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Abstract (English)

This thesis is divided into two parts. In the first part, we prove an equivari-
ant generalization of the recognition principle: We show that for G a finite
group and V a G-representation, an EV -algebra in G-spaces is equivalent to
a V -fold loop space if and only if it is group-like. In the second part of this
thesis, we show that the category of orthogonal factorization systems embeds
fully faithfully into the category of double categories, a result which is used
to construct an equivariant symmetric monoidal structure on the category of
equivariant manifolds.

Abstract (Danish)

Denne afhandling er opdelt i to dele. I den første del beviser vi en ækvi-
variant generalisering af genkendelsesprincippet : Vi viser, at for en endelig
gruppe G og en G-repræsentation V , er en EV -algebra i G-rum ækvivalent
med et V -foldigt løkkerum, hvis og kun hvis den er grupplignende. I den
anden del af afhandlingen viser vi, at kategorien af ortogonale faktorisation-
ssystemer indlejres fuldt trofast i kategorien af dobbeltkategorier, et resultat
som anvendes til at konstruere en ækvivariant symmetrisk monoidal struktur
p̊a kategorien af ækvivariante mangfoldigheder.
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Introduction

Equivariant homotopy theory studies the behavior of homotopy coherent structures un-
der the additional action of a group. Such structures naturally occur in representation
theory as well as in geometry and topology. In many geometric settings, it is important
to organize the data in a way that preserves all the inherent coherences of the input.
This thesis consists of two parts, which address two different instances of this:

• Loop spaces: given a based space X, the homotopy group πn(X) is defined as
homotopy classes of maps from the sphere Sn to X. A more coherent way to
encode this data is to remember the loop space ΩnX = map∗(S

n, X) of X. In
fact, this loop space admits even more structure, namely the structure of an En-
algebra in spaces, remembering the ways to compose loops giving rise to the group
structure on πn(X).

• The category of manifolds and its symmetric monoidal structure: the category of
manifolds comes with a symmetric monoidal structure, given by disjoint union.
In the equivariant world, this structure extends to a normed structure, also keep-
ing track of inductions of manifolds along finite index subgroup inclusions and
compatibility with the restriction functors.

In the first part of this thesis, we explore the equivariant generalization of loop spaces
as En-algebras.

The second part of the thesis is a purely categorical result. As an application, we
discuss the construction of the aforementioned category of equivariant manifolds.

We now turn to a separate discussion of the two parts. We refer the reader to the
respective chapters for a self-contained introduction to each part, also containing precise
formulations of the theorems.

Part I: A genuine equivariant recognition principle for finite groups

We begin by recalling the non-equivariant case. Given a based space X, its n-fold
loop space naturally admits the structure of an algebra over the little disk operad En,
which is defined using framed embeddings of n-dimensional disks. This algebra structure
coherently encodes all the ways one can “compose” maps out of a sphere. On the set of
path components π0(Ω

nX) = πn(X), this algebra structure recovers the group structure
on the homotopy groups (for n ≥ 1).

May’s celebrated recognition principle provides a converse to this construction: An
En-algebra A in spaces is equivalent to an n-fold loop space ΩnX if A is group-like, i.e. if
the set of path components π0(A) is a group. If the space X is n-connective, we can
even recover the space from its loop space ΩnX as an En-algebra.
In this article, we study the equivariant generalization of this question. Given a finite-

dimensional G-representation V , we can define the V -fold loop space as the equivariant
space of pointed maps between SV , the one-point-compactification of V , and X. This
space naturally carries the structure of an EV -algebra, where EV is a G-operad defined
using embeddings of equivariant disks framed in V .
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An equivariant recognition principle asks for a list of sufficient conditions for an EV -
algebra to be equivalent to a V -fold loop space. If V ∼= W ⊕ R contains a trivial
summand, this question has been answered by May and Guillou [GM17], proving that
an EV -algebra is a V -fold loop space if and only if all fixed points are group-like.
If V does not contain a trivial summand, we face a new difficulty: The above statement

does not even make sense, as the fixed points AG of an EV -algebra A do not carry a
natural monoid structure.
We do however prove that the straightforward generalization of the recognition princi-

ple theorem holds: An EV -algebra A is a V -fold loop space if and only if AH is group-like
whenever dimV H ≥ 1 (and only then it even makes sense to impose that condition).
Similarly to May and Guillou, we reduce this recognition principle to the approxi-

mation theorem, stating that the free group-like EV -algebra on a based G-space X is
given by the V -fold loop space ΩV ΣV X. The original non-equivariant result is due to
Segal [Seg73] and the equivariant generalization in the case where V contains a trivial
summand is due to Hauschild [Hau80] and Rourke and Sanderson [RS00].

Part II: On orthogonal factorization systems and double categories

We motivate the results in this part through an application: our goal is to define an
equivariant version of the category of manifolds together with a normed structure, en-
coding compatibility between restriction, disjoint unions and inductions.
This construction will be used in forthcoming work with Natalie Stewart, generalizing

equivariant factorization homology from finite groups, due to Horev [Hor19], to compact
Lie groups. Such an extension requires as an input a category of equivariant manifolds
with a normed structure.
Classically, a symmetric monoidal functor is encoded by a product-preserving functor

Span(Fin) −→ Cat

from the category of spans in finite sets to the category of categories. The forward maps
are the ones encoding the multiplicative structure.
In the equivariant setting, we have to replace finite sets by disjoint unions of transitive

G-spaces. In particular, in the case of compact Lie groups, this will no longer be a 1-
category, but the mapping spaces come from the topological spaces of equivariant maps.
The symmetric monoidal category of manifolds is usually defined as the homotopy

coherent nerve of a symmetric monoidal topologically enriched category. This seems
to be hard to realize in the equivariant world: The analog of a symmetric monoidal
category also incorporates norm functors and we do not know of a construction defining
these norms as additional structure on a topologically enriched category.
One could instead try to write down a cocartesian fibration over the span category

and use the straightening/unstraightening equivalence. There is also a problem with this
strategy, as the span category does not admit a very natural model as a topologically
enriched category.
In order to deal with this difficulty, we instead would like to work with double cate-

gories, categories in which there are two different types of morphisms, horizontal and
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vertical ones. These two different types of morphisms cannot be composed with each
other, but there are squares witnessing compatibilities.

In the last part of this thesis, we show that orthogonal factorization systems embed
fully faithfully into double categories. Here, an orthogonal factorization system is addi-
tional structure on a category, equipping it with two classes of morphisms, so that any
morphism in the category can be factored uniquely.
We also identify certain fibrations of orthogonal factorization systems with fibrations

of double categories. Using this equivalence, we construct the category of manifolds as
follows:

• We write down a fibration of double categories. This can be implemented by taking
homotopy coherent nerves of topologically enriched categories as the two directions
are still “separated”.

• We then show that this fibration of double categories comes from a fibration of
orthogonal factorization systems. This enables us to pass from the world of double
categories to ordinary categories. Ultimately, this will lead to the fibration which
straightens to the category of manifolds.

Publication list

This thesis consists of two parts.

• An earlier version of the first part of this thesis has already appeared on the
preprint server arXiv [Jur25a].

• An earlier version of the second part has already appeared on the preprint server
arXiv [Jur25b]. The version in this thesis contains an appendix with an application
to equivariant homotopy theory which is part of joint work with Natalie Stewart.
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A genuine equivariant recognition principle
for finite groups

Branko Juran

For G a finite group and V a finite dimensional real G-representation, there
is a G-operad EV defined using embeddings of V -framed G-disks such that
for any based G-space X, there is a naturally defined EV -algebra structure
on the V -fold space ΩV X.
Given an EV -algebra in G-spaces and a subgroup H of G, the fixed points

AH carry the structure of an EdimV H -algebra in spaces. We prove that an EV -
algebra is equivalent to a V -fold loop space if and only if AH is group-like for
all H such that dimV H ≥ 1. This generalizes a result by Guillou and May by
removing the assumption that V contains a trivial summand. They observed
that the equivariant recognition principle follows from an equivariant version
of the approximation theorem, stating that ΩV ΣV X is the free group-like
EV -algebra on a based G-space X. This has been proven by Hauschild in
the case that V contains a trivial summand and by Rourke and Sanderson
in the case that X is G-connected. Our proof proceeds by showing that the
equivariant approximation theorem holds for all G-representations V and all
based G-spaces X.
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1 Introduction

When May [May72] introduced the notion of an operad, one of the main motivations was
to encode the multiplicative structure on the n-fold loop space ΩnX of a based space X
which gives rise to the multiplicative structure on the homotopy group πn(X) of that
space. This n-fold loop space ΩnX of a space X admits a homotopy-coherent multi-
plicative structure, making it an En-algebra in spaces. Those En-algebras later started
appearing in other contexts, including higher algebra and the study of configuration
spaces of manifolds.
One of the very first and fundamental results in the theory of those operads is May’s

recognition principle, classifying which of the En-algebras come from n-fold loop spaces:

Theorem (May). An En-algebra in spaces A is equivalent to an n-fold loop space if and
only if π0(A) is a group.

This was proven by May [May72] in the case that π0(A) is trivial (and in a different
framework by Boardman and Vogt [BV73]) and Segal [Seg73] provided the missing input,
the approximation theorem, to deduce the general case, as explained in [CLM76, pp. 487,
footnote 21]. The hard part is the “only if”-direction, showing that it suffices that π0(A)
is a group in order to construct a space BnA such that A ∼= ΩnBnA. The more detailed
version of the above theorem does that explicitly by constructing the delooping BnA
of an arbitrary En-algebra A and then shows that there is a natural map A → ΩnBnA
which is an equivalence if and only if π0(A) is a group. In general this map is the
so-called group completion, the initial map into an En-algebra for which π0 is a group.
The goal of this paper is to prove a genuine equivariant version of the above theorem,

generalizing previous conditional results by May and Guillou. We will study genuine
G-spaces, objects represented by topological spaces with an action of a finite group G.
The role of the En-operad is taken over by the G-operads EV where V can be any n-
dimensional real G-representation. Apart from applications to equivariant loop space
theory, these G-operads have been used to study equivariant factorization homology
[Hor19] [Zou23] [HKZ24], equivariant and real versions of topological Hochschild ho-
mology [Hor19] [Dot+21] and equivariant versions of the Hopkins-Mahowald theorem
[HW20] [Lev22].
Given a G-representation V and a based G-space X, we can consider the V -fold loop

space ΩV X, that is based maps from the one-point-compactification SV of V into X.
This V -fold loop space carries the structure of an EV -algebra. A genuine equivariant
recognition principle must find a list of necessary conditions on an EV -algebra to be
equivalent to a V -fold loop space. For a subgroup H of G, the fixed points AH of an
EV -algebra A carry the structure of an EdimV H -algebra in spaces. In particular, we only
obtain a monoid structure on π0(A

H) if dimV H ≥ 1. in the case that A = ΩV X is a
V -fold loop space, this monoid is a group. The goal of this paper is to show that this
necessary condition on A to be equivalent to a V -fold loop space is also sufficient.
Before we can state the main theorem, we need the following two definitions:

Definition. Let A be an EV -algebra in G-spaces. We say that A is group-like if π0(A
H)
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is a group for all H such that dimV H ≥ 1. We denote the full subcategory of group-like
EV -algebras by AlggrpEV

(S) ⊂ AlgEV
(S).

Given an EV -algebra A, we say that a map A → Agrp to another EV -algebra Agrp

exhibits Agrp as the group completion of A if it is an initial map to a group-like EV -
algebra.

Definition. For V a real G-representation, a based G-space X is called V -connective if
its H-fixed points XH are (dimV H − 1)-connected for every subgroup H of G.

We will now state the genuine equivariant recognition principle in the form which
also gives an explicit description of the group completion functor for non-group-like
EV -algebras.

Theorem A (Recognition principle). There is an adjunction

ΩV : SG∗ ⇆ AlgEV
(S) :BV

between the category of based G-spaces and the category of EV -algebras in G-spaces such
that

• For A an EV -algebra in G-spaces, the unit of the adjunction

A −→ ΩV BV A

is an equivalence if and only if A is group-like. In general, it exhibits the target as
the group completion of the source.

• For X a based G-spaces, the counit of the adjunction

BV ΩV X −→ X

is an equivalence if and only if X is V -connective. In general, it exhibits the source
as the V -connective cover of the target.

In particular, the above adjunction restricts to an equivalence of categories
(
SG∗
)
≥V
∼= AlggrpEV

(S)

between V -connective based G-spaces and group-like EV -algebras.

It is an easy consequence of this theorem that the free group-like EV -algebra on a based
G-space X must be given by the V -fold loop space ΩV ΣV X. Following May’s strategy of
using the monadicity theorem, it is actually possible to deduce the recognition principle
from this special case. We therefore first prove an equivariant version of the so-called
approximation theorem:

Theorem B (Approximation theorem). For X a based G-space, the natural map

FreeEV X −→ ΩV ΣV X

from the free EV -algebra on X to the V -fold loop space of the V -fold suspension of X
exhibits the target as the group completion of the source.
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The non-equivariant version of the approximation theorem is the aforementioned result
due to Segal [Seg73]. The equivariant version is known in the following two cases:
Hauschild [Hau80] proved it in the case that V contains a trivial summand, in which the
group completion can be computed by applying ΩB(−) on all fixed points. In the cited
paper, he only provides details for the case X = S0 but remarks that the general case
works similarly. Rourke and Sanderson [RS00] gave another proof of the same special
case and also proved the result for arbitrary V , provided that X is G-connected. In the
latter case, the left hand side already is group-like and the map appearing in Theorem B
is an equivalence. This was used by Guillou and May [GM17] to deduce Theorem A in
the same cases, i.e. if V contains a trivial summand or that the unit A→ ΩV BV A is an
equivalence if the EV -algebra A is connected. A version of the recognition principle for
G = C2 and V being the sign representation appeared in Stiennon’s thesis [Sti13] and
later in work by Moi [Moi20]. Both of them prove that a group-like simplicial monoid
with anti-involution models an equivariant loop space.

Proof strategy

We will now elaborate on the proof strategy of the equivariant approximation theorem
(Theorem B). The recognition principle (Theorem A) is a rather formal consequence of
this result using the monadicity theorem.
As mentioned earlier, the main difficulty is that for the subgroups H of G for which

V H = {0}, the fixed points AH of an EV -algebra A do not generally admit the structure
of an E1-algebra. In contrast to the case where V contains a trivial summand, this means
that the EV -group completion functor is not simply given by group completion on all
fixed points. However, we use that those H-fixed points are acted on by the fixed points

of the equivariant factorization homology
(∫

V \{0}A
)H

.

In order to study the behavior of the group completion on those two types of fixed
points separately, we define a G-operad Ei,e

V which lies in between E0 and EV . For

subgroups H such that dimV H ≥ 1, the collection of H-fixed points of an Ei,e
V -algebra

have the same structure as for an EV -algebra. However, for the H-fixed points for H
such that dimV H = 0, they really only admit the structure of an E0-algebra in spaces
without an action of the equivariant factorization homology.
Using this, we can split up the computation of the free group-like EV -algebra into

three steps: We first compute the free Ei,e
V -algebra on X, then its group completion as

an Ei,e
V -algebra and finally the free EV -algebra on that group completed Ei,e

V -algebra.
For the first step, we use the explicit formula for a free algebra for an operad to see

that the H-fixed points with dimV H ≥ 1 of the free Ei,e
V -algebra on a based G-space X

are given by a certain equivariant configuration space with labels in X. Moreover, the
H-fixed points for H with dimV H = 0 are just given by XH .
In the second step, we use that the condition dimV H ≥ 1 is equivalent to H-

representation resGHV containing a trivial summand. We might therefore use the ap-
proximation theorem of Hauschild [Hau80] to deduce that the H-fixed points of the

Ei,e
V -group completion of the free Ei,e

V -algebra on X are equivalent to
(
ΩV ΣV X

)H
. More-
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over, the group completion does not change the other H-fixed points at all.
In the third and final step, we have to compute the free EV -algebra on that group

completed Ei,e
V -algebra. This time, this will not change any H-fixed points for which

dimV H ≥ 1. Using that this holds for all H appearing as isotropy groups of the G-
manifold V \ {0} and our previous computation, we will see that the H-fixed points for
dimV H = 0 are equipped with a free action of the equivariant factorization homology(∫

V \{0}Ω
V ΣV X

)H
. Finally, we will use equivariant nonabelian Poincaré duality, due

to Horev, Klang and Zou, [HKZ24] to compute this factorization homology.
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2 Preliminaries

Throughout this paper, we fix a finite group G and an n-dimensional real G-representa-
tion V .

2.1 G-symmetric monoidal G-categories and G-operads

We use the theory of ∞-categories as developed by Lurie in [Lur09] and [Lur17]. We
use the term category to refer to an ∞-category. The category of spaces (or animae,
homotopy types, ...) is denoted by S. Moreover, we use the theory of parameterized
homotopy theory developed by Barwick, Glasman, Dotto, Nardin and Shah [Bar+16]
and in particular parameterized operads as developed by Nardin and Shah in [Sha23] and
[NS22]. In particular, we assume the reader to be familiar with G-symmetric monoidal
G-categories and G-operads.
We will mostly omit the G from the notation and underline categories to indicate that

they are parameterized, e.g. the G-category of (genuine) G-spaces is denoted by S, its
based version by S∗. Their fixed point categories SG = SG and SG∗ = SG∗ then recover
the categories of (genuine) G-spaces and based (genuine) G-spaces, respectively.
For C a G-symmetric monoidal G-category and K ⊂ H nested subgroups of G, we use

the notation NmH
K : CK −→ CH for its norm functor.

We denote the category of G-operads by OpG and the category of G-symmetric
monoidal G-categories and G-symmetric monoidal functors by CatG−⊗.
The inclusion CatG−⊗ → OpG admits a left adjoint, the G-envelope functor

Env : OpG −→ CatG−⊗ .
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Using that theG-envelope of the terminalG-operad is given by theG-symmetric monoidal
G-category of finite G-sets Fin with its cocartesian G-symmetric monoidal structure, this
functor factors through the slice category CatG−⊗

/Fin. We will make use of the following
theorem:

Theorem 2.1 (Barkan, Haugseng, Steinebrunner [BHS24, Cor. 5.2.15, Lem. 5.2.16]).
The G-envelope functor induces a fully faithful functor

OpG −→ CatG−⊗
/Fin

from the category of G-operads to the slice category of G-symmetric monoidal G-categories
and G-symmetric monoidal functors over the G-symmetric monoidal G-category of fi-
nite G-sets Fin. The essential image is spanned by the G-symmetric monoidal functors
F : C → Fin such that the squares

CH × CH CH

FinH × FinH FinH

⊗

FH×FH FH

⊔

and

CK CH

FinK FinH

NmH
K

FK FH

H×K(−)

are pullbacks for all nested subgroups K ⊂ H of G.

Remark 2.2. The above theorem in particular implies the following: Given a G-operad
O, for a (not necessarily full) G-symmetric monoidal G-subcategory C of a Env(O),
the functor C ⊂ Env(O) → FinG is contained in the essential image of the G-envelope
functor from Theorem 2.1 if the following holds true for all nested subgroups K ⊂ H:

• For all f : c→ c′ and g : d→ d′ in Env(O)H : If f ⊗ g : c⊗ d→ c′ ⊗ d′ is contained
in CH , then so are f and g (and in particular their source and target).

• For all f : c → c′ in Env(O)K : If NmH
K(f) : NmH

K(c) → NmH
K(c′) is in CH , then f

is in CK (and in particular its source and target)

Using the above theorem and in particular the remark, we will not work with G-
operads directly but rather replace them with their G-envelope.
Given a G-symmetric monoidal G-category C and a G-operad O, we write

AlgO(C) = FunOpG(O, C) ∼= FunG−⊗(Env(O), C)

for the category of O-algebras in C. This category is the fixed point category of a
G-category of algebras.
The following result gives an explicit formula for computing free algebras:

Proposition 2.3. Let f : O → P be a map of G-operads. Then precomposition

f∗ : AlgP(S) −→ AlgO(S)
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admits a left adjoint, which can be computed as a left Kan extension of the induced maps
out of the G-envelope, i.e. the Beck Chevalley transform of the following diagram is
invertible, making the diagram commute:

AlgO(S) AlgP(S)

Fun(Env(O),S) Fun(Env(P),S)

f!

Env(f)!

where the upper arrow is the so-called operadic left Kan extension along f , the bottom
arrow is left Kan extension along the underlying functor of Env(f) and the vertical
arrows are forgetful functors.

Proof. This is a special case of [LLP25, Lem. 3.45], using that theG-category ofG-spaces
is distributive.

Given a G-operad O, write col(O) for its G-category of colors. Finally, we recall the
following proposition. We write

fgtO : AlgO(S) −→ Fun(col(O),S)

for the forgetful functor.

Proposition 2.4 ([NS22, Thm. 5.1.4(2), Cor. 5.1.5]). For O a G-operad, the forgetful
functor

fgtO : AlgO(S) −→ Fun(col(O),S)
is a conservative right adjoint preserving geometric realizations. In particular, it is
monadic.

2.2 The equivariant little disk operad EV , V -fold loop spaces and
equivariant nonabelian Poincaré duality

We will now turn towards more geometric constructions. We will recall the construction
of the equivariant little disk operad EV and how to realize loop spaces as algebras over
those G-operads. We will then recall the statement of nonabelian Poincaré duality.
The G-symmetric monoidal G-category of n-dimensional G-manifolds from [Hor19] is

denoted by Man. Its V -framed version is denoted by ManV . The G-symmetric monoidal
subcategory of finite disjoint unions of V -framed G-disks will be denoted by DiskV . The
G-symmetric monoidal functor DiskV → Fin sending a disk to its G-set of equivariant
path components is contained in the essential image of the sliced G-envelope functor from
Theorem 2.1, so that DiskV is the G-envelope of a G-operad EV , see [Hor19, Prop. 3.7.4,
Prop. 3.9.8]. Given another G-symmetric monoidal G-category C, we might therefore
write

AlgEV
(C) = FunG−⊗(DiskV , C)
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for the category of EV -algebras in C. Let us start with some general observations about
these little disk operads, starting with a non-equivariant description of EV -algebras for
V being the trivial representation. For n ≥ 0, let trivn denote the n-dimensional trivial
representation. Let Diskn denote the non-equivariant category of n-dimensional framed
disks. Then there is a functor Diskn → (Disktrivn)

G into the category of G-disks framed
in trivn, equipping a disk with trivial G-action.

Lemma 2.5 ([Hor19, Lem. 7.2.1]). Let C be a G-symmetric monoidal G-category. The
functor

AlgEtrivn
(C)

∼= FunG−⊗(Disktrivn , C)
(−)G−−−→ Fun⊗

(
(Disktrivn)

G, CG
)

−→ Fun⊗
(
Diskn, CG

) ∼= AlgEn

(
CG
)

is an equivalence.

We will implicitly use this proposition to identify based G-spaces with E0-algebras in
G-spaces.
More generally, there is a functor DiskdimV H → DiskHV equipping a dimV H -dimensional

non-equivariant disk with the trivial H-action and then taking products with the orthog-
onal complement of V H in V . This induces a functor

(−)H : AlgEV
(C) −→ AlgE

V H

(
CH
)

where we write EV H for the non-equivariant operad EdimV H to emphasize the functori-
ality.
The little disk operads are functorial in representations, so that the inclusion 0 → V

induces a forgetful functor

AlgEV
(S) −→ AlgE0

(S) ∼= SG∗ .

This functor can also be described by evaluating the strong symmetric monoidal functor
DiskV → S at V ∈ DiskGV , giving a G-space which admits a base point coming from the
unique map from the empty disk into V . We denote the left adjoint of this functor by

FreeEV : SG∗ −→ AlgEV
(S) ,

omitting the E0 from the notation.
We will now discuss group-like algebras. Recall that for n ≥ 1 and A an En-algebra in

spaces, π0(A) naturally admits the structure of a monoid in sets (commutative if n ≥ 2)
and that A is called group-like if that monoid is a group. Let us recall the following
definition from the introduction:

Definition 2.6. Let A be an EV -algebra in S. We say that A is group-like if π0(A
H) is

a group for all H such that dimV H ≥ 1. We denote the full subcategory of group-like
EV -algebras by AlggrpEV

(S) ⊂ AlgEV
(S).
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Finally, we note that the existence of some group completion functor for EV -algebras
can be proven formally:

Proposition 2.7. The inclusion

AlggrpEV
(S) −→ AlgEV

(S)

admits a left adjoint.

Proof. The subcategory of group-like functors can be written as the class of local objects
with respect to the set of morphisms corepresenting the shearing maps onH-fixed points,
so the claim follows from [Lur09, Prop. 5.5.4.15].

Notation 2.8. We denote the left adjoint to the inclusion described in Proposition 2.7
by

GrpComplEV : AlgEV
(S) −→ AlggrpEV

(S)
and call it the group completion.

The problem hence is not to show the existence of this functor, but to explicitly
compute it. Next, we will explain how to construct an EV -algebra structure on a V -fold
loop space.

Construction 2.9. The following construction is discussed in detail in [HKZ24, Sec.
2.3], where the reader might find more details. There is a G-symmetric monoidal functor

(−)+ : (Man)⊔ −→ ((S∗)op)∨

where the target is equipped with the cartesian monoidal structure in the opposite G-
category of G-spaces, i.e. the wedge product/induction. It sends a manifold to the
homotopy type of its one point compactification and a map to its induced collapse map.

Construction 2.10. We will now recall the definition of the V -fold loop space functor
from [HKZ24, Def. 6.2.1]. It is defined to be the composite

ΩV : SG∗ −→ FunG−⊗(((S∗)∨
)op

, (S)×
)
−→ FunG−⊗(DiskV , (S)×

)
.

Here, the first functor is the Yoneda embedding. As any representable functor preserves
G-limits, it indeed naturally factors through the category of G-symmetric monoidal
functor from (S∗)op and S equipped with their respective cartesian symmetric monoidal
structure from [Sha23, Prop. 5.12]. The second functor is the restriction along the G-
symmetric forgetful functor DiskV ↪→ ManV → Man and the functor Man → ((S∗)∨)op
from Construction 2.9.

Finally, we discuss equivariant factorization homology. We restrict our attention to
factorization homology with values in the G-category of G-spaces.
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Definition 2.11. We define the equivariant factorization homology as the left Kan
extension along the inclusion DiskV ⊂ ManV :

∫
: AlgEV

(S) ∼= FunG−⊗(DiskV ,S) −→ FunG(DiskV ,S) −→ FunG(ManV ,S) ,

that is for A an EV -algebra in S and M a V -framed manifold, the equivariant factoriza-
tion homology of A over M is given by:

∫

M
A ∼= colim

(
DiskV /M −→ DiskV

A−−→ S
)

Remark 2.12. Using a lemma similar to Proposition 2.3 (essentially [LLP25, Thm.
3.39]), Horev shows that this Kan extension naturally admits a G-symmetric monoidal
structure. We will not make use of this enhancement.

Construction 2.13. Let X be a based G-space and let M be a V -framed manifold, we
will recall from [HKZ24] how to construct a natural map

∫

M
ΩV X −→ map∗(M

+, X)

of G-spaces. It follows from Construction 2.10 that ΩV X : DiskV −→ S can actually be
extended to a functor out of ManV such that the value at M is map∗(M

+, X). It hence
follows that there is a natural transformation

(
DiskV /M −→ DiskV

ΩV X−−−→ S
)

=⇒ constmap∗(M
+, X) , .

The natural map we wanted to construct now arises by using the universal property of
parameterized colimits.

Before we state equivariant nonabelian Poincaré duality, let us recall the following
definition from the introduction:

Definition 2.14. A based G-space X is called V -connective if its H-fixed points XH

are (dimV H − 1)-connected for every subgroup H of G. We write (SG∗ )≥V ⊂ SG∗ for the
full subcategory of V -connective spaces.

Theorem 2.15 ([HKZ24, Thm. 4.0.1], equivariant nonabelian Poincaré duality). For
X a V -connective based G-space and M a V -framed manifold, the natural map from
Construction 2.13 ∫

M
ΩV X −→ map∗(M

+, X)

is an equivalence of G-spaces.

3 The approximation theorem

In this section, we will prove the approximation theorem. We recommend the reader to
recall the proof strategy from the introduction.

19



3.1 Factoring the free group-like functor

In this subsection, we will introduce the intermediate G-operads E0 ⊂ Ei
V ⊂ Ei,e

V ⊂ EV ,
the latter one we informally described when explaining the strategy of the proof in the
introduction.
Let us introduce a terminology for the subgroups of H of G for which AH admits a

monoid structure for A an EV -algebra.

Definition 3.1. For V a G-representation, we say that a subgroup H of G is V -isotropy
if dimV H ≥ 1.

We will now define the operad Ei,e
V ⊂ EV . The idea is that in this operad, we do not

allow for any operations going from V -isotropy subgroups to subgroups which are not
V -isotropy.

Definition 3.2. Let Diski,eV ⊂ DiskV (the “i.e” stand for isotropy, extended) denote
the non-full G-symmetric monoidal subcategory spanned by all objects but on H-fixed
points, but we only take those embeddings f : D1 → D2 of resGHV -framed H-disks such
that for an H-path component D ⊂ D2 such that DK ̸= ∅ for some non-V -isotropy
K < H, the same is true for all path components in f−1(D).
We can use Remark 2.2 to see that this is an enveloping algebra of a G-operad with a

map to EV which we will denote by Ei,e
V . We therefore denote the category of Ei,e

V -algebras
in a G-symmetric monoidal G-category C by

AlgEi,e
V
(C) = FunG,⊗

(
Diski,eV , C

)
.

It will also be helpful to have the following operad, which does not remember any
fixed point data for subgroups which are not V -isotropy.

Definition 3.3. We write DiskiV (the “i” stands for isotropy) for the full G-symmetric
monoidal subcategory of DiskV (and Diski,eV ) spanned on H-fixed points by all H-disks
for which all isotropy groups are V -isotropy. Using Remark 2.2, we see that this again
is an enveloping algebra of a G-operad with a map to Ei,e

V which we will denote by Ei
V .

For C a G-symmetric monoidal G-category, we hence write

AlgEi
V
(C) = FunG,⊗(DiskiV , C

)

for the category of Ei
V -algebras in C.

Finally, let us introduce the corresponding notion of group-like algebras for those
operads and record that group completion exists. (Even though in this case we will
construct those group completions in the proofs of Proposition 3.10 and Proposition 3.12
directly without assuming its a priori existence anyway.)

Definition 3.4. Following our conventions for the EV -operad, given an Ei,e
V -algebra A,

we write AH for the based space obtained by taking H-fixed points of the H-space
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which is given by evaluating the G-symmetric monoidal functor Diski,eV → S at the H-
disk resGHV , receiving a base point from the unique map from the empty disk into resGHV .
If H is V -isotropy, then these fixed points admit a natural EV H -algebra structure and
this already is well-defined for an Ei

V -algebra. We call a Ei,e
V - (or Ei

V -)algebra in spaces A
group-like if AH is group-like for allH which are V -isotropy and denote the corresponding
subcategories of group-like algebras by Alggrp

Ei,e
V

(S) and AlggrpEi
V
(S), respectively. The same

argument as in the proof of Proposition 2.7 shows that there are left adjoints to the
inclusions which we will denote by

GrpComplE
i,e
V : AlgEi,e

V
(S) −→ Alggrp

Ei,e
V

(S)

and

GrpComplE
i
V : AlgEi

V
(S) −→ AlggrpEi

V
(S) .

Before we get into the proof, let us record the following fact, which will be useful in
order to deal with the V -fold loop space functor:

Proposition 3.5. The V -fold loop space functor

ΩV : (SG∗ )≥V −→ SG∗
from V -connective based G-spaces to based G-spaces is conservative and commutes with
geometric realizations.

Proof. The claim about geometric realizations is proven in [CW91, Lem. 5.4].
Let us turn to the conservativity claim. If V = W ⊕ R contains a trivial summand,

we might write ΩV = ΩW ◦ Ω and reduce to the same claim for W . We might hence
assume that V is fixed point free.
Let f : X → Y be a map of V -connective G-spaces such that ΩV f : ΩV X → ΩV Y

is an equivalence. By inducting on the size of the group G, we might assume that
fH : XH → Y H is an equivalence for all proper subgroups H of G. Now consider the
cofiber sequence

S(V )+ −→ S0 −→ SV .

Mapping into f : X → Y yields a map between fiber sequences

(ΩV X)G XG map(S(V ), X)G

(ΩV Y )G Y G map(S(V ), Y )G

The right hand map is an equivalence because S(V ) does not have G-fixed points, and we
already assumed that f is an equivalence on fixed points for all proper subgroups. The
left hand map is an equivalence by assumption. Finally, S(V ) admits an equivariant
cell structures with H-cells at most of dimension dimV H − 1. By cell induction, we
conclude that any map from S(V ) into a V -connective space must be trivial. It follows
that the base space of the two fibrations is connected and we can conclude that the map
fG : XG → Y G is an equivalence, as desired.
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From this we deduce:

Lemma 3.6. The V -fold loop space functor

ΩV : (SG
∗ )≥V −→ AlgEV

(S)

commutes with geometric realizations. The same holds when replacing EV with Ei
V .

Proof. This follows from combining Proposition 2.4 and Proposition 3.5.

Lemma 3.7. The H-fixed point functors

(−)H : AlgEV
(S)→ AlgE

V H
(S)

commutes with geometric realizations. The same is true when replacing EV with Ei
V .

Proof. This follows immediately from Proposition 2.4, as geometric realizations in both
categories can be computed after applying the forgetful functor to G-spaces or spaces,
respectively. For G-spaces, the H-fixed point functor commutes with all colimits.

3.2 Group completion for Ei
V -algebras

As a first step, we will describe the group completion functor for Ei
V -algebras, this step

will be the main input to compute the effect of group completion on an EV -algebra
on H-fixed points for H a V -isotropy subgroup. The following proposition is the main
geometric input we are using:

Theorem 3.8 (Hauschild). Let X be a based G-space and H a V -isotropy subgroup of
G. Then the natural map

GrpComplEV H

(
FreeE

i
V X
)H
−→

(
fgtEV

Ei
V
ΩV ΣV X

)H

is an equivalence of EV H -algebras.

Proof. As all functors and adjunctions used in this statement are parameterized, we can
assume, without loss of generality, that H = G and Ei

V = EV because G has V -isotropy
or, equivalently, V contains a trivial summand.
We will first argue, why this formula holds for X = Y+ a based space obtained by

adding a disjoint base point. In this case, we might use [Ste25, Rem. 2.72] to identify

(
FreeE

i
V Y+

)G ∼=
∐

A∈FinG
(EV (A)×map(A, Y ))hAut(A)

where
EV (A) = Emb(⊕AV, V ) ≃ ConfA(V ) .

is the space of ordered equivariant configurations A → V . Modeling Y by a G-CW-
complex and computing the product and the homotopy quotient, which can be computed
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as a quotient, as the action is free, in the category of topological spaces, we see that(
FreeE

i
V Y+

)G
is modeled by the space of unordered equivariant configurations in V ,

labeled in Y . This space is homeomorphic to the G-fixed points of the configuration
space with its induced action, as defined in [RS00]. A proof of this homeomorphism for
the non-labeled version can be found in [BQV23, Prop. 3.2.10] and the same arguments
apply in the case with labels. The loop space ΩV ΣV Y+ can also be modeled by the space
of maps of topological spaces from SV to ΣV Y+. Under those identifications the result
appears in [RS00]. It is originally due to Hauschild [Hau80], even though the published
version only discusses the case X = S0.
Finally, we can deduce the based version from the non-based version, as the bar

construction for E0 provides a presentation of any based space as a geometric realization
of spaces of the form Y+. Moreover, all functors in question commute with geometric
realizations by Lemma 3.7 and Lemma 3.6.

Remark 3.9. We could have avoided the extra step of deducing the formula for based
G-spaces from the one for based G-spaces, as computing the free objects on unbased G-
spaces is enough to deduce the recognition principle Theorem A, which in turn implies
the approximation theorem Theorem B also for based G-spaces. However, we decided
that it is more natural to provide a proof of the approximation theorem for based G-
spaces directly.

We use the above result to deduce that group completion of Ei
V -algebras is computed

pointwise:

Proposition 3.10. Let H be a V -isotropy and let A be an Ei
V -algebra. Then the natural

map

GrpComplEV HAH −→
(
GrpComplE

i
V A
)H

is an equivalence of Ei
V -algebras.

Proof. We do construct the group completion functor directly. The functor

ΩV : (SG∗ )≥V −→ AlgEi
V
(S)

commutes with limits as those are computed pointwise by Proposition 2.4 and with
filtered colimits as it does with sifted colimits, which can be seen as in Lemma 3.6.
(Here, we abbreviated the functor fgtEV

Ei
V
◦ΩV by ΩV ). By [Lur09, Cor. 5.5.2.9], it hence

does admit a left adjoint
BV : AlgEi,e

V
(S) −→ (SG∗ )≥V .

We will prove that the unit
A −→ ΩV BV A

is a group completion on all fixed points. This hence is a natural transformation for
which the target always is group-like and an equivalence if the source is group-like. It
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does follow that ΩV BV does compute the group completion as well as that this group
completion is computed pointwise.
If A = FreeE

i
V X for a based G-space X, we find that BV FreeE

i
V X ∼= ΣV X, so that

the claim is precisely the content of Theorem 3.8.
We will now write a general Ei

V -algebra A as a colimit of free algebras to reduce to
this case. As we already know that the forgetful functor is monadic, we can consider the
Bar construction Bar(A) : ∆op → AlgEi

V
(S) from [Lur17, Exa. 4.7.2.7] which resolves A

by free Ei
V -algebras, so that A ∼= colim∆op Bar(A).

Consider the diagram of EV H -algebras in spaces:

AH
(
ΩV BV A

)H

colim∆op

(
Bar(A)H

)
colim∆op

((
ΩV BV Bar(A)

)H)

where the horizontal arrows are induced by the unit of the adjunction and the vertical
ones are assembly maps for the colimit. As the left adjoint BV commutes with all
colimits and Lemma 3.7 and Lemma 3.6 say that ΩV and H-fixed points commute with
geometric realizations too, we learn that the vertical morphisms are equivalences.
Now recall that Bar(A) is a resolution of A by free algebras, for which we already

argued above using Theorem 3.8 that the unit is a group completion on H-fixed points.
We therefore presented the H-fixed points of the unit as a colimit of pointwise group
completions and conclude that it is a group completion, which finishes the proof.

3.3 Group completion for Ei,e
V -algebras

In order to describe group completions for Ei,e
V -algebra, we want to use that such an

algebra really just consists of the data of an Ei
V -algebra together with a refinement of

the underlying Ei
0-algebra to an E0-algebra. We prove this in the special case of interest

for us, for algebras in G-spaces.

Lemma 3.11. Let SG,i
∗ denote the category of based G-spaces with isotropy concentrated

in V -isotropy subgroups, i.e. presheaves on the subcategory of the orbit category spanned
by the corresponding orbits. The commutative diagram

AlgEi,e
V
(S) AlgEi

V
(S)

SG∗ SG,i
∗

fgt
Ei,e
V

Ei
V

fgt
Ei,e
V fgtE

i
V

fgt

is a pullback.
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Proof. We want to apply the monadicity theorem. We start by providing a description
of the left adjoint to

pr2 : AlgEi
V
(S)×SG,i

∗
SG∗ −→ SG∗ .

Let Freei : SG,i
∗ −→ SG∗ denote the fully faithful left adjoint to the forgetful functor.

Given X a based G-space, let FX be defined to be the pushout

FreeifgtiX X

FreeifgtE
i
V FreeE

i
V fgtiX FX

(1)

where the upper map is the counit and the lower map is Freei applied to the unit.
Then, using that fgti is fully faithful and preserves pushouts, one verifies that the lower
map induces an equivalence fgtiFX ∼= fgtE

i
V FreeE

i
V fgtiX, so that (FreeE

i
V fgtiX,FX)

lifts to an object in AlgEi
V
(S) ×SG,i

∗
SG∗ . We claim that the right arrow in the above

square exhibits this object as the left adjoint object to X under pr2. This follows from
a computation of mapping spaces in pullback categories which we leave to the reader.
Let us now apply the monadicity theorem to the following diagram:

AlgEi,e
V
(S) AlgEi

V
(S)×SG,i

∗
SG∗

SG

(
fgt

Ei,e
V

Ei
V

,fgt
Ei,e
V

E0

)

fgt
Ei,e
V

fgt◦pr2

Both functors are monadic by Proposition 2.4, as the right hand side is the category of
algebras over the pushout E0 ← Ei

0 → Ei
V .

Now we need to show that the top map preserves free objects. Let

Free : SG∗ −→ AlgEi
V
(S)×SG,i

∗
SG∗

denote the adjoint of pr2 which we constructed above. It is enough to show that for any
based G-space X, the natural map

Free(X) −→
(
fgt

Ei,e
V

Ei
V
, fgtE

i,e
V

)(
FreeE

i,e
V X

)
(2)

is an equivalence. This can be checked on H-fixed points for H all subgroups of G. As
all the functors in question come from parameterized adjunctions, we might moreover
assume that H = G. If G itself is V -isotropy, the statement becomes trivial as Ei

V = Ei,e
V .

So, we are left with the case where G is not V -isotropy, i.e. V G = {0}. Here, we use
that the left arrow in (1) becomes an equivalence after applying G-fixed points, as Freei

just inserts the initial object ∗ on all fixed points which are not V -isotropy. We conclude
that (Free(X))G ≃ XG and unwinding definitions, we are left to show that

XG −→
(
FreeE

i,e
V X

)G
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is an equivalence. This follows from the formula for the free algebra from Proposition 2.3,
using that in the category Diski,eV , the only G-disks which embed into V , are the disk
itself and the empty disk.

Now we are ready to prove that group completion for Ei,e
V -algebras coincides with

group completion on Ei
V -algebras on H-fixed points for H a V -isotropy subgroup and

just does not change anything on all other fixed points:

Proposition 3.12. Let A be a Ei,e
V -algebra and H a subgroup of G.

• If H is V -isotropy, then the natural map

GrpComplEV HAH −→
(
GrpComplE

i,e
V A
)H

is an equivalence of EV H -algebras.

• If H is not V -isotropy, then the unit on H-fixed points

AH −→
(
GrpComplE

i,e
V A
)H

is an equivalence of based spaces.

Proof. We will construct the group completion explicitly and check that it has the desired
properties. For this we use the equivalence

AlgEi,e
V
(S) ∼= AlgEi

V
(S)×SG,i

∗
SG∗

from Lemma 3.11 which restricts to an equivalence

Alggrp
Ei,e
V

(S) ∼= AlggrpEi
V
(S)×SG,i

∗
SG∗ .

Given
(A,φ : fgtE

i
V A ∼= fgtiX,X) ∈ AlgEi

V
(S)×SG,i

∗
SG∗ ,

we construct its group completion as follows: Its underlying Ei
V -algebra is given by

GrpComplE
i
V A. Its underlying G-space is defined to be the pushout P of

Freei(fgtE
i
V A) X

Freei(fgtE
i
V GrpComplE

i
V A) P

Here Freei : SG,i
∗ → SG∗ denotes the left adjoint to the forgetful functor. The left map

is the unit of the group completion adjunction. The upper map is the counit of the
forgetful free adjunction, using the equivalence φ : fgtE

i
V A ∼= fgtiX.
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Moreover, the upper map becomes an equivalence after applying fgti : SG∗ → SG,i
∗ , so

that the lower map gives an equivalence

φ̄ : fgtE
i
V GrpComplE

i
V A ∼= fgtiFreeifgtE

i
V GrpComplE

i
V A ∼= fgtiP ,

so that we obtain an element

(GrpComplE
i
V A, φ̄, P ) ∈ AlgEi

V
(S)×SG,i

∗
SG∗ .

Now we have maps X → P and A → GrpComplE
i
V A and by construction, a homo-

topy witnessing compatibility of the equivalences φ and φ̄ after applying fgti or fgtE
i
V ,

respectively, i.e. we constructed a map

(A,φ,X) −→ (GrpComplE
i
V A, φ̄, P ) .

Moreover, all this constructions can be made functorially, so that we constructed a
natural transformation from any element in AlgEi

V
(S) ×SG,i

∗
SG∗ into a group-like ele-

ment which is an equivalence if the source was group-like. It follows that this natural
transformation exhibits the target as the group completion of the source. It moreover
follows that this group completion is an equivalence on fixed points which are not V -
isotropy and is given by group completion of the underlying Ei

V -algebra on the fixed

points which are V -isotropy. Finally, it follows that this Ei,e
V -group completion is given

by (non-equivariant) group completion on those fixed points by Proposition 3.10.

3.4 The free EV -algebra on an Ei,e
V -algebra

In this section, we will compute the free EV -algebra on an Ei,e
V -algebra A. The main

observation is that the H-fixed points AH for H not V -isotropy are acted on by the H-
fixed points of the equivariant factorization homology

∫
V \{0}A and that this is somehow

“the only additional structure”, as the H-fixed points of the free EV -algebra on A will

be the free
(∫

V \{0}A
)H

-space on AH .

Construction 3.13. As already explained in [Lev22, Cor. 2.2], for A an EV -algebra

and H a subgroup which is not V -isotropy, there is a natural
(∫

V \{0}A
)
-action on

A. It can be constructed as follows: The natural E1-structure on R in Man (one-
dimensional manifolds, in that case), gives rise to an E1-structure on V \ {0} ∼= R ×
S(V ) in ManGV (even though this product is not a product as framed manifolds, the
necessary embeddings are framed). Moreover, the V is a module over V \ {0}. Applying
factorization homology then yields the action.

Proposition 3.14. Let A be an Ei,e
V -algebra in G-spaces and let H be a subgroup of G.

• If H is V -isotropy, then the induced map on H-fixed points of the unit

AH −→
(
FreeEV

Ei,e
V

A

)H

is an equivalence of EV H -algebras.
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• If H is not V -isotropy, then by Construction 3.13,

(
FreeEV

Ei,e
V

A

)H

has a natural

(∫
resGHV \{0}A

)H
-action, so that the unit uniquely extends to a

(∫
resGHV \{0}A

)H
-

equivariant map

(∫

resGHV \{0}
A

)H

×AH −→
(
FreeEV

Ei,e
V

A

)H

.

out of the free
(∫

resGHV \{0}A
)H

-space on AH . This map is an equivalence.

Proof. As all the adjunctions in question are parameterized, we might assume that H =
G. The first part then becomes trivial as Ei

V = Ei,e
V in case that G is V -isotropy.

We might therefore assume that G is not V -isotropy. Consider the functor

− ⊔ (V
id−→ V ) :

(
DiskiV ×DiskV

DiskV /V

)G
−→

(
Diski,eV ×DiskV

DiskV /V

)G

adding one copy of V with the identity structure map to V . We claim that the functor
is cofinal. Indeed, using that in (Diski,eV )G only the empty disk and V map into V , one
sees that the functor is fully faithful. Using the same observation, one can also check
that every object in the target has an initial morphism to one from the source (adding
a disk if necessary), so that the functor is even a right adjoint inclusion.
Now we apply Proposition 2.3 to find:

(
Free

EV

Ei,e
V

A

)
(V )G

∼=colim
(
Diski,eV ×DiskV

DiskV /V → Diski,eV
A−→ S

)G

∼=colim

((
Diski,eV ×DiskV

DiskV /V

)G
→
(
Diski,eV

)G AG

−−→ SG (−)G−−−−→ S
)

∼=colim

((
DiskiV ×DiskV

DiskV /V

)G ⊔V−−→
(
Diski,eV ×DiskV

DiskV

)G
→ (Diski,eV )G

AG

−−→ SG (−)G−−−−→ S
)

∼=colim

((
DiskiV ×DiskV

DiskV /V

)G
→
(
DiskiV

)G AG

−−→ SG (−)G−−−−→ S ×A(V )G−−−−−−→ S
)

∼=colim

((
DiskiV ×DiskV

DiskV /V

)G
→
(
DiskiV

)G AG

−−→ S (−)G−−−−→
)

×A(V )G

∼=
(∫

V \{0}
A

)G

×A(V )G

Here, we also used the fact [Sha23, Prop. 5.5] that the G-fixed points of a G-colimit of
a functor C → S is naturally equivalent to the colimit of CG → SG → S where the last
functor is taking G-fixed points.
For the last isomorphism, we also used that the isotropy groups of V \ {0} are V -

isotropy and, moreover, any embedding of a V -isotropy disks into V automatically lands
in V \ {0}. It follows that the inclusion V \ {0} ↪→ V induces an equivalence

(
DiskV /V \{0}

)G
≃
(
DiskiV ×DiskV

DiskV /V

)G
.
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The colimit over the left hand side is, again by [Sha23, Prop. 5.5], the fixed points of the
equivariant factorization homology. The inclusion V \ {0} → V is also the one used to
define the action of the factorization homology on the fixed points in Construction 3.13,
so the isomorphism is the one induced by the action.

3.5 Assembling the argument

We are now ready to prove the approximation theorem by computing the free group-like
EV -algebra on a based space X. As explained in the proof strategy, we will first compute
the free Ei,e

V -algebra on X, then determine its group completion using Proposition 3.12
and the result of Hauschild from Theorem 3.8. Then, we will compute the free EV -algebra
on this free group-like Ei,e

V -algebra using Proposition 3.14 and equivariant nonabelian
Poincaré duality, Theorem 2.15.

Theorem 3.15 (Approximation theorem). For X a based G-space, the natural map

FreeEV X −→ ΩV ΣV X

from the free EV -algebra on X to the V -fold loop space of the V -fold suspension of X
exhibits the source as the group completion of the target.

Proof. Consider the following commutative diagram of forgetful functors and inclusions
of subcategories:

AlgEV
(S) AlgEi,e

V
(S) AlgE0

(S)

AlggrpEV
(S) Alggrp

Ei,e
V

(S)

It follows from the description in Proposition 3.14 that the free EV -algebra on a group-
like Ei,e

V -algebra is automatically group-like. We conclude that the adjunction between

forgetful and free functor of EV and Ei,e
V restricts to an adjunction on the subcategories

of the respective group-like objects. Therefore, passing to left adjoints in the above
diagram yields a natural equivalence

GrpComplEV FreeEV X ∼= FreeEV

Ei,e
V

GrpComplE
i,e
V FreeE

i,e
V X .

We can hence rephrase the theorem, asking whether the natural map

FreeEV

Ei,e
V

GrpComplE
i,e
V FreeE

i,e
V X −→ ΩV ΣV X (3)

is an equivalence which is true if it is an equivalence on all fixed points.
We start by showing that it is an equivalence onH-fixed points forH being V -isotropy.

Recall from Theorem 3.8 that the natural map

FreeE
i
V X −→ fgtEV

Ei
V
ΩV ΣV X
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is a group completion on H-fixed points for H being V -isotropy. As (DiskiV )
H ↪→

(Diski,eV )H is an equivalence for all V -isotropy H, we know that Free
Ei,e
V

Ei
V
(−) does not

change those H-fixed points, so that

FreeE
i,e
V X −→ fgtEV

Ei,e
V

ΩV ΣV X

is a group completion on those H-fixed points, too. Now we can deduce from Proposi-
tion 3.12 that the natural map

GrpComplE
i,e
V FreeE

i,e
V X −→ fgtEV

Ei,e
V

ΩV ΣV X

is an equivalence on those H-fixed points, too. From Proposition 3.14 we finally deduce
that the same holds for the map (3).
Now we will turn towards the H-fixed points where H is not V -isotropy. In this step

we will combine equivariant nonabelian Poincaré duality with a splitting of (ΩV ΣV X)G

due to Hauschild [Hau77]. We will again restrict to the case H = G, the other cases
following from this by using that the free functor is a parameterized functor and hence
restricts to a free functor on subgroups.
By Proposition 3.14, we must verify that

XG → (ΩV ΣV X)G

exhibits the target as the free space with an action of

(∫

V \{0}
ΩV ΣV X

)G

∼= Ωmap∗(S(V )+,Σ
V X)G ,

where the latter equivalence is due to Theorem 2.15. Let us unwind this acting on
(ΩV ΣV X)G. As nonabelian Poincaré duality is natural, this action is equivalently de-
scribed as follows: The action of V \ {0} on V in ManGV gives rise to an action of
V \ {0}+ ∼= ΣS(V )+ on V + = SV in (SG∗ )∨. In other words, SV is a comodule over
the coalgebra ΣS(V )+ in based spaces. Finally, mapping out of those spaces yields the
action of the algebra

map∗(ΣS(V )+,Σ
V X)G ∼= Ωmap∗(ΣS(V )+,Σ

V X)G

on (ΩV ΣV X)G.
This means that we need to check that the composite

XG × Ωmap∗(S(V )+,Σ
V X)G −→(ΩV ΣV X)G × Ωmap∗(S(V )+,Σ

V X)G

∼=map∗(S
V ∨ ΣS(V )+,Σ

V X)G

−→(ΩV ΣV X)G

is an equivalence, where the first map is induced by the unit, and the second by the
collapse map SV → SV ∨ΣS(V )+. Modeling X by a G-CW complex, we can model the
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mapping spaces by taking mapping spaces in the category of based topological G-spaces.
Using that ΣS(V )+ = SV /S0, we can furthermore model

map(ΣS(V )+,Σ
V X)

by those maps SV → ΣV X which are sent to the base point in a neighborhood of
the north and south pol. In this language, this splitting is due to Hauschild [Hau77],
proven in this precise form in [RS00, Thm. 4]. They only state that there is a splitting
(ΩV ΣV X)G ∼= XG×Z for some group Z. However, in the proof [RS00, pp. 11], they do
check that Z = map∗(S(V )+,Σ

V X) and that the homotopy equivalence v : Z ×XG →
(ΩV ΣV X)G is the one described above. This finishes the proof.

4 The recognition principle

In this section, we will deduce the recognition principle from the approximation theorem,
using the monadicity theorem.

Proposition 4.1. The inclusion

AlggrpEV
(S) −→ AlgEV

(S)

admits a right adjoint.

Proof. We first show that the inclusion

AlggrpEV
(Set) −→ AlgEV

(Set)

admits a right adjoint where Set ⊂ S is the G-symmetric monoidal subcategory of G-
spaces which is given by spaces which are discrete on all fixed points.
Given A ∈ AlgEV

(Set), let Acore denote the EV -algebra obtained from A by passing
on H-fixed points AH to the subset of elements for which the image in AK for any
subconjugate K of H which is V -isotropy is invertible in AK . The EV -structure of
A does restrict to one on Acore. Moreover, the inclusion Acore → A gives a natural
transformation which is the identity if A is group-like and the source always is group-
like. It hence exhibits (−)core as the right adjoint to the inclusion.
Now for A ∈ AlgEV

(S), let Acore denote the pullback

Acore A

π0(A)core π0(A)

where the vertical morphisms are induced by the unit A → π0(A) of the left adjoint
π0 : S → Set (which is G-symmetric monoidal).
Using that pullbacks can be computed pointwise by Proposition 2.4, one verifies that

Acore → A again is a natural transformation which is an equivalence on group-like
objects and the source always is group-like, exhibiting (−)core as the right adjoint to the
inclusion.
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Proof of Theorem A. We actually start by showing that ΩV : (SG∗ )≥V → AlggrpEV
(S) is an

equivalence. We will use the monadicity theorem [Lur17, Cor. 4.7.3.16] applied to the
following situation

(SG∗ )≥V AlggrpEV
(S)

SG

ΩV

ΩV
fgtEV

.

We need to verify that both functors to SG are monadic and that the third functor
preserves free objects.
The left hand map is monadic by Proposition 3.5. The forgetful functor AlgEV

(S)→
SG is monadic by Proposition 2.4. Since the inclusion AlggrpEV

(S) → AlgEV
(S) does

commute with all colimits by Proposition 4.1 and also is conservative right adjoint by
Proposition 2.7, the right arrow in the above diagram is monadic, too.
Finally, the comparison map between free objects is an equivalence by the approxi-

mation theorem, using that the two functors to SG factor through the forgetful functor
SG∗ → SG which admits a left adjoint, i.e. we apply Theorem 3.15 to the case where X
arises from a non-based G-space by adding a disjoint base point. It follows that

ΩV : (SG∗ )≥V −→ AlggrpEV
(S)

is an equivalence, as desired.
As limits are computed pointwise, the inclusion (SG∗ )≥V ⊂ SG∗ admits a right adjoint,

the V -connective cover. As SV is V -connective, the functor ΩV : SG∗ → AlgEV
(S) factors

through this V -connective cover functor.
It follows from composing left adjoints that ΩV : SG∗ −→ AlgEV

(S) admits a left adjoint
BV : AlgEV

(S)→ SG∗ with the desired properties stated in Theorem A which is given by
first group completing, then using the equivalence between group-like EV -algebras and
V -connective based G-spaces established above and then finally regarding the resulting
V -connective based G-spaces as just a based G-spaces. We will however describe this
adjoint more explicitly in the upcoming Remark 4.2

Remark 4.2. Given an EV -algebra A, recall its bar complex Bar(A) : ∆op → AlgEV
(S)

given by resolving A by free algebras, that is

Bar(A)n =
(
FreeEV

)n
(fgtEV A)

as BV is a left adjoint we have

BV A ∼= BV colim
∆op

Bar(A) ∼= colim
∆op

BV Bar(A)

where

(
BV Bar(A)

)
n
=
(
BV ◦

(
FreeEV

)n)(
fgtEV A

)
∼= ΣV

(
FreeEV

)n−1
(fgtEV A) ,

that is we can compute the delooping BV using a two-sided bar construction.
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On orthogonal factorization systems and
double categories

Branko Juran

with an Appendix joint with Natalie Stewart

We prove that the∞-category of orthogonal factorization systems embeds
fully faithfully into the ∞-category of double ∞-categories. Moreover, we
prove an (un)straightening equivalence for double ∞-categories, which re-
stricts to an (un)straightening equivalence for op-Gray fibrations and curved
orthofibrations of orthogonal factorization systems.
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1. Introduction
Orthogonal factorization systems and double categories are very classical objects in cate-
gory theory, their study goes back to work of MacLane [Mac50] and Ehresmann [Ehr63],
respectively. Their∞-categorical analogs, introduced by Joyal [Joy08] and by Haugseng
[Hau13], play an equally important role in higher category theory. Both concepts deal
with categorical structures equipped with two distinguished classes of morphisms. An
orthogonal factorization system is a category together with the choice of two classes
of morphisms, so that any morphism can uniquely be factored as a composite of one
morphism from the first class, followed by one from the second. Similarly, we can think
of a double category as a category with two different types of morphisms, vertical and
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horizontal morphisms. These two different types of morphisms cannot be composed with
each other but part of the data are so-called squares which witness compatibilities be-
tween them. From this point of view, it seems like double categories are a generalization
of orthogonal factorization systems.

The goal of this paper is to make this precise in the context of ∞-categories. We will
construct a functor

Fact : OFS ↪−! DCat

from the ∞-category of orthogonal factorization systems into the ∞-category of double
∞-categories (Construction 3.3). It sends an orthogonal factorization system to the
double ∞-category which has the objects of the underlying ∞-category as its objects,
horizontal morphisms are morphisms belonging to the first class, vertical morphisms are
morphisms from the second class and squares are commutative squares. The essential
image of this functor consists of the double ∞-categories where there is a unique square
filling every choice of a “bottom left corner”:

• •

• •

This precisely encodes that the “wrong order” composition of morphisms from each
class can uniquely be rewritten as composition in the “correct order”, arguably the
most important feature of an orthogonal factorization system. We will then prove the
following:

Theorem A (Theorem 3.19). The functor

Fact : OFS ↪−! DCat

from the ∞-category of orthogonal factorization systems into the ∞-category of double
∞-categories is fully faithful. The essential image consists of the double ∞-categories
fulfilling the equivalent conditions from Proposition 3.1.

A similar result in the context of ordinary 1-categories has recently been obtained by
Štěpán [Ště24].

We use Theorem A to deduce several other results about orthogonal factorization
systems. Firstly, we verify that for C† an orthogonal factorization system, the functor
Fact from Theorem A induces an equivalence between curved orthofibrations (or op-Gray
fibrations, respectively) over C†, defined in [HHLN23b], and (cocart,right)-fibrations (or
(cart,right)-fibrations, respectively) over Fact(C†), defined in [Nui24], (Proposition 4.5):

Ortho
(
C†
)
∼= CoR

(
Fact

(
C†
))

, (1)

showing that we can regard the former as a special case of the latter. Then we prove
the following (un)straightening equivalence for these fibrations:
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Theorem B (Theorem 4.6). For C a double ∞-category, let CoR (C)' denote the space
of (cocart,right)-fibrations. There is a natural equivalence

CoR (C)' ∼= mapDCat

(
(C)2 op,Sqoplax

(
Cat

(2)
1

))

of functors from double∞-categories to spaces. Here, Sqoplax
(
Cat

(2)
1

)
is the large double

∞-category having∞-categories as its objects, functors of∞-categories as horizontal and
vertical morphisms and natural transformations as squares.

This confirms an expectation outlined in [Nui24, Remark 2.14]. Combining (1) and
Theorem B yields an (un)straightening equivalence for fibrations of orthogonal factor-
ization systems.

Among orthogonal factorization there are those which are called adequate (in the
sense of Barwick [Bar17]), those admitting certain pullbacks that make it possible to
define the span category. We check that under the embedding from Theorem A, an
orthogonal factorization system C† is adequate if and only if Fact(C†)

1 op, the opposite
in the horizontal direction of the associated double ∞-category, is also contained in the
essential image of Fact. In this case, there is an equivalence

Fact
(
C†
)1 op ∼= Fact

(
Span

(
C†
))

.

We hence recover the span category construction of adequate orthogonal factorization
systems, which usually involves a certain amount of simplicial combinatorics. In fact
we do so by computing the whole automorphism group of the ∞-category of adequate
orthogonal factorization systems OFS⊥, refining [HHLN23b, Cor. 5.7]:

Theorem C (Theorem 5.5). There is an equivalence of groups

Aut
(
OFS⊥

)
∼= Z/2Z

with generator given by the span category functor.

Finally, in an appendix, which is joint with Natalie Stewart, we will use the results
from this paper to construct a G-symmetric monoidal structure on the category of G-
manifolds for G a compact Lie group.

Relation to 1- and 2-categorical constructions
To end this introduction, let us explain the relationship between our work and results
in classical category theory.

Double categories for which a square is uniquely determined by one corner have been
studied in the special cases of double groupoids. They were introduced by Mackenzie
[Mac92], who was inspired by questions from Poisson geometry, under the name va-
cant double groupoids. He already showed that those double groupoids are equivalent
to groupoids with a certain factorization system. Andruskiewitsch and Natale [AN05]
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showed that they are also equivalent to matched pairs of groupoids, a generalization of
Takeuchi’s matched pairs of groups [Tak81]. They also discuss how those matched pairs
of groupoids give rise to weak Hopf algebras (also called quantum groupoids), generaliz-
ing Takeuchi’s construction which associates a Hopf algebra (also called quantum group)
to a matched pair of groups.

The category of corners, also used in this paper, first appeared in work by Weber
[Web15]. Using this construction, Štěpán [Ště24] established an equivalence between
factorization systems and certain double categories, which we already mentioned after
Theorem A. We will now elaborate on the relation of his work and the results presented
in this paper.

In [Ště24, Thm 3.7], he establishes an equivalence between strict factorization systems
and double categories in which every square is uniquely (in the strict sense) determined
by one corner. This can be seen as a strict 1-categorical version of Theorem A. How-
ever, even in 1-category theory, one often encounters factorization systems for which the
factorization is only unique up to unique isomorphism, i.e. orthogonal factorization sys-
tems. Štěpán also proves that the 1-category of orthogonal factorization systems embeds
fully faithfully into the 1-category of double 1-categories [Ště24, Thm. 3.30], but the
description of the essential image becomes more complicated.

In contrast, when restricting the∞-category OFS to the full subcategory of orthogonal
factorization systems which are defined on a 1-category, one obtains the (2, 1)-category
of orthogonal factorization systems with natural equivalences as invertible 2-morphisms.
Restricting Theorem A to this full subcategory then yields an embedding of this (2, 1)-
category into a certain (2, 1)-subcategory of the ∞-category DCat.

Note however that restricting the ∞-category DCat to those double categories for
which all vertical and horizontal categories are 1-categories, does not recover the classical
notion of a double category, as we require the groupoid of vertical objects to agree
with the groupoid of horizontal objects. For a classical double category, there is not
even a natural comparison functor between those two groupoids. This difference in the
definition of a double category enables us to give the straightforward description of the
essential image in Definition 3.2. It would be interesting to explore those kinds of double
categories in the 1-categorical setting and to study the relation of our result and Štěpán’s
theorem, as neither of them directly implies the other.

Organization of the paper
In Section 2, we collect some background material on double ∞-categories and orthogo-
nal factorization systems. Section 3 is dedicated to the proof of Theorem A. In Section 4,
we study fibrations, proving Theorem B. Finally, we discuss adequate orthogonal factor-
ization systems in Section 5 and prove Theorem C.
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Conventions
• We use the theory of ∞-categories as developed by Lurie in [Lur09b] and [Lur17].

However, we make no essential use of the concrete model and the arguments should
apply in most other models. Since most of the categories appearing in this paper
are higher categories, we use the term category to refer to an ∞-category and say
(1, 1)-category if the mapping spaces are discrete.

• We fix three nested Grothendieck universes U ∈ V ∈ W . We call a category very
large if it is defined in W and large if is defined in V . If we just say category, we
assume that it is defined in U .

• We write S for the large category of spaces (or animae, homotopy types, ∞-
groupoids, ...) and Cat1 for the large category of categories. Moreover, we write
(−)' : Cat1 ! S for the core functor.

• The simplex category is denoted by ∆. Its objects are finite posets [n] = {0, 1, . . . , n}.
We write di : [n− 1] ! [n] for the injective map omitting i and ρi : [1] ! [n] for
the map sending 0 to i− 1 and 1 to i.
We use the same notation to denote the category obtained from this poset via the
inclusions Poset ↪! Cat1.

• We use Λ2
2 = (0 ! 2  1) for the cospan (1, 1)-category (i.e. the 2-horn of the

2-simplex).

• For C a category, we write Ar (C) = Fun([1] ,C) for the arrow category of C.

• We write PSh(C) = Fun(Cop,S) for the large presheaf category of a category C.

• A full subcategory is called reflective if the inclusion functor admits a left adjoint.
By [Lur09b, Prop. 5.5.4.15], a subcategory of a large presentable category is reflec-
tive if it can be characterized as the class of local objects with respect to a small
set of morphisms.

2. Preliminaries
Definition 2.1. A simplicial space is a presheaf on ∆, i.e. a functor

X : ∆op −! S .
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We call it a Segal space if

n∏

i=1

ρi : Xn −! X1 ×X0 · · · ×X0 X1

is an equivalence.
We call a Segal space complete if

X0 X0 ×X0

X3 X1 ×X1

∆

is a pullback. Here, the vertical morphisms are induced by the unique degeneracy map
to [0] and the bottom map is the one induced by the inclusions [1]! [3] onto {0, 2} and
{1, 3}, respectively.

Remark 2.2. Let X be a Segal space and let x, y ∈ X0. Let us write

mapX(x, y) = {x} ×X0,d1 X1 ×d0,X0 {y} .

Using the higher Segal conditions, one can define composition maps. It is proved in
[Rez01] that a Segal space is complete if and only if the degeneracy map

X0 −! X1

is fully faithful with essential image being the equivalences, i.e. the maps f : x! y such
that composition with f induces equivalences

f∗ : mapX(z, x) −! map(z, y)

and

f∗ : mapX(y, z) −! mapX(x, z)

for every object z of X0.

Theorem 2.3 (Joyal-Tierney [JT07]). The restricted Yoneda embedding

Cat1 −! Fun(∆op,S)

C 7−! map([n] ,C)

is fully faithful with essential image the complete Segal spaces.

The idea of the above theorem goes back to Rezk [Rez01]. A simple proof of the above
theorem can be found in [HS23].

Before turning towards the definition of a double category, we recall the following:
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Proposition 2.4 ([Bri18, Prop. 1.7]). Let F : D ! C be a map of Segal spaces. The
following are equivalent:

• The square
Dn Cn

D0 C0

Fn

d0 d0

F0

is cartesian for all n ≥ 1.

• The above square is cartesian for n = 1.

In this case, the map is called a right fibration. The dual notion (replacing d0 by dn)
is called left fibration.

Definition 2.5. A double category is a bisimplicial space

C : ∆op ×∆op −! S

([m] , [n]) 7−! C(m,n)

such that for all n ≥ 0, C(n,−) and C(−, n) are complete Segal spaces.
We write DCat ⊂ PSh(∆×∆) for the large full subcategory of double categories.

Remark 2.6. This definition is not used consistently in the literature. We follow the
terminology used in [Nui24]. Some authors only require C(−, n) to be a (not necessarily
complete) Segal space.

In particular, our definition is not the direct higher categorical analog of the classical
notion of a double category. In our definition, the space of objects in the vertical and
horizontal category must agree.

Notation 2.7. We write

(−)1 op, (−)2 op : DCat −! DCat

for the functors precomposing with the opposite functor (−)op : ∆ ! ∆ in the first or
second coordinate, respectively, and

(−)swap : DCat −! DCat

for the functor which exchanges the two coordinates.

Construction 2.8. Given two categories C and D, we obtain a double category C�D

as follows:
(C �D)(k, l) = map([k] ,C)×map([l] ,D)

Definition 2.9. A double category if called a 2-category if C(0,−) is a constant simpli-
cial space. We write Cat2 ⊂ DCat for the large full subcategory of double categories.
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Remark 2.10. We may regard a strict (2, 2)-category, i.e. a category enriched in small
(1, 1)-categories, as a 2-category as follows: Taking nerves on mapping spaces, we obtain
a category enriched in simplicial spaces from which we obtain a 2-category using the
equivalence of models for (∞, 2)-categories from [Lur09a, Thm. 0.0.4]. We will only
make use of this embedding when we use the Gray tensor product of (1, 1)-categories
in the upcoming Construction 2.11 and the only thing we need to know about this
embedding is that the Gray tensor product of [m] and [n] agrees with the one used in
[HHLN23a] which is ensured by [HHLN23a, Prop. 5.1.9].

Construction 2.11. Restricting the Yoneda embedding along the bicosimplicial object

∆×∆ −! Cat2

([m] , [n]) 7−! [n]⊗ [m]

sending ([m] , [n]) to the Gray tensor product [n]⊗ [m] (a strict (2, 2)-category), induces
the oplax square functor :

Sqoplax : Cat2 −! DCat

C 7−! (([m] , [n]) 7! FunCat2([n]⊗ [m] ,C))

Here, Sqoplax(C)(n,−) is indeed complete Segal as the Gray tensor product preserves
colimits in each variable separately.

Next we discuss orthogonal factorization systems, which we will simply call factor-
ization system because there is no other notion of factorization systems studied in this
paper.

Definition 2.12 (Joyal). A category C together with two subcategories Ceg and Cin is
called an factorization system if

• The subcategories Ceg and Cin contain every equivalence and

• for any commutative square

• •

• •

in which the left morphism is contained in Ceg and the right morphism is Cin, there is a
unique dashed filler.

The morphisms in Ceg are called egressive, the ones in Cin ingressive. The category
of factorization systems OFS is defined as the subcategory of the category of functors
Fun(Λ2

2,Cat1) from the cospan Λ2
2 = (0 ! 2  1) to Cat1 where 0 ! 2 and 2  1 are

sent to the inclusion of the class of egressive (and ingressive, respectively) morphisms of
a factorization system.
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Remark 2.13. In [Lur09b, Def. 5.2.8.8], Lurie also requires the two classes of morphisms
two be closed under retracts. This condition is redundant by [GKT18, Sec. 1.1].

Notation 2.14. Given two categories C and D, there is a factorization system C×̄D
on C ×D with (C×̄D)eg = C ×D' and (C×̄D)in = C' ×D.

Proposition 2.15 ([BS24, Prop. A.0.4]). Let Ceg,Cin ⊂ C be subcategories containing
every equivalence. The following are equivalent:

• The triple forms a factorization system.

• The restricted composition map

Ar (Ceg)
' ×C' Ar (Cin)

' −! Ar (C)'

(f, g) 7−! g ◦ f

is an equivalence.

3. Double categories and factorization systems
In this section, we will first define a subcategory of factorization double categories
DCatOF ⊂ DCat (Definition 3.2). We will construct the functor

Fact : OFS −! DCatOF

in Construction 3.3 and Lemma 3.4. Then, we construct its inverse functor

Cnr: DCatOF −! OFS

in Construction 3.14. Afterwards, we will explicitly define unit and counit transforma-
tions and check that they are equivalences, proving Theorem 3.19.

Proposition 3.1. For C a double category, the following are equivalent

1. The square

C(1, 1) C(1, 0)

C(0, 1) C(0, 0)

C(id,d0)

C(d1,id) C(d1,id)

C(id,d0)

is cartesian.

2. The functor
C(−, d0) : C(−, 1) −! C(−, 0)

is a left fibration.
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3. The functor
C(d1,−) : C(1,−) −! C(0,−)

is a right fibration.

4. The functor
C(−, d0) : C(−, n) −! C(−, 0)

is a left fibration for all n ≥ 0.

5. The functor
C(dn,−) : C(n,−) −! C(0,−)

is a right fibration for all n ≥ 0.

Proof. The first condition is the weakest. It implies the second and third condition by
Proposition 2.4. The second condition implies the fourth by evaluating at n and using
Proposition 2.4. Similarly, the third condition implies the fifth.

Definition 3.2. If a double category satisfies one of the equivalent conditions from
Proposition 3.1, we call it a factorization double category. We write DCatOF ⊂ DCat for
the full subcategory spanned by the factorization double categories.

Construction 3.3. Restricting the Yoneda embedding along the bicosimplicial object

∆×∆ −! OFS

([m] , [n]) −! [m]×̄[n]

yields a functor
Fact : OFS −! PSh(∆×∆) .

Lemma 3.4. The functor Fact takes values in factorization double categories.

Proof. Let C† = (C,Ceg,Cin) be a factorization system. The simplicial space Fact(n,−)
is a complete Segal space by Theorem 2.3: It arises as the Rezk nerve of the (non-full)
subcategory of Fun([n] ,C) spanned by the functors sending each morphism of [n] to a
morphism in Ceg and by the natural transformations which (pointwise) take values in
Cin. Analogously, Fact(−, n) is a complete Segal space.

The category [1]× [1] is the pushout of two copies of [2] along [1]. Mapping out of this
pushout, passing to subspaces and also using that [2] is a pushout of [1] and [1] along
[0] yields the following pullback:

mapOFS([1] ×̄ [1] ,C†) Ar (Ceg)
' ×C' Ar (Cin)

'

Ar (Cin)
' ×C' Ar (Ceg)

' Ar (C)'

(d1×id),(id×d0)

(id×d1),(d0×id)

◦

◦
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The right hand map is an equivalence by Proposition 2.15, implying that the left map
is an equivalence too. Unwinding definitions, this shows that Fact(C†) is a factorization
double category.

Example 3.5. Using that the projection [k]× [m]! [k] is a localization at the class of
morphisms which are constant in [k], we find that for two categories C and D, there is
a natural equivalence

Fact(C×̄D) ∼= C �D .

Remark 3.6. Actually, the above construction makes sense more generally: One can
assign a double category to any category equipped with two subcategories containing
every equivalence. The resulting double category is a factorization double category if
and only if the subcategories form a factorization system.

Remark 3.7. It follows from [CH21, Prop. 5.2] together with [RS22, Thm. 1.1] that
OFS is presentable. The functor

Fact : OFS −! DCat

therefore admits a left adjoint. However, this left adjoint uses colimits in the category of
factorization systems, which are hard to compute. We will therefore not show directly
that the counit of the adjuntion is an equivalence. Instead, we will explicitly construct an
inverse functor defined on the subcategory of factorization double categories. It follows
a posteriori that this inverse functor is the restriction of the left adjoint obtained by the
adjoint functor theorem.

We will now turn towards the definition of the inverse functor Cnr: DCatOF ! OFS.

Construction 3.8. For C a category, the arrow category Ar (C) admits the structure
of a factorization system with egressive morphisms the ones which are an equivalence
in the source and ingressive morphisms the ones which are an equivalence in the target,
see [HHLN23b, Exa. 4.7]. We write

Ar (C) = Fact(Ar (C))

for the double arrow category.
The combined source and target functor (t, s) : Ar (C)! C×C enhances to a functor

of factorization systems to C×̄C. This induces a functor

(t, s) : Ar (C) −! Fact(C×̄C) ∼= C � C .

Postcomposing with the map C ! [0] gives maps

s : Ar (C) −! [0]� [C]

and

t : Ar (C) −! [C]� [0] .
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Remark 3.9. It follows from the comparison of thin and fat joins, [Lur09b, Prop.
4.2.1.2] that there is a natural map [m]× [n]× [1] −! [n] ? [m] which exhibits the target
as the localization of the source at the morphisms which are either constantly 0 in the
[1]-coordinate and constant in the [n]-coordinate or constantly 1 and constant in the
[m]-coordinate. Unwinding definitions, we find that

Ar (C) (m,n) ∼= map([n] ? [m] ,C) ,

which is the definition used in [Nui24].

Construction 3.10. Restricting the Yoneda embedding along the cosimplicial object

∆ −! DCat

[n] 7−! Ar ([n])

yields a functor:

cnr : DCat −! Fun(∆op,S)

C 7−! (n 7! mapDCat(Ar ([n]) ,C))

We now want to check that, when restricted to factorization double categories, this
functor takes values in complete Segal spaces and that it enhances to a functor to fac-
torization systems.

Construction 3.11. For fixed n ≥ 2, let P be the poset of subsets of [n] = {0, . . . , n}
which are either a singleton {i} for 1 ≤ i ≤ n − 1 or a two-element subset containing
two consecutive elements. Using that all these subsets are linearly ordered posets and
all the inclusions preserve the order, we obtain a functor p : P ! ∆ and the inclusion
of the subsets into [n] induces a natural transformation p ⇒ const [n]. Let C be a
category with finite colimits and let X : ∆ ! C be a cosimplicial object in C. We
write In (X) = colimP (X ◦ p) for the colimit of the composite functor. The natural
transformation induces a morphism In (X)! X(n), which we call the spine inclusion.

If X : ∆! Fun(∆op,S) is the Yoneda embedding, we recover the inclusion of simplicial
sets usually referred to as the “spine inclusion”. We will also simply denote this spine
by In. In this case, we can also describe In ! [n] more explicitly as the inclusion of the
simplicial subset spanned by those 1-simplices [1] ! [n] which increase by at most 1.
The local objects with respect to those morphisms are precisely the Segal spaces.

Lemma 3.12. The saturation (under pushouts and retracts) of the following two sets
of functors of double categories agree:

• the one morphism

(d1, id), (id, d0) : ([0]� [1]) ∪[0]�[0] ([1]� [0]) −! [1]� [1] . (2)

• the spine inclusions
In (Ar (−)) −! Ar (n) (3)

for n ≥ 2.
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Proof. It is easy to see that the map (2) is a retract of the map (3) for n = 2. We leave
the details to the reader, since we will not make use of this direction in the rest of the
paper.

For the other direction, we will proceed as follows:

• We will define a certain bicosimplicial subspace P ⊂ Ar ([n]) such that the inclusion
is sent to an equivalence under the localization functor PSh(∆×∆)! DCat.

• We will show that P can be obtained from the source of (3) via iterated pushouts
of (2) in PSh(∆×∆).

The claim follows because the localization PSh(∆×∆)! DCat preserves colimits.
Let P ⊂ Ar ([n]) be the bicosimplicial subspace spanned by the elements

Ar ([n]) (k,m) = map([m] ? [k] , [n])

for which every morphism in the image of the natural inclusions [m] ! [m] ? [k] and
[k]! [m]? [k] is sent to a morphism in [n] which increases by at most 1. Let Q ⊂ Ar ([n])
be the bicosimplicial subspace spanned by all the elements where this holds just for the
morphisms in the image of the natural inclusions [m]! [m] ? [k].

Let map≤1([m] , [n]) ⊂ map([m] , [n]) denote the subset of maps where each morphism
in [m] is sent to a morphism in [n] which increases by at most 1.

Every map α : [m]! [n] gives an element in

Fact(Ar ([n]))(n− α(m),m) = map([m] ? [n− α(m)] , [n])

whose restriction to [m] is α and whose restriction to [n− α(m)] is the inclusion of the
last n− α(m) + 1 elements. This induces equivalences

Ar ([n]) (−,m) ∼=
∐

α∈map([m],[n])

[n− α(m)]

and similarly

Ar ([n]) (k,−) ∼=
∐

α∈map([k],[n])

[α(0)] ,

inducing equivalences on simplicial subspaces

Q(−,m) ∼=
∐

α∈map≤1([m],[n])

[n− α(m)] ,

Q(k,−) ∼=
∐

α∈map([k],[n])

Iα(0)

and

P (−,m) ∼=
∐

α∈map≤1([m],[n])

In−α(m)
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From this description it follows that the inclusion P ! Q exhibits the target as the
localization of the source with respect to the reflective inclusion

Fun(∆op,Cat1) −! Fun(∆op,PSh(∆)) ∼= PSh(∆×∆)

and so is Q! Ar ([n]) for the other coordinate.
But both these inclusions are intermediate inclusions of DCat ⊂ PSh(∆×∆), it follows

that the inclusion P ! Ar ([n]) is sent to an equivalence by the localization functor to
double categories.

For 0 ≤ j ≤ i ≤ n− 1, let P i,j denote the bicosimplicial subspace of P spanned by all
objects α : [1]! [n] of

P (0, 0) = Ar ([n]) (0, 0) = map([0] ? [0] , [n])

such that α(1) − α(0) ≤ 1, or α(1) ≤ i, or α(1) = i + 1 and α(0) ≥ j. We get a nested
sequence

P 1,1 ⊂ P 1,0 = P 2,2 ⊂ P 2,1 ⊂ P 2,0 = P 3,3 ⊂ . . . Pn−1,0 = P ,

see Figure 1 for an example. Note that the inclusion P 1,1 ⊂ Ar ([n]) is equivalent to
the spine inclusion In (Ar (−)) −! Ar (n). This can be seen using that colimits in
PSh(∆ ×∆) are computed pointwise and the colimit used to define In (Ar (−)) gives a
bicosimplicial space which already is a double category.

00 01 02 03

11 12 13

22 23

33

P 1,0 P 2,0

P 2,1

Figure 1: Ar ([3]), the squares are labeled by the smallest bicosimplicial subspace P i,j in
which they are contained

Again using that pushouts in PSh(∆ ×∆) are computed pointwise, one verifies that
the following square is a pushout for all 1 ≤ j + 1 ≤ i ≤ n− 1:

([0]� [1]) ∪[0]�[0] ([1]� [0]) P i,j+1

[1]� [1] P i,j

where the lower map is the map classifying the element in

P i,j(1, 1) ⊂ Ar ([n]) (1, 1) = map([1] ? [1] , [n])
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restricting to the inclusion of {j, j + 1} on the first copy of [1] and the inclusion of
{i, i + 1} in the second. In fact, in this case the diagram above is pointwise a diagram
of sets. Moreover, an explicit combinatorial argument shows that pointwise all maps in
the above square are mapped to inclusions of sets and the upper left corner is precisely
the intersection of the two inclusion into the lower right corner. We leave the details to
the reader.

This finishes the proof of the claim that P can be obtained from P 1,1 via iterated
pushouts of (2).

Proposition 3.13. The simplicial space cnr(C) is a complete Segal space if and only if
C is a factorization double category.

Proof. A double category C is a factorization category if it is local with respect to the
morphism (2). Unwinding definitions, cnr(C) is a Segal space if and only if C is local
with respect to the morphisms (3). Therefore, the Segal claim follows from Lemma 3.12.
It is left to show that in this case the Segal space is automatically complete. We will
use the criterion from Remark 2.2.

First note that degeneracy map

cnr(C)0 = C(0, 0) ∼= C(0, 0)×C(0,0) C(0, 0) −! C(1, 0)×C(0,0) C(0, 1) = cnr(C)1

is an inclusion of path components because it is a pullback of such.
We need to show that every equivalence is contained in the essential image, which

consists of the objects in C(1, 0)×C(0,0)C(0, 1) = cnr(C)1 which are equivalences in both
components.

Let c, d ∈ C(0, 0) = cnr(C)0 be two objects and

(f, g) ∈
(
C(−, 0)c/

)'
×C(0,0)

(
C(0,−)/d

)'
= mapcnr(C)(c, d) .

be an equivalence.
Then postcomposition with (f, g) induces an equivalence

mapcnr(C)(d, c) −! mapcnr(C)(d, d)

Picking an inverse of the identity and unwinding composition in cnr(C), we see that g
has a left inverse. Similarly, one can show that it has a left inverse and so does f .

Construction 3.14. Proposition 3.13 together with Theorem 2.3 implies that we obtain
a functor

cnr : DCatOF −! Cat1 .

We now refine this to a functor

Cnr: DCatOF −! OFS ,

which assigns to a factorization double category its category of corners.
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The target functor
Ar ([m]) −! [m]� [0]

gives rise to a natural functor

C(−, 0) −! cnr(C)

which induces an equivalence on cores and an inclusion of path components

C(1, 0) ∼= C(1, 0)×C(0,0) C(0, 0) −! C(1, 0)×C(0,0) C(0, 1) = Ar (cnr(C))'

on cores of arrow categories.
Similarly, we obtain a natural functor C(0,−)! cnr(C). The triple

Cnr(C) = (cnr(C),C(−, 0),C(0,−))

forms a factorization system by Proposition 2.15.

Construction 3.15. There are natural equivalences

map([k] , [m]× [n]) ∼= map([k] , [m])×map([k] , [n]) ∼= map([k]� [k] , [m]� [n])

Precomposition with (t, s) : Ar ([k]) ! [k] � [k] from Construction 3.8 hence induces a
natural functor

[m]× [n] −! cnr([m]� [n])

and this functor enhances to a functor of factorization systems

[m] ×̄ [n] −! Cnr([m]� [n]) .

We hence obtain an element in

Fact(Cnr([m]� [n]))(m,n) = mapDCat([m]� [n] ,Fact(Cnr([m]� [n]))) .

Applying Fact ◦Cnr and precomposition with this morphism gives a natural map

mapDCat([m]� [n] ,C) −! mapDCat([m]� [n] ,Fact(Cnr(C))) (4)

and hence a natural transformation

idDCatOF =⇒ Fact ◦Cnr .

Proposition 3.16. The above natural transformation is a natural equivalence.

Proof. We need to prove that (4) is an equivalence for all m,n and C. By the Segal
condition, it is enough to check this for m,n ≤ 1. Because both sides are factorization
double categories, we can also exclude the case m = n = 1. In the remaining three cases,
one verifies that the map is an equivalence by unwinding the definitions, e.g. in the case
m = 1, n = 0 the map identifies with the natural map from C(1, 0) into the core of the
Ar (Cnr(C)eg), which was defined to be C(1, 0).
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Construction 3.17. Let C† be a factorization system on a category C. There is a
natural map

mapOFS

(
Ar ([n]) ,C†

)
−! mapCat1 ([n] ,C)

given by passing to the functor of underlying categories and then embedding [n] into
Ar ([n]) by sending each element to the identity arrow. It follows from [HHLN23b, Prop.
4.8] that this map is an equivalence. The result is stated for orthogonal adequate triples
but the proof makes no essential use of the adequate triple property.

Applying the functor Fact yields a map

mapOFS

(
Ar ([n]) ,C†

)
−! mapDCat

(
Ar ([n]) ,Fact

(
C†
))

.

Combining these two map yields a natural functor

C −! cnr
(
Fact

(
C†
))

.

Proposition 3.18. The above natural transformation refines to a natural transformation
of automorphisms of the category of factorization systems

idOFS =⇒ Cnr ◦Fact

and this natural transformation is a natural equivalence.

Proof. Consider the following commutative diagram

mapOFS

(
([1] , [1] , [1]'),C†) mapDCat

(
[1]� [0] ,Fact

(
C†))

mapOFS

(
Ar ([1]) ,C†) mapDCat

(
Ar ([1]) ,Fact

(
C†))

Fact

t∗ t∗

Fact

.

The bottom arrow is the one used Construction 3.17 to define the functor on cores of
arrow categories Ar

(
C†)' ! Ar

(
Cnr(Fact(C†))

)', and the vertical arrows induce the
inclusion of the class of egressive morphisms in C† and Cnr(Fact(C†)), respectively. The
top arrow is an equivalence, it can be identified with the identity functor on the sub-
space of mapCat1([1] ,C) spanned by the functors sending the morphism to an egressive
morphism.

This shows that the functor in question preserves the class of egressive morphisms.
Analogously, one proves that it preserves ingressive morphisms. The argument actu-
ally shows that it induces an equivalence on the space of the egressive (or ingressive,
respectively) morphisms. Moreover, it follows from the definitions that it induces an
equivalence on cores. It follows from Proposition 2.15 that the functor is an equivalence
of factorization systems.

We can now deduce the main theorem:
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Theorem 3.19. The functor Fact induces an equivalence of categories

OFS ∼= DCatOF

Proof. This follows from Proposition 3.16 and Proposition 3.18.

This is an ∞-categorical analog of [Ště24, Theorem 3.7].

4. Fibrations
In this section, we will first recall the definition of op-Gray fibrations (and curved orthofi-
brations) of factorization systems as well as (cart,right)-fibrations (and (cocart,right)-
fibrations) of double categories. We will then verify in Proposition 4.5 that the two no-
tions agree under the equivalence between factorization systems and factorization double
categories from the previous section. In Theorem 4.6, we will prove an (un)straightening
equivalence for those fibrations.

Definition 4.1 ([HHLN23b, Def. 5.14]). A functor F : D† ! C† of factorization systems
is called an ingressive cartesian fibration if ingressive morphisms admit F -cartesian lifts
and those lifts precisely make up the subcategory of ingressive morphisms in D†.

A functor F : D† ! C† of factorization systems is called

• a curved orthofibration if it is an ingressive cartesian fibration and Feg : Deg ! Ceg

is a cocartesian fibration and

• an op-Gray fibration if it is an ingressive cartesian fibration and Feg : Deg ! Ceg is
a cartesian fibration.

We write Ortho(C†) for the non-full subcategory of the large category OFS/C† spanned by
the curved orthofibrations over C† and functors over C† preserving cocartesian egressive
lifts. Similarly, we define the large category opGray(C†) of curved op-Gray fibrations.

As the category of orthogonal factorization systems OFS has pullbacks which commute
with the forgetful functor to Cat1 by [CH21, Prop. 5.2] and both types of fibrations are
preserved by pullbacks, [HHLN23b, Obs. 5.2(3)], we obtain functors

opGray, Ortho: OFSop −! Cat1 .

Lemma 4.2. A functor F : D† ! C† is an ingressive cartesian fibration if and only if
Fin : Din ! Cin is a right fibration.

Proof. It is observed in [HHLN23b, Obs. 5.2(2)] that an ingressive morphism in D is
F -cartesian if and only if it is Fin-cartesian (while not making any use of the additional
assumption that the factorization systems are adequate). It follows that F is an ingres-
sive cartesian fibration if and only if Fin : Din ! Cin is a cartesian fibration for which
every morphisms in the source is Fin-cartesian. But that is equivalent to Fin being a
right fibration.
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Definition 4.3. A functor F : D ! C of double categories is called a (cocart,right)-
fibration if F (−, 0) is a cocartesian fibration and F (n,−) is a right fibration for all
n ≥ 0.

Let CoR (C) denote the non-full subcategory of the large category DCat/C spanned by
the (cocart,right)-fibrations and functors preserving cocartesian edges. We analogously
define the category CaR (C) of (cart,right)-fibrations over C.

Cocartesian fibrations, functors preserving cocartesian edges and right fibrations are
preserved by pullbacks. Therefore, pullbacks also preserve (cocart,right)-fibrations be-
tween double categories and functors between them, we therefore obtain functors

CoR, CaR: DCatop −! Cat1 .

Lemma 4.4. Let F : D ! C be a functor of double categories and assume that C is a
factorization double category and that F (0,−) is a right fibration. Then F (n,−) is a
right fibration for all n ≥ 0 if and only if D is a factorization double category.

Proof. We use characterization 5 from Proposition 3.1 for factorization double categories.
Consider the following commutative diagram:

D(n,−) C(n,−)

D(0,−) C(0,−)

D(dn,−)

F (n,−)

C(dn,−)

F (0,−)

It follows from our assumption that the bottom functor and the functor on the right
are right fibrations. Using left cancellation of right fibrations, we deduce that the upper
functor is a right fibration for all n ≥ 0 if and only if the functor on the left is a right
fibration for all n ≥ 0.

Proposition 4.5. Let C† be a factorization system. The functor Fact : OFS ! DCat
induces equivalences

Ortho(C†) ∼= CoR
(
Fact

(
C†
))

and

opGray(C†) ∼= CaR
(
Fact

(
C†
))

.

Proof. We discuss the first equivalence, the other one can be proven analogously.
It follows from Theorem 3.19, that Fact induces a fully faithful inclusion

OFS/C† ↪−! DCat/FactC† .

We need to check that this equivalence restricts to an equivalence on the subcategories
Ortho(C†) and CoR

(
Fact(C†)

)
.
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Let F : D† ! C† be a functor of factorization systems. Unwinding definitions, we
see that Feg is naturally equivalent to Fact(F )(−, 0) and Fin is naturally equivalent
to Fact(F )(0,−). It hence follows from Lemma 4.2 that F is an ingressive cartesian
fibration if and only if Fact(F )(0,−) is a right fibration. But Lemma 4.4 implies that
this automatically forces Fact(F )(n,−) to be a right fibration for all n ≥ 0. We conclude
that Fact(F ) is a (cocart,right)-fibration if and only F is a curved orthofibration and
that a functor between two curved othofibrations preserves cocartesian lifts of egressive
morphisms if and only if the associated functor of (cocart,right)-fibrations preserves
cocartesian lifts. All in all, we have shown that Fact induces a fully faithful functor
Ortho(C†) ↪! CoR

(
Fact(C†)

)
. But this functor is also essentially surjective because the

source of any (cart,right)-fibration over a factorization double category is a factorization
double category by Lemma 4.4.

We will now state the (un)straightening equivalence for (cocart,right)-fibrations. We
will denote the 2-category of categories, functors and natural transformations by Cat

(2)
1 ,

for example defined in [HHLN23a, Def. 5.1.6].

Theorem 4.6. There is a natural equivalence

CoR (−)' ∼= mapDCat

(
(−)2 op,Sqoplax

(
Cat

(2)
1

))

of functors from double categories to spaces.

Remark 4.7. Since Cat
(2)
1 is a large category, the mapping space actually has to be

taken in the very large category of large categories. We omit this distinction from the
notation.

The proof strategy follows the one from [AF20, Thm. 1.26]. We are grateful to Jaco
Ruit for pointing us to this reference.

Proposition 4.8. The functor

CoR (−)' : DCatop −! S

is right Kan extended from its restriction along ∆op ×∆op ! DCatop.

Proof. Let C be a double category. Using the pointwise formula for right Kan extension,
we must show that the upper map in the following commutative diagram is an equivalence

CoR (C)' lim
((
∆×∆/C

)op
! ∆op ×∆op ! DCat! S

)

(
PSh(∆×∆)/C

)'
lim
((
∆×∆/C

)op
! ∆op ×∆op ! PSh(∆×∆)! S

)

where the last functor in the limit in the upper right corner is CoR (−)' and on the
lower right corner it is DCat'/−. The left arrow is an inclusion of path components by
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definition and the right arrow is an inclusion of path components because it is a limit of
such. The bottom arrow is an equivalence because PSh(∆×∆) is a topos and the slice
functor PSh(∆ × ∆)op −! Cat1 hence does preserve limits by [Lur09b, Thm. 6.1.3.9,
Prop. 6.1.3.10]. The claim hence follows from Lemma 4.9.

Lemma 4.9. Let C be a double category and F : D ! C be a morphism of bisimplicial
spaces such that the pullback along any map [m] � [n] ! C is a (cocart,right)-fibration
of double categories. Then F is a (cocart,right)-fibration of double categories.

Proof. Let us first check that D is a double category. The large category of double cate-
gories is the category of local objects in PSh(∆×∆) with respect to certain morphisms
E ! E′ (corepresenting the Segal and completeness condition), i.e. we need to check
that for those morphisms, the induced map

mapPSh(∆×∆)(E′,D) −! mapPSh(∆×∆)(E,D)

is an equivalence. This can equivalently be checked on fibers over the same morphism
for C (where we know that it is an equivalence), i.e. that

∗ ×map(E′,C) map(E′,D) −! ∗ ×map(E,C) map(E,D) (5)

is an equivalence for every point in map(E′,C). Now we use that

∗ ×map(E′,C) map(E′,D) ∼= ∗ ×map(E′,E′) map(E′,D×C E′)

and

∗ ×map(E,C) map(E,D) ∼= ∗ ×map(E,E′) map(E,D×C E′)

where the fiber on the right side is taken over the identity and the morphism E ! E′,
respectively. This shows that (5) is an equivalence for D! C if it holds when replacing
the functor with the pullback along an arbitrary map E′ ! C.

In our concrete situation, we have that E′ = [m]� [n] for any morphism appearing in
the definition of a double category. But we did assume that the total space is a double
category when being pulled back along a map from [m]� [n].

Now we check that F is a (cocart,right)-fibration. Let [2] ! C(−, 0) be an arbitrary
functor. This functor is also represented by a functor [2] � [0] ! C. The pullback of
F along this map is a (cocart,right)-fibration. Evaluating at (−, 0), we see that the
pullback of F (−, 0) along the auxiliary map [2] ! C(−, 0) is a cocartesian fibration. It
follows from [AF20, Prop. 2.23(1)(c)] that F (−, 0) is a cocartesian fibration. Similarly,
one shows that F (n,−) is a right fibration by pulling back along maps out of [n]�[2].

Proof of Theorem 4.6. Both functors are right Kan extended from their restriction along
∆op×∆op ! DCatop by Proposition 4.8 and because representable functors of reflective
subcategories of presheaves are right Kan extended.

Therefore, it is enough to prove that the functors are equivalent when restricted along
∆op ×∆op ! DCatop. There will be a unique equivalence extending the equivalence on
this restriction.
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By definition, we have natural equivalences

mapDCat

(
([m]� [n])2 op,Sqoplax

(
Cat

(2)
1

))
∼= mapCat2

(
[n]op ⊗ [m] ,Cat

(2)
1

)
.

Combining [HHLN23a, Prop. 5.2.10], [HHLN23b, Cor. 6.5] and [HHLN23a, Thm. 2.5.1],
there are also natural equivalences

map
(
[n]op ⊗ [m] ,Cat

(2)
1

)
∼= Ortho([m] ×̄ [n]) .

The claim hence follows from Proposition 4.5 and Example 3.5.

A functor F : D ! C of double categories is called a (left,cart)-fibration if F 12 op,swap

is a (cocart,right)-fibration. We denote the large category of (left,cart)-fibrations over C
by LCa (C).

The following result, combined with Theorem 4.6, establishes an equivalence of spaces
of (cocart,right)-fibrations and (left,cart)-fibrations. In [Nui24, Thm. 3.1], it is shown
that this enhances to an equivalence of categories.

Corollary 4.10. There is a natural equivalence

LCa (−)' ∼= mapDCat

(
(−)2 op,Sqoplax

(
Cat

(2)
1

))

of functors from factorization systems to spaces.

Proof. By Theorem 4.6, we have natural equivalences

LCa (C)' ∼= CoR
(
C12 op,swap

)'

∼= mapDCat

((
C12 op,swap

)2 op
,Sqoplax

(
Cat

(2)
1

))

∼= mapDCat

(
C2 op,

(
Sqoplax

(
Cat

(2)
1

))swap)

because
((

C12 op,swap
)2 op)swap

= C2 op.
Taking opposite categories induces an equivalence

Cat
(2)
1
∼=
(
Cat

(2)
1

)co

where co denotes the operation of taking opposites of 2-morphisms (see e.g. [HHLN23a,
Rem. 3.1.10]).

Unwinding definitions and using that [n]⊗ [m] ∼= ([m]⊗ [n])co (see e.g. [AGH24, Obs.
2.2.10]), we obtain an induced equivalence

Sqoplax
(
Cat

(2)
1

)
∼= Sqoplax

(
Cat

(2)
1

)swap
.

Combining the two above facts, the claim follows.
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5. Adequate triples and span categories
In this section, we will recall the definition of an adequate factorization system and clas-
sify when a factorization double category comes from an adequate factorization system
(Proposition 5.4). We will use this to prove that the category of adequate factoriza-
tion systems has a unique non-trivial automorphism, the span category (Theorem 5.5,
Corollary 5.6).

Definition 5.1 ([HHLN23b, Def. 4.2]). Let C† be a factorization system. We call a
square

• •

• •
ambigressive if the horizontal morphisms are egressive and the vertical morphisms are
ingressive. Similarly, we call a cospan

•

• •

ambigressive if one leg is egressive and the other one is ingressive.
The factorization system C† is called adequate if every ambigressive square is a pullback

and if every ambigressive cospan admits a pullback.
We write OFS⊥ ⊂ OFS for the full subcategory of adequate factorization systems.

Lemma 5.2. A factorization system is adequate if and only if every ambigressive cospan
can uniquely be extended to an ambigressive square.

Proof. The “only if”-part follows from the uniqueness of pullbacks.
Now assume that every ambigressive cospan can uniquely be extended to an ambi-

gressive square. We must show that this square is a pullback. Equivalently, we must
check that the space of fillers of the following diagram is contractible

t

s d b

c a

f

,

(here we already factored an arbitray morphism from t to c into an egressive morphism f
followed by an ingressive morphism). We can apply the lifting criterion for factorization
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systems to the left square, to see that the dashed arrow would admit a unique factoriza-
tion through f . We might therefore reduce to the situation where f is an equivalence,
i.e.

t s′

d b

c a

f ′

g

h

j

k

,

(where we now factored the morphism from t to b). The span (d
h
−! b

g
 − s′) can be

extended uniquely to an ambigressive square. This in particular gives a morphism from
t to d. The composition of the lower square with the upper square gives an extension
of the ambigressive cospan (k

k
−! a

j◦g
 −− s′). But the outer square already provided such

an extension, which we assumed to be unique. This provides the necessary homotopies,
making the diagram commute.

Definition 5.3. A factorization double category C is called adequate if C1 op is a fac-
torization double category. We denote the full subcategory of adequate factorization
double categories by DCat⊥ ⊂ DCat⊥.

Proposition 5.4. A factorization system C† is adequate if and only if Fact(C†) is
adequate, i.e. the equivalence from Theorem 3.19 restricts to an equivalence

OFS⊥ ∼= DCat⊥ .

Proof. Unwinding definitions, we find that Fact(C†) is adequate if and only if C† fulfills
the condition from Lemma 5.2, which is equivalent to being adequate.

We will now verify that (−)1 op recovers the span construction from [HHLN23b, Def.
2.12, Prop. 4.9] under the equivalence from Proposition 5.4.

We will actually compute the entire automorphism group of DCat⊥, hence also gen-
eralizing [HHLN23b, Thm. 5.21], saying that the span category construction refines to
a Z/2Z-action on OFS⊥ ∼= DCat⊥.

Theorem 5.5. There is an equivalence of groups

Aut
(
DCat⊥

)
∼= Z/2Z

with generator (−)1 op on the left side.
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Proof. Note that the image of the Yoneda embedding ∆ × ∆ ! PSh(∆ × ∆) is con-
tained in OFS⊥. We first prove that any equivalence restricts to an equivalence of this
subcategory.

Any such equivalence F must preserve the terminal object [0] � [0]. From fully-
faithfulness it follows that F sends [0] � [1] and [1] � [0] to double categories with two
objects.

There must be a vertical or horizontal morphism between these two objects because
we could otherwise write the double category as a disjoint union of two non-initial double
categories, which is not the case for [0]� [1] and [1]� [0].

We hence obtain a morphism

C −! F ([1]� [0]) (6)

which is an equivalence on objects where C is either [1] � [0] or [0] � [1]. Applying the
same argument to F−1 we obtain a morphism

D −! F−1(C)

which is an equivalence on objects where D is either [1]� [0] or [0]� [1]. Applying F to
this morphism yields a morphism

F (D) −! C (7)

which is still an equivalence on objects because F preserves [0]� [0] and is fully faithful.
Composing (7) with (6), yields an element in map(F (D), F ([1]� [0])) ∼= map(D, [1]� [0])
which is an equivalence on objects. From this we learn that D ∼= [1]� [0] and that this
composition actually is an equivalence of double categories.

Composing (7) with (6) the other way around now yields an endomorphism of C which
is an equivalence on objects, and therefore also an equivalence. We conclude that (6) is
an equivalence.

A similar argument shows that F ([0]� [1]) is either [0]� [1] or [1]� [0] (and different
from F ([1]� [0])).

A computation shows that any pushout of [0] � [1] and [1] � [0] along [0] � [0] must
either be [1] � [1] (in case where this is literally the condition of being an adequate
factorization system, i.e. the pushout in (2) or a similar one obtained by pre-composing
with (−)1 op) or it only contains 3 objects (because in this case, it turns out that the
pushout can be computed in PSh(∆×∆)). Because F preserves pushouts as well as the
space of objects, we conclude that F preserves [1]� [1] and that F must either restrict
to the identity or to (−)1 op on ∆≤1 ×∆≤1 ⊂ ∆×∆ ⊂ OFS⊥.

By the Segal condition, every object in ∆ ×∆ is a colimit of objects in ∆≤1 ×∆≤1,
the value F ([m] � [n]) hence is determined by the restriction of F to ∆≤1 × ∆≤1. A
calculation shows that if F restricts to (−)1 op on ∆≤1 ×∆≤1, it will still send [m]� [n]
to [m]� [n] (and also if F restricts to the identity, obviously).

We moreover claim that any automorphism of ∆ × ∆ is already determined by its
restriction to ∆≤1 × ∆≤1. Indeed, the k + 1 inclusions [0] ! [k] and the m + 2 maps
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[m]! [1] induce an injective map

map∆([k] , [m]) ↪−! (map∆([0] , [1]))
×(k+1)(m+2) .

The category DCat⊥ is a reflective subcategory of PSh(∆×∆), every colimit–preserving
functor is hence left Kan extended along the inclusion ∆×∆! DCat⊥. Therefore, we
have inclusions

Aut(DCat⊥) ⊂ FunL(DCat⊥,DCat⊥) ⊂ Fun(∆×∆,DCat⊥) .

It follows from the above discussion that we actually have that

Aut(OFS⊥) ⊂ Aut(∆×∆,∆×∆)

is the subspace spanned by the two components (−)1 op and the identity.
Finally, note that the identity functor on ∆ × ∆ has no non-trivial automorphisms

because none of the objects in ∆×∆ has.

Corollary 5.6. Let C† be an adequate factorization system. Then there is a natural
equivalence

Fact(C†)
1 op ∼= Fact(Span(C†))

where Span: OFS⊥ ! OFS⊥ denotes Barwick’s span category functor, [Bar17, Def.
5.7].

Proof. By [HHLN23b, Thm. 4.12], Span is an automorphism of OFS⊥ which is not
naturally equivalent to the identity and so is Cnr ◦(−)1 op ◦ Fact by Proposition 5.4, so
they agree by Theorem 5.5 (using the equivalence from Proposition 5.4 again).

Combining the above result with Proposition 4.5, we recover the equivalence between
op-Gray fibration over an orthogonal adequate triple and curved orthofibrations between
its span category from [HHLN23b, Thm. 5.21]:

Theorem 5.7 (Haugseng, Hebestreit, Nuiten, Linskens). Let C† be an adequate factor-
ization system. The functor Span: OFS⊥ ! OFS⊥ induces a natural equivalence

opGray(C†) ∼= Ortho(Span(C†))

Proof. This follows from combining Corollary 5.6 and Proposition 4.5.

A. Normed structures on the category of equivariant manifolds
In this appendix, which is jointly written with Natalie Stewart, we use the results from
this paper to construct a G-symmetric monoidal category of G-manifolds for G a compact
Lie group, generalizing the construction for finite groups by Horev [Hor19].

Let us recall some basic notions from equivariant homotopy theory:
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Definition A.1. We write TopG for the topologically enriched category of topological
spaces with a continuous G-action and G-equivariant maps. We define

Ot
G ⊂ TopG

as the full topologically enriched subcategory spanned by finite disjoint unions of tran-
sitive G-spaces G/H for some closed subgroup H.

We write Ot
G = N∆(Ot) for the homotopy coherent nerve of this category. We more-

over write OG ⊂ Ot
G for the subcategory only consisting of single orbits G/H. This

category is called the orbit category of G. We denote by Of.i.,t
G ⊂ Ot

G the wide subcat-
egory of maps which are finite coverings.

The importance of the orbit category comes from Elmendorf’s theorem [Elm83], stating
that the homotopy theory of topological spaces with a continuous G-action with respect
to maps inducing weak equivalences on all fixed points, is modeled by the presheaf
category of G-spaces

Fun(Oop
G ,S) .

It follows from pullback stability of finite coverings that (Ot
G, O

f.i.,t
G , Ot

G) is an adequate
triple in the sense of Barwick [Bar17], so that we can form its span category

Spanf.i.G = Span
(
Ot

G, O
f.i.,t
G , Ot

G

)
.

We warn the reader that this is just a span of an adequate triple, not of an orthogonal
factorization system. However, this span category admits the structure of an orthogonal
factorization system with backwards maps as ingressives and forwards maps as egressives.

Definition A.2. A G-symmetric monoidal G-category is a product–preserving functor

Spanf.i.G −! Cat

Here, the products in the category Spanf.i.G are given by disjoint unions. Given a G-
symmetric monoidal G-category C, we denote C(G/H) by CH and call it the H-fixed
points of C. For any subgroup H, precomposition with the product–preserving functor
Span(Fin) ! Spanf.i.G sending A to G/H × A equips the H-fixed points category CH

with a symmetric monoidal structure. Any inclusion K < H < G gives rise to a map
G/K ! G/H. The backwards functoriality yields a functor

CH −! CK ,

usually referred to as the restriction. If K < H is a finite index inclusion, we obtain a
functor in the other direction

CK ! CH ,

called the norm.

Definition A.3. In the following, a manifold is always assumed to be a smooth manifold
without boundary. A G-manifold is a smooth manifold without boundary together with
a smooth action by a compact Lie group G.
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The goal of this appendix is to define the G-symmetric monoidal G-category of G-
manifolds, i.e. to construct a product–preserving functor

Mfld : Spanf.i.G −! Cat

which sends G/H to the category of H-manifolds and H-equivariant embeddings, where
restriction along K < H is given by restricting the action and norming along a finite
index inclusion K < H sends a K-manifold M to H ×K M .

This construction certainly requires geometric input, so it is convenient to define
the ∞-category of manifolds as a homotopy coherent nerve of a topologically enriched
category.

The main technical difficulty arises from dealing with the two different directions in
the span category. It is hard to write down the unstraightening of this functor directly, as
the source Spanf.i.G does not admit a natural model as a topologically enriched category,
since pullbacks are only unique up to contractible choice. This precisely is why it is
useful to work with double categories, where the two directions are clearly separated.

Construction A.4. Let SpanG denote the double category where SpanG(m,n) ⊂
map([m]× [n], Ot

G) is given by the subspace of elements where

• the map Ai,j−1 ! Ai,j has finite fibers for all 0 ≤ i ≤ m and all 1 ≤ j ≤ n and

• the induced map Ai−1,j−1 ! Ai−1,j ×Ai,j Ai,j−1 is an equivalence for all 1 ≤ i ≤ m
and 1 ≤ j ≤ n.

Here, the bisimplicial structure is given by forgetting/composing maps and inserting
identities.

We would like to topologically model this using the following construction.

Construction A.5. For every n consider the topologically enriched category SpanGn in
which

• objects are composable sequences A0 ! · · · ! An in Ot
G which are all finite

coverings.

• morphisms between (A0 ! · · ·! An) and (B0 ! · · ·! Bn) are given by Ai ! Bi

for all 0 ≤ i ≤ n such that for all 1 ≤ i ≤ n, the following diagram commutes

Ai−1 Bi−1

Ai Bi

and is a pullback square. We equip the mapping spaces with the subspace topology
of
∏

map(Ai, Bi).
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This is functorial in maps of finite linearly ordered posets via composing/forgetting maps
and inserting identities, i.e. it assembles into a functor

∆op −! CatTop

into the category of topologically enriched categories.

Proposition A.6. The homotopy coherent nerve of SpanGn is equivalent to the functor
∆op ! Cat sending [n] 7! Span(•, n).

Proof. The category SpanGn is a topologically enriched subcategory of the topologically
enriched functor category

SpanGn ⊂ Fun
(
[n],Ot

G

)

The evaluation
Fun([n],Ot

G)× [n]! Ot
G

induces a comparison functor

N∆SpanGn Span(•, n)

N∆Fun([n],Ot
G) Fun ([n], Ot

G).

γ′

γ

which restricts (essentially uniquely) to a functor γ′; moreover, the above diagram is
natural in n, i.e. it is a simplicial diagram of commutative squares.

We claim that γ and γ′ are equivalences, beginning with γ. Indeed, essential surjec-
tivity of γ is clear and fully faithfulness follows from a computation on mapping spaces,
for which homotopy pullbacks and pullbacks agree as any any map in Ot

G is a G-Serre
fibration. For γ′, it follows by unwinding definitions that the image of the composite
N∆SpanGn ! Fun ([n], Ot

G) is Span(•, n), giving the equivalence.

Construction A.7. Given a non-negative integer n, let MfldGn be the topologically
enriched category with

• objects the composable sequences (M ! A0 ! · · ·! An) of equivariant maps where
A0 ! · · · ! An is a composable sequence of finite coverings in Ot

G and M is a
smooth manifold equipped with a smooth action by G, and

• morphisms (M ! A0 ! · · ·! An) −! (N ! B0 ! · · ·! Bn) given by the tuples
of maps Ai ! Bi in Ot

G for all 0 ≤ i ≤ n and smooth G-equivariant maps M ! N ,
making the apparent diagrams commute and such that

– the map Ai−1 ! Ai ×Bi Bi−1 is an equivalence for all 1 ≤ i ≤ n, and
– the map M ! N ×A0 B0 is an embedding (or equivalently M ! N ×Ai Bi is

an embedding for all 0 ≤ i ≤ n by the first condition).
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The mapping spaces are topologized using the subset topology of the product∏
imap(Ai, Bi)×map(M,N) where we equip the mapping space map(M,N) with

the strong C∞-topology.

This construction is functorial in maps of finite linearly ordered posets by forgetting/com-
posing maps and adding identities, so that we obtain a functor

MfldG• : ∆op −! CatTop

Moreover, forgetting the manifold M yields a natural transformation

p : MfldG• −! SpanG•

of functors ∆op ! CatTop. Taking homotopy coherent nerves, followed by the Rezk
nerve, we obtain a functor

MfldG : ∆op ×∆op −! S

(m,n) 7−! map
(
[m],N∆(MfldGn )

)

along with a natural transformation p : MfldG ! SpanG.

We know by construction that MfldG(•, n) is a complete Segal space. Our next goal
is to establish that it also is a complete Segal space in the other direction and that the
functor p is a cartesian fibration, starting with the following.

Lemma A.8. The topologically enriched functor

p : MfldGn −! SpanGn

induces Serre fibrations on topological mapping spaces.
Moreover, given objects (M ! A0 ! · · ·! An) and (N ! B0 ! · · ·! Bn) in MfldGn

and a map f from (A0 ! · · ·! An) to (B0 ! · · ·! Bn), the topological space of lifts
of f to map in MfldGn is homeomorphic to the topological space of embeddings from M
into N ×B0 A0 over A0.

Proof. We will actually check that the induced map on mapping spaces is a fiber bundle;
the remaining claim follows by unwinding definitions. Let us start with the case n = 0.

Let M ! A and N ! B be two objects. Using that a manifold with a map to a
disjoint union can naturally be written as a disjoint union, we can reduce to the case
where A and B are transitive.

Moreover, restricting to path components in the base, we can moreover restrict to
a distinguished neighborhood of the projection map A = G/K ! G/H = B in the
mapping space map(G/K,G/H); by [Sch18, Prop. B.17] such a neighborhood is given
by the quotient of centralizers CG(K)/GH(K) mapping to (G/H)K = map(G/K,G/H)
via the inclusion CG(K) ⊂ G. In particular, there is an action of CG(K) on that space.
We will extend this action to an action on mapMfldG0

(M ! G/K,N ! G/H) so that the
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map to map(G/K,G/H) becomes CG(K)-equivariant. This will imply the claim, as any
CG(K)-equivariant map to a transitive CG(K)-space automatically is a fiber bundle.

For this, we use that any G-manifold M over G/K is of the form G×K M ′ for a K-
manifold M ′ (obtained as the fiber over eK). Given an element g ∈ CG(K), we associate
to it the map G×K M ! G×K M sending [g,m] to [gg,m] (which is well-defined as g is
contained in the centralizer of K). This map lives over the map G/K ! G/K induced
by multiplication with g, so that we did construct a map of topological groups

CG(K) −! AutMfldGn
(M ! G/K) .

The target acts on mapMfldG0
(M ! G/K,N ! G/H) and this yields our desired action.

For the general case observe that by definition we have a pullback of topological spaces

mapMfldGn
(M ! · · ·! An, N ! · · ·! Bn) mapMfldG0

(M ! A0, N ! B0)

mapSpanGn
(A0 ! · · ·! An, B0 ! · · ·! Bn) mapSpanG0

(A0, B0)

The claim follows as fiber bundles are stable under pullbacks.

Let a0 : [0]! [n] denote the inclusion of {0}.

Lemma A.9. The square

MfldG(0, n) Span(0, n)

MfldG(0, 0) Span(0, 0)

a∗0 a∗0

is cartesian for all n ≥ 0.

Proof. We prove that the induced functor

MfldG(0, n) −! PB := Span(0, n)×Span(0,0) MfldG(0, 0)

is an equivalence, starting with essential surjectivity (i.e. surjectivity on π0). An object
in PB is given by an object M ! A in MfldG0 together with a composable sequence
A0 ! A1 ! · · · ! An in SpanGn and an equivalence A ' A0 in SpanG0 . This sequence
is equivalent to A! A1 ! . . . An in SpanG(0, n) via A ' A0, so that we might assume
A = A0. This element precisely is the image of M ! A! · · ·! An.

We now turn to fully faithfulness (i.e. equivalence on each path component). By
Lemma A.8, we can compute this pullback on mapping spaces as the homotopy type of a
(strict) pullback of the induced diagram on mapping topological spaces from the original
functor of topologically enriched categories. The fibers in this square of topological
mapping spaces are homeomorphic by Lemma A.8, so the fibers on the diagram of
mapping spaces are equivalent, proving fully faithfulness.
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Lemma A.10. The square

MfldG(1, n) Span(1, n)

MfldG(1, 0) Span(1, 0)

a∗0 a∗0

is cartesian for all n ≥ 0.
Proof. Essential surjectivity follows as in the previous lemma.

Let us turn to fully faithfulness. We have to verify that the diagram induces pullbacks
on mapping spaces. This can be checked by verifying that they induce equivalences on
fibers along the horizontal maps. Let F : X ! Y be an object of MfldG(1, n), i.e. an
arrow in MfldGn . We want to compute the fiber

Fib −! AutAr
(
MfldG(•,n)

)(F ) −! AutAr(SpanG(•,n))(p(F )) .

Expanding the pullback description of mapping spaces in the arrow category, we can
write this fiber as as the pullback

Fib AutMfldG(•,n)(X)×AutSpanG(•,n)
(p(X)) ∗

AutMfldG(•,n)(Y )×AutSpanG(•,n)
(p(Y )) ∗ mapMfldG(•,n)(X,Y )×mapSpanG(•,n)

(X,Y ) ∗

y
◦F

F◦

Now we apply Lemma A.8 again to model each of the terms in this pullback diagram
as a strict pullback in topological mapping spaces of the associated topological functor
MfldGn ! SpanGn . It follows from the description of the fiber in the same lemma that
a0 : [0]! [n] induces homeomorphisms on those strict fibers, yielding an equivalence.

Lemma A.11. The maps MfldG(n, •) ! SpanG(n, •) are right fibratons of complete
Segal spaces for all n ≥ 0.
Proof. We first check that it is a right fibration of Segal spaces. As we already know that
SpanG(n, •) is Segal, the claim for n = 0, 1 follows immediately from the two previous
lemmas and [Bri18, Prop. 1.7]. For n ≥ 2, the claim now follows from pasting pullback
diagrams, as we already know that MfldG(•,m) is Segal.

The completness is automatic by [Bri18, Prop. 1.19] as we know that SpanG(n, •) is
is complete.

Lemma A.12. Given an arrow ϕ : A ! B in the base and a lift F : M ! B of the
target to the MfldG(0, 0), the topological fiber product yields a p(•, 0)-cartesian arrow:

M ×A B M

A B

ϕ′

F ′ F

ϕ

In particular, the functor p(•, 0) : MfldG(•, 0)! SpanG(•, 0) is a cartesian fibration.
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Proof. Let N ! C ∈MfldG(0, 0) be another object. We have to verify that the square

mapMfldG(•,0)(N ! C,M ×B A! A) mapMfldG(•,0)(N ! C,M ! B)

mapSpanG(•,0)(C,A) mapSpanG(•,0)(C,B)

is cartesian. We can verify this by checking that the induced map on homotopy fibers
in the vertical direction is an equivalence over all points. Using Lemma A.8, we see that
we can model these homotopy fibers as strict fibers of the map on mapping spaces of
topologically enriched category MfldG0 ! SpanG0 . The same lemma shows that these
models are homeomorphic; indeed, both of them can be identified with embeddings of
N into M ×B C 'M ×A B ×B C which commute with the map to A.

Construction A.13. Lemma A.11 and Lemma A.12, together establish that

p : MfldG −! SpanG

is a (cart,right)-fibration.
By the pullback condition in its definition,

(
SpanG

)1 op is a factorization double cate-
gory. Moreover,

p1 op :
(
MfldG

)1 op
−!

(
SpanG

)1 op

is a (cocart,right)-fibration.
It follows from Proposition 4.5 that the source of p1 op automatically is a factorization

double category and that

Cnr
(
p1 op

)
: Cnr

((
MfldG

)1 op)
−! Cnr

((
SpanG

)1 op)

is an op-Gray fibration.
Proposition A.14. The functor

Cnr
(
p1 op

)
: Cnr

((
MfldG

)1 op)
−! Cnr

((
SpanG

)1 op)

is a cartesian fibration.
Proof. We use the same categorical argument as in [HHLN23b, Prop. 5.17]. By def-
inition, op-Gray fibrations have cartesian lifts over ingressive morphisms and locally
cartesian lifts over egressive morphisms. As the composition of a locally cartesian mor-
phisms followed by a cartesian morphism is again cartesian, it follows that we have
locally cartesian lifts over any morphism.

It remains to check that those locally cocartesian morphisms compose. We might
reduce to the case where we compose an ingressive morphism with an egressive in the
“wrong way”, i.e. to diagrams coming from pullbacks

A0 B0

A1 B1
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where A0 ! A1 and B0 ! B1 have finite fibers.
Given an object M ! B0 in the fiber over B0, consider the following diagram:

M ×B0 A0 M

M ×B1 A1 M

A1 B0

A1 B1

'

The front and back squares are cartesian and the left and right square are locally carte-
sian, showing that locally cartesian arrows compose, as claimed.

Finally, we note that Cnr
((

SpanG
)1 op)op ' Spanf.i.G . This follows from unwinding

the respective definitions, as both sides are defined as a complete Segal space using maps
out of the twisted arrow category.

In particular, we can straighten the functor Cnr
(
p1 op

)
to obtain a functor

Spanf.i.G −! Cat .

Let us unwind this functor. The restriction to (Ot
G)

op ⊂ Spanf.i.G is simply given by the
straightening of the cartesian fibration MfldG0 ! Span0 ' Ot

G. The fiber over A ∈ Ot
G

is given by G-manifolds over A with embeddings between them. Given a map f : A! B
and two manifolds M ! B and N ! B in Ot

G, we can use the description of the cartesian
morphisms from Lemma A.12, to identify the induced map on mapping spaces as

Emb/B(M ! B,N ! B)

' mapMfldG0
(M ! B,N ! B)×mapOt

G
(B,B) {idB}

−! mapMfldG0
(M ×B A! A,N ! B)×mapOt

G
(A,B) {f}

' mapMfldG0
(M ×B A! A,N ×B A! A)×mapOt

G
(A,A) {idA}

' Emb/A(M ×B A! A,N ×B A! A)

(8)

with the pullback functoriality of embeddings.
For the forwards functoriality, we note that the lifts of the right fibration from Lemma A.11

of a manifold M ! A along a finite covering A! B is given by M ! A. That is, norms
are just given by post-composition.

Proposition A.15. The straightening

Spanf.i.G −! Cat

of Cnr
(
p1 op

)
is a G-symmetric monoidal G-category.
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Proof. We must check that the restriction to (Ot
G)

op is product–preserving, i.e. the
coassembly map

Cnr
(
p1 op

)
(A tB) −! Cnr

(
p1 op

)
(A)× Cnr

(
p1 op

)
(B)

is an equivalence. The essential surjectivity comes from the fact that a manifold with
a map to a disjoint union is naturally a disjoint union of manifolds mapping to each
factor individually. The fully faithfulness follows from the description of mapping spaces
of (8).

Definition A.16. We denote the straightening of Cnr
(
p1 op

)
by

Mfld : Spanf.i.G −! Cat

and call it the G-symmetric monoidal G-category of G-manifolds.

We can moreover identify the category of manifolds equipped with a smooth map to
G/H with the category of H-manifolds, by taking the fiber over eH.

Under this identification, restriction is indeed given by restricting the action. The
norm along a finite index inclusion K < H identifies with the functor sending a K-
manifold M to the H-manifold H ×K M .
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