.2.37. This agrees with the definition given in the recent paper [Sha22b]
by virtue of the paragraph after Theorem D therein. As indicated there, Indκ(C) is
the minimal T –subcategory of PShT (C) generated by C under fibrewise κ-filtered
colimits. In more detail, [Sha22b, Rmk. 9.4] showed that the fibrewise presheaf
construction PShfb

T (C) is a T –full subcategory of the T –presheaf PShT (C) via the
fibrewise left Kan extension. In particular, this means that PShfb

T (C) ⊆ PShT (C)
preserves fibrewise colimits. On the other hand, by construction and [Lur09, Cor.
5.3.5.4], Indκ(C) ⊆ PShfb

T (C) is the minimal T –subcategory generated by C under
fibrewise κ-filtered colimits. Therefore, in total, we see that Indκ(C) ⊆ PShT (C) is
the T –subcategory generated by C under fibrewise κ-filtered colimits.

Proposition 1.2.38 (Universal property of Ind, “[Lur09, Prop. 5.3.5.10]”). Let C,D
be T –categories where C is small and D has fibrewise small κ-filtered colimits.
Then:

(1) Indκ(C) ⊆ PShT (C) is the T –subcategory generated by C under fibrewise
κ-filtered colimits.

(2) The T –inclusion i : C ↪→ Indκ(C) induces an equivalence

i∗ : Funκ -filt
T (Indκ(C),D) −→ FunT (C,D)

Proof. Part (1) is by the remark above. For part (2), we show that the T –left Kan
extension functor i! : FunT (C,D) −→ Funκ -filt

T (Indκ(C),D) exists and is an inverse
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to i∗. To do this, it will be enough to show that functors F : C → D can be T –left
Kan extended to i!F : Indκ(C) → D and that functors F : Indκ(C) → D which
preserves fibrewise κ-filtered colimits satisfy that i!i∗F ⇒ F is an equivalence. This
will be enough since we would have shown the natural equivalence i!i∗ ≃ id, and
Proposition 1.2.14 gives that i∗i! ≃ id always.

To show that the T –left Kan extension exists, consider the diagram

C

Indκ(C) D

PShT (C) D′

f

where D ⊆ D′ is a strongly T –colimit preserving inclusion into a T –cocomplete
D′ using the opposite T –Yoneda embedding. In particular by hypothesis D is
closed under κ-filtered colimits in D′. The bottom dashed map is gotten from The-
orem 1.2.24, and so strongly preserves T –colimits. Hence restriction to Indκ(C)
lands in D so we get middle dashed map, and by the following Lemma 1.2.39, this
is a left Kan extension.

Now we show that if F preserves fibrewise κ-filtered colimits, then the canonical
comparison i!i∗F ⇒ F is an equivalence. Again, by Proposition 1.2.14 we know that
both sides agree on C ⊆ Indκ(C). Also, both sides preserve κ-filtered colimits by
assumption. Hence, by statement (1) of the proposition, we see that it must be an
equivalence as was to be shown.

Lemma 1.2.39. Suppose we have fully faithful functors C i
↪−→ D

j
↪−→ E and functors

C f−→ A
y
↪−→ B, where B is T –(co)complete. Suppose we have a factorisation j∗ j!i!(y ◦

f ) : C f−→ A
y
↪−→ B. Then f ≃ i! f : D → A.

Proof. Let φ : D → A. We need to show that Nat( f , φ) ≃ Nat( f , i∗φ). We compute:

Nat( f , φ) ≃ Nat(y ◦ f , y ◦ φ)

= Nat(j∗ j!i!(y ◦ f ), y ◦ φ)

≃ Nat(y ◦ f , i∗ j∗ j∗(y ◦ φ))

≃ Nat(y ◦ f , i∗(y ◦ φ) ≃ Nat( f , i∗φ)

where the first and last equivalences are since y was fully faithful; the fourth equiv-
alence is since j was fully faithful and so Proposition 1.2.14 applies. The relevant
Kan extensions exist since B was assumed to be T –(co)complete.
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We learnt of the following proof method from Markus Land.

Lemma 1.2.40. For C,D ∈ Cat, we have a functor Fun(C,D) →
Fun(Ind(C), Ind(D)) that takes F : C → D to Ind(F) : Ind(C)→ Ind(D).

Proof. We know that Ind(E × C) ≃ Ind(E)× Ind(C). In particular, we get functors

∆n × Ind(C) −→ Ind(∆n × C) ≃ Ind(∆n)× Ind(C)

natural in both ∆n and C. These then induce a map of simplicial spaces

Fun(∆• × C,D)≃ −→ Fun(Ind(∆• × C), Ind(D))≃ −→ Fun(∆• × Ind(C), Ind(D))≃

where the first map is just by the (∞, 1)–functoriality of Ind. Via the complete
Segal space model of ∞-categories, we see that we have the desired functor which
behaves as in the statement by looking at the case • = 0.

Lemma 1.2.41 (Ind adjunctions). Let f : C ⇄ D : g be an adjunction. Then we also
have an adjunction F := Ind( f ) : Ind(C) ⇄ Ind(D) : Ind(g) =: G.

Proof. By [RV19, Def. 1.1.2] we know that such an adjunction is tantamount to the
data of η : idC ⇒ g f and ε : f g⇒ idD such that we have the triangle identities

C C = C

D D D

f
ε

η
g

g
g g
⇒
idg

and the analogous other triangle. Now, we have Fun(C, C)→ Fun(Ind(C), Ind(C))
by Lemma 1.2.40 and so the the triangle identity on the source gets sent to a triangle
identity on the target.

Theorem 1.2.42 (Diagram decomposition, [Sha22b, Thm. 8.1]). Let C be a T –
category, J a category, and p• : J → (CatT )/C a functor with colimit the T –functor
p : K → C and suppose that for all j ∈ J, the T –functor pj : K j → C admits a
T –colimit σj. Then the σj’s assemble to a T –functor σ• : constT (J) → C so that if
σ• admits a T –colimit σ, then p admits a T –colimit given by σ.

Corollary 1.2.43 (Parametrised filtered colimit decomposition, “[Lur09, Cor.
4.2.3.11]”). Let τ ≪ κ be regular cardinals and C be a T –category admitting τ-
small T –colimits and fibrewise colimits indexed by κ-small τ-filtered posets. Then
for any κ-small T –diagram d : K → C, its T –colimit in C exists and can be decom-
posed as a fibrewise κ-small τ-filtered colimit whose vertices are τ-small T –colimits
of C.
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Proof. Let J denote the poset of τ-small T –subcategories of K. It is clearly τ-filtered
and moreover it is κ-small by the hypothesis that τ ≪ κ. We can therefore apply
the theorem above since the associated σ• : constT (J) → C will admit a T –colimit
by hypothesis.

Theorem 1.2.44 (Limit-filtered colimit exchange, special case of [Sha22b,
Thm. C]). Let κ be a regular cardinal and J a κ–filtered category. Then
colimconstT (J) : Fun(constT (J),SSSSSSSSSSSSSSSSST ) −→ SSSSSSSSSSSSSSSSST strongly preserves T –κ–small T –
colimits.

1.3 Preliminaries: atomic orbital base categories
Finally, we begin to impose the strictest conditions on our base category T . From
here on, T will be assumed to be both orbital and atomic.

1.3.1 Recollections: parametrised semiadditivity and stability

In this subsection we recall the algebraic constructions and results of [Nar17].

Construction 1.3.1. The following list of constructions will be important in dis-
cussing T –semiadditivity and T –stability. See [Nar17, §2.2] for the original source
on these constructions. Note that we have adopted the notation of Span instead of
the original notation of effective Burnside categories Aeff.

(1) Write Span(T ) := Span(FinT ).
(2) By [Nar17, Cons. 2.11], there is a T –category p : SpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpan(T) → T op whose

objects are morphisms [U → V] in FinT where V ∈ T and the cocartesian
fibration p sends [U → V] to V. The morphisms in this category are spans

U W U′

V V′ V′

(1.3)

(3) From this we obtain a wide T –subcategory Fin∗T ⊂ SpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpan(T) whose mor-
phisms are spans as in Eq. (1.3) such that the map W → U ×V V′ in FinT is
a summand inclusion: this makes sense since T was assumed to be orbital
and so FinT admits the pullback U ×V V′ which will be a finite coproduct of
objects of V.

(4) There is a canonical inclusion ∗ ↪→ Fin∗T given by sending W → V to

V W W

V W W
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Definition 1.3.2. Let C strongly admit finite T –coproducts and D strongly admit
finite T –products. Then we say that a T –functor F : C → D is T -semiadditive
if it sends finite T –coproducts to finite T –products. We say that a T –category C
strongly admitting finite T –products and T –coproducts is T –semiadditive if the
identity functor is T –semiadditive. If moreover C has fibrewise pushouts and
D has fibrewise pullbacks, then we say that F is T –linear if it is T –semiadditive
and sends fibrewise pushouts to fibrewise pullbacks. We write Funsadd

T (C,D)
(resp. LinT (C,D)) for the T –full subcategories of FunT (C,D) consisting of the
T –semiadditive functors (resp. T –linear functors).

Notation 1.3.3. For C strongly admitting finite T –limits we will denote T –Mackey
functors by MackT(C) := Funsadd

T (SpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpan(T), C) and T –commutative monoids by
CMonT (C) := Funsadd

T (Fin∗T , C).

Proposition 1.3.4 (T –semiadditivisation, [Nar17, Prop. 2.27]). Let C be a T –
category strongly admitting finite T –products. Then the functor CMonT (C) → C
induced by the inclusion ∗ ↪→ Fin∗T from Construction 1.3.1 (4) is an equivalence
if and only if C were T –semiadditive.

Theorem 1.3.5 (“CMon = Mackey”, [Nar17, Thm. 2.32]). Let C strongly admit finite
T –limits. Then the defining inclusion j : Fin∗T ↪→ SpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpan(T) induces an equivalence

j∗ : Funsadd
T (SpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpanSpan(T), C) −→ CMonT (C)

Notation 1.3.6. We write Funex
T , Funlex

T , and Funrex
T for the category of T –functors

which strongly preserve finite T –(co)limits, strongly preserve finite T –limits, and
strongly preserve finite T –colimits, respectively.

Construction 1.3.7. Let SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSppw : Catlex
T → Catlex

T be the functor obtained by ap-
plying Fun(T op,−) to Sp : Catlex → Catlex. Now let D ∈ CatT strongly ad-
mitting finite T –limits. Then we can define its T –stabilisation to be SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpT (D) :=
CMonT (SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSppw(D)). In particular, applying this to the case D = ST , we get
SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpT := CMonT (SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSppw(ST )) which is called T –category of genuine T –spectra. Note
that this is different from the notation in [Nar17, Defn. 2.35] where he used SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpT

instead, and reserved SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpT for what we wrote as SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSppw. We prefer the notation we
have adopted as it aligns well with all the parametrised subscripts (−)T and the
superscripts are reserved for modifiers such as (−)ω or (−)∆1

that we will need
later.

Theorem 1.3.8 (Universal property of T –stabilisations, [Nar17, Thm. 2.36]). Let C
be a pointed T –category strongly admitting finite T –colimits and D a T –category
strongly admitting finite T –limits. Then the functor Ω∞ : Funrex

T (C, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpT (D)) −→
LinT (C,D) is an equivalence of T –categories. In particular, we see that SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpT (D) ≃
LinT (S

fin
∗T ,D).
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1.3.2 Parametrised symmetric monoidality and commutative al-
gebras

Recollections 1.3.9. There is a notion of T –operads mimicking the notion of ∞-
operads, in the sense of [Lur17, §2.1], due to Nardin in [Nar17, §3]. A T –symmetric
monoidal category is then a T –category C⊗ equipped with a cocartesian fibra-
tion over Fin∗T satisfying the T –operad axioms analogous to the operad axioms
of [Lur17, Definition 2.1.1.10]. Alternatively, the T –category of T –symmetric
monoidal categories is also given as CMon(Cat) much like in the unparametrised
setting. Furthermore, there is also the attendant notion of T -inert morphisms defined
as those morphisms in Fin∗T where the the map W → U′ is an equivalence (cf. the
span notation in Eq. (1.3)). The T –category of T -commutative algebras CAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgT (C⊗)
of a T –symmetric monoidal category C⊗ is then defined to be Funinert

Fin∗T
(Fin∗T , C⊗)

where Funinert
Fin∗T

⊆ FunFin∗T is the T –full subcategory of functors over Fin∗T pre-
serving T –inert morphisms. We refer the reader to the original source [Nar17, §3.1]
for details on this.

Terminology 1.3.10. Let C⊗,D⊗ be T –symmetric monoidal categories. By a T -
symmetric monoidal localisation L⊗ : C⊗ → D⊗ we mean a T –symmetric monoidal
functor whose underlying T –functor is a T –Bousfield localisation. By the proof
of [Nar17, Prop. 3.5], we see that the T –right adjoint canonically refines to a T –
lax symmetric functor. Hence in this situation we obtain a relative adjunction over
Fin∗T

C⊗ D⊗

Fin∗T

L⊗

in the sense of [Lur17, §7.3.2] whose counit is moreover an equivalence.

Lemma 1.3.11 (T –adjunction on T –commutative algebras, “[GGN15, Lem. 3.6]”).
Let C⊗,D⊗ be T –symmetric monoidal categories and L⊗ : C⊗ → D⊗ a T –
symmetric monoidal localisation. Then there is an induced T –Bousfield localisa-
tion L′ : CAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgT (C)→ CAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgT (D) such that the diagram

CAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgT (C) CAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgT (D)

C D

L′

R′

L

R

commutes, where the vertical maps are given by

CAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgT (C) := Funinert
T (Fin∗T , C⊗)×FunT (Fin∗T ,Fin∗T ) ∗ −→ FunT (∗, C) ≃ C
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induced by the inclusion ∗ ↪→ Fin∗T , which lands in the T –inerts. Moreover, given
A ∈ CAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgT (C) there is a unique T –commutative algebra structure on RLA such
that the unit map A→ RLA enhances to a morphism of T –commutative algebras.

Proof. First note that we have the adjunction squares

Funinert
T (Fin∗T , C⊗) Funinert

T (Fin∗T ,D⊗)

FunT (Fin∗T , C⊗) FunT (Fin∗T ,D⊗)

L′

R′

L⊗∗

R⊗∗

where the bottom T –adjunction is by Theorem 1.2.10 and has the property that the
counit is an equivalence. Now [Lur17, Prop. 7.3.2.5] says that relative adjunctions
are stable under pullbacks and the property of being T –functors is of course pre-
served by pullbacks too, and so we get the square

CAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgT (C) CAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgT (D)

Funinert
T (Fin∗T , C⊗)×FunT (Fin∗T ,Fin∗T ) ∗ Funinert

T (Fin∗T ,D⊗)×FunT (Fin∗T ,Fin∗T ) ∗

FunT (Fin∗T , C⊗)×FunT (Fin∗T ,Fin∗T ) ∗ FunT (Fin∗T ,D⊗)×FunT (Fin∗T ,Fin∗T ) ∗

L′

R′

L⊗∗

R⊗∗

Then the square in the statement of the result is just composition of this square
with the one induced by the inclusion ∗ ↪→ Fin∗T namely

CAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgT (C) CAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgT (D)

FunT (Fin∗T , C)×FunT (Fin∗T ,Fin∗T ) ∗ FunT (Fin∗T ,D)×FunT (Fin∗T ,Fin∗T ) ∗

C = FunT (∗,D) D = FunT (∗,D)

L′

R′

L⊗∗

R⊗∗

L∗

R∗

For the next part, we know already that R′L′A comes with a canonical T –
commutative algebra map η′ : A → R′L′A given by the L′ ⊣ R′ unit evaluated
at A. By the square in the statement we see that this forgets to the L ⊣ R unit
η : A → RLA. Now if η′′ : A → R′B is another such map of T –commutative
algebras, then by universality of η′ we have an essentially unique factorisation
ϕ ◦ η′ : A → R′L′A → R′B. Now fgt : CAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgT (C) → C is conservative by [Lur17,
Lem. 3.2.2.6], thus since ϕ forgets to the identity, ϕ must have been an equivalence
in CAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgT (C) as required.
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1.3.3 Indexed (co)products of categories

We now investigate various permanence properties of indexed products on cate-
gories. To begin with, recall the following from [Nar17, Cons. 3.14].

Construction 1.3.12 (Indexed products of categories). Let f : U → U′ be a map of
finite T –sets. Then Construction 1.1.16 gives us the equivalences in

f ∗ : Fun(Total(U′), Cat) ≃ FunT (U′, CatT )→ FunT (U, CatT ) ≃ Fun(Total(U), Cat)

This has a right adjoint f∗ (also written ∏ f ). Thus, for C ∈ CatU and D ∈ CatD we
have

FunU′
(
D, f∗C

)
≃ FunU( f ∗D, C)

By setting D = V we see that f∗C is a T/U′–category with V–fibre given by

FunU(UV , C) ≃ ∏
O∈Orbit(U×U′V)

CO

where UV is the model for the corepresentable T –category associated to U ×U′ V
whose fibre over [W → U] is given by the space of commutative squares in FinT

W U

V U′

Lemma 1.3.13 (Indexed constructions preserve adjunctions). Let f : W → V be in
T . Let L : C ⇄ D : R be a T/W–adjunction and M : A⇄ B : N be a T/V–adjunction.
Then

f∗L : f∗C ⇄ f∗D : f∗R f ∗M : f ∗A⇄ f ∗B : f ∗N

are T/V– and T/W–adjunctions respectively.

Proof. By Corollary 1.1.25, we need to show that these induce fibrewise adjunctions.
This is clear for the pair ( f ∗M, f ∗N) since fibrewise they are the same as (M, N);
for ( f∗L, f∗R), we use that (unparametrised) products of adjunctions are again ad-
junctions.

Lemma 1.3.14 ((Co)unit of indexed products). The T –cofree category CatT strongly
admits T –products, and for f : W → V, X ∈ T/W , and Y ∈ T/V , we have that
( f∗D)Y ≃ ∏M∈Orbit(Y×VW)DM and moreover:

• The unit is given by η = F∗ : CY −→ ( f∗ f ∗C)Y = ∏M∈Orbit(Y×VW) CM where
F : Y×V W → Y is the structure map from the pullback,

• The counit is given by ε = proj : ( f ∗ f∗C)X = ∏N∈Orbit(X×VW)DN −→ DX the
component projection (see the proof for why we have this).
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Proof. We know that f ∗ : Fun((T/V)
op, Cat) −→ Fun((T/W)op, Cat) abstractly has

a right adjoint f∗ via right Kan extension, and the formula for ordinary right Kan
extensions gives us the required description (which is also gotten from Construc-
tion 1.3.12).

To describe the (co)units, we have to check the triangle identities

f ∗ f ∗ f∗ f ∗ f∗ f∗ f ∗ f∗

f ∗ f∗

f ∗η

ε f ∗

η f∗

f∗ε (1.4)

First of all we clarify why we have the counit map as stated. For this it will be
helpful to write carefully the datum φ : X →W instead of just X. Consider

X

X×V W X

W V

φ ⌟ f φ

f

This shows that X is a retract of X ×V W, and so by atomicity, we get that X was
an orbit in the orbit decomposition of X ×V W, and so the component projection
ε : ( f ∗ f∗D)X = ∏N∈Orbit(X×VW)DN −→ DX is well-defined

To check the first triangle identity, let (φ : X →W) ∈ T/W and consider

⨿a Na X

W V

⨿a ξa

⌟ f φ

f

where one of the Na’s is X, by the argument above. Then we have that the compo-
sition in the first triangle in Eq. (1.4) is(

( f ∗C)X ( f ∗ f∗ f ∗C)X ( f ∗C)X

)
≃
(
CX ∏a CNa CX

)f ∗η ε f ∗ ∏a ξ∗a proj

which is of course the identity since ξa = id in the case Na = X.
The second triangle identity is slightly more intricate. Let (ψ : Y → V) ∈ T/V .

We consider two pullbacks (where the right square is for each b appearing in the
left square)



1.3 PRELIMINARIES: ATOMIC ORBITAL BASE CATEGORIES 44

⨿b Mb Y ⨿cb
M̃cb Mb

W V W V

⨿b ζb

⨿b ρb
⌟

ψ

⨿cb
ℓcb

⌟ f ρb

f f

From this, the composition in the second triangle in Eq. (1.4) is(
( f∗D)Y

η f∗−−→ ( f∗ f ∗ f∗D)Y
f∗ε−−→ ( f∗D)Y

)
≃
(

∏
b
DMb

∏b ∏cb
ℓ∗cb−−−−−→∏

b
∏
cb

DM̃cb

∏b proj−−−−→∏
b
DMb

)
which is the identity map as wanted since Mb is one of the orbits in ⨿cb

M̃cb by the
argument above. Here we have used the diagram

( f∗D)Y ∏b( f∗D)Mb

∏bDMb ∏b ∏cb
DM̃cb

η f∗=∏b ζ∗b

∏b ∏cb
ℓ∗cb

to analyse the map η f∗ , which in turn comes from the top square in

⨿cb
M̃cb Mb

⨿b Mb Y

W V

W V

⌟

⨿cb
ℓcb

⨿cb
ℓcb ⌟

ζb

⌟
f

f

This finishes the proof.

1.3.4 Norms and adjunctions

We now recall the notion of T –distributivity and indexed tensor products (also
termed norms) of categories introduced in [Nar17, §3.3 and §3.4].

Definition 1.3.15. Let f : U → V be a map in FinT , C ∈ CatT/U , D ∈ CatT/V , and
F : f∗C → D be a T/V–functor. Then we say that F is T/V–distributive if for every
pullback
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U′ V′

U V

f ′

g′
⌟ g

f

in FinT and T/U′–colimit diagram p : K▷ → g′∗C, the VVVVVVVVVVVVVVVVV′–functor

( f ′∗K)
▷ can−−→ f ′∗(K

▷)
f ′∗p−−→ f ′∗p′∗C ≃ g∗ f∗C

g∗F−−→ g∗D

is a T/V′–colimit. We write Funδ
V( f∗C,D) for the subcategory of T/V–distributive

functors.

Construction 1.3.16 (Norms of categories). Let f : U → V be a map in FinT and
C a T/U–category which is T/U–cocomplete. Then we define the f -norm f⊗C, if it
exists, to be a T/V–cocomplete category admitting a T/V–distributive functor τ :
f∗C → f⊗C such that for any other T/V–cocomplete category, the following functor
is an equivalence

τ∗ : FunL
V( f⊗C,D)→ Funδ

V( f∗C,D)
We also write this as f⊗ =

⊗
f .

Lemma 1.3.17 (Norms preserve adjunctions). Let F : C ⇄ D : G be a T/U–
adjunction such that G itself admits a right adjoint and f : U → V be a map in
FinT . Then this induces a T/V–adjunction

f⊗F : f⊗C ⇄ f⊗D : f⊗G

Proof. Recall from Lemma 1.3.13 that we have a T/V–adjunction f∗F : f∗C ⇄ f∗D :
f∗G and since G itself has a right adjoint, both f∗F and f∗G strongly preserve T/V–
colimits. Now observe that this adjunction can equivalently be encoded by the data
of morphisms (

η : id⇒ ( f∗G) ◦ ( f∗F)
)
∈ FunL

V( f∗C, f∗C)(
ε : ( f∗F) ◦ ( f∗G)⇒ id

)
∈ FunL

V( f∗D, f∗D)
whose images under the functors

( f∗F)∗ : FunL
V( f∗C, f∗C)→ FunL

V( f∗C, f∗D)

( f∗F)∗ : FunL
V( f∗D, f∗D)→ FunL

V( f∗C, f∗D)
respectively compose to a morphism equivalent to the identity

f∗F ( f∗F) ◦ ( f∗G) ◦ ( f∗F)

f∗F

f∗F(η)

ε f∗F
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and similarly for the other triangle identity. Now, we have commutative squares

f∗C f∗D

f⊗C f⊗D

φ

f∗F

f∗G
ψ

f⊗F

f⊗G

where φ : f∗C → f⊗C, ψ : f∗D → f⊗D are the universal distributive functors: this
is since G strongly preserves T –colimits by hypothesis. This yields

FunL
V( f∗C, f∗C) FunL

V( f∗C, f∗D) FunL
V( f∗D, f∗D)

Funδ
V( f∗C, f⊗C) Funδ

V( f∗C, f⊗D) Funδ
V( f∗D, f⊗D)

FunL
V( f⊗C, f⊗C) FunL

V( f⊗C, f⊗D) FunL
V( f⊗D, f⊗D)

φ∗

( f∗F)∗

ψ∗

( f∗F)∗

ψ∗

( f⊗F)∗ ( f⊗F)∗

φ∗ ≃
( f⊗F)∗

φ∗ ≃
( f⊗F)∗

ψ∗ ≃

Then the morphism
(
η : id ⇒ ( f∗G) ◦ ( f∗F)

)
∈ FunL

V( f∗C, f∗C) in the top left
corner gets sent to a morphism

(
η̃ : id⇒ ( f⊗G) ◦ ( f⊗F)

)
∈ FunL

V( f⊗C, f⊗C) in the
bottom left, and similarly for ε. Then by the characterisation of adjunctions above,
since the composition of the images in the middle top term is equivalent to the
identity, so is the image in the middle bottom term, that is, we have the commuting
diagram

f⊗F ( f⊗F) ◦ ( f⊗G) ◦ ( f⊗F)

f⊗F

f⊗F(η̃)

ε̃ f⊗F

and similarly for the other triangle identity. This witnesses that we have a T/V–
adjunction f⊗F ⊣ f⊗G as required.

Recollections 1.3.18 (T –tensors and norms, [Nar17, pg. 37]). Let V, W ∈ T and C⊗
a T –symmetric monoidal category. Then we get the structure of tensor products
and norm functors as follows:

• (Tensor functor): Consider the morphism in Fin∗T given by

V ⨿ V V ⨿ V V

V V V

∇ ∇

∇
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The cocartesian lifts along this morphism give us the tensor product

⊗ : CV × CV ≃ CV ⨿ V −→ CV

• (Norm functor): Suppose f : V →W is a morphism in T . Consider

V V W

W W W

f f

f

The cocartesian lifts along this morphism give us the norm functor

N f : CV ≃ C
⊗
[ f :V→W]

−→ C⊗
[W=W]

≃ CW

Note that it might have been tempting to define the norm functor as the push-
forward along the more obvious morphism

V V W

V V W

f

f

instead, but the problem is that this is not a morphism in Fin∗T because by
definition the bottom right map needs to be the identity!



Chapter 2

Parametrised
presentability

We now investigate the notion of compactness and presentability in the
parametrised context. Since this topic is tightly intertwined with colimits, the base
category T will always be orbital in this chapter (cf. the guide in the overview
of Chapter 1). It turns out that T –presentable categories are nothing but T –
cocomplete categories which are fibrewise presentable in the unparametrised sense
of [Lur09, Ch. 5]. Two highlights are seven characterisations of parametrised pre-
sentability Theorem 2.2.2 analogous to [Lur09, Thm. 5.5.1.1] and the adjoint functor
Theorem 2.2.3. We then use these as tools to deduce standard results about pre-
sentable localisations and closure of presentability under various categorical con-
structions.

After that, we turn to study semiadditive and stable presentables in §2.3. As
commented in the overview of Chapter 1, we will further stipulate that T is also
atomic. Among other things, we prove Theorem 2.3.4 which shows that the T –
semiadditive-presentables embed fully faithfully in T –Mackey functors valued in
semiadditive presentables. Moreover, we even characterise the essential image as
the T –Mackey functors whose abstract transfers are equivalent to the left and right
adjoints of the restrictions via the canonical Beck-Chevalley maps (which exist by
our crucial hypothesis of atomic orbitality of T ): we expect, but have not proven,
that this should be encoded by the 2–category of spans in T where the 2–morphisms
would allow us to encode the required adjunctions. In any case, this theorem gives
a direct comparison between the internal and external notions of parametrised
semiadditive-presentability, as it were, and we hope that it clarifies the interplay
between the parametrised and the unparametrised concepts. These will prepare
the ground for our study of equivariant algebraic K–theory of G–perfect-stable cat-
egories in the next part of the thesis.
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2.1 Parametrised smallness adjectives
We now introduce the notion of T –compactness and T –idempotent-completeness.
Not only are these notions crucial in proving the characterisations of T –
presentables in Theorem 2.2.2, they are also fundamental for the applications we
have in mind for parametrised algebraic K–theory in Part II. The moral of this sec-
tion is that these are essentially fibrewise notions and should present no conceptual
difficulties to those already familiar with the unparametrised versions. Recall that
we will assume throughout that T is orbital.

2.1.1 Parametrised compactness

Recall that an object X in a category C is compact if MapC(X,−) : C → S com-
mutes with filtered colimits (cf. [Lur09, §5.3.4]). In this subsection we intro-
duce the parametrised analogue of this notion and study its interaction with Ind-
completions.

Definition 2.1.1. Let C be a T –category and V ∈ T . A V-object in C (ie. an object
in FunT (V, C)) is T/V–κ-compact if it is fibrewise κ-compact. We will also use the
terminology parametrised-κ-compact objects when we allow V to vary. We write Cκ

for the T –subcategory of parametrised-κ-compact objects, that is, (Cκ)V is given by
the full subcategory of T/V–κ-compact objects.

Notation 2.1.2. We write Funκ
T for the full T –subcategory of parametrised functors

preserving parametrised κ-compact objects.

Warning 2.1.3. In general, for V ∈ T op, the inclusion (Cκ)V ⊆ (CV)
κ is not an

equivalence - the point is that parametrised-κ-compactness must be preserved un-
der the cocartesian lifts f ∗ : CV → CW for all f : W → V, but these do not preserve
κ-compactness in general.

This definition of compactness makes sense by virtue of the following:

Proposition 2.1.4 (Characterisation of parametrised-compactness). Let C admit fi-
brewise κ-filtered T –colimits. A T –object C ∈ FunT (∗, C) is κ–T –compact in the
sense above if and only if for all V ∈ T and all fibrewise κ-filtered T/V–diagram
d : constV(K)→ CV the comparison

colimconstV(K)
MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapCV

(CV , d)→ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapCV
(CV , colimconstV(K)d)

is an equivalence.

Proof. Suppose C is κ–T –compact. We are already provided with the compari-
son map above, and we just need to check that it is an equivalence, which can
be done by checking fibrewise. Since Total(V) = (T/V)

op has an initial object, we
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can assume that T has a final object. So let W ∈ T . Recall that as in the proof of
Lemma 1.1.27 we have(

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(C, d)
)

W
≃
(

MapC•(C•, d•)
)
•∈(T/W )op

∈ Fun((T/W)op,S)

Then (
colimconstV(K)

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapCV
(CV , d)

)
W
≃ colim

K

(
MapC•(C•, d•)

)
•∈(T/W )op

≃−→
(

MapC•(C•, colim
K

d•)
)
•∈(T/W )op

where the first equivalence is since fibrewise parametrised colimits are com-
puted fibrewise, and the comparison map is an equivalence since colimits in
Fun((T/V)

op,S) are computed pointwise, and C is pointwise κ-compact by hypoth-
esis.

Now for the reverse direction, let C ∈ C satisfy the property in the statement and
V ∈ T arbitrary. We want to show that CV ∈ CV is κ-compact, that is: for any
ordinary small κ-filtered diagram d : K → CV , we have that

colim
K

MapCV
(CV , d)→ MapCV

(CV , colim
K

d)

is an equivalence. Now recall that CV = FunV(V, CV) by Example 1.1.4 and so by
adjunction we obtain from d : K → CV a T/V–functor d : constV(K) −→ CV . In this
case the desired comparison is an equivalence by virtue of the following diagram

colimK MapCV
(CV , d) MapCV

(CV , colimK d)

(
colimconstV(K)

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapCV
(CV , d)

)
V

(
MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapCV

(CV , colimconstV(K)d)
)

V
≃

where the bottom map is an equivalence by hypothesis. This finishes the proof.

Observation 2.1.5. By the characterisation of T –compactness above together with
the T –Yoneda Lemma 1.2.20, and that T –colimits in T –functor categories are com-
puted in the target by Proposition 1.2.12 we see that the T –Yoneda embedding
lands in PShT (C)κ .

Proposition 2.1.6 (T –compact closure, “[Lur09, Cor. 5.3.4.15]”). Let κ be a regular
cardinal and C be T –cocomplete. Then Cκ is closed under κ-small T –colimits in C,
and hence is κ–T –cocomplete.

Proof. Let d : K → Cκ be a κ-small T –diagram. Since all κ-small T –colimits can be
decomposed as κ-small fibrewise T –colimits and T –coproducts by the decomposi-
tion principle in Theorem 1.2.9 (3), we just have to treat these two special cases. The
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former case is clear by [Lur09, Cor. 5.3.4.15] since everything is fibrewise. For the
latter case, let V be a corepresentable T –category, A be a κ-filtered category, and
f : constT (A) → C be a κ-filtered fibrewise T –diagram. We need to show that the
map in ST

colimconstT (A)MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(colimVd, f ) −→ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(colimVd, colimconstT (A) f )

is an equivalence. In this case, since we have for the source

colimconstT (A)MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(colimVd, f ) ≃ colimconstT (A)limVopopopopopopopopopopopopopopopopop MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(d, f )

and for the target

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(colimVd, colimconstT (A) f ) ≃ limVopopopopopopopopopopopopopopopopopcolimconstT (A)MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(d, f ),

Theorem 1.2.44 gives the required equivalence, using also that Vopopopopopopopopopopopopopopopopop is still corepre-
sentable by Observation 1.1.8.

2.1.2 Parametrised Ind-completions and accessibility

Proposition 2.1.7 (Ind fully faithfulness, “[Lur09, Prop. 5.3.5.11]”). Let C ∈ CatT
and D ∈ ĈatT which strongly admits fibrewise κ-filtered colimits. Suppose F :
IndκC → D strongly preserves fibrewise κ-filtered colimits and f = F ◦ j : C → D.

(i) If f is T –fully faithful and the T –essential image lands in Dκ , then F is T –
fully faithful.

(ii) If f is T –fully faithful, lands in Dκ , and the T –essential image of f generates
D under fibrewise κ-filtered colimits, then F is moreover a T –equivalence.

Proof. We prove (i) two steps. The goal is to show that

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapIndκC(A, B)→ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapD(FA, FB)

is an equivalence. First suppose A ∈ C and write B ≃ colimiBi as a fibrewise
filtered colimit where Bi ∈ C. We can equivalently compute MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapIndκC(A, B) as
MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPShT (C)(A, B), and so

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapIndκC(A, B) ≃ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPShT (C)(A, colimiBi) ≃ colimiMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPShT (C)(A, Bi)

≃ colimiMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapIndκC(A, Bi)

and
MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapD(FA, FcolimiBi) ≃ colimiMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapD( f A, f Bi)

where for the second equivalence we have used both hypotheses that F preserves
fibrewise κ-filtered colimits and that the image lands in Dκ . This completes this
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case. For a general A ≃ colimi Ai where Ai ∈ C and the T –colimit is fibrewise
κ-filtered, we have

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPShT (C)(A, B) ≃ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPShT (C)(colimi Ai, B) ≃ limiMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPShT (C)(Ai, B)
≃−→ limiMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapD(FAi, FB)

≃ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapD(FA, FB)

where the third equivalence is by the special case above, and so we are done. For
(ii), we have shown T –fully faithfulness, and T –essential surjectivity is by hypoth-
esis.

Lemma 2.1.8. Let D ∈ CatT . Then the T –Yoneda embedding y : D ↪→
Funlex

T (Dopopopopopopopopopopopopopopopopop,ST ) strongly preserves finite T –colimits.

Proof. Suppose k : K → D is a finite T –diagram. We need to show that the map

colimKMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapD(−, k)→ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapD(−, colimKk)

in Funlex
T (Dopopopopopopopopopopopopopopopopop,ST ) is an equivalence. So let φ ∈ Funlex

T (Dopopopopopopopopopopopopopopopopop,ST ) be an arbitrary
object. Then mapping the morphism above into this and using Yoneda, we obtain

φ(colimKk) −→ limKopopopopopopopopopopopopopopopopop φ(k)

which is an equivalence since φ is a T –left exact functor.

We thank Maxime Ramzi for teaching us the following slick proof, which is dif-
ferent from the standard one from [BGT13, Prop. 3.2], for instance.

Proposition 2.1.9. Let D ∈ CatT . Then Ind(D) ≃ Funlex(Dopopopopopopopopopopopopopopopopop,ST ). In particular, if
D were T –stable, then Ind(D) ≃ Funex(Dopopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpT ).

Proof. First of all, note that Funlex(Dopopopopopopopopopopopopopopopopop,ST ) ⊆ Fun(Dopopopopopopopopopopopopopopopopop,ST ) is closed under
fibrewise filtered colimits since fibrewise filtered colimits commutes with finite
T –limits in ST by Theorem 1.2.44. Hence y : D ↪→ Funlex(Dopopopopopopopopopopopopopopopopop,ST ) induces
y : Ind(D) −→ Funlex(Dopopopopopopopopopopopopopopopopop,SSSSSSSSSSSSSSSSST ) which we then know is T –fully faithful by Propo-
sition 2.1.7. Moreover, since y strongly preserves finite T –colimits by Lemma 2.1.8,
y strongly preserves small T –colimits. Hence, by Theorem 2.2.3, it has a right ad-
joint R : Funex(Dopopopopopopopopopopopopopopopopop,SSSSSSSSSSSSSSSSST ) → Ind(D) (we are free to use this result here since the
present situation will not feature anywhere in the proof of adjoint functor theorem).
If we can show that this right adjoint is conservative, then we would have shown
that y and R are inverse equivalences. But conservativity is clear by mapping from
representable functors and an immediate application of Yoneda. Finally, the state-
ment for the T –stable case is a straightforward consequence of Theorem 1.3.8.
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Proposition 2.1.10 (“[Lur09, Prop. 5.3.5.12]”). Let C ∈ CatT and κ a regular cardi-
nal. Then the canonical functor F : Indκ(PShT (C)κ)→ PShT (C) is an equivalence.

Proof. To see that F is an equivalence, we want to apply Proposition 2.1.7. Let j :
PShT (C)κ ↪→ Indκ(PShT (C)κ) be the canonical embedding. That the composite
f := F ◦ j is T –fully faithful and lands in PShT (C)κ is clear. To see that the essential
image of f generates PShT (C) under fibrewise κ-filtered colimits, recall that any
X ∈ PShT (C) can be written as a small T –colimit of a diagram valued in C ⊆
PShT (C) by Theorem 1.2.23. Then Corollary 1.2.43 gives that X can be written as
a fibrewise κ-filtered colimit taking values in E ⊆ PShT (C) where each object of E
is itself a κ-small T –colimit of some diagram taking values in C ⊆ PShT (C)κ . But
then by Proposition 2.1.6 we know that E ⊆ PShT (C)κ , and so this completes the
proof.

Proposition 2.1.11 (Characterisation of T –compacts in T –presheaves, “[Lur09,
Prop. 5.3.4.17]”). Let C ∈ CatT and κ a regular cardinal. Then a T –object
C ∈ PShT (C) is κ–T –compact if and only if it is a retract of a κ-small T –colimit
indexed in C ⊆ PShT (C).

Proof. The if direction is clear since C ⊆ PShT (C)κ and by the compact closure of
Proposition 2.1.6 we know that κ–T –compacts are closed under κ-small T –colimits
and retracts.

Now suppose C is κ–T –compact. First of all recall by Theorem 1.2.23 that C ≃
colima j(Ba) where j : C ↪→ PShT (C) is the T –Yoneda embedding and Ba ∈ C.
Combining this with Corollary 1.2.43 yields

C = colima j(Ba) ≃ colim f∈constT (F)colim(
p f :K f→C⊆PShT (C)

)p f

where F is a κ-filtered category. But then by Proposition 2.1.4 we then have that

idC ∈ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(C, C) ≃ colim f∈constT (F)MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(C, colim(
p f :K f→C⊆PShT (C)

)p f )

Hence we see that C is a retract of some colim(
p f :K f→C⊆PShT (C)

)p f as required.

Definition 2.1.12. Let κ be a regular cardinal and C a T –category. We say that C is
κ–T –accessible if there is a small T –category C0 and a T –equivalence Indκ(C0)→ C.
We say that C is T –accessible if it is κ–T –accessible for some regular cardinal κ. A
T –functor out of a T –accessible C is said to be T -accessible if it strongly preserves
all fibrewise κ-filtered colimits for some regular cardinal κ.

Lemma 2.1.13 (T –accessibility of T –adjoints, “[Lur09, Prop. 5.4.7.7]”). Let G : C →
C ′ be a T –functor between T –accessibles. If G admits a right or a left T –adjoint,
then G is T –accessible.
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Proof. The case of left T –adjoints is clear since these strongly preserve all T –
colimits, so suppose G ⊣ F. Choose a regular cardinal κ so that C ′ is κ-accessible,

ie. C ′ = IndκD for some D small. Consider the composite D j−→ IndκD
F−→ C. Since

D is small there is a regular cardinal τ ≫ κ so that both C is τ-accessible and the
essential image of F ◦ j consists of τ-T –compact objects of C. We will show that G
strongly preserves fibrewise τ-filtered colimits.

Since IndκD ⊆ PShT (D) is stable under small τ-filtered colimits by Proposi-
tion 1.2.38 it will suffice to prove that

G′ : C G−→ IndκD → PShT (D)

preserves fibrewise τ-filtered colimits. Since colimits in presheaf categories are
computed pointwise by Proposition 1.2.12 it suffices to show this when evaluated
at each D ∈ DV for all V ∈ T . Without loss of generality we just work with D ∈ D,
ie. a T –object D ∈ FunT (∗,D). In other words, by the T –Yoneda lemma we just
need to show that

G′D : C G−→ IndκD ↪→ PShT (D)
MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPShT (D)(j(D),−)
−−−−−−−−−−−→ ST

preserves fibrewise τ-filtered colimits. But G is a right adjoint and so by
Lemma 1.1.27

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPShT (D)(j(D), G(−)) ≃ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapIndκD(j(D), G(−)) ≃ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(Fj(D),−)

By assumption on τ, Fj lands in τ-compact objects, completing the proof.

2.1.3 Parametrised idempotent-completeness

Recall that every retraction r : X ⇄ M : i gives rise to an idempotent self-map
i ◦ r of X since (i ◦ r) ◦ (i ◦ r) ≃ i ◦ (r ◦ i) ◦ r ≃ i ◦ r. On the other hand, in gen-
eral, not every idempotent self-map of an object in a category arises in this way,
and a category is defined to be idempotent-complete if every idempotent self-map
of an object arises from a retraction (cf. [Lur09, §4.4.5]). We now introduce the
parametrised version of this.

Definition 2.1.14. A T –category is said to be T -idempotent-complete if it is so fibre-
wise. A T –functor f : C → D is said to be a T -idempotent-completion if it is fibrewise
an idempotent-completion (cf. [Lur09, Def. 5.1.4.1]).

Observation 2.1.15 (Consequences of fibrewise definitions). Here are some facts
we can immediately glean from our fibrewise definitions.

(i) We know that for C small, Indκ(Indκ(C)κ) ≃ Indκ(C), and so since T –
compactness and T –Ind objects are fibrewise notions, we also get that for
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any small T –category C we have Indκ

(
Indκ(C)κ

)
≃ IndκC. Here we have

used crucially that Indκ(C)κ is really just fibrewise compact, that is, that the
cocartesian lifts of the cocartesian fibration IndκC → T op preserve κ-compact
objects. This is because Indκ(−)κ computes the idempotent-completion by
[Lur09, Lem. 5.4.2.4], which is a functor.

(ii) By the same token, C → (IndκC)κ exhibits the T –idempotent-completion of
C for any small T –category C.

The following result will be crucial in the proof of Theorem 2.2.2.

Proposition 2.1.16 (T –Yoneda of idempotent-complete, “[Lur09, Prop. 5.3.4.18]”).
Let C be a small T –idempotent-complete T –category which is κ–T –cocomplete.
Then the T –Yoneda embedding j : C → PShT (C)κ has a T –left adjoint.

Proof. By Proposition 1.2.26 we construct the adjunction objectwise. Let D ⊆
PShT (C) be the full subcategory generated by all presheaves M where there exists
ℓM ∈ C satisfying

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPShT (C)(M, j(−)) ≃ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(ℓM,−)

By definition, the desired left adjoint exists on this full subcategory, and hence it
would suffice now to show that PShT (C)κ ⊆ D.

We first claim that D is closed under retracts and inherits κ–T –cocompleteness
from PShT (C). If MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPShT (C)(N, j(−)) is a retract of MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPShT (C)(M, j(−)) inside
PShT (C). But then MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPShT (C)(M, j(−)) is in the Yoneda image from C, which is
idempotent-complete, and hence its retract is also in the Yoneda image.

To see that D ⊆ PShT (C) inherits κ–T –cocompleteness, consider

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPShT (C)(colimK Mk, j(−)) ≃ limKopopopopopopopopopopopopopopopopopMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPShT (C)(Mk, j(−))
≃ limKopopopopopopopopopopopopopopopopopMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(ℓMk,−)
≃ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(colimKℓMk,−)

where the last is since C is κ–T –cocomplete by hypothesis.
Now Proposition 2.1.11 says that everything in PShT (C) is a retract of κ-small
T –colimits of the Yoneda image C ⊆ PShT (C). Hence, since C ⊆ D clearly, the
paragraphs above yield that PShT (C)κ ⊆ D as required.

2.2 Parametrised presentability
We are now ready to formulate and prove two of the main results in this paper,
namely the characterisations of T –presentables in Theorem 2.2.2 and the T –adjoint
functor theorem, Theorem 2.2.3. As we shall see, given all the technology that we
have, the proofs for these parametrised versions will present us with no especial
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difficulties either because we can mimic the proofs of [Lur09] almost word-for-
word, or because we can deduce them from the unparametrised versions (as in
the cases of the adjoint functor theorem or the presentable Dwyer-Kan localisation
Theorem 2.2.10). In subsections §2.2.3 and §2.2.4 we will also develop the important
construction of localisation–cocompletions. We will then prove the parametrised ana-
logue of the correspondence between presentable categories and small idempotent-
complete ones in Theorem 2.2.16 as well as record the various expected permanence
properties for parametrised presentability in §2.2.7 and §2.2.6.

2.2.1 Characterisations of parametrised presentability

Definition 2.2.1. A T –category C is T –presentable if C is T –accessible and is T –
cocomplete.

We are now ready for the Lurie-Simpson-style characterisations of parametrised
presentability. Note that characterisation (7) is a purely parametrised phenomenon
and has no analogue in the unparametrised world. The proofs for the equivalences
between the first six characterisations is exactly the arguments in [Lur09] and so
the expert reader might want to jump ahead to the parts that concern point (7).

Theorem 2.2.2 (Characterisations for parametrised presentability, “[Lur09, Thm.
5.5.1.1]”). Let C be a T –category. Then the following are equivalent:

(1) C is T –presentable.
(2) C is T –accessible, and for every regular cardinal κ, Cκ is κ–T –cocomplete.
(3) There exists a regular cardinal κ such that C is κ–T –accessible and Cκ is κ–T –

cocomplete
(4) There exists a regular cardinal κ, a small T –idempotent-complete and κ–T –

cocomplete category D, and an equivalence IndκD → C. In fact, this D can
be chosen to be Cκ .

(5) There exists a small T –idempotent-complete categoryD such that C is a κ–T –
accessible Bousfield localisation of PShT (D). By definition, this means that
the image is κ–T –accessible, and so by Lemma 2.1.13 the T –right adjoint is
also a κ–T –accessible functor and hence the Bousfield localisation preserves
κ–T –compacts.

(6) C is locally small and is T –cocomplete, and there is a regular cardinal κ and
a small set G of T-κ-compact objects of C such that every T –object of C is a
small T –colimit of objects in G.

(7) C satisfies the left Beck-Chevalley condition (Terminology 1.2.8) and there is a
regular cardinal κ such that the straightening C : T op −→ Ĉat factors through
C : T op −→ PrL,κ .
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Proof. That (1) implies (2) is immediate from Proposition 2.1.6. That (2) implies (3)
is because by definition of T –accessibility, there is a κ such that C is κ–T –accessible,
and since the second part of (2) says that Cτττττττττττττττττ is τ-T –cocomplete for all τ, this is true
in particular for τ = κ so chosen. To see (3) implies (4), note that accessibility is
a fibrewise condition and so we can apply the characterisation of accessibility in
[Lur09, Prop. 5.4.2.2 (2)]. To see (4) implies (5), let D be given by (4). We want
to show that C is a T –accessible Bousfield localisation of PShT (D). Consider the
T –Yoneda embedding (it lands in κ–T –compacts by Observation 2.1.5)

j : D ↪→ PShT (D)κ

This has a T –left adjoint ℓ by Proposition 2.1.16. Define L := Indκ(ℓ) and J :=
Indκ(j), so that, since Indκ is a fibrewise construction, we have a T –adjunction by
Lemma 1.2.41

L : Indκ(PShT (D)κ) ⇄ IndκD : J

where J is T –fully faithful by Proposition 2.1.7. But then by Proposition 2.1.10, we
get Indκ(PShT (D)κ) ≃ PShT (D) and this completes this implication.

To see (5) implies (6), first of all PShT (D) is locally small and so C ⊆ PShT (D) is
too. Moreover, Bousfield local T –subcategories always admit T –colimits admitted
by the ambient category and so C is T –cocomplete. For the last assertion, consider
the composite

φ : D ↪→ PShT (D)
L−→ C

Since PShT (D) is generated by D under small T –colimits by Theorem 1.2.23 and
since L preserves T –colimits, we see that C is generated under T –colimits by
Im φ. To see that Im φ ⊆ Cκ , note that since by hypothesis C was κ–T –accessible,
we know from Lemma 2.1.13 that the T –right adjoint of L is automatically T –
accessible, and so L preserves κ–T –compacts, and we are done.

To see (6) implies (1), by definition, we just need to check that C is κ–T –accessible.
Assumption (6) says that everything is a T –colimit of T –compacts, but we need to
massage this to say that everything is a fibrewise κ-filtered T –colimit of an essen-
tially small subcategory - note this is where we need the assumption about G and
not just use all of Cκ , the problem being that the latter is not necessarily small.
Let C ′ ⊆ Cκ be generated by G and C ′ ⊆ C ′′ ⊆ Cκ be the κ–T –colimit closure of
C ′: here we are using that C ′′ ⊆ Cκ since κ–T –compacts are closed under κ-small
T –colimits Proposition 2.1.6. Then since small T –colimits decompose as κ-small
T –colimits and fibrewise κ-filtered colimits, we get that C is generated by C ′′ ⊆ C
under κ-filtered colimits, as required.

Now to see (5) implies (7), suppose we have a T –Bousfield localisation F :
PShT (C) ⇄ D : G. For f : W → V in T we have
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PShT (C)V = Fun(Total(Copopopopopopopopopopopopopopopopop ×V),S) DV

PShT (C)W = Fun(Total(Copopopopopopopopopopopopopopopopop ×W),S) DW

f ∗

FV

f ∗
GV

f!
FW

f∗

GW

f! f∗

where all the solid squares commute. We need to show a few things, namely:

• That the dashed adjoints exist.
• That f ∗ : DV → DW preserves κ-compacts.
• That f! ⊣ f ∗ on D satisfies the left Beck-Chevalley conditions.

To see that the dashed arrows exist, define f! to be FV ◦ f! ◦ GW . This works since

MapDV
(FV ◦ f! ◦ GW−,−) ≃ MapPShT (C)W

(GW−, f ∗ ◦ GV−)

≃ MapPShT (C)W
(GW−, GW ◦ f ∗−)

≃ MapDW
(−, f ∗−)

To see that f∗ exists, we need to see that f ∗ preserves ordinary colimits. For this, we
use the description of colimits in Bousfield local subcategories. So let φ : K → DV
be a diagram. Then

f ∗ colim
K⊆DV

φ ≃ f ∗FV
(

colim
K⊆PShV

GV ◦ φ
)

≃ FW f ∗
(

colim
K⊆PShV

GV ◦ φ
)

≃ FW
(

colim
K⊆PShW

f ∗ ◦ GV ◦ φ
)

≃ FW
(

colim
K⊆PShW

GW ◦ f ∗ ◦ φ
)

=: colim
K⊆DW

f ∗ ◦ φ

And hence f ∗ preserves colimits as required, and so by presentability, we ob-
tain a right adjoint f∗. This completes the first point. Now to see that f ∗ :
DV → DW preserves κ-compacts, note that f ∗ : PShT (C)V → PShT (C)W does
since f∗ : PShT (C)W → PShT (C)V is κ-accessible by Lemma 2.1.13. Hence since
f ∗FV ≃ FW f ∗, taking right adjoints we get f∗GW ≃ GV f∗. By hypothesis (5), G was
κ-accessible and so since it is also fully faithful fibrewise, we get that f∗ : DW → DV
is κ-accessible, as required. For the third point, we already know from Propo-
sition 1.2.11 that D is T –cocomplete, and so f! must necessarily give the indexed
coproducts which satisfy the left Beck-Chevalley condition by Theorem 1.2.9.

Finally to see (7) implies (1), Theorem 1.2.9 says that C is T –cocomplete, and
so we are left to show that it is κ–T –accessible. But then this is just because
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C ≃ Indκ(Cκ) by [Lur09, Prop. 5.3.5.12] (since parametrised-compacts and
ind-completion is just fibrewise ordinary compacts/ind-completion because the
straightening lands in PrL,κ). This completes the proof for this step and for the
theorem.

2.2.2 The adjoint functor theorem

We now deduce the parametrised version of the adjoint functor theorem from the
unparametrised version using characterisation (7) of Theorem 2.2.2. Interestingly,
and perhaps instructively, the proof shows us precisely where we need the notion
of strong preservation and not just preservation (cf. Definition 1.2.3 and the discus-
sion in Observation 1.2.16).

Theorem 2.2.3 (Parametrised adjoint functor theorem). Let F : C → D be a T –
functor between T –presentable categories. Then:

(1) If F strongly preserves T –colimits, then F admits a T –right adjoint.
(2) If F strongly preserves T –limits and is T –accessible, then F admits a T –left

adjoint.

Proof. We want to apply Corollary 1.1.25. To see (1), observe that the ordinary ad-
joint functor theorem gives us fibrewise right adjoints FV : CV ⇄ DV : GV . To see
that this assembles to a T –functor G, we just need to check that the dashed square
in the diagram

CV DV

CW DW

FV

f! f!
GW

FW
f ∗ f ∗

GW

commutes. But then the left adjoints of the dashed compositions are the solid ones,
which we know to be commutative by hypothesis that F strongly preserves T –
colimits (and so in particular indexed coproducts, see Observation 1.2.16). Hence
we are done for this case and part (2) is similar.

We will need the following characterisation of functors that strongly preserve
T –colimits between T –presentables in order to understand the correspondence be-
tween T –presentable categories and small T –idempotent-complete ones.

Proposition 2.2.4 (“[Lur09, Prop. 5.5.1.9]”). Let f : C → D be a T –functor between
T –presentables and suppose C is κ–T –accessible. Then the following are equiva-
lent:

(a) The functor f strongly preserves T –colimits
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(b) The functor f strongly preserves fibrewise κ-filtered colimits, and the restric-
tion f |Cκ strongly preserves κ–T –colimits.

Proof. That (a) implies (b) is clear since Cκ ⊆ C creates T –colimits by Proposi-
tion 2.1.6. Now to see (b) implies (a), let C = Indκ(Cκ) where Cκ is κ–T –cocomplete
and T –idempotent-complete category by Proposition 2.1.6. Now by the proof of
(4) implies (5) in Theorem 2.2.2 we have a T –Bousfield adjunction

L : PSh(Cκ) ⇄ C : k

Now consider the composite

j∗ f : Cκ j−→ C f−→ D

By the universal property of T –presheaves we get a strongly T –colimit-preserving
functor F fitting into the diagram

Cκ D

C

PShT (Cκ)

j∗ f

jy

k

f

F:=y! j∗ f

We know then that f ≃ k∗y! j∗ f = k∗F. On the other hand, we can define a functor

F′ := f ◦ L ≃ F ◦ k ◦ L : PShT (Cκ) −→ C −→ D

The T –Bousfield adjunction unit idPShT ⇒ k ◦ L gives us a natural transformation

β : F =⇒ F′ = F ◦ k ◦ L

If we can show that β is an equivalence then we would be done, since F, and so F′ =
f ◦ L, strongly preserves T –colimits. Hence since L was a T –Bousfield localisation,
f also strongly preserves T –colimits, as required.

To see that β is an equivalence, let E ⊆ PShT (Cκ) be the full T –subcategory
on which β is an equivalence. Since both F and F′ strongly preserve fibrewise κ-
filtered colimits, we see that E is stable under such. Hence it suffices to show that
PShT (Cκ)κ ⊆ E since the inclusion will then induce the T –functor PShT (Cκ) ≃
Indκ(PShT (Cκ)κ)→ E which is an equivalence by Proposition 2.1.7 (2).

Since L ◦ k ≃ id we clearly have Cκ ⊆ E , ie. that β : F ⇒ F′ is an equivalence on
Cκ ⊆ PShT (Cκ). On the other hand, by Proposition 2.1.6 we know that PShT (Cκ)κ is
κ–T –cocomplete, and its objects are retracts of κ-small T –colimits valued in Cκ ⊆
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PShT (Cκ) by Proposition 2.1.11. Thus it suffices to show that F and F′ strongly
preserve κ-small T –colimits when restricted to PShT (Cκ)κ . That F does is clear
since it in fact strongly preserves all small T –colimits. That F′ does is because it
can be written as the composition

F′|PShT (Cκ)κ : PShT (Cκ)κ L−→ Cκ f−→ D

where L is a T –left adjoint and f strongly preserves κ-small T –colimits by as-
sumption. Here we have crucially used that L lands in Cκ since this category is
T –idempotent-complete and κ–T –cocomplete.

2.2.3 Dwyer-Kan localisations

Terminology 2.2.5. We recall the clarifying terminology of [Hin16] in distinguish-
ing between Bousfield localisations, as defined in Definition 1.1.21, and Dwyer-Kan
localisations. By the latter, we will mean the following: let C be a T –category and S
a class of morphisms in C such that f ∗(SW) ⊆ SV for all f : V → W in T . Suppose
a T –category S−1C exists and is equipped with a map f : C → S−1C inducing the
equivalence

f ∗ : FunT (S
−1C,D) ≃−→ FunS−1

T (C,D)

for all T –categoriesD, where FunS−1

T (C,D) ⊆ FunT (C,D) is the full subcategory of
parametrised functors sending morphisms in S to equivalences. Such a T –category
must necessarily be unique if it exists, and this is then defined to be the T –Dwyer-
Kan localisation of C with respect to S. The following proposition shows that being a
T –Bousfield localisation is stronger than that of being a T –Dwyer-Kan localisation.

Proposition 2.2.6 (Bousfield implies Dwyer-Kan). Let C, LC be T –categories and
L : C ⇄ LC : i be a T –Bousfield localisation. Let S be the collection of morphisms in
C that are sent to equivalences under L. Then the functor L induces an equivalence
L∗ : FunT (LC,D) ≃−→ FunS−1

T (C,D) for any T –category D so that LC is a Dwyer-
Kan localisation against S.

Proof. Since L ⊣ i was a T –Bousfield localisation, we know that i∗ :
FunT (LC,D) ⇄ FunT (C,D) : L∗ is also a T –Bousfield localisation by Theo-
rem 1.2.10, and so in particular L∗ is T –fully faithful. The image of L∗ also clearly
lands in FunS−1

T (C,D), and so we are left to show T –essential surjectivity. By
basechanging if necessary, we just show this on FunS−1

T (C,D). Let φ : C → D
be a T –functor that inverts morphisms in S. We aim to show that φ ⇒ φ ◦ i ◦ L is
an equivalence. Since L ⊣ i was a T –Bousfield localisation, the unit η : id ⇒ i ◦ L
gets sent to an equivalence under L, and so η ∈ S. Since φ inverts S by assumption,
in particular it inverts η.
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Proposition 2.2.7. T –presentable categories are T –complete.

Proof. Let C be T –presentable so that it is a T –Bousfield localisation of some T –
presheaf category PShT (D) by description (5) of Theorem 2.2.2. We know that
PShT (D) is T –complete and so all we need to show is that T –Bousfield local sub-
categories are closed under T –limits which exist in the ambient category. But this
is clear since T –Bousfield local subcategories can be described by a mapping-into
property.

Observation 2.2.8. We can define strong saturation in the parametrised setting just
to be strong saturation fibrewise, and clearly this condition is closed under arbitrary
intersections as in [Lur09, Rmk. 5.5.4.7]. Therefore it still makes sense to talk about
the strongly saturated class generated by a class of morphisms.

Terminology 2.2.9. For S ⊆ C a collection of morphisms, an object X ∈ C is said to
be S–local if MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(−, X) sends morphisms in S to equivalences.

The following result, which will be crucial for our application in Part II, is an-
other example of the value of characterisation (7) from Theorem 2.2.2. The proof of
the unparametrised result, given by Lurie in [Lur09, §5.5.4], is long and technical,
and characterisation (7) allows us to obviate this difficulty by bootstrapping from
Lurie’s statement.

Theorem 2.2.10 (Parametrised presentable Dwyer-Kan localisations). Let C be a T-
presentable category and S a small collection of T -morphisms of C (ie. if f : V →W
in T and y → z a morphism in SW , then f ∗y → f ∗z is in SV). Let S−1C ⊆ C be the
full subcategory of S-local objects. Then:

(1) We have a T –accessible T –Bousfield localisation L : C ⇄ S−1C : i.

(2) For any T –category C, the T –functors L∗ : FunT (S−1C,D) −→ FunS−1

T (C,D)
and L∗ : FunL

T (S
−1C,D) −→ FunL,S−1

T (C,D) are equivalences.

Proof. For (1), we know from [Lur09, Prop. 5.5.4.15] that we already have fibrewise
Bousfield localisations, and all we need to do is show that these assemble to a T –
Bousfield localisation via Corollary 1.1.25. Let f : V → W be in T . We need to
show that

CV S−1CV

CW S−1CW

LV

LW

f ∗ f ∗

commutes, and for this, we first note that the diagram



2.2 PARAMETRISED PRESENTABILITY 63

CV S−1CV

CW S−1CW

f∗

iV

f∗

iW

commutes where here f∗ exists since C is T –complete by Proposition 2.2.7. Now
recall by definition that f ∗(SW) ⊆ SV and so for y→ z in SW the map

MapCW
(z, f∗x) ≃ MapCV

( f ∗z, x) −→ MapCV
( f ∗y, x) ≃ MapCV

(y, f∗x)

is an equivalence, which implies that f∗ takes S-local objects to S-local objects. Now
by uniqueness of left adjoints, the first diagram commutes, as required. Now (2) is
just a consequence of Proposition 2.2.6.

2.2.4 Localisation–cocompletions

In this subsection we formulate and prove the construction of localisation–
cocompletions whose proof is exactly analogous to that of [Lur09]. As far as we
can see, unfortunately the proof cannot be bootstrapped from the unparametrised
statement as with the proof of Theorem 2.2.10 because the notion of a parametrised
collection of diagrams might involve diagrams that are not fibrewise in the sense of
Example 1.2.2.

Definition 2.2.11 (Parametrised collection of diagrams). Let C ∈ CatT . A
parametrised collection of diagrams in C is defined to be a triple (C,K,R) where:

• K is a collection of small categories parametrised over T op, ie. a collection
KV of small T/V–categories for each V ∈ T .

• R is a parametrised collection of diagrams in C whose indexing categories
belong to K, ie. for each V ∈ T a collection of coconed diagramsRV indexed
over categories in KV .

Theorem 2.2.12 (T –localisation–cocompletions, “[Lur09, Prop. 5.3.6.2]”). Let
(C,K,R) be a parametrised collection of diagrams in C. Then there is a T –category
PShKR(C) and a T –functor j : C → PShKR(C) such that:

(i) The category PShKR(C) is K–T –cocomplete, ie. it strongly admits K–indexed
T –colimits, CV admits K–indexed T/V–colimits.

(ii) For every K-T –cocomplete category D, the map j induces an equivalence of
T –categories

j∗ : FunKT (PShKR(C),D) −→ FunRT (C,D)
where the source denotes the T –category of functors which strongly preserve
K–indexed colimits and the target consists of those functors carrying each
diagram inR to a parametrised colimit diagram in D.
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(iii) If each member of R were already a T –colimit diagram in C, then in fact j is
T –fully faithful.

Proof. We give first all the constructions. By enlarging the universe, if necessary,
we may reduce to the case where:

• Every element of K is small
• That C is small
• The collection of diagramsR is small

Let y : C ↪→ PShT (C) be the T –yoneda embedding and let V ∈ T . For a T/V–
diagram p̄ : K▷ → CV with cone point Y, let X denote the T/V–colimit of y ◦ p :
K → PShT (C)V . This induces a T/V–morphism in PShT (C)V

s : X → y(Y)

Here we have used that PShT (C)V ≃ PShV(CV) by Construction 1.1.13. Now let
S be the set of all such T/V–morphisms running over all V ∈ T . This is small by
our assumption and so let L : PShT (C) → S−1PShT (C) denote the T –Bousfield
localisation from Theorem 2.2.10. Now we define PShKR(C) ⊆ S−1PShT (C) to be
the smallest K–cocomplete full T –subcategory containing the image of L ◦ y : C →
PShT (C)→ S−1PShT (C). We show that this works and prove each point in turn.

Point (i) is true by construction, and so there is nothing to do. For point (ii), let
D be K–T –cocomplete. We now perform a reduction to the case when D is T –
cocomplete. By taking the opposite Yoneda embedding we see that D sits T –fully
faithfully in a T –cocomplete category D′ and the inclusion strongly preserves K–
colimits. We now have a square of T –categories (where the vertical functors are
T –fully faithful by Corollary 1.2.34)

FunKT (PShKR(C),D) FunRT (C,D)

FunKT (PShKR(C),D′) FunRT (C,D′)

ϕ:=j∗

ϕ′ :=j∗

We claim this is cartesian in ĈatT if ϕ′ were an equivalence: given this, to prove that
ϕ is an equivalence, it suffices to prove that ϕ′ is an equivalence. For this, we need
to show that the map into the pullback is an equivalence. That ϕ′ is an equivalence
ensures that the map into the pullback is fully faithful. To see essential surjectivity,
let F : PShKR(C) → D′ be a strongly K–colimit preserving functor that restricts to
C → D. Then in fact F lands in D ⊆ D′ since D ⊆ D′ is stable under K–indexed
colimits, and by construction, PShKR(C) is generated under K–indexed colimits by
C.

Now we turn to showing ϕ is an equivalence in the case D is T –cocomplete.
Let E ⊆ PShT (C) be the inverse image L−1PShKR(C) and S be the collection of all
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morphisms α in E such that Lα is an equivalence. Since the T –Bousfield localisation
L : PSh(C) ⇄ S−1PSh(C) : i induces a T –Bousfield localisation L : E ⇄ PShKR(C) :

i we see by Proposition 2.2.6 that L∗ : FunT (PShKR(C),D) → FunS−1

T (E ,D) is an
equivalence. Furthermore, by using the description of colimits in T –Bousfield local
subcategories as being given by applying the localisation L to the colimit in the
ambient category, we see that f : PShKR(C) → D strongly preserves K–colimits if
and only if f ◦ L : E → D does. This gives us the following factorisation of ϕ

ϕ : FunKT (PShKR(C),D)
L∗−→
≃

FunS−1,K
T (E ,D) j∗−→ FunRT (C,D)

and hence we need to show that the functor j∗ is an equivalence. Since D is T –
cocomplete, we can consider the T –adjunction j! : FunRT (C,D) ⇄ FunKT (E ,D) : j∗.
We need to show:

• that j! lands in FunS−1,K
T (E ,D),

• that j! ◦ j∗ ≃ id on FunS−1,K
T (E ,D) and j∗ ◦ j! ≃ id.

For the first point, fix a V ∈ T . Since relative adjunctions are closed under pull-
backs by Proposition 1.1.22 and since FunT (C,D)V ≃ FunV(CV ,DV) by Construc-

tion 1.1.13, we also get a T/V-adjunction j! : Fun
RV
V (CV ,DV) ⇄ Fun

KV
V (EV ,DV) :

j∗. Suppose F : CV → D is a V–functor that sends RV to V–colimit diagrams. We
want to show that j!F : EV → DV inverts maps in S, ie. those maps that get inverted
by LV . Consider

CV

EV DV

PShV(CV)

j
F

y

k y! F

Note that j!F ≃ k∗y!F since j! = id◦ j! ≃ k∗k! j! ≃ k∗y!. Now since y!F : PShV(CV)→
DV strongly preserves V–colimits and since EV is stable under K–indexed colimits

in PShV(CV) (since PSh
KV
RV

(CV) was closed under K–colimits by construction) it
follows that j!F ≃ k∗y!F strongly preserves K–colimits. Now note that the maps in
S ⊆ PShV(CV) are inverted by y!F since these were the maps comparing colimit in
PShV(CV) and cone point in CV , and by hypothesis, F, and hence y!F turns these
into equivalences. Therefore, by the universal property of Dwyer-Kan localisations
Theorem 2.2.10, y!F : PShV(CV) → D factors through the Bousfield localisation
L, and so in particular inverts S, so that j!F ≃ k∗y!F does too. Also y!F strongly
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preserves all V–colimits by the universal property of presheaves, and so j!F ≃ k∗y!F
strongly preserves K–colimits since the inclusion k : EV ↪→ PShV(CV) does.

For the second point, since j was T –fully faithful, we have that j∗ ◦ j! ≃ id
as usual by Proposition 1.2.14. For the equivalence j! ◦ j∗ ≃ id, suppose F ∈
FunS−1,K

T (E ,D). Write F′ := j! j∗F. By universal property of Kan extensions we have
α : F′ = j! j∗F → F and we want to show this is an equivalence. Since F inverts S by
hypothesis and j! j∗F also inverts S by the claim of the previous paragraph, we get
the diagram

CV

EV DV

PSh
KV
RV

(CV)

j

LV

F

F′

f ′
f

The transformation α induces a transformation β : f ′ → f since FunS−1

V (EV ,DV) ≃
FunV(PSh

KV
RV

(CV),DV) and we want to show that β is an equivalence. To begin
with, note that it is an equivalence on the image of the embedding j : CV ↪→
PSh

KV
RV

(CV). Since F and F′ strongly preserve K–colimits, hence so do f ′ and f .

Therefore, f ′ → f is an equivalence on all of PSh
KV
RV

(CV) since this V-category was
by construction generated under these colimits by C. This completes the proof of
point (ii).

Finally, for point (iii), suppose every element ofRwere already a colimit diagram

in C. The Yoneda map can be factored, by construction, as j : C ↪→ E L−→ PShKR(C)
where the first map is T –fully faithful. Since the restriction L|S−1PShT (C) ≃ id, it
will suffice to show that j lands in S−1PShT (C). That is, that C is S-local, ie. for
each V ∈ T and C ∈ CV , and for each f : W → V in T and s : X → jY in SW , we
need to see that

s∗ : MapPShT (C)W
(jY, j f ∗C) −→ MapPShT (C)W

(X, j f ∗C)

is an equivalence. To see this, the hypothesis of (iii) gives Y = colimK⊆CW
φ. Then

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPShT (C)W
(jY, j f ∗C) ≃ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapCW

(colimK⊆CW
φ, f ∗C) ≃ limKopopopopopopopopopopopopopopopopop⊆CW

opopopopopopopopopopopopopopopopop MapC (φ, f ∗C)
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where the first equivalence is by Yoneda. On the other hand,

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPShT (C)W
(X, j f ∗C) ≃ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPShT (C)W

(colimK j ◦ φ, j f ∗C)

≃ limKopopopopopopopopopopopopopopopopopMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPShT (C)W
(jφ, j f ∗C)

≃ limKopopopopopopopopopopopopopopopopopMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapCW
(φ, f ∗C)

and so taking the section over W, one checks that these two identifications are com-
patible with the map s∗. This completes the proof of (iii).

2.2.5 The presentables–idempotents equivalence

We want to formulate the equivalence between presentables and idempotent-
completes in the parametrised world, and so we need to introduce some definitions.
To avoid potential confusion, we will for example use the terminology parametrised-
accessibles instead of T –accessibles to indicate that we take T/V–accessibles in the
fibre over V.

Definition 2.2.13. Let κ be a regular cardinal.

• Let AccT ,κ ⊂ ĈatT be the non-full T –subcategory of κ-parametrised-
accessible categories and κ-parametrised-accessible functors preserving κ-
parametrised-compacts.

• Let CatIdem
T ⊆ ĈatT be the full T –subcategory on the small parametrised-

idempotent-complete categories.

• Let Catrex(κ)
T ⊂ ĈatT be the non-full subcategory whose objects

are κ-parametrised–cocomplete small categories and morphisms those
parametrised–functors that strongly preserve κ-small parametrised–colimits.

• Let CatIdem(κ)
T ⊆ Catrex(κ)

T be the full subcategory whose objects are
κ-parametrised–cocomplete small parametrised-idempotent-complete cate-
gories.

• Let PrT ,L,κ ⊂ AccT ,κ be the non-full T –subcategory whose objects are
parametrised-presentables and whose morphisms are parametrised-left ad-
joints that preserve κ-parametrised-compacts.

• Let PrT ,R,κ -filt ⊂ ĈatT be the non-full T –subcategory of parametrised pre-
sentable categories and morphisms the parametrised κ-accessible functors
which strongly preserve parametrised limits.

Notation 2.2.14. Let Funκ
T ⊆ FunT be the full subcategory of κ–T –compact-

preserving functors.

Lemma 2.2.15 (“[Lur09, Prop. 5.4.2.17]”). Let κ be a regular cardinal. Then (−)κ :
AccT ,κ −→ ĈatT induces an equivalence to CatIdem

T , whose inverse CatIdem
T →

AccT ,κ is Indκ .
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Proof. To see T –fully faithfulness, Proposition 1.2.38 gives

Funκ -filt,κ
T (IndκC, IndκD)

≃−→ Funκ
T (Indκ(C)κ , IndκD)

≃−→ FunT (Indκ(C)κ , Indκ(D)κ)

where we have also used, by Observation 2.1.15 (1), that Indκ(Indκ(C)κ) ≃ IndκC.
As for the essential image, let C be a small T –idempotent-complete category. Then
by Observation 2.1.15 (2) we know that C ≃ Indκ(C)κ , and so it is in the essential
image as required. Finally to see the statement about the inverse, just note that we
already have the functors and the appropriate natural transformations on compo-
sitions. Then using Observation 2.1.15 again, we see that the transformations are
pointwise equivalences, and so equivalences.

Theorem 2.2.16 (T –presentable-idempotent correspondence, “[Lur09, Prop. 5.5.7.8

and Rmk. 5.5.7.9]”). Let κ be a regular cardinal. Then (−)κ : PrT ,L,κ −→ Ĉat
rex(κ)
T is

T –fully faithful with essential image CatIdem(κ)
T , and inverse CatIdem(κ)

T → PrT ,L,κ
given by Indκ .

Proof. That it is T –fully faithful with the specified essential image is by
Lemma 2.2.15 together with Proposition 2.1.6 and Proposition 2.2.4. That the in-
verse from Lemma 2.2.15 via Indκ lands in T –presentables is by Theorem 2.2.2
(4).

2.2.6 Indexed products of presentables

The purpose of this subsection is to show that the (non-full) inclusions
PrT ,L,κ , PrT ,R,κ -filt ⊂ ĈatT create indexed products.

Lemma 2.2.17 (Indexed products of T –presentables). Let f : W → V be in T and
C be a T/W–presentable category. Then f∗C is a T/V–presentable category.

Proof. We first note that if D is a T/W–category, then f∗FunW(D,SW) ≃
FunV( f!D,SV). To see this, let E be a T/V–category. Then

MapCatT/V
(E , f∗FunW(D,SW)) ≃ MapCatT/W

( f ∗E , FunW(D,SW))

≃ MapCatT/W
(D, FunW( f ∗E ,SW))

≃ MapCatT/W
(D, f ∗FunV(E ,SV))

≃ MapCatT/V
( f!D, FunV(E ,SV))

≃ MapCatT/V
(E , FunV( f!D,SV))
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By Theorem 2.2.2 we have a accessible T/W–Bousfield localisation FunW(D,SW) ⇄
C for some small T/W–categoryD. Hence by Lemma 1.3.13, we obtain the accessible
adjunction

FunV( f!D,SV) ≃ f∗FunW(D,SW) f∗C

Therefore, f∗C must be T/V–presentable, again by Theorem 2.2.2.

Proposition 2.2.18 (Creation of indexed products for presentables). The (non-full)
inclusions PrT ,L,κ , PrT ,R,κ -filt ⊂ ĈatT create indexed products.

Proof. Let f : W → V be in T and C,D be T/V– and T/W–presentables, respectively.
We know from Lemma 1.3.14 that ĈatT has indexed products. We need to show
that

MapL
V(C, f∗D) ≃ MapL

W( f ∗C,D)

MapR,κ -filt
V (C, f∗D) ≃ MapR,κ -filt

W ( f ∗C,D)

We claim that the unit and counit in ĈatT are already in both PrT ,L,κ and PrT ,R,κ -filt.
If we can show this then we would be done by the following pair of diagrams

MapL
V(C, f∗D) MapL

W( f ∗C, f ∗ f∗D) MapL
W( f ∗C,D)

MapV(C, f∗D) MapW( f ∗C, f ∗ f∗D) MapW( f ∗C,D)

f ∗ ε∗

f ∗

≃

ε∗

MapL
V(C, f ∗D) MapL

V( f∗ f ∗C, f ∗D) MapL
W( f ∗C,D)

MapV(C, f ∗D) MapV( f∗ f ∗C, f ∗D) MapW( f ∗C,D)

η∗ f∗

η∗ f∗

≃

and similarly when we replace MapL by MapR,κ -filt: that the (co)units are in
PrT ,R,κ -filt and PrT ,L,κ imply that the maps ε∗ and η∗ above takes MapL to MapL;
that f ∗ and f∗ also do these is by Lemma 1.3.13; and finally the bottom equivalences
are inverse to each other, and so restrict to inverse equivalences to the top row of
each diagram.

We now prove the claims. That they preserve κ–T –compact objects is clear by
Lemma 1.3.14 and Theorem 2.2.2. To see that the counit ε : f ∗ f∗D → D strongly
preserves T –(co)limits, since it is clear that they preserve fibrewise T –(co)limits, by
Proposition 1.2.17 we are left to show that they preserve the indexed (co)products.
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So let ξ : Y → Z be in T/W . For this we will need to know that D has indexed
coproducts and products (for the latter, see Proposition 2.2.7). We need to show
that the squares with the dashed arrows in

( f ∗ f∗D)Z DZ

( f ∗ f∗D)Y DY

ε

ξ∗ ξ∗

ε

ξ! ξ∗ ξ! ξ∗ (2.1)

commute. We analyse this in terms of the counit formula from Lemma 1.3.14. For
this, consider the diagram of orbits

⨿b Rb Y

⨿a Sa Z

W V

W V

⌟⨿b ξab ⌟
ξ

⌟
f

f

(2.2)

where the top square is also a pullback since we can view this diagram as

⨿b Rb ⨿a Sa W

Y Z V

f

with the right square and the outer rectangle being pullbacks. From this we obtain
that the diagram Eq. (2.1) is equivalent to

∏aDSa DZ

∏bDRb DY

πZ

∏b ξ∗ab ξ∗

πY

ξ!
ξ∗

ξ! ξ∗

where the counits have been identified with the projections πZ (resp. πY) onto the
DZ (resp. DY) components by virtue of Lemma 1.3.14. Here ∏b ξ∗ab

is supposed
to mean forgetting about the components of ⨿a Sa that do not receive a map from
⨿b Rb and the functor ξ∗ab

for the other components: this makes sense because an
orbit in a coproduct can only map to a unique orbit. Since C was T/W–presentable, it
in particular admits an T/W–initial object. And so we can easily use these, together
with the adjoints (ξab)! and fibrewise coproducts to obtain a left adjoint ξ! of ∏b ξ∗ab

,
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and similarly a right adjoint ξ∗. It is then immediate that the dashed squares also
commute since the counits just project left/right adjoints from the left vertical to
those on the right.

To see that the unit strongly preserves T –(co)limits, similarly as above, we are
reduced to the case of showing that it preserves indexed (co)products. Let ζ : U →
X be in T/V . And so we want the squares with the dashed arrows

CX ( f∗ f ∗C)X

CU ( f∗ f ∗C)U

ζ∗

η

ζ∗

η

ζ! ζ∗ ζ! ζ∗

to commute. For this consider the pullback comparison

⨿b Mb U

⨿a Na X

W V

W V

⌟⨿b ζab ⌟
ζ

⌟
f

f

where the top square is also a pullback by the argument for the previous case. Since

( f∗ f ∗C)X = ∏
a
CNa and ( f∗ f ∗C)U = ∏

b
CMb

we see that the units η arise as restrictions along the maps ⨿a Na → X and
⨿b Mb → U respectively. Then the required dashed squares commute by the
Beck-Chevalley property of indexed (co)products of C associated to the top pull-
back square. This completes the proof.

2.2.7 Functor categories and tensors of presentables

In this final subsection, we record several basic results about the interaction be-
tween parametrised-presentability and functor categories, totally analogous to the
unparametrised setting.

Lemma 2.2.19 (Small cotensors preserve T –presentability). Let C be a small T -
category and D be T –presentable. Then FunT (C,D) is also T –presentable.
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Proof. As a special case, suppose first that D ≃ PShT (D′) for a small T –category
D′. Then FunT (C,D) ≃ FunT (C × D′

opopopopopopopopopopopopopopopopop,ST ), and so it is also a T –presheaf cat-
egory, and so is T –presentable. For a general T –presentable D, we know that
we have a κ–T –accessible Bousfield localisation L : PShT (D′) ⇄ D : i for
some small T –category D′. Then we get a κ–T –accessible Bousfield localisation
L∗ : FunT (C, PShT (D′)) ⇄ FunT (C,D) : i∗ and so since FunT (C, PShT (D′)) was
T –presentable by the first part above, by characterisation Theorem 2.2.2 (5) we get
that FunT (C,D) is too.

Lemma 2.2.20 (“[Lur09, Lem. 5.5.4.17]”). Let F : C ⇄ D : G be a T –adjunction
between T –presentables. Suppose we have a T –accessible Bousfield localisation
L : C ⇄ C0 : i. Let D0 := G−1(C0) ⊆ D. Then we have a T –accessible Bousfield
localisation L′ : D ⇄ D0 : i′.

Proof. The T –accessibility of the Bousfield localisation L : C ⇄ C0 : i ensures that
there is a small set of morphisms of C such that C0 are precisely the S-local objects.
Then it is easy to see that D0 ⊆ D is precisely the F(S)-local T –subcategory by
using the adjunction.

Lemma 2.2.21 (“[Lur09, Lem. 5.5.4.18]”). Let C be a T –presentable category and
{Ca}a∈A be a family of T –accessible Bousfield local subcategories indexed by a
small set A. Then

⋂
a∈A Ca is also a T –accessible Bousfield local subcategory.

Proof. This is because, if we write S(a) for the morphisms of C such that Ca is the
S(a)-local objects, then

⋂
a∈A Ca are the

⋃
a∈A S(a)-local objects.

For the remaining results, recall from Notation 1.2.27 that FunR
T and FunL

T denote
strongly T –limit- and T –colimit-preserving functors, respectively, and RFunT and
LFunT denote T –right and T –left adjoint functors, respectively.

Lemma 2.2.22 (Presentable functor categories, “[Lur17, Lem. 4.8.1.16]”). Let C,D
be T –presentables. Then FunR

T (C
opopopopopopopopopopopopopopopopop,D) and FunL

T (C,D) are also T –presentable.

Proof. By characterisation (5) of Theorem 2.2.2 and that Bousfield localisations are
Dwyer-Kan Proposition 2.2.6, we know that C ≃ S−1PShT (C ′) for some small T –
category C ′ and S a small collection of morphisms in PShT (C ′). Then we have

FunR
T (PShT (C ′)

opopopopopopopopopopopopopopopopop,D) ≃ FunL
T (PShT (C ′),D

opopopopopopopopopopopopopopopopop)opopopopopopopopopopopopopopopopop ≃ FunT (C ′,D
opopopopopopopopopopopopopopopopop)opopopopopopopopopopopopopopopopop

≃ FunT (C ′
opopopopopopopopopopopopopopopopop,D)

where the first and last equivalence is by Observation 1.1.15, and the second
by Proposition 1.2.38 and since T –presentables are also T –complete by Propo-
sition 2.2.7. The right hand term is T –presentable by Lemma 2.2.19, and so
FunR

T (PShT (C ′)opopopopopopopopopopopopopopopopop,D) is too by the equivalence above. Now note that we have
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FunR
T (C

opopopopopopopopopopopopopopopopop,D) ≃ FunR,S−1

T (PShT (C ′)opopopopopopopopopopopopopopopopop,D): this is by virtue of the following dia-
gram

FunR
T ((S

−1PShT (C ′))
opopopopopopopopopopopopopopopopop,D) ≃ FunL

T (S
−1PShT (C ′),D

opopopopopopopopopopopopopopopopop)opopopopopopopopopopopopopopopopop

L∗−→
≃

FunL,S−1

T (PShT (C ′),D
opopopopopopopopopopopopopopopopop)opopopopopopopopopopopopopopopopop

≃ FunR,S−1

T (PShT (C ′)
opopopopopopopopopopopopopopopopop,D)

where we have the equivalence L∗ owing to the formula for T –colimits in
T –Bousfield local subcategories. Therefore, if for each α ∈ S we write
E(α) ⊆ FunR

T (PShT (C ′)opopopopopopopopopopopopopopopopop,D) to be the T –full subcategory of those functors
which carry α to an equivalence in D, then FunR

T (C
opopopopopopopopopopopopopopopopop,D) ≃ ⋂

α∈S E(α) ⊆
FunR

T (PShT (C ′)opopopopopopopopopopopopopopopopop,D). Hence to show FunR(Copopopopopopopopopopopopopopopopop,D) is a T –accessible Bousfield lo-
calisation of FunR

T (PShT (C ′)opopopopopopopopopopopopopopopopop,D), it will be enough to show it, by Lemma 2.2.21,
for each E(α). Now these α’s are morphisms in the various fibres over T op but
since everything interacts well with basechanges, we can just assume without loss
of generality that T op has an initial object and that α is a morphism in the fibre of
this initial object. Given this, it is clear that we have the pullback

E(α) FunR
T (PShT (C ′)opopopopopopopopopopopopopopopopop,D)

E FunT (constT (∆
1),D)

⌟
evα

where E is the full subcategory spanned by the equivalences. Hence by
Lemma 2.2.20 it will suffice to show that E ⊆ FunT (constT (∆

1),D) is a T –
accessible Bousfield localisation. But this is clear since it is just given by the T –left
Kan extension along ∗ → ∆1.

The statement for FunL
T (C,D) is proved analogously, but without having to take

opposites in showing that L∗ : FunL
T (S

−1PShT (C ′),D) → FunL,S−1

T (PShT (C ′),D)
is an equivalence.

The following result was stated as Example 3.26 in [Nar17] without proof, and so
we prove it here. Here the tensor product is the one constructed in [Nar17, §3.4].

Proposition 2.2.23 (Formula for presentable T –tensors). Let T be an atomic orbital
category, and let C,D be T –presentable categories. Then C ⊗D ≃ FunR

T (C
opopopopopopopopopopopopopopopopop,D).

Proof. This is just a consequence of the universal property of the tensor product.
To wit, let E be an arbitrary T –presentable category and write FunR,acc

T for T –
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accessible strongly T –limit preserving functors. Then

FunL,L(C ×D, E) ≃ FunL(C, FunL(D, E))
≃ FunR

T (C
opopopopopopopopopopopopopopopopop, FunL

T (D, E)opopopopopopopopopopopopopopopopop)opopopopopopopopopopopopopopopopop

≃ FunR
T (C

opopopopopopopopopopopopopopopopop, LFunT (D, E)opopopopopopopopopopopopopopopopop)opopopopopopopopopopopopopopopopop

≃ FunR
T (C

opopopopopopopopopopopopopopopopop, RFunT (E ,D))opopopopopopopopopopopopopopopopop

≃ FunR
T (C

opopopopopopopopopopopopopopopopop, FunR,acc
T (E ,D))opopopopopopopopopopopopopopopopop

≃ FunR,acc
T (E , FunR

T(C
opopopopopopopopopopopopopopopopop,D))opopopopopopopopopopopopopopopopop

≃ RFunT (E , FunR
T(C

opopopopopopopopopopopopopopopopop,D))opopopopopopopopopopopopopopopopop

≃ LFunT (FunR
T(C

opopopopopopopopopopopopopopopopop,D), E)
≃ FunL

T (FunR
T(C

opopopopopopopopopopopopopopopopop,D), E)

where the second equivalence is by Observation 1.1.15; the third, fifth, seventh, and
ninth equivalence is by the adjoint functor Theorem 2.2.3; the fourth and eighth are
from Proposition 1.2.28. In the seventh and ninth equivalence, we have also used
that FunR

T(C
opopopopopopopopopopopopopopopopop,D) is T –presentable, which is provided by Lemma 2.2.22. There-

fore, FunR
T(C

opopopopopopopopopopopopopopopopop,D) satisfies the universal property of C ⊗D.

2.3 Parametrised presentable-stable theory
We are now ready to initiate the study of T –presentable-stable categories for atomic
orbital categories T . We first state and prove Theorem 2.3.4, the comparison be-
tween T –presentable-stables and T –Mackey functors valued in presentable sta-
bles, in §2.3.1. In the remaining subsections we will then analyse aspects of the
“closed T –symmetric monoidality” of PrT ,st,L in preparation for Part II.

2.3.1 Embedding into Mackey functors

We begin with the following basic observation.

Proposition 2.3.1. The T –categories PrT ,st,L,κ , PrT ,sadd,L,κ and PrT ,L,κ are T –
semiadditive.

Proof. We only show that PrT ,L,κ is T –semiadditive. This would then imply that the
T –full subcategory PrT ,st,L,κ is too, since T –presentable-stables are closed under
T –products. Now to see that PrT ,L,κ is T –semiadditive, we just need to show that
the T –products, which by definition are the right adjoints of restrictions, happen
also to be the left adjoints to the restrictions. For this, let f : W → V be in FinT . We
then observe that

MapL,κ
V ( f∗D, C) ≃ MapR,κ -filt

V (C, f∗D) ≃ MapR,κ -filt
W ( f ∗C,D) ≃ MapL,κ

W (D, f ∗C)
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where the first and last equivalences is by the adjoint functor Theorem 2.2.3 and
Proposition 1.2.28, and the middle equivalence is by Proposition 2.2.18. This shows
that f∗ ⊣ f ∗, and so f∗ ≃ f! as was to be shown.

The following considerations will elaborate on some structural consequences in-
herent in a Mackey functor valued in presentable categories.

Construction 2.3.2. Let C ∈ Fun×(Span(T ), Prst,L,κ) and f : W → V be in T .
Let the Mackey transfer map be f! : CW → CV (which need not necessarily be a left

adjoint to f ∗) - this is by definition the image of the span morphism (W id←−W
f−→ V)

under the functor C : Span(T ) → Prst,L,κ . Let f∗ : CW → CV be the right adjoint of
f ∗ (this exists since we are landing in Prst,L,κ). Now the pullback of orbits

⨿a Sa W

W V

⨿a fa

⨿a fa
⌟ f

f

gives us that f ∗ f! ≃
⊕

a( fa)!( fa)∗. Crucially, the hypothesis of atomic orbitality
guarantees that one of the orbits Sa in the decomposition is equivalent to W by the
argument in the proof of Lemma 1.3.14. From this we can obtain two canonical
transformations:

(i) Projecting onto the component fa = id : Sa = W −→ W yields a transforma-
tion

f ∗ f! ≃
⊕

a
( fa)!( fa)

∗ =⇒ id

which together with the f ∗ ⊣ f∗ adjunction gives us a transformation

f! =⇒ f∗

We call this the Mackey semiadditivity norm map.
(ii) Inclusion of the component fa = id : Sa = W −→W yields a transformation

id =⇒
⊕

a
( fa)!( fa)

∗ ≃ f ∗ f!

We call this the Mackey unit map.

These will allow us to describe in what way the parametrised presentable-stables
embed in presentable-stable-valued Mackey functors. We will provide some com-
ments about the theorem after the proof.

Notation 2.3.3. Since PrT ,st,L,ω ≃ Catst,idem(ω)
T by Theorem 2.2.16, we will use the

notation Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T ≃ PrT ,st,L,ω for the T –perfect-stable categories, where the word

perfect is standard terminology for being idempotent-complete.



2.3 PARAMETRISED PRESENTABLE-STABLE THEORY 76

Theorem 2.3.4. We have T –fully faithful inclusions PrT ,sadd,L,κ ⊆
CMonT (Prsadd,L,κ) and PrT ,st,L,κ ⊆ CMonT (Prst,L,κ) whose essential images
consist of the Mackey functors such that:

• the Mackey semiadditivity norm map is an equivalence,
• the Mackey unit map exhibits the transfer f! as being left adjoint to f ∗.

Hence, via Catperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf ≃ Prst,L,ω, we also have an inclusion Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T ⊆ CMonT (Catperf).

Similarly, we also have a fully faithful inclusion PrT ,L,κ ⊆ CMonT (PrL,κ) whose es-
sential image are precisely the Mackey functors such that Mackey unit map exhibits
f! ⊣ f ∗.

Proof. We only prove the stable case as the others are similar. By definition we have
the following solid non-full T –faithful inclusions

PrT ,st,L,κ ĈatT

CofreeT(Prst,L,κ)

which strongly preserve finite T –products: the top horizontal inclusion by Propo-
sition 2.2.18 and the vertical inclusion since Prst,L,κ ⊂ Ĉat preserves limits. By The-
orem 2.2.2 (7) and the characterisation of strong preservations Proposition 1.2.17
we in fact have the dashed factorisation which must, by the preceding points,
also strongly preserve finite T –products. Now by definition CMonT (−) :=
Funsadd

T (Fin∗T ,−) ⊆ FunT (Fin∗T ,−) and so applying CMonT (−) and invoking
Corollary 1.2.34 we get a T –faithful inclusion

PrT ,st,L,κ ⊂ CMonT (Prst,L,κ)

where we can dispense with the T –semiadditivisation of the source by virtue of
Proposition 1.3.4 and Proposition 2.3.1.

We are now left to show that the T –faithful inclusion is in fact T –fully faith-
ful and has the prescribed essential image. For this recall that for all V ∈ T ,(
CMonT (Prst,L,κ)

)
V = Fun×(Span(T/V), Prst,L,κ) from Theorem 1.3.5. The T –

faithful inclusion above is then just given by sending a T –presentable-stable cat-
egory to a T –Mackey functor where we have chosen the indexed biproducts as
the transfers in the T –Mackey functor (there is a contractible space of choice of
left/right adjoints of a specified functor): in fact the essential image is easily seen
to be characterised by those Mackey functors as in the statement of the theorem
because a T –category being T –presentable-stable is a property and this property is
satisfied by T –Mackey functors with the prescribed conditions since these condi-
tions guarantee that the fibrewise presentable T –category is T –cocomplete and is
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T –semiadditive. From this identification, we see by the characterisation of strong
preservation Proposition 1.2.17 that T –functors strongly preserving T –colimits are
precisely natural transformations of T –Mackey functors valued in Prst,L,κ , whence
the T –fully faithfulness.

Remark 2.3.5. This embedding is perhaps slightly surprising at first glance since
in Mackey functors on the right-hand side, we provide a structure in the form of
transfers, whereas on the left-hand side, a T –category being T –presentable-stable
is a property. The point here is that, in our relatively restrictive case of atomic or-
bital base categories and the fact that morphisms in PrL have right adjoints, the
situation is sufficiently rigid so that a natural transformation of Mackey functors,
which would ordinarily be extra structure that one has to supply, becomes now a
property about colimit-preservation when restricted to the Mackey functors coming
from T –presentable-stable categories. In the case of T = ∗, this inclusion degener-
ates to the equivalence Prst,L,κ ≃ CMon(Prst,L,κ) by virtue of the semiadditivity of
Prst,L,κ .

Remark 2.3.6. Intuitively, this theorem says that there are only two possible points
of failure for a Mackey functor in MackT(Catperf) to being a genuinely parametrised
object, namely: (1) that the transfer maps might be arbitrary and need not have
been left adjoints; (2) if they were left adjoints, they need not have been equiva-
lent to the right adjoints of the restriction maps in the Mackey structure. This is
essentially because the notion of Mackey functors that we have been considering is
built on the (∞, 1)-categorical version of the span category Span(T ). While this is
sufficient to encode the structures in Construction 2.3.2, it cannot enforce that these
be equivalences. We expect that an (∞, 2)-categorical version of the span category

and of Mackey functors should yield Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T since the adjointness of functors can

be encoded by the available 2-morphisms.

Proposition 2.3.7. The inclusion PrT ,st,L,κ ⊆ CMonT (Prst,L,κ) creates fibres and
cofibres.

Proof. The case of fibres is clear since the solid arrows in the following preserve
these.

PrT ,st,L,κ ĈatT CMonT (Prst,L,κ)

Now for the cofibre case, let i : C → D be a morphism in PrT ,st,L,κ and p : D → E
be the cofibre in CMonT (Prst,L,κ). By [NS18, §I.3], p is fibrewise a Bousfield locali-
sation, so let j be the Bousfield inclusion. The T –category E is fibrewise stable, and
we need to show that it has indexed (co)products f! and f∗, and that f! ≃ f∗. So
consider the diagram
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CW DW EW

CV DV EV

iW

f! f∗

pW

f! f∗ f ! f ∗
jW

iV

f ∗ f ∗
pV

f ∗

jV

where the dashed maps f ! and f ∗ are induced by the cofibreness of EW . If we
can show that jV ◦ f ∗ ≃ f∗ ◦ jW then we would be done since the j’s were fully
faithful and so the f ∗ ⊣ f∗ adjunction on D restricts to an f ∗ ⊣ f ∗ adjunction on
E ; moreover, since f! ≃ f∗ on D, this also means that the f! ⊣ f ∗ adjunction on
D induces one on E . Now to see the desired commutation, the universal property
gives that f ∗ ◦ pW ≃ pV ◦ f∗, and hence

jV ◦ f ∗ ≃ jV ◦ f ∗ ◦ pW ◦ jW ≃ jV ◦ pV ◦ f∗ ◦ jW

and so if we can show that f∗ preserves Bousfield completeness then we would
further obtain jV ◦ pV ◦ f∗ ◦ jW ≃ f∗ ◦ jW . So suppose we have yV → zV in DV that
is an EV-local equivalence. Let xW ∈ EW . Then

MapDV
(zV , f∗xW) ≃ MapDW

( f ∗zV , xW)
≃−→ MapDW

( f ∗yV , xW) ≃ MapDV
(yV , f∗xW)

where the second equivalence is because pW ◦ f ∗ ≃ f ∗ ◦ pV , and so f ∗ preserves
Bousfield local equivalences. This completes the proof.

2.3.2 Symmetric monoidality and presentable–stability

The goal of this subsection is to show that the T –presentable-stables are a T –
smashing localisation of all T –presentables. One upshot of this is that the T –
symmetric monoidal structure on PrT ,L constructed in [Nar17] then induces a T –
symmetric monoidal structure on the T –presentable-stables.

Proposition 2.3.8. For f : U → W a map in FinT and C ∈ CatT/U , there is a natural
equivalence ⊗

f

PShU(C) ≃ PShW(∏
f
C)

Proof. Let D be a T/W–presentable category. By [Nar17, Prop. 3.19], the following
map

FunL
W
(⊗

f

PShU(C),D
)
−→ FunW

(
∏

f
C,D

)
is an equivalence. But then the target is naturally equivalent to
FunL

W
(
PShW(∏ f C),D

)
by Theorem 1.2.24 and so we are done.

The following two results have also been obtained independently in [NS22, §6]
and so we content ourselves with just a sketch of their proofs.
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Proposition 2.3.9. The presheaf functor PShT (−) : CatIdem(ω)
T → PrT ,L refines to

a T –lax symmetric monoidal functor. Hence, this induces the functor PShT (−) :
CAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgT

(
(CatIdem(ω)

T )⊗
)
→ CAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgT

(
(PrT ,L)

⊗).
Proof sketch. The T –symmetric monoidal structure on CatIdem(ω)

T is the one in-
duced by PrT ,L constructed by Nardin in [Nar17] under the equivalence Theo-
rem 2.2.16. By construction of the T –symmetric monoidal structure Pr⊗T ,L as a T –

suboperad of the T –cartesian symmetric monoidal structure Ĉat
×
T in [Nar17, §3],

we get the T –suboperad inclusion (CatIdem(ω)
T )⊗ ⊂ Cat×T . On the other hand, the

PShT (−) : CatT ↪→ PrT ,L canonically refines to a T –symmetric monoidal func-
tor PShT (−)⊗ : Cat×T ↪→ Pr⊗T ,L: one can construct this T –symmetric monoidal
functor by mimicking the proof of [Lur17, Prop. 4.8.1.3] by taking the appropri-

ate T –suboperad of constT (∆
1) × Ĉat

×
T and checking that it is cocartesian over

constT (∆
1) × Fin∗T by using Proposition 2.3.8 to see the compositions of locally

cocartesian morphisms are locally cocartesian. We thus obtain the refinement to a
map of T –operads

PShT (−) : CatIdem(ω)
T ⊂ Cat×T −→ Pr⊗T ,L

which is by definition, a T –lax symmetric monoidal functor.

The following can in principle be deduced from the method of proof above,

provided we first construct the T –symmetric monoidal structure Ĉat
⊗
T ,L on

large T –cocomplete categories and functors which strongly preserve these. By
Lemma 1.3.11 we have

PShT : CAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgT (Ĉat
×
T ) ⇄ CAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgT ,L(Ĉat

⊗
T ) : incl

and inspecting the adjunction unit yields the following desired conclusion.

Corollary 2.3.10 (T –symmetric monoidality of Yoneda). If C⊗ is a T –symmetric
monoidal category, then the Yoneda embedding C ↪→ PShT (C) refines to a T –
symmetric monoidal functor.

Proposition 2.3.11. For C a T –presentable category, we have that SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpT (C) ≃ C ⊗
SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpT .

Proof. Consider the sequence of equivalences

C ⊗ SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpT ≃ FunR
T (C

opopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpT )

≃ FunR
T (C

opopopopopopopopopopopopopopopopop, LinT (S
fin
∗T ,ST ))

≃ LinT (S
fin
∗T , FunR

T (C
opopopopopopopopopopopopopopopopop,ST ))

≃ LinT (S
fin
∗T , C ⊗ ST )

≃ LinT (S
fin
∗T , C) ≃ SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpT (C)
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where the first equivalence is by Proposition 2.2.23. We have also used Nardin’s
formula for T –stabilisation from Theorem 1.3.8.

Proposition 2.3.12 (Parametrised stabilisation is smashing, “[GGN15, Thm. 4.6]”).
The association C 7→ SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpT (C) refines to a T –symmetric monoidal localisation SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpT ⊗
− : PrT ,L −→ PrT ,L with essential image the T –full subcategory of T –presentable-
stable categories PrT ,st,L.

Proof. That SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpT (−) ≃ SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpT ⊗ (−) is the proposition above, which also gives the
required essential image. That the functor is a T –symmetric monoidal localisation
is by the T –idempotence of SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpT from [Nar17, Cor. 3.28].

2.3.3 Internal hom objects

Observation 2.3.13 (T –right exacts on T –stables). If C,D are T –stables, then note
that the two T –full subcategories Funlex

T (C,D) ⊆ FunT (C,D) ⊇ Funrex
T (C,D)

agree. To wit, both mean that they are fibrewise right and left exact (since these
are fibrewise stable after all); moreover, preserving finite T –coproducts and pre-
serving finite T –products are equivalent since C,D were T –semiadditive. Hence
in this case we have Funlex

T (C,D) ≃ Funex
T (C,D) ≃ Funrex

T (C,D).

Lemma 2.3.14. Let C,D be finite T –complete and A be finite T –cocomplete. Then
we have a canonical equivalence Funlex

T (C, LinT (A,D)) ≃ LinT (A, Funlex
T (C,D)).

Proof. Note that we have the identification FunT (C, LinT (A,D)) ≃
LinT (A, FunT (C,D)) since T –limits of functor categories are computed in
the target by Proposition 1.2.12. To see that we have the desired equivalence,
consider the diagram

Funlex
T (C, LinT (A,D)) LinT (A, Funlex

T (C,D))

FunT (C, LinT (A,D)) LinT (A, FunT (C,D))≃

That the bottom arrows restrict to the dashed arrows is because again by Proposi-
tion 1.2.12, T –limits in both LinT (A,D) and Funlex

T (C,D) are computed in D.

Corollary 2.3.15 (Internal hom object of T –perfects). Let C,D ∈ Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T . Then

the T –full subcategory Funex
T (C,D) ⊆ FunT (C,D) on the T –exact functors is

also small T –idempotent-complete-stable, that is Funex
T (C,D) is again an object of

Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T .
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Proof. That it is small is clear. To see that it is T –stable, just note

Funex
T (C,D) ≃ Funlex

T (C,D)

≃ Funlex
T (C, LinT (S

fin
∗T ,D))

≃ LinT (S
fin
∗T , Funlex

T (C,D))

≃ LinT (S
fin
∗T , Funex

T (C,D))

where the first and last equivalences are by Observation 2.3.13, the second is by
Theorem 1.3.8, and the third by Lemma 2.3.14. For T –idempotent-completeness,
note that T –colimits of Funex

T (C,D) ≃ Funrex
T (C,D) are computed in D, and since

being T –idempotent-complete is just the condition of admitting certain fibrewise
T –colimits, this point is clear too.

Proposition 2.3.16. Let C ∈ Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf(κ)
T . Then Funex

T (SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpκ
T , C) ≃ C.

Proof. Recall we had equivalence Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf(κ)
T ≃ PrT ,st,L,κ from Theorem 2.2.16 so that

(IndκC)κ ≃ C. Writing Funκ ⊆ Fun for the T –full subcategory of parametrised
functors preserving parametrised κ–compact objects. Now consider

Funex
T (SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpκ

T , C) ≃ Funrex
T (SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpκ

T , (IndκC)κ)

≃ FunL,κ
T (SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpT , IndκC)

≃ FunL,κ
T (ST , IndκC)

≃ (IndκC)κ ≃ C

where the second equivalence is by Proposition 1.2.38; the third equivalence is by
Proposition 2.3.12; the fourth equivalence is by Theorem 1.2.24.
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Chapter 3

Equivariance via
parametrised theory

In this chapter, we specialise the theories developed so far to the case of equivari-
ant homotopy theory for a finite group G. After recording some basic translations,
we prove the first main result of the chapter in Theorem 3.3.4: this is an extremely
general principle which says that whenever we have a G–symmetric monoidal cat-
egory, Borelification (ie. forgetting all the structures and only remembering the
underlying object with G–action) is always a G–symmetric monoidal process. We
prove it by decategorifying a categorified formulation. In particular, whenever this
functor has a right adjoint, then this is always G–lax symmetric monoidal, and so
ordinary commutative algebra objects will always induce a G–commutative alge-
bra Borel object. Consequently, we obtain in Proposition 3.3.6 a general machin-
ery to manufacture interesting G–commutative algebras coming from commuta-
tive algebra objects endowed with G–actions, which are much easier to produce.
To round out our discussion of general G–monoidal matters, we give several basic
G–monoidal identifications crucial for our theory of norms on G–quadratic func-
tors.

Finally, we study the topological Singer construction of [LR12; NS18] in the case
p = 2 in the equivariant setting. The key result here is that upon applying (−)tΣ2 ,
diagonalisations of G–symmetric bilinear functors are G–linear when G is odd (cf.
Corollary 3.5.3). We will need this in our discussion of genuine G–hermitian K–
theory for odd G in §7.1. Furthermore, this also implies, by general principles,
that we obtain a refinement of the celebrated Nikolaus-Scholze Tate diagonal to the
setting of genuine G–spectra in the case when G is odd and p = 2. We think that
this has the potential of being a very interesting structure to exploit and we intend
to return to this in future work.
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3.1 Genuine G-category theory
Let G be a finite group. The abstract parametrised formalism treated in Part I yields
the notion of G–categories by setting the base category T to be the opposite of the
orbit category Oop

G of G, which is an atomic orbital category. Recall that OG is the
1–category whose objects are transitive G–sets G/H, where H ≤ G is a subgroup,
and whose morphisms are G–equivariant maps between these. By a straightfor-
ward unwinding of definitions, we see that morphisms G/H → G/K correspond
precisely to subconjugations of H into K inside G. In particular, the endomor-
phisms of an orbit G/H in this category are precisely given by the Weyl group
WG H := NG H/H of H ≤ G, and so these are in fact even automorphisms. Here,
NG H ≤ G is the normaliser of H in G.

Therefore, a G–category is then an object C ∈ Fun(Oop
G , Cat), that is, the data of a

category CH for each H ≤ G together with functors generated under compositions
by:

• For each inclusion H ≤ K of subgroups in G, a restriction functor ResK
H :

CK → CH ,
• For each H ≤ G, the data of self-equivalences of CH by WG H. For instance,

for the orbit G/e given by the trivial subgroup, the category Ce is endowed
with a G–action, whereas for the orbit G/G, the category CG has no nontrivial
self-equivalences.

Hence, one can think of a G–category C as an underlying category with G-action Ce
together with its genuine fixed points data (Ce)H := CH for each subgroup H ≤ G.

Example 3.1.1 (Equivariant stable homotopy theory). Here are two distinct and
important versions of what G–spectra could mean. They should illustrate the dif-
ference between homotopy fixed points, which can always be recovered once we
have an object with G–action, and genuine fixed points, which are extra data that
we have to supply. In both versions, we will see a philosophical principle where
the equivariant structures get “internalised” as we pass to higher fixed points.

(i) (Spectra with G–action) Purely from the datum of the trivial G–action on the
category Sp, we can recover its various homotopy fixed points as SphH ≃
Fun(BH, Sp) =: SpBH for H ≤ G. These assemble into the G–category
Bor(Sp) of spectra with G–actions given by Bor(Sp)H := SphH ≃ SpBH . The re-
striction functor ResK

H : SpBK → SpBH for H ≤ K is then just the usual restric-
tion of a K–action to a H–action. In this case, we see that upon passing to the
top fixed points, the (trivial) G–action on the whole category Bor(Sp)e = Sp
gets absorbed into the category Bor(Sp)G = SpBG, which no longer has a
G–action, but whose objects are now endowed with G–actions.

(ii) (Genuine G–spectra) Unlike the case above where everything can be recov-
ered just from the data of the (trivial) G–action on Sp, there is another much
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more highly structured setting, namely that of genuine G–spectra SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG. Here,
we have the same underlying category with G–action, ie. (SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG)e = Sp
endowed with the trivial G–action, but now the fixed points are given by
(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG)

H := SpH , the genuine H–spectra. In this case, the restrictions are the
usual restrictions on genuine equivariant spectra.

The distinction between the two examples above highlights the fact that the data of
a G–category is much more than just that of G–actions on a category - indeed, both
the examples have equivalent underlying category with G–action.

This formalism also allows us to handle the notion of G–limits and G–colimits
(cf. §1.2.1). In more detail, we can ask if all the functors ResH

K for all H ≤ K ≤ G
have the property of admitting left (resp. right) adjoints. If they do, then we call
these the finite G–coproducts IndH

K (resp. G–products CoindH
K ). Furthermore, by

atomic orbitality of Oop
G , we get that there are canonical comparisons (cf. §1.3.1)

IndH
K ⇒ CoindH

K and we say that a G–category C is G–semiadditive if it has the
property that these canonical comparisons are equivalences. We moreover say that
it is G–stable if it is G–semiadditive and is fibrewise stable (ie. CH are stable for all
H ≤ G).

3.2 User’s guide to normed G-spectra
We collect here some salient aspects of the multiplicative norms in the context of
genuine G-spectra for the benefit of those who want to use these extra structures
model-independently. We will however omit two important points, namely: (1) the
compatibility of these norms with geometric fixed points, for which we refer the
reader to [HHR16, Prop. 2.57] and [Sch20, Prop. 11.9]; (2) the complicated notion of
distributivity which pertains to the interaction between these multiplicative norms
with additive inductions, and we refer the reader to [EH19] and [QS22, §5.1] for
more details on this. We take the path of deriving the following properties purely
axiomatically given the formalism of G–operads.

Observation 3.2.1 (Underlying object of normed objects). Let C⊗ be a G-symmetric
monoidal category and A ∈ CH . We observe that the underlying object of the
normed object NG

H A is just given by
⊗
|G/H| A as expected. To see this, we com-

pute ResG
e NG

H A axiomatically. We know that NG
H and ResG

e are given respectively
by the cocartesian lift along the spans

G/H G/H G/G G/G G/e G/e

G/G G/G G/G G/G G/e G/e
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Hence composing these spans and re-expressing the terms yield that ResG
e NG

H is
encoded by the morphism in Fin∗G

G/H ⨿G/H G/e ⨿G/H G/e ⨿G/H G/e G/e

G/G G/e G/e G/e G/e

The left span is ∏G/H ResG
e whereas by Recollections 1.3.18, the right span is⊗

|G/H|. Hence in total we see that ResG
e NG

H A ≃ ⊗|G/H| ResG
e A as claimed.

Observation 3.2.2 (Equivariant multiplications). A natural follow-up question that
one might have when presented with the notion of G–commutative algebra objects
is, what are the essential extra structures we are endowing on them? For C⊗ a G-
symmetric monoidal category (for instance, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp⊗), a G–commutative algebra object
A ∈ CAlgG(C

⊗) is then by definition a G–inert section of the cocartesian fibration
C⊗ → Fin∗G. In particular, for

G/H G/H G/G

G/G G/G G/G

f

we obtain a morphism in Map f
CH

(ResG
H A, A) ≃ MapCG

(NG
H ResG

H A, A), ie. a mor-
phism

µG
H : NG

H ResG
H A→ A

which can be viewed as the data of equivariant multiplications where we do not
only have the usual n–fold multiplications

⊗
n A → A, but also extra multiplica-

tions NH
K ResG

K A → ResG
H A. Note that in the case of genuine G–spectra, as for the

ordinary multiplications, these equivariant multiplication maps are maps of spec-
tra, and so in particular, additive.

3.3 A monoidal Borelification principle
Construction 3.3.1 (Borel objects). Let C be an ordinary category. Then we define
the Borel G–category Bor(C) associated to it to be the G–category whose value at
G/H is given by Fun(BH, C) and the restriction functors are given by restriction
i∗ : : Fun(BK, C)→ Fun(BH, C) for i : G/H → G/K a subconjugation of H into K.

Observation 3.3.2. There is a G–adjunction ev : ĈatG ⇄ Bor(Ĉat) : Bor which is
fibrewise given by j∗ : ĈatH = Fun(Oop

H , Ĉat) ⇄ Fun(BH, Ĉat) = (Bor(Ĉat))H : j∗.
Moreover, for C ∈ ĈatH , the adjuntion unit C → j∗ j∗C is given levelwise by CH →
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ChH
e induced by the H–equivariant map ResH

e : CH → Ce present in the structure of
a G–category.

Proposition 3.3.3. Both the G–functors in the G–adjunction ev : ĈatG ⇄ Bor(Ĉat) :
Bor above strongly preserve finite G–products. In particular, this G–adjunction
induces the adjunction

ev : CMonG(ĈatG) ⇄ CMon(Fun(BG, Cat)) : Bor

Proof. Let H ≤ G be a subgroup, i : Oop
H → O

op
G be the inclusion, and j : BH ↪→ Oop

H
be the fully faithful inclusion. Concretely, on level G/H the adjunction is given by

i∗ : Fun(Oop
H , Ĉat) ⇄ Fun(BH, Ĉat) : i∗

The G–right adjoint of course strongly preserves G–products, and the statement
that the left adjoint ev = i∗ does so too translates into seeing that the square

Fun(Oop
G , Ĉat) Fun(BG, Ĉat)

Fun(Oop
H , Ĉat) Fun(BH, Ĉat)

j∗

i∗

j∗
i∗

commutes. And this is because we have equivalences (even isomorphisms!) of
comma categories at G/e ∈ BG ⊆ Oop

G[
G/e ↓ (Oop

H
i−→ Oop

G )
]
≃ ⨿

G/H
∗ ≃

[
G/e ↓ (BH i−→ BG)

]
This gives us the first part of the proposition. For the second part, first ob-
serve that since both adjoints strongly preserve finite G–products, we can apply
CMonG(−) := Fun×(Fin∗G,−) to obtain the G–adjunction

ev : CMonG(ĈatG) ⇄ CMonG(Bor(Ĉat)) : Bor

Hence, it would suffice to show that CMonG(Bor(C)) ≃ CMon(C) for any category
C admitting finite products. By definition, we have

CMonG(Bor(C)) := Fun×G (Fin∗G, Bor(C)), CMon(C) := Fun×(Fin∗, C)

Now the adjunction ĈatG = Fun(Oop
G , Ĉat) ⇄ Bor(Ĉat) is easily seen to induce the

equivalence of categories (ie. it is a 2-adjunction)

FunG(Fin∗G, Bor(C)) ev−→
≃

Fun(Fin∗, C)

which clearly induces the commuting square
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FunG(Fin∗G, Bor(C)) Fun(Fin∗, C)

Fun×G (Fin∗G, Bor(C)) Fun×(Fin∗, C)

ev
≃

ev

In particular, the bottom horizontal functor is fully faithful. To see that it is essen-
tially surjective, we know that the inverse for the top horizontal functor is given by
applying Bor(−) (observe that Bor(Fin∗) ≃ Fin∗G since Fun(BG, Fin∗) ≃ Fin∗G).
Hence, if φ : Fin∗ → C is a finite product-preserving functor, then Bor(φ) : Fin∗G =
Bor(Fin∗) → Bor(C) strongly preserves finite G–products because the comma cat-
egories involved in computing the right Kan extensions are just disjoint unions of
points.

We distil an immediate consequence of the result above into the following prin-
ciple which establishes an abstract but very important link between G–categories
and their underlying category with G–action. We will have use of this in the coming
subsection as well as in the hermitian K–theory setting in Part III.

Theorem 3.3.4 (Monoidal Borelification principle). Let C⊗ ∈ CMonG(ĈatG) be a
G–symmetric monoidal category and D⊗ ∈ CMon(Ĉat) be a symmetric monoidal
category. Then:

(i) The G–category Bor(D) canonically refines to a G–symmetric monoidal cat-
egory Bor(D⊗). This can be concretely described as follows: for d ∈
Fun(BH,D) a H–object in Bor(D), the G–object NG

Hd ∈ Fun(BG,D) is given
by
⊗
|G/H| d,

(ii) The unit C → Bor(Ce) of the adjunction from Observation 3.3.2 canonically
refines to a G–symmetric monoidal functor

C⊗ → Bor(C⊗e )

In particular, if the underlying G–functor C → Bor(Ce) admits a G–right ad-
joint, then this canonically refines to a G–lax symmetric monoidal functor.

Remark 3.3.5. There are many interesting cases where Borelification functor C →
Bor(Ce) has a right adjoint. For example, if C were G–presentable, then by the
fibrewise criterion of Theorem 2.2.2 for instance, we know that Bor(Ce) is also G–
presentable. In this case, one just has to check that the Borelification funtor strongly
preserves G–colimits and then appeal to Theorem 2.2.3.

Another very useful consequence of Proposition 3.3.3 is the following which
leads to ample examples of G–commutative algebras. We thank Asaf Horev for
discussions leading to it, in particular, in teaching us the trick of using symmetric
monoidal envelopes.



3.4 BASIC G-SYMMETRIC MONOIDAL IDENTIFICATIONS 89

Proposition 3.3.6 (G–Borel commutative algebras). Let C⊗ ∈ CMon(Cat) be a sym-
metric monoidal category. Then CAlgG(Bor(C⊗))≃ ≃ (CAlg(C⊗)≃)hG.

Proof. We compute:

CAlgG(Bor(C⊗))≃ ≃ FunCMonG(ĈatG)
(Fin⨿G , Bor(C⊗))≃

≃ FunCMon(Fun(BG,Ĉat))(Fin⨿, C⊗)≃

≃ (FunCMon(Ĉat)(Fin⨿, C⊗)≃)hG

= (CAlg(C⊗)≃)hG

as required, where the second equivalence is by Proposition 3.3.3.

3.4 Basic G-symmetric monoidal identifications

Notation 3.4.1. It is useful to adopt the notation of FunδG/H
G (∏G/H C,D) to mean

distributive functors (cf. §1.3.4) and Fun
δfin

G/H
G (∏G/H C,D) to mean finite distributive

functors (ie. replace small colimits in the definition of distributivity with those
which are finite in each fibre).

Lemma 3.4.2. Let C be H–stable. Then Fun∗G(∏G/H Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG) ≃⊗
G/H Fun∗H(C

opopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH).

Proof. By Proposition 2.3.8, we already know that the top map in⊗
G/H FunH(C

opopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH) FunG(∏G/H Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG)

⊗
G/H Fun∗H(C

opopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH) Fun∗G(∏G/H Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG)

≃

is an equivalence and that the square commutes clearly. To see that every object
in φ ∈ Fun∗G(∏G/H Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG) is hit by the bottom horizontal map, observe that
evaluating at the level G/G yields a functor

φ[G/G] : Cop
H ≃ ( ∏

G/H
Copopopopopopopopopopopopopopopopop)[G/G] −→ (SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG)[G/G] = SpG

which preserves zero objects, and hence ResG
H ◦φ[G/G] : Cop

H → SpH must also pre-
serve zero objects. Thus, under

⊗
G/H FunH(C

opopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH) ≃ FunG(∏G/H Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG),
the preimage of φ must have been in

⊗
G/H Fun∗H(C

opopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH).

Lemma 3.4.3. Let C be a H–stable category. Then (
⊗

G/H C)opopopopopopopopopopopopopopopopop ≃ ⊗G/H Copopopopopopopopopopopopopopopopop.
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Proof. Let E be a G–stable category. Then:

Funex
G ((

⊗
G/H

C)opopopopopopopopopopopopopopopopop, E) ≃ Funex
G (
⊗
G/H

C, Eopopopopopopopopopopopopopopopopop)

≃ Funδfin
G/H ( ∏

G/H
C, Eopopopopopopopopopopopopopopopopop)

≃ Funex
G (
⊗
G/H

Copopopopopopopopopopopopopopopopop, E)

where the second equivalence is since Eopopopopopopopopopopopopopopopopop is still G–stable.

Notation 3.4.4. Write PShst
G(C) for FunG(C

opopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG), the G–spectral presheaves.

Lemma 3.4.5. Let E be G–presentable and C ∈ CatH . Then
y∗ : FunδG/H

G
(

∏G/H PShst
H(C), E

)
→ FunG(∏G/H C, E) is an equivalence.

Proof. We compute:

FunδG/H
G

(
∏

G/H
PShst

H(C), E
)
≃ FunL

G
(⊗

G/H

PShst
H(C), E

)
≃ FunL

G
(
(
⊗
G/H

PShH(C))⊗
⊗
G/H

SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH , E
)

≃ FunL
G
(
PShG( ∏

G/H
C)⊗ SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG, E

)
≃ FunG

(
∏

G/H
C, E

)
where the third equivalence is by Proposition 2.3.8 and the last by Proposi-
tion 2.3.12.

Lemma 3.4.6. Let C be H–stable and let i : C ↪→ IndH(C) be the inclusion. Let E be
a G–presentable-stable category. Then the following functor is an equivalence.

FunδG/H
G ( ∏

G/H
IndHC, E) i∗−→ Fun

δfin
G/H

G ( ∏
G/H
C, E)

Proof. Let L : PShst
H(C) ⇄ IndH(C) : ℓ be the H-Bousfield localisation. Since

IndH(C) ≃ Funlex
H (Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH) by Proposition 2.1.9, in fact ℓ strongly preserves col-

imits. Hence we get the left vertical adjunction in the diagram

FunδG/H
G (∏G/H PShst

H(C), E) FunG(∏G/H C, E)

FunδG/H
G (∏G/H IndH(C), E) Fun

δfin
G/H

G (∏G/H C, E)

y∗
≃

ℓ∗

y!

i∗

L∗ (3.1)



3.4 BASIC G-SYMMETRIC MONOIDAL IDENTIFICATIONS 91

where the top horizontal is an equivalence by the preceding lemma. The solid
square commutes since L ◦ y ≃ L ◦ ℓ ◦ i ≃ i and because C ↪→ IndHC
strongly preserves finite H–colimits, we get that i∗ : FunδG/H

H (∏G/H IndHC, E) →

FunH(∏G/H C, E) lands in Fun
δfin

G/H
H (∏G/H C, E). Thus i∗ is fully faithful. To see

that it is also essentially surjective, observe that by definition y! is the G–left
Kan extension along the G–fully faithful functor y ≃ ℓ ◦ i, and so we have that
i∗ℓ∗y! ≃ y∗y! ≃ id, ie. that every object in the bottom right category is in the image
of i∗.

Corollary 3.4.7 (G–symmetric monoidality of Ind-completion). Let C be a H-
stable category. Then there is an equivalence IndG(

⊗
G/H C) ≃

⊗
G/H IndH(C)

which is compatible with the respective Yoneda embeddings. Hence, by Proposi-
tion 2.1.9 this also means that we have an equivalence Funex

G (
⊗

G/H Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG) ≃⊗
G/H Funex

H (Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH).

Proof. We observe the sequence of equivalences of unparametrised categories

FunL
G
(
IndG(

⊗
G/H

C), E
) i∗−→
≃

Funex
G (
⊗
G/H

C, E)

τ∗−→
≃

Fun
δfin

G/H
G ( ∏

G/H
C, E)

(∏ i)∗←−−−
≃

FunδG/H
G ( ∏

G/H
IndHC, E)

τ∗←−
≃

FunL
G(
⊗
G/H

IndHC, E)

(3.2)

where the third step is by Lemma 3.4.6. Since the equivalence factors through⊗
G/H C in the first step, they must respect the Yoneda maps as claimed.

Corollary 3.4.8. Let C be a H–stable category. Then

mapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmap⊗
G/H C(−,⊗c) ≃ ⊗G/HmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapC(−, c)

Proof. Let x, c ∈ ∏G/H C. By plugging in E = SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG in Eq. (3.2), we get the diagram

∏G/H C ∏G/H IndH(C) ∏G/H SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH

⊗
G/H C

⊗
G/H IndHC

⊗
G/H SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH ≃ SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG

IndG(
⊗

G/H C)

∏ i

τ τ

evx

⊗
⊗i

i⊗

ev⊗x

≃ ev⊗x

By starting with c ∈ ∏G/H C, we get mapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmap⊗
G/H C(⊗x,⊗c) ≃ ⊗G/HmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapC(x, c).



3.5 Σ2-TATE OF DIAGONALISED BILINEARS FOR ODD GROUPS 92

3.5 Σ2-Tate of diagonalised bilinears for odd
groups

Let G be an odd group, and let β : C × C → D be a symmetric G–bilinear functor

between G–stable categories. One can ask when the composite β ◦∆ : C ∆−→ C×C β−→
D is G–linear. To answer this question, let us first record the following observation
from group theory whose main input is an old theorem of J.S. Frame from 1941. We
thank Jeroen van der Meer for his help in deriving this statement.

Proposition 3.5.1. Let G be an odd group and H ≤ G a subgroup. Then the only
double coset HgH which is self-inverse, ie. HgH = Hg−1H ⊆ G, is the trivial one
associated to g = e.

Proof. By [Fra41, Thm. 3.2], the number of self-inverse double cosets is given by
S = 1

|G| ∑g∈G χG/H(g2) where for an element g ∈ G, χG/H(g) is the trace of the
element g under the representation π : G → Aut(G/H). Note also that this trace
is equal to the trace under the linearised representation ρ : G → AutC(C[G/H]).
On the other hand, the map of sets given by squaring (−)2 : G → G is surjective (if
|G| = 2n− 1, then g2n−1 = e and so g = (gn)2) and so is a bijection. Therefore, we
can even write S = 1

|G| ∑g∈G χG/H(g). Now by the standard formula for traces we

have ∑g∈G χG/H(g) = |G|dim(C[G/H]G) = |G| · 1 and so S = |G|/|G| = 1 as was
to be shown.

Lemma 3.5.2. Let G be an odd group. Let β ∈ FunG−bilin
G (C × C,D)hΣ2 for C,D

G–stable categories, ie. β is a symmetric G–bilinear functor. Let X, Y ∈ CH for some
H ≤ G. Then under the double coset decompositions on the second variable as a
consequence of the G–bilinearity of β

β(IndG
H X, IndG

HY) ≃
⊕

g∈H\G/H

IndG
Hg∩H β

(
ResH

Hg∩H X, ResHg−1∩H
Hg∩H ResH

Hg−1∩H
Y
)

β(IndG
HY, IndG

H X) ≃
⊕

g∈H\G/H

IndG
Hg∩H β

(
ResH

Hg∩H Y, ResHg−1∩H
Hg∩H ResH

Hg−1∩H
X
)

the Σ2–symmetry β(IndG
HX, IndG

HY) τ−→
≃

β(IndG
HY, IndG

HX) swaps the HgH sum-

mand and Hg−1H summand of β(IndG
HX, IndG

HY) and of β(IndG
HY, IndG

HX), respec-
tively.

Proof. Let g ∈ G be an element. Note first that the symmetry commutes with restric-
tions since it comes from FunG−bilin

G (C × C,D)hΣ2 where Σ2 acts on FunG−bilin
G (C ×

C,D) via the G–functor C × C swap−−−→
≃
C × C. Therefore, we obtain the datum of a
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commuting square

β(X, ResG
H IndG

HY) IndH
Hg∩H β(ResH

Hg∩H X, ResHg−1∩H
Hg∩H ResH

Hg−1∩H
Y)

β(ResG
H IndG

HY, X) IndH
Hg∩H β(ResHg−1∩H

Hg∩H ResH
Hg−1∩H

Y, ResH
Hg∩H X)

τ ≃ τ ≃ (3.3)

However, both double coset decompositions in the statement arise from the one on
the second variable of β. Hence we will need to translate the diagram Eq. (3.3) into

this form. To this end, observe tautologically that
(
G/Hg ∩ H

(−)g−1

−−−−→ G/Hg−1 ∩
H → G/G

)
=
(
G/Hg ∩ H → G/G

)
and so IndG

Hg∩H ≃ IndG
Hg−1∩H

ResHg∩H
Hg−1∩H

.

Because of this, we have a natural equivalence IndG
H β(Y, ResG

H IndG
HX) ≃

IndG
H β(ResG

H IndG
HY, X) coming from the equivalence on the double coset decom-

position summand

IndG
Hg∩H β

(
ResH

Hg∩H Y, ResHg−1∩H
Hg∩H ResH

Hg−1∩H
X
)

≃ IndG
Hg−1∩H

ResHg∩H
Hg−1∩H

β
(

ResH
Hg∩H Y, ResHg−1∩H

Hg∩H ResH
Hg−1∩H

X
)

≃ IndG
Hg−1∩H

β
(

ResHg∩H
Hg−1∩H

ResH
Hg∩H Y, ResH

Hg−1∩H
X
)

Thus, combining Eq. (3.3) with this identification and using the double coset de-
composition on the second variable, for g ∈ G such that HgH ̸= Hg−1H, the
symmetry τ induces

IndG
H β(X, ResG

H IndG
HY)

⊕
k∈{g,g−1} IndH

Hg∩H β(ResH
Hg∩H X, ResHg−1∩H

Hg∩H ResH
Hg−1∩H

Y)

IndG
H β(ResG

H IndG
HY, X)

IndG
H β(Y, ResG

H IndG
HX)

⊕
k∈{g,g−1} IndH

Hg∩H β(ResHg−1∩H
Hg∩H ResH

Hg−1∩H
Y, ResH

Hg∩H X)

τ ≃

swap ≃

≃

In the case when g = e, this square is to be interpreted as the symmetry
IndG

H β(X, Y) τ−→
≃

IndG
H β(Y, X). This completes the proof of the lemma.

Corollary 3.5.3. Let G be an odd group and let β ∈ FunG−bilin
G (C × C,D)hΣ2 a sym-

metric G–bilinear functor between G–stable categories. Then the (β ◦ ∆)tΣ2 : C −→
D is G–linear.
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Proof. Setting Y = X in Lemma 3.5.2, we obtain the decomposition

β(IndG
H X, IndG

H X)

≃ IndG
H β(X, X)⊕

⊕
[e] ̸=[g]∈[H\G/H]Σ2

[
IndG

Hg∩H β
(

ResH
Hg∩H X, ResHg−1∩H

Hg∩H ResH
Hg−1∩H

X
)

⊕ IndG
Hg∩H β

(
ResH

Hg−1∩H
X, ResHg∩H

Hg−1∩H
ResH

Hg∩H X
)]

as Σ2–objects, where the Σ2–action on the square bracket summands swaps
the two terms. Hence, since (−)tΣ2 vanishes on Σ2–free objects, we get
β(IndG

HX, IndG
HX)tΣ2 ≃

(
IndG

H β(X, X)
)tΣ2 ≃ IndG

H
(

β(X, X)tΣ2
)

as required.

3.6 The equivariant Σ2-Tate diagonal for odd
groups

Observe that − ⊗ − : SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG × SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG → SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG is a G–bilinear functor, and so when G
is odd, Corollary 3.5.3 implies that the Singer construction T2(−) := ((−)⊗2)tΣ2 :
SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG −→ SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG is G–linear. In this subsection, we will give an alternative presentation
of this result using the distributivity property of the tensor product.

Lemma 3.6.1. Let H ≤ G be a subgroup and f : G/H → G/G the unique map.
Then there is a distributivity diagram, in the sense of [EH19, Def. 2.3.1],

(G/H × G/H)⨿2 G/H × G/H

G/H⨿2 G/G⨿2 G/G

⌟π1⨿π2 u⨿u

∇̃

u

f⨿ f ∇

Moreover, this diagram is Σ2–equivariant where G/H⨿2 and G/G⨿2 are given the
swap action, G/H × G/H the flip action, (G/H × G/H)⨿2 the swap-flip action,
and G/G the trivial action.

Proof. By [HHR16, Lem. A.36] we have the distributivity diagram

G/G⨿2 × Γ(G/H⨿2
f⨿2
−−→ G/G⨿2) Γ(G/H⨿2

f⨿2
−−→ G/G⨿2)

G/H⨿2 G/G⨿2 G/G

⌟ev proj1

proj2

u

f⨿ f ∇

where Γ(G/H⨿2
f⨿2
−−→ G/G⨿2) is the finite G–set of sections to the map G/H⨿2

f⨿2
−−→

G/G⨿2 which also inherits a Σ2–action from the swap action on G/H⨿2
f⨿2
−−→
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G/G⨿2 . It is easy to see that this finite G–set with Σ2–action is computed as
Map(G/G, G/H)×Map(G/G, G/H) ∼= G/H × G/H with the flip Σ2–action. Un-
der this identification, we deduce similarly

G/G⨿2 × Γ(G/H⨿2
f⨿2
−−→ G/G⨿2) ∼= (G/H × G/H)⨿2

as finite G–sets with the stated Σ2–action. And from this, the descriptions of the
three maps out of it are also immediate.

Lemma 3.6.2 (Σ2–double coset formula). Let H ≤ G be a subgroup. Then we
have a Σ2–decomposition of finite G–sets G/H × G/H ∼= ⨿g∈H\G/H G/(H ∩ g H)

where the Σ2–action on the right hand side is given by conjugation G/(H ∩ gH)
∼=−→

G/(H ∩ g−1
H). In particular, Σ2 acts trivially on the component G/(H ∩ eH) =

G/H.

Proof. The isomorphism of G–sets is standard and is given by the G–bijection

G/H × G/H −→ ⨿
g∈H\G/H

G/(H ∩ g H) :: (gH, g̃H) 7→ (gH, g−1 g̃H) ∈ G/(H ∩ g−1 g̃ H)

where we think of the coordinate g−1 g̃H as the index in the coproduct decompo-
sition, and the G–action on the right hand side only acts on the gH coordinate.
Under this G–bijection, we can then induce the unique Σ2–action on the right hand
side such that the G–bijection is also Σ2–equivariant. The following diagram of
Σ2–actions

(gH, g̃H) (gH, g−1 g̃H)

(g̃H, gH) (g̃H, g̃−1gH)

Σ2 Σ2

then shows that Σ2–action on ⨿g∈H\G/H G/(H ∩ g H) is given by conjugation.

Proposition 3.6.3 (Equivariant Σ2–Singer construction). Let G be a odd finite
group. Then the Σ2–Singer construction T2 : SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG −→ SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG given by X 7→
(X⊗ X)tΣ2 is G–linear.

Proof. By [NS18] we already know that it is linear in the ordinary sense. Hence, all
that is left to show is that it preserves equivariant coproducts. For this, let H ≤ G
be a subgroup and X ∈ SpH . We need to show that IndG

HT2X ≃ T2IndG
HX. Now

IndG
HX⊗ IndG

HX is a Σ2–object in SpG, and using the notation from Lemma 3.6.1 we
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can compute it as a Σ2–object by:

IndG
H X⊗ IndG

H X

≃ ∇⊗( f ⨿ f )⊕(X, X)

≃ u⊕∇̃⊗(π1 ⨿ π2)
∗(X, X)

≃
⊕

g∈H\G/H

IndG
H∩g H

[
(ResH

H∩g H X)⊗ (g∗ ResH
Hg∩H X)

]

≃ IndG
H
[
X⊗ X

]
⊕

⊕
[e] ̸=[g]∈[H\G/H]Σ2

[
IndG

H∩g H

[
(ResH

H∩g H X)⊗ (g∗ ResH
Hg∩H X)

]

⊕ IndG
H∩g−1 H

[
(ResH

H∩g−1 H
X)⊗ (g−1∗ ResH

Hg−1∩H
X)
]]

Since G was odd, Proposition 3.5.1 gives that the Σ2–action on the final term is the
swap on IndG

H [X⊗ X] and given by the free Σ2–swap conjugation on the terms[
IndG

H∩g H

[
(ResH

H∩g H X)⊗ (g∗ ResH
Hg∩H X)

]
⊕ IndG

H∩g−1 H

[
(ResH

H∩g−1 H
X)⊗ (g−1∗ ResH

Hg−1∩H
X)
]]

The second equivalence is by distributivity of ⊗ and IndG
H , and the third equiva-

lence of Σ2–objects is by our Σ2–double coset decomposition Lemma 3.6.2. There-
fore, since (−)tΣ2 kills Σ2–free terms, we see that

T2IndG
HX ≃ (IndG

H [X⊗ X])tΣ2 ≃ IndG
H [X⊗ X]tΣ2 ≃ IndG

HT22X

as required.

Construction 3.6.4 (Equivariant Tate diagonal). Let G be a group such that T2 is
G–linear, for example an odd group by Proposition 3.6.3. We know that we have
an equivalence of G–categories Ω∞ : Funex(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG) −→ Funlex(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG,SG). Hence
since we know that T2 is G–linear by Proposition 3.6.3, we have equivalences

Nat(id, T2) ≃ Nat(MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMap(−, SG), Ω∞T2) ≃ Ω∞T2(SG)

Since T2 is ordinary lax symmetric monoidal, there is a unit element 1 ∈
πG

0 Ω∞T2(SG) corresponding to the canonical map SG → S
hΣ2
G → S

tΣ2
G . This yields

a transformation
∆2 : id =⇒ T2

of functors SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG −→ SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG which we call the equivariant Tate diagonal.
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We now record all the important points of this subsection into the following the-
orem.

Theorem 3.6.5. Let G be an odd group. Then the 2–Singer construction T2(−) :=
((−)⊗2)tΣ2 : SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG → SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG is a G–linear functor. Moreover, there is a natural trans-
formation of G–linear functors

id T2
∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆∆2

which refines the Nikolaus-Scholze Tate diagonal ∆2 in the sense that for X ∈ SpG,

we have an identification ResG
e

(
∆2 : X ⇒ T2X

)
≃
(

∆2 : ResG
e X ⇒ T2 ResG

e X
)

.



Chapter 4

Genuine equivariant
algebraic K–theory

Building upon the notion of T –perfect-stable categories from §2.3, we work to-
wards introducing two natural candidates for parametrised algebraic K–theory in this
chapter. To this end, as in the unparametrised case, we would need a good under-
standing of split Verdier sequences and the attendant set-theoretic considerations;
these are achieved in §4.1. Taking these as ingredients, we proceed to defining two
variants of parametrised algebraic K–theory in §4.2: the first one, which we term
pointwise, is gotten by applying the functor MackT (−) to the unparametrised K–
theory functor K : Catperf → Sp (more colloquially, K(C)H := K(CH)); the second
one, which we term normed, builds into the definition that it also admits the Hill-
Hopkins-Ravenel norms and which, moreover, receives a natural comparison map
from the first variant. In the final §4.3 of this chapter, we show that this comparison
is an equivalence when G is a 2–group. This implies that in this case, the composite
functor

Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
G ⊆ MackG(Catperf)

K−→ MackG(Sp) = SpG

canonically refines to a G–lax symmetric monoidal functor (cf. Corollary 4.3.20),
hence completing the algebraic K–theory program outlined in [BDG+16a] for such
groups G.

4.1 Generation of split Verdier sequences
4.1.1 (Split) Verdier sequences

The notion of (split) Verdier sequences is a direct adaptation of those of [CDH+20b].
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Definition 4.1.1. A sequence C i−→ D p−→ E in Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T with vanishing composite is

called a Verdier sequence if it is both a fibre and cofibre sequence. It is moreover said
to be a split Verdier sequence if it can be completed to T -adjunctions

C D Ei p
q

r

ℓ

j

where an arrow stacked above another denotes being a left adjoint.

Remark 4.1.2. Since Catperf is semiadditive and since Mackey functors are finite
product-preserving functors, we see that MackT (Catperf) ⊆ Fun(Span(T ), Catperf)
is closed under finite (co)limits, and so these are computed pointwise in
MackT (Catperf). On the other hand, sections A.1 and A.2 of [CDH+20b] give us
very good control of the fibre and cofibre sequences in Catperf in terms of (split)
Verdier sequences. Hence, in conjunction with the creation of fibre and cofibre se-

quences under the inclusion Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T ⊆ CMonT (Catperf) from Proposition 2.3.7, we

will have a good control of the parametrised (split) Verdier sequences as defined
above. We will record the consequence of this that we need in the following corol-
lary.

Corollary 4.1.3. Suppose we have sequences and T -adjunctions in Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T

C D E
i

⊥ ⊥

p

q ℓ

where the top and bottom composites vanish. Then the top sequence is Verdier if
and only if the bottom one is. In particular, in a split Verdier sequence, all three
layers of sequences are Verdier.

Proof. Since the inclusion Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T ⊆ CMonT (Catperf) creates fibres and cofibres by

Proposition 2.3.7, and since these are pointwise in MackT (Catperf) by the remark
above, we can check the Verdierness of these sequences by checking fibrewise. Sup-
pose the top sequence is Verdier. Then by [CDH+20b, A.1.10 (iii) and A.2.1], since q
was a Dwyer-Kan localisation, i must be fully faithful. Hence by [CDH+20b, A.2.5]
the bottom sequence is Verdier. Applying (−)opopopopopopopopopopopopopopopopop everywhere, we obtain the reverse
direction.

Lemma 4.1.4. Let f : W → V be in T . Then a split Verdier sequence

C D Ei p
q

r

ℓ

j
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in
(
Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T
)

W gives rise to one in
(
Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T
)

V .

f∗C f∗D f∗Ei p

q

r

ℓ

j

Proof. We saw in Proposition 2.3.1 that PrT ,st,L,ω is T -semiadditive, and so f! ≃ f∗.
Hence f∗ preserves (co)fibre sequences and we have bifibre sequences in the three
directions above. Furthermore, Lemma 1.3.13 says that the desired three layers of
sequences are all adjoints of each other, and hence they form a split Verdier se-
quence by Corollary 4.1.3 as required.

4.1.2 Set-theoretic considerations

In this subsection we mimic the formulations and techniques of [CDH+, §1.1] to
prepare the set-theoretic materials needed for our construction of parametrised mo-
tives in the next subsection. The goal is to obtain Corollary 4.1.11, and the reader
unconcerned with such matters may wish to take this for granted and skip directly
to §4.2.

First of all we will deduce the parametrised analogue of [MP87, Lem 1.7.ii] from
the unparametrised version proven in [CDH+]. We will need some terminology for
this.

Terminology 4.1.5. Let C be a T -cocomplete category and S be a set of objects in C.
We say that it is jointly conservative if S induces a jointly conservative set of objects
in each fibre of C, ie. for every V ∈ T and writing SV for the set of objects of CV in
the set S, the functor ∏x∈SV

MapCV
(x,−) : CV → ∏x∈SV

S is conservative. We say
that it is a set of parametrised generators of C if the smallest T -cocomplete subcategory
of C containing S is C itself. In other words, every parametrised object in C can be
written as a parametrised colimit of objects in C.

Proposition 4.1.6 (Parametrised Makkai-Pitts). Let κ be a regular cardinal and C a
T -cocomplete category. Let S ⊆ C be a jointly conservative set of parametrised-κ-
compact objects. Then S is a set of parametrised-κ-compact generators. In particu-
lar, C is parametrised-κ-compactly generated.

Proof. We want to show that for every V ∈ T , any T/V–object in CV is a T/V–
colimit of objects in S. By hypothesis, ∏x∈SV

MapCV
(x,−) : CV → ∏x∈SV

S is jointly
conservative. Hence, by [CDH+, Prop 1.1.2], every object in CV is a κ-small colimit
of objects in SV .

Proposition 4.1.7. The set
{

SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω
V , fun(∆1, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω

V)
}

V∈T is jointly conservative on

Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T . Thus, Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T is κ-compactly generated for all regular cardinals κ.
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Proof. Since joint conservativity is checked fibrewise, we show that{
SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω

V , fun(∆1, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω
V)
}

is jointly conservative on Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
V for an arbitrary V ∈ T . Note

that SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω
V and fun(∆1, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω

V) corepresent the functors Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
V → SV

C 7→ C≃ and C 7→ fun(∆1, C)≃ (4.1)

respectively. We only show this for the second one since the first is easier:

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMap
Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
V

(
fun(∆1, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω

V), C
)
≃ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPrV -st,L,ω

(
fun(∆1, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpV), IndωC

)
≃ FunL,ω

V (fun(∆1, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpV), IndωC
)≃

≃ FunR,ω -acc
V

(
IndωC, fun(∆1, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpV)

)≃
≃ fun

(
∆1, FunR,ω -acc

V
(
IndωC, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpV

))≃
≃ fun

(
∆1, FunL,ω

V
(
SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpV , IndωC

))≃
≃ fun(∆1, C)≃

where the first equivalence is by Theorem 2.2.16; the third and fifth are by Propo-
sition 1.2.28 and Theorem 2.2.3; the fourth by Notation 1.1.14; and the last is by
Proposition 2.3.16. To see that the two functors of Eq. (4.1) are jointly conservative,
suppose φ : C → D is a functor such that

φ : C≃ ≃−→ D≃ and φ : fun(∆1, C)≃ ≃−→ fun(∆1,D)≃

are equivalences of T/V–spaces. In particular, the first equivalence implies that φ is
T/V–essentially surjective. On the other hand, the fibre over [W → V] of fun(∆1, C)
is Fun(∆1, CW) and so the second equivalence together with the the formula for
unparametrised mapping spaces as pullbacks Fun(∆1, CW)×C×2

W
{∗} gives us that

φ : C → D is T/V–fully faithful.

Notation 4.1.8. For C being any of Catperf, MackT (Catperf), CofreeT (Catperf),

Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T , or CMonT (Catperf), we write Split(C) for the full subcategory of fun(∆1 ×

∆1, C) consisting of the split Verdier sequences. This is an parametrised or un-
parametrised category according as C is or not. Note that Split(CofreeT (Catperf)) ≃
CofreeT (Split(Catperf)) and Split(CMonT (Catperf)) ≃ CMonT (Split(Catperf))
since splitness is a fibrewise notion, and Cofree and CMon are fibrewise construc-
tions.

Remark 4.1.9. There is an adjunction L : Fun(∆1, Catperf) ⇄ Catperf : R where

L(C f−→ D) ≃ C ×D Ar(D) where Ar(D) := Fun(∆1,D) is the arrow category and

R(E) ≃ (Ar(E) target−−−→ E). Clearly the right adjoint R preserves small colimits, and
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in particular all filtered colimits. Now since Fun(∆1, Catperf) and Catperf are semi-
additive, the left adjoint preserves finite products. Hence we can apply CMonT to
obtain a T -adjunction

LT : fun(∆1, CMonT (Catperf)) ⇄ CMonT (Catperf) : RT

where the T -right adjoint preserves all fibrewise filtered colimits, and hence
LT preserves κ-compact objects for all regular cardinals κ. This means that if

(C f−→ D) is a T -exact functor between κ-compact T -perfect stable categories, then
C×D Ar(D) is κ-compact too. We will need this result very shortly and we refer to
[CDH+] for the original treatment of this in the unparametrised setting.

Lemma 4.1.10 (Split Verdier classification). Split(Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T ) ≃ fun(∆1, Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T ).

Proof. We will bootstrap this statement from the unparametrised statement. We
know from [CDH+20b, Prop. A.2.11] that Fun(∆1, Catperf) ≃ Split(Catperf): this
equivalence is implemented by a functor Fun(∆1, Catperf) → Split(Catperf) which

sends (C f−→ D) to the split Verdier sequence (D → C ×D Ar(D) → C). Now
consider

Split(Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T ) fun(∆1, Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T )

Split(CMonT (Catperf)) fun(∆1, CMonT (Catperf))

CMonT (Split(Catperf)) CMonT (Fun(∆1, Catperf))

≃

≃ ≃

≃

≃

where the bottom vertical equivalences are by Notation 4.1.8 and the top verti-
cal equivalences are by Theorem 2.3.4. Then the bottom equivalence induces the
middle dashed equivalence which in turn induces the top dashed equivalence as
required.

Corollary 4.1.11. For any regular cardinal κ there is a small set Sκ of split Verdier
sequences on κ-compact T -perfect-stable categories such that any split Verdier se-

quence in Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T can be written as a fibrewise κ-filtered colimit of sequences in

Sκ .

Proof. First note that we have

Split(Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T )κ ≃ fun(∆1, Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T )κ ≃ fun(∆1, (Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T )κ) ≃ Split((Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T )κ)
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where the second equivalence is by [Lur09, Lem. 5.3.4.9] and the third is by Re-

mark 4.1.9 together with Lemma 4.1.10. Now since Split(Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T ) ≃ fun(∆1, Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T )

is κ-compactly generated for any regular cardinal κ by Proposition 4.1.7, we see that

Split(Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T ) ≃ Indκ(Split((Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T )κ))

with the T -category Split((Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T )κ) being small.

4.2 Parametrised noncommutative motives
In their ground-breaking work, Blumberg, Gepner, and Tabuada [BGT13; BGT14]
showed that algebraic K–theory refines to a lax symmetric monoidal functor via
the formal construction of noncommutative motives. The present section will carry
out this general strategy by providing two parallel motivic scaffoldings: the first,
which we term pointwise, will be the one that corepresents algebraic K–theory; the
second, which we term normed, will admit the sought after multiplicative norms
by definition. In the next §4.3, we will show that these two constructions agree in
the equivariant setting when G is a finite 2–group, showing that algebraic K–theory
refines to a G–lax symmetric monoidal functor in this case. The formulations and
proof techniques in this section are just a straightforward mimicking of those in
[CDH+].

Notation 4.2.1. Let κ be a regular cardinal. We write C̃at
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ
T for the smallest

T -symmetric monoidal subcategory of Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T containing (Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T )κ . In particu-

lar, since (Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T )κ is small by Proposition 4.1.7, C̃at

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ
T is also small. We need

this slight enlargement for the technical reason that we do not know a priori that

(Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T )κ inherits the T -symmetric monoidal structure of Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T since it is not clear

that the multiplicative norms preserve parametrised-κ-compact objects. We will see
why we need this technical manoeuvre in §4.2.2.

Definition 4.2.2. Let κ be a regular cardinal. LetR−1
pw,κ be the collection of diagrams

in C̃at
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ
T ⊆ PShT (C̃at

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ
T ) consisting of:

• the diagram constT (∅)▷ = ∗ → C̃at
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ
T picking the zero category (ie. the

initial object),
• all split Verdier sequences.

Let R−1
norm,κ be the closure of R−1

pw,κ under under f⊗ for f : U → V a map of finite
T-sets.

Definition 4.2.3. Let κ be a regular cardinal. We define:
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• unstable pointwise κ-motives NMotpw,un,κ
T to beR−1

pw,κPShT (C̃at
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ
T ),

• unstable normed κ-motives NMotun,κ
T to beR−1

norm,κPShT (C̃at
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ
T ).

Remark 4.2.4. Note that Rpw,κ and Rnorm,κ are small since C̃at
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ
T is, and so

NMotpw,un,κ
T and NMotun,κ

T are T -presentable.

Notation 4.2.5. Write jκun : C̃at
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ
T → NMotun,κ

T for the canonical functor. Since

split Verdier sequences were already cofibre sequences in C̃at
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ
T by definition,

we get from Theorem 2.2.12 that this functor is T -fully faithful.

We now collect some basic results about these two types of motives in the next
two subsections.

4.2.1 Variant 1: pointwise motives

Definition 4.2.6. Let E be a T –complete category. A T -functor Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T → E is said

to be additive if it sends split Verdier sequences to fibre sequences and preserves

the final objects. We write Funadd
T (Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T , E) ⊆ FunT (Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T , E) for the T -full

subcategory of such. We also similarly use the terminology of being additive when

Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T is replaced with C̃at

perf,κ
.

Proposition 4.2.7 (Universal property of unstable pointwise κ-motives). For every

T -cocomplete category E , (jκun)
∗ : FunL

T (NMotpw,un,κ
T , E) → Funadd

T (C̃at
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ
T , E) is

an equivalence.

Proof. This is immediate by construction and Theorem 2.2.10.

Construction 4.2.8 (The big unstable pointwise motives). Let κ ≤ κ′ be two regular

cardinals. Then the composition C̃at
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ
T ⊆ C̃at

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ′

T ↪→ NMotpw,un,κ′

T preserves
initial objects and sends split Verdier sequences to cofibre sequences. Hence by
Proposition 4.2.7 we obtain a strongly T -colimit-preserving functor NMotun,κ

T →
NMotpw,un,κ′

T . This is T -fully faithful since it sends compact-generators to compact
objects and is T -fully faithful on these. We then define

NMotun
T :=

⋃
κ

NMotpw,un,κ
T

Since we also have Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T ≃ ⋃κ C̃at

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ
T , we obtain a T -fully faithful functor

j : : Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T −→ NMotpw,ununununununununununununununununun

T
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Since the poset of regular cardinals is a large category and each of NMotpw,un,κ
T

is large, we deduce that NMotpw,un
T is a large T -presentable category since large

unions of large sets is large. We refer to [CDH+, §1.2] for a more thorough discus-
sion of set-theoretic considerations.

Proposition 4.2.9 (Universal property of big unstable motives, “[CDH+, Prop.
1.2.6]”). For a T –(co)complete category E , (jun)∗ : FunL

T (NMotpw,un
T , E) →

Funadd
T (Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T , E) is an equivalence.

Proof. By Corollary 4.1.11 we have FunRT (Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T , E) ≃ limκFunRT (Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ
T , E)

obtained from the tautological equivalence FunT (Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T , E) ≃

limκFunT (Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ
T , E). But we also have the tautological equivalence

FunL
T (NMotpw,un

T , E) ≃ limκFunL
T (NMotpw,un,κ

T , E). Therefore we can apply
Proposition 4.2.7 to conclude.

Construction 4.2.10 (Big stable motives). Define the T -presentable-stable category
of parametrised noncommutative motives to be NMotpw

T := SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpT (NMotpw,un
T ). This

yields

Z : Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T

jun
↪−→ NMotpw,un

T
can−−→ NMotpw

T

Just as importantly, since T –stabilisation is a left adjoint in PrT ,L, we also have
NMotpw

T ≃ ⋃
κ NMotpw,κ

T where NMotpw,κ
T := SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpT (NMotpw,un,κ

T ). We then obtain
commuting composites

NMotun,κ
T

Zκ : C̃at
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ
T PShst

T (C̃at
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ
T ) NMotκ

T

can

Uκ

jun

λκ

We will use this second description to handle monoidal matters later.

Theorem 4.2.11 (Universal property of stable motives). For every T -presentable-

stable category E , the precomposition Z∗ : FunL
T (NMotT , E) → Funadd

T (Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T , E)

is an equivalence.

Proof. This is an immediate consequence of Proposition 4.2.9 and Proposi-
tion 2.3.12.

Construction 4.2.12 (Connective algebraic K-theory). Recall that ordinary
(idempotent-complete) algebraic K-theory is given by the finite product-preserving
functor

K : Catperf Q•−→ Fun(∆op, Catperf)
(−)≃−−−→ Fun(∆op,S) colim−−−→ S
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where, using the notation from Notation 1.1.14, we have QnC ≃
funT (TwAr(∆n), C) known as Quillen’s Q–construction. Since CMon(S) → S
preserves sifted colimits by [Lur17, §3.2.3], it in particular preserves geometric
realisations. Hence the geometric realisation used above to define K acquires a
canonical commutative monoid structure because we have the factorisation

Catperf S

CMon(S)

(−)≃

Thus we can apply the T -cofree Construction 1.1.16 and T -semiadditivise to get

KT : CMonT (Catperf) −→ CMonT (S)

which we call the parametrised algebraic K-theory space. On fibres, this looks like

MackT (K) : Fun×(Span(T ), Catperf)
Q•−→ Fun(∆op, Fun×(Span(T ), Catperf))

(−)≃−−−→ Fun(∆op, Fun×(Span(T ), CMon(S)))
colim−−−→ Fun×(Span(T ), CMon(S))

We will have use of this description soon in analysing motivic suspensions. Note
also that KT is an additive theory since we define split Verdier sequences in
CMonT (Catperf) as those that are pointwise split Verdier in the usual sense. More-
over, one can deloop the algebraic K-theory space K to get an algebraic K-theory
spectrum K : Catperf → Sp which is the spectrum associated to the prespectrum
whose n-th term is colim•∈(∆op)n(Q•C)≃ (cf. [BGT13, §7.2] or Waldhausen’s origi-
nal treatment [Wal85] for more details using the equivalent S•–construction), and
we write KT for the analogous pointwise K–theory spectrum.

Lemma 4.2.13. Let C,D ∈ Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T . Then Funex

T (D, QnC) ≃ QnFunex
T (D, C).

Proof. Since QnC ≃ funT (∆
n, C), we get from Notation 1.1.14 (1) that

FunT (D, QnC) ≃ QnFunT (D, C). But then, both QnC and FunT (D, C) inherit T -
(co)limits from C (the former by Notation 1.1.14 (2)), and so clearly we obtain the
statement required.

Lemma 4.2.14 (Motivic suspension, “[BGT13, §7.3], [CDH+, Prop. 1.2.9]”). Let C ∈
Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T . Then colim•∈∆op junQ•(C) is already motivically local and moreover,

colim
•∈∆op

junQ•(C) ≃ Σjun(C) ∈ NMotun
T
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Proof. To see the first part, let D ∈ Catperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf. Then note that

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPShT (junD, colim
•∈∆op

junQ•(C)) ≃ colim
•∈∆op

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPShT (junD, junQ•(C))

≃ colim
•∈∆op

Funex(D, Q•(C))
≃

≃ colim
•∈∆op

(
Q•Funex(D, C)

)≃
=: KKKKKKKKKKKKKKKKKT (Funex(D, C))

and hence, since Funex(−, C) preserves split Verdier sequences and since KKKKKKKKKKKKKKKKKT is
additive, we obtain that indeed colim•∈∆op junQ•(C) is motivically local as claimed.

For the second part, recall we have the simplicial split Verdier sequence

C → Déc•C → Q•C

where we have adopted the terminology décalage from [CDH+20b, Lem. 2.4.7].
The construction Déc•C is also called the simplicial path object in [BGT13, Proof

of Prop. 7.17]. Now since jun : Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T → NMotun

T sends split Verdier sequences
to cofibre sequences by definition of unstable motives, and cofibre sequences are
stable under colimits, we can apply jun to the simplicial split Verdier sequence and
take geometric realisation in NMotun

T to get a cofibre sequence in NMotun
T

jun(C)→ colim
n∈∆op

junDéc•C → colim
•∈∆op

junQ•C

But then we know that the middle term is always augmented over 0 and so is zero,
hence the last term is a suspension of the first term, as required.

Theorem 4.2.15 (Motivic corepresentability of K-theory, “[CDH+, Prop. 2.1.5]”).
Let C,D ∈ Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T . Then there is a natural equivalence

mapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapNMotT (ZC,ZD) ≃ KT (Funex(C,D))

In particular, KT is corepresented by Z
(
(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpT )ω

)
by Proposition 2.3.16.

Proof. Firstly, note that in NMotun
T , Σn junD ≃ colim•∈(∆op)n junQ•D since

Σn junD ≃ Σn−1( colim
•∈∆op

junQ•D
)
≃ colim
•∈∆op

(
Σn−1 junQ•D

)
≃ colim
•∈∆op

(
Σn−2( colim

•∈∆op
junQ•D

))
and so on. WritingM for the motivic localisation, the left hand parametrised spec-
trum in the theorem statement is the one associated to the prespectrum whose n-th
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term, for n ≥ 1, is

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapNMotun
T
(MjunC, Σn junD) ≃ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapNMotun

T
(MjunC, colim

•∈(∆op)n
junQ•D)

≃ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPShT (junC, colim
•∈(∆op)n

junQ•D)

≃ colim
•∈(∆op)n

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPShT (junC, junQ•D)

≃ colim
•∈(∆op)n

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMap
Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T

(C, Q•D)

≃ colim
•∈(∆op)n

(
Q•Funex(C,D)

)≃
≃ Ω∞ΣnKT

(
Funex(C,D)

)
where the second equivalence is since for n ≥ 1, colim•∈(∆op)n junQ•D is already
in NMotun

T by Lemma 4.2.14; the fourth since jun is T -fully faithful; the fifth by
Lemma 4.2.13; and the last by definition of KT . Hence both parametrised spectra
in the statement have equivalent associated spectra, giving the desired conclusion.

4.2.2 Variant 2: normed motives

Throughout this subsection, let T be such that for each f : W → V, the functors
(T/W)op → (T/V)

op have finite discrete comma categories. An example for this is
T = Oop

G for a finite group G, which will be the only case we will be interested in.

Proposition 4.2.16 (Parametrised Dwyer-Kan symmetric monoidality). Suppose
L : C → LC is a T –symmetric monoidal localisation (cf. Terminology 1.3.10).
Then for any T –symmetric monoidal category D⊗, the induced functor L∗ :

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMap⊗T (LC⊗,D⊗)→ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMap⊗,S−1

T (C⊗,D⊗) is an equivalence where MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMap⊗T denotes the
T –symmetric monoidal functors.

Proof. We prove this by bootstrapping from the proof of [Lur17, Prop. 4.1.7.4].
Recall from [Lur17, Cons. 4.1.7.1] that we have a category WCat whose objects
are pairs (C, W) where C is a category and W is a collection of morphisms in
C stable under composition and contains all equivalences in C, and morphisms
f : (C, W) → (C ′, W ′) are functors f : C → C ′ such that f (W) ⊆ W ′. By [Lur17,
Prop. 4.1.7.2] we have a Bousfield localisation

WCat Cat
I

(4.2)

where both functors preserve finite products and the functor I sends (C, W) to the
Dwyer-Kan localisation C[W−1]. Applying Construction 1.1.16 to this adjunction
we get the T –Bousfield localisation IT : CofreeT (WCat) ⇄ CofreeT (Cat) : inclT .
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Moreover, since both functors in Eq. (4.2) preserve finite products, by our hypothe-
sis on T , the functor IT storngly preserves indexed products and so we even have
an adjunction

CMonT (WCat) CMonT (Cat)
IT

incl
(4.3)

Hence, since T –symmetric monoidal categories are equivalently T –commutative
monoidss in Cat×T , for (C⊗, S) ∈ CMonCMonCMonCMonCMonCMonCMonCMonCMonCMonCMonCMonCMonCMonCMonCMonCMonT (WCatT ) and D⊗ ∈ CAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgCAlgT (Cat×T ),
the T –adjunction Eq. (4.3) yield the equivalence L∗ : MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMap⊗T (LC⊗,D⊗) ≃−→
MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMap⊗,S−1

T (C⊗,D⊗) as desired.

As in Construction 4.2.8, we can construct NMot
un

T :

Proposition 4.2.17 (“[CDH+, Prop. 1.2.11]”). There is a T -symmetric monoidal

structure on NMotun
T such that the functor jun : Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T −→ NMotun

T refines canoni-
cally to a T -symmetric monoidal functor.

Proof. We first argue for the case of small motives. From Corollary 2.3.10 the

Yoneda embedding C̃at
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ
T ↪→ PShT (C̃at

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ
T ) uniquely refines to a T -symmetric

monoidal functor, and so we are left to show that the T -Bousfield localisation
PShT (C̃at

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ
T ) → NMotun,κ

T is compatible with the T -symmetric monoidal struc-
ture in the sense of [Lur17, Def. 2.2.1.6]. But this is an immediate consequence of
our definition of Rnorm,κ and [Lur17, Prop. 2.2.1.9], using the fact that we have
closed upRnorm,κ under the norm operations.

Now for the case of the big motives, Proposition 2.3.9 implies that the T -

symmetric monoidal inclusion C̃at
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ
T ⊆ C̃at

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ′

T induces a T -symmetric

monoidal refinement of PShT (C̃at
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ
T ) → PShT (C̃at

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ′

T ). On the other hand,
Proposition 4.2.16 implies that this induces a T -symmetric monoidal refinement
of NMotun,κ

T ⊆ NMotun,κ′
T . Thus since filtered colimits of T -symmetric monoidal

categories are formed underlying by the obvious parametrised analogue of [Lur17,
§3.2.3], we obtain a canonical T -symmetric monoidal structure on NMotun

T together

with a unique T -symmetric monoidal refinement of Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T ↪→ NMotun

T .

Theorem 4.2.18 (Monoidality of motives). The T -functor Z : Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T → NMotT

canonically refines to a T -symmetric monoidal functor.

Proof. We already know that jun : Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T → NMotun

T is T -symmetric monoidal
by Proposition 4.2.17. Now by Lemma 1.3.11 and Proposition 2.3.12, NMotun

T →
NMotT also refines uniquely to a T -symmetric monoidal functor.
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Unlike in the unparametrised situation where algebraic K–theory is a con-
struction and its corepresentability in motives is a result, we now define normed
parametrised algebraic K–theory to be that which is corepresented by the unit in
motives.

Definition 4.2.19. The normed parametrised algebraic K–theory spectrum KT is defined
as

KT : Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T NMotT SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpT

Z mapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmap(1,−)

Observation 4.2.20. From this definition, we can collect two immediate and impor-
tant facts:

(i) The T –functor KT : Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T → SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpT canonically refines to a T –lax symmtric

monoidal functor because mapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmap(1,−) canonically refines to such in general.

(ii) The T –functors Zκ : C̃at
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf,κ
T → NMotκ

T and Z : Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
T → NMotT are ad-

ditive by construction, and so by Proposition 4.2.7 and Theorem 4.2.11, there
are canonical comparison maps Ψκ : NMotpw,κ

T → NMotκ
T and Ψ : NMotpw

T →
NMotT . Furthermore, it is easy to see that the Ψκ’s assemble to induce Ψ. We
do not know in general if the comparison map Ψ : NMotpw

T → NMotT is an
equivalence. However, we are able to show that it is so in the case of equiv-
ariant algebraic K–theory for G a 2-group, and this is the content of the next
section.

4.3 Equivariant algebraic K-theory for 2–groups
In this section, we specialise the considerations of §4.2 to the case of T = Oop

G
where G is a finite group, giving G–equivariant algebraic K–theory. The end goal
is to show Theorem 4.3.19, which says that KG refines to the structure of a normed
ring G–spectrum when G is a 2–group. As we will see, understanding the excision
property of the algebraic K–theory spectrum for certain kinds of pushouts will be
crucial and so we will introduce in §4.3.1 the required class of pushout diagrams.
Following that, §4.3.2 and §4.3.3 will be concerned with a general analysis of some
G-diagrams which will be needed in §4.3.4 to prove the main theorem. Finally, we
provide a large class of examples in §4.3.5.

4.3.1 Stable additivity and right-split Verdier pushouts

Recall the notation from Construction 4.2.10

Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
G PShst

G(Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
G ) NMotGU

Z

λ
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Note that U is G–symmetric monoidal functor. For the sake of notational concision,
we have suppressed the κ’s because size issues will not be relevant.

Definition 4.3.1. A square in Catperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf

A B

C P
⌜

is said to be a right-split Verdier pushout if it is a pushout diagram and the vertical
arrows are right-split Verdier inclusions.

The following lemma gives the source of right-split Verdier pushouts that concern
us.

Lemma 4.3.2. Suppose we have a diagram in Catperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf

A B

C

such that A → B is a biadjoint (ie. it admits adjoints on both sides and that these
are equivalent). Then the pushout in Catperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf is a right-split Verdier pushout.

Proof. We work in the presentable setting by virtue of the equivalence Catperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf ≃
PrL,st,ω. We compute the pushout in PrL,st and then check that it is already the
pushout in PrL,st,ω. Now colimits in PrL,st are computed as limits in PrR,st. And so
we get the solid pushout and dashed pullback square

Ind(A) Ind(B)

Ind(C) Ind(P)
⌜

Now since limits in both PrL,st and PrR,st are computed underlying, and since the
top and left dashed maps are themselves left adjoints by our hypothesis, we see
that the bottom and right dashed maps are also left adjoints. In particular, the
solid maps Ind(C) → Ind(P) and Ind(B) → Ind(P) both preserve compact ob-
jects. Therefore, Ind(P) which is a priori a pushout in PrL,st is also a pushout in
PrL,st,ω. Moreover, since sections pull back to sections and since Ind(A) → Ind(C)
is a section of Ind(C) → Ind(A), we see that Ind(B) → Ind(P) is a section of
Ind(P)→ Ind(B). This pair being adjoint to each other then automatically implies
that Ind(B)→ Ind(P) is fully faithful, and so a right-split Verdier inclusion.
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The following result is where our stability hypothesis comes in.

Lemma 4.3.3. If we have a right-split Verdier pushout as in Definition 4.3.1, then

Z(A) Z(B)

Z(C) Z(P)

is a pushout in the stable noncommutative motives NMot.

Proof. First we extend the diagram with E := cofib(B ↪→ P) to obtain

A B 0

C P E
⌜ ⌜

Since taking cofibres of right-split Verdier inclusions give right-split Verdier se-
quences by Corollary 4.1.3, we get right-split Verdier sequences

A C E B P E

Hence, by [CDH+20b, Rmk. 2.7.6 (ii)], the maps U (C)/U (A) → U (E) and
U (P)/U (B) → U (E) are λ-equivalences. Now consider the horizontal maps of
vertical cofibre sequences

U (A) U (B) 0

U (C) U (P) U (E)

U (C)/U (A) U (P)/U (B) U (E)

(λ≃)

(λ≃)

The arrows marked with (λ ≃) are λ-equivalences, and so the dashed map is too.
On the other hand, we have this map of cofibre sequences

U (B) U (B)⨿U (A) U (C) U (C)/U (A)

U (B) U (P) U (P)/U (B)

(λ≃) (λ≃)
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where the maps marked with (λ ≃) are λ-equivalences, and hence since we are in
stable presheaves, the middle one is too, as was to be shown.

4.3.2 C2-pullbacks and –pushouts

The results in this subsection hold generally for G/H–pullbacks and –pushouts for
H ◁ G with |G/H| = 2. We phrase everything in terms of C2 purely for notational
convenience. We are grateful to Greg Arone for his indispensable suggestion to
transform C2–pushouts into ordinary pushouts of C2–objects.

Lemma 4.3.4. Suppose we are given a C2-pullback diagram (X → Y ← X). Then
the C2-pullback X×YX can equivalently be computed as the following ordinary
pullback of C2-objects

X×YX Y

CoindC2
e X CoindC2

e ResC2
e Y

⌟
η

Proof. The case of C2–spaces will imply immediately the general case of a C2–
category, and so we just show the statement in this special case. Let J be the di-
agram indexing the C2-pullbacks. On underlying spaces (ie. the fibre over C2/e)
it is the usual pullback. On the fibre over C2/C2, we compute the right Kan ex-
tension p∗ : FunC2(J,SC2

) ≃ Fun(Total(J),S) −→ Fun(Oop
C2

,S) along the structure
projection p : Total(J)→ Oop

C2
given by

C2/C2 {g}

C2/C2 −→ C2/C2 {e}

C2/C2 −→ C2/e

≃ ≃

p

C2≃

We want to compute the comma category (C2/C2 ↓ p) in order to compute the
value of the right Kan extension p∗ at C2/C2. By inspection this is

(C2/C2 ↓ {g}) (C2/C2 ↓ {e})

(C2/C2 ↓ C2/C2) (C2/C2 ↓ C2/C2) (C2/C2 ↓ C2/C2)

≃

≃
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which is a pullback diagram after identification under the two equivalences. Hence
for a C2-pullback diagram (X → Y ← X), we have that the C2-fixed point of spaces
is computed as the ordinary pullback

(X×YX)C2 ≃ X×Ye YC2

Hence the ordinary pullback in the statement of the lemma is indeed the following
pullback of genuine C2–spaces (we have used the compact notation (A ↓ B) here to
mean the C2–space X such that X C2 ≃ A and X e ≃ B)

((X×YX)C2 ↓ X×Ye X) (YC2 ↓ Ye)

(X ↓ X× X) (Ye ↓ Ye ×Ye)

⌟

Here we have also used the formula CoindC2
e X ≃ (X ↓ X × X) which can be

obtained by a direct computation of the right Kan extension formula for the C2-
indexed product.

Corollary 4.3.5 (C2-pushout formula). Let (B← A→ B) be a C2-pushout diagram
in a C2-category C. Then the C2-pushout can be computed as the following ordinary
pushout of C2-objects

IndC2
e ResC2

e A A

IndC2
e B B⨿AB

⌜

ε

Proof. We combine the lemma above together with Corollary 1.2.22 and compute.
Let Z ∈ CC2 be an arbitrary C2-object. Then

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC2 (B⨿AB, Z) ≃ Map(B, ResC2
e Z)×MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC2 (A,Z) Map(B, ResC2

e Z)

≃ CoindC2
e Map(B, ResC2

e Z)×
CoindC2

e ResC2
e MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC2 (A,Z)

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC2 (A, Z)

≃ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC2 (IndC2
e B⨿IndC2

e ResC2
e A

A, Z)

as required.

4.3.3 Norms of cofibre sequences

The aim of this subsection is to provide a decomposition result that will allow us
to analyse C2–norms of cofibre sequences. We first record the following immediate
consequence of Theorem 1.2.42.
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Lemma 4.3.6. Let L and C be T -categories. Suppose ∂ : (L× 0)▷ ∪L×0 (L×∆1)→ C
is a T -diagram. Then we have a pushout

colimL×0∂ colim(L×0)▷∂

colimL×1∂ colim(L×0)▷∪L×0(L×∆1)∂
⌜

Notation 4.3.7. Let H ◁ G with |G/H| = 2, C ∈ CatG, and ∂ : ∏G/H constH(Λ
2
0) →

C a G–diagram. For K ≤ G a subgroup, since H was normal, we have that

G/H × G/K = ⨿
g∈K\G/H

G/K ∩ g H = ⨿
g∈K\G/H

G/K ∩ H

Since |G/H| = 2, we only have the following two possibilities

G/H × G/K =

{
(G/K)⨿2 if K ≤ H
G/K ∩ H if K ̸≤ H

Hence, the data of the G-diagram ∂ is determined by the data of a commuting
diagram

Λ2
0 ×Λ2

0 CH

Λ2
0 CG

C2
∂H

∆

∂G

ResG
H

because the data of the diagram at other subgroups are restrictions of those from
either CH or CG. Hence we will represent the data of ∂ in the following schematic
diagram

WG

G/G ZG

AG

C X WH

G/H B ZH X

AH B C

C2

C2 C2
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Lemma 4.3.8. Let H ◁ G be a normal subgroup of index 2, and suppose we have a
G-diagram ∂ : ∏G/H constH(Λ

2
0) −→ C as above, where C is G-finite-cocomplete

and G-pointed, and where A ≃ B ≃ C ≃ 0. Then its G-colimit can be computed as
the following fibrewise pushout

X⨿ZX W

0 colim ∂
⌜

Proof. Write J for the indexing G-category where we glue the B and AH terms, and
write p : ∏G/H constH(Λ

2
0) → J for the G-functor which does this and q : J → ∗G

for the unique G-functor. Since colim ∂ ≃ q! p!∂, we can also compute colim ∂ by
first G-left Kan extending ∂ : ∏G/H constH(Λ

2
0) → C to a G-functor p!∂ : J → C,

and this is our first goal.
Since the functor p only changes the fibres G/K where K ≤ H, we only need to

compute the terms in question marks in the following diagram

WG

G/G ZG

0

? X WH

G/H ZH X

0 ?

C2

C2

and since this is a fibrewise H-diagram constH((Λ
2
0)
×2), we can compute the miss-

ing terms as an ordinary left Kan extension. By a straightforward inspection, the
approriate comma category diagram is

0 X

0 ZH

0 0

and hence the terms in questions marks are 0. Therefore, the G-left Kan extended
diagram p!∂ : J → C is now given by
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WG

G/G ZG

0

0 X WH

G/H ZH X

0 0

C2

C2

Now, if we write L = ∏G/H constH(∆
1) for the indexing category of G/H = C2-

pushouts, we have the diagram decomposition

J ≃ (L× 0)▷ ∪L×0 (L× ∆1)

so that p!∂ has (L× 0)▷-part given by

WG

G/G ZG

X WH

G/H ZH X
C2

and L× 1-part given by

G/G 0

0

G/H 0 0
C2

Thus by Lemma 4.3.6, we get the following fibrewise pushout

X⨿ZX ≃ colimL×0 p!∂ colim(L×0)▷ p!∂ ≃W

0 ≃ colimL×1 p!∂ colim(L×0)▷∪L×0(L×∆1)p!∂ ≃ q! p!∂ ≃ colim ∂
⌜

as desired.

Remark 4.3.9. The decomposition result above was inspired by [HHR16, Prop.
A.43], in the case when |G/H| = 2. We do not yet know how to lift their point-
set proof for general subgroup inclusions.
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4.3.4 Pointwise K–theory is normed for 2-groups

We aim to prove that NG
H preserves λ-equivalences, ie. if we have a split Verdier

C D E

then NG
H(U (D)/U (C)) → U (NG

HE) induced by the λ-equivalence U (D)/U (C) →
U (E) is itself a λ-equivalence. If we can show this, then we would have shown that
the inclusion Rpw,κ ⊆ Rnorm,κ (cf. §4.2) is an identification, and so the comparison
map Ψ : NMotpw

G → NMotG from Observation 4.2.20 is an equivalence. Since size
issues will not play a role in our discussions here, we will suppress any mention of
κ.

Corollary 4.3.10. Let H ◁ G with |G/H| = 2. Suppose we have a pushout

A B

X Y
⌜

in a G-symmetric monoidal G-stable category C. Then we have the pushout

A⊗ B⨿NG
H A A⊗ B NG

H B

X⊗Y⨿NG
H XX⊗Y NG

HY
⌜

Proof. Writing C for cofib(A → B) ≃ cofib(X → Y), we get from the G/H-
distributivity of NG

H together with Lemma 4.3.8 that we have the map of cofibre
sequences

A⊗ B⨿NG
H A A⊗ B NG

H B NG
HC

X⊗Y⨿NG
H XX⊗Y NG

HY NG
HC

and so since C was stable, the left square is a fibrewise pushout.

Lemma 4.3.11. Suppose H ◁ G with |G/H| = 2, and A i−→ B is a split Verdier

inclusion in Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
H . Then the canonical map

Z(A⊗B)⨿Z(NG
HA)
Z(A⊗B) −→ Z(A⊗B⨿NG

HA
A⊗B)

is an equivalence in NMotG.
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Proof. By Corollary 4.3.5 we have the pushout

IndG
H ResG

H NG
HA NG

HA

IndG
H(A⊗B) A⊗B⨿NG

H AA⊗B
⌜

ε

which is moreover a right-split Verdier pushout by Lemma 4.3.2. Hence by
Lemma 4.3.3 we obtain the pushout square

IndG
H ResG

H Z(NG
HA) Z(NG

HA)

IndG
HZ(A⊗B) Z(A⊗B⨿NG

H AA⊗B)
⌜

ε

as desired.

Definition 4.3.12. Let S be a collection of morphisms in a category C. We say that
it is G-strongly saturated if the following conditions are true:

(i) (Pushout closure) Suppose we have a fibrewise pushout square in C

A B

C D
⌜

such that the left vertical is in S, then the right vertical is also in S,

(ii) (G-colimit closure) The G-full subcategory funS(∆1, C) ⊆ fun(∆1, C) is closed
under G-colimits,

(iii) (2-out-of-3) If any two of the three morphisms in

A B C

are in S, then the third one is too.

Proposition 4.3.13 (“[Lur09, Prop. 5.5.4.15]”). Let C be a G-presentable category
and S a set of morphisms in C, and S its G-strong saturation. Let L : C → D
be the G-Bousfield localisation at S. Then the collection of L-equivalences consists
precisely of the collection S.

Proof. We will bootstrap the parametrised statement from the unparametrised ver-
sion in [Lur09, Prop. 5.5.4.15]. Let T be the collection of L-equivalences. First of all,
note that we have S ⊆ T since it is straightforward to check that T is a G-strongly
saturated collection containing S and S is by definition the minimal such collection.
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To see the reverse inclusion, let f : X → Y be an L-equivalence and now consider
the square

X Y

LX LY

f

L f
≃

Now since a G-Bousfield localisation is in particular fibrewise Bousfield localisa-
tion, we can apply [Lur09, Prop. 5.5.4.15 (1)] to see that the vertical maps in the
square are in S. And hence by 2-out-of-3, we see that f was also in S, as desired.

Lemma 4.3.14. Let H ◁ G with |G/H| = 2 and C a G-symmetric monoidal G-stable
category. Suppose S is a collection of morphisms in C and S its G-strong satura-
tion. If NG

H sends morphisms in S to morphisms in S, then NG
H also preserves all

morphisms in the saturation S.

Proof. There are three operations in a G-strong saturation, namely pushout clo-
sure, colimit closure of the arrow category, and 2-out-of-3 property of composi-
tions. We have to check that NG

H preserves morphisms constructed under these
operations. The 2-out-of-3 property is clear, and so we only have to check the first
two operations. To see colimit closure of the arrow category, we need to show
that if ∂ : J → funH(∆1, C) is a diagram that is pointwise in the full subcate-

gory of funS
H(∆

1, C) on those morphisms in S that are preserved by NG
H , so that

colimJ∂ ∈ funS
H(∆

1, C), then NG
HcolimJ∂ ∈ funS

G(∆
1, C). For this, recall by G/H-

distributivity that NG
HcolimJ∂ is computed as the cone point of the G-colimit dia-

gram

( ∏
G/H

J)▷ → ∏
G/H

(J▷)
∏G/H ∂
−−−−→ ∏

G/H
funH(∆1, C)

NG
H−−→ funG(∆1, C)

Now the hypothesis on ∂ ensures that, when restricted to ∏G/H J, this composite

lands in funS
G(∆

1, C) ⊆ funG(∆1, C) and since by definition funS
G(∆

1, C) is closed
under G-colimits, we obtain that the cone point NG

HcolimJ∂ is indeed in funS
G(∆

1, C)
as required.

Finally, to see pushout closure, suppose we have a pushout in CH

A B

X Y
⌜
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where the left vertical is in S (and so, by definition of saturation, the right vertical
is in S). Then by Corollary 4.3.10 we obtain the pushout square

A⊗ B⨿NG
H A A⊗ B NG

H B

X⊗Y⨿NG
H XX⊗Y NG

HY
⌜

(4.4)

Hence if we can show that the left vertical map is in S, then by definition, the right
vertical map will be in S too. For this, by Corollary 4.3.5 we have

IndG
H ResG

H NG
H A NG

H A

IndG
H(A⊗ B) A⊗ B⨿NG

H A A⊗ B

ε

⌜

and similarly for X ⊗ Y⨿NG
H XX ⊗ Y. Since the respective maps on the upper three

terms between the ones for the pair (A, B) and the ones for the pair (X, Y) are all
in S by hypothesis, so is the induced map A⊗ B⨿NG

H A A⊗ B→ X⊗Y⨿NG
H XX⊗Y.

Therefore, the pushout Eq. (4.4) gives that NG
H B→ NG

HY is also in S as required.

Lemma 4.3.15. Let s : ∆0 ↪→ ∆1 be the source inclusion, H ◁ G with |G/H| = 2, and
j : ∆1⨿G/H

∆0 ∆1 ↪→ ∏G/H ∆1 the inclusion. Then the functor

FunG(∆
1⨿G/H

∆0 ∆1, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG)→ FunG( ∏
G/H

∆1, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG)

induced by
⊗

G/H(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH
s!−→ FunH(∆

1, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH)) together with the identifica-
tions SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp∆1

H ⨿
s!
SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG

SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp∆1

H ≃ FunG(∆
1⨿∆0 ∆1, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG) and

⊗
G/H FunH(∆

1, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH) ≃
FunG(∏G/H ∆1, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG) is given by left Kan extension along the inclusion j, and so
in particular is G-fully faithful since j is G-fully faithful.

Proof. We first consider the case of the left Kan extension
⊗

G/H(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH
s!−→

FunH(∆
1, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH)): here the G-symmetric monoidality of the stable Yoneda cocom-

pletion Proposition 2.3.9

Fun(−, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp) : Cat× −→ Pr⊗L,st

means that under
⊗

G/H SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH ≃ SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG and
⊗

G/H FunH(∆
1, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH) ≃

FunG(∏G/H ∆1, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG), the norm
⊗

G/H(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH
s!−→ FunH(∆

1, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH)) induces the

G-left Kan extension SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG
(s×s)!−−−→ FunG(∏G/H ∆1, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG). In total we get the solid

G/H = C2-pushout diagram in PrG,L,st
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SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG FunH(∆0 × ∆1, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH)

FunH(∆1 × ∆0, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH) FunG(∆
1⨿G/H

∆0 ∆1, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG)

FunG(∏G/H ∆1, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG)

(id×s)!

(s×id)! ⌜ (s×id)!

(id×s)∗

(s×id)∗

(id×s)!

?

j∗

(s×id)∗

(id×s)∗

and our goal is to show that the map with the question mark is the left
Kan extension j!. For this, note that the corresponding dashed G/H = C2-
pullback diagram in PrG,R,st clearly induces the dashed restriction functor j∗ :
FunG(∏G/H ∆1, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG) → FunG(∆

1⨿G/H
∆0 ∆1, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG). Hence by uniqueness of left

adjoints, we get that the map with question mark is indeed equivalent to j! :
FunG(∆

1⨿G/H
∆0 ∆1, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG)→ FunG(∏G/H ∆1, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG) as desired.

Proposition 4.3.16. Let H ◁ G be a normal subgroup of index 2. Then NG
H sends the

morphism t∗ : U ((SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω
H)

∆1
)/U (SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω

H)→ U (SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω
H) inRpw to a morphism inRpw.

Proof. To prevent too many symbols, it will be convenient to omit the (−)ω deco-
ration. Recall that we have the split Verdier sequence

SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp∆1

H SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH
s∗

s!

t∗
s∗ t!

Now, we have the following commutative square, which we learnt from Achim
Krause.

SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp∆1

H

SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp∆1

H

s!

cofib ≃

s∗

Hence applying NG
H to the whole square, we get in turn the diagram

SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp∆1

H ⨿
s!
SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG

SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp∆1

H ≃ FunG(∆
1⨿∆0 ∆1, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG) FunG(∏G/H ∆1, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG) ≃ NG

H(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp∆1

H )

SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp∆1

H ⨿
s∗
SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG

SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp∆1

H NG
H(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp∆1

H )

≃

j!

≃



4.3 EQUIVARIANT ALGEBRAIC K-THEORY FOR 2–GROUPS 123

where the G/H-pushout on the top left is with respect to the s! diagram and the
bottom left is with respect to the s∗ diagram. Since, by Lemma 4.3.15, the top arrow
is j! which is G-fully faithful, so is the bottom arrow. Therefore, together with the
G/H-distributivity of NG

H , we obtain the following Verdier sequence

SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp∆1

H ⨿
s∗
SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG

SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp∆1

H NG
H(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp∆1

H ) NG
HSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH ≃ SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG

(t×t)∗

(t×t)!

which is automatically split since the right hand Verdier projection admits the
dashed adjoints. Hence by definition of the motivic localisation λ, the diagonal
map in

U (NG
H(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp∆1

H ))

U (SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp∆1
H )⨿s∗

U (SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG)
U (SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp∆1

H )
U
(
NG

HSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH
)

U (NG
H(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp∆1

H ))

U (SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp∆1
H ⨿

s∗
SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG

SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp∆1
H )

is a morphism in Rpw. So to show that the top horizontal map is in Rpw, it will
suffice to show that the left vertical map is in Rpw: this is merely the observation
that we have, by definition a map of cofibre sequences in PShst(Catperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf)

U (SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp∆1

H )⨿s∗
U (SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG)

U (SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp∆1

H ) U (NG
H(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp∆1

H ))
U (NG

H(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp∆1
H ))

U (SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp∆1
H )⨿s∗

U (SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG)
U (SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp∆1

H )

U (SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp∆1

H ⨿
s∗
SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG

SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp∆1

H ) U (NG
H(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp∆1

H ))
U (NG

H(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp∆1
H ))

U (SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp∆1
H ⨿

s∗
SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG

SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp∆1
H )

and the left vertical is in Rpw by Lemma 4.3.11, and hence the right vertical is in
Rpw too.

Lemma 4.3.17. Let H ◁ G with |G/H| = 2. Then NG
H preserves morphisms inRpw.

Proof. By Lemma 4.3.14, it suffices to show that NG
H sends morphisms in Rpw to

morphisms inRpw. Now for any C ∈ Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
H , we have the following identification(

C s−→ C∆1 t−→ C
)
≃
(

SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω
H

s−→ (SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω
H)

∆1 t−→ SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω
H

)
⊗ C
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Therefore, we obtain that NG
H sends the following morphism inRpw(

U (C∆1
)/U (C) t−→ U (C)

)
≃
(
U ((SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω

H)
∆1
)/U (SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω

H)→ U (SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω
H)
)
⊗U (C)

to a morphism in Rpw by the ordinary symmetric monoidality of λ and Proposi-
tion 4.3.16. But then since the collection of morphisms in S can be taken to be of
this form by [CDH+20b, Rmk. 2.7.6 (ii)], we are done.

The final ingredient to the main theorem is the following observation in group
theory.

Proposition 4.3.18. Let p be a prime, G be a p-group, and H ≤ G a subgroup.
Then there is a normal series H = N0 ◁ N1 ◁ · · · ◁ Nk = G such that the quotients
Nm/Nm−1

∼= Cp for all m.

Proof. If H ◁ G is itself already normal, then this is immediate since we can just ob-
tain this from the Cp-solvability of the p-group G/H. Suppose H ≤ G is a proper
subgroup. We claim that we have the proper inclusion H ⪇ NHG into the nor-
maliser: given this, we can now induct by taking successive normalisers and ap-
plying the statement in the case of H ≤ G being normal. To see the claim, consider
the action of H on the left H-cosets of G. Since H fixes the coset H, this action has
a point with singleton orbit, and so since everything in sight are p-groups, we get
from the orbit-stabiliser that there is another left H-coset gH for some g ∈ G\H.
This means that for all h ∈ H, we get that hgH = gH, so that g ∈ G\H is a nor-
maliser of H which is not in H, as asserted.

Theorem 4.3.19. Let G be a 2-group. The inclusion Rpw,κ ⊆ Rnorm,κ is an identifi-
cation, and hence the comparison Ψ : NMotpw

G → NMotG from Observation 4.2.20
is an equivalence.

Proof. Let H ≤ G be a subgroup. We need to show that NG
H preserves λ-

equivalences, and by Proposition 4.3.13, we need to show NG
H preserves mor-

phisms in Rpw, the G-strong saturation of Rpw = ⟨C s∗−→ C∆1 t∗−→ C⟩. By
Proposition 4.3.18, let H = N0 ◁ N1 ◁ · · · ◁ Nk = G be a C2-normal series. Since
NG

H ≃ NNk
Nk−1
◦ · · · ◦NN1

N0
, it would suffice to show that NNm

Nm−1
preserves morphisms

in Rpw. But then Nm−1 ◁ Nm is a normal inclusion of index 2, and so this assertion
is true by Lemma 4.3.17.

Corollary 4.3.20. Let G be a 2–group. Then Kpw
G ⇒ KG : Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
G −→ SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG is an

equivalence. In particular, Kpw
G refines to the a G–lax symmetric monoidal structure

and induces
KG : CAlgG(Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
G ) −→ CAlgG(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG)
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Corollary 4.3.21. Let G be a 2–group and C⊗ ∈ CAlg((Catperf)⊗) be a small
symmetric monoidal perfect-stable category. Then the collection of spectra{

K(Fun(BH, C))
}

H≤G assembles canonically to a G–normed ring spectrum.

Proof. This is an immediate combination of Corollary 4.3.20 and Example 4.3.25.

4.3.5 Borel equivariant algebraic K–theory

Having performed a general analysis of normed equivariant algebraic K–theory, we
record here a large source of examples via Theorem 3.3.4 coming from categories
with G–actions.

Proposition 4.3.22. Let G be a finite group. The functor evG/e : Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
G →

Bor(Catperf) canonically refines to a G–symmetric monoidal functor evG/e :

(Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
G )⊗ → Bor((Catperf)⊗). Moreover, it admits a G–fully faithful right adjoint

and the G–fully faithful right adjoint Bor(Catperf) ↪→ Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
G canonically refines to

a G–lax symmetric monoidal functor.

Proof. By Theorem 3.3.4 (ii), we are left to show that evG/e is the unit of the adjunc-
tion from Observation 3.3.2. As noted there, this is fibrewise induced by taking ho-

motopy fixed points in the target of the H–equivariant map Res : Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
H → Catperf

to yield

ev : Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
H → (Catperf)hH ≃ Fun(BH, Catperf)

as desired. We now immediately obtain that the G–right adjoint is as claimed be-
cause fibrewise the adjunction is given by the dashed lift

Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
H Fun(BH, Catperf)

MackH(Catperf)

evH/e

evH/e

for which the diagonal adjunction is given for instance by [BGS20, §8].

Remark 4.3.23. Here is another way to deduce that the adjunction unit is G–
symmetric monoidal from its concrete description as the evaluation. We will com-
ment as to why we prefer the abstract approach above at the end of the remark.

To wit, we know that the evaluation evG/e : Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
G → Bor(Catperf) is a G-Dwyer-

Kan localisation on the morphisms which are underlying equivalences, that is, it is

the initial functor that sends to equivalences the morphisms f : C → D in Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
G

which satisfy that ResG
e f is an equivalence. Since we already know that this lo-

calisation refines to a symmetric monoidal functor in the unparametrised sense,
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by [Lur17, Prop. 2.2.1.9] we just need to show that for all H ≤ G, if f : C → D
is a map of H-perfect-stable categories such that ResG

e f is an equivalence, then
NG

H f : NG
HC → NG

HD also satisfies that ResG
e NG

H f is an equivalence. But then this is
clear by Observation 3.2.1 since this is

ResG
e NG

H f ≃
⊗
|G/H|

ResG
e f :

⊗
|G/H|

ResG
e C −→

⊗
|G/H|

ResG
e D

which is an equivalence by hypothesis. As mentioned above, we think that the for-
mulation of Proposition 4.3.22 is better because here, we are using the G–symmetric

monoidal structure on Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
G to induce one on Bor(Catperf). A priori, we do not

know that this G–symmetric monoidal structure is the one induced on Bor(Catperf)
by (Catperf)⊗. It is this latter one that will provide us with a huge source of exam-
ples, as we record now.

Corollary 4.3.24. Let G be a 2–group. Then the G–functor

KG : BorG(Catperf) Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
G NMotG SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG

Z mapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmap(1G ,−)
(4.5)

canonically refines to a G–lax symmetric monoidal functor
KG : Bor((Catperf)⊗) −→ SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp⊗G . In particular, we obtain a functor
KG : Fun

(
BG, CAlg(Catperf)

)≃ −→ CAlgG
(
SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp⊗G

)≃.

Proof. The first and last functor in Eq. (4.5) are G–lax symmetric monoidal: the first
by Proposition 4.3.22 and the last by the general fact of mapping from the unit
object. By Theorem 4.3.19, Z is G–symmetric monoidal, and hence the composite
is G–lax symmetric monoidal as claimed. Applying CAlgG and Proposition 3.3.6
gives the last statement.

Example 4.3.25. We collect here two important sources of examples, showing that
normed equivariant algebraic K–theory is in ample supply.

(i) Since SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω
G ∈ (Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
G )⊗ is the unit object, it is a G–commutative algebra, and

hence KG(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω
G) canonically refines a G–normed ring spectrum. In light of

[BH21, Prop. 7.6] - the connection to which we do not make precise in our
work - we expect that any G–normed ring spectrum will give rise to a G–
normed ring K–theory spectrum. This would then specialise to the case above
by considering the G–normed ring spectrum SG.

(ii) Endowed with the trivial G–action, any C⊗ ∈ CAlg((Catperf)⊗) gives
a G–symmetric monoidal G–perfect-stable category Bor(C⊗). Hence{

KG(Fun(BH, C)
}

H≤G canonically assembles to a G–normed ring spectrum.
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Chapter 5

Borel equivariant
Grothendieck-Witt theory

In this chapter, we study the notion of Borel equivariant GW–theory, ie. the ma-
chinery will be the Grothendieck-Witt theory introduced in [CDH+20b] whose in-
put will be Poincaré categories equipped with G–actions. In other words, we will
study the functor

GW: Fun(BG, Catp) MackG(Catp) MackG(Sp) = SpG
Bor GW

where Bor is the Borellification functor given by (C, Ϙ) 7→ Bor(C, Ϙ) ={
(C, Ϙ)hH}

H≤G. We emphasise again that by Borel equivariant, we mean that the
input is Borel equivariant, and not the output. We will mimic the methods of §4.3
to show that Borel equivariant Grothendieck-Witt theory admits a refinement to
the structure of normed ring G–spectra when G is a 2–group (Corollary 5.4.6). The
general method will be similar to the K–theoretic case, but this will need to be
augmented by some knowledge of the overlaying quadratic structures, and so we
collect the extra ingredients in §5.1 and §5.2. Throughout the first three sections, G
will be an arbitrary finite group. We restrict to the case of G being a 2–group in §5.4.

5.1 Preparatory materials
Notation 5.1.1. We write Catp in this section to denote the Poincaré categories
whose underlying category is perfect. In this way, our Catp here will be a full
subcategory of the one introduced in [CDH+20a]. It is clear that the property of
being perfect is closed under all categorical operations that we will take here.

Fact 5.1.2. Denoting by Split(Catp) the category of split Poincaré–Verdier se-
quences, we obtain from the classification result in [CDH+20b, §1.2] an equiva-
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lence Split(Catp) ≃ Fun(∆1, Catp). Moreover, by [CDH+], Catp is κ–compactly
generated for every regular cardinal κ.

Lemma 5.1.3. We have an equivalence SplitSplitSplitSplitSplitSplitSplitSplitSplitSplitSplitSplitSplitSplitSplitSplitSplit(Bor(Catp)) ≃ fun(∆1, Bor(Catp)) and
furthermore Bor(Catp) is κ–compactly generated for every cardinal κ.

Proof. The first claim is clear since we are just pointwise applying Fun(BH,−) on
the equivalence from Fact 5.1.2. For the second, since Catp is κ–compactly gener-
ated for every regular cardinal κ, and since the category of such is closed under
limits, we know that Fun(BH, Catp) is also κ–compactly generated for all κ, ie.
Indκ(Fun(BH, Catp)κ). Now for H ≤ K ≤ G, we know that the restriction functor

Fun(BK, Catp)→ Fun(BH, Catp)

preserves κ–compact objects since the right adjoint, given by the indexed product,
is a finite limit and so commutes with κ–filtered colimits for all regular cardinals κ.
Hence, we even have that Bor(Catp) ≃ Indκ(Bor(Catp)κ) as required.

Remark 5.1.4. There is an adjunction L : Fun(∆1, Catp) ⇄ Catp : R where

L((C, Ϙ)
f−→ (D, Φ)) ≃ (C, Ϙ) ×(D,Φ) Met(D, Φ) and R(E , Ψ) ≃ (Met(E , Ψ)

target−−−→
(E , Ψ)). The right adjoint R preserves filtered colimits since Met does. Borelifying
yields the adjunction

LG : fun(∆1, Bor(Catp)) ⇄ Bor(Catp) : RG

where the G-right adjoint preserves all fibrewise filtered colimits, and hence
LG preserves κ-compact objects for all regular cardinals κ. This means that

if ((C, Ϙ)
f−→ (D, Φ)) is a G–equivariant Poincaré functor between equivariant

κ–compact Poincaré categories, then (C, Ϙ) ×(D,Φ) Met(D, Φ) is equivariant κ–
compact too. We will need this result shortly and we refer to [CDH+] for the origi-
nal treatment of this in the unparametrised setting.

Corollary 5.1.5. For any regular cardinal κ there is a small set Sκ of split Poincaré–
Verdier sequences on κ-compact G-perfect Poincaré categories such that any split
Poincaré–Verdier sequence in Bor(Catp) can be written as a fibrewise κ-filtered col-
imit of sequences in Sκ .

Proof. First note that we have

Split(Bor(Catp))κ ≃ fun(∆1, Bor(Catp))κ ≃ fun(∆1, Bor(Catp)κ)

≃ Split(Bor(Catp)κ)

where the second equivalence is by [Lur09, Lem. 5.3.4.9] and the third is by Re-
mark 5.1.4 together with Fact 5.1.2. Now since Split(Bor(Catp)) is κ-compactly
generated for any regular cardinal κ, we see that

SplitSplitSplitSplitSplitSplitSplitSplitSplitSplitSplitSplitSplitSplitSplitSplitSplit(Bor(Catp)) ≃ Indκ(SplitSplitSplitSplitSplitSplitSplitSplitSplitSplitSplitSplitSplitSplitSplitSplitSplit(Bor(Catp))κ) ≃ IndκSplitSplitSplitSplitSplitSplitSplitSplitSplitSplitSplitSplitSplitSplitSplitSplitSplit(Bor(Catp)κ)
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with the G–category SplitSplitSplitSplitSplitSplitSplitSplitSplitSplitSplitSplitSplitSplitSplitSplitSplit(Bor(Catp)κ) being small. This is the statement to be
proven.

Lemma 5.1.6. Let (C, Ϙ)
(i,η)−−→ (D, Φ)

(p,θ)−−→ (E , Ψ) be a split Poincaré–Verdier se-

quence in (Catp)BG. Then (C, Ϙ)hG i−→ (D, Φ)hG p−→ (E , Ψ)hG is a split Poincaré–
Verdier sequence in Catp.

Proof. Since a split Poincaré–Verdier sequence is in particular a fibre sequence and
since (−)hG preserves limits, it is immediately a fibre sequence in Catp. Thus, by
[CDH+20b, Prop. 1.2.2], we are left to show that p admits a fully faithful right
adjoint r and that

r∗ΦhG =⇒ r∗p∗ΨhG =⇒ ΨhG

is an equivalence. Since (−)hG preserves adjunctions, we know that p : DhG → E hG

has a right adjoint r coming from the underlying adjunction, and since p ◦ r ≃ id
as G–equivariant endofunctors on E , we get that p ◦ r ≃ id as endofunctors on E hG,
and hence the right adjoint is fully faithful too. That the required transformation is
an equivalence is clear since (−)hG is applied pointwise in spectra.

We now record an arithmetic fracture in the equivariant setting. This result will
not be needed anywhere in the thesis and is included merely for completeness’
sake. To this end, let us first recall the following result:

Fact 5.1.7 ([CDH+20c, Prop. 2.1.12]). Let R be an ordinary commutative unital
ring and M an invertible module with involution over R. Let S be a multiplica-
tively closed subset generated by an integer ℓ ∈ R. Suppose the ℓ∞-torsion in R is
bounded. Then for r ∈ {s, q} we have a split Poincaré–Verdier square

(Dp(R), Ϙr
M) (Dc(R[ℓ−1]), Ϙr

M[S−1]
)

(Dp(R∧ℓ ), Ϙ
r
M∧ℓ

) (Dc′(R∧ℓ [ℓ
−1]), Ϙr

M∧ℓ [S
−1]

)

⌟

where c := Im(K0(R) → K0(R[ℓ−1])) and c′ := Im(K0(R∧ℓ ) → K0(R∧ℓ [ℓ
−1])), and

the horizontal maps have fully faithful right adjoints, and hence are split Poincaré–
Verdier projections.

Deducing from this the following statement is then straightforward.

Proposition 5.1.8 (Equivariant arithmetic fracture). Let G be a finite group and let
R be an ordinary commutative unital ring equipped with a G–action. Let M an
invertible R–module with involution over R equipped with a G–action. Let S be
a multiplicatively closed subset generated by an integer ℓ ∈ R. Assume that the
ℓ∞-torsion in R is bounded. Then for r ∈ {s, q} the square
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(Dp(R), Ϙr
M)hG (Dc(R[ℓ−1]), Ϙr

M[S−1]
)hG

(Dp(R∧ℓ ), Ϙ
r
M∧ℓ

)hG (Dc′(R∧ℓ [ℓ
−1]), Ϙr

M∧ℓ [S
−1]

)hG

is a split Poincaré–Verdier square where c := Im(K0(R) → K0(R[ℓ−1])) and c′ :=
Im(K0(R∧ℓ )→ K0(R∧ℓ [ℓ

−1])).

Proof. By naturality, we know that all the maps in the pullback square of Fact 5.1.7
G–equivariant. Since limits commute, we still have the pullback square

(Dp(R), Ϙr
M)hG (Dc(R[ℓ−1]), Ϙr

M[S−1]
)hG

(Dp(R∧ℓ ), Ϙ
r
M∧ℓ

)hG (Dc′(R∧ℓ [ℓ
−1]), Ϙr

M∧ℓ [S
−1]

)hG

⌟

Finally, by the argument in Lemma 5.1.6, the functor (−)hG preserves split
Poincaré–Verdier projections and so the resulting pullback square is still a split
Poincaré–Verdier square.

5.2 Split Poincaré–Verdier pushouts
Lemma 5.2.1. Suppose we have a pushout square in Catp

(C, Ϙ) (D, Φ)

(E , Ψ) (P , α)

f

i
⌜

j

g

s

satisfying the following list of conditions:

• The left vertical is a split Poincaré–Verdier inclusion such that s : E → C itself
has a right adjoint which is fully faithful.

• Both of the horizontal maps have right adjoints.

Then j : (D, Φ) ↪→ (P , α) is also a split Poincaré–Verdier inclusion.

Proof. Our task is to show that the canonical transformation Φ ⇒ (jop)∗α is an
equivalence. Let us first complete the diagram with all the data that we need to
establish notations:
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(C, Ϙ) (D, Φ)

(E , Ψ) (P , α)

f

i k
⌜

j k
f

g
s s

g

By the method in which pushouts are computed, we have the pullback

C D

E P⌜

f

s

g

s

where the vertical maps are Verdier projections. Hence by [CDH+20b, Lem 1.5.3,
Prop. A.3.15] we see that this square is right adjointable, yielding the following
equivalences (

k ◦ f ≃−→ g ◦ k
)

=⇒
(

f ◦ s ≃−→ s ◦ g
)

Now recall that by definition α : Pop → Sp is defined as the pushout in
Funq(Pop, Sp)

(jop)!( f op)!Ϙ (jop)!Φ

(gop)!Ψ α⌜

Applying j∗ to this we get the pushout square in Funq(Dop, Sp)

( f op)!Ϙ ≃ (jop)∗(jop)!( f op)!Ϙ (jop)∗(jop)!Φ ≃ Φ

(jop)∗(gop)!Ψ (jop)∗α⌜
(5.1)

Hence if we can show that the left vertical arrow is an equivalence, then we would
be done. Since we have the adjunction sop ⊣ jop, we see that (jop)∗ ≃ (sop)!, and
similarly we have (iop)∗ ⊣ (sop)∗. Hence, together with our hypothesis, we have
that Ϙ ≃ (iop)∗Ψ ≃ (sop)!Ψ. Therefore, the left vertical map in Eq. (5.1) becomes

( f op)!(sop)!Ψ→ (sop)!(gop)!Ψ

and this is an equivalence since f op ◦ sop ≃ sop ◦ gop as above.

The following is an immediate consequence of Lemma 5.2.1 since every relevant
notion is pointwise.
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Corollary 5.2.2. Suppose we have a pushout square in Bor(Catp)

(C, Ϙ) (D, Φ)

(E , Ψ) (P , α)

f

i
⌜

j

g

s

satisfying the following list of conditions:

• The left vertical is a split Poincaré–Verdier inclusion such that s : E → C itself
has a right adjoint which is fully faithful.

• Both of the horizontal maps have right adjoints.

Then j : (D, Φ) ↪→ (P , α) is also a split Poincaré–Verdier inclusion.

Construction 5.2.3 (Temabolic structures). Recall that for a Poincaré category (C, Ϙ),
we have the metabolic category Met(C, Ϙ) Poincaré structure on C∆1

given by

(x
f−→ y) 7→ fib(Ϙ(y)→ Ϙ(x))

On the other hand, as in Proposition 5.4.3, we have the trick equivalence

cofib : Sp∆1

ω ⇆ Sp∆1

ω : fib

We define the temabolic Poincaré structure on Sp∆1

ω as the one induced by this equiv-
alence, that is, Ϙtem := Ϙmet ◦ cofib so that

Ϙtem : (x
f−→ y) 7→ Ϙmet(y→ cofib( f )) 7→ fib(Ϙ(cofib( f ))→ Ϙ(y))

By construction, we then have an equivalence of Poincaré categories

cofib : (Sp∆1

ω , Ϙtem) ⇆ (Sp∆1

ω , Ϙmet) : fib

since the natural transformation Ϙtem ⇒ cofib∗ Ϙmet is an equivalence by definition.
Furthermore, note that the linear part of temabolic structure is given by

LϘtem(x
f−→ y) ≃ fib(LϘ(cofib( f ))→ LϘ(y))

≃ fib(Dx → D fib( f )) ≃ Dx =: Dsrc(x
f−→ y)

The final important observation about this construction is that, if we write s : ∆0 ↪→
∆1 for the source inclusion, then we have the commuting square in Catp
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(Spω, Ϙ) (Sp∆1

ω , Ϙtem)

(Spω, Ϙ) (Sp∆1

ω , Ϙmet)

s!

cofib≃

s∗

Notation 5.2.4. We have the following pushout square

∆0 ⨿ ∆0 ∆0

∆1 ⨿ ∆1 ∆1 ∪∆0 ∆1

∆1 × ∆1

⌜
s⨿s

p

h d

q
r⨿r

π

e

R

Hence we get the following diagram of categories

Sp∆0⨿∆0

ω Sp∆0

ω

Sp∆1⨿∆1

ω Sp
∆1∪∆0 ∆1

ω

Sp∆1×∆1

ω

p!
s!⊕s! ⌜

h! d!

p∗

q!

r!⊕r!

π!

e!

ℓ

R!

(5.2)

where here the left adjoint ℓ : Sp
∆1∪∆0 ∆1

ω → Sp∆1⨿∆1

ω is given by

(c← a→ b) 7→ (b→ b ∪a c, c→ b ∪a c)

This can be checked easily using the notion of left adjoint objects. More precisely,
since we are mapping into the product Sp∆1

ω × Sp∆1

ω , we can without loss of gen-
erality build this adjoint on one of the components. So suppose (c ← a → b) ∈
Sp

∆1∪∆0 ∆1

ω and (x → y) ∈ Sp∆1

ω , so that ℓ(c ← a → b) = (b → b ∪a c) and
q!(x → y) = (y← x =−→ x). Then we clearly have

Map
(
(b→ b ∪a c), (x → y)

)
≃ Map

(
(c← a→ b), (y← x =−→ x)

)
by virtue of the diagram

a b x

c b ∪a c y
⌜
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One sanity check for this adjunction is that to see that, indeed, the square of left
adjoints commutes. Moreover, this pushout square is clearly of the form considered
in Eq. (5.2) - it is an easy check to see that it is indeed adjointable.

Lemma 5.2.5. Endowing Sp∆1

ω with the temabolic structure and writing α :

(Sp
∆1∪∆0 ∆1

ω )op → Sp for the pushout Poincaré structure, the map e! : Sp
∆1∪∆0 ∆1

ω ↪→
Sp∆1×∆1

ω induces the natural transformation α ⇒ (e!)
∗(Ϙtem ⊗ Ϙtem) which is an

equivalence, that is, it is a split Poincaré–Verdier inclusion.

Proof. Since the pushout is taken in Catp, we already know that e! is duality-
preserving, and so preserves bilinear parts. Hence, we are left to show that
Lα → (e!)

∗(LϘtem ⊗ LϘtem) ≃ (e!)
∗(Dsrc ⊗ Dsrc) is an equivalence. Now, we have

the pushout in Funex((Sp
∆1∪∆0 ∆1

ω )op, Sp)

((h!)
op(p!)

op)!(D⊕ D) ((h!)
op)!D

((q!)
op)!(Dsrc ⊕ Dsrc) Lα

((e!)
op)∗(Dsrc ⊗ Dsrc)

⌜ (5.3)

by definition and Notation 5.2.4, and we want to show that the diagonal map is an
equivalence.

We collect all the adjunction relations we will be needing:

•
(
h ⊣ R

)
⇒
(

R! ⊣ R∗ ≃ h! ⊣ h∗
)
⇒
(
(h!)

op ⊣ (R!)
op) ⇒ (

[(R!)
op]∗ ⊣

[(h!)
op]∗

)
•
(
(p!)

op ≃ (p∗)op ⊣ (p∗)op) =⇒ (
[(p∗)op]∗ ≃ [(p!)

op]! ⊣ [(p!)
op]∗

)
•
(
ℓ ⊣ q!

)
=⇒

(
(q!)

op ⊣ ℓop) =⇒ (
[ℓop]∗ ≃ [(q!)

op]! ⊣ [(q!)
op]∗

)
Given these, we can rewrite the pushout Eq. (5.3) as

[(R!)
op]∗[(p∗)op]∗(D⊕ D) [(R!)

op]∗D

(ℓop)∗(Dsrc ⊕ Dsrc) Lα
⌜

Evaluating at an object (x → y, 0→ 0) ∈ Sp∆1⨿∆1

ω on the top three corners, we get(
[(q!)

op]∗[(R!)
op]∗D

)
(x → y, 0→ 0) ≃

(
[(R!)

op]∗D
)
(y← x =−→ x) ≃ Dy(

[(q!)
op]∗[(R!)

op]∗[(p∗)op]∗(D⊕ D)
)
(x → y, 0→ 0) ≃ (D⊕ D)(p∗,op)(y) ≃ Dy⊕ Dy
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(
[(q!)

op]∗[ℓop]∗(Dsrc ⊕ Dsrc)
)
(x → y, 0→ 0) ≃ (Dsrc ⊕ Dsrc)(ℓ

op)(y← x =−→ x)

≃ (Dsrc ⊕ Dsrc)(x → y, y =−→ y)

≃ Dx⊕ Dy

Therefore we obtain that ([(q!)
op]∗Lα)(x → y, 0 → 0) ≃ Dx. But we know that

(e!)
op(q!)

op(x → y, 0 → 0) ≃ (π!)
op(x → y, 0 → 0) is given by the square in

Sp
∆1∪∆0 ∆1

ω

x x = (x → y)⊗ (S
=−→ S)

y y

and so we get that

[(q!)
op]∗[(e!)

op]∗(Dsrc ⊗ Dsrc)(x → y, 0 =−→ 0) ≃ Dx⊗ DS ≃ Dx (5.4)

Similarly, we could have set the first variable to zero, and so in total we have
shown that Lα =⇒ [(e!)

op]∗(Dsrc ⊗ Dsrc) is an equivalence upon applying the re-
striction [(q!)

op]∗ to Sp∆1⨿∆1

ω . On the other hand, the pushout in Eq. (5.2) is of the

form considered in Lemma 5.2.1, so h! : Sp∆0

ω ↪→ Sp
∆1∪∆0 ∆1

ω is a Poincaré–Verdier
inclusion. Thus, the transformation Eq. (5.4) is also an equivalence upon applying
the restriction [(h!)

op]∗ to Sp∆0

ω .

Now by virtue of (Sp
∆1∪∆0 ∆1

ω )op being a pushout, we have the following equiva-
lence

Funex((Sp
∆1∪∆0 ∆1

ω )op, Sp)
≃−−→ Funex((Sp∆1⨿∆1

ω )op, Sp)×
Funex((Sp∆0⨿∆0

ω )op,Sp)
Funex((Sp∆0

ω )op, Sp)

given by [(q!)
op]∗ ×[(h!)

op]∗ [(h!)
op]∗. And hence since the morphism Eq. (5.4) in the

source of this equivalence becomes an equivalence on the target, it must have been
an equivalence to begin with, as was to be shown.

5.3 Borel Poincaré motives
We now imitate the strategy and techniques from §4.2 for the case of Borel equiv-
ariant GW–theory. The end goal is to show that the composite functor

Fun(BG, Catp) MackG(Catp) MackG(Sp) = SpG
Bor GW

refines to a G–lax symmetric monoidal functor.
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Definition 5.3.1. Let κ be a regular cardinal. The G-category of unstable point-
wise Borel κ-motives BorMot

ppppppppppppppppp,un,κ
G is defined to be R−1

Bor,κPShG(Bor(Catp)) via the
construction from Theorem 2.2.10, where RBor,κ is the collection of diagrams in
Bor(Catp)κ consisting of:

• constG(∅)▷ = ∗ → Bor(Catp)κ picking the zero category (ie. the initial ob-
ject),

• all split Poincaré–Verdier sequences.

Remark 5.3.2. Note that RBor,κ is small since Bor(Catp)κ was small, and so
BorMot

ppppppppppppppppp,un,κ
G is G-presentable. By the methods of Chapter 4, we see that we obtain

a G–presentable BorMot
ppppppppppppppppp,un
G :=

⋃
κ BorMot

ppppppppppppppppp,un,κ
G and the stable version BorMot

ppppppppppppppppp
G :=

SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG(BorMot
ppppppppppppppppp,un
G ).

Notation 5.3.3. Write jκun : Bor(Catp)κ → BorMot
ppppppppppppppppp,un,κ
G for the canonical func-

tor. Since split Poincaré–Verdier sequences were already cofibre sequences in
Bor(Catp)κ by definition, we get from Theorem 2.2.12 that this functor is G-fully
faithful. As in Chapter 4, we can get a fully faithful jun : Bor(Catp) ↪→ BorMot

ppppppppppppppppp,un
G ,

and we also denote by Z : Bor(Catp) → BorMot
ppppppppppppppppp
G the stable version. Moreover,

the we will also need the similar notation U : Bor(Catp) ↪→ PSh(Bor(Catp)) for the
Yoneda embedding.

The following lemma is an immediate consequence of the fact that the hermitian
Q–construction commutes with functor categories in the nonequivariant setting.
This is since Funex and Q are just the underlying such construction together with
the data of G–actions coming from the input.

Lemma 5.3.4. Let (C, Ϙ), (D, Φ) ∈ Bor(Catp). Then

Funex((D, Φ), Qn(C, Ϙ)) ≃ QnFunex((D, Φ), (C, Ϙ))

Lemma 5.3.5 (Motivic suspension, “[BGT13, §7.3], [CDH+, Prop. 1.2.9]”). Let
(C, Ϙ) ∈ Bor(Catp). Then colim•∈∆op junQ•(C, Ϙ) ∈ BorMot

ppppppppppppppppp,un
G ⊆ PShG and more-

over,
colim
•∈∆op

junQ•(C, Ϙ) ≃ Σjun(C) ∈ BorMot
ppppppppppppppppp,un
G
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Proof. To see the first part, let (D, Φ) ∈ Bor(Catp). Then note that

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPShG
(jun(D, Φ), colim

•∈∆op
junQ•(C, Ϙ))

≃ colim
•∈∆op

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPShG
(jun(D, Φ), junQ•(C, Ϙ))

≃ colim
•∈∆op

[
Pn Funex((D, Φ), Q•(C, Ϙ))

]h−

≃ colim
•∈∆op

[
Pn
(
Q• Funex((D, Φ), (C, Ϙ))

)]h−

≃ colim
•∈∆op

PnQ•
(

Funex((D, Φ), (C, Ϙ))h−)
=: GWpw

G (Funex((D, Φ), (C, Ϙ))h−)

and hence, since for all H ≤ G, Funex(−, C)hH preserves split Poincaré–Verdier
sequences by Lemma 5.1.6 and since GWpw

G is additive, we obtain that indeed
colim•∈∆op junQ•(C, Ϙ) is motivically local as claimed.

For the second part, by [CDH+20b, Obs. 3.3.3] we have the simplicial
split Poincaré–Verdier sequence const•(C, ΩϘ) → Null•(C, Ϙ) → Q•(C, Ϙ) in
Fun(BG, Catp). Now since jun : Bor(Catp) → BorMot

ppppppppppppppppp,un
G sends split Poincaré–

Verdier sequences to cofibre sequences by definition of unstable motives, and cofi-
bre sequences are stable under colimits, we can apply jun to the simplicial split
Poincaré–Verdier sequence and take geometric realisation in BorMot

ppppppppppppppppp,un
G to get a

cofibre sequence in BorMot
ppppppppppppppppp,un
G

(C, ΩϘ)→ colim
•∈∆op

Null•(C, Ϙ)→ colim
•∈∆op

Q•(C, Ϙ)

But by [CDH+20b, Lem. 3.3.1] the middle term is always augmented over 0 and so
is zero, giving that the last term is a suspension of the first term as required.

Theorem 5.3.6 (Motivic corepresentability of GW, “[CDH+, Prop. 2.1.5]”). Let
(C, Ϙ) and (D, Φ) be in Bor(Catp). Then there is a natural equivalence in SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG

mapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapBorMot
ppppppppppppppppp,un
G

(Z(C, Ϙ),Z(D, Φ)) ≃ GWG(Funex((C, Ϙ), (D, Φ))h−)

In particular, GWG is corepresented by Z
(
trivG(Spω, Ϙu)

)
by Proposition 2.3.16.

Proof. Firstly, note that in BorMot
ppppppppppppppppp,un
G , Σn junD ≃ colim•∈(∆op)n junQ•D since

Σn jun(D, Φ) ≃ Σn−1( colim
•∈∆op

junQ•(D, Φ)
)
≃ colim
•∈∆op

(
Σn−1 junQ•D

)
≃ colim
•∈∆op

(
Σn−2( colim

•∈∆op
junQ•D

))
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and so on. The left hand parametrised spectrum in the theorem statement is the
one associated to the prespectrum whose n-th term, for n ≥ 1, is

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapBorMot
ppppppppppppppppp,un
G

(λjun(C, Ϙ), Σn jun(D, Φ))

≃ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapBorMot
ppppppppppppppppp,un
G

(λjun(C, Ϙ), colim
•∈(∆op)n

junQ•(D, Φ))

≃ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPShG
(jun(C, Ϙ), colim

•∈(∆op)n
junQ•(D, Φ))

≃ colim
•∈(∆op)n

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPShG
(jun(C, Ϙ), junQ•(D, Φ))

≃ colim
•∈(∆op)n

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapBor(Catp)((C, Ϙ), Q•(D, Φ))

≃ colim
•∈(∆op)n

PnQ•
(

Funex((C, Ϙ), (D, Φ))h−
)

≃ Ω∞ΣnGWG
(

Funex((C, Ϙ), (D, Φ))h−)
where the second equivalence is since for n ≥ 1, colim•∈(∆op)n junQ•(D, Φ) is al-
ready in BorMot

ppppppppppppppppp,un
G by Lemma 5.3.5; the fourth since jun is G-fully faithful; the

sixth by Lemma 5.3.4; and the last by definition of GWG. Hence both parametrised
spectra in the statement have equivalent associated spectra, giving the desired con-
clusion.

5.4 The multiplicative norms
Let G now be a 2–group.

Lemma 5.4.1. Suppose H ◁ G with |G/H| = 2, and (A, Ϙ) i−→ (B, Φ) is a split
Poincaré–Verdier inclusion in Bor(Catp)H . Then the following map is an equiva-
lence in BorMot

ppppppppppppppppp
G.

Z((A, Ϙ)⊗ (B, Φ))⨿Z(NG
H(A,Ϙ))Z((A, Ϙ)⊗ (B, Φ))

→ Z((A, Ϙ)⊗ (B, Φ)⨿NG
H(A,Ϙ)(A, Ϙ)⊗ (B, Φ))

Proof. By Corollary 4.3.5 we have the pushout

IndG
H ResG

H NG
H(A, Ϙ) NG

H(A, Ϙ)

IndG
H(A, Ϙ)⊗ (B, Φ) (A, Ϙ)⊗ (B, Φ)⨿NG

H(A,Ϙ)(A, Ϙ)⊗ (B, Φ)
⌜

ε

which is a split Poincaré–Verdier pushout by Corollary 5.2.2. Hence by Lemma 4.3.3
we obtain the pushout square
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IndG
H ResG

H Z(NG
H(A, Ϙ)) Z(NG

H(A, Ϙ))

IndG
HZ((A, Ϙ)⊗ (B, Φ)) Z((A, Ϙ)⊗ (B, Φ)⨿NG

H A(A, Ϙ)⊗ (B, Φ))
⌜

ε

as desired.

Proposition 5.4.2 (Cofibre distributivity of Borel norms). Let C⊗ be a pointed co-
complete symmetric monoidal category whose tensor product is bicocontinuous
(ie. commutes with arbitrary colimits in each variable). Suppose X → Y → Z is
a cofibre sequence in Bor(C⊗)H where H ≤ G is a subgroup of index 2. Then we
obtain the following cofibre sequence in Bor(C⊗)G

X⊗Y⨿G/H
X⊗XY⊗ X → NG

HY → NG
HZ

Proof. First note that ResG
e (X ⊗ Y⨿G/H

X⊗XY ⊗ X) ≃ X ⊗ Y⨿X⊗XY ⊗ X, ie. the un-
derlying object of G/H–pushouts are just ordinary pushouts. Secondly, since
fgt : Fun(BH, C) → C preserves colimits, in particular, it reflects cofibres. Hence to
check that the sequence in question is cofibre, it suffices to verify it on the under-
lying sequence in C, forgetting the equivariance. Now it is a standard consequence
of the bicocontinuity of the tensor product.

We now have all the ingredients we need to mimic the arguments in §4.3.4.

Proposition 5.4.3. Let H ◁ G be a normal subgroup of index 2. Then NG
H sends the

morphism t∗ : U (Sp∆1

ω , Ϙu
met)/U (Spω, ΩϘu)→ U (Spω, Ϙu) inRBor to a morphism in

RBor.

Proof. Recall that we have the split Verdier sequence

Spω Sp∆1

ω Spω
s∗

s!

t∗
s∗ t!

which underlies the split Poincaré–Verdier sequence

(Spω, ΩϘu)
s∗−→ Met(Spω, Ϙu)

t∗−→ (Spω, Ϙu)

Recall moreover that, by design of the temabolics, we have the following square
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(Spω, ΩϘu) (Sp∆1

ω , Ϙu
tem)

(Spω, ΩϘu) (Sp∆1

ω , Ϙu
met) = Met(Spω, Ϙu)

s!

cofib ≃

s∗

Hence applying NG
H to the whole square, we get in turn the diagram

(Sp∆1

ω , ΩϘu
tem)⨿s!

(Spω ,ΩϘu)
(Sp∆1

ω , ΩϘu
tem) NG

H(Sp∆1

ω , Ϙtem)

(Sp∆1

ω , ΩϘu
met)⨿s∗

(Spω ,ΩϘu)
(Sp∆1

ω , ΩϘu
met) NG

H(Sp∆1

ω , Ϙu
met) = NG

HMet(Spω, Ϙu)

≃

e!

cofib ≃

where the G/H-pushout on the top left is with respect to the s! diagram and the
bottom left is with respect to the s∗ diagram. By Lemma 5.2.5, the top arrow e! is a
split Poincaré–Verdier inclusion, hence so is the bottom arrow.

Therefore, the conclusion of the previous paragraph together with the G/H-
distributivity of NG

H Proposition 5.4.2 yields the following fibre sequence

(Sp∆1

ω , ΩϘu
met)⨿s∗

(Spω ,ΩϘ)(Sp∆1

ω , ΩϘu
met) NG

H(Sp∆1

ω , Ϙu
met) NG

HSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH ≃ NG
H(Spω, Ϙu)

(t×t)∗

(t×t)!

which is automatically split Poincaré–Verdier since the right hand functor admits
the fully faithful dashed adjoints. Hence by definition of the motivic localisation λ,
the diagonal map in the diagram

U (NG
H(Sp∆1

ω ,Ϙu
met))

U (Sp∆1
ω ,ΩϘu

met)⨿s∗
U (Spω ,ΩϘu)U (Sp∆1

ω ,ΩϘu
met)

U (NG
H(Spω, Ϙu))

U (NG
H(Sp∆1

ω ,Ϙu
met))

U
(
(Sp∆1

ω ,ΩϘu
met)⨿s∗

(Spω ,ΩϘu)(Sp∆1
ω ,ΩϘu

met)
)

is a morphism in RBor. So to show that the top horizontal map is in RBor, it will
suffice to show that the left vertical map is in RBor: this is merely the observation
that we have, by definition a map of cofibre sequences in PShSp

G (Bor(Catp))
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U (Sp∆1
ω , ΩϘu

met)⨿s∗
U (Spω ,ΩϘu )U (Sp∆1

ω , ΩϘu
met) U (NG

H(Sp∆1
ω ,Ϙu

met))
U (NG

H (Sp∆1
ω ,Ϙu

met))

U (Sp∆1
ω ,ΩϘu

met)⨿
s∗
U (Spω ,ΩϘu )U (Sp∆1

ω ,ΩϘu
met)

U
(
(Sp∆1

ω , ΩϘu
met)⨿s∗

(Spω ,ΩϘu )(Sp∆1
ω , ΩϘu

met)
)

U (NG
H(Sp∆1

ω ,Ϙu
met))

U (NG
H (Sp∆1

ω ,Ϙu
met))

U
(
(Sp∆1

ω ,ΩϘu
met)⨿

s∗
(Spω ,ΩϘ)

(Sp∆1
ω ,ΩϘu

met)
)

and the left vertical is in RBor by Lemma 5.4.1, and hence the right vertical is in
RBor too.

Lemma 5.4.4. Let H ◁ G be a normal subgroup of index 2. Then NG
H preserves

morphisms inRBor.

Proof. By Lemma 4.3.14, it suffices to show that NG
H sends morphisms in RBor to

morphisms in RBor. Now for any (C, Ϙ) ∈ Bor(Catp)H , by [CDH+20a, Rmk. 7.5.8]
we have the following identification of the standard sequence(

(C, ΩϘ) s−→ Met(C, Ϙ) t−→ (C, Ϙ)
)
≃
(
(Spω , ΩϘu)

s−→ Met(Spω , Ϙu)
t−→ (Spω , Ϙu)

)
⊗ (C, Ϙ)

Therefore, we obtain that NG
H sends the following morphism inRBor(

U (Met(C, Ϙ))/U (C, ΩϘ) t−→ U (C, Ϙ)
)
≃
(
U (Met(Spω , Ϙu))/U (Spω , ΩϘu)→ U (Spω , Ϙu)

)
⊗U (C, Ϙ)

to a morphism in RBor by the ordinary symmetric monoidality of λ and Proposi-
tion 5.4.3. But since the collection of morphisms in RBor can be taken to be of this
form again by [CDH+20b, Rmk. 2.7.6 (ii)], we are done.

Theorem 5.4.5. Let G be a 2-group. Then RBor,κ is closed under the multiplica-
tive norms, and so λ : PShG(Bor(Catp)) −→ BorMot

ppppppppppppppppp
G canonically refines to a

G–symmetric monoidal localisation.

Proof. Exactly as in Theorem 4.3.19, replacing Lemma 4.3.17 with Lemma 5.4.4.

Combining with Proposition 3.3.6 then yields:

Corollary 5.4.6. Let G be a 2–group. Then GWG : Bor(Catp) −→ SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG refines to the
structure of a G–lax symmetric monoidal functor. Hence, it induces the functor

GWG : Fun(BG, CAlg(Catp))≃ ≃ CAlgG(Bor(Catp))≃ −→ CAlgG(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG)
≃

This means that, if (C, Ϙ) ∈ Fun(BG, CAlg(Catp)) is a symmetric monoidal
Poincaré category equipped with a G–action, then{

GW(ChH , ϘhH)
}

H≤G

assembles canonically to a G–normed ring spectrum.



Chapter 6

Equivariant Goodwillie
calculus

In this chapter, we translate the general setup and some results of [Dot17] into the
framework of parametrised homotopy theory in preparation for the final chapter
on genuine equivariant hermitian K–theory. While most, if not all, the equivari-
ant results here are due to [Dot17], we have however chosen also to cite the various
parts of [Lur17] in the statements of the results to indicate that we have used Lurie’s
formulations and methods for their proofs. Moreover, as already indicated in the
general introduction to this thesis, while we claim no originality in this chapter, we
have chosen to present many of the proofs here in the form of pure Kan extension
astrology (a terminology we learnt from Shachar Carmeli in reference to the upper
and lower star notations!) which might be of independent interest: the key obser-
vation here is to exploit that various adjunctions already exist at the level of the
indexing posets.

After working out some cube yoga in §6.2, we record several basic observations
about equivariant excisiveness in §6.3. We then prove the formula for equivariant
Goodwillie approximations in the next two sections before rounding out the chap-
ter with multilinearity matters in §6.6.

6.1 Definitions and basic constructions
Let G be a finite group throughout.

Construction 6.1.1. Let J be a finite G–set. Then the poset Pos(J) of subsets of
J has a G–action, and so is an object in Fun(BG, Cat(1)). We then write the as-
sociated G–category PosG(J) for the image of this object under the composition
Fun(BG, Cat(1)) ↪→ Fun(Oop

G , Cat(1)) ↪→ Fun(Oop
G , Cat). Concretely, the fibre over

G/H is just Pos(J)H .
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Notation 6.1.2. Let J be a finite G–set and H ≤ G a subgroup. We will be interested
in the following H–subcategories:

• Write OrbH(J) ⊆ PosH(J) for the full subcategory spanned by the subsets
of some H–orbit o ∈ J/H. Be warned that the general inclusion OrbH(J) ⊆
ResG

H OrbG(J) is not an equivalence when H ⪇ G since being a transitive G–
orbit is never the same as being a transitive H–orbit when H ⪇ G.

• Let Pos∅
H(J) ⊆ PosH(J) where ∅ is removed.

Definition 6.1.3 ([Dot17, Def. 2.1]). Let J be a finite G–set and H ≤ G a subgroup.
Let C be a H–category and X : PosH(J)→ C be a H–diagram (such a datum is also
called a J–cube). We say that it is:

(i) G–strongly cocartesian if it is the H–left Kan extension of X|ResG
H OrbG(J).

(ii) H–cartesian if it is a H–limit diagram over X|Pos∅
H(J).

Remark 6.1.4. There is an asymmetry in the definition above. While being H–
cartesian is the expected definition, G–strong cocartesianness always refers to being
H–left Kan extended from ResG

H OrbG(J). This is due to the fact that ResG
H OG(J) ̸≃

OrbH(J), as noted above.

Definition 6.1.5 (“[Dot17, Def. 2.10]”). Let J be a finite G–set, C,D ∈ CatG
and F : C → D a G–functor. We say that F is J–excisive if ResG

H F : ResG
H C →

ResG
H D sends G–strongly cocartesian PosH(J)–diagrams to H–cartesian PosH(J)–

diagrams.

6.2 Basic cube yoga
Definition 6.2.1 (Face cubes, “[Lur17, Def. 6.1.1.12]”). Let J be a finite G–set, H ≤
G a subgroup, and T ⊆ J a H–subset. Suppose we have a decomposition J =
U ⨿ T ⨿ V of finite H–sets. We then have a map of H–posets

ξU : PosH(T) −→ PosH(J) :: T0 7→ (U ⨿ T0)

where T0 ⊆ T. Given a J–cube X : PosH(J) → C we can precompose to get a
T–cube

PosH(T)
ξU−→ PosH(J) X−→ C

which we refer to as T–faces of X (note this depend on the H–decomposition of J).

Proposition 6.2.2 (“[Lur17, Prop. 6.1.1.13]”). Let C be a G-cocomplete category. Let
J be a finite G-set and T ⊆ J a G-subset, and let X : PosG(J)→ C be a J–cube. Then:

(1) If X is strongly G-cocartesian then every T–face of X is too.
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(2) If every T-face of X is G-cartesian, then X is G-cartesian.

Proof. For (1), suppose X is G-strongly cocartesian. Choose a G-decomposition J =
U ⨿ T ⨿V, and let Y := X ◦ ξU : PosG(T) → C be the corresponding T-face of X as
constructed above. We want to show that Y is a G-left Kan extension of Y|OrbG(T).
Here recall that ξU is the H–functor

ξU : PosG(T) −→ PosG(S) :: T0 7→ U ⨿ T0

For this, let I ⊆ PosG(U ⨿ T) be the subcategory on those subsets I ⊆ J such that
I ∩ T ∈ OrbG(T). Note that we have adjunctions

h : PosG(U ⨿ T) ⇄ PosG(T) : ξU and h : I ⇄ OrbG(T) : ξU

given by h : W 7→W ∩ T and h : W 7→W ∩ T. Now consider the diagram

PosG(T) PosG(U ⨿ T) C

OrbG(T) I

OrbG(U ⨿ T)

Y

ξU

X
h

i

ξU

j
h

k

where both squares commute and all the vertical maps are the obvious inclusions.
In particular, since we have adjunctions

ξ∗U : FunG(PosG(U ⨿ T), C) ⇄ FunG(PosG(T), C) : h∗

ξ
∗
U : FunG(I, C) ⇄ FunG(OrbG(T), C) : h

∗

we get that i!ξ
∗
U ≃ i!h! ≃ h! j! ≃ ξ∗U j!. Moreover, by definition of G-strongly cocarte-

sianness, we have j!k!k∗ j∗X ≃ X, and so

j∗X ≃ j∗ j!k!k∗ j∗X ≃ k!k∗ j∗X

where the last equivalence is since j was fully faithful, and so j∗ j! ≃ id always.
Therefore

j! j∗X ≃ j!k!k∗ j∗X ≃ X

With these observations in place, what we want to show is then that i!i∗Y ≃ Y, and
for this just consider the equation

i!i∗Y = i!i∗ξ∗UX ≃ i!ξ
∗
U j∗X ≃ ξ∗U j! j∗X ≃ ξ∗UX = Y
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where all the equivalences are by our observations above.
For (2), suppose every T-face of X is cartesian. We want to show that X(∅) is

the G–limit of X|Pos∅
G(J). We will proceed in two stages. LetM ⊆ Pos∅

G(J) be the
subposet of all subsets that intersect nontrivially with T. The claim in the first stage
is that X|Pos∅

G(J) is a G-right Kan extension of X|M. That is, considering the diagram

M Pos∅
G(J) PosG(J) C

j i X

we want to show that the canonical map i∗X → j∗ j∗i∗X is an equivalence. Since
equivalences are checked pointwise, this is equivalent to showing that

(ξ∅
U)
∗i∗X → (ξ∅

U)
∗ j∗ j∗i∗X

is an equivalence for all nonempty subsets ∅ ̸= U ⊆ J such that U ∩ T = ∅ (ie.
U /∈ M), where ξ∅

U : PosG(T) → Pos∅
G(J) is the factorisation of ξU : PosG(T) →

PosG(J). To see this, let us have a nonempty subset ∅ ̸= U ⊆ J such that U∩T = ∅.
We want to show that X(U) is computed as a G-right Kan extension of X|M. For
this consider the diagram

M Pos∅
G(J)

MU/ Pos∅
G(J)U/ PosG(J) C

Pos∅
G(T) PosG(T)

j

i

⌟ jU

ηU

ℓU ℓU

iU

ηU

X

k

ξU ξU ξU

enjoying the following list of properties:

• all the squares commute,
• the top square is a pullback and therefore by the pointwise formula for right

Kan extensions, we have that the transformation (ℓU)
∗ j∗ ⇒ (jU)∗(ℓU)

∗ is an
equivalence,

• we have adjunctions ξU ⊣ ηU and ξU ⊣ ηU given for example by ξU : L 7→
L ⨿ U and ηU : N 7→ N ∩ T.

• ξ∅
U ≃ ℓU ◦ ξU .
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Now we use similar adjunction manoeuvres as before, namely note that ξ
∗
U ≃

ηU∗ and ξ
∗
U ≃ ηU∗. Then

(ξ∅
U)
∗ j∗ j∗i∗X ≃ ξ

∗
Uℓ
∗
U j∗ j∗i∗X

≃ ξ
∗
U jU∗ℓ

∗
U j∗i∗X

≃ ξ
∗
U jU∗ j∗U i∗UX

≃ ηU∗ jU∗ j
∗
U i∗UX

≃ k∗ηU∗ j
∗
U i∗UX

≃ k∗ξ
∗
U j∗U i∗UX

≃ k∗k∗ξ
∗
U i∗UX

≃ k∗k∗ξ∗UX

≃ ξ∗UX

≃ (ξ∅
U)
∗i∗X

where the second last equivalence is by the T–face cartesianness of X, hence the
claim.

For the next stage, recall that ultimately we want to show that the canonical map
X → i∗i∗X is an equivalence. But note that since the inclusion i : Pos∅

H(J) ↪→
PosH(J) only adds the empty subset and so if can show that ξ∗∅X → ξ∗∅i∗i∗X is an
equivalence, then we would be done. In this case, we would need a similar diagram
as in the previous stage adjusted by the fact that the case U = ∅ is special:

M Pos∅
G(J) PosG(J) C

Pos∅
G(T) PosG(T)

j

η∅

i X

η∅

k

ξ∅ ξ∅

For this just consider the equation

ξ∗∅i∗i∗X ≃ ξ∗∅i∗ j∗ j∗i∗X

≃ η∅∗i∗ j∗ j∗i∗X

≃ k∗η∅∗ j
∗i∗X

≃ k∗ξ
∗
∅ j∗i∗X

≃ k∗k∗ξ∗∅X

≃ ξ∗∅X

where the first equivalence is by the first stage, and the last equivalence is by the
T–face cartesianness of X using U = ∅. This completes the proof.
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Lemma 6.2.3 (Pushout criterion of strong cocartesianness, “[Lur17, Prop.
6.1.1.15]”). Let X : PosG(J+) → C be an J+-cube. Then the following are equiv-
alent:

(1) The J+-cube X is G–strongly cocartesian.
(2) For every subgroup H ≤ G and every pair of H-invariant subsets T, T′ ⊆ J+

such that T ∪ T′ has more than one G-orbit, the diagram

X(T ∩ T′) X(T)

X(T′) X(T ∪ T′)

is a fibrewise H-pushout.

Proof. To see (1) implies (2), note first that if T = T ∪ T′ or T′ = T ∪ T′, then the
statement is trivially true. So suppose this is not the case. We consider a couple of
auxiliary H-subposets:

• P ⊆ PosH(J+) is given by P = PosH(J+)/T ∪ PosH(J+)/T′ , namely, the poset
of subsets which are either in T or in T′.

• P1 := constH(Λ
2
0) ≃ (Λ2

0 ×O
op
H → O

op
H ) given by {T, T′, T ∩ T′}.

Now note that the inclusion j : P1 ⊆ P admits a H-left adjoint

τ : P→ P1 :: U 7→ min
Y∈{T,T′ ,T∩T′}

(Y ⊇ U)

Now consider the diagram where all the squares commute

P▷
1 P▷ C

P1 P

j

Xτ

j

t w
τ

where P▷
1 and P▷ are thought of as the subcategories where T ∪ T′ has been added.

What we want to show is that t!t∗ j
∗X → j∗X is an equivalence. And for this, just

consider

t!t∗ j
∗X ≃ t! j∗w∗X

≃ t!τ!w∗X

≃ τ!w!w∗X

≃ τ!X ≃ j∗X
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where the fourth equivalence is since w!w∗X ≃ X as X was G-strongly cocartesian.
This completes this part.

To see (2) implies (1), writing k : OrbG(J+) ↪→ PosG(J+) for the G-inclusion,
we need to show that k!k∗X → X is an equivalence. Since equivalences are
tested pointwise, we are reduced to show the following: for each H ≤ G and
T ∈ PosH(J+), writing T : ∗ → PosH(J+) for the H–object T, we have that

T∗k!k∗X → T∗X

is an equivalence. If T were already in ResG
H OrbG(J+) then since k∗k!k∗X ≃ k∗X

(because k was G-fully faithful), the statement is true. We now prove the general
case by induction on the size of T. Since T intersects non-trivially with more than
one G-orbit, we can write T = T′ ∪ T′′ where 0 < |T′|, |T′′| < |T|. Because (1)
implies (2), we get that k!k∗X - which is G–strongly cocartesian by definition - sat-
isfies the pushout property in (2). Moreover, by hypothesis, X does too. Now the
induction hypotheses give that k!k∗X → X is an equivalence on T′ ∩ T′′, T′, T′′, and
so by the pushout properties of both k!k∗X and X, it must be an equivalence on
T = T′ ∪ T′′ also, as required.

6.3 Basic results on equivariant excisiveness
Equipped with the cube yoga of the previous section, we are now ready to deduce
some basic theory on equivariant excisiveness.

Corollary 6.3.1. Let J be a finite G–set and K ⊆ J be a G–invariant subset. Then
every K-excisive G–functor is also J-excisive.

Proof. Let F : C → D be a K-excisive G–functor. Write a G–decomposition J =
I ⨿ K. Let X : PosH(J+) → C be G–strongly cocartesian. By Proposition 6.2.2 (1),
all K-faces are also G–strongly cocartesian. Since F was K-excisive, all the K-faces
of FX are K-cartesian, and hence FX is G-cartesian by Proposition 6.2.2 (2). Hence,
FX is G–cartesian.

The proof of the following result involves some manoeuvring with cofinality ar-
guments which we will not reproduce here. We refer the reader to [Dot17] directly,
and especially the arguments in [DM16, Props. A.1 - A.3] where this is proved. All
the cofinality arguments involve only 1–categories since they are about the cofinal-
ity of PosG(K+)→ PosG(J+) when K → J is a surjective map of finite G–sets.

Lemma 6.3.2 ([Dot17, Prop. 2.15]). Let p : K → J be a map of finite G–sets inducing
an isomorphism on G–orbits. Then any K-excisive G–functor F : C → D is also J-
excisive. In particular, any K-excisive G–functor is |K/G|-excisive, in the sense of
ordinary Goodwillie calculus.
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The following is now an immediate consequence of Corollary 6.3.1 and
Lemma 6.3.2.

Theorem 6.3.3 ([Dot17, Cor. 2.16]). Let p : K → J be a map of finite G–sets in-
ducing an injection on G–orbits. Then any K-excisive G–functor F : C → D is also
J-excisive.

In the remainder of this section, we will work towards showing that the notion
of equivariant excisiveness of free G–sets is compatible with restrictions. This is
a special case of [Dot17, Prop. 2.34]. First of all, we record the following lemma
whose proof is immediate.

Lemma 6.3.4. Let H ≤ G be a subgroup. Then there is a H–adjunction

i : PosH(nH+) ⇄ PosH(ResG
H nG+) = ResG

H PosG(nG+) : π

where i is the inclusion induced by the H–equivariant inclusion of H–sets H ↪→
G ∼= ⨿G/H H, and π(S) := i(nH+) ∩ S ⊆ nH+. Moreover, this is a retraction, ie.
π ◦ i = id.

Lemma 6.3.5. Let C be a G–complete category, and let i : I ⇄ K : π be a G–
adjunction. Then i∗ : CK◁ → C I◁ sends K–cartesian diagrams to I–cartesian dia-
grams.

Proof. The given adjunction extends to the following commuting squares of adjunc-
tions

I K

I◁ K◁

i

j
π

k
i

π

It would now suffice to show that the following square on the left commutes

C I CK C I CK

C I◁ CK◁ C I◁ CK◁

j∗

i∗

k∗

π∗

i∗
j∗

π∗

k∗

Taking left adjoints, we obtain the right hand square which obviously commutes.
This completes the proof.

Proposition 6.3.6. Let F : C → D be an nG–excisive functor between C andDwhich
strongly admit finite G–(co)limits. Then ResG

H F : ResG
H C → ResG

H D is nH–excisive.
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Proof. First note that the map i from Lemma 6.3.4 restricts to give the first of the
following pair of commuting squares, which then in turn induces the second one

OrbH(nH+) ResG
H OrbG(nG+)

PosH(nH+) ResG
H PosG(nG+)

u

iO

v

i

ResG
H C

OrbH(nH+) ResG
H C

ResG
H OrbG(nG+)

ResG
H C

PosH(nH+) ResG
H C

ResG
H PosG(nG+)

(iO)!

u! v!

i!≃π∗

Hence, the functor π∗ sends H–strongly cocartesian cubes to G–strongly cocarte-
sian ones.

Now to prove the statement of the proposition, consider the diagram

FunH
(
PosH(nH+), ResG

H C
)

FunH
(
PosH(nH+), ResG

H D
)

FunH
(
PosH(ResG

H nG+), ResG
H C
)

FunH
(
PosH(ResG

H nG+), ResG
H D

)
(ResG

H F)∗

π∗

(ResG
H F)∗

i∗

which commutes since π ◦ i = id from Lemma 6.3.4. Suppose we start with an X on
the top left which is a H–strongly cocartesian PosH(nH+)–diagram. By the para-
graph above, its image π∗X is a G–strongly cocartesian PosH(ResG

H nG+)–diagram.
Hence, by nG+–excisiveness of F, its further image (ResG

H F)∗π∗X on the bottom
right is H–cartesian. But then since the functor i∗ strongly preserves H–cartesian
diagrams Lemma 6.3.5, we see that the final image (ResG

H)∗X on the top right corner
is a H–cartesian PosH(nH+)-diagram, as required.

6.4 Equivariant Goodwillie approximations
Definition 6.4.1. Let C be a G-category. We say that it is G-differentiable if:

• It is G-finite-complete,
• It admits fibrewise filtered colimits,
• The fibrewise sequential colimits are G-left exact functors, that is, they

strongly preserve G-finite limits.

Definition 6.4.2. Let C,D be G-categories admitting G-final objects and F : C → D
a G-functor. We say that it is G-reduced if it preserves G-final objects.
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Construction 6.4.3 (Goodwillie approximations, “[Lur17, Cons. 6.1.1.18, 22, 27]”).
Let J be a finite G–set. There will be three important constructions: that of S–cones,
of TJ+ , and Goodwillie’s approximations PJ+ . Let C be G-finite-cocomplete and
have G-final objects.

(a) (S–cones) Let Fininj
G≤n ⊆ Fininj

G denote the full subcategory of finite G–sets with
≤ n G-orbits and injective maps. This is subcategory that really depends on G
and so for a proper subgroup H ⪇ G, (Fininj

G≤n)H contains finite H–sets which
have more than n H–orbits in general. Now for X ∈ C, we obtain a diagram
FX ∈ FunG(Fininj

G , C) by

X FX |Fininj
G≤1

FX
RKE LKE

Let us temporarily denote the full subcategory of FunG(Fininj
G , C) for these

things by Funcone
G (Fininj

G , C). Then since everything was obtained by Kan

extensions, the evaluation ev∅ : Funcone
G (Fininj

G , C) → C is an equivalence.
Choosing an inverse and currying we obtain the following functor, where we
call CS(X) the S–cones of X.

C × Fininj
G −→ C :: (X, S) 7→ CS(X) := FX(S)

(b) Let D have finite limits and F : C → D be a G–functor. We define

TJ+ F : C → D :: X 7→ limS∈Pos∅
G(J+)

F(CS(X))

The canonical map F(X) = F(C∅(X)) → limS∈Pos∅
G(J+)

F(CS(X)) determines
a transformation θ : F =⇒ TJ+ F. Now C(−)(X) is by construction a G–
strongly cocartesian J+-cube, and so if F were J+-excisive we would get
limS∈Pos∅

G(J+)
F(CS(X)) ≃ F(C∅(X)) ≃ F(X), so that θ : F ⇒ TJ+ F is an

equivalence.
(c) (Goodwillie approximations) Suppose D is differentiable and F : C → D is a

G–functor. For each finite G–set J+ denote by the filtered colimit

PJ+ F := colim
(

F
θF−→ TJ+ F

θTJ+ F
−−−→ TJ+TJ+ F → · · ·

)
This is what we call equivariant Goodwillie approximation. Note that this is G–
left exact by G–differentiability of D.

Observation 6.4.4. Here are some easy but important observations about these:

(a) T1+ F : C → D is constant with value F(∗). If F is reduced then TF ≃ ΩD ◦ F ◦
ΣC
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(b) Suppose we are given functors F : C → D and F′ : D → E with F strongly
preserving finite G–colimits and G–final objects. Then we have equivalences(

TJ+(F′ ◦ F)
)
(−) ≃ (TJ+ F′) ◦ F and PJ+(F′ ◦ F) ≃ (PJ+ F′) ◦ F

The second one follows immediately from the first identification. For
the first one, note TJ+(F′ ◦ F)(−) ≃ limS∈Pos∅

G(J+)
(F′ ◦ F)(CS(−)) ≃

limS∈Pos∅
G(J+)

F′(CSF(−)) ≃
(
(TJ+ F′) ◦ F

)
(−).

(c) Suppose we were given functors F : C → D and F′ : D → E such that F′

strongly preserves finite G–limits and fibrewise sequential colimits. Then we
have

PJ+(F′ ◦ F) ≃ F′ ◦ PJ+ F

(d) If F : C → D is reduced, then T1+ F ≃ colimm Ωm
D ◦ F ◦ Σm

C .

We will now work towards proving that the Goodwillie approximations are the
universal excisive approximations, and for this, we will need some preparatory
lemmas.

Notation 6.4.5. Let i : Pos∅
G(J) ↪→ PosG(J) be the inclusion. Write

Funcart
G (PosG(J),D) for the full subcategory consisting of the image of i∗ :

FunG(Pos∅
G(J),D)→ FunG(PosG(J),D).

Lemma 6.4.6 (“Rezk, [Lur17, Lem. 6.1.1.26]”). Let C be G-finite-cocomplete and
have G-final objects, andD be G-finite-complete. Let F : C → D be a G–functor. Let
J be a finite G–set. Suppose X : PosG(J+)→ C is a G–strongly cocartesian J+–cube.
Then the canonical map θF : F(X)→ (TJ+ F)(X) constructed above factors through
a G–cartesian J+–cube of D.

Proof. We will need four auxiliary points:

(a) Let ζ : C → FunG(PosG(J+), C) be given by ζ : c 7→
(

I 7→ CI(c)
)
. Observe

that for any c ∈ C, ζ(c)|OrbG(J+) is a G–right Kan extension of ζ(c)|Pos≤0(J+)
by

construction.
(b) Let XI : PosG(J+) → C be the functor S 7→ X(I ∪ S). That is, we are squash-

ing X so that it lies on things above I: more formally, let αI : PosG(J+) →
PosG(J+) be the non-G-fully faithful functor S 7→ (I ∪ S). Then define XI :=
α∗I X. Note that since X was G–strongly cocartesian, XI is also G-strongly co-
cartesian by applying the criterion Lemma 6.2.3. To wit, if T, T′ ⊆ J+ are
H-subsets such that T ∪ T′ has more than one G-orbit, then so does T ∪ T′ ∪ I
a fortiori, and hence

X((T ∪ I) ∩ (T′ ∪ I)) = X((T ∩ T′) ∪ I) X(T ∪ I)

X(T′ ∪ I) X(T ∪ T′ ∪ I) = X((T ∪ I) ∪ (T′ ∪ I))
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is a fibrewise H-pushout since X was G–strongly cocartesian, as required.
(c) We denote the functors

τ : PosG(J+)× PosG(J+)→ PosG(J+) :: (S′, S′′) 7→ (S′ ∪ S′′)

j : Pos∅
G(J+) ↪→ PosG(J+) the canonical inclusion

We can then consider the composition

FunG(PosG(J+), C)
F∗−→ FunG(PosG(J+),D)
τ∗−→ FunG(PosG(J+)× PosG(J+),D)
(j×1)∗−−−→ FunG(Pos∅

G(J+)× PosG(J+),D)

We claim that for X ∈ FunG(PosG(J+), C) is G–strongly cocartesian, it lands
in

FunG
(
Pos∅

G(J+), Funcart
G (PosG(J+),D)

)
⊆ FunG

(
Pos∅

G(J+), FunG(PosG(J+),D)
)

under this composition. We need to show that for any S′ ∈ (Pos∅
G(J+))G =

Pos∅(J+)G, the associated G-diagram

Z : PosG(S)→ D :: T 7→ FXS′(T) = FX(T ∪ S′)

is G-cartesian. For this, note that all the S′-faces of Z are constant since for
any G-invariant decomposition S = U ⨿ S′⨿ V, the G-diagram Z ◦ ξU :
PosG(S′)→ PosG(S)→ D given by

S′′ 7→ U ⨿ S′′ 7→ FX((U ⨿ S′′) ∪ S′) ≃ FX(U ⨿ S′)

is constant. Invoking Proposition 6.2.2 (2), we see that Z is G-cartesian, as
required.

(d) Let p : Pos∅
G(S) → ∗ be the unique map. Postcomposing the composi-

tion above further with the limit p∗ : FunG(Pos∅
G(S), FunG(PosG(S),D)) →

FunG(PosG(S),D), we can define Y ∈ FunG(PosG(S),D) to be Y := p∗(j ×
1)∗τ∗FX so that concretely for example, for I ⊆ J+ a G–invariant subset we
have

Y(I) := limS′∈Pos∅
G(J+)

F(XI(S′)) = limS′∈Pos∅
G(J+)

F(X(I ∪ S′))

Since cartesianness is preserved under taking G–limits, by point (c), Y is G–
cartesian.
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Given these, since ζ(X(I))|OrbG(J+) is a G–right Kan extension by (a) and XI is G–
left Kan extended from OrbG(J+) by (b), we get that the identity map XI(∅) →
ζ(X(I))(∅) admits a unique extension to a map of J+–cubes η : XI → ζ(X(I))
which when evaluated at S ∈ PosG(J+) is(

XI → ξ(X(I))
)
(S) =

(
X(I ∪ S)→ CS(X(I))

)
depending functorially on I. We then observe that this map η provides the factori-

sation of θ : F(X)→ (TJ+ F)(X) given by F(X)→ Y
η−→ (TJ+ F)(X) as sought.

Lemma 6.4.7 (Goodwillie approximations are excisive, “[Lur17, Lem. 6.1.1.33]”).
Let C be G-finite-cocomplete and admit G-final objects, and J a finite G-set. Suppose
D is G-differentiable and F : C → D is a functor. Then PJ+ F : C → D is J+-excisive.

Proof. Let X : PosG(J+) → C be a G–strongly cocartesian J+-cube. We want to
show that (PJ+ F)(X) is G-cartesian. Now by definition, we have that

(PJ+ F)(X) := colim
(

F → (TJ+ F)(X)→ (T2
J+ F)(X)→ · · ·

)
By the Rezk Lemma 6.4.6 we have a G–cartesian factorisation

(Tk
J+ F)(X)→ Yk → (Tk+1

J+ F)(X)

so that we could alternatively have gotten (PJ+ F)(X) by a sequential colimit of

Y0 → Y1 → Y2 → · · ·

Since each Yi is G-cartesian inD and finite G–limits commute with sequential colim-
its inD by G–differentiability, (PJ+ F)(X) ≃ colimk Yk is G–cartesian as wanted.

Lemma 6.4.8 (Idempotence of Goodwillie approximations, “[Lur17, Lem.
6.1.1.35]”). Let C be G-finite-cocomplete and G–pointed. Suppose D is G-
differentiable and F : C → D is a functor. Let θ : F → TJ+ F be the canonical
comparison. Then PJ+θ : PJ+ F → PJ+TJ+ F is an equivalence. Therefore, the canoni-
cal transformation PJ+ F → PJ+PJ+ F is an equivalence.

Proof. Recall from the construction that PJ+ strongly commutes with finite G–limits
(since TJ+ is just a G–limit construction, and by hypothesis fibrewise sequen-
tial colimits strongly preserve finite G-limits in D) and so we have PJ+TJ+ F →
limS∈Pos∅

G(J+)
PJ+(F ◦ CS) is an equivalence. Now CS : C → C strongly preserves G–

colimits since C ss G–pointed and so G–colimits of the G–point is again the G–point.
Hence, by Observation 6.4.4 we get that PJ+TJ+ F ≃ limS∈Pos∅

G(J+)
(PJ+ F) ◦ CS. But

then PJ+ F was J+-excisive by Lemma 6.4.7, and so limS∈Pos∅
G(J+)

(PJ+ F) ◦ CS ≃ PJ+ F
by Construction 6.4.3 (b), and hence

PJ+ F → PJ+TJ+ F ≃ limS∈Pos∅
G(J+)

(PJ+ F) ◦ CS
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is an equivalence as required. The last statement is just because PJ+Tk
J+ F →

PJ+Tk+1
J+ F is an equivalence by the first part, and so the structure maps in the fi-

brewise sequential colimit defining PJ+PJ+ F are all equivalences.

Notation 6.4.9. For a finite G–set J, we write ExcJ+
G ⊆ FunG for the full subcategory

of J+–excisive G–functors.

We are at last ready to state and prove the following.

Theorem 6.4.10 (“[Lur17, Thm. 6.1.1.10]”). Let C be G-finite-cocomplete and
G–pointed. Suppose D is G-differentiable. Then the inclusion ExcJ+

G (C,D) ⊆
FunG(C,D) admits a G–left exact left adjoint PJ+ : FunG(C,D)→ ExcJ+

G (C,D).

Proof. We already have G–left exactness by G–differentiability of D and also that
the image of PJ+ lands in ExcJ+

G (C,D) by Lemma 6.4.7. On the other hand, if F were
J-excisive, then by Lemma 6.4.8 we see that F → TJ+ F is an equivalence and so
F → PJ+ F is an equivalence, and hence ExcJ+

G (C,D) consists precisely of the image
of PJ+ . To see that it is a Bousfield localisation we just need to show that

PJ+θF, θPJ+ F : PJ+ F → PJ+PJ+ F

are equivalences. The case of PJ+θF is covered already by Lemma 6.4.8, whereas
that of θPJ+ F is also done since PJ+ F was J+-excisive.

6.5 Restriction-compatibility of Goodwillie ap-
proximations

Recollections 6.5.1. Suppose we have a diagram. Consider the commuting dia-
gram

I J

∗

i

p q

and let C be a G–category with the requisite G–limits. Then there is a canonical
transformation

q∗ =⇒ p∗i∗

coming from Nat(q∗, p∗i∗) ≃ Nat(p∗q∗, i∗) ≃ Nat(i∗q∗q∗, i∗) and using the image
of the (q∗ ⊣ q∗)-counit under the functor i∗. By applying the obvious units and
counits, this transformation adjoints to

i! p∗ =⇒ q∗
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Construction 6.5.2. We first need to construct canonical transformations under
ResG

H F
ζF : ResG

H TnG+ F =⇒ TnH+ ResG
H F

which are natural in F : C → D (cf. Construction 6.4.3 for the construction of TJ+ ).
For this, we collect some notations and constructions that we have seen above:

• For any G–category E , we write

C̃ : E → EPos∅
H(ResG

H nG+) C : E → EPos∅
H(nH+)

for the cone constructions of Construction 6.4.3 (a).
• Recall from Lemma 6.3.4 that we had the commuting diagram

Pos∅
H(nH+) Pos∅

H(ResG
H nG+)

∗
p

i

q

Moreover, since this functor i is H–fully faithful, the functor

i∗ : CPos∅
H(ResG

H nG+) → CPos∅
H(nH+)

strongly preserves left and right H–Kan extensions. Therefore, since the func-
tors C̃ and C were constructed as a combination of left and right H–Kan ex-
tensions, we see that the following triangle commutes.

C CPos∅
H(ResG

H nG+)

CPos∅
H(nH+)

C̃

C i∗

With these notations set, we observe that

ResG
H TnG+ F ≃ q∗

(
(ResG

H F) ◦ C̃
)

TnH+ ResG
H F ≃ p∗

(
(ResG

H F) ◦ C
)
≃ p∗ ĩ∗

(
(ResG

H F) ◦ C̃
)

Hence we obtain a natural transformation

ζF : ResG
H TnG+ F ≃ q∗

(
(ResG

H F) ◦ C̃
)
⇒ p∗i∗

(
(ResG

H F) ◦ C̃
)
≃ TnH+ ResG

H F

by the construction Recollections 6.5.1. Furthermore, this clearly is a natural trans-
formation under ResG

H F. By naturality of all the transformations constructed, we
get

ξF : ResG
H PnG+ F =⇒ PnH+ ResG

H F
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We reproduce Dotto’s proof [Dot17, Thm. 2.31] of the following for convenience:

Theorem 6.5.3. The map ξF : ResG
H PnG+ F ⇒ PnH+ ResG

H F is an equivalence.

Proof. In order to show that it is an equivalence, we first claim that the diagram

ResG
H PnG+ F PnH+ ResG

H F

PnH+ ResG
H PnG+ F PnH+PnH+ ResG

H F

ξF

ρF

PnH+ ResG
H ρF

PnH+ ρF

PnH+ ξF

(6.1)

commutes: the right triangle commutes since ζF, and hence ξF, was constructed
as a transformation under ResG

H F; the left triangle commutes is by considering the
diagram

ResG
H PnG+ F ResG

H PnG+PnG+ F ResG
H PnG+ F

PnH+ ResG
H F

PnH+ ResG
H PnG+ F PnH+ ResG

H PnG+ F PnH+ ResG
H PnG+ F

ResG
H ρPnG+

F

≃

ρF ξPnG+
F

ResG
H PnG+

ρF

≃

ξF

PnH+ ResG
H ρF

(6.2)

where the right square commutes by naturality of ξ, and the left square commutes
by construction of ρ and ξ: to wit, ξ is induced by the horizontal maps upon taking
directed colimits on both sides

ResG
H E ResG

H E

ResG
H TnG+E TnH+ ResG

H E

ResG
H TnG+TnG+E TnH+TnH+ ResG

H E

...
...

ResG
H θE

θ
ResG

H E

ζE

ResG
H θTnG+

E θ
TnH+

ResG
H E

ζ◦ζ

On the other hand, the ρ maps are induced by the top two vertical maps, and
hence passing to colimits and setting E = PnG+ F, we see indeed that ξPnG+

F ◦
ResG

H ρPnG+
F ≃ ρF. Therefore, the diagram Eq. (6.2) commutes, and hence the left

triangle of Eq. (6.1) commutes.
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By considering the usual 2-out-of-6 principle, if we can show that the curved
maps in Eq. (6.1) are equivalences, then we would have shown that all maps in sight
are equivalences, and in particular, so is ξF as required. That PnH+ρF is an equiva-
lence is clear by Lemma 6.4.8, and that ρF is an equivalence is because ResG

H PnG+ F
is already nH+–excisive by Proposition 6.3.6.

6.6 Multilinearity
Construction 6.6.1 (Reductions, [Lur17, Cons. 6.1.3.15]). Let C1, . . . , Cm admit G–
final objects ∗i and D is G–pointed and G–finite-complete. By finality, for each
1 ≤ i ≤ m, we have natural transformations αi : idC i

=⇒ ∗i, so that we get a
functor

F : C1 × · · · × Cm × Pos(S) ∏ αi−−→ C1 × · · · × Cm
F−→ D

given by
(X1, . . . , Xm, T) 7→ F(X′1, . . . , X′m)

X′i :=

{
Xi if i /∈ T
∗i if i ∈ T

We let FT := F|T . Hence the functor F restricts to a natural transformation β : F =
F∅ =⇒ lim∅ ̸=T⊆S FT where S = {1, . . . , m}, and we define the reduction of F to be

Fred := fib(β : F =⇒ lim
∅ ̸=T⊆S

FT)

It is then elementary to check (cf. [Lur17, Prop. 6.1.3.17]) that Fred is multi-reduced
and provides a right adjoint to the inclusion of multi-reduced functors into all func-
tors.

Construction 6.6.2 (Cross-effects, “[Lur17, Cons. 6.1.3.20]”, [Dot17, before Prop.
3.23]). Let C be G–finite-cocomplete and has a G–final object, and D is G–pointed
and G–finite-complete. We denote the n–addition functor by

qn : C×n −→ C :: (X1, . . . , Xn) 7→⨿
i

Xi

Then for every functor F : C → D we define the n-th cross-effect to be crnF :=
(F ◦ qn)red. That is, equivariant cross-effects are defined just to be a fibrewise con-
struction.

Proposition 6.6.3 (Multilinear excision, [Dot17, Prop. 3.23], “[Lur17, Prop.
6.1.3.22]”). Let C be G–finite-cocomplete and D be G–finite-complete. Let F : C →
D be an nG+-excisive functor. For each m ≤ n + 1 the cross-effect crm(F) : C×m →
D is ((n−m + 1)G+, . . . , (n−m + 1)G+)-excisive. In particular, crn+1F ≃ 0.
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Proof. We perform induction over n. When m = 0, this is vacuous. For m ≥ 1, note
that reduction is a limit construction in the target category, and excision is a limit
condition on the target category, and so reduction and taking limits do not worsen
excision, ie. reductions or limits of J+–excisive functors are still J+–excisive. Now
cr1(F) = fib(F =⇒ F0) is given by the fibre of a natural transformation F =⇒ F0
where F0 is constant. So since F and F0 are both nG+–excisive, so is cr1(F). Let
us therefore assume that m ≥ 2. Fixing X2, . . . , Xm ∈ C we need to show that the
functor C → D given by X1 7→ crm(F)(X1, . . . , Xm) is (n−m + 1)G+-excisive. Let
∗ be a G–final object in C. Define the functor

F̃ := fib
(

F(−⨿ Xm)⇒ F(−⨿ ∗)
)

: C → D

By splitting away the Xm part in the definition of crm(F) we see that

crm(F)(X1, . . . , Xm) ≃ crm−1(F̃)(X1, . . . , Xm−1)

and so it suffices to show that crm−1(F̃) is ((n − m + 1)G+, . . . , (n − m + 1)G+)–
excisive. By induction on n, we in turn need to show that F̃ is (n− 1)G+-excisive.

To this end let S = (n− 1)G and let Y : Pos(S+)→ C be a G–strongly cocartesian
S+–cube. Let Y∗ : Pos((S+)∗)→ C be defined as

Y∗(T) :=

{
Y(T)⨿ Xm if ∗ /∈ T
Y(T\{∗})⨿ ∗ if ∗ ∈ T

Now Y∗ is a G–strongly cocartesian (S+)∗-cube since for every T ⊆ S+, Y∗(T) =
Y(T) ⨿ Xm and Y was a G–strongly cocartesian S+-cube by hypothesis, whereas
Y∗(T∗) = Y(T)⨿ ∗ can be checked using the pushout criterion Lemma 6.2.3. Hence
since F was (S ⨿ ∗)+-excisive by Lemma 6.3.2, F ◦ (Y∗) : Pos((S+)∗) → D is a
cartesian (S+)∗-cube in D, and so the diagram

F(Y(∅)⨿ Xm) lim∅ ̸=T⊆S F(Y(T)⨿ Xm)

F(Y(∅)⨿ ∗) lim∅ ̸=T⊆S F(Y(T)⨿ ∗)

is a pullback. Therefore the vertical fibres, which are F̃, are equivalent, whence
F̃(Y) : PosG(S+)→ D is a cartesian S+–cube in D, as was to be shown.

We have not succeeded in using the methods of [Lur17, Cor. 6.1.3.5] to prove the
following result. As such, having nothing to add to Dotto’s proof, we quote the
followingwithout proof.

Proposition 6.6.4 (Additivity of free equivariant excision, [Dot17, Prop. 3.19]).
Let C be G–finite-cocomplete and E be G–finite-complete. Let F : C×r → E be
(n1G+, . . . , nrG+)-excisive. If we write n := n1 + · · ·+ nr, then F∆ is nG+-excisive.



Chapter 7

Genuine equivariant
hermitian K-theory

In this chapter, we explore a generalisation of the theory developed in [CDH+20a;
CDH+20b; CDH+20c; CDH+] through a notion of genuine equivariant Poincaré
categories. Here, we will use Dotto’s equivariant Goodwillie calculus [Dot17] to
formulate the concept of G–quadratic functors. As we will see in §7.1.5, we could of
course bypass Goodwillie calculus altogether and just define G–quadraticity directly
via the desired stable recollement. Nevertheless, we think that it is conceptually
satisfying to have the more general notion supporting the hermitian theory.

Throughout §7.1-§7.3, G will be supposed to be an odd group. As we will see in
Example 7.1.4, we need this assumption in order to ensure that G–bilinear forms is
a source of G–quadratic forms, which in the nonequivariant case is a crucial part
of the theory developed in [CDH+20a]. The essential reason for this is one that we
have seen in Corollary 3.5.3.

In the final §7.4.2, of this final chapter, we indicate potential applications of the
general approach of “genuinising” equivariant hermitian K–theory. In §7.4.1, we
consider the case of G = C2, in which case we will need to further assume that 2
is inverted. To avoid confusions between the C2–action coming from the hermitian
dualities and the C2–equivariance coming from the case G = C2, we have opted to
denote the hermitian duality equivariance by Σ2; this notation is supposed to evoke
an impression of the swap action. In §7.4.2, we return to the original motivation for
this entire thesis where we sketch the potential use of the Hill-Hopkins-Ravenel
norms on equivariant L–theory to prove descent results analogous to the ones in
[CMN+20] via the methods of [Gre93].
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7.1 Foundations
As mentioned above, the group G will always be assumed to be odd throughout
this section.

7.1.1 Quadratics, bilinears, linears

Definition 7.1.1. Let C,D, E be G-stable categories.

• A G-functor β : C×C → SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG is bireduced if β(x, y) ≃ 0 when x ≃ 0 or y ≃ 0.
• A G-functor b : C×D → E is G-bilinear if it is G-exact in each variable.

Definition 7.1.2. Let C be G-stable and Ϙ : Copopopopopopopopopopopopopopopopop → SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG a G-functor. We say that Ϙ is:

• G-quadratic if it is reduced, 2G+–excisive, and the canonical transformation
P1+Ϙ ⇒ PG+Ϙ is an equivalence (cf. Chapter 6 for the meanings of these
terms),

• G-linear if it is reduced and G+-excisive (in other words, G-exact).

Remark 7.1.3. The extra condition P1+Ϙ ⇒ PG+Ϙ in the definition of G–quadratic
functors is to guarantee the quadratic stable recollement (cf. Theorem 7.1.24).

Example 7.1.4. Here are the two most important classes of G–quadratic functors.
The reason for this will be made precise in Theorem 7.1.24.

(i) By Theorem 6.3.3 we see that being G–linear implies being G–quadratic.
(ii) For a G–bilinear β : Copopopopopopopopopopopopopopopopop×Copopopopopopopopopopopopopopopopop → SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG, the functor (β∆)hΣ2(x) := β(x, x)hΣ2

is a reduced 2G+–excisive functor by Proposition 6.6.4. Moreover, we will
see in Construction 7.1.13 that the linearisation is computed as P1+(β∆)hΣ2 =

cofib
(
(β∆)hΣ2 ⇒ (β∆)hΣ2

)
≃ (β∆)tΣ2 and this is G–exact by Corollary 3.5.3,

since G was odd.

Let us now establish some useful notations analogous to those of [CDH+20a].

Notation 7.1.5. Let C be G-stable. Then we denote by

• Fun∗(Copopopopopopopopopopopopopopopopop×Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG) the G-category of reduced G-functors. Note that this has
a canonical Σ2-action given by swapping the two copies of Copopopopopopopopopopopopopopopopop,

• BiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRed(C) ⊆ Fun∗(Copopopopopopopopopopopopopopopopop×Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG) the G-full subcategory of bireduced func-
tors,

• Funb(C) ⊆ BiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRed(C) the G-full subcategory of G-bilinear functors. This is
a well-defined G-category since restrictions send G-bilinear G-functors to H-
bilinear H-functors for all H ≤ G by virtue of Theorem 6.5.3. This also clearly
inherits the Σ2-action.
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• Funs(C) := Funb(C)hΣ2 which we call the G-category of G-symmetric bilinear
functors,

• Funqqqqqqqqqqqqqqqqq(C) ⊆ Fun(Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG) the G-full subcategory of G-quadratic functors.
Again, this is well-defined, ie. restrictions of G-quadratics are H-quadratic,
by virtue of Proposition 6.3.6 and Theorem 6.5.3.

• Funex(C) := Funex(Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG) is a G-full subcategory of Funqqqqqqqqqqqqqqqqq(C).

Remark 7.1.6 (G-quadratic (co)completeness). Observe that since being G-cartesian
in the G-stable category SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG is preserved under arbitrary G-(co)limits, the G-full
subcategory Funqqqqqqqqqqqqqqqqq(C) ⊆ Fun(Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG) is closed under arbitrary G-(co)limits, and
so is in particular G-stable also.

Construction 7.1.7 (Bireduction). Note that we have a retraction

β(x, 0)⊕ β(0, y)→ β(x, y)→ β(x, 0)⊕ β(0, y)

and so taking the cofibre of the first map (or equivalently fibre of the second map)
gives a bireduced form which we denote by β(−,−)red. Note that this commutes
with restriction along pairs of reduced functors. This also commutes with the flip
functor and so the bireduction refines to a functor

(−)red : Fun∗(Copopopopopopopopopopopopopopopopop×Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG)
hΣ2 → BiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRed(C)hΣ2

Since all the G–categories in sight are G–stable, taking bireduction strongly com-
mutes with arbitrary G-(co)limits: in fact, it participates in a biadjunction (cf.
Lemma 7.1.17).

Construction 7.1.8 (Cross-effects). We specialise the discussion from Construc-
tion 6.6.2 in the setting of equivariant hermitian K–theory. Let C be G–stable and
Ϙ : Copopopopopopopopopopopopopopopopop → SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG be a reduced functor. We define the cross-effect (or polarisation) to be

BϘ := Ϙ(−⊕−)red : Copopopopopopopopopopopopopopopopop×Copopopopopopopopopopopopopopopopop → SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG

yielding a functor
B(−) : Fun∗(Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG)→ BiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRed(C)

This functor commutes with restrictions along direct sum preserving reduced func-
tors, ie. for f : C → D, we have ( f × f )∗BD

Ϙ
≃ BCf ∗Ϙ. We can also define

B∆
(−) := ∆∗ ◦ B(−) : Fun∗(Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG)→ BiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRed(C)→ Fun∗(Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG)

Since Bred is a retract of B, we obtain the following canonical natural transforma-
tions (

B∆
Ϙ
⇒ Ϙ

)
=
(

X 7→
(
Ϙ(X⊕ X)red → Ϙ(X⊕ X)

∆∗−→ Ϙ(X)
))

(
Ϙ⇒ B∆

Ϙ

)
=
(

X 7→
(
Ϙ(X)

∇∗−→ Ϙ(X⊕ X)→ Ϙ(X⊕ X)red))
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Lemma 7.1.9 (Σ2-equivariance). We collect all the available Σ2-equivariance here.

(i) The cross effect BϘ is symmetric, ie. it is in the image of the forgetful functor

Fun∗(Copopopopopopopopopopopopopopopopop×Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG)
hΣ2 → Fun∗(Copopopopopopopopopopopopopopopopop×Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG)

(ii) The functor ∆∗ : Fun∗(Copopopopopopopopopopopopopopopopop×Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG)→ Fun∗(Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG) is Σ2-equivariant.
(iii) And so the natural transformations constructed above descend to transfor-

mations
(B∆
Ϙ
)hΣ2 ⇒ Ϙ⇒ (B∆

Ϙ
)hΣ2

Proof. Since the bireduction functor was Σ2-equivariant, we just have to show that
Ϙ ◦ ⊕ ∈ Fun∗(Copopopopopopopopopopopopopopopopop×Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG) lives in the image from Fun∗(Copopopopopopopopopopopopopopopopop×Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG)

hΣ2 . And
for this it suffices to note that ⊕ : Copopopopopopopopopopopopopopopopop×Copopopopopopopopopopopopopopopopop → C inherits a Σ2-equivariant structure
from the cartesian symmetric monoidal structure on Copopopopopopopopopopopopopopopopop.

Observation 7.1.10. For a G–bilinear β : Copopopopopopopopopopopopopopopopop×Copopopopopopopopopopopopopopopopop → SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG, unwinding the bireduc-
tion process, the symmetric bilinear part associated to β∆ : Copopopopopopopopopopopopopopopopop → SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG is given by
(x, y) 7→ β(x, y)⊕ β(y, x).

Construction 7.1.11 (Associated quadratics). For β ∈ Funs(C) we can define

Ϙ
q
β(x) := β∆

hΣ2
(x) = β(x, x)hΣ2 Ϙ

s
β(x) := (β∆)hΣ2(x) = β(x, x)hΣ2

and these are both G–quadratic: this is because β∆ is G–quadratic by Example 7.1.4
and Funqqqqqqqqqqqqqqqqq(C) is closed under G–(co)limits in Fun(Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG) by Remark 7.1.6. Note
that

B
Ϙ

q
B
≃ B ≃ B

Ϙ
s
B

since taking cross-effects commute with (co)limits and so by Observation 7.1.10 we
get

B
Ϙ

q
β
(x, y) ≃ (β(x, y)⊕ β(y, x))hΣ2 ≃ β(x, y)

≃ (β(x, y)⊕ β(y, x))hΣ2 ≃ B
Ϙ

s
β
(x, y)

Definition 7.1.12 (Bilinear parts). By Lemma 7.1.9 and Proposition 7.1.15 we see
that B(−) : Funqqqqqqqqqqqqqqqqq(C) → Fun∗(Copopopopopopopopopopopopopopopopop × Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG) lifts to B(−) : Funqqqqqqqqqqqqqqqqq(C) → Funs(C).
We call BϘ the symmetric bilinear part of Ϙ, and the underlying bilinear functor BϘ as
the bilinear part of Ϙ.

Construction 7.1.13 ((Co)linear parts and (co)homogeneity). Let Ϙ : Copopopopopopopopopopopopopopopopop → SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG be
G–quadratic. We define the linear (resp. colinear) part to be the cofibre (resp. fibre)

(B∆
Ϙ
)hΣ2 ⇒ Ϙ⇒ LϘ or cLϘ ⇒ Ϙ⇒ (B∆

Ϙ
)hΣ2
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These will be shown to be G–exact in Proposition 7.1.15, justifying the names. If
LϘ ≃ ∗ (resp. cLϘ ≃ ∗) then we say that Ϙ is homogeneous (resp. cohomogeneous).
By Construction 7.1.8 these constructions commute with restrictions along G–exact
functors.

7.1.2 Recognition criteria

We now come to one of the most important basic results that will be the bread-and-
butter of this story.

Fact 7.1.14. Let Ϙ : C → D be an ordinary, nonequivariant quadratic functor such
that BϘ ≃ 0. Then it is in fact linear.

Proposition 7.1.15 (Characterisations of G-quadratics, “[CDH+20a, Prop. 1.1.13]”).
Let Ϙ : Copopopopopopopopopopopopopopopopop → SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG be a G-functor. Then the following are equivalent:.

(i) Ϙ is G–quadratic,
(ii) BϘ is G-bilinear and fib

(
Ϙ⇒ Ϙs

BϘ

)
: Copopopopopopopopopopopopopopopopop → SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG is G-exact,

(iii) BϘ is G-bilinear and cofib
(
Ϙ

q
BϘ
⇒ Ϙ

)
: Copopopopopopopopopopopopopopopopop → SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG is G-exact.

Proof. As pointed out in Remark 7.1.6, since SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG is G–stable the property of be-
ing reduced and 2G+-excisive is closed under G–limits and G–colimits. Hence (ii)
and (iii) implies (i) since G-exact functors and diagonal restrictions of G-bilinears
are reduced, 2G+-excisive, and satisfies P1+ ⇒ PG+ being an equivalence Exam-
ple 7.1.4. For the reverse implications, we invoke Proposition 6.6.3 to get that the
cross-effect is G-bilinear. On the other hand, applying cross-effects, noting that
it preserves (co)fibres and by Construction 7.1.11, we see that the cross-effect on
F := fib

(
Ϙ ⇒ Ϙs

BϘ

)
and C := cofib

(
Ϙ

q
BϘ
⇒ Ϙ

)
are trivial, and so we see that the fi-

bre and cofibre are reduced 2G+-excisive with trivial cross-effects. This means that
F ⇒ P1+ F and C ⇒ P1+C are equivalences. But then because P1+Ϙ ⇒ PG+Ϙ is an
equivalence, the same also holds for F and C. Hence F ⇒ PG+ F and C ⇒ PG+C are
equivalences, as required.

Proposition 7.1.16 (Characterisations of (co)homogeneity, “[CDH+20a, Lem.
1.3.1]”). Let Ϙ : Copopopopopopopopopopopopopopopopop → SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG be a G-quadratic functor. Then the following condi-
tions are equivalent for being G-homogeneous.

(i) The map Ϙq
BϘ
⇒ Ϙ is an equivalence.

(ii) Ϙ is equivalent to a quadratic functor of form Ϙq
β for β ∈ Funs(C)

(iii) The G-spectrum Nat(Ϙ, λ) is trivial for any G-linear λ : Copopopopopopopopopopopopopopopopop → SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG.

Dually we have the characterisations for G-cohomogeneous functors.
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Proof. That (i) implies (ii) is immediate. That (ii) implies (iii) is an immediate con-
sequence of Proposition 7.1.20, since LϘ ≃ 0 by definition of the G–linear part. That
(iii) implies (i) is again a consequence of Proposition 7.1.20 since by definition (i) is
saying precisely that LϘ ≃ 0.

7.1.3 Adjunctions in the small

Lemma 7.1.17 (Bireduction adjunction, “[CDH+20a, Lem. 1.1.3]”). We have a biad-
junction

BiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRed(C) Fun∗(Copopopopopopopopopopopopopopopopop×Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG)

(−)red

(−)red

Proof. Immediate from the retraction and inclusion maps.

Corollary 7.1.18 (Cross-effect adjunction, “[CDH+20a, Rmk. 1.1.8]”). The biadjunc-
tion ∆ : Copopopopopopopopopopopopopopopopop ⇄ Copopopopopopopopopopopopopopopopop×Copopopopopopopopopopopopopopopopop : ⊕ together with the bireduction biadjunction induces a
biadjunction

Fun∗(Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG) Fun∗(Copopopopopopopopopopopopopopopopop×Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG) BiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRed(C)
⊕∗ (−)red

∆∗

where the top composite is precisely B(−) by definition. The diagonal ∆x : x →
x⊕ x and fold ∇x : x⊕ x → x induce the counit and unit

B∆
Ϙ
⇒ Ϙ⇒ B∆

Ϙ

respectively.

Corollary 7.1.19 (Quadratic-bilinear biadjunction, “[CDH+20a, Rmk. 1.1.18]”). We
have a biadjunction

Funqqqqqqqqqqqqqqqqq(C) Funb(C)
B(−)

∆∗

∆∗

with unit and counit given by the natural maps

BϘ(x, x)→ Ϙ(x)→ BϘ(x, x)

Proof. This is just by applying Corollary 7.1.18: consider the diagram
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Fun∗(C
opopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG) BiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRedBiRed(C)

Funqqqqqqqqqqqqqqqqq(C) Funb(C)

B(−)

∆∗

∆∗

B(−)

∆∗

∆∗

where the B(−) square commutes by Proposition 7.1.15 and the ∆∗ squares com-
mute by Observation 7.1.10.

Proposition 7.1.20 (Quadratic-(co)linear adjunctions, “[CDH+20a, Lem. 1.1.24]”).
The natural transformations Ϙ⇒ LϘ and cLϘ ⇒ Ϙ exhibits the unit (resp. counit) of
the adjunctions

Funqqqqqqqqqqqqqqqqq(C) Funex(C)

cL(−)

L(−)

Proof. We show the linear part. We just need to show that the mapping G-spectrum
from the fibre (B∆

Ϙ
)hΣ2 of Ϙ⇒ LϘ to any G-exact functor is zero. So let f be a G-exact

functor.

mapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmap((B∆
Ϙ
)hΣ2 , f ) ≃ mapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmap(∆∗BϘ, f )hΣ2 ≃ mapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmap(BϘ, B f )

hΣ2 ≃ 0

where the second equivalence is by Corollary 7.1.19 and B f ≃ 0 for f G-exact by
Proposition 6.6.3.

Corollary 7.1.21 (Quadratic-symmetric bilinear adjunction, “[CDH+20a, Cor.
1.3.3]”). We have an adjunction

Funqqqqqqqqqqqqqqqqq(C) Funs(C)
B(−)

Ϙ
q
(−)

Ϙ
s
(−)

where both Ϙq and Ϙs are G-fully faithful, and their essential images are precisely
the G-homogeneous and G-cohomogeneous functors, respectively.



7.1 FOUNDATIONS 168

Proof. We will argue in the homogeneous case, and the other will then be similar.
We will show two things in turn: (a) that Ϙq

(−) : Funs(C) → Funqqqqqqqqqqqqqqqqq(C) is G-fully

faithful with the prescribed essential image; (b) that we have an adjunction Ϙq
(−) ⊣

B(−). To see (a), we factor it as

Ϙ
q
(−) : Funs(C) φ−→ Funhom(C) ⊆ Funqqqqqqqqqqqqqqqqq(C)

where Funhom(C) is the G-full subcategory spanned by G-homogeneous quadrat-
ics. We have this factorisation by the characterisation of G-homogeneity Proposi-
tion 7.1.16. On the other hand, the formation of cross-effects

ψ : Funhom(C) ⊆ Funqqqqqqqqqqqqqqqqq(C)
B(−)−−→ Funs(C)

gives a right inverse φ ◦ ψ ≃ id by Proposition 7.1.16, whereas Construction 7.1.11
gives that ψ ◦ φ ≃ id, as required.

Finally to see (b), standard adjunction yoga says that we need to show that the
natural comparison ε : Ϙq

BϘ
⇒ Ϙ induces an equivalence

Nats(β, BϘ)
Ϙ

q
(−)−−→ Natq(Ϙ

q
β, Ϙq

BϘ
)

ε∗−→ Natq(Ϙ
q
β, Ϙ)

for all β ∈ Funs(C). Now the first map is an equivalence by (a). On the other
hand, the second map is also an equivalence since cofib(Ϙq

BϘ
⇒ Ϙ) ≃ LϘ, and

Natq(Ϙ
q
β, LϘ) ≃ 0 by Proposition 7.1.16.

7.1.4 The quadratic stable recollement

The notion of equivariant stable recollement that we need will be a fibrewise one,
following [CDH+20b, Prop. A.2.10].

Definition 7.1.22. Let C f−→ D p−→ E be functors between G-stable categories with
trivial composite. Then we say that it is a stable recollement if the following condi-
tions hold:

(i) It is a fibre sequence (in particular, this means that f is fully faithful),
(ii) f admits a G–left adjoint (that is, it participates in a G–Bousfield localisation)

(iii) p admits a fully faithful G–right adjoint (that is, it is a G–Bousfield localisa-
tion).

Remark 7.1.23. By [CDH+20b, Lem. A.2.5], a stable recollement in fact always
complete automatically to a split Verdier sequence (cf. §4.1.1)
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C D E
f

g

g

p

q

q

In this way, we have the slogan “stable recollement = split Verdier sequences”.

We now state the main theorem of this section which organises G–quadraticity,
G–linearity, and G–symmetric bilinearity in a stable recollement analogous to
[CDH+20a, Cor. 1.3.12].

Theorem 7.1.24 (Quadratic stable recollement). We have the stable recollement

Funex(C) Funqqqqqqqqqqqqqqqqq(C) Funs(C)

L(−)

cL(−)

B(−)

Ϙ
q
(−)

Ϙ
s
(−)

In particular by standard recollement fractures we have the cartesian square for any
Ϙ ∈ Funqqqqqqqqqqqqqqqqq(C)

Ϙ LϘ

Ϙ
s
BϘ L

Ϙ
s
B
Ϙ

⌟

where the right vertical is the linearisation of the left. Moreover the bottom map is
equivalent to

BϘ(X, X)hΣ2 → BϘ(X, X)tΣ2

the usual Tate map.

Proof. To see the stable recollement, we need to check the axioms of Defini-
tion 7.1.22: Proposition 7.1.20 gives axiom (ii); Corollary 7.1.21 gives axiom (iii);
and for axiom (i), suppose Ϙ ∈ Funqqqqqqqqqqqqqqqqq(C) such that BϘ ≃ 0. Then by Fact 7.1.14, we
have that the canonical transformation Ϙ ⇒ P1+Ϙ is an equivalence. But then by
definition of G-quadratic functors, this means that the composite transformation
Ϙ⇒ P1+Ϙ⇒ PG+Ϙ is an equivalence, hence implying that the middle sequence is a
fibre sequence as required.

We now prove the last assertion. By general principles of stable recollement we
know that L

Ϙ
s
B
Ϙ

is computed as the cofibre of the adjunction counit

Ϙ
q
BϘ
≃ Ϙq

B
Ϙ

s
B
Ϙ

⇒ Ϙs
BϘ
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Now, by unwinding adjunctions, we have

B(−) : Natqqqqqqqqqqqqqqqqq(Ϙ
q
BϘ

, Ϙs
BϘ)

≃−→ Nats(BϘ, BϘ)

hence since B(−) strongly preserve all G-limits and G-colimits, it preserves norm
maps and so to show that the natural transformation in question is given by the
Σ2–norm map, it suffices to show that it has the same image as the norm map under
B(−). By an easy unwinding of adjunctions, the image of the map of interest under
the functor B(−) is the identity natural transformation B ⇒ B. On the other hand,
applying B(−) to the norm (B∆

Ϙ
)hΣ2 ⇒ (B∆

Ϙ
)hΣ2 gives

(B⊕ B)hΣ2 → (B⊕ B)hΣ2

which is the identity on B by the general theory on norms. This completes the
proof.

Remark 7.1.25. To sum up the situation, we have the cofibre sequences in SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG

cLBϘ(x) cLϘ(x)

BBϘ(x, x)hΣ2 BϘ(x) LBϘ(x)

BBϘ(x, x)hΣ2 BBϘ(x, x)hΣ2 BBϘ(x, x)tΣ2

≃ linear

≃
homogeneous

≃ cohomogeneous

norm

7.1.5 G-quadraticity vs reduced 2G+-excisive

In this subsection, the main goal is to show that we have a G–Bousfield localisation

Fun∗(Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG) Funqqqqqqqqqqqqqqqqq(Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG)

which we will have use of in §7.2. We will also use this to explain the distinction
between the weaker condition of being reduced 2G+–excisive and the stronger one
of G–quadraticity.

By the stable recollement categorical decomposition, we have the following pull-
back of G–categories and the induced dashed functor F to the pullback Funqqqqqqqqqqqqqqqqq(C)
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Fun∗(Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp)

Funqqqqqqqqqqqqqqqqq(C) Funex(C)∆1

Funs(C) Funex(C)

L⇒L
Ϙ

s
B

B

F

⌟

L⇒L
Ϙ

s
B

B tgt

L
Ϙs

We show that the functor F : Fun∗(Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp) → Funqqqqqqqqqqqqqqqqq(C) is a left adjoint to the
inclusion. For this, we will need the following standard result:

Lemma 7.1.26. Suppose we have a pullback of categories

D C∆1

E C

⌟ tgt

φ

Then we have a natural equivalence of mapping spaces

MapD
(
(e, c→ d, φ(e) ≃ d), (e′, c′ → d′, φ(e′) ≃ d′)

)
≃ MapE (e, e′)×MapC (c,d′) MapC(c, c′)

Proof. For this just observe the following sequence of equivalences

MapD
(
(e, c→ d, φ(e) ≃ d), (e′, c′ → d′, φ(e′) ≃ d′)

)
≃ MapE (e, e′)×MapC (d,d′) MapC∆1

(
(c→ d), (c′ → d′)

)
≃ MapE (e, e′)×MapC (d,d′)

(
MapC(d, d′)×MapC (c,d′) MapC(c, c′)

)
≃ MapE (e, e′)×MapC (c,d′) MapC(c, c′)

as claimed.

Proposition 7.1.27. There is a G–adjunction

Fun∗(Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp) Funqqqqqqqqqqqqqqqqq(Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp)
F

where F is the functor considered above. Explicitly, it is given by
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Ϙ 7→ FϘ LϘ

(B∆
Ϙ
)hΣ2 (B∆

Ϙ
)tΣ2

⌟

Proof. Let Ψ ∈ Fun(Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp) and Ϙ ∈ Funqqqqqqqqqqqqqqqqq(C) = Funqqqqqqqqqqqqqqqqq(Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp). We need to show
that

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapFun(Copopopopopopopopopopopopopopopopop,SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp)(Ψ, Ϙ) F−→ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapFunqqqqqqqqqqqqqqqqq(C)(FΨ, FϘ) ≃ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapFunqqqqqqqqqqqqqqqqq(C)(FΨ, Ϙ) (7.1)

is an equivalence. Now since it is clear that the inclusion functor strongly preserves
finite G–limits, and since Ϙ can be expressed as a pullback by Theorem 7.1.24, we
see that the target is computed as

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapFun(Copopopopopopopopopopopopopopopopop,SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp)(Ψ, Ϙ) MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapFun(Copopopopopopopopopopopopopopopopop,SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp)(Ψ, LϘ)

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapFun(Copopopopopopopopopopopopopopopopop,SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp)(Ψ, (B∆
Ϙ
)hΣ2) MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapFun(Copopopopopopopopopopopopopopopopop,SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp)(Ψ, (B∆

Ϙ
)tΣ2)MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapFuns(C)

⌟

which in turn is given by

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapFun(Copopopopopopopopopopopopopopopopop,SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp)(Ψ, Ϙ) MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapFunex(C)(LΨ, LϘ)

(BΨ, BϘ) MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapFunex(C)(LΨ, L
Ϙ

s
B
Ϙ

)

⌟

where we have also used the natural equivalence (B∆
C )

tΣ2 ≃ LCs
BC

for the bottom

right identification. On the other hand, by the formula for mapping spaces in stable
recollements Lemma 7.1.26, we see that the target in Eq. (7.1) is computed as the
pullback square on the right. Moreover, since the functor F was constructed by
universal property of pullbacks, the map F on mapping spaces in Eq. (7.1) is indeed
the one implementing this identification, and so it is an equivalence, as was to be
shown.

Remark 7.1.28. To summarise the all the available adjunctions vis-a-vis G–
quadraticity vs reduced 2G+–excisiveness, we have

Fun∗(Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp) Fun2G−exc,∗(Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG) Funqqqqqqqqqqqqqqqqq(Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSp)
P2G+ F

Hence the difference between being merely reduced 2G+–excisive and being G–
quadratic is precisely that the latter are the ones are those that admit the fracture
square decomposition as in Proposition 7.1.27.
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7.1.6 Hermitian and Poincaré structures

Definition 7.1.29. A G–hermitian category is a pair (C, Ϙ) where C is small G–
perfect-stable and Ϙ is G–quadratic.

Construction 7.1.30. These can be organised into a large G–category Cath
G given

by unstraightening (Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
G )opopopopopopopopopopopopopopopopop → ĈatG :: C 7→ Funqqqqqqqqqqqqqqqqq(C) using Theorem 1.1.18.

Unwinding definitions, we see that a G-hermitian functor (C, Ϙ) → (C ′, Ϙ′) consists
of a G–linear functor f : C → C ′ and a natural transformation η : Ϙ⇒ f ∗Ϙ′.

We now explore some categorified notions of non-degeneracies that will lead to
the notion of G–Poincaré categories.

Construction 7.1.31 (The duality functor). Let β ∈ Funb(C) be G–bilinear. Suppose
the following curried functor lands in the representables

Copopopopopopopopopopopopopopopopop → Funex(Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG) :: y 7→ β(−, y)

Then this functor can then be lifted to a functor

DR
β : Copopopopopopopopopopopopopopopopop → C

so that we have β(x, y) ≃ mapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapC(x, DR
β y). Similarly, we may also be in a situation

where β(x,−) ≃ mapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapC(−, DL
β x). Clearly if β were symmetric then it is right non-

degenerate if and only if it is left non-degenerate.

Definition 7.1.32. If β were non-degenerate symmetric, then writing D : Copopopopopopopopopopopopopopopopop → C
and Dopopopopopopopopopopopopopopopopop for the opposite, we see that

mapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapC(x, Dy) ≃ β(x, y) ≃ β(y, x) ≃ mapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapC(y, Dx) ≃ mapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapCopopopopopopopopopopopopopopopopop(Dopopopopopopopopopopopopopopopopopx, y)

and so Dop is the left adjoint to D. We define the duality evaluation to be the unit
map

ev : id⇒ DDopopopopopopopopopopopopopopopopop : C → C
A symmetric G–bilinear functor is called perfect if ev is an equivalence, and this
implies Dβ : C, Ϙopopopopopopopopopopopopopopopopop → C is an equivalence.

Definition 7.1.33. We say that a bilinear functor β is right (resp. left) non-
degenerate if β(−, y) (resp. β(x,−)) are representables. If it is both left and right
non-degenerate, we say it is non-degenerate. In this case the resulting dualities are of
course adjoint to each other as DL

β : C ⇄ Copopopopopopopopopopopopopopopopop : DR
β . We say that a quadratic functor

Ϙ : Copopopopopopopopopopopopopopopopop → SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG is non-degenerate if the G–bilinear part BϘ is non-degenerate. We
denote by

Funnb(C) ⊆ Funb(C) Funns(C) ⊆ Funs(C) Funnq(C) ⊆ Funqqqqqqqqqqqqqqqqq(C)

for the full subcategories spanned by non-degenerates.
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Here is a basic result analogous to [CDH+20a, Lem. 1.2.4].

Lemma 7.1.34. Let (C, Ϙ), (C ′, Ϙ′) be two non-degenerate G–hermitian categories
with associated dualities DϘ : Copopopopopopopopopopopopopopopopop → C and D

Ϙ
′ : Copopopopopopopopopopopopopopopopop → C ′. Let f , g : C → C ′ be

G–exact functors. Then there is a natural equivalence

natb(BϘ, ( f × g)∗B
Ϙ
′) ≃ natex( f DϘ, D

Ϙ
′gopopopopopopopopopopopopopopopopop)

Proof. We have natC,C(BϘ, ( f × g)∗B
Ϙ
′) ≃ natC ′ ,C(( f × 1)!BϘ, (1× g)∗B

Ϙ
′). And by

hypothesis, for fixed y ∈ C we have BϘ(−, y) ≃ mapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapC(−, Dy). But by easy adjunc-
tion yoga we see that left Kan extensions commute with representables and so we
have

( f × 1)!mapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapϘ(−, Dy) ≃ mapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmap
Ϙ
′(−, f Dy)

Hence in total we have

natC,C(BϘ, ( f × g)∗B
Ϙ
′)

≃ natFun((C ′opopopopopopopopopopopopopopopopop×Copopopopopopopopopopopopopopopopop,SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG)
(( f × 1)!BϘ, (1× g)∗B

Ϙ
′)

≃ natFun(Copopopopopopopopopopopopopopopopop,Fun(C ′opopopopopopopopopopopopopopopopop,SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG))
(( f × 1)!BϘ, (1× g)∗B

Ϙ
′)

≃ lim
(x→y)∈TwAr(Copopopopopopopopopopopopopopopopop)

natFun(C ′opopopopopopopopopopopopopopopopop,SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG)
(( f × 1)!BϘ(−, x), (1× g)∗B

Ϙ
′(−, y))

≃ lim
(x→y)∈TwAr(Copopopopopopopopopopopopopopopopop)

natFun(C ′opopopopopopopopopopopopopopopopop,SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG)
(mapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapC ′(−, f Dx), mapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapC ′(−, D′gy))

≃ lim
(x→y)∈TwAr(Copopopopopopopopopopopopopopopopop)

mapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapC ′( f Dx, D′gy)

≃ natC( f D, D′gopopopopopopopopopopopopopopopopop)

as required. Here we have used the parametrised twisted arrow formula for natural
transformations from Proposition 1.2.31.

This allows us to frame the following important definitions.

Definition 7.1.35 (Duality preservation). Given a G–hermitian functor ( f , η) :
(C, Ϙ) → (C ′, Ϙ′), since [CDH+20a, Rmk. 1.1.6] says ( f × f )∗B

Ϙ
′ ≃ B f ∗Ϙ′ , we get

a transformation
βη : BϘ ⇒ ( f × f )∗B

Ϙ
′

We then denote by
τη : f DϘ ⇒ D

Ϙ
′ f opopopopopopopopopopopopopopopopop

the transformation corresponding to the data Bη by Lemma 7.1.34 and the equiva-
lence ( f × f )∗B

Ϙ
′ ≃ B f ∗Ϙ′ . We say that a G–hermitian functor is duality-preserving if

this τη is an equivalence.
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Remark 7.1.36. Note that all these non-degeneracy conditions depend only on the
(symmetric) bilinear part of a quadratic functor.

Definition 7.1.37. A G–hermitian category (C, Ϙ) is called G–Poincaré if it satisfies
the property of BϘ being perfect. We let Cat

ppppppppppppppppp
G ⊂ Cath

G denote the non-full subcate-
gory spanned by G–Poincaré categories and duality-preserving functors.

Observation 7.1.38. The constructions Ϙq
β and Ϙs

β of Construction 7.1.11 given a G–
symmetric bilinear β are G–Poincaré if and only if β is perfect.

Observation 7.1.39 (Equivariant shifts). Let V be a finite dimensional G–
representation. Note that we have following easy identifications

(i) BΩVϘ ≃ ΩV BϘ
(ii) LΩVϘ ≃ ΩV LϘ

(iii) DΩVϘ ≃ ΩV DϘ

In particular, Ϙ is non-degenerate or perfect if and only if ΩV
Ϙ is. Hence a

G–hermitian category (C, Ϙ) is G–Poincaré if and only if (C, ΩV
Ϙ) is for all G–

representations V.

Lemma 7.1.40 (Quadraticity is connective, “[CDH+20a, Lem. 1.1.25]”). Let (C, Ϙ) be
a G–hermitian category. Suppose Ϙ is pointwise coconnective. Then Ϙ ≃ 0. Hence,
equivalences between quadratic functors can be detected after applying Ω∞ and
we can as well just consider connective covers of G–quadratic functors.

Proof. If Ϙ were G–exact, then Ϙ ≃ 0 since for n ∈ Z and for H ≤ G, we
get πH

n Ϙ(x) = πH
1 Ϙ(Σ

n−1x) where x is an arbitrary H–object. For general Ϙ, re-
call from Construction 7.1.7 that BϘ(x, y) is a direct summand of Ϙ(x ⊕ y) and
so is also coconnective. Hence for each H–object x we have a G–exact functor
BϘ(x,−) : Copopopopopopopopopopopopopopopopop → SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG which is coconnective, and thus so also zero by the argu-
ment above. But then by Proposition 7.1.15, Ϙ is G–exact, and so also zero.

Definition 7.1.41. Let (C, Ϙ) be a G–hermitian category and x ∈ C.

(i) A G–hermitian form on x is defined to be a point q ∈ Ω∞
Ϙ(x). We can then get

the G–category He(C, Ϙ) of G–hermitian objects in (C, Ϙ) to be the unstraighten-
ing of Ω∞

Ϙ : Copopopopopopopopopopopopopopopopop → SG. We define Fm(C, Ϙ) := He(C, Ϙ)≃, the G–space of
hermitian objects.

(ii) If Ϙwere non-degenerate, then Ω∞BϘ(x, x) ≃ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(x, DϘx). In this case, a G–
hermitian object (x, q) determines q# : x → DϘx. We say that a G–hermitian
form is G–Poincaré if q# is an equivalence. Let Pn(C, Ϙ) ⊆ Fm(C, Ϙ) ∈ SG
denote the full G–subgroupoid of G–Poincaré objects.
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Remark 7.1.42. As in [CDH+20a, §2.1], we can upgrade the above to G–functors

He : Cath
G −→ CatG Fm : Cath

G −→ SG Pn : Cat
ppppppppppppppppp
G −→ SG

Unwinding definitions, for (C, Ϙ) ∈ Cat
ppppppppppppppppp
G and H ≤ G, we obtain the identification

Pn(C, Ϙ)H ≃ Pn
(
CH , ϘH : Cop

H
ϘH−→ SpH

(−)H

−−−→ Sp
)
∈ S

where Pn is the space of Poincaré forms in [CDH+20a].

7.1.7 Universal Poincaré category

Definition 7.1.43. We define the universal G–Poincaré category (SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω
G , Ϙu) as the one

obtained as the pullback square in SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG

Ϙ
u(x) mapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmap(x, SG)

[
mapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmap(x, SG)⊗mapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmap(x, SG)

]hΣ2
[
mapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmap(x, SG)⊗mapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmap(x, SG)

]tΣ2

⌟
∆2

where the map ∆2 is the Σ2–Tate diagonal for odd groups G constructed in Con-
struction 3.6.4.

Construction 7.1.44 (Universal G–Poincaré form). By definition, applying the uni-
versal G–Poincaré structure to SG we obtain the pullback square

Ϙ
u(SG) SG

S
hΣ2
G S

tΣ2
G

⌟
∆2

and so we obtain a canonical

qu : SG → Ϙu(SG)

since the Tate diagonal on the sphere spectrum is given by the usual Tate map
SG → S

tΣ2
G . By construction we get that

qu
# : SG → DSG = SG

is homotopic to the identity because it is the map induced by

SG
can−−→ S

hΣ2
G ≃ mapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmap(SG, DSG)

hΣ2

In particular qu gives a Poincaré object (SG, qu).
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The terminology of universal G–Poincaré categories is justified by the following
analogue of [CDH+20a, Lem. 4.1.1].

Lemma 7.1.45. For every quadratic Ϙ : (SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω
G)

opopopopopopopopopopopopopopopopop → SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG the map

natqqqqqqqqqqqqqqqqq(Ϙu, Ϙ)→ mapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmap(Ϙu(SG), Ϙ(SG))
(qu)∗−−−→ mapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmap(SG, Ϙ(SG)) = Ϙ(SG)

is an equivalence.

Proof. Since the Ϙ’s satisfying that the comparison is an equivalence is closed under
limits, we can use the G–quadratic stable recollement Theorem 7.1.24 to show it
separately for G–exact functors and those of the form Ϙ = (∆∗β)hΣ2 .

For G–exact Ϙ’s we use the adjunction L : Funqqqqqqqqqqqqqqqqq(C) ⇄ Funex(C) : incl. Also recall
that the linearisation of Ϙu is the G–Spanier-Whitehead dualisation D. Then, indeed

natqqqqqqqqqqqqqqqqq(Ϙu, Ϙ) ≃ natex(mapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmap(−, SG), Ϙ) ≃ Ϙ(SG)

For Ϙ = (∆∗β)hΣ2 , we use the adjunction B : Funqqqqqqqqqqqqqqqqq(C) ⇄ Funb(C) : ∆∗. Thus

natqqqqqqqqqqqqqqqqq(Ϙu, (∆∗β)hΣ2) ≃ natqqqqqqqqqqqqqqqqq(Ϙu, ∆∗β)hΣ2

≃ natb(mapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmap(−, SG)⊗mapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmap(−, SG), β
)hΣ2

≃ β(SG, SG)
hΣ2

= (∆∗β)hΣ2(SG)

as was to be shown.

Lemma 7.1.46. The functor (−)≃ : Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
G → SG is corepresented by SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω

G .

Proof. This is an immediate consequence of Proposition 2.3.16.

We are now in position to obtain the following analogue of [CDH+20a, Prop.
4.1.3] by an immediate mimicking of the proof there.

Theorem 7.1.47 (Universality). The data (SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω
G , Ϙu) and (SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω

G , Ϙu, SG, qu) corepresent
the functors Fm and Pn respectively.

Proof. We first work towards the case of G–hermitian forms. We want to show that

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMap
Cath

G
((SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω

G , Ϙu), (C, Ϙ))→ Fm(C, Ϙ) :: (g, η) 7→ (g(SG), ηSG ◦ qu)

is a natural equivalence. Here recall that η : Ϙu ⇒ g∗Ϙ is a natural transformation.
To do this we separate the structures in a fibre sequence of G-spaces:

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMap
Cath

G
((SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω

G , Ϙu), (C, Ϙ)) Fm(C, Ϙ)

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMap
Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
G

(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω
G , C) C≃

(7.2)
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where the bottom map is an equivalence by the previous lemma. Now the induced
map on fibres over g ∈ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMap

Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
G

(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω
G , C) is Natqqqqqqqqqqqqqqqqq(Ϙu, g∗Ϙ)→ Ω∞

Ϙ(g(SG)) and this

is an equivalence by Lemma 7.1.45. Hence the top horizontal is an equivalence.
For the Poincaré structure, we know that Cat

ppppppppppppppppp
G ⊂ Cath

G is a non-full subcategory
by definition consisting of G–Poincaré categories and duality-preserving functors,
and so the fibres on both sides of Eq. (7.2) are the subcomponents of the fibres
in the G–hermitian case cut out by certain non-degeneracy properties. And so to
show an equivalence on the fibres it is enough to show that the transformations
on the source satisfies the G–Poincaré conditions if and only if the G–hermitian
forms on the target are G–Poincaré. Now for (C, Ϙ) a G-Poincaré category and g ∈
MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMap

Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
G

(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω
G , C) we have an induced map

Natb(B
Ϙ

u , (g× g)∗BϘ) ≃ Natex(gD
Ϙ

u , DϘg
opopopopopopopopopopopopopopopopop)

evSG−−→ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapC(g(SG), DϘg(SG))

where the first equivalence is by Lemma 7.1.34. This map can be described con-
cretely as (

τ : gD
Ϙ

u ⇒ DϘg
opopopopopopopopopopopopopopopopop
)
7→
(

g(SG)
g(qu

# )−−−→ g(DSG)
τ−→ Dg(SG)

)
Since qu

# is an equivalence, τ being an equivalence implies the target is also equiv-
alence. On the other hand, if the target is an equivalence, then τ is also an equiva-
lence since all compact G-spectra are built from SG by finite G-colimits and retracts,
the orbits Σ∞G/H+ being given by the indexed biproduct IndG

H ResG
H SG.

7.1.8 Hyperbolic categories

Construction 7.1.48 (Hyperbolic categories). Let C ∈ Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
G . We define the hy-

perbolic category HypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHyp(C) associated to it to be the G–hermitian category whose
underlying G–stable category is C ⊕ Copopopopopopopopopopopopopopopopop and whose G–quadratic datum is given by

ϘHypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHyp : C ⊕ Copopopopopopopopopopopopopopopopop −→ SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG :: (x, y) 7→ mapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapC(x, y)

This is easily checked even to be a G–Poincaré category with duality (x, y) 7→ (y, x).

Instead of arguing via the more sophisticated and more refined pairing construc-
tions as done in [CDH+20a, §7.3] (which gives a stronger conclusion involving also
Cath

G), we have opted to sketch the proof using just elementary methods.

Proposition 7.1.49. There is a G–adjunction

Cat
ppppppppppppppppp
G Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
G

fgt

HypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHyp

HypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHyp
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Proof sketch: Let (C, Ϙ) ∈ Cat
ppppppppppppppppp
G and D ∈ Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
G . We claim that HypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHyp being right

adjoint to fgt is witnessed by the unit and counit maps

(fgt, η) : (C, Ϙ)→ HypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHyp(C) :: ηx : Ϙ(x)⇒ ϘHypfgt(x) := ϘHyp(x, DϘx)

≃ mapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapC(x, x)

π : fgt ◦HypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHyp(D) ≃ D ⊕Dopopopopopopopopopopopopopopopopop −→ D :: (d, d′) 7→ d

and that HypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHyp being left adjoint to fgt is witnessed by the unit and counit maps
(hyp, ε) : HypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHyp(C)→ (C, Ϙ) :: ε(x,y) : ϘHyp(x, y) = mapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapC (x, y)⇒ Ϙ

(
hyp(x, y)

)
:= Ϙ(x⊕ DϘy)

i : D −→ fgt ◦HypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHyp(D) ≃ D ⊕Dopopopopopopopopopopopopopopopopop :: d 7→ (d, 0)

We only show the case of being left adjoint, the other one being similar. In this case,
we want to show that the composite

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapCatppppppppppppppppp(HypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHyp(D), (C, Ϙ))
fgt−→ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapCatperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf(D ⊕Dopopopopopopopopopopopopopopopopop, C) i∗−→ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapCatperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf(D, C)

is an equivalence. To this end, we need to show that the two triangles in

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapCatppppppppppppppppp(HypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHyp(D), (C, Ϙ)) MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapCatperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf(D ⊕Dopopopopopopopopopopopopopopopopop, C) MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapCatperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf(D, C)

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapCatppppppppppppppppp(HypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHyp(D), HypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHyp(C))

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapCatppppppppppppppppp(HypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHyp(D), (C, Ϙ)) MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapCatperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf(D ⊕Dopopopopopopopopopopopopopopopopop, C) MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapCatperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf(D, C)

fgt i∗

HypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHyp

hyp

fgt i∗

commute. We only show that the top triangle commutes. So let ( f , η) : HypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHyp(D)→
(C, Ϙ) be a G–Poincaré functor. Then the composition sends it to(

HypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHyp(D) ( f ,η)−−→ (C, Ϙ)
)
7→
(
D ⊕Dopopopopopopopopopopopopopopopopop f−→ C

)
7→
(
D i−→ D⊕Dopopopopopopopopopopopopopopopopop f−→ C

)

7→
(
D ⊕Dopopopopopopopopopopopopopopopopop

(
f i 0
0 ( f i)opopopopopopopopopopopopopopopopop

)
−−−−−−−−−→ C ⊕ Copopopopopopopopopopopopopopopopop

)

7→
(
D ⊕Dopopopopopopopopopopopopopopopopop

(
f i 0
0 ( f i)opopopopopopopopopopopopopopopopop

)
−−−−−−−−−→ C ⊕ Copopopopopopopopopopopopopopopopop hyp−−→ C

)
where the Poincaré structure in the last term is given, for (d, d′) ∈ Dopopopopopopopopopopopopopopopopop ⊕D, by

mapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapD(d, d′)
f−→ mapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapC( f (d, 0), f (d′, 0)) ≃ BϘ( f (d, 0), DϘ f (d′, 0))

can−−→ Ϙ( f (d, 0), DϘ f (d′, 0))
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We claim that this is naturally equivalent to ( f , η), ie. the square

mapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapD(d, d′) BϘ( f (d, 0), DϘ f (d′, 0))

Ϙ( f (d, d′)) Ϙ( f (d, 0)⊕ DϘ f (d′, 0))

f

η(d,d′) can

≃

commutes canonically. Here, we have used that f (d, d′) ≃ f (d, 0) ⊕ DϘ f (d′, 0)
since DϘ f (d′, 0) ≃ f DHyp(d′, 0) ≃ f (0, d′) by Poincaréness of the functor ( f , η).
In any case, to see that the square indeed commutes, we write suggestively
mapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapD(d, d′) = ϘHypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHyp((d, 0) ⊕ (0, d′)), and note that BϘHypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHyp

((d, 0), DHyp(d′, 0)) can−−→
ϘHypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHyp((d, 0) ⊕ (0, d′)) is an equivalence. Then the required square is just a conse-
quence of the following commuting square

ϘHypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHyp((d, 0)⊕ (0, d′)) BϘHypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHyp
((d, 0), DHyp(d′, 0))

Ϙ( f (d, 0)⊕ f (0, d′)) BϘ( f (d, 0), f DHyp(d′, 0))

η

can
≃

f

can

coming from the naturality of η.

7.1.9 Metabolic categories and the algebraic Thom isomorphism

Construction 7.1.50 (Metabolic categories). Let (C, Ϙ) ∈ Cath
G. We define the

metabolic category Met(C, Ϙ) associated to it to be the G–hermitian category whose
underlying G–stable category is given by C∆1

and whose G–quadratic datum is

ϘMet : (C∆1
)opopopopopopopopopopopopopopopopop −→ SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG ::

(
x

f−→ y
)
7→ fib

(
Ϙ(y)

f ∗−→ Ϙ(x)
)

It is not hard to check that Met(C, Ϙ) is G–Poincaré when (C, Ϙ) is.

Construction 7.1.51. Let (C, Ϙ) ∈ Cath
G. We denote by Ar(C, Ϙ) the G–hermitian cat-

egory with underlying G–category Ar(C) and whose G–quadratic datum is given
by

ϘAr(z
f−→ w) Ϙ(z)

BϘ(z, w) BϘ(z, z)

⌟

One then checks, as in [CDH+20a, Rmk. 2.4.2], that Ar(C, Ϙ) is G–Poincaré if (C, Ϙ)
were.
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The following is a direct proof of the genuine equivariant analogue of the alge-
braic Thom isomorphism in [CDH+20a, Cor. 2.4.6] without invoking the pairing
construction from [CDH+20a, §7.3]. The possibility of such a proof was indicated
in the paragraph following [CDH+20a, Prop. 2.4.3].

Proposition 7.1.52 (Algebraic Thom isomorphism). Let (C, Ϙ) ∈ Cat
ppppppppppppppppp
G. Then the

association [w→ x] 7→ fib(w→ x) induces an equivalence

Pn
(
Met(C, Ϙ)

)
→ Fm(C, ΩϘ)

Proof. As in [CDH+20a, §2.4], we show instead that

Pn
(
Ar(C, Ϙ)

) s−→ Fm(C, Ϙ)

is an equivalence. Recall from above that an object on the source is a tuple (z
f−→

w, q, g, η) where q ∈ Ω∞
Ϙ(z), g : w→ Dz is an equivalence, and η is an equivalence

q# ≃ g ◦ f .
To this end, we show that Pn

(
Ar(C, Ϙ)

) s−→ Fm(C, Ϙ) has a G–right adjoint i given
by

i : (a, p) 7→ (a
p#−→ Da, p, id, id)

Since both sides are G–spaces, the adjunction would imply that they are mutual

inverses. Before that, observe that for (z
f−→ w, q, g, η) ∈ Pn

(
Ar(C, Ϙ)

)
, by virtue of

this being a Poincaré form, the canonical vertical map

z w

z Dz

f

g≃

q#

is an equivalence and so there is a canonical equivalence u : (z
f−→ w, q, g, η) →

(z
q#−→ Dz, q, id, id).

Now to construct the G–right adjoint. Since adjunctions can be constructed ob-
jectwise by Proposition 1.2.26, let (a, p) ∈ He(C, Ϙ). We need to show that the map

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMap
Pn
(

Ar(C,Ϙ)
)((z f−→ w, q, g, η), (a

p#−→ Da, p, id, id)) s−→ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapFm(C,Ϙ)((z, q), (a, p))

is an equivalence. In fact, since s sends the canonical map u : (z
f−→ w, q, g, η) →

(z
q#−→ Dz, q, id, id) above to an equivalence, it suffices to show that the following

map is an equivalence

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMap
Pn
(

Ar(C,Ϙ)
)((z q#−→ Dz, q, id, id), (a

p#−→ Da, p, id, id))

s−−→ MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapFm(C,Ϙ)((z, q), (a, p))
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For this, note that the two maps of G–spaces

Fm(C, Ϙ)→ C≃ and Pn(Ar(C, Ϙ)) s−→ Fm(C, Ϙ)→ C≃

are cocartesian fibrations. Hence, it will suffice to show that, for a fixed equivalence
φ : a ≃−→ z in C≃, the map of G–spaces

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapφ

Pn(Ar(C,Ϙ))((z
q#−→ Dz, q, id, id), (a

p#−→ Da, p, id, id)) MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapφ

Fm(C,Ϙ)((z, q), (a, p))

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapPn(Ar(C,Ϙ))a ((a
φ(q)#−−−→ Da, φ(q), id, id), (a

p#−→ Da, p, id, id)) MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapFm(C,Ϙ)a ((a, φ(q)), (a, p))

s

≃ ≃

s

If φ(q) ̸= p ∈ πG
0 Ω∞

Ϙ(a), then both sides are empty. If on the other hand, φ(q) = p,
then both sides are equivalent to ΩΩ∞

Ϙ(a), considered as the loop space at the
point φ(q)− 0 = 0 ∈ πG

0 Ω∞
Ϙ(a), and so it is indeed an equivalence as required.

7.2 G-norms of hermitian categories
Having set up the foundations, we are now ready to deal with the subtler G–
symmetric monoidal structures. As is apparent by now, the pervasive theme in
this thesis is that these structures are qualitatively harder to work with than their
nonequivariant counterparts owing to the fact that we have no good way to de-
compose G–cubes to perform currying arguments. In this section, we will see this
problem again, and therefore we have had to produce proofs which are entirely
different from the ones in [CDH+20a, Prop. 5.1.3]. These proofs proceed by purely
monoidal principles and so we think that they provide better reasons why these
statements are true. We are very much indebted to Maxime Ramzi who provided
a key observation that the external norm ⊠ is given by the universal functor to the
norm of categories.

7.2.1 Norm constructions and formulas

Construction 7.2.1. Let Ϙ : Copopopopopopopopopopopopopopopopop → SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH be a reduced 2H-excisive functor. Then we
can define the reduced 2G+-excisive functor

⊗G
H Ϙ :

⊗G
H C

opopopopopopopopopopopopopopopopop → SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG as the diagonal
functor in the diagram

∏G/H Copopopopopopopopopopopopopopopopop ∏G/H SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG

⊗
G/H Copopopopopopopopopopopopopopopopop

∏G/H Ϙ

⊠G/HϘ

τ

⊗

Fτ!⊠G/HϘ
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where F : Fun∗(
⊗

G/H Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG) → Funqqqqqqqqqqqqqqqqq(
⊗

G/H Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG) is the G–quadratisation
of Proposition 7.1.27. If we have a H-bilinear functor β : Copopopopopopopopopopopopopopopopop×Copopopopopopopopopopopopopopopopop → SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH , then
we can define G-bilinear functor

⊗G
H β :

⊗G
H C

opopopopopopopopopopopopopopopopop×⊗G
H C

opopopopopopopopopopopopopopopopop → SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG as the diagonal
functor in the diagram

∏G/H Copopopopopopopopopopopopopopopopop×∏G/H Copopopopopopopopopopopopopopopopop ∏G/H SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG

⊗
G/H Copopopopopopopopopopopopopopopopop×⊗G/H Copopopopopopopopopopopopopopopopop

∏G/H β

τ×τ

⊗

PG+ ,G+
(τ×τ)!⊠G/H β

The aim of this subsection is to show that

B⊗G
HϘ
≃ ⊗G

H BϘ and L⊗G
HϘ
≃ ⊗G

H LϘ and D⊗G
HϘ
≃ ⊗G

H DϘ

Notation 7.2.2. We recall and establish some notations about distributivity. Let
C be a H-cocomplete category and D a H–finite-cocomplete category. Write
FunδG/H

G (∏G/H C, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG) ⊆ FunG(∏G/H C, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG) for the G–full subcategory of G/H–

distributive functors in the sense of §1.3.4, and write Fun∏G/H
G (∏G/H D, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG) ⊆

FunG(∏G/H D, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG) for the G–full subcategory of G/H–finite-distributive func-
tors, ie. those which are G/H–distributive against finite H–colimits.

Proposition 7.2.3. Let Ϙ : Copopopopopopopopopopopopopopopopop → SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH be a H–quadratic functor. Then B⊗G
HϘ
≃⊗G

H BϘ.

Proof. Recall that we have a H-biadjunction

B : Fun∗H(C
opopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH) ⇄ Fun∗,∗H (Copopopopopopopopopopopopopopopopop×Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH) : ∆∗

Hence by Lemma 1.3.13 we get a G-biadjunction

∏
G/H

B : ∏
G/H

Fun∗H(C
opopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH) ⇄ ∏

G/H
Fun∗,∗H (Copopopopopopopopopopopopopopopopop×Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH) : ∏

G/H
∆∗

and hence by Lemma 3.4.2 and Lemma 1.3.17, we get a G-adjunction

⊗
G/H Fun∗H(C

opopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH)
⊗

G/H Fun∗,∗H (Copopopopopopopopopopopopopopopopop×Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH)

Fun∗G(∏G/H Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG) Fun∗,∗G (∏G/H Copopopopopopopopopopopopopopopopop×∏G/H Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG)

⊗G
H B

⊗G
H∆∗

B

ψ

which moreover makes the following squares commute
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∏G/H Fun∗H(C
opopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH) ∏G/H Fun∗,∗H (Copopopopopopopopopopopopopopopopop×Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH)

Fun∗G(∏G/H Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG) Fun∗,∗G (∏G/H Copopopopopopopopopopopopopopopopop×∏G/H Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG)

∏G
H B

⊠
∏G

H ∆∗

⊠

B

ψ

We first claim that ψ ≃ ∆∗. To see this, note that we have the commuting diagram

∏G/H Fun∗H(C
opopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH) ∏G/H Fun∗,∗H (Copopopopopopopopopopopopopopopopop×Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH)

Fun∗G(∏G/H Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG) Fun∗,∗G (∏G/H Copopopopopopopopopopopopopopopopop×∏G/H Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG)

⊠

∏G
H ∆∗

⊠

∆∗

and so by universality of the map

∏
G/H

Fun∗,∗H (Copopopopopopopopopopopopopopopopop×Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH)
⊠−→ Fun∗,∗G ( ∏

G/H
Copopopopopopopopopopopopopopopopop× ∏

G/H
Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG) ≃

⊗
G/H

Fun∗,∗H (Copopopopopopopopopopopopopopopopop×Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH)

we get that ψ ≃ ∆∗ as required.
All in all, we have the commuting upper solid square and dashed adjunctions

∏G/H FunH(C
opopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH) ∏G/H Fun∗,∗H (Copopopopopopopopopopopopopopopopop×Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH)

Fun∗G(∏G/H Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG) Fun∗,∗G (∏G/H Copopopopopopopopopopopopopopopopop×∏G/H Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG)

Fun∗G(
⊗

G/H Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG) Fun∗,∗G (
⊗

G/H Copopopopopopopopopopopopopopopopop×⊗G/H Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG)

Fun
qqqqqqqqqqqqqqqqq
G(
⊗

G/H Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG) FunG -bilin
G (

⊗
G/H Copopopopopopopopopopopopopopopopop×⊗G/H Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG)

∏G
H B

⊠ ⊠

B

τ!

∆∗

(τ×τ)!

F

τ∗

PG+ ,G+

(τ×τ)∗

B

∆∗

The dashed square clearly commutes, and so the bottom solid rectangle also com-
mutes, and hence we get ⊗G/H BϘ ≃ B⊗G/HϘ

as required.

Proposition 7.2.4. Let Ϙ : Copopopopopopopopopopopopopopopopop → SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH be a H–quadratic functor. Then L⊗G
HϘ
≃⊗G

H LϘ.

Proof. First of all note that we have the accessible H-Bousfield localisation

FunH(C
opopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH) Funex

H (Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH)
L
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And so since the domain is H-presentable, so is the codomain by Theorem 2.2.2
(5). On the other hand, it is clear that the codomain is closed under arbitrary H-
colimits in the source, and so by the adjoint functor theorem Theorem 2.2.3, the
inclusion also admits a right adjoint. Hence by Lemma 1.3.17 we get the commuting
diagrams of adjunctions

∏G/H FunH(C
opopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH) ∏G/H Funex

H (Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH)

⊗
G/H FunH(C

opopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH)
⊗

G/H Funex
H (Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH)

FunG(∏G/H Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG) Funex
G (
⊗

G/H Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG)

FunG(
⊗

G/H Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG) Funex
G (
⊗

G/H Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG)

∏G/H L

⊠ ⊠
⊗G/H L

≃ ≃

τ!
PG+

τ∗

where the left middle vertical equivalence is by the G–symmetric monoidality of G–
Yoneda cocompletion §1.3.2 and the right middle vertical equivalence is by virtue of
Corollary 3.4.7. The dashed triangle clearly commutes and so by taking left adjoints
the bottom solid square commutes too. Hence in total we get ⊗G/H LϘ ≃ L⊗G/HϘ

as
desired.

Proposition 7.2.5. Let Ϙ : Copopopopopopopopopopopopopopopopop → SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH be a H–quadratic functor. Then D⊗G
HϘ
≃⊗G

H DϘ.

Proof. To see that D⊗G
HϘ
≃ ⊗G

H DϘ, observe the sequence of equivalences

B⊗G
HϘ
(−,−) ≃ ⊗G

H BϘ(−,−) ≃ ⊗G
HmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapC(−, DϘ−) ≃ map⊗G

HC
(−,⊗G

H DϘ−)

where the first equivalence is by Proposition 7.2.3 and the third by Corollary 3.4.8.

7.2.2 Transitivity of norms on quadratic structures

Let K ≤ H ≤ G be subgroup inclusions and Ϙ : Copopopopopopopopopopopopopopopopop → SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpK be a K-quadratic functor.
In order to mimic the proof of [CDH+20a, Thm. 5.2.7] for showing that Cat

ppppppppppppppppp
G refines

to a G–symmetric monoidal structure in §7.3.1, we need to show that the canonical
comparison ⊗

G/H

⊗
H/K

Ϙ→
⊗
G/K

Ϙ
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is an equivalence. But equivalences of G-quadratic functors are detected jointly by
the linear and the bilinear part by the recollement Theorem 7.1.24, and since by the
above sections we have the equivalences

B⊗
G/H

⊗
H/K Ϙ

≃
⊗
G/H

⊗
H/K

BϘ L⊗
G/H

⊗
H/K Ϙ

≃
⊗
G/H

⊗
H/K

LϘ

it suffices to show that for a K-bilinear functor β : Copopopopopopopopopopopopopopopopop×Copopopopopopopopopopopopopopopopop → SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpK and a K-linear
functor ℓ : Copopopopopopopopopopopopopopopopop → SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpK, we have the equivalences⊗

G/H

⊗
H/K

β ≃
⊗
G/K

β
⊗
G/H

⊗
H/K

ℓ ≃
⊗
G/K

ℓ (7.3)

Given these, we would then have shown that the following maps

B⊗
G/H

⊗
H/K Ϙ

→ B⊗
G/K Ϙ

L⊗
G/H

⊗
H/K Ϙ

→ L⊗
G/K Ϙ

are equivalences, as desired.

Proposition 7.2.6. Let K ≤ H ≤ G be subgroup inclusions and Ϙ : Copopopopopopopopopopopopopopopopop → SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpK be
a K-quadratic functor. Then the canonical comparison

⊗
G/H

⊗
H/K Ϙ→

⊗
G/K Ϙ is

an equivalence.

Proof. As commented above, it suffices to show that for a K-bilinear functor β :
Copopopopopopopopopopopopopopopopop×Copopopopopopopopopopopopopopopopop → SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpK and a K-linear functor ℓ : Copopopopopopopopopopopopopopopopop → SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpK, we have the equivalences in
Eq. (7.3). For the case of ℓ, we note that ℓ 7→ ⊗

G/H
⊗

H/K ℓ is implemented by the
functor

∏
G/H

∏
H/K

Funex
K (Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpK)

∏G/H ⊠H/K−−−−−−−→ ∏
G/H

⊗
H/K

Funex
K (Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpK)

≃ ∏
G/H

Funex
H (
⊗
H/K

Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH)

⊠G/H−−−→
⊗
G/H

Funex
H (
⊗
H/K

Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH)

≃ Funex
G (
⊗
G/H

⊗
H/K

Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG)

where the two equivalences are by virtue of the G-symmetric monoidality of Ind
from Corollary 3.4.7. But then this whole composite is also the universal G/K-
distributive functor

∏
G/H

∏
H/K

Funex
K (Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpK) ≃ ∏

G/K
Funex

K (Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpK)

−→
⊗
G/K

Funex
K (Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpK) ≃ Funex

G (
⊗
G/K

Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG)
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which corresponds to ℓ 7→ ⊗
G/K ℓ. Thus we have

⊗
G/H

⊗
H/K ℓ ≃ ⊗

G/K ℓ as
required. For the claim Eq. (7.3) for β, we use the equivalence

Funb
K(C

opopopopopopopopopopopopopopopopop×Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpK) ≃ Funex
K (Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpK)⊗ Funex

K (Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpK)

We can now carry out an argument similar to the above. To wit, we know that
β 7→ ⊗

G/H
⊗

H/K β corresponds to the composite

∏
G/H

∏
H/K

Funb
K(C

opopopopopopopopopopopopopopopopop×Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpK)

∏G/H ⊠H/K−−−−−−−→ ∏
G/H

⊗
H/K

Funb
K(C

opopopopopopopopopopopopopopopopop×Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpK)

≃ ∏
G/H

(
Funex

H (
⊗
H/K

Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH)⊗ Funex
H (
⊗
H/K

Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH)
)

⊠G/H−−−→
⊗
G/H

(
Funex

H (
⊗
H/K

Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH)⊗ Funex
H (
⊗
H/K

Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH)
)

≃ Funex
G (
⊗
G/H

⊗
H/K

Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG)⊗ Funex
G (
⊗
G/H

⊗
H/K

Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG)

≃ Funb
G(
⊗
G/K

Copopopopopopopopopopopopopopopopop×
⊗
G/K

Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG)

Similarly as in the argument above, this composite is also clearly the uni-
versal G/K-distributive functor which corresponds to β 7→ ⊗

G/K β, and so⊗
G/H

⊗
H/K β ≃ ⊗G/K β as desired.

7.3 Category of G-Poincaré categories
With the basic theory in place, we now assemble these ingredients to prove various
structural results about the whole G–category Cat

ppppppppppppppppp
G.

7.3.1 Symmetric monoidality of G-Poincaré categories

Construction 7.3.1 (Equivariant lax arrows). We will construct a G–symmetric
monoidal structure on Cat

ppppppppppppppppp
G analogously to [CDH+20a, §5.2]. For this, recall their

notation of the full subcategory L̂axAr ⊆ Ĉat/∆1 spanned by the cartesian fibra-
tions over ∆1. Note that this is a strictly larger category than Fun((∆1)op, Ĉat) since
the maps between these cartesian fibrations do not in general preserve cartesian
morphisms. Concretely, for M, N ∈ L̂axAr, a morphism f : M→ N is given by the
following lax commuting diagram
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M1 N1

M0 N0

⇒

f1

f0

where Mi, Ni are the fibres over i ∈ {0, 1}.
Now we define the equivariant version as the full subcategory

L̂axArG := Fun(Oop
G , L̂axAr) ⊆ Fun(Oop

G , Ĉat/∆1)

≃ Fun(Oop
G , Ĉat)/∆1 = (ĈatG)/∆1

where here ∆1 denotes the G–category whose fibres are ∆1. This clearly assem-
bles to a G–category L̂axArG. Explicitly, an object here is given by morphisms of
G–categories C → ∆1 which has the property of being cartesian when evaluated
over each orbit G/H. Since Fun(Oop

G , L̂axAr) ⊆ Fun(Oop
G , Ĉat/∆1) clearly inherits

products, we get that
L̂axArG ⊆ (ĈatG)/∆1

inherits the indexed products from the right hand side. Since ev0 : L̂axAr → Ĉat
preserves products, we see that ev0 : L̂axArG −→ ĈatG strongly preserves indexed
products. Moreover, if we denote by LaxArG ⊆ L̂axArG for the G–full subcate-
gory of those objects whose fibre over 1 is small, then clearly this inclusion creates
indexed products. So, in total we obtain that

ev0 : LaxArG −→ ĈatG :: [C → ∆1] 7→ C0

preserves indexed products, and so is a G–symmetric monoidal functor when both
sides are equipped with the G–cartesian symmetric monoidal structure. Hence, if
D ∈ CMonG(ĈatG) is a G–symmetric monoidal category, the fibre (CatG)//D of ev0

over D inherits a G–symmetric monoidal structure which we denote by (CatG)
⊗
//D

and importantly, the G–functor

(CatG)
⊗
//D → LaxAr×G

is G–symmetric monoidal. In particular, since the triangle

(CatG)//D LaxArG

CatG

ev1
ev1
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commutes, where the vertical functor is G–symmetric monoidal with respect to the
G–cartesian symmetric monoidal structures, we see that the evaluation ev1 refines
to a G–symmetric monoidal functor

ev1 : (CatG)
⊗
//D −→ Cat×G

Construction 7.3.2 (G–symmetric monoidal structure on G–Poincaré categories).
We will now setD = SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG from the above construction. We now define (CatG)

⊗
opopopopopopopopopopopopopopopopop//D

to be the pullback in G–symmetric monoidal categories CMonG(CatG)

(CatG)
⊗
opopopopopopopopopopopopopopopopop//D (CatG)

⊗
//D

Cat×G Cat×G

⌟
≃

ev1

(−)opopopopopopopopopopopopopopopopop
≃

This makes sense since the bottom functor is an equivalence, and so is G–symmetric
monoidal, and the vertical ev1 functor is also G–symmetric monoidal by the last
part of Construction 7.3.1. Concretely, for H ≤ G, H–objects of this G–symmetric
monoidal category are given by pairs (C, Ϙ) of a H–category C and a H–functor
Ϙ : Copopopopopopopopopopopopopopopopop → SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH . For a H–object (C, Ϙ) and G–object (D, Φ), a morphism ( f , η) :
(C, Ϙ)→ (D, Φ) consists of a G–functor f : ∏G/HC → D and a natural transforma-
tion η : ⊠G/HϘ⇒ Φ ◦ f opopopopopopopopopopopopopopopopop where ⊠G/HϘ is defined as the composite

⊠G/HϘ : ∏
G/H
Copopopopopopopopopopopopopopopopop ∏G/H Ϙ−−−−→ ∏

G/H
SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH

⊗−→ SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG

We now define the G–operad (Cath
G)
⊗ as the G–suboperad of (CatG)

⊗
opopopopopopopopopopopopopopopopop//D

spanned by, for every H ≤ G, pairs (C, Ϙ) where C is H–perfect-stable and
Ϙ : Copopopopopopopopopopopopopopopopop → SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH is H–quadratic, and for (C, Ϙ) a H–object and (D, Φ) a G–object,
a morphism ( f , η) : (C, Ϙ) → (D, Φ) is one where f : ∏G/H C → D is G/H–finite
distributive, ie. G/H–distributive for finite H–colimits in C. By definition, the
G–lax symmetric monoidal composite (Cath

G)
⊗ → (CatG)

⊗
opopopopopopopopopopopopopopopopop//D

ev1−→ Cat×G factors
through the G–suboperad

(Cath
G)
⊗ → Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
G ⊆ Cat×G

We now have all the ingredients to state and prove the genuine equivariant ana-
logue of [CDH+20a, Thm. 5.2.8].

Theorem 7.3.3.

(i) The G–operad (Cath
G)
⊗ is G–symmetric monoidal with G–tensor product

from §7.2.
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(ii) The map of G–operads (Cath
G)
⊗ → Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
G is G–symmetric monoidal.

(iii) The G–symmetric monoidal structure on (Cath
G)
⊗ restricts to a G–symmetric

monoidal structure on the G–subcategory Cat
ppppppppppppppppp
G, and so in particular the re-

sulting non-full inclusion (Cat
ppppppppppppppppp
G)
⊗ ⊂ (Cath

G)
⊗ is G–symmetric monoidal.

Proof. For part (i), observe that the construction of the G–norms on hermitian cat-
egories in §7.2.1 means that the G–operad (Cath

G)
⊗ has the property of being a lo-

cally cocartesian fibration over Fin∗G, and so it suffices to show that compositions
of local cocartesian lifts are local cocartesian: this is precisely supplied by the tran-
sitivity of the norm constructions from §7.2.2. Part (ii) is immediate by construction
of the underlying G–stable category of the norm of hermitian categories. Finally,
for (iii), since Cat

ppppppppppppppppp
G ⊂ Cath

G contains all the equivalences in the bigger category, we
only have to show that G–norms of Poincaré categories are again Poincaré and that
the tensor unit (SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω

G , Ϙu) of (Cath
G)
⊗ is G–Poincaré. The latter fact is clear, and the

former is given by Proposition 7.2.5.

7.3.2 Borelification principle for G-Poincaré categories

By Theorem 3.3.4 we know that we have G–functor

eve : Cat
ppppppppppppppppp
G −→ Bor(Catp)

which refines to a G–symmetric monoidal functor. We now give a concrete descrip-
tion of the G–right adjoint of this functor, which we denote by i∗.

Lemma 7.3.4. The right adjoint i∗(D, Φ) is computed as follows: for H ≤ G a
subgroup, we have

DhG Fun(BG, Sp) SpG

DhH Fun(BH, Sp) SpH

Res

ΦhG

Res Res

ΦhH

We denote this construction by Bor(D, Φ).

Proof. Let (C, Ϙ) ∈ Cat
ppppppppppppppppp
G. We need to show that the map

MapCat
ppppppppppppppppp
G
((C, Ϙ), Bor(D, Φ))

eve−→ MapCatp((Ce, Ϙe), (D, Φ))hG

is an equivalence. For this, observe first that this sits in the middle of a map of fibre
sequences with the map on bases given by

Map
Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
G

(C, Bor(D)) eve−→ MapCatp(Ce,D)hG
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and on the fibre over f ∈ Map
Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
G

(C, Bor(D)), the map

Natqqqqqqqqqqqqqqqqq(Ϙ, f ∗ΦBor)
eve−→ Natq(Ϙe, f ∗e Φ)hG

Hence to show that the required map is an equivalence, it suffices to show that the
map on bases and on fibres are equivalences. Now the left hand side consists of the
following data:

(i) A G–exact functor f : C → Bor(D) which by adjunction on the underlying G–

category Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
G , is the same data as a G–equivariant exact functor fe : Ce →

D.
(ii) A natural transformation Ϙ ⇒ f ∗ΦBor, ie. a morphism in Funqqqqqqqqqqqqqqqqq(Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG).

Now recall that we had a G–Bousfield localisation eve : SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG ⇄ Bor(Sp) : i∗,
and f∗ΦBor is in the image of i∗. Hence we get the equivalence

Nat(Ϙ, f ∗ΦBor) ≃ Nat(Ϙe, f ∗e Φ)

(iii) The transformation in (ii) induces a commutation of the square

Copopopopopopopopopopopopopopopopop Bor(D)opopopopopopopopopopopopopopopopop

C Bor(D)

DC≃

f

DD≃
f

But by adjunction, this is equivalent to the commutation of the square

Cop
e Dop

Ce D

DC≃

fe

DD≃
fe

Hence it is easy to see that we have an equivalence on the bases, and the conditions
imposed on both sides on the fibres are equivalent, and so indeed we get the desired
equivalence.

As a consequence, we see that eve ◦ Bor(C, Ϙ) → (C, Ϙ) is an equivalence, and so
this is a G–Bousfield localisation. Moreover, using that ev refines to a G–symmetric
monoidal functor from Theorem 3.3.4 and that Proposition 3.3.6 implies that any
symmetric monoidal Poincaré category (C, Ϙ) equipped with a G–action induces a
G–symmetric monoidal category Bor(C, Ϙ), we immediately obtain:
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Corollary 7.3.5. There is a G–Bousfield localisation

Cat
ppppppppppppppppp
G Bor(Catp)

eve

Bor

where eve refines to a G–symmetric monoidal functor, and so Bor refines to a G–lax
symmetric monoidal functor. Thus, for any (C, Ϙ) ∈ Fun(BG, CAlg((Catp)⊗)) ≃
CAlgG(Bor((Catp)⊗)), {

G/H 7→ (C, Ϙ)hH}
H≤G

assembles to a G–symmetric monoidal G–Poincaré category.

7.3.3 G-presentable-semiadditivity in the large

Construction 7.3.6 (Box sums of hermitian structures). Let (CH , ϘH) be a H–
hermitian category. First of all, note that there is a H–biadjunction

π : ResG
H
⊕
G/H

CH ⇄ CH : i

where π projects onto the e ∈ H\G/H summand in the double coset decomposition
of ResG

H
⊕

G/H and i the inclusion of this summand. Now consider the composite
G–functor

∏
G/H

Fun
qqqqqqqqqqqqqqqqq
H(C

opopopopopopopopopopopopopopopopop
H , SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH)

π∗−→ ∏
G/H

Fun
qqqqqqqqqqqqqqqqq
H(ResG

H
⊕
G/H

Copopopopopopopopopopopopopopopopop
H , SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH)

IndG
H−−→ Fun

qqqqqqqqqqqqqqqqq
G(
⊕
G/H

Copopopopopopopopopopopopopopopopop
H , SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG)

where IndG
H here is the one corresponding to Fun

qqqqqqqqqqqqqqqqq
G(
⊕

G/H C
opopopopopopopopopopopopopopopopop
H , SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG) admitting in-

dexed biproducts. Upon taking the fibre over G/G, we obtain

Fun
qqqqqqqqqqqqqqqqq
H(C

opopopopopopopopopopopopopopopopop
H , SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH)

π∗−→ Fun
qqqqqqqqqqqqqqqqq
H(ResG

H
⊕
G/H

Copopopopopopopopopopopopopopopopop
H , SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH)

IndG
H−−→ Fun

qqqqqqqqqqqqqqqqq
G(
⊕
G/H

Copopopopopopopopopopopopopopopopop
H , SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG)

which denote as ϘH 7→ ⊞G/HϘH := IndG
Hπ∗ϘH .

Lemma 7.3.7. Let (CH , ϘH) be a H–hermitian category. Then B⊞G/HϘH
≃ ⊞G/H BϘH

.
In particular, if (CH , ϘH) were a H–Poincaré category, then (

⊕
G/H CH ,⊞G/HϘH) is

a G–Poincaré category with duality D⊞G/HϘH
≃ ⊕G/H DϘH

.
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Proof. For the first statement, consider

B⊞G/HϘH
= BIndG

Hπ∗ϘH
≃ IndG

Hπ∗BϘH
= ⊞G/H BϘH

since the bilinear part construction B is a finite fibrewise colimit, and so commutes
with everything in sight.

For the second statement, we argue first that

⊞G/HmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapCH
(−,−) ≃ mapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmap⊕

G/H CH
(−,−) (7.4)

Consider the composite which defines ⊞G/H

FunH(C
opopopopopopopopopopopopopopopopop
H × CH , SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH)

π∗−→ FunH(ResG
H
⊕
G/H

(Copopopopopopopopopopopopopopopopop
H × CH), SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpH)

IndG
H−−→ FunG(

⊕
G/H

CH , SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG)

Recall that the H–mapping space functor MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapCH
(−,−) : Copopopopopopopopopopopopopopopopop

H × CH → SH un-
straightens to the parametrised twisted arrow category, which preserves indexed
products, and hence

∏G/H(C
opopopopopopopopopopopopopopopopop
H × CH) ∏G/H SH SG

∏G/H MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapH(−,−) ∏G/H

is equivalent to MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMap∏G/H CH
(−,−). Now using that π : ResG

H
⊕

G/H ⇒
id is the adjunction counit and unwinding definitions, this composite is also
⊞G/HMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapCH

(−,−), and hence we obtain indeed that Eq. (7.4) is true.
Given this, we then see that

B⊞G/HϘH
≃ ⊞G/H BϘH

≃ ⊞G/HmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapCH
(−, DϘH

−)
≃ mapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmap⊕

G/H CH
(−,⊕G/H DϘH

−)

and so since DϘH
was an equivalence, so too is D⊞G/HϘH

≃ ⊕G/H DϘH
. In other

words, (
⊕

G/H CH ,⊞G/HϘH) is a G–Poincaré category with the prescribed duality.

Lemma 7.3.8. The G–categories Cat
ppppppppppppppppp
G and Cath

G are G–semiadditive. In fact, the
(non-full) inclusion Cat

ppppppppppppppppp
G ⊂ Cath

G creates these indexed biproducts.

Proof. We first show that Cath
G is G–semiadditive. Let (CH , ϘH) be a H–hermitian

category. We claim that (
⊕

G/H CH ,⊞G/HϘH) is both the G/H–product and –
coproduct in Cath

G.
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To see that it is a G/H–coproduct, let (DG, ΦG) be a G–hermitian category. We
need to show that the canonical comparison

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMap
Cath

G

(
(
⊕
G/H

CH ,⊞G/HϘH), (DG , ΦG)
)
−→ ∏

G/H
MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMap

Cath
H

(
(CH , ϘH), (DH , ΦH)

)
(7.5)

induced by the summand inclusion (CH , ϘH) ↪→ (ResG
H
⊕

G/H CH , ResG
H ⊞G/HϘH)

is an equivalence. For this, note that for a G–exact functor f :
⊕

G/H CH → DG, we
have the vertical map of fibre sequences of G–spaces

NatG(⊞G/HϘH , f ∗ΦG) MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMap
Cath

G

(
(
⊕

G/H CH ,⊞G/HϘH), (DG, ΦG)
)

MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMap
Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
G

(⊕
G/H CH ,DG

)

∏G/H NatH(ϘH , i∗ f ∗ΦG) ∏G/H MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMap
Cath

H

(
ResG

H(
⊕

G/H CH ,⊞G/HϘH), (DH , ΦH)
)

∏G/H MapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMapMap
Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
H

(
CH ,DH

)≃

where the middle vertical is the map that we want to show is an equivalence.
Hence, we need to show that the left vertical map is an equivalence, and for this we
consider the computation (using the notation from Construction 7.3.6)

NatG(⊞G/HϘH , f ∗ΦG) = NatG(IndG
Hπ∗ϘH , f ∗ΦG)

≃ ∏
G/H

NatH(π
∗
ϘH , f ∗ΦH)

≃ ∏
G/H

NatH(ϘH , i∗ f ∗ΦH)

which completes the proof for the G/H–coproduct case. To see the case of G/H–
products, we perform a similar computation, but this time showing that

NatG(ΦG, h∗ ⊞G/H ϘH) −→ ∏
G/H

NatH(ΦH , (π ◦ h)∗ϘH)

is an equivalence, for a G–exact map h : DG →
⊕

G/H CH .
We now work towards the case of Cat

ppppppppppppppppp
G. By Lemma 7.3.7 we already know that

if (CH , ϘH) is a H–Poincaré category, then (
⊕

G/H CH ,⊞G/HϘH) is a G–Poincaré
category with duality ⊕G/H DϘH

:
⊕

G/H C
opopopopopopopopopopopopopopopopop
H
≃−→ ⊕

G/H CH . We are therefore left to
show the following: let (DG, ΦG) be a G–Poincaré category and ( f , η) : (CH , ϘH)→
(DH , ΦH) a H–Poincaré functor. Then the corresponding G–hermitian functor

( f , η) : (
⊕
G/H

CH ,⊞G/HϘH)→ (DG, ΦG)

coming from the equivalence Eq. (7.5) is in fact a G–Poincaré functor, ie. it preserves

the duality. Note that concretely, f is given by the composite f :
⊕

G/H CH
⊕G/H f
−−−−→⊕

G/H DH
IndG

H−−→ DG and so since we have a commuting diagram
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f
opopopopopopopopopopopopopopopopop

:
⊕

G/H C
opopopopopopopopopopopopopopopopop
H

⊕
G/H D

opopopopopopopopopopopopopopopopop
H Dopopopopopopopopopopopopopopopopop

G

f :
⊕

G/H CH
⊕

G/H DH DG

⊕G/H f opopopopopopopopopopopopopopopopop

≃ ⊕G/H DϘH

IndG
H

≃ ⊕G/H DΦH ≃ DΦG

⊕G/H f IndG
H

we see that indeed ( f , η) is duality-preserving. Similarly, one can show that a
H–Poincaré functor (h, ξ) : (DH , ΦH) → (CH , ϘH) induces a G–Poincaré func-
tor (h, ξ) : (DG, ΦG) → (

⊕
G/H CH ,⊞G/HϘH). All in all, these show that

(
⊕

G/H CH ,⊞G/HϘH) satisfies the universal property of the indexed biproduct in
Cat

ppppppppppppppppp
G.

Proposition 7.3.9. The G–categories Cath
G and Cat

ppppppppppppppppp
G are G–semiadditve, G–

cocomplete, and G–complete. In fact, both functors in Cat
ppppppppppppppppp
G → Cath

G → Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
G

strongly preserve G–colimits and G–limits.

Proof. The same proof as for [CDH+20a, Prop. 6.1.2, 6.1.4] shows that Cath
G has fi-

brewise G–colimits and –limits, and that the forgetful functor fgt : Cath
G → Cat

perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
G

strongly preserves these, and that a similar statement holds for Cat
ppppppppppppppppp
G and the inclu-

sion functor Cat
ppppppppppppppppp
G ↪→ Cath

G. On the other hand, we know by Lemma 7.3.8 that Cat
ppppppppppppppppp
G

and Cath
G are G–semiadditive and that the inclusion Cat

ppppppppppppppppp
G ↪→ Cath

G strongly pre-
serves these indexed biproducts. Therefore, all in all, we obtain by Theorem 1.2.9
that both Cat

ppppppppppppppppp
G and Cath

G are G–cocomplete and G–complete, and that both functors

in Cat
ppppppppppppppppp
G → Cath

G → Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
G strongly preserve G–colimits and –limits, as desired.

Lemma 7.3.10. The three G–Poincaré categories

HypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHyp(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω
G), HypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHyp(Ar(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω

G)), and Met(SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpω
G , Ϙu)

form a set of G–ω–compact generators for Cat
ppppppppppppppppp
G.

Proof. Note that the G–Poincaré categories corepresent respectively the G–functors(
(C, Ϙ) 7→ C≃

)
,
(
(C, Ϙ) 7→ Ar(C)≃

)
, and

(
(C, Ϙ) 7→ Fm(C, Ϙ)

)
the first two by the adjunction Proposition 7.1.49 together with Lemma 7.1.46, and
the third is by Proposition 7.1.52. Since each of these functors clearly strongly
preserves fibrewise ω–filtered colimits, the three G–Poincaré categories are G–ω–
compact. Hence, by Proposition 4.1.6, it will now suffice to show that they are
jointly conservative. For this, suppose we have a G–Poincaré functor

( f , η) : (C, Ϙ)→ (D, Φ)
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which induces equivalences

C≃ ≃−→ D≃ Ar(C)≃ ≃−→ Ar(D)≃ Fm(C, Ϙ) ≃−→ Fm(D, Φ)

The first two then implies that the underlying G–functor f : C → D is an equiva-
lence. To obtain that it is also an equivalence of G–Poincaré categories, we need to
show that for all x ∈ C, the morphism

ηx : Ϙ(x) =⇒ Φ f (x)

is an equivalence. By Lemma 7.1.40, we can test this by applying Ω∞. In this case,
this map is just the map induced on the vertical fibres of

Fm(C, Ϙ) Fm(D, Φ)

C≃ D≃

≃

≃

over x ∈ C and f (x) ∈ D respectively, and is therefore an equivalence, as desired.

We now come to the main theorem of this subsection.

Theorem 7.3.11. The G–category Cat
ppppppppppppppppp
G is G–presentable-semiadditive.

Proof. We already know by Proposition 7.3.9 that it is G–semiadditive. Since
Cat

ppppppppppppppppp
G is G–cocomplete by Proposition 7.3.9, we can combine Proposition 4.1.6 and

Lemma 7.3.10 to yield that the canonical comparison Indω((Cat
ppppppppppppppppp
G)

ω) → Cat
ppppppppppppppppp
G is an

equivalence. Hence, by Theorem 2.2.2 we get the G–presentability of Cat
ppppppppppppppppp
G.

7.4 Potential applications: equivariant periodic-
ities

We now give two advertisements as to the potential usefulness of the genuine
equivariant point of view for hermitian K–theory. Both of these are centred around
obtaining equivariant periodicities for L–theory, proceeding however via very dif-
ferent means. In §7.4.1 we see that upon inverting 2, the theory of the first three
sections in this chapter goes through when G is even. Our hope is that this can be
a good method of manufacturing equivariantly periodic genuine G–spectra. From
this, we show how to obtain equivariantly periodic L–theory for G = C2. In §7.4.2,
we speculate on a strategy to prove descent theorems for equivariant L–theory
given a refinement of it to a G–spectrum with norms.
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7.4.1 C2-Ranicki periodicity

So far the theory was only developed for when G is an odd group: this was because
(β ◦ ∆)tΣ2 , for β a G–bilinear functor into SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpG can fail to be G–quadratic when G
contains C2. However, we might still be interested when G is an even group. In
this subsection, we explore that possibility and the group G is fixed to be the cyclic
group C2 of order 2. Importantly, our standing assumption in this subsection is that
Ϙ factors through the full subcategory SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpC2 [

1
2 ] ⊆ SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpC2 of 2–inverted C2–spectra in

order to guarantee that (β ◦ ∆)tΣ2 ≃ 0 and so is C2–quadratic. The theory of §7.1
can then be carried out similarly. In this case however, instead of an interesting
stable recollement as in Theorem 7.1.24, we in fact even have a splitting

Funqqqqqqqqqqqqqqqqq(Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpC2 [
1
2
]) ≃ Funex(Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpC2 [

1
2
])× Funs(Copopopopopopopopopopopopopopopopop × Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpC2 [

1
2
])

This is because there is no interesting gluing via the Σ2–Tate construction, which in
this case, is always trivial since 2 was inverted.

Notation 7.4.1. We record here two conventions that we use just in this exploratory
subsection.

• Throughout this subsection, in order not to overload the notations, 2 being in-
verted is always implicit and we will omit writing [ 1

2 ] for the receptacle of the
C2–quadratic structures. In other words, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpC2 will always stand for SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpC2 [

1
2 ]

and Sp will mean Sp[ 1
2 ]. Thus, for example Cat

ppppppppppppppppp
C2

would be defined as a non-

full subcategory of Cath
C2

which is in turn defined as the unstraightening of

(Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
C2

)opopopopopopopopopopopopopopopopop −→ ĈatC2
:: C 7→ Funqqqqqqqqqqqqqqqqq(Copopopopopopopopopopopopopopopopop, SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpC2 [

1
2
])

• We emphasise here that there are two different C2-actions, one coming from
the hermitianness and the other from the equivariant direction. Because of
this, we will denote the C2 group coming from hermitian structures with Σ2
instead, as we have been doing from the beginning of this chapter.

Construction 7.4.2 (Pointwise L–theory). For the purposes of this subsection, by
(equivariant) L–theory here, we mean pointwise L–theory. Namely, to a (C, Ϙ) ∈
Cat

ppppppppppppppppp
G, we can associate a G–spectrum L(C, Ϙ) whose genuine H–fixed point for H ≤

G is given by

L
(
C, Ϙ) := L(CH , Cop

H
ϘH−→ SpH

(−)H

−−−→ Sp
)

where L here is the one constructed in [CDH+20b]. In other words, we perform
the ad-construction of [CDH+20b] levelwise on each genuine fixed point of the G–
space Pn(C, Ϙ). Importantly, this inherits the excision against split Poincaré–Verdier
sequences satisfied by ordinary L–theory as well as the fact that L(HypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHyp(C)) ≃ 0
since HypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHypHyp(C) is levelwise hyperbolic in the ordinary sense.
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Recollections 7.4.3. A C2-Poincaré category (C, Ϙ) ∈ Cat
ppppppppppppppppp
C2

is the datum of a C2-
category C together with a 2–inverted C2-quadratic functor Ϙ : Copopopopopopopopopopopopopopopopop → SpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpC2 , ie. a
diagram

Cop
C2

SpC2

Cop
e Sp

Res

ϘC2

Res

Ϙe

and the C2-functor Ϙ sits in a recollement square

Ϙ LϘ

(B∆
Ϙ
)hΣ2 (B∆

Ϙ
)tΣ2 ≃ 0

⌟

where the Tate term is zero since 2 was inverted. Hence, we even have the splitting
Ϙ ≃ LϘ × (B∆

Ϙ
)hΣ2 . However, this special property will not be used anywhere here.

Construction 7.4.4 (C2-spans). Let (C, Ϙ) ∈ Cat
ppppppppppppppppp
C2

. Write QQQQQQQQQQQQQQQQQ1(C, Ϙ) for the

C2–Poincaré category whose underlying C2-category is Fun(Λ2
0, C) and the C2–

Poincaré structure given by the C2-pullback

(y← x → y) 7→ Ϙ
Λ(y← x → y) := Ϙ(y)×

Ϙ(x)Ϙ(y)

Since the cross-effect functor commutes with all parametrised limits and colimits,
we get that B

Ϙ
Λ ≃ limΛBϘ, and so the duality is the expected one involving C2-

pullbacks. Note that we have a C2-self-equivalence

FunC2(Λ
2
0, C) FunC2(Λ

2
0, C)

Fun(Λ2
0, Ce) Fun(Λ2

0, Ce)

cofib
≃

Res Res

cofib∪ cofib
≃

given by

cofib(a
f←− w

f−→ a) =
(

cofib( f )← a⨿wa→ cofib( f )
)

with inverse given similarly by (fib, fib×fib).

Construction 7.4.5 (The C2-bordism span error term). Let s : ∆0 ↪→ Λ2
0 be the

inclusion of the join in the C2-span and j : ⨿C2
∗ ↪→ Λ2

0 be the inclusion of the

C2-points. Let (C, Ϙ) ∈ Cat
ppppppppppppppppp
C2

be a C2-Poincaré category. Then first note that the
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fully faithful left Kan extension s! : C ↪→ QQQQQQQQQQQQQQQQQ1(C) is given by the constant diagram,
the fully faithful right Kan extension s∗ is given by extension-by-zero, the fully
faithful left Kan extension j! is given by extension-by-zero, and the fully faithful
right adjoint j∗ is given by x 7→ (ResC2 x ← IndC2 ResC2 x → ResC2 x). Note that s!
is duality-preserving since

x (x =←− x =−→ x)

Dx (Dx =←− Dx =−→ Dx)

s!

D DΛ

s!

and hence is a C2-Poincaré functor. Be warned however that s∗ is not a C2-Poincaré
functor since

DΛ(s∗) = 0×Dx0 ≃ ΩσDx

Observe that the C2-self equivalence above interchanges s! and s∗ since

C QQQQQQQQQQQQQQQQQ1(C)

C QQQQQQQQQQQQQQQQQ1(C)

s!

cofib ≃
s∗

fib

Now observe that we have a bifibre sequence in Cat
perfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperfperf
C2

C QQQQQQQQQQQQQQQQQ1(C) IndC2 ResC2 Cs∗ j!

Writing p and ℓ for the left adjoints ℓ ⊣ p ⊣ j!, we have the solid commutative
square

QQQQQQQQQQQQQQQQQ1(C) IndC2 ResC2 C

QQQQQQQQQQQQQQQQQ1(C) IndC2 ResC2 C

cofib ≃

p

j!

ℓ

j∗

j∗

j! (7.6)

and hence we can compute p as j∗ ◦ cofib to give

p : (a
f←− w

f−→ a) 7→ cofib( f )

and compute ℓ as fib ◦ j! to give

ℓ : x 7→
(
Ωx ← IndC2 Ωx → Ωx

)
From this we can collect some basic information:
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• Taking the cofibre in Cat
ppppppppppppppppp
C2

we get a split Poincaré–Verdier sequence

(C, Ϙ) (QQQQQQQQQQQQQQQQQ1(C), ϘΛ)
(

IndC2 ResC2 C, (pop)!(Ϙ
Λ)
)s! p

where we know that Ψ := (pop)!(Ϙ
Λ) is computed as (ℓop)∗(ϘΛ). Therefore,

we get that for x ∈ IndC2 ResC2 C, Ψ(x) := (pop)!(Ϙ
Λ)(x) ∈ SpC2 is computed

as the C2–pullback

Ψ(x) := Ϙe(Ωx)×
ϘC2 (IndC2 Ωx)Ϙe(Ωx)

Similarly, for (a, b) ∈ ResC2 IndC2 ResC2 C, we have that

ℓ : (a, b) 7→
(
Ωa← Ωa⊕Ωb→ Ωb

)
and so Ψ = (pop

! )(ϘΛ)(x, y) is computed as

Ψe(a, b) ≃ Ϙe(Ωa)×
Ϙe(Ωa⊕Ωb) Ϙe(Ωb) ≃ ΩBϘe(Ωa, Ωb) ≃ ΣBϘe(a, b)

• Moreover, it is formally straightforward to see that the duality must be given
by p ◦ D

Ϙ
Λ ◦ ℓop, and so the effect of the duality is given by on the C2-fixed

points as

x ℓ7−→ (Ωx ← IndC2 Ωx → Ωx)
D
Ϙ

Λ
7−−→ (DeΩy← DeΩy×IndC2 ΩxDeΩx → DeΩx)
p7−→ DeΩx ≃ ΣDex

and similarly, on the underlying thing,

(x, y) ℓ7−→ (Ωy← Ωy⊕Ωx → Ωx)
D
ϘΛ
7−−→ (DeΩy← DeΩy×DeΩy⊕DeΩx DeΩx → DeΩx)
p7−→ (DeΩy, DeΩx) ≃ Σ(Dey, Dex)

Lemma 7.4.6. The C2–quadratic structure Ψ is homogeneous, ie. the canonical map
(B∆

Ψ)hΣ2 → Ψ is an equivalence.

Proof. We just have to show that the linear part vanishes. The description of Ψe
makes this clear on the underlying functor, and for the full C2-quadratic functor,
just note

LΨ = L
Ϙe(x)×

ϘC2
(IndC2 x)

Ϙe(x) ≃ L
Ϙe(x)×L

ϘC2
(IndC2 x)

L
Ϙe(x) = 0

because the C2-square
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IndC2 x x

x 0

is a C2-pushout-pullback in C and LϘ preserves this.

Notation 7.4.7. Following Glasman [Gla17], we denote by Ξ : Sp ↪→ SpC2
the fully

faithful right adjoint of the C2-geometric fixed point functor ΦC2 . Concretely, Ξ
takes a spectrum X to the C2-Mackey functor with trivial underlying spectrum and
top fixed point X.

Lemma 7.4.8. The C2–Poincaré category (IndC2 ResC2 C, Ψ) constructed above sat-
isfies

L(IndC2
e ResC2

e C, Ψ) ≃ ΞL(Ce, ΣϘq
e ) ∈ SpC2

Proof. We need to show two points, namely, that

L(IndC2
e ResC2

e C, Ψ)C2 := L(Ce, (ΨC2)
C2) ≃ L(Ce, ΣϘq

e ) ∈ Sp (7.7)

and that
L(IndC2

e ResC2
e C, Ψ)e := L(Ce ⊕ Ce, Ψe) ≃ 0 ∈ Sp (7.8)

Firstly, by Lemma 7.4.6 we have Ψ ≃ (B∆
Ψ)hΣ2 and so we need to analyse B∆

Ψ to-
gether with its Σ2–action. By representability of C2–Poincaré structures, we know
that for a, x ∈ Ce = (IndC2

e ResC2
e C)C2 , we have

BΨC2
(a, x) ≃ mapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmapmap

Ind
C2
e Res

C2
e C

(a, ΣDex) ≃ IndC2
e Σ mapCe

(a, Dex) ≃ IndC2
e ΣBϘe(a, x)

Thus setting a = x, we obtain

(ΨC2)
C2(x) ≃

[
B∆

ΨC2
(x)C2

]
hΣ2
≃
[
(IndC2 ΣBϘe(x, x))C2

]
hΣ2
≃ ΣBϘe(x, x)hΣ2 ∈ Sp

which gives (ΨC2)
C2 ≃ ΣϘq

e , and hence Eq. (7.7).
For Eq. (7.8), letting a, b, x, y ∈ Ce, we have

BΨe((a, b), (x, y)) ≃ BΣBϘe
((a, b), (x, y))

≃ Σ fib
(

BϘe(a⊕ x, b⊕ y)→ BϘe(a, b)⊕ BϘe(x, y)
)

≃ ΣBϘe(a, y)⊕ ΣBϘe(x, b)

and hence by setting (a, b) = (x, y), we get

Ψe(x, y) ≃
[
B∆

Ψe
(x, y)

]
hΣ2
≃
[
ΣBϘe(x, y)⊕ ΣBϘe(x, y)

]
hΣ2
≃ ΣBϘe(x, y) ∈ Sp

But it is standard nonequivariant theory that (Ce⊕Ce, BϘe) ≃ Hyp(Ce) via the dual-
ity idCe ⊕ De, and since L–theory vanishes on hyperbolics, we get L(Ce ⊕ Ce, Ψe) ≃
0.
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Proposition 7.4.9. Let (C, Ϙ) ∈ Cat
ppppppppppppppppp
C2

. Then there is a split Poincaré–Verdier se-
quence

(C, Ωσ
Ϙ)

s∗−→ (C, Ϙ)Λ j∗−→ IndC2 ResC2(C, Ϙ)

Proof. We know that s∗ : C ↪→ CΛ is a split Verdier inclusion. To see that it is even
a split Poincaré–Verdier inclusion, we need to show that Ωσ

Ϙ ⇒ (s∗)∗(ϘΛ) is an
equivalence. Let x ∈ C. So

(s∗)∗(ϘΛ)(x) ≃ (ϘΛ)(0← x → 0) ≃ Ωσ
Ϙ(x)

By the square Eq. (7.6), we know that the cofibre map CΛ → IndC2 ResC2 C is given
by j∗, ie. evaluation at the two feet of a C2-span. By the same token, the pushfor-
ward quadratic structure is given by (j

opopopopopopopopopopopopopopopopop
! )∗(ϘΛ), ie.

x 7→ ϘΛ(x ← 0→ x) ≃ IndC2Ϙe(x)

Hence we obtain that, indeed, the cofibre term is IndC2 ResC2(C, Ϙ).

Lemma 7.4.10. Let (C, Ϙ) be a C2–Poincaré category. There is a failure exact se-
quence

ΩσL(C, Ϙ)→ L(C, Ωσ
Ϙ)→ ΞL(Ce, ΣϘq

e )

Proof. Consider the diagram of fibre sequences of genuine C2–spectra

ΩσL(C, Ϙ) L(C, Ϙ) IndC2 ResC2 L(C, Ϙ)

L(C, Ωσ
Ϙ) L(CΛ, ϘΛ) IndC2 ResC2 L(C, Ϙ)

ΞL(Ce, ΣϘq
e ) ΞL(Ce, ΣϘq

e ) 0

s!

s∗ j∗

where here the top horizontal sequence is by the defining sequence of sign loops,
the middle horizontal sequence is by Proposition 7.4.9, and the middle vertical se-
quence is by Construction 7.4.5 and Lemma 7.4.8.

Theorem 7.4.11. Suppose we have a C2-Poincaré category (C, Ϙ) such that we have
an equivalence (Ce, Ϙ

q
e ) ≃ (Ce, Σ2

Ϙ
q
e ) on the underlying Poincaré category, for exam-

ple, (ModSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpSpC2 [
1
2 ]
(KUC2 [

1
2 ])

ω, Ϙs) via the nonequivariant Bott periodicity. Then there

is a natural equivalence
Ω2σL(C, Ϙ) ≃ L(C, Ω2σ

Ϙ)

Proof. Observe that we have a diagram of fibre sequences of genuine C2–spectra
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Ω2σL(C, Ϙ) ΩσL(C, Ωσ
Ϙ) ΩσΞL(Ce, ΣϘq

e )

L(C, Ω2σ
Ϙ) L(C, Ω2σ

Ϙ) 0

E ΞL(Ce, ΣΩϘq
e ) ΣΩσΞL(Ce, ΣϘq

e )

E ΞL(Ce, Ϙ
q
e ) ΩσΞL(Ce, Σ2

Ϙ
q
e )

Now note that for genuine C2–spectra of the form ΞX, ie. those whose underlying
spectrum is trivial, we have that the canonical comparison ΩσΞX → ΞX induced
by S0 → Sσ is an equivalence since both have trivial underlying spectrum and
have equivalent C2-geometric fixed points since ΦC2(Sσ) ≃ S0. Hence the bottom
sequence looks like

E ΞL(Ce, Ϙ
q
e ) ΞL(Ce, Σ2

Ϙ
q
e ) (7.9)

and therefore by our hypothesis, E ≃ 0.

7.4.2 Speculations: descent via multiplicative norms

The speculative materials in this short subsection was the original motivation for
our study on genuine equivariant hermitian K–theory. The main idea is a simple
combination of methods from [Gre93] and [CMN+20] to prove completion theo-
rems for equivariant L–theory. The reason it is still speculative at the moment is
that in spite of our protracted investigations above, we have not yet obtained the
crucial ingredient that L–theory admits the Hill-Hopkins-Ravenel norms for odd
groups. Needless to say, this is a direction of further work that we very much in-
tend to return to in the future.

Construction 7.4.12. Suppose that I := ker
(

Ls
0(G, R) → Ls

0(e, R)
)

is finitely gener-
ated ideal, and write this as I = (a1, . . . , ad). Then we follow Greenlees-May and
define

K(ai) := fib
(

Ls(G, R)→ Ls(G, R)[a−1
i ]
)

and

K(I) :=
r⊗

i=1

K(ai) ∈ ModSpG (Ls(G, R)) −→ Ls(G, R)

Here the tensor is over Ls(G, R) since we are working in this module category. It
turns out moreover that this K(I) only depends on the radical of I. Now note that



7.4 POTENTIAL APPLICATIONS: EQUIVARIANT PERIODICITIES 204

K(I) → Ls(G, R) is an underlying equivalence since ai : Ls(G, R) → Ls(G, R) are
underlying nullhomotopic, and so we have equivalence

EG+ ⊗ K(I) ≃−−→
can

EG+ ⊗ Ls(G, R)

and hence obtain the following diagram

c : EG+ ⊗ Ls(G, R) EG+ ⊗ K(I) K(I)

Ls(G, R)

can−1

Proposition 7.4.13 ([BHV18, Prop. 3.19]). There are spectral sequences

Eh,k
2 = H−h

I (Ls
∗(G, R); MG

∗ ))k =⇒ πG
h+k(M⊗ K(I)) dr : Er

h,k → Er
h−r,k+r−1

E2
h,k = (H I

h(Ls
∗(G, R); MG

∗ ))k =⇒ πh+kΛI M dr : Er
h,k → Er

h−r,k+r−1

for any M ∈ ModSpG (Ls(G, R)). Moreover, H∗I is an I-torsion module.

Lemma 7.4.14 (I-adic ambidexterity via finiteness). Let M ∈ ModSpG (RG) where

both M and RG have finite equivariant homotopy groups. Let I ≤ πG
0 RG be an

ideal. Then
K(I)⊗ F(K(I), M)→ F(K(I), M)

is an equivalence. In other words, the I-Tate construction LIΛI M is contractible.

Proof. By [GM92, Thm. 1.9] we know that

H I
i (π

G
t M)& =

{
(πG

t M)∧I if i = 0
0 if i > 0

On the other hand, since πG
t M is finite we have that (πG

t M)∧I
∼= (πG

t M)/In for
some n≫ 0. Hence in particular it is I-primary torsion. Now if I = (a1, . . . , ad) then
by construction and hence since homotopy groups commute with filtered colimits
we get

πG
t (LIΛI M) ∼= (πG

t M)∧I [(a1 · · · ad)
−1] ∼= ((πG

t M)/In)[(a1 · · · ad)
−1] = 0

as required.

Lemma 7.4.15 (Greenlees’ argument). Suppose RG satisfies equivariant periodicity
with respect to the reduced regular representation and let I = IG = ker(RG

0 → Re
0).

Then we have that ẼP ⊗ K(I) ≃ 0.
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Proof. We know that ẼP ≃ S∞ρG . Also, for any M ∈ ModSpG (RG) we have

λ : πG
n M πG

n (M⊗ SρG ) πG
n Me∗ ∼=

β

where e : S0 → SρG is the Euler map. And hence in the presence of the Bott iso-
morphism πG

n (ẼP ⊗M) is computed by inverting some class λ ∈ πG
0 RG which is

concretely given as the composite

λ : RG
e−→ RG ⊗ SρG

β−→ RG

Now note that, since the Euler map e : S0 → SρG is nullhomotopic nonequivariantly
(ie. ResG

e e ≃ 0), we get that λ ∈ I. On the other hand, by the spectral sequence
above and that localisation is exact we get that

Eh,k
2 = H−h

I (RG
∗ ; MG

∗ ))k[λ
−1] =⇒ πG

h+k(ẼP ⊗ K(I))

But then H∗I is an I-torsion module and so everything vanishes and we are done.

We are now ready to state the main theorem on nilpotent descent in equivariant
L-theory.

Theorem 7.4.16 (Nilpotent descent for equivariant L-theory). Let G be any finite
group. Suppose that

(i) I := IG = ker
(

Ls
0(G, R)→ Ls

0(e, R)
)

is finitely generated
(ii) The map K(I)⊗ F(K(I), Ls(G, R))→ F(K(I), Ls(G, R)) is an equivalence

(iii) ResG
H IG and IH ≤ Ls

0(H, R) have the same radicals for all H ≤ G.

For example, by I-adic ambidexterity Lemma 7.4.14 above, the first two conditions
are satisfied when Ls

n(G, R) are all finite for all G finite groups. Then we have that:

(i) Ls(G, R)∧I = F
(
K(I), Ls(G, R)

)
is {e}-nilpotent, and thus so are all its mod-

ules in SpG.
(ii) For any (C, Ϙ) ∈ Fun(BG, Catp

(R,Ϙs)
) the natural maps

coBor
(

L(coBor(C, Ϙ))∧I
)
→ L(coBor(C, Ϙ))∧I
→ L(Bor(C, Ϙ))∧I → Bor

(
L(Bor(C, Ϙ))∧I

)
are all equivalences and hence in particular upon taking genuine G-fixed
points we get that the sequence

L(C, Ϙ)hG → (L((C, Ϙ)hG)
∧
I → L((C, Ϙ)hG)∧I → L(C, Ϙ)hG

are all equivalences.
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Proof. By [MNN17, Thm. 6.41] we need to show that ΦH ResG
H
(

Ls(G, R)∧I
)
≃ 0

for all 0 ̸= H ≤ G. Now we know that K(I) (and therefore I-completion) only
depends on the radical of I and so by hypothesis (c) we get that ResG

H
(

Ls(G, R)∧I
)
≃

Ls(H, R)∧I , and so we might as well just show it for H = G. In other words, we
want to show that ẼP ⊗ F(K(I), Ls(G, R)) ≃ 0. But by hypothesis (b) we have
that this is equivalent to ẼP ⊗ K(I)⊗ F(K(I), Ls(G, R)) and we know ẼP ⊗ K(I)
vanishes by the Greenlees argument Lemma 7.4.15. The second part is just because
everything in sight is {e}-nilpotent since Ls(G, R)∧I is, and so in particular Borel-
complete. But then on Borel-complete objects, equivalences can be checked on the
underlying objects, for which everything is clear.

Lemma 7.4.17 (Norm radical lemma). For abelian groups G, the hypothesis√
ResG

H IG =
√

IH is automatic.

Proof. We always have
√

ResG
H IG ⊆

√
IH . To see the opposite, let a ∈ W(H, R)

such that an ∈ IH . Then using the Evens norm we get

ResG
H NG

H(an) = ∏
H\G/H

NH
Hg∩H ResHg

Hg∩H g∗(an)

Since all our groups were abelian, there are no interesting conjugations and so the
right hand side looks like am := ∏H\G/H an, and hence am ∈ ResG

H IG as required.

We learnt of the following simple observation from [CP84, Lem. V.2.1] which was
stated without proof. We thank Jesper Grodal for the key insight in the argument.

Lemma 7.4.18. If G is a p-group and F is a finite field f characteristic p then the
inclusion and forgetful map induces an isomorphism W(G, F) ∼= W(F).

Proof. The key point is that elements in W(G, F) are all semisimple things: to see
this, let (M, q) be a form with G-isometric action. Suppose (N, q) ≤ (M, q) is a
nontrivial proper G-invariant subspace. Then the complement is also G-invariant
since if g ∈ G and w ∈ V⊥, then for all v ∈ N

q(v, gw) = q(g−1v, w) = 0

Hence every form is isometric to a sum of simples. But then in this modular case,
we know that the only simple modules are F with the trivial action.

We now collect interesting examples one can glean from the theorem based on
classical knowledge of Witt rings.

Corollary 7.4.19. Let k be a finite field of characteristic p where p is an odd prime.
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(i) If G is a p-group, then all the maps

L(C, Ϙ)hG → L((C, Ϙ)hG)→ L((C, Ϙ)hG)→ L(C, Ϙ)hG

are equivalences for all (C, Ϙ) ∈ Fun(BG, ModCatp(Modω
k , Ϙs

k)). In particular,
this will be true for any Galois action on k-algebras with Galois group G.

(ii) If G is an abelian group, then all the maps

L(C, Ϙ)hG → L((C, Ϙ)hG)
∧
I → L((C, Ϙ)hG)∧I → L(C, Ϙ)hG

are equivalences for all (C, Ϙ) ∈ Fun(BG, ModCatp(Modω
k , Ϙs

k)). In particular,
this will be true for any Galois action on k-algebras with Galois group G.

Proof. We just need to see that in either case, the hypotheses of the theorem are
satisfied. For (i), we know from Lemma 7.4.18 that the augmentation ideals are all
zero, and so in particular we do not need the completions in the statement. Fur-
thermore, by standard calculation, the Witt groups of finite fields are finite. Hence
all the hypotheses are satisfied. As for (ii), use the norm radical Lemma 7.4.17 to
get the hypothesis about augmentation ideals, and [ACH77] gives finiteness of all
the Witt groups in sight.



Concluding words

轻轻的我走了，正如我轻轻的来，

我轻轻的招手，作別西天的云彩。

徐志摩

There is a red thread running through a large swath of our work above, namely
the distinguished role that the prime 2 plays. As a convenient point of reference,
here are all the instances of this in this thesis:

(i) In proving that pointwise K–theory is equivalent to genuine equivariant K–
theory when G is a 2–group (cf. Theorem 4.3.19), we used that the univer-
sal property of algebraic K–theory is articulated in terms of certain pushout
squares, ie. diagrams indexed over (∆1)×2.

(ii) In showing that (−)tΣ2 of a G–bilinear functor is G–linear when G is an odd
group (cf. Corollary 3.5.3), we have used a double coset counting argument
which showed that when G is odd, the only self-inverse double coset is the
trivial one. This observation was important to us for two reasons: (a) it
allowed us to refine the Nikolaus-Scholze Σ2–Tate diagonal to genuine G–
spectra when G is odd, and we used this as an input to construct the uni-
versal G–Poincaré category in §7.1.7; (b) in the setting of genuine equivariant
hermitian K–theory, we also used the Tate linearity above to ensure that the
linear approximations to G–quadratic functors are automatically G–linear (cf.
Example 7.1.4).

(iii) For G = C2, we formulated a genuine equivariant periodicity for L–theory
with respect to the sign loops Ωσ in Theorem 7.4.11, where we exploited the
well-known special property of the group C2 in admitting a cofibre sequence
of C2–spaces C2+ → S0 → Sσ.
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Many natural questions suggest themselves from our investigations above, and
we conclude this thesis by recording some of these. For one, we think that it is very
desirable to have a more precise understanding of the difference between point-
wise equivariant algebraic K–theory and genuine equivariant algebraic K–theory.
In Corollary 4.3.20, we proved that these are the same when G is a 2–group, but
we do not presently know if they should be equivalent for general groups. As
explained above, the essential point is in whether or not algebraic K–theory satis-
fies descent against specific kinds of cubes. Therefore, as a first step, it would be
beneficial to probe the descent of algebraic K–theory for (C ↪→ C∆1

)⊗3 for suitable
C ∈ Catperf with sufficiently computable K(C).

While we are less sure of what to expect in the genuine equivariant algebraic
K–theory case above, we expect that Borel equivariant algebraic K–theory and
Grothendieck–Witt theory should admit the norms for all finite groups G and not
just for 2–groups. As in Chapter 5, Borel equivariance here pertains for example to
G–spectral Mackey functors such as {K(ChH)}H≤G for some C ∈ Catperf.

Besides that, we think that our work on genuine equivariant hermitian K–theory
has only scratched the surface to a potentially deeper story. For instance, while
the case of odd G worked smoothly, for that of even G we had to further impose
the inversion of the prime 2 at the cost of precluding any interesting “Tate-gluing”
data. We have recently learnt from Jay Shah about his joint work with J.D. Quigley
on parametrised Tate constructions [SQ22] which seems to give a good candidate
for the correct Tate constructions and this is something we would very much like
to explore in future work. Our belief is that the interface between the parity of |G|
and the distinctly Σ2–equivariant behaviour of Poincaré categories should only be
a wrinkle, but not a tear, in the fabric of hermitian K–theory, as it were.

Furthermore, the manoeuvre of algebraic surgery was a technique of central im-
port in [CDH+20c] as it allowed one to reduce many questions about L–theory to
a calculation in classical algebra. We expect that elaborating this aspect of equiv-
ariant L–theory might be a wellspring of much interesting work. Indeed, one of
our initial hopes was that one might be able to use algebraic surgery to prove new
induction theorems for equivariant L–theory in the sense of [Dre75].

Finally, apart from finding concrete cases where the nilpotence descent approach
in the speculative §7.4.2 might prove fruitful, another direction of work vis-à-vis L–
theory could be in studying equivariant L–theory coming from Galois extensions
of ring spectra. Since such Galois extensions were of fundamental importance in
classical Witt theory, we expect that it could be just as interesting, if not more so, in
the setting of higher algebra.
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